MSC: 03B35
Keywords:
MML identifier: AAA , version: \square

From now on $x, y, z, E, E_{1}, E_{2}, E_{3}$ denote sets, s_{9} denotes a family of subsets of E, f denotes a function from E into E, and k, l, m, n denote elements of \mathbb{N}.

LLCC38:10 LLCC39:19 Let i be an integer. EELLCC39:19 LLCC40:6 We say that i is even if and only if
(Def. 1) $2 \mid i$.
EELLCC40:6 EELLCC38:10 LLCC46:8 LLCC48:11 We introduce the notation i is odd as an antonym for i is even. EELLCC48:11 EELLCC46:8 LLCC51:10 LLCC52:15 Let n be a natural number. EELLCC52:15 LLCC53:15 Let us observe that n is even if and only if the condition (Def. 2) is satisfied.
(Def. 2) there exists k such that $n=2 \cdot k$.
EELLCC53:15 EELLCC51:10 LLCC58:12 LLCC59:9 Note that there exists an element of \mathbb{N} which is even EELLCC59:9 LLCC60:9 One can verify that there exists an element of \mathbb{N} which is odd EELLCC60:9 LLCC61:9 and there exists an integer which is even.

EELLCC61:9 LLCC62:9 and there exists an integer which is odd.
EELLCC62:9 EELLCC58:12 LLCC65:7 Now we state the proposition:
(1) Let us consider an integer i. Then i is odd if and only if there exists an integer j such that $i=2 \cdot j+1$.

EELLCC65:7 LLCC68:12 LLCC69:19 Let i be an integer. EELLCC69:19 LLCC70:9 Observe that $2 \cdot i$ is even.

EELLCC70:9 EELLCC68:12 LLCC73:12 LLCC74:24 Let i be an even integer. EELLCC74:24
LLCC75:9 One can verify that $i+1$ is odd.
EELLCC75:9 EELLCC73:12 LLCC78:12 LLCC79:23 Let i be an odd integer. EELLCC79:23
LLCC80:9 Note that $i+1$ is even.
EELLCC80:9 EELLCC78:12 LLCC83:12 LLCC84:24 Let i be an even integer. EELLCC84:24
LLCC85:9 Observe that $i-1$ is odd.
EELLCC85:9 EELLCC83:12 LLCC88:12 LLCC89:23 Let i be an odd integer. EELLCC89:23 LLCC90:9 One can verify that $i-1$ is even.

EELLCC90:9 EELLCC88:12 LLCC93:12 LLCC94:38 Let i be an even integer and EELLCC94:38 LLCC94:38 j be an integer. EELLCC94:38 LLCC95:9 Let us note that $i \cdot j$ is even.

EELLCC95:9 LLCC96:9 One can verify that $j \cdot i$ is even.
EELLCC96:9 EELLCC93:12 LLCC99:12 LLCC100:26 Let i, j be odd integers. EELLCC100:26 LLCC101:9 One can check that $i \cdot j$ is odd.

EELLCC101:9 EELLCC99:12 LLCC104:12 LLCC105:27 Let i, j be even integers. EELLCC105:27 LLCC106:9 Note that $i+j$ is even.

EELLCC106:9 EELLCC104:12 LLCC109:12 LLCC110:42 Let i be an even integer and EELLCC110:42 LLCC110:42 j be an odd integer. EELLCC110:42 LLCC111:9 Let us observe that $i+j$ is odd.

EELLCC111:9 LLCC112:9 Note that $j+i$ is odd.
EELLCC112:9 EELLCC109:12 LLCC115:12 LLCC116:26 Let i, j be odd integers. EELLCC116:26 LLCC117:9 Let us note that $i+j$ is even.

EELLCC117:9 EELLCC115:12 LLCC120:12 LLCC121:42 Let i be an even integer and EELLCC121:42 LLCC121:42 j be an odd integer. EELLCC121:42 LLCC122:9 One can verify that $i-j$ is odd.

EELLCC122:9 LLCC123:9 Let us note that $j-i$ is odd.
EELLCC123:9 EELLCC120:12 LLCC126:12 LLCC127:26 Let i, j be odd integers. EELLCC127:26 LLCC128:9 Observe that $i-j$ is even.

EELLCC128:9 EELLCC126:12 LLCC131:12 LLCC132:24 Let m be an even integer. EELLCC132:24 LLCC133:9 One can verify that $m+2$ is even.

EELLCC133:9 EELLCC131:12 LLCC136:12 LLCC137:23 Let m be an odd integer. EELLCC137:23 LLCC138:9 Note that $m+2$ is odd.

EELLCC138:9 EELLCC136:12 LLCC141:10 LLCC142:11 Let us consider E and EELLCC142:11 LLCC142:11 f. EELLCC142:11 LLCC142:25 Let n be a natural number. EELLCC142:25 LLCC143:15 Observe that the functor f^{n} yields a function from E into E. EELLCC143:15 EELLCC141:10 LLCC146:7 Now we state the propositions:
(2) Let us consider a non empty subset S of \mathbb{N}. If $0 \in S$, then $\min S=0$. EELLCC146:7 LLCC149:7
(3) Let us consider a non empty set E, a function f from E into E, and an element x of E. Then $f^{0}(x)=x$.
EELLCC149:7 LLCC155:10 LLCC156:34 Let x be an object and EELLCC156:34 LLCC156:34 f be a function. EELLCC156:34 LLCC157:6 We say that x is a fixpoint of f if and only if
(Def. 3) $\quad x \in \operatorname{dom} f$ and $x=f(x)$.
EELLCC157:6 EELLCC155:10 LLCC163:10 LLCC164:67 Let A be a non empty set, EELLCC164:67 LLCC164:67 a be an element of A, and EELLCC164:67 LLCC164:67 f be a function from A into A. EELLCC164:67 LLCC165:15 One can verify that a is a fixpoint of f if and only if the condition (Def. 4) is satisfied.
(Def. 4) $\quad a=f(a)$.
EELLCC165:15 EELLCC163:10 LLCC171:10 LLCC172:20 Let f be a function. EELLCC172:20 LLCC173:6 We say that f has fixpoints if and only if
(Def. 5) there exists an object x such that x is a fixpoint of f.
EELLCC173:6 EELLCC171:10 LLCC179:8 LLCC181:11 We introduce the notation f is without fixpoints as an antonym for f has fixpoints. EELLCC181:11 EELLCC179:8 LLCC184:10

LLCC185:34 Let X be a set and EELLCC185:34 LLCC185:34 x be an element of X. EELLCC185:34 LLCC186:6 We say that x is covering if and only if
(Def. 6) $\bigcup x=\bigcup \bigcup X$.
EELLCC186:6 EELLCC184:10 LLCC192:7 Now we state the proposition:
(4) s_{9} is covering if and only if $\bigcup s_{9}=E$.

EELLCC192:7 LLCC195:12 LLCC196:8 Let us consider E. EELLCC196:8 LLCC197:9 Observe that there exists a family of subsets of E which is non empty, finite, and covering.

EELLCC197:9 EELLCC195:12 LLCC200:7 Now we state the proposition:
(5) Let us consider a set E, a function f from E into E, and a non empty, covering family s_{9} of subsets of E. Suppose for every element X of s_{9}, X misses $f^{\circ} X$. Then f is without fixpoints.
EELLCC200:7 LLCC205:10 LLCC206:11 Let us consider E and EELLCC206:11 LLCC206:11 f. EELLCC206:11 LLCC207:6 The functor f_{\equiv} yielding an equivalence relation of E is defined by
(Def. 7) for every x and y such that $x, y \in E$ holds $\langle x, y\rangle \in i t$ iff there exists k and there exists l such that $f^{k}(x)=f^{l}(y)$.
EELLCC207:6 EELLCC205:10 LLCC214:7 Now we state the propositions:
(6) Let us consider a non empty set E, a function f from E into E, an element c of Classes f_{\equiv}, and an element e of c. Then $f(e) \in c$. EELLCC214:7 LLCC218:7
(7) Let us consider a non empty set E, a function f from E into E, an element c of Classes f_{\equiv}, an element e of c, and n. Then $f^{n}(e) \in c$.
EELLCC218:7 LLCC222:12 LLCC223:9 One can check that every set which is empty-membered is also trivial.

EELLCC223:9 EELLCC222:12 LLCC226:12 LLCC227:48 Let A be a set and EELLCC227:48 LLCC227:48 B be a set with a non-empty element. EELLCC227:48 LLCC228:9 One can verify that there exists a function from A into B which is non-empty.

EELLCC228:9 EELLCC226:12 LLCC231:12 LLCC233:38 Let A be a non empty set, EELLCC233:38 LLCC233:38 f be a non-empty function from A into B, and EELLCC233:38 LLCC233:38 a be an element of A. EELLCC233:38 LLCC234:9 One can check that $f(a)$ is non empty.

EELLCC234:9 EELLCC231:12 LLCC237:12 LLCC238:25 Let X be a non empty set. EELLCC238:25 LLCC239:9 One can check that 2^{X} has a non-empty element.

EELLCC239:9 EELLCC237:12 LLCC242:7 Now we state the proposition:
(8) Let us consider a non empty set E, and a function f from E into E. Suppose f is without fixpoints. Then there exists E_{1} and there exists E_{2} and there exists E_{3} such that $\left(E_{1} \cup E_{2}\right) \cup E_{3}=E$ and $f^{\circ} E_{1}$ misses E_{1} and $f^{\circ} E_{2}$ misses E_{2} and $f^{\circ} E_{3}$ misses E_{3}.

EELLCC242:7
2.

LLCC250:7 Now we state the propositions:
(9) Let us consider a natural number n. Then n is odd if and only if there exists an element k of \mathbb{N} such that $n=2 \cdot k+1$. EELLCC250:7 LLCC256:7
(10) Let us consider a non empty set A, a function f from A into A, and an element x of A. Then $f^{n+1}(x)=f\left(f^{n}(x)\right)$. EELLCC256:7 LLCC260:7
(11) Let us consider an integer i. Then i is even if and only if there exists an integer j such that $i=2 \cdot j$.
EELLCC260:7 LLCC265:12 LLCC266:9 Let us note that there exists a natural number which is odd.

EELLCC266:9 LLCC267:9 One can check that there exists a natural number which is even.

EELLCC267:9 EELLCC265:12 LLCC270:7 Now we state the proposition:
(12) Let us consider an odd natural number n. Then $1 \leqslant n$.

EELLCC270:7 LLCC273:12 LLCC274:8 One can verify that every integer which is odd is also non zero.

EELLCC274:8 EELLCC273:12

Received April 13, 2018

The English version of this volume of Formalized Mathematics was financed under agreement 548/P-DUN/2016 with the funds from the Polish Minister of Science and Higher Education for the dissemination of science.

