
AUTOFORMALIZATION: PAST, PRESENT,
SURPRISES

x

Josef Urban

Czech Technical University in Prague

July 10, 2024, Bonn
HIM Trimester “Prospects of Formal Math”

1 / 24

Brief History of Related Ideas (incomplete?)
‚ 1929/34 Jaskowski: “On the rules of supposition” (“natural proofs”)
‚ 1962 McCarthy: “Checking mathematical proofs is potentially one of the

most interesting and useful applications of automatic computers”
‚ 1963: P. Abrahams: “Machine verification of mathematical proofs”
‚ “checking a textbook proof would require much more” (PhD at MIT)
‚ 60’s/70s: SAD and Mizar - “human-friendly” (controlled natural?) formal

languages
‚ 1990 D. Simon: “Checking Natural Language Proofs” (Phd, Texas)
‚ 1993 L. Lamport. “How to write proofs” (structured proofs)
‚ 1990s-... A. Ranta: Grammatical Framework (GF)
‚ 2002 M. Wenzel: Isabelle, Isar (Phd - “structured” proof docs)
‚ 2003 C. Zinn: “Understanding informal mathematical discourse.” (Phd,

discourse representation theory, ATPs, manual parsing)
‚ 2000-8 A. Paskevitch: ForTheL/SAD
‚ 2005-... P. Koepke et al: Naproche
‚ 2008-2013 M. Ganesalingam: The Language of Mathematics
‚ ... more

2 / 24

How it started for me

Date: Wed, 5 May 2004 18:45:37 +0200 (CEST)
From: Josef Urban <urban@ktilinux.ms.mff.cuni.cz>
To: <keimel@mathematik.tu-darmstadt.de>
cc: <trybulec@math.uwb.edu.pl>
Subject: Compendium of Continuous Lattices

Dear prof. Keimel,
[...]
recently I have linked the Mizar system with the modern ATPs.

I am also interested in translating mathematical texts written in
natural language (i.e. TeX or Latex) to the formalized Mizar language.

I hope that the link with theorem provers could be used
as an additional semantic filter for the natural language parsers.

I am writing to you, because you are one of the authors of the
"Compendium of Continuous Lattices", which has been from a large
part formalized in Mizar, and therefore it could be very suitable
for such experiment with automated translating.

[...later email...]
I should note that this is considered to be quite a hard task, and it is
quite probable that I will succeed only partially or entirely fail.
But I will at least learn what are the main hindrances for such a task.

3 / 24

2014 Learning-Assisted Autoformalization Declaration

‚ CICM, July 10, 2014, exactly 10 years ago (I planned none of these dates ;-)
‚ cicm-conference.org/2014/cicm.php?event=&menu=schedule-thursday

4 / 24

cicm-conference.org/2014/cicm.php?event=&menu=schedule-thursday

3-4 Corners of NLP/Translation Methods in
Formalization

‚ Informal to formal: Translating natural language to formal proofs
‚ Controlled natural language: A middle ground between informal and

formal
‚ Formal to formal: Translating between different formal systems
‚ Alignments: Fully manual (annotations), Gauthier & Kaliszyk - much more

semantic?, Just neural?
‚ Hybrid approaches: LMs for rephrasing, formal tools for verification,

PCFGs

5 / 24

Personal Surprises in Autoformalization

‚ Thibault’s automated alignments working across HOL4/Light/Isabelle
‚ Effectiveness of PCFG settings in conjecturing provable statements
‚ Impact of different neural architectures and settings (e.g., attention)
‚ Success of back-translation methods on unsupervised corpora (large

scale collaborative project a la blueprint?)
‚ https://github.com/JUrban/extract-defs

‚ Jesse Han’s work on fine-tuning through few-shot prompting
‚ Potential of smaller/smarter architectures (e.g., GNNs) for terminology

invention
‚ Limits vs potential of today’s large LMs (see Wenda/Moa’s talks?)
‚ GPT-2’s perfect Mizar grammar/proof mastery vs non-mastery of harder

tasks

6 / 24

https://github.com/JUrban/extract-defs

Our Autoformalization Attemps

‚ Goal: Learn understanding of informal math formulas and reasoning
‚ Experiments with the CYK chart parser linked to semantic methods
‚ demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
‚ Experiments with neural methods
‚ Combined with semantic methods: Type checking, theorem proving
‚ Feedback loops between the learning and the semantic methods
‚ Math is a much nicer area than unrestricted NLP:
‚ We (believe we) can express informal math formally, prove things, etc.
‚ If we achieve grounding math, we might ground scientific texts, law, etc.
‚ Early Corpora: Flyspeck, Mizar, Proofwiki
‚ Today: anything is a fair game (Isabelle, Lean, Coq, Metamtah, Stacks,

Arxiv)

7 / 24

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

AITP Challenges/Bets from 2014

‚ 3 AITP bets for 10k EUR from my 2014 talk at Institut Henri Poincare
(tinyurl.com/yb55b3jv)

‚ In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

‚ In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)
‚ In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math

curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than I expected)

8 / 24

tinyurl.com/yb55b3jv

PCFG

‚ PCFG demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
‚ Selection of 1k-5k nearest neighbors (RAG?)
‚ Building PCFG parser from selected examples
‚ Alternative to pure reliance on LLMs

‚ PCFG as an alternative to black-box models?
‚ Future: Learning non-trivial tree transformations:

‚ Probabilistic methods
‚ Evolutionary algorithms
‚ Neural approaches (inspired by our OEIS work)

‚ Bridging gap between Grammatical Framework (GF) and black-box
models

‚ Potential for elaboration in transformation process
‚ Exploring balance between interpretability and performance

9 / 24

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

Statistical/Semantic Parsing of Informalized HOL

‚ Training and testing examples exported form Flyspeck formulas
‚ Along with their informalized versions

‚ Grammar parse trees
‚ Annotate each (nonterminal) symbol with its HOL type
‚ Also “semantic (formal)” nonterminals annotate overloaded terminals
‚ guiding analogy: word-sense disambiguation using CYK is common

‚ Terminals exactly compose the textual form, for example:
‚ REAL_NEGNEG: @x :´´x “ x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

‚ becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))

10 / 24

Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

11 / 24

CYK Learning and Parsing (KUV, ITP 17)

‚ Induce PCFG (probabilistic context-free grammar) from the trees
‚ Grammar rules obtained from the inner nodes of each grammar tree
‚ Probabilities are computed from the frequencies

‚ The PCFG grammar is binarized for efficiency
‚ New nonterminals as shortcuts for multiple nonterminals

‚ CYK: dynamic-programming algorithm for parsing ambiguous sentences
‚ input: sentence – a sequence of words and a binarized PCFG
‚ output: N most probable parse trees

‚ Additional semantic pruning
‚ Compatible types for free variables in subtrees

‚ Allow small probability for each symbol to be a variable
‚ Top parse trees are de-binarized to the original CFG

‚ Transformed to HOL parse trees (preterms, Hindley-Milner)
‚ typed checked in HOL and then given to an ATP (hammer)

12 / 24

Autoformalization based on PCFG and semantics

‚ “sin (0 * x) = cos pi / 2”

‚ produces 16 parses
‚ of which 11 get type-checked by HOL Light as follows
‚ with all but three being proved by HOL(y)Hammer
‚ demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

13 / 24

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

Flyspeck Progress

14 / 24

First Mizar Results (100-fold Cross-validation)

15 / 24

Outline

Neural Parsing

16 / 24

Neural Autoformalization (Wang et al., 2018,2020)

‚ generate about 1M Latex - Mizar pairs based on Bancerek’s work
‚ train neural seq-to-seq translation models (Luong – NMT)
‚ evaluate on about 100k examples
‚ many architectures tested, some work much better than others
‚ very important latest invention: attention in the seq-to-seq models
‚ more data very important for neural training – our biggest bottleneck (you

can help!)
‚ Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!

17 / 24

Neural Autoformalization data

Rendered LATEX If X Ď Y Ď Z , then X Ď Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $, then $ X \subseteq Z $.

18 / 24

Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31

19 / 24

Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then limps8`s7q “

lim s8` lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
} { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $.

Correct seq1 is convergent & seq2 is convergent implies lim (seq1
+ seq2) = (lim seq1) + (lim seq2) ;

Snapshot-
1000

x in dom f implies (x * y) * (f | (x | (y | (y | y)
))) = (x | (y | (y | (y | y))))) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim (seq + seq9) = (lim seq) + (lim seq9) ;

20 / 24

Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1 ast t) ;
s . (i + 1) = tt . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier (f) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC (V) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1) . t ;
s . (i + 1) = tau1 . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng (H1 ./. y) ;
a * L = ZeroLC (V) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [x , y] in A ;

21 / 24

Imperfect Informalization (CARD_LAR:10)

reserve A,B for limit_ordinal infinite Ordinal;
reserve B1,B2,B3,B5,B6,D, C for Ordinal;
reserve X for set;
reserve X for Subset of A;
theorem Th10:

[#] A is closed unbounded
proof
thus [#] A is closed
proof

let B such that
A1: B in A;

assume sup ([#] A /\ B)=B;
thus thesis by A1;

end;
sup [#] A = A by ORDINAL2:18;
hence thesis by Def4;

end;
22 / 24

Imperfect Informalization

Let A and B be limit ordinals with $B \in A$.
If the supremum of the intersection of A and B
is equal to B, then A is a closed set.
\begin{proof}
Assume that B is an element of A such that the supremum of the
intersection of A and B is equal to B. By the definition of a
limit ordinal, B is a limit point of A. Therefore, A is
closed under taking limits and is thus a closed set. Moreover, by
Theorem 18 from the ordinal arithmetic, the supremum of A is
equal to A. Hence, by Definition 4, A is an unbounded set.
Therefore, A is a closed unbounded set.
\end{proof}

23 / 24

Conclusion: Vision of Ubiquitous Formally Checked
Reasoning

‚ Progress towards McCarthy’s “objectivity by formal proof” vision
‚ Direct transcription of mathematical discourse into code?
‚ What kind of code? Naproche? Lean? Isabelle? Coq?
‚ Johan’s joke: will we speak in code?
‚ Will we have GF-like explainable translators or only LLMs et al?

24 / 24

	Neural Parsing

