Learning and Reasoning
 OVER Big Proof Corpora

Josef Urban
Czech Technical University in Prague

Outline

Motivation, Learning vs. Reasoning
Learning of Theorem Proving
Demos
High-level Reasoning Guidance: Premise Selection
Low Level Guidance of Theorem Provers
Mid-level Reasoning Guidance

Autoformalization

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge - both for induction and deduction
- We need to develop such methods on computers
- Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

History, Motivation, AI/TP/ML/DL

- Intuition vs Formal Reasoning - Poincaré vs Hilbert, Science \& Method
- Turing's 1950 paper: Learning Machines, learn Chess?, undecidability??
- Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
- Denzinger, Schulz, Goller, Fuchs - late 90's, ATP-focused:
- Learning from Previous Proof Experience
- My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
- Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
- ... hammer-style methods, feedback loops, internal guidance, ...
- More details - AGl'18 keynote: https://slideslive.com/38909911/ no-one-shall-drive-us-from-the-semantic-ai-paradise-of-computerunderstandable-math-and-science
- Al vs DL: Ben Goertzel's 2018 Prague talk: https://youtu.be/zt2HSTuGBn8

Using Learning to Guide Theorem Proving

- high-level: pre-select lemmas from a large library, give them to ATPs
- high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)
- low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from ${ }^{L A} T_{E} X$ to formal
- ...

Large Datasets

- Mizar / MML / MPTP - since 2003
- MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
- Isabelle (and AFP) - since 2005
- Flyspeck (including core HOL Light and Multivariate) - since 2012
- HOL4 - since 2014, CakeML - 2017, GRUNGE - 2019
- Coq - since 2013/2016
- ACL2 - 2014?
- Lean?, Stacks?, Arxiv?, ProofWiki?, ...

Demos

- Hammering Mizar: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
- Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose)
- Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).
- Will extensive human (math) knowledge get obsolete?? (cf. Watson, Debater, etc)

Today's AI-ATP systems (\star-Hammers)

First Order Problem
*Hammer

ATP Proof

ATP

Today's AI-ATP systems (\star-Hammers)

First Order Problem

ATP .

How much can it do?

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- CoqHammer (Czajka and Kaliszyk) - about 40\% on Coq standard library

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- CoqHammer (Czajka and Kaliszyk) - about 40\% on Coq standard library

$$
\approx 45 \% \text { success rate }
$$

Recent Improvements and Additions

- Semantic features encoding term matching/unification [IJCAl'15]
- Distance-weighted k-nearest neighbor, LSI, boosted trees (XGBoost)
- Matching and transferring concepts and theorems between libraries (Gauthier \& Kaliszyk) - allows "superhammers", conjecturing, and more
- Lemmatization - extracting and considering millions of low-level lemmas
- First useful CoqHammer (Czajka \& Kaliszyk 2016), 40\%-50\% reconstruction/ATP success on the Coq standard library
- Neural sequence models, definitional embeddings (with Google Research)
- Hammers combined with statistical tactical search: TacticToe (Gauthier HOL4)
- Learning in binary setting from many alternative proofs
- Negative/positive mining (ATPBoost - Piotrowski \& JU, 2018)

High-level feedback loops - MALARea

- Machine Learner for Autom. Reasoning (2006) - infinite hammering
- feedback loop interleaving ATP with learning premise selection
- both syntactic and semantic features for characterizing formulas:
- evolving set of finite (counter)models in which formulas evaluated
- winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
- ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

Prove-and-learn loop on MPTP2078 data set

Prove-and-learn loop on MPTP2078 data set

Number of found proofs per theorem at the end of the loop

Low-level: Statistical Guidance of Connection Tableau

- learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps
- proof finished when all branches are closed
- a lot of nondeterminism, requires backtracking
- Iterative deepening used in leanCoP to ensure completeness
- good for learning - the tableau compactly represents the proof state

Clauses:	Closed Connection Tableau:
$c_{1}: P(x)$	$R(a, b)$
$c_{2}: R(x, y) \vee \neg P(x) \vee Q(y)$	$\neg P(a)$
$c_{3}: S(x) \vee \neg Q(b)$	$\neg R(a, b)$
$c_{4}: \neg S(x) \vee \neg Q(x)$	
$c_{5}: \neg Q(x) \vee \neg R(a, x)$	
$c_{6}: \neg R(a, x) \vee Q(x)$	$\neg Q(b)$

Statistical Guidance of Connection Tableau

- MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions
- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
- 20-time search shortening on the MPTP Challenge
- second version: 2015, with C. Kaliszyk
- both prover and naive Bayes in OCAML, fast indexing
- Fairly Efficient MaLeCoP = FEMaLeCoP
- 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones

Statistical Guidance of Connection Tableau - rICoP

- 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep
- added Monte-Carlo Tree Search (MCTS)
- MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

$$
\frac{w_{i}}{n_{i}}+c \cdot p_{i} \cdot \sqrt{\frac{\ln N}{n_{i}}}
$$

(UCT - Kocsis, Szepesvari 2006)

- learning both policy (clause selection) and value (state evaluation)
- clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |
- mostly term walks of length 3 (trigrams), hashed into small integers
- many iterations of proving and learning

Tree Example

Statistical Guidance of Connection Tableau - rICoP

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	leanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	$\mathbf{1 1 4 3}$	431	804
Total problems proved	11581	4615	8152

- rICoP with policy/value after 5 proving/learning iters on the training data
- $1624 / 1143=42.1 \%$ improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved	12325	13749	14155	14363	14403	14431	14342	$\mathbf{1 4 4 9 8}$
Testing proved	1354	1519	1566	1595	$\mathbf{1 6 2 4}$	1586	1582	1591

More trees

Recent Variations - FLoP, RNN

- FLoP - Finding Longer Proofs (Zsombori et al, 2019)
- Curriculum Learning used for connection tableau over Robinson Arithmetic
- addition and multiplication learned perfectly from $1 * 1=1$
- headed towards learning algorithms/decision procedures from math data
- currently black-box, combinations with symbolic methods (ILP) our next target
- Using RNNs for better tableau encoding, prediction of actions ...
- ... even guessing (decoding) next tableau literals (Piotrowski \& JU, 2019)

FLoP Training Proof

Side Note on Symbolic Learning with NNs

- Recurrent NNs with attention recently very good at the inf2formal task
- Experiments with using them for symbolic rewriting (Piotrowski et. all)
- We can learn rewrite rules from sufficiently many data
- 80-90\% on algebra datasets, $70-99 \%$ on normalizing polynomials
- again, complements symbolic methods like ILP that suffer if too much data

Side Note on Symbolic Learning with NNs

Table: Examples in the AIM data set.

Rewrite rule:	Before rewriting:	After rewriting:
$\mathrm{b}(\mathrm{s}(\mathrm{e}, \mathrm{v} 1), \mathrm{e})=\mathrm{v} 1$	$\mathrm{k}(\mathrm{b}(\mathrm{s}(\mathrm{e}, \mathrm{v} 1), \mathrm{e}), \mathrm{v} 0)$	$\mathrm{k}(\mathrm{v} 1, \mathrm{v} 0)$
$\mathrm{o}(\mathrm{V} 0, \mathrm{e})=\mathrm{V} 0$	$\mathrm{t}(\mathrm{v} 0, \circ(\mathrm{v} 1, \circ(\mathrm{v} 2, \mathrm{e})))$	$\mathrm{t}(\mathrm{v} 0, \circ(\mathrm{v} 1, \mathrm{v} 2))$

Table: Examples in the polynomial data set.

Before rewriting:	After rewriting:
(x * (x + 1)) + 1	$x^{\wedge} 2+x+1$
$(2 * y)+1+(y * y)$	$y \wedge 2+2 * y+1$
$(x+2) *((2 * x)+1)+(y+1)$	$2 \star x^{\wedge} 2+5 * x+y+3$

Side Note on Model Learning with NNs

- Smolik 2019 (MSc thesis): modelling mathematical structures with NNs
- NNs reasonably learn cyclic groups and their extensions
- ... so far struggle in learning bigger permutation groups
- Plan: learn composition/variation of complicated math structures
- Use for model-style evaluation of formulas, conjectures, etc. - similarly to the finite models in Malarea, etc.

Statistical Guidance the Given Clause in E Prover

- harder for learning than tableau
- the proof state are two large heaps of clauses processed/unprocessed
- 2017: ENIGMA - manual feature engineering (Jakubuv \& JU 2017)
- 2017: Deep guidance (neural nets) (Loos et al. 2017)
- both learn on E's proof search traces, put classifier in E
- positive examples: given clauses used in the proof
- negative examples: given clauses not used in the proof
- ENIGMA: fast feature extraction followed by fast/sparse linear classifier
- about 80% improvement on the AIM benchmark
- Deep guidance: convolutional nets - no feature engineering but slow
- ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
- NNs made competitive in real-time, boosted trees still best

Feedback loop for ENIGMA on Mizar data

- Similar to rICoP - interleave proving and learning of ENIGMA guidance
- Done on 57880 Mizar problems very recently
- Ultimately a 70% improvement over the original strategy

	S	$S \odot \mathcal{M}_{9}^{0}$	$S \oplus M_{9}^{0}$	$S \odot \mathcal{M}_{9}^{1}$	$S \oplus \mathcal{M}_{9}^{1}$	$S \odot \mathcal{M}_{9}^{2}$	$S \oplus \mathcal{M}_{9}^{2}$	$S \odot \mathcal{M}$
solved	14933	16574	20366	21564	22839	22413	23467	22910
S\%	+0\%	+10.5\%	+35.8\%	+43.8\%	+52.3\%	+49.4\%	+56.5\%	+52.8\%
S+	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822
$S-$	-0	-2723	-782	-1143	-508	-927	-430	-845
			$S \odot \mathcal{M}_{12}^{3}$	$S \oplus M_{12}^{3}$	$S \odot \mathcal{M}_{16}^{3}$	$S \oplus M_{16}^{3}$		
		solved	24159	24701	25100	25397		
		S\%	+61.1\%	+64.8\%	+68.0\%	+70.0\%		
		S+	+9761	+10063	+10476	+10647		
		S -	-535	-295	-309	-183		

ProofWatch: Statistical/Semantic Guidance of E (Goertzel et al. 2018)

- Bob Veroff's hints method used for Prover9/AIM
- solve many easier/related problems
- load their useful lemmas on the watchlist (kind of conjecturing)
- boost inferences on clauses that subsume a watchlist clause
- watchlist parts are fast thinking, bridged by standard (slow) search
- ProofWatch (2018): load many proofs separately
- dynamically boost those that have been covered more
- needed for heterogeneous ITP libraries
- statistical: watchlists chosen using similarity and usefulness
- semantic/deductive: dynamic guidance based on exact proof matching
- results in better vectorial characterization of saturation proof searches

ProofWatch: Statistical/Symbolic Guidance of E

```
theorem Th36: :: YELLOW_5:36
for L being non empty Boolean RelStr for a, b being Element of L
holds ( 'not' (a "\/" b) = ('not' a) "/\" ('not' b)
    & 'not' (a "/\" b) = ('not' a) "\/" ('not' b) )
```

- De Morgan's laws for Boolean lattices
- guided by 32 related proofs resulting in 2220 watchlist clauses
- 5218 given clause loops, resulting ATP proof is 436 clauses
- 194 given clauses match the watchlist and 120 (61.8\%) used in the proof
- most helped by the proof of WAYBEL_1:85 - done for lower-bounded Heyting

```
theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds
    'not' (a "/\" b) >= ('not' a) "\/" ('not' b)
```


ProofWatch: Vectorial Proof State

Final state of the proof progress for the 32 proofs guiding YELLOW_5:36

0	0.438	$42 / 96$	1	0.727	$56 / 77$	2	0.865	$45 / 52$	3	0.360	$9 / 25$
4	0.750	$51 / 68$	5	0.259	$7 / 27$	6	0.805	$62 / 77$	7	0.302	$73 / 242$
8	0.652	$15 / 23$	9	0.286	$8 / 28$	10	0.259	$7 / 27$	11	0.338	$24 / 71$
12	0.680	$17 / 25$	13	0.509	$27 / 53$	14	0.357	$10 / 28$	15	0.568	$25 / 44$
16	0.703	$52 / 74$	17	0.029	$8 / 272$	18	0.379	$33 / 87$	19	0.424	$14 / 33$
20	0.471	$16 / 34$	21	0.323	$20 / 62$	22	0.333	$7 / 21$	23	0.520	$26 / 50$
24	0.524	$22 / 42$	25	0.523	$45 / 86$	26	0.462	$6 / 13$	27	0.370	$20 / 54$
28	0.411	$30 / 73$	29	0.364	$20 / 55$	30	0.571	$16 / 28$	31	0.357	$10 / 28$

EnigmaWatch: ProofWatch used with ENIGMA

- Use the proof completion ratios as features for characterizing proof state
- Instead of just static conjecture features - the vectors evolve
- Feed them to ML systems along with other features
- Relatively good improvement
- To be extended in various ways

EnigmaWatch: ProofWatch used with ENIGMA

Baseline	Mean	Var	Corr	Rand	Baseline \cup Mean	Total
1140	1357	1345	1337	1352	1416	1483

Table: ProofWatch evaluation: Problems solved by different versions.

loop	ENIGMA	Mean	Var	Corr	Rand	ENIGMA \cup Mean	Total
0	1557	1694	1674	1665	1690	1830	1974
1	1776	1815	1812	1812	1847	1983	2131
2	1871	1902	1912	1882	1915	2058	2200
3	1931	1954	1946	1920	1926	2110	2227

Table: ENIGMAWatch evaluation: Problems solved and the effect of looping.

Example of an XGBoost decision tree

TacticToe: mid-level ITP Guidance (Gauthier et al.'18)

- learns from human tactical HOL4 proofs to solve new goals
- no translation or reconstruction needed
- similar to rlCoP: policy/value learning
- however much more technically challenging:
- tactic and goal state recording
- tactic argument abstraction
- absolutization of tactic names
- nontrivial evaluation issues
- policy: which tactic/parameters to choose for a current goal?
- value: how likely is this proof state succeed?
- 66\% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar recent work for Isabelle (Nagashima 2018)
- work in progress for Coq (us, OpenAI) and HOL Light (us, Google)

BliStr: Blind Strategymaker

- Problem: how do we put all the sophisticated ATP techniques together?
- E.g., Is conjecture-based guidance better than proof-trace guidance?
- Grow a population of diverse strategies by iterative local search and evolution!
- Dawkins: The Blind Watchmaker

BliStr: Blind Strategymaker

- The strategies are like giraffes, the problems are their food
- The better the giraffe specializes for eating problems unsolvable by others, the more it gets fed and further evolved

BliStr: Blind Strategymaker

- Use clusters of similar solvable problems to train for unsolved problems
- Interleave low-time training with high-time evaluation
- Thus co-evolve the strategies and their training problems
- In the end, learn which strategy to use on which problem

BliStr on 1000 Mizar@Turing problems

- original E coverage: 597 problems
- after 30 hours of strategy growing: 22 strategies covering 670 problems
- The best strategy solves 598 problems (1 more than all original strategies)
- A selection of 14 strategies improves E auto-mode by 25% on unseen problems
- Similar results for the Flyspeck problems
- Be lazy, don’t do "hard" theory-driven ATP research (a.k.a: thinking)
- Larry Wall (Programming Perl): "We will encourage you to develop the three great virtues of a programmer: laziness, impatience, and hubris"

Statistical/Semantic Parsing of Informalized HOL

- Goal: Learn understanding of informal math formulas and reasoning
- Experiments with the CYK chart parser linked to semantic methods
- Training and testing examples exported form Flyspeck formulas
- Along with their informalized versions
- Grammar parse trees
- Annotate each (nonterminal) symbol with its HOL type
- Also "semantic (formal)" nonterminals annotate overloaded terminals
- guiding analogy: word-sense disambiguation using CYK is common
- Terminals exactly compose the textual form, for example:
- REAL_NEGNEG: $\forall x .--x=x$

```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))
```

- becomes

```
(""Type bool)"i ! (""̈Type (fun real bool))" (Abs (""̈Type real)"
(Var AO)) ("(Type bool)" ("(Type real)" real_neg ("(Type real)"
real_neg (""(Type real)" (Var A0)))) = (""̈Type real)" (Var A0))))))
```

Example grammars

CYK Learning and Parsing (KUV, ITP 17)

- Induce PCFG (probabilistic context-free grammar) from the trees
- Grammar rules obtained from the inner nodes of each grammar tree
- Probabilities are computed from the frequencies
- The PCFG grammar is binarized for efficiency
- New nonterminals as shortcuts for multiple nonterminals
- CYK: dynamic-programming algorithm for parsing ambiguous sentences
- input: sentence - a sequence of words and a binarized PCFG
- output: N most probable parse trees
- Additional semantic pruning
- Compatible types for free variables in subtrees
- Allow small probability for each symbol to be a variable
- Top parse trees are de-binarized to the original CFG
- Transformed to HOL parse trees (preterms, Hindley-Milner)
- typed checked in HOL and then given to an ATP (hammer)

Online parsing system

- "sin (0 * x) $=\cos$ pi / 2"
- produces 16 parses
- of which 11 get type-checked by HOL Light as follows
- with all but three being proved by HOL(y)Hammer
- demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

```
sin (&0 * AO) = cos (pi / &2) where AO:real
sin (&0 * AO) = cos pi / &2 where AO:real
sin (&O * &AO) = cos (pi / &2) where A0:num
sin (&0 * &AO) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * AO)) = cos pi / &2 where A0:num
csin (Cx (&0 * AO)) = ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&0) * A0) = coos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&O * AO)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
```


Flyspeck Progress

First Mizar Results (100-fold Cross-validation)

Neural Autoformalization (Wang et al., 2018)

- generate about 1M Latex - Mizar pairs based on Bancerek's work
- train neural seq-to-seq translation models (Luong - NMT)
- evaluate on about 100k examples
- many architectures tested, some work much better than others
- very important latest invention: attention in the seq-to-seq models
- more data very important for neural training - our biggest bottleneck (you can help!)
- Recent addition: unsupervised methods - no need for aligned data!

Neural Autoformalization data

Rendered ${ }^{\text {LAT}} \mathrm{E}_{\mathrm{E}} \mathrm{X}$

$$
\begin{aligned}
& \text { If } X \subseteq Y \subseteq Z \text {, then } X \subseteq Z \\
& X \quad \mathrm{C}=\mathrm{Y} \& \mathrm{Y} \mathrm{C}=\mathrm{Z} \text { implies } \mathrm{X} \quad \mathrm{c}=\mathrm{Z}
\end{aligned}
$$

Mizar

Tokenized Mizar

$$
\mathrm{X} \text { C= Y \& Y C= Z implies X C= Z ; }
$$

LATEX

```
If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.
```

Tokenized ${ }^{A T} T_{E} X$

```
If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
```


Neural Autoformalization results

Parameter	Final Test Perplexity	Final Test BLEU	Identical Statements (\%)	Identical No-overlap (\%)
128 Units	3.06	41.1	$40121(38.12 \%)$	$6458(13.43 \%)$
256 Units	1.59	64.2	$63433(60.27 \%)$	$19685(40.92 \%)$
512 Units	1.6	67.9	$66361(63.05 \%)$	$21506(44.71 \%)$
1024 Units	$\mathbf{1 . 5 1}$	61.6	$\mathbf{6 9 1 7 9}(65.73 \%)$	$\mathbf{2 2 9 7 8}(\mathbf{4 7 . 7 7 \%)}$
2048 Units	2.02	60	$59637(56.66 \%)$	$16284(33.85 \%)$

Neural Fun - Performance after Some Training

Rendered ${ }^{14} T_{E} X$ Input ${ }_{L A T} T_{E X}$

Correct

Snapshot1000
Snapshot2000
Snapshot3000

Snapshot4000
Snapshot5000
Snapshot6000
Snapshot7000

Suppose s_{8} is convergent and s_{7} is convergent . Then $\lim \left(s_{8}+s_{7}\right)=\lim s_{8}+\lim s_{7}$

```
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{s_ { 8 } } { + } \mathop {\rm lim } {s _ { 7 } } $.
seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;
x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;
seq is summable implies seq is summable ;
seq is convergent & lim seq = Oc implies seq = seq ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
```


Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
- Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
- HOL(y)Hammer group in Innsbruck:
- Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima, Shawn Wang
- ATP and ITP people:
- Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- Learning2Reason people at Radboud University Nijmegen:
- Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet, Sarah Loos
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Some References

- C. Kaliszyk, J. Urban, H. Michalewski, M. Olsak: Reinforcement Learning of Theorem Proving. CoRR abs/1805.07563 (2018)
- Z. Goertzel, J. Jakubuv, S. Schulz, J. Urban: ProofWatch: Watchlist Guidance for Large Theories in E. CoRR abs/1802.04007 (2018)
- T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR abs/1804.00596 (2018).
- J. Jakubuv, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine. CICM 2017: 292-302
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning 61(1-4): 423-453 (2018)
- J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized Reasoning 9(1): 101-148 (2016)
- G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for Premise Selection. NIPS 2016: 2235-2243
- C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large Theories. IJCAI 2015: 3084-3090
- J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance. IJCAR 2008: 441-456
- C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of Mathematics. ITP 2017: 12-27
- Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal Mathematics. CoRR abs/1805.06502 (2018)
- J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS 7788, 240-257, 2013.

Thanks and Advertisement

- Thanks for your attention!
- AITP - Artificial Intelligence and Theorem Proving
- March 22-27, 2020, Aussois, France, aitp-conference. org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- Discussion-oriented and experimental - submit a talk abstract!
- Grown to 80 people in 2019

