A Proof of Cantor-Bernstein-Schröder

Chad E. Brown

February 6, 2017

We present a proof of Cantor-Bernstein-Schröder based on Knaster's argument in [1]. The proof is given at a level of detail sufficient to prepare the reader to consider corresponding formal proofs in interactive theorem provers.

Definition 1. Let $\Phi: \wp(A) \rightarrow \wp(B)$. We say Φ is monotone if $\Phi(U) \subseteq \Phi(V)$ forall $U, V \in \wp(A)$ such that $U \subseteq V$. We say Φ is antimonotone if $\Phi(V) \subseteq \Phi(U)$ forall $U, V \in \wp(A)$ such that $U \subseteq V$.

Definition 2. For sets A and B we write $A \backslash B$ for $\{u \in A \mid u \notin B\}$.
Lemma 3. Let A be a set and $\Phi: \wp(A) \rightarrow \wp(A)$ be given by $\Phi(X)=A \backslash X$. Then Φ is antimonotone.

Proof. Left to reader.
Definition 4. Let $f: A \rightarrow B$ be a function from a set A to a set B. For $X \in \wp(A)$ we write $f(X)$ for $\{f(x) \mid x \in A\}$.

Lemma 5. Let $f: A \rightarrow B$ be a function from a set A to a set B. Let Φ : $\wp(A) \rightarrow \wp(B)$ be given by $\Phi(X)=f(X)$. Then Φ is monotone.

Proof. Left to reader.
Theorem 6 (Knaster-Tarski Fixed Point). Let $\Phi: \wp(A) \rightarrow \wp(A)$. Assume Φ is monotone. Then there is some $Y \in \wp(A)$ such that $\Phi(Y)=Y$.

Proof. Let Y be $\{u \in A \mid \forall X \in \wp(A) . \Phi(X) \subseteq X \rightarrow u \in X\}$. The following is easy to see:

$$
\begin{equation*}
Y \subseteq X \text { for all } X \in \wp(A) \text { such that } \Phi(X) \subseteq X \tag{1}
\end{equation*}
$$

We prove $\Phi(Y) \subseteq Y$ and $Y \subseteq \Phi(Y)$.
We first prove $\Phi(Y) \subseteq Y$. Let $u \in \Phi(Y)$. We must prove $u \in Y$. Let $X \in \wp(A)$ such that $\Phi(X) \subseteq X$ be given. By (1) $Y \subseteq X$. Hence $\Phi(Y) \subseteq \Phi(X)$ by monotonicity of Φ. Since $u \in \Phi(Y)$, we have $u \in \Phi(X)$. Since $\Phi(X) \subseteq X$, we conclude $u \in X$.

We next turn to $Y \subseteq \Phi(Y)$. Since $\Phi(Y) \subseteq Y$, we know $\Phi(\Phi(Y)) \subseteq \Phi(Y)$ by monotonicity of Φ. Hence $Y \subseteq \Phi(Y)$ by (1).

Definition 7. Let $f: A \rightarrow B$ be a function. We say f is injective if $\forall x y \in$ $A . f(x)=f(y) \rightarrow x=y$.

Definition 8. We say sets A and B are equipotent if there exists a relation R such that

$$
\begin{aligned}
& \text { 1. } \forall x \in A . \exists y \in B .(x, y) \in R \\
& \text { 2. } \forall y \in B . \exists x \in A .(x, y) \in R \\
& \text { 3. } \forall x \in A . \forall y \in B . \forall z \in A . \forall w \in B .(x, y) \in R \wedge(z, w) \in R \rightarrow(x=z \Longleftrightarrow \\
& y=w)
\end{aligned}
$$

Theorem 9 (Cantor-Bernstein-Schröder). If $f: A \rightarrow B$ and $g: B \rightarrow A$ are injective, then A and B are equipotent.

Proof. Let $f: A \rightarrow B$ and $g: B \rightarrow A$ be given injective functions. Let $\Phi: \wp(A) \rightarrow \wp(A)$ be defined by $\Phi(X)=g(B \backslash f(A \backslash X))$. It is easy to see that Φ is monotone by Lemmas 3 and 5 . By Theorem 6 there is some $C \in \wp(A)$ such that $\Phi(C)=C$. Hence $C \subseteq A$ and

$$
\begin{equation*}
\forall x . x \in C \Longleftrightarrow x \in g(B \backslash f(A \backslash C)) \tag{2}
\end{equation*}
$$

We can visualize the given information as follows:

Let $R=\{(x, y) \in A \times B \mid x \notin C \wedge y=f(x) \vee x \in C \wedge x=g(y)\}$. We must prove the three conditions in Definition 8.

1. Let $x \in A$ be given. We must find some $y \in B$ such that $(x, y) \in R$. We consider cases based on whether $x \in C$ or $x \notin C$. If $x \notin C$, then we can take y to be $f(x)$. Assume $x \in C$. By (2) we know $x \in g(B \backslash f(A \backslash C))$. Hence there is some $y \in B \backslash f(A \backslash C)$ such that $x=g(y)$ and we can use this y as the witness.
2. Let $y \in B$ be given. We must find some $x \in A$ such that $(x, y) \in R$. We consider cases based on whether or not $y \in f(A \backslash C)$. If $y \in f(A \backslash C)$, then there is some $x \in A \backslash C$ such that $f(x)=y$ and we can use this same x as the witness. Assume $y \notin f(A \backslash C)$. Note that $g(y) \in C$ using 2 and $y \in B \backslash f(A \backslash C)$. Hence we can take $g(y)$ as the witness.
3. Before proving the third property, we prove the following claim:

$$
\begin{equation*}
\forall x \in A . \forall y \in B . x \in C \wedge x=g(y) \rightarrow y \notin f(A \backslash C) \tag{3}
\end{equation*}
$$

Let $x \in A$ and $y \in B$ be given. Assume $x \in C, x=g(y)$ and $y \in f(A \backslash C)$. Since $x \in C$, there is some $w \in B \backslash f(A \backslash C)$ such that $g(w)=x$ by (2). Since g is injective, $w=y$ contradicting $y \in f(A \backslash C)$.
Now that we know (3) we can easily prove the third property by splitting into four cases. Let $x \in A, y \in B, z \in A$ and $w \in B$ be given. Assume $(x, y) \in R$ and $(z, w) \in R$. By the definition of R there are two cases for $(x, y) \in R$ and two cases for $(z, w) \in R$. In each case we need to prove $x=z \Longleftrightarrow y=w$.

- Assume $x \notin C, y=f(x), z \notin C$ and $w=f(z)$. The fact that $x=z \Longleftrightarrow y=w$ follows easily from injectivity of f.
- Assume $x \notin C, y=f(x), z \in C$ and $z=g(w)$. In order to prove $x=z \Longleftrightarrow y=w$ we argue that $x \neq z$ and $y \neq w$. Clearly $x \neq z$ since $x \notin C$ and $z \in C$. By (3) we know $w \notin f(A \backslash C)$. On the other hand $y \in f(A \backslash C)$ since $y=f(x)$ and $x \in A \backslash C$. Hence $y \neq w$.
- Assume $x \in C, x=g(y), z \notin C$ and $w=f(z)$. Again in order to prove $x=z \Longleftrightarrow y=w$ we argue that $x \neq z$ and $y \neq w$. Clearly $x \neq z$ since $x \in C$ and $z \notin C$. By (3) we know $y \notin f(A \backslash C)$. On the other hand $w \in f(A \backslash C)$ since $w=f(z)$ and $z \in A \backslash C$. Hence $y \neq w$.
- Assume $x \in C, x=g(y), z \in C$ and $z=g(w)$. The fact that $x=z \Longleftrightarrow y=w$ follows easily from injectivity of g.

Corollary 10. If $f: A \rightarrow B$ is injective and $B \subseteq A$, then A and B are equipotent.

Proof. This follows immediately from Theorem 9 using the injection from B into A, since this injection is obviously injective.

References

[1] B. Knaster. Un théorème sur les fonctions d'ensembles. Ann. Soc. Polon. Math, 6:133-134, 1928.

