
Solving Hard Mizar Problems
with Instantiation and Strategy Invention

Jan Jakubův, Mikoláš Janota, Josef Urban

Czech Technical University in Prague

September 5th / AGI 2024

1 / 25

Background - MML and MPTP
Mizar Mathematical Library (MML): Large library of formal
mathematics developed since 1989
1465 math articles and 3.7M lines of human-readable proofs in 2024
In 2003: MPTP: Mizar Problems for Theorem Proving
export MML for automated theorem provers (ATPs)
Used since for AITP research (MPTP20 talk: https://t.ly/SFdPA)
2006: the $100 MPTP Challenges (https://t.ly/clXXe)
bushy (easier, smaller) vs chainy (large, hammer) MPTP problems

2 / 25

https://t.ly/SFdPA
https://t.ly/clXXe

ATP timeline on MPTP problems

2010: Vampire solved 40% of bushy (easier) problems
2014: about 40% of chainy (hammer) problems solved by AI/TP
methods (also done for Flyspeck)
2021: about 60% of chainy solved with many AI/TP methods:
E/ENIGMA and Vampire/Deepire (Mizar60 paper at ITP23)
In total: 75.5% proved (union of bushy and chainy, higher times)
See https://github.com/ai4reason/ATP_Proofs for about 200
interesting proofs found in those experiments
Our goal here: Solve more of the remaining 14163 hard Mizar
problems (and thus progress towards my 2014 AITP Challenges)

3 / 25

https://github.com/ai4reason/ATP_Proofs

AITP Challenges/Bets from 2014

3 AITP bets for 10k EUR from my 2014 talk at Institut Henri
Poincare (tinyurl.com/yb55b3jv)
In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be
provable automatically (same hardware, same libraries as in 2014 -
about 40% then)
In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)
In 25 years, 50% of the toplevel statements in LaTeX-written
Msc-level math curriculum textbooks will be parsed automatically and
with correct formal semantics

4 / 25

tinyurl.com/yb55b3jv

Our Main Results and Methods

Solved 3,021 (21.3%) of remaining 14,163 hard Mizar problems
Thus increased percentage of ATP-proved Mizar problems from
75.5% to 80.7%
We used instantiation-based methods, particularly cvc5 SMT solver
Note that we did not use any special decision procedures in cvc5
We invented stronger cvc5 strategies using our Grackle system
Further improved by different clausification and premise selection
This has surprisingly high impact on instantiation-based methods

5 / 25

Overview of Instantiation-Based ATP/SMT Methods
Herbrand (1930): a set of clauses is unsat iff finitely ground-unsat
Gilmore’s procedure (1960) - generate ground instances and check for
ground unsat (decidable, inefficient in 1960)
Efficient SAT/UNSAT: DPLL (1960/61), CDCL (1996, revolutionary)
2005: John Harrison: “People now say that problems are NP-easy”
Since 2000s: renewed development of inst-based methods:
iProver, Darwin, Equinox, SMTs like Z3, CVC, veriT, etc.
Satallax (higher-order ATP), AVATAR (Vampire), etc.
cvc5: SMT solver using instantiation for quantifiers
Alternates between ground solver and instantiation module
Generates lemmas by instantiating quantified formulas
Uses various instantiation heuristics (e-matching, model-based,
enumeration, etc.)
Quite different from saturation-based ATPs; add ML guidance?

6 / 25

Automated Strategy Invention: BliStr and Grackle

Dawkins: The Blind Watchmaker
Grow diverse strategies by iterative local search and evolution
ATP strategies are programs specified in rich DSLs - can be evolved
The ATP strategies are like giraffes, the problems are their food
The better the giraffe specializes for eating problems unsolvable by
others, the more it gets fed and further evolved
fast “inductive” training phase, followed (if successful) by a slower
“hard thinking” phase, in which the newly trained strategies attempt
to solve some more problems, making them into further training data

7 / 25

BliStr: Blind Strategymaker (2012)

Used for automated invention of saturation-based ATP strategies
The E strategy with longest specification in Jan 2012

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

4 * ConjectureGeneralSymbolWeight(
SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),

3 * ConjectureGeneralSymbolWeight(
PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),

1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed)

8 / 25

The Longest E Strategy After BliStr Evolution
Evolutionarily designed Franken-strategy (29 heuristics combined):
6 * ConjectureGeneralSymbolWeight(PreferNonGoals,100,100,100,50,50,1000,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,50,50,1.5,1.5,1)
4 * ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
10 * ConjectureRelativeSymbolWeight(PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 * ConjectureSymbolWeight(ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 * Clauseweight(ByCreationDate,2,1,0.8)
1 * Clauseweight(ConstPrio,3,1,1)
6 * Clauseweight(ConstPrio,1,1,1)
2 * Clauseweight(PreferProcessed,1,1,1)
6 * FIFOWeight(ByNegLitDist)
1 * FIFOWeight(ConstPrio)
2 * FIFOWeight(SimulateSOS)
8 * OrientLMaxWeight(ConstPrio,2,1,2,1,1)
2 * PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5)
10 * RelevanceLevelWeight(ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)
8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
2 * RelevanceLevelWeight2(PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
6 * RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,1.5,1)
8 * RelevanceLevelWeight2(SimulateSOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
5 * rweight21_g
3 * Refinedweight(PreferNonGoals,1,1,2,1.5,1.5)
1 * Refinedweight(PreferNonGoals,2,1,2,2,2)
2 * Refinedweight(PreferNonGoals,2,1,2,3,0.8)
8 * Refinedweight(PreferGoals,1,2,2,1,0.8)
10 * Refinedweight(PreferGroundGoals,2,1,2,1.0,1)
20 * Refinedweight(SimulateSOS,1,1,2,1.5,2)
1 * Refinedweight(SimulateSOS,3,2,2,1.5,2)

9 / 25

Grackle (2022, CICM)

Successor/generalization of BliStr
Grackles: birds that evolved different bill sizes for different food
Uses existing algorithm configuration frameworks

ParamILS: Iterative Local Search (Hutter et al.)
SMAC3: Bayesian Optimization (Lindauer et al.)

to improve a strategy on a given set of problems
Grackle input:

initial set of strategies
input problems
strategy space parametrization: parameters and their values
solver wrapper

Grackle output:
portfolio of strategies complementary on input problems

10 / 25

Grackle: Invent Portfolio of Strategies

Repeat the following:

1 Evaluate all strategies on all problems P
2 Select one strategy S to be improved
3 Specialize strategy S for the problems where it performs best
4 Go to 1

Terminate when:

all strategies has been improved, or . . .
time limit is reached.

11 / 25

cvc5 Strategy Space

Defined by cvc5’s command line options and values
cvc5 distinguishes regular and expert (experimental) options
Regular parametrization: 98 parameters, ∼ 1035 strategies
Full parametrization: 168 parameters, ∼ 1058 strategies
We focused on options relevant to uninterpreted functions with
quantifiers

12 / 25

Dataset

14,163 previously ATP-unproved Mizar bushy problems
Extended with 4,283 hard problems proved only in latest ATP
experiments
This is done to give Grackle a bit easier problems to start inventing on
We also used heuristically premise-minimized versions
Total of 16,861 hard problems for doing cvc5 strategy development

13 / 25

Grackle Runs

Three 7-day Grackle runs
Run #1: regular space, starts with 2 CASC strategies
Run #2: regular space, starts with 6 best strategies from Run #1
Run #3: full strategy space, starts with the same as Run #2
30 second time limit per problem, 30 minutes per strategy invention
Run #1: a proof of concept run starting with a weaker portfolio, 345
new probs
Run #2: more serious, 485 new probs
Run #3: measure the effect of expert options, 629 new probs

14 / 25

Progress of Three Grackle Runs

Progress in time of problems cumulatively solved by each Grackle run:

15 / 25

Grackle Strategy Invention Results

143 new strategies invented
Best single strategy: 2,796 problems (11.5% improvement)
Best 16 strategies: 4,039 problems (16.7% improvement)
Total solved: 4,113 problems

16 / 25

Higher Time Limits

Evaluated best strategies with 600 second time limit
Best Grackle strategy: 3,496 problems
Best CASC strategy: 3,059 problems
14.3% improvement for single best strategy
cvc5 (single strategy grk1) solves almost 50% more problems when
the time limit is increased from 60 to 600 seconds.
E Prover (auto mode / single strategy) solves only 10% more with
the same time limit increase.

17 / 25

Reformulation Experiments

External clausification using E prover
Two variants: default (cnf1) and aggressive definition introduction
(cnf2)
cnf2: Halved average number of literals, 60% symbols
Added 369 newly solved problems

Tested different premise selection methods:
Bushy (original premises)
GNN (Graph Neural Networks)
LightGBM (Gradient Boosting Decision Trees)

Highly complementary to other methods
Added 1,065 newly solved problems

18 / 25

Top 10 Strategies from Greedy Cover
version strategy addon total alone new
minfof grk1 +3496 - 3496 3496 1243
mincnf1 grk2 +738 +21.11% 4234 3231 1192
gnn grk1 +535 +12.64% 4769 1215 432
bushy grk1 +311 +6.52% 5080 1441 553
minfof grk3 +298 +5.87% 5378 3220 1146
lgbm grk1 +233 +4.33% 5611 1512 541
mincnf1 grk3 +161 +2.87% 5772 3223 1092
mincnf1 casc10 +112 +1.94% 5884 3125 999
minfof grk2 +90 +1.53% 5974 3146 1131
mincnf2 grk2 +62 +1.04% 6036 2949 1045

addon = addition to the portfolio; total = partial portfolio performance
alone = standalone strategy performance (600 seconds time limit)
new = hard Mizar problems newly solved by each strategy
Grackle-invented strategies dominate the greedy cover
The results also transfer to a new (unseen) version of MML

19 / 25

Analysis of Invented Strategies
Best CASC strategies:

casc7 full-saturate-quant multi-trigger-priority multi-trigger-when-single
casc10 full-saturate-quant enum-inst-interleave decision=internal
casc14 full-saturate-quant cbqi-vo-exp

Best Grackle strategies:
grk1 full-saturate-quant cbqi-vo-exp relational-triggers

cond-var-split-quant=agg
grk2 full-saturate-quant cbqi-vo-exp relevant-triggers multi-trigger-priority

ieval=off no-static-learning miniscope-quant=off
grk3 full-saturate-quant multi-trigger-priority multi-trigger-when-single

term-db-mode=relevant

Focus on changing behavior of quantifier instantiation module
Best strategies combine enumerative instantiations with appropriate trigger
selection for e-matching
grk1 and grk2 extend casc14; grk3 extends casc7

repo with the invented strategies and problems solved:
https://github.com/ai4reason/cvc5_grackle_mizar

20 / 25

https://github.com/ai4reason/cvc5_grackle_mizar

Interesting Solved Problems
KURATO 1:6: Kuratowski’s closure-complement problem

131 lines in Mizar
Combination of equational reasoning and a large case split (14 cases)
That likely makes it hard for the superposition-based systems
SMT-style congruence closure likely useful when a more complex term
equal to a less complex term

ASYMPT 1:18: Big O relation for modulo functions
functions f (n) = n mod 2 and g(n) = n + 1 mod 2 are not in the Big
O relation (in any direction).
122 lines in Mizar
Only provable with a single Grackle-invented strategy grk2 and external
clausification, taking 62 s.
case splits related to the mod 2 values; triggers seems to play a big role

ROBBINS4:3: Equivalent condition for ortholattices
145 lines in Mizar
a lot of equational reasoning (should be good for E/Vampire!)
possibly large multi-literal clauses make this hard for saturation systems

21 / 25

Interesting Solved Problems
definition let T be non empty TopSpace; let A be Subset of T;
func Kurat14Set A -> Subset-Family of T equals
{ A, A-, A-‘, A-‘-, A-‘-‘, A-‘-‘-, A-‘-‘-‘ } \/
{ A‘, A‘-, A‘-‘, A‘-‘-, A‘-‘-‘, A‘-‘-‘-, A‘-‘-‘-‘ };
end;
theorem :: KURATO_1:6:
for T being non empty TopSpace
for A, Q being Subset of T st Q in Kurat14Set A holds
Q‘ in Kurat14Set A & Q- in Kurat14Set A;

theorem :: ASYMPT_1:18
for f,g being Real_Sequence st

(for n holds f.n = n mod 2) & (for n holds g.n = n+1 mod 2)
holds ex s,s1 being eventually-nonnegative Real_Sequence
st s = f & s1 = g & not s in Big_Oh(s1) & not s1 in Big_Oh(s)

theorem :: ROBBINS4:3
for L being non empty OrthoLattStr holds L is Ortholattice iff

(for a, b, c being Element of L holds
(a "\/" b) "\/" c = (c‘ "/\" b‘)‘ "\/" a)

& (for a, b being Element of L holds a = a "/\" (a "\/" b))
& for a, b being Element of L holds a = a "\/" (b "/\" b‘) 22 / 25

Conclusions

Significant progress on hard Mizar problems
Instantiation-based methods today surprisingly good
Strategy invention (Grackle) very useful for cvc5
High impact of problem reformulation: different clausifications,
premise selection
Interesting competition (also within our Prague group) between
saturation-based (Vampire/Deepire, E/ENIGMA) and
instantiation-based (cvc5, iProver, Satallax) ATPs

23 / 25

Future Work

Apply strategy invention to other problem sets (e.g. TPTP, Isabelle)
Further explore problem reformulation techniques (rewarding here)
More learning for guiding instantiation:

neural (GNN - LPAR’24)
fast non-neural (ECAI’24)
choosing formulas, variables, instances ...
end-to-end ML-style guessing of instances?

24 / 25

	Introduction
	Methods
	Experiments
	Results
	Analysis
	Conclusion

