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Motivation: Learning vs. Reasoning

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fangt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
Novalis, quoted by Popper — The Logic of Scientific Discovery

3/62



How Do We Automate Math and Science?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

- Complicated feedback loops between induction and deduction

+ Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!
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History, Motivation, Al/TP/ML/DL

« Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
- Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...

+ Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:

« Learning from Previous Proof Experience

« My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar

« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI

- ... hammer-style methods, feedback loops, internal guidance, ...

« Al vs ML vs DL?: Ben Goertzel’'s 2018 Prague talk:
https://youtu.be/Zt2HSTuGBNnS8
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https://youtu.be/Zt2HSTuGBn8

Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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Induction/Learning vs Reasoning — Henri Poincaré

+ Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

- “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

« | believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)
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Learning vs Reasoning — Alan Turing 1950 — Al

« 1950: Computing machinery and intelligence — Al, Turing test

- “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

- last section on Learning Machines:

« “But which are the best ones [fields] to start [learning on] with?”

« “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

« Why not try with math? It is much more (universally?) expressive ...
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Why Combine Learning and Reasoning Today?

HE It practically helps!
» Automated theorem proving for large formal verification is useful:

* Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
* Formal Proof of the Feit-Thompson Theorem (2012 — Gonthier)
* Verification of compilers (CompCert) and microkernels (seL4)

» But good learning/Al methods needed to cope with large theories!

Learning is already very useful in guiding longer proof searches.

Blue Sky Al Visions:

General Al for science must include also Reasoning and Deduction

Get strong Al by learning/reasoning over large KBs of human thought?
Big formal theories: good semantic approximation of such thinking KBs?
Deep non-contradictory semantics — better than scanning books?
Gradually try learning math/science:

* What are the components (inductive/deductive thinking)?
* How to combine them together?
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The Plan

Followed by me for > 20 years
Make large “formal thought” accessible to strong reasoning and learning
Al tools — DONE or well under way

* Mizar/MML

* Isabelle/HOL/AFP
» HOL Light/Flyspeck
« HOL4/CakeML

» Coq, etc.

Test/Use/Evolve existing ATP/ML/AI systems on such large corpora
Build custom/combined inductive/deductive tools/metasystems

Continuously test performance, define harder Al tasks as the
performance grows
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What is Formal Mathematics and ITP? Why Do It?

- Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
- Mathematics put on formal logic foundations (symbolic computation)
+ ... which btw. led also to the rise of computers (Turing/Church, 1930s)

Formal math (1950/60s): combine formal foundations and the newly
available computers

 Today large ITP systems used for verifying nontrivial math, SW, HW ...

+ Conceptually very simple:

+ Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them

+ Use the computer to check that your proofs follow the rules

- But in practice, it turns out not to be so simple

- Many approaches, still not mainstream, but big breakthroughs recently
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stems in One

HOL Light

HOL Light has an exquisite minimal
design. It has the smallest kernel of any
system. John Harrison is the sole

Isabelle

Designed for use with multiple foundational
architectures, Isabelle’s carly

development featured classical constructions in set
theory. However,

Slide by T.

Once the clear front-runner, it now shows signs of age. 04 18 built of modular components

Do not expect on a foundation of dependent type
to understand the inner workings of this system unless  theory. This system has grown one
you have been PhD thesis at a time.

Lean

Does this really work? Defying expectations, | ean is ambitious, and it will be massive. Do

Metamath seems to function not be fooled by the name.
shockingly well for those who are happy to “Construction area keep out” signs are
live without plumbing. prominently posted on the perimeter fencing.
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The QED Manifesto — 1994

« QED is the very tentative title of a project to build a computer system that
effectively represents all important mathematical knowledge and
techniques.

« The QED system will conform to the highest standards of mathematical
rigor, including the use of strict formality in the internal representation of
knowledge and the use of mechanical methods to check proofs of the
correctness of all entries in the system.

« The QED project will be a major scientific undertaking requiring the
cooperation and effort of hundreds of deep mathematical minds,
considerable ingenuity by many computer scientists, and broad support
and leadership from research agencies.

- Never happened, but a lot of inspiration/motivation.
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Example: Irrationality of v/2 (informal text)

tiny proof from Hardy & Wright, collected by F. Wiedijk:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If v/2

is rational, then the equation
& =2b° (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence &° is even, and
therefore ais even. If a = 2¢, then 4¢? = 2b?, 2¢® = b?, and b is
also even, contrary to the hypothesis that (a, b) = 1. O
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Irrationality of v/2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sgqrt 2 is irrational
proof
assume sqgrt 2 is rational;
consider a,b such that
4 3 1: a2 = 2+«b”2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4xc"2 = 2xb"2;
2+xch2 = b"2;
b is even;
thus contradiction;
end;
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Irrationality of /2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC [NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)°
(fun th -> MESON_TAC([th]) THEN
SIMP_TAC [SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < q <=> ~(q = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of /2 in Isabelle/HOL

Wheorem sqrt2_ not rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)]| = real m / real n"
and lowest terms: "gcd m n = 1" .
from n nonzero and sqrt_rat have “real m = |sqrt (real 2)1 * real n" by simp

E then have "real (m?) = (s sqrt (real 2))2 * real (n2)"

] by (auto simp add: power2 eq square)

' also have "(sqrt (real 2))? = real 2" by simp

' also have "... * real (m?) = real (2 * n?)" by simp

v finally have eq: "m? = 2 * n2"

' hence "2 dvd m2"

' with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
' then obtain k where "m = 2 * k" ..

' with eq have "2 * n? = 22 * k2" by (auto simp add: power2_eq_square mult_ac)
' hence "n? = 2 * k" by simp

' hence "2 dvd n2" ..

' with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)

' with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)

' with lowest _terms have "2 dvd 1" by simp

' thus False by arith

\qed
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Irrationality of v/2 in Coq

Theorem irrational_sqrt_2: irrational (sgrt 2%nat).

intros p g H HO; case H.

apply (main_thm (Zabs_nat p)).

replace (Div2.double (g * q)) with (2 * (g x q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (g * q))); auto; intros HI.
case (not_nm_INR _ _ H1l); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.

rewrite HO; auto with real.

assert (g <> 0%R :> R); auto with real.

field; auto with real; case p; simpl; intros; ring.
Qed.
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Irrationality of /2 in Metamath

${

sd xy $.

$( The square root of 2 is irrational. $)

sqr2irr $p |- ( sqr * 2 ) e/ QQ $=
( vx vy c2 csqgr cfv cqg wnel wcel wn cv cdiv co wceqg cn wrex Cz Cexp
cmulc sqgr2irrlem3 sqgr2irrlemb5 bi2rexa mtbir cc0O clt wbr wa wi wb nngtOt
adantr cr axOre ltmuldivt mp3anl nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breg2 mpbii syl5bir cc nncnt mulzer2t syl breqld adantl sylibd
exp rl9.23adv anc2li elnnz syl6ibr impac rl19.22i2 mto elq df-nel mpbir )
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJIANOZWLWEF CQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWIWJAPNWEPHZWIWENHZWNWIWNUCWEUDUEZUFWOWNWJIWPWNWIWPBNWNWGNHZW
IWPUGWNWQUF ZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWIXAUHZWQWNUFUCWGUDUEZXB
WOXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWEUMUNWGUOWEUPUQURUSW
TUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWP UHWNWQWSUCWEUDWQWGVEHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDEWBWC $.
$( [8-Jan-02] $)
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Irrationality of /2 in Metamath Proof Explorer

sqr2irr - Metamath Proof Explorer - Chromium
R, sqr2irr - Metama x \0y
(4 € [ us.metamath.org, 2 ZIIeE

Proof of Theorem sqr2irr

step]  Hyp | Ref Expression

| lsar2irrlem3 1| - 3z € N3y N (212) = (2 (412))

2 sardilems ool o ((zeNAyeN) = () =(=/y) = (=12) =(2-(+12))
B R fore F(@zeNTyeN(/2)=(z/y) o dze NIye N(z129) = 2-(+12))
b L3 F-3zeN3yeN(/)=(=/)

s 2 2R

3 2 0<2

7 56 Fo<(/2)

8 (/) =(=/¥) = (0<(/Do0<(2/3))
L8 oF (V) =(z/y)»0<(=/v)

10 2F(zeZ—zeR)

11 |io F((zeZAayeN)—zeR)

12 2F(yeN-yeR)

13 (12 F(z€ZAyeN) —yeR)

14 2h(yeN-0<y)

15 |14 F{(zeZAyeN)—0<y)

16 F(zeRAyERA0<Y = (0<z = 0<(2/7)
17 |11 13,15, F(z€ZAyeM—(0<z00<(z/9)

18 [0.17 F(zeZAyeN) > (/) =(=/5) = 0< 2)

19 F(zeZAyeN) o =el)

o [18.10 F(z€ZAyeN) o (D=(2/9) > (ZELAO<A)
b1 F(zeNo(zeZA0<2)

2 o.21 T (zEZAyeN) = (/D =(=/9)— zeN)

B3 2 F(zeZ—(FyeN(/2)=(z/9) > zeN)

b2 |3 F(zeZAIeNW/'D) =(z/v) > (zeNATyeN/D) =(=/ V)|
5 | F(@zeZIveN(/)=(z/y)»IzeNIyeN(/2) =(=/9)
6 |4.25 FodzeZIgeN(/)=(z/y)

27 (/) eQeo3zelIy eN(/Y)=(=/y)

28 |26, 27 2o (/2 eQ

29 2H (V2 ¢Q e~ (/2)eQ)

Bo |8 20 (/2 €Q

Colors of variables: wi .

s s st sweal s2e & swmal Ao Teveas s alace alaseolace s~ e ises (ol alase alareen e T o aee
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Irrationality of /2 in Otter

Problem

set (auto) .

set (ur_res) .
assign(max_distinct_vars, 1).
list (usable) .

X = X.

m(l,x) = x. %identity

m(x,1l) = x.

m(x,m(y,z)) = m(m(x,y),z). %$assoc
m(x,y) = m(y,x). %comm
m(x,y) != m(x,z) | y = z. $cancel
—d(x,y) | m(X f(x,y)) = y. %divides
m(x,z) !=y | d(x,y).

-d(2,m(x,y)) | d(2 x) | d(2,y). %2 prime
m(a,a) = m(2,m(b,b)) % a/b=sqgrt (2)
-d(x,a) | -d(x,b) | x = 1. % a/b lowest
2 !=1.

end_of_list.

1 [] m(x,y)!=m(x,z)|ly=z.

2 [1 -d(x,y) Im(x,£(x,¥))=

3 [] m(x,y)!=z|d(x,2).

4 [1 -d(2,m(x,y)) 1d(2,x)[1d(2,y) .

5 [] -d(x,a)| -d(x,b)[x=1.

6 [] 2!=1.

7 [factor,4.2.3] -d(2,m(x,x)) |d(2,x).

13 [] m(x,m(y,z))=m(m(x,y),z).

14 [copy,13,flip.1] m(m(x,y),z)=m(x,m(y,
16 [] m(x,y)=m(y,x).

17 [] m(a,a)=m(2,m(b,b)).

18 [copy,17,flip.1] m(2,m(b,b))=m(a,a) .
30 [hyper,18,3] d(2,m(a,a))

39 [para_from,18.1.1,1.1.1] m(a,a) !=m(2,
42 [hyper,30,7] d(2,a).

46 [hyper,42,2] m(2,£f(2,a))=a.

48 [ur,42,5,6] -d(2,b)

50 [ur,48,7] -d(2,m(b,b)).

59 [ur,50,3] m(2,x)!=m(b,b).

60 [copy,59,flip.1] m(b,b)!=m(2,x) .

145 [para_from,46.1.1,14.1.1.1,flip.1] m
189 [ur,60,39] m(a,a)!=m(2,m(2,x)).
190 [copy,189,flip.1] m(2,m(2,x)) !=m(a,a
1261 [para_into,145.1.1.2,16.1.1] m(2,m(
1272 [para_from,145.1.1,190.1.1.2] m(2,m
1273 [binary,1272.1,1261.1] $F.
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Today: Computers Checking Large

SCI = NEWS

Math Proofs

Researchers Find 40,000-Year-Old Figurative
Paintings in Bornean Cave

HOME  ASTRONOMY ~ SPACEEXPLORATION ~ ARCHAEOLOGY ~PALEONTOLOGY ~ BIOLOGY  PHYSICS  MEDICINE

GENETICS

GEOLOGY ~ MORE

LATEST NEWS

Scientists Deliver Formal Proof of
Famous Kepler Conjecture

Jun 16, 2017 by News Staff / Source

«Previous | Next»

Published in An international team of mathematicians led by University of Pittsburgh
Mathematics Professor Thomas Hales has delivered a formal proof of the Kepler
Tagged as conjecture, a famous problem in discrete geometry. The team's paper is

Johannes Kepler
Kepler conjecture

published in the journal Forum of Mathematics, Pi.

Follow
You'Might Like

Researchers
Develop First-

Innovations

SPHERE Captures Young Exoplanet
Beta Pictoris b Orbiting around Its
Star

Now 13,2018 | Astronomy

Mirarce eatoni: Newly-Discovered
Cretaceous Bird Lived Among
Dinosaurs, Was Strong Flier

Now 13, 2018 | Paleontology

Juno Takes Closer Look at Jupiter’s
Magnificent, Swirling Clouds
Nov 13, 2018 | Space Exploration

Physicists Solve Structure of
Unusually Complex Form of
Nitrogen

Nov 13, 2018 | Physical Chemistry

Natural Compound Protects

Hypertensive Rats against Heart
isease

Now 13, 2018 | Medicine

Inventive Orangutans Make Hook
Tools o Retrieve Food
Now 12,2018 | Biology

Researchers Find 40,000-Year-Old
Figurative Paintings in Bornean Cave
Nov 12,2018 | Archacology

Hubble Sees Lensing Galaxy Cluster,

cdn.scinews.com/images/enlarge3/image_4960e-Kepler-Conjecture jpg



Big Example: The Flyspeck project

+ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V=" ~74%

V18

+ Formal proof finished in 2014

- 20000 lemmas in geometry, analysis, graph theory

« Allofitat https://code.google.com/p/flyspeck/
« All of it computer-understandable and verified in HOL Light:

*» polyhedron s /\ ¢ face_of s ==> polyhedron c

+ However, this took 20 — 30 person-years!
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https://code.google.com/p/flyspeck/

Big Math Formalizations

+ Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
+ Feit-Thompson (odd-order) theorem

» Two graduate books
» Gonthier et all, 2012, Coq

+ The Four Color Theorem (Gonthier and Werner, 2005, Coq)

« Compendium of Continuous Lattices (CCL)

* 60% of the book formalized in Mizar
» Bancerek, Trybulec et all, 2003
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Mid-size Formalizations

+ Godel’s First Incompleteness Theorem — Natarajan Shankar (NQTHM),
Russell O’Connor (Coq)

 Brouwer Fixed Point Theorem — Karol Pak (Mizar), John Harrison (HOL
Light)

« Jordan Curve Theorem — Tom Hales (HOL Light), Artur Kornilowicz et al.
(Mizar)

+ Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL), John
Harrison (HOL Light)

+ Godel’'s Second incompleteness Theorem — Larry Paulson
(Isabelle/HOL)

« Central Limit Theorem — Jeremy Avigad (lsabelle/HOL)

+ Consistency of the Negation of CH — Jesse Han and Floris van Doorn
(Lean, 2019)
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Large Software Verifications

« selL4 — operating system microkernel
+ Gerwin Klein and his group at NICTA, Isabelle/HOL
+ CompCert — a formally verified C compiler
+ Xavier Leroy and his group at INRIA, Coq
« EURO-MILS - verified virtualization platform
» ongoing 6M EUR FP7 project, Isabelle
- CakeML — verified implementation of ML
* Magnus Myreen, Ramana Kumar and others, HOL4
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Central Limit Theorem in Isabelle/HOL

<

C

The Top 100 Theorems in Isabelle - Chromium
[ The Top 100 The: x

=

[ www.cse.unsw.edu.ay QA 0@ =

theorem (in prob_space) central limit theorem:

fixes
X :: "nat = 'a = real" and
jt :: "real measure" and
o :: real and
S :: "nat = 'a = real"
assumes

X _indep: "indep vars (Ai. borel) X UNIV" and

X_integrable: "An. integrable M (X n)" and

X_mean_0: "An. expectation (X n) = 0" and

g_pos: "o > 0" and

X_square_integrable: "/n. integrable M (Ax. (X n x)2)" and

X_variance: "An. variance (X n) = 2" and
X_distrib: "An. distr M borel (X n) = u"
defines

"Sn = Ax. » i<n. X i x"
shows
"weak_conv_m (An. distr M borel (Ax. S n x / sqrt (n * a2)))
(density lborel std_normal_density)"

27/62



Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
(for H being Subgroup of G st H is_p-group_of_prime p holds
ex P being Subgroup of G st
P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P)
(for P1,P2 being Subgroup of G
st Pl is_Sylow_p-subgroup_of _prime p & P2 is_Sylow_p-subgroup_of prime p
holds P1,P2 are_conjugated);

&

theorem :: GROUP_10:15
for G being finite Group, p being prime (natural number) holds

card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
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Godel Theorems in Isabelle

The Top 100 Theorems in Isabelle - Chromium

[ The Top 100 The« x

< € [) www.ese.unsw.edu.ay,

f
<]
1]

theorem Goedel I:

assumes "— {} - Fls"

obtains § where
"{} - & IFF Neg (PfP [4])"
" {} 8"
"= {} F Neg ¢"
"eval fm e o"
"ground fm §"

theorem Goedel II:
assumes "— {} + Fls"

shows "— {} F Neg (PfP [Fls])"

http://afp.sourceforge.net/entries/Incompleteness.shtml
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Today’s Applications

R e NewScientist E—
‘ ‘

News Technology Space Physics Health Environment Mind Video | Travel Live Jobs &Signin QSearch

Home | News | Technology POPULAR

TECHNOLOGY NEWS 16 September 2015 §
We thought the Incas couldn’t

write. These knots change

Unhackable kernel could keep all cverythng
computers safe from cyberattack ~ fofiami weten duisation

From helicopters to medical devices and power stations, [fIElNCIEAEENoRee] that The origins of sexism: How men
software at the heart of an operating system is secure could keep hackers out came to rule 12,000 years ago

The brain’s 7D sandcastles could be

Unhackable kernel could keep all computers safe from
cyberattack
IS quantum phys| d your

brain’s ability to think?
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Today’s Applications

© Applications Pl Tue 21:22 Tue

NS Unhac x ' &5 REMS x Robol x ' sp Startp x ¢ sp byron x | yror x | S0 AWS ' x utor x ' sp Start; x | w Pa

< C @ Secure | https://www.prover.com/references/

PR&EVER’

ALL  BELGIUM CANADA CHINA ENGLAND NEW YORK NORWAY PARIS STOCKHOLI

Solutions  References Expertise News Company SDA Forum

Our Formal Verification
Solution for RATP, Paris

Formal Verification of SSI
Software for NYCT, New York

New York City Transit (NYCT) is

Implementing Prover Trident
for SL, Stockholm

In this project, Prover Technology In this project Prover Technology

provides the Prover Trident solution
to Ansaldo STS, for development
and safety approval of interlocking
software for Roslagsbanan, a
mainline railway line that connects.

modernizing the signaling system in
its subway by installing CBTC and
replacing relay-based interlockings
with computerized, solid state
interlockings (SSls)

collaborated with RATP in creating a
formal verification solution to meet
RATP demand for safety verification
of interlocking software. RATP had
selected a computerized...
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Today’s Applications

¥ Tue21:15 Tue 21:15

@ Applications Places ®

NS Unhackabl: x & REMS % (jt Robotsche x [ Byron Cool x s AWSSecur x / @ Automatec x

Sp Startpage | x ( p byron cook x

C' @ Secure | htt

aws Contact Sales  Support My Account v
p—
Products Solutions Pricing Learn Partner Network ~ AWS Marl Explore More  Q

Search Blogs Q

BlogHome  Category »  Edition ~  Follow ~

Tag: Automated reasoning

How AWS SideTrail verifies key AWS cryptography code
oy Daiel Schwartz-Narbonne | on 15 OCT 2018 in Security, Identity, & Compliance | Permalink | @9 Comments | # Share
We know you want to spend your time learning valuable new skills, building innovative software, and scaling up applications — not
worrying about managing infrastructure. That's why we're always looking for ways to help you automate the management of AWS

services, particularly when it comes to cloud security. With that in mind, we recently developed [.

Read More

Next Gen Cloud Security Podcast: Al tech named automated reasoning provides next-gen cloud security
Security,Identity, & Complance | Permalink | @8 Comments | # Share

with Automated Reasoning

by Supriya Anand | on 08 OCT 2018 |

roviding you higher

AWS just released a new podcast on how next generation security technology, backed by automated reasoning,
levels of assurance for key components of your AWS architecture. Byron Cook, Director of the AWS Automated Reasoning Group,
discusses how automated reasoning is embedded within AWS services and code and the tools customers can [...]

Read More

Daniel Schwartz-Narbonne shares how automated reasoning is helping achieve the provable security of AWS boot code
Security, Security,Identity, & Compliance | Permalink | # Comments | ¢ Share

by Supriya Anand | on 02 OCT 2018 |
I recently sat down with Daniel Schwartz-Narbonne, a software development engineer in the Automated Reasoning Group (ARG) at
AWS, to learn more about the groundbreaking work his team is doing in cloud security. The team uses automated reasoning,
technology based on mathematical logic, to prove that key components of the cloud are operating as [

Read More
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Today’s Applications

® Applications Places ® Tue 21:40 Tue 21:40
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C @ Secure  https://www.absint.com/compcert/

Products Support About us Contact Search

ULl Howitworks  Newin18.10 _Trynow)

Formallyvetified compilation

CompCert s a formally verified optimizing C compiler. ts intended use is compiling safety-critical and mission-critical software
written in C and meeting high levels of assurance. It accepts most of the SO C 99 language, with some exceptions and a few
extensions. It produces machine code for ARM, PowerPC, x86, and RISC-V architectures.

What sets CompCert apart?

CompCert s the only production compiler that is formally verified, using machine-assisted mathematical proofs, to be exempt
from miscompilation issues. The code it produces is proved to behave exactly as specified by the semantics of the source

C program.

This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest
levels of software assurance

The formal proof covers all transformations from the abstract syntax tree to the generated assembly code. To preprocess and

W serveimagejpeg  ~ showall | x
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Today’s Applications

Overview ch Education Industry I s ublications  Institutions  Jobs s Student Positions Log

<= the science of deep specification

spec

Deep isan dition in C: ing funded by the National Science Foundation.

We focus on the specification and verification of full functional correctness of software and hardware.

Research Education

We have several major research projects, and our ambitious To deliver secure and reliable products, the software industry
goal is to connect them at specification interfaces to prove of the future needs engineers trained in specification and
end-to-end correctness of whole systems. verification. We'll produce that curriculum.
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Today’s Applications

Homa » Other Sciences » Mathematics » October 12, 2012

Six-year journey leads to proof of Feit-Thompson Theorem

October 12, 2012 by Rob Knies, Miorosoft

Featured Last comments Popular

Gaia spots a ‘ghost’ galaxy next door © 19
hours ago ® 81

reddit
*
Favorites How plants evolved to make ants their
servants © Nov 12,2018 ® 21
™ Georges Gonthier.
Email
. Physicists build fractal shape out of
At 5:46 p.m. on Sept. 20, Georges Gonthier, principal researcher at Microsoft Research Cambridge, electrons © Nov 12, 201
sent a brief email to his colleagues at the Microsoft Research-Inria Joint Centre in Paris. It read, in R
print full: "This is really the End." =

Dark matter "hurricane’ offers chance to

Those five innocuous words heralded the culmination of a project that had consumed more than six
detect axions © 18 hours ago

years and resulted in the formal proof of the Feit-Thompson Theorem, the first major step of the
classification of finite simple groups.

&
PO

The theorem, first proved by Walter Feit and John Griggs Thompson in 1963 and also known as the How to drive a robot on Mars © Nov 12, 2018
Odd-Order Theorem, states that in mathematical group theory, every finite group of odd order is h 2
solvable.
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The Al Part: Learning to Guide Theorem Proving

- How do we use all these corpora to learn doing math automatically?
+ How can we combine Al methods with existing ATP systems?
+ How do we practically assist formalization?
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Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

« high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

« mid-level: guide application of tactics in ITPs

- mid-level: invent suitable ATP strategies for classes of problems

- mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal
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Demos

« Hammering Mizar: http://grid0l.ciirc.cvut.cz/~mptp/outd.ogv

+ TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

+ TacticToe longer (Thibault's PxTP talk!):
https://www.youtube.com/watch?v=BO4Y8ynwT6Y
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Sample of Learning Approaches

- neural networks (statistical ML) — backpropagation, deep learning,
convolutional, recurrent, graph neural nets, etc.

- decision trees, random forests — find good classifying attributes (and/or
their values); more explainable

- support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

- k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions

 naive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features (just multiplying
probabilities)

« inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

- genetic algorithms — evolve large population by crossover and mutation

« various combinations of statistical and symbolic approaches

* supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward)
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Learning — Features and Data Preprocessing

- Extremely important - garbage in garbage out
- Distributed repres., Deep Learning — design (neural) architectures that
automatically find important high-level features for a task
+ How do we represent math objects (formulas, proofs, ideas) in our mind?
» From syntactic to more semantic:
» Constant and function symbols
» Walks in the term graph
« Walks in clauses with polarity and variables/skolems unified
» Subterms, de Bruijn normalized
« Subterms, all variables unified
» Matching terms, no generalizations
 terms and (some of) their generalizations
 Substitution tree nodes
« All unifying terms
« LSI/PCA, word2vec, fasttext, etc.
» Neural embeddings: CNN, RNN, Tree NN, Graph CNN, ...
+ Evaluation in a large set of (finite) models
» Vectors of proof similarities (proof search hidden states)
» Vectors of problems solved (for ATP strategies)
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Early Machine Learning for Fact Selection over Mizar

+ 2003: Can existing ATPs (E, SPASS, Vampire) be used on the freshly
translated Mizar library?

« About 80000 nontrivial math facts at that time — impossible to use them all

« Mizar Proof Advisor (2003):

- Learn fact selection from previous proof!

« Recommend relevant premises when proving new conjectures

+ Give them to existing ATPs

- First results over the whole Mizar library in 2003:
» about 70% coverage in the first 100 recommended premises
« chain the recommendations with strong ATPs to get full proofs
» about 14% of the Mizar theorems were then automatically provable (SPASS)
+ sometimes we can find simpler proofs!
+ Done with much more developed tools for Flyspeck in 2012, Mizar, HOL4,
Coq, ...
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
V\_/ V\_/

ITP Proof ATP Proof

Proof Assistant *Hammer ATP _

How much can it do?
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _

How much can it do?
+ Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
+ HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP _

How much can it do?
+ Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
+ HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 45% success rate
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High-level feedback loops — MALARea

« Machine Learner for Autom. Reasoning (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

- both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

J
initial settings
(solve problems )
(ATP) J
Y
’,"' N4
<_all proved? >—- stop

.'
learn
| from proofs (ML)

premise
selections (ML)

L
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Number of proved theorems
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Number of all found proofs

Prove-and-learn loop on MPTP2078 data set
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Low-level: Statistical Guidance of Connection Tableau

« learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

- a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

« good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)
¢ i P(x) ]
& R(x, ) v =P(x) v Q(y) R(a, b) ﬁP(a)\ ab)
s : S(x) v —~Q(b) / N\
¢ —S(x) v —Q(x) —R(a,b) Q(b) S(b)  —Q(b)
cs: —Q(x) v —R(a, x) / N\ /

cs: —R(a,x) v Q(x)
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Statistical Guidance of Connection Tableau — rICoP

« MaLeCoP (2011): first prototype Machine Learning Connection Prover

« Fairly Efficient MaLeCoP = FEMaLeCoP (15% better than leanCoP)

« 2018: stronger learners via C interface to OCAML (boosted trees)

- remove iterative deepening, the prover can go deep (completeness bad!)
+ Monte-Carlo Tree Search (MCTS) governs the search (AlphaGo/Zero!)

+ MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

= c pi- InnN (UCT - Kocsis, Szepesvari 2006)

i i
« learning both policy (clause selection) and value (state evaluation)

- clauses represented not by names but also by features (generalize!)
« binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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TacticToe: Tactic Guidance of ITPs (Gauthier et al.)

+ learns from human tactical HOL4 proofs to solve new goals
+ no translation or reconstruction needed
« similar to rlCoP: policy/value learning

- however much more technically challenging:

« tactic and goal state recording
« tactic argument abstraction
« absolutization of tactic names
 nontrivial evaluation issues

+ policy: which tactic/parameters to choose for a current goal?

+ value: how likely is this proof state succeed?

+ 2018: 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
+ work in progress for Coq
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Side Note on Symbolic Learning with NNs

« Recurrent NNs with attention recently very good at the inf2formal task
- Experiments with using them for symbolic rewriting (Piotrowski et. al)
+ We can learn rewrite rules from sufficiently many data

- 80-90% on algebra datasets, 70-99% on normalizing polynomials

« again, complements symbolic methods like ILP that suffer if too much
data

« Similar use for conjecturing (Chvalovsky et al):
- Learn consistent translations between different math contexts:
- additive groups — multiplicative groups
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Side Note on Symbolic Learning with NNs

Table: Examples in the AIM data set.

Rewrite rule: || Before rewriting: | After rewriting:

b(s(e,vl),e)=vl

k(b(s(e,vl),e),v0) k(vl,vO0)
o (V0,e)=V0

t(v0,o(vl,o(v2,e))) t(v0,o(vl,v2))

Table: Examples in the polynomial data set.

Before rewriting: \ After rewriting:

(x = (x + 1)) +1 x "2+ x+1
(2 »y) + 1+ (y »vy) y T2+ 2 xy +1
(x + 2) * ((2 » x) + 1) + (v + 1)

2 xx 7 2+5%x+y+ 3
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Side Note on Conjecturing with RNNs

We can obtain a new valid automatically provable lemma
(XA YNZ = (X\2) n (Y\2)
from

(XL YN\ = (X\2) v (Y\Z)

Examples of false but syntactically consistent conjectures:

for n, m being natural numbers holds n gcd m = n div m;

for R being Relation holds

with_suprema (A) <=> with_suprema (inverse_relation(A));
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Statistical Guidance the Given Clause in E Prover

+ harder for learning than tableau

« the proof state are two large heaps of clauses processed/unprocessed
+ 2017: ENIGMA - manual feature engineering (Jakubuv & JU 2017)

+ 2017: Deep guidance (neural nets) (Loos et al. 2017)

- both learn on E’s proof search traces, put classifier in E

« positive examples: given clauses used in the proof

+ negative examples: given clauses not used in the proof

« ENIGMA: fast feature extraction followed by fast/sparse linear classifier
+ about 80% improvement on the AIM benchmark

- Deep guidance: convolutional nets - no feature engineering but slow

+ ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
- NNs made competitive in real-time, boosted trees still best
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Feedback loop for ENIGMA on Mizar data

« Similar to rlICoP - interleave proving and learning of ENIGMA guidance
Done on 57880 Mizar problems very recently

Ultimately a 70% improvement over the original strategy

Example Mizar proof found by ENIGMA: http://grid0l.ciirc.cvut.
cz/~mptp/7.13.01_4.181.1147/html/knaster#T21

Its E-ENIGMA proof:
http://grid0l.ciirc.cvut.cz/~mptp/t21_knaster

| S |SoOM) saM|sOM! SEMI|SOME SEM2|SOMS soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4

S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| soM}, sem, | som)y semy
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -635 -295 -309 -183
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Neural Autoformalization (Wang et al., 2018)

+ generate about 1M Latex - Mizar pairs based on Bancerek’s work
- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

< many architectures tested, some work much better than others

- very important latest invention: atfention in the seg-to-seq models

+ more data very important for neural training — our biggest bottleneck (you
can help!)

+ Recent addition: unsupervised methods (Lample et all 2018) — no need
for aligned data!
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Neural Fun — Performance after Some Training

Rendered
IATEX
Input IBTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and s; is convergent . Then lim(sg+s7) =

lim Sg+ lim s7
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
}y {4+ Y {s_ {71} } ) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } $§
seql is convergent & seqg2 is convergent implies lim ( seql
+ seq2 ) = ( lim seql ) + ( lim seqg2 ) ;
x in dom f implies ( x xy ) (£ | (x| (y | (y | y)
)y )y =(x [ (y I (y |l CylLy))y)y)y):i

seq is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seqg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seqg2
is convergent ;

seq i1s convergent & seg9 is convergent implies

lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Unsupervised NMT Fun on Short Formulas

len <% a *> =1 ;

assume i < len q ;

len <x g *> =1 ;

s
s
1
1

= apply ( v2 ,
i+ 1) =tt

(
+ j <= len v2 ;
+ 3

let i1 be Nat

i
assume v is_applicable_to t ;
let t be type of T

vl ast t

(

+ 0 <= len v2 + 1 ;

7

a ast t in downarrow t

t9

in types a ;

a ast t <=t ;

A is_applicable_to

Ca
u
F
GG
a
no
u
v
v
X

rrier ( £ ) c=
in B or u in {
win w & F

y in rng HH
* L = Z_ZerolLC
t uin { v } ;
<> v o
-w=vl - wl ;
+w=vl + wl ;
in A & y in A ;

len <x a x> =1 ;

i < len g ;

len <x g *> =1 ;

s = apply (v2 , vl ) . t ;

(i+1) =¢taul . (1 +1

s
1 + j <= len v2 ;

1+ 3Jj+0<=1lenv2 + 1 ;

i is_at_least_length_of p ;
not v is applicable ;
is_orientedpath_of vl , v2
*x’ in downarrow t ;

‘2 in types a ;

*! <=t ;

is applicable ;

support ppf n c= B

u in B or u in { v } ;
F.win F & F . w in I ;

GO . y in rng ( H1 ./. vy ) ;
a = L = ZerolLC (V) ;

oot

u >> v ;

u <> v ;

vw = vl - wl ;
v+ w=vl + wl ;

assume [ x , y ] in A ;

’

T

7
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More Personal Notes

Think globally, act locally. Big dreams about Al, etc. But act by trying
small steps/experiments.

Sometimes need to commit a lot. The Mizar-to-ATP translation took
years, but bore a lot of fruit. Today millions USD in Google HOL/RL.
Follow your dream mercilessly - avoid distractions (stay focused - hard for
many smart people). Find/do what you are convinced/passionate about.
Avoid the "theorem envy". Al is not Math. We want to replace
mathematicians, not be them. Always reflect and implement your thinking.
Many Al improvements me from bringing ideas/systems together:
"Automate, automate, automate!"

Become a hacker. Learn rapid prototyping. Learn to gain maximum info
from initial experiments, then iterate. "Experience, not only doctrine".
Learn at least one high-level symbolic language - lisp, prolog, ml, haskell.
At least one scripting language: perl, python, ruby, shell.

Stay motivated by reading giants of science: Einstein, Poincare, Russel,
Heisenberg, Turing, Deutsch, Dawkins ....

Read good sci-fi: Heinlein, Stephenson, Stroth, ...
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More Personal Notes — Conferences, Evaluation

- This is a constant search related to evaluation metrics.

+ Good conferences in CS today count more than journals.

« Part of what we do should influence the metrics — value of a theorem?

+ In my research several communities: ITP/Formalization, ATP, Al, ML, DL
- Citation counts wildly differ across the communities (ML vs AR vs Math).
+ Reviewing wildly differs across the communities.

- | had mixed successes with ATP conferences, more with ITP, IJCAI/AAAI
can be hard for new topics.

« The best reviewing processes and open-mindedness | have seen is now
in the NIPS/ICLR community (ML).

« They should be focused to deep neural nets. But managed to attract
non-neural and even reasoning topics when combined with ML. One of
the reasons for their success.

« ERC: currently the best evaluation worldwide. Much deeper than just
bean-counting. Inspiration in many ways.

« Today also high-paid research jobs in Al companies/startups (a bubble?).
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Thanks and Advertisement

+ Thanks for your attention!

- AITP — Artificial Intelligence and Theorem Proving

« March 22—-27, 2020, Aussois, France, aitp-conference.org

+ ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
- Discussion-oriented and experimental - submit a talk abstract!

+ Grown to 80 people in 2019
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