
AIAI4AITP:
ADVENTURES IN ARTIFICIAL INTELLIGENCE FOR

AUTOMATED AND INTERACTIVE THEOREM PROVING

Josef Urban

Czech Technical University in Prague

Deduction Mentoring Workshop, August 25th, 2019

1 / 62

Outline

Motivation: AI via Combining Learning and Reasoning

Computer Understandable (Formal) Math and Why Do It?

What Has Been Formalized?

Learning of Theorem Proving

Demos

Examples of Combining Learning and Reasoning

More Personal Notes

2 / 62

Motivation: Learning vs. Reasoning

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fängt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
Novalis, quoted by Popper – The Logic of Scientific Discovery

3 / 62

How Do We Automate Math and Science?

‚ What is mathematical and scientific thinking?
‚ Pattern-matching, analogy, induction from examples
‚ Deductive reasoning
‚ Complicated feedback loops between induction and deduction
‚ Using a lot of previous knowledge - both for induction and deduction

‚ We need to develop such methods on computers
‚ Are there any large corpora suitable for nontrivial deduction?
‚ Yes! Large libraries of formal proofs and theories
‚ So let’s develop strong AI on them!

4 / 62

History, Motivation, AI/TP/ML/DL

‚ Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
‚ Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
‚ Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
‚ Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:
‚ Learning from Previous Proof Experience
‚ My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
‚ Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
‚ ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
‚ ... hammer-style methods, feedback loops, internal guidance, ...
‚ AI vs ML vs DL?: Ben Goertzel’s 2018 Prague talk:
https://youtu.be/Zt2HSTuGBn8

5 / 62

https://youtu.be/Zt2HSTuGBn8

Intuition vs Formal Reasoning – Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
6 / 62

Induction/Learning vs Reasoning – Henri Poincaré

‚ Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

‚ “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

‚ I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

7 / 62

Learning vs Reasoning – Alan Turing 1950 – AI

‚ 1950: Computing machinery and intelligence – AI, Turing test
‚ “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
‚ last section on Learning Machines:
‚ “But which are the best ones [fields] to start [learning on] with?”
‚ “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
‚ Why not try with math? It is much more (universally?) expressive ...

8 / 62

Why Combine Learning and Reasoning Today?

1 It practically helps!
‚ Automated theorem proving for large formal verification is useful:

‚ Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
‚ Formal Proof of the Feit-Thompson Theorem (2012 – Gonthier)
‚ Verification of compilers (CompCert) and microkernels (seL4)
‚ ...

‚ But good learning/AI methods needed to cope with large theories!
‚ Learning is already very useful in guiding longer proof searches.

2 Blue Sky AI Visions:
‚ General AI for science must include also Reasoning and Deduction
‚ Get strong AI by learning/reasoning over large KBs of human thought?
‚ Big formal theories: good semantic approximation of such thinking KBs?
‚ Deep non-contradictory semantics – better than scanning books?
‚ Gradually try learning math/science:

‚ What are the components (inductive/deductive thinking)?
‚ How to combine them together?

9 / 62

The Plan

Followed by me for ą 20 years
1 Make large “formal thought” accessible to strong reasoning and learning

AI tools – DONE or well under way
‚ Mizar/MML
‚ Isabelle/HOL/AFP
‚ HOL Light/Flyspeck
‚ HOL4/CakeML
‚ Coq, etc.

2 Test/Use/Evolve existing ATP/ML/AI systems on such large corpora

3 Build custom/combined inductive/deductive tools/metasystems

4 Continuously test performance, define harder AI tasks as the
performance grows

10 / 62

What is Formal Mathematics and ITP? Why Do It?

‚ Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
‚ Mathematics put on formal logic foundations (symbolic computation)
‚ ... which btw. led also to the rise of computers (Turing/Church, 1930s)
‚ Formal math (1950/60s): combine formal foundations and the newly

available computers
‚ Today large ITP systems used for verifying nontrivial math, SW, HW ...
‚ Conceptually very simple:
‚ Write all your axioms and theorems so that computer understands them
‚ Write all your inference rules so that computer understands them
‚ Use the computer to check that your proofs follow the rules
‚ But in practice, it turns out not to be so simple
‚ Many approaches, still not mainstream, but big breakthroughs recently

11 / 62

ITP Systems in One Slide by T. Hales

��������� ����� ���

��
�������������������������������
��
����������������

�������� �������� ����

�����������������������������������
��
����������������������������������

��
�������������
���
�������������

�����������������������������������
����������������������������������
����������������������������������
���������������������

���
��������������������������
���
����������������������

��
��������������������������
���������������������������������������
��

12 / 62

The QED Manifesto – 1994

‚ QED is the very tentative title of a project to build a computer system that
effectively represents all important mathematical knowledge and
techniques.

‚ The QED system will conform to the highest standards of mathematical
rigor, including the use of strict formality in the internal representation of
knowledge and the use of mechanical methods to check proofs of the
correctness of all entries in the system.

‚ The QED project will be a major scientific undertaking requiring the
cooperation and effort of hundreds of deep mathematical minds,
considerable ingenuity by many computer scientists, and broad support
and leadership from research agencies.

‚
‚ Never happened, but a lot of inspiration/motivation.

13 / 62

Example: Irrationality of
?

2 (informal text)

tiny proof from Hardy & Wright, collected by F. Wiedijk:

Theorem 43 (Pythagoras’ theorem).
?

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

?
2

is rational, then the equation

a2 “ 2b2 (4.3.1)

is soluble in integers a, b with pa; bq “ 1. Hence a2 is even, and
therefore a is even. If a “ 2c, then 4c2 “ 2b2, 2c2 “ b2, and b is
also even, contrary to the hypothesis that pa; bq “ 1. l

14 / 62

Irrationality of
?

2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;

15 / 62

Irrationality of
?

2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

16 / 62

Irrationality of
?

2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
��IURP�QBQRQ]HUR�DQG�VTUWBUDW�KDYH��UHDO�P� �hVTUW��UHDO���h��UHDO�Q��E\�VLPS
��WKHQ�KDYH��UHDO��Pt�� ��VTUW��UHDO����t��UHDO��Qt��
����E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�
��DOVR�KDYH���VTUW��UHDO����t� �UHDO����E\�VLPS
��DOVR�KDYH�������UHDO��Pt�� �UHDO�����Qt���E\�VLPS
��ILQDOO\�KDYH�HT���Pt� ����Qt����
��KHQFH����GYG�Pt����
��ZLWK�WZRBLVBSULPH�KDYH�GYGBP�����GYG�P��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��WKHQ�REWDLQ�N�ZKHUH��P� ����N����
��ZLWK�HT�KDYH�����Qt� ��t��Nt��E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�PXOWBDF�
��KHQFH��Qt� ����Nt��E\�VLPS
��KHQFH����GYG�Qt����
��ZLWK�WZRBLVBSULPH�KDYH����GYG�Q��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG

17 / 62

Irrationality of
?

2 in Coq

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.

18 / 62

Irrationality of
?

2 in Metamath

${
$d x y $.
$(The square root of 2 is irrational. $)
sqr2irr $p |- (sqr ‘ 2) e/ QQ $=
(vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp
cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngt0t
adantr cr ax0re ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd
exp r19.23adv anc2li elnnz syl6ibr impac r19.22i2 mto elq df-nel mpbir)
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJANOZWLWFCQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWJWJAPNWFPHZWJWFNHZWNWJWNUCWFUDUEZUFWOWNWJWPWNWIWPBNWNWGNHZW
IWPUGWNWQUFZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB
WQXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWFUMUNWGUOWFUPUQURUSW
IUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWPUHWNWQWSUCWFUDWQWGVFHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDFWBWC $.
$([8-Jan-02] $)

$}

19 / 62

Irrationality of
?

2 in Metamath Proof Explorer

20 / 62

Irrationality of
?

2 in Otter

Problem

set(auto).
set(ur_res).
assign(max_distinct_vars, 1).
list(usable).
x = x.
m(1,x) = x. %identity
m(x,1) = x.
m(x,m(y,z)) = m(m(x,y),z). %assoc
m(x,y) = m(y,x). %comm
m(x,y) != m(x,z) | y = z. %cancel
-d(x,y) | m(x,f(x,y)) = y. %divides
m(x,z) != y | d(x,y).
-d(2,m(x,y)) | d(2,x) | d(2,y). %2 prime
m(a,a) = m(2,m(b,b)). % a/b=sqrt(2)
-d(x,a) | -d(x,b) | x = 1. % a/b lowest
2 != 1.
end_of_list.

Proof

1 [] m(x,y)!=m(x,z)|y=z.
2 [] -d(x,y)|m(x,f(x,y))=y.
3 [] m(x,y)!=z|d(x,z).
4 [] -d(2,m(x,y))|d(2,x)|d(2,y).
5 [] -d(x,a)| -d(x,b)|x=1.
6 [] 2!=1.
7 [factor,4.2.3] -d(2,m(x,x))|d(2,x).
13 [] m(x,m(y,z))=m(m(x,y),z).
14 [copy,13,flip.1] m(m(x,y),z)=m(x,m(y,z)).
16 [] m(x,y)=m(y,x).
17 [] m(a,a)=m(2,m(b,b)).
18 [copy,17,flip.1] m(2,m(b,b))=m(a,a).
30 [hyper,18,3] d(2,m(a,a)).
39 [para_from,18.1.1,1.1.1] m(a,a)!=m(2,x)|m(b,b)=x.
42 [hyper,30,7] d(2,a).
46 [hyper,42,2] m(2,f(2,a))=a.
48 [ur,42,5,6] -d(2,b).
50 [ur,48,7] -d(2,m(b,b)).
59 [ur,50,3] m(2,x)!=m(b,b).
60 [copy,59,flip.1] m(b,b)!=m(2,x).
145 [para_from,46.1.1,14.1.1.1,flip.1] m(2,m(f(2,a),x))=m(a,x).
189 [ur,60,39] m(a,a)!=m(2,m(2,x)).
190 [copy,189,flip.1] m(2,m(2,x))!=m(a,a).
1261 [para_into,145.1.1.2,16.1.1] m(2,m(x,f(2,a)))=m(a,x).
1272 [para_from,145.1.1,190.1.1.2] m(2,m(a,x))!=m(a,a).
1273 [binary,1272.1,1261.1] $F.

21 / 62

Today: Computers Checking Large Math Proofs

22 / 62

Big Example: The Flyspeck project

‚ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V “
�
?

18
« 74%

‚ Formal proof finished in 2014
‚ 20000 lemmas in geometry, analysis, graph theory
‚ All of it at https://code.google.com/p/flyspeck/
‚ All of it computer-understandable and verified in HOL Light:
‚ polyhedron s /\ c face_of s ==> polyhedron c

‚ However, this took 20 – 30 person-years!

23 / 62

https://code.google.com/p/flyspeck/

Big Math Formalizations

‚ Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
‚ Feit-Thompson (odd-order) theorem

‚ Two graduate books
‚ Gonthier et all, 2012, Coq

‚ The Four Color Theorem (Gonthier and Werner, 2005, Coq)
‚ Compendium of Continuous Lattices (CCL)

‚ 60% of the book formalized in Mizar
‚ Bancerek, Trybulec et all, 2003

24 / 62

Mid-size Formalizations

‚ Gödel’s First Incompleteness Theorem — Natarajan Shankar (NQTHM),
Russell O’Connor (Coq)

‚ Brouwer Fixed Point Theorem — Karol Pak (Mizar), John Harrison (HOL
Light)

‚ Jordan Curve Theorem — Tom Hales (HOL Light), Artur Kornilowicz et al.
(Mizar)

‚ Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL), John
Harrison (HOL Light)

‚ Gödel’s Second incompleteness Theorem — Larry Paulson
(Isabelle/HOL)

‚ Central Limit Theorem – Jeremy Avigad (Isabelle/HOL)
‚ Consistency of the Negation of CH – Jesse Han and Floris van Doorn

(Lean, 2019)

25 / 62

Large Software Verifications

‚ seL4 – operating system microkernel
‚ Gerwin Klein and his group at NICTA, Isabelle/HOL

‚ CompCert – a formally verified C compiler
‚ Xavier Leroy and his group at INRIA, Coq

‚ EURO-MILS – verified virtualization platform
‚ ongoing 6M EUR FP7 project, Isabelle

‚ CakeML – verified implementation of ML
‚ Magnus Myreen, Ramana Kumar and others, HOL4

26 / 62

Central Limit Theorem in Isabelle/HOL

27 / 62

Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
(for H being Subgroup of G st H is_p-group_of_prime p holds
ex P being Subgroup of G st
P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P) &

(for P1,P2 being Subgroup of G
st P1 is_Sylow_p-subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p
holds P1,P2 are_conjugated);

theorem :: GROUP_10:15
for G being finite Group, p being prime (natural number) holds

card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;

28 / 62

Gödel Theorems in Isabelle

29 / 62

Today’s Applications

30 / 62

Today’s Applications

31 / 62

Today’s Applications

32 / 62

Today’s Applications

33 / 62

Today’s Applications

34 / 62

Today’s Applications

35 / 62

The AI Part: Learning to Guide Theorem Proving

‚ How do we use all these corpora to learn doing math automatically?
‚ How can we combine AI methods with existing ATP systems?
‚ How do we practically assist formalization?

36 / 62

Using Learning to Guide Theorem Proving

‚ high-level: pre-select lemmas from a large library, give them to ATPs
‚ high-level: pre-select a good ATP strategy/portfolio for a problem
‚ high-level: pre-select good hints for a problem, use them to guide ATPs
‚ low-level: guide every inference step of ATPs (tableau, superposition)
‚ low-level: guide every kernel step of LCF-style ITPs
‚ mid-level: guide application of tactics in ITPs
‚ mid-level: invent suitable ATP strategies for classes of problems
‚ mid-level: invent suitable conjectures for a problem
‚ mid-level: invent suitable concepts/models for problems/theories
‚ proof sketches: explore stronger/related theories to get proof ideas
‚ theory exploration: develop interesting theories by conjecturing/proving
‚ feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
‚ autoformalization: (semi-)automate translation from LATEX to formal
‚ ...

37 / 62

Demos

‚ Hammering Mizar: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
‚ TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

‚ Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

‚ TacticToe longer (Thibault’s PxTP talk!):
https://www.youtube.com/watch?v=BO4Y8ynwT6Y

38 / 62

http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=BO4Y8ynwT6Y

Sample of Learning Approaches
‚ neural networks (statistical ML) – backpropagation, deep learning,

convolutional, recurrent, graph neural nets, etc.
‚ decision trees, random forests – find good classifying attributes (and/or

their values); more explainable
‚ support vector machines – find a good classifying hyperplane, possibly

after non-linear transformation of the data (kernel methods)
‚ k-nearest neighbor – find the k nearest neighbors to the query, combine

their solutions
‚ naive Bayes – compute probabilities of outcomes assuming complete

(naive) independence of characterizing features (just multiplying
probabilities)

‚ inductive logic programming (symbolic ML) – generate logical
explanation (program) from a set of ground clauses by generalization

‚ genetic algorithms – evolve large population by crossover and mutation
‚ various combinations of statistical and symbolic approaches
‚ supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward)
39 / 62

Learning – Features and Data Preprocessing
‚ Extremely important - garbage in garbage out
‚ Distributed repres., Deep Learning – design (neural) architectures that

automatically find important high-level features for a task
‚ How do we represent math objects (formulas, proofs, ideas) in our mind?

‚ From syntactic to more semantic:
‚ Constant and function symbols
‚ Walks in the term graph
‚ Walks in clauses with polarity and variables/skolems unified
‚ Subterms, de Bruijn normalized
‚ Subterms, all variables unified
‚ Matching terms, no generalizations
‚ terms and (some of) their generalizations
‚ Substitution tree nodes
‚ All unifying terms
‚ LSI/PCA, word2vec, fasttext, etc.
‚ Neural embeddings: CNN, RNN, Tree NN, Graph CNN, ...
‚ Evaluation in a large set of (finite) models
‚ Vectors of proof similarities (proof search hidden states)
‚ Vectors of problems solved (for ATP strategies)

40 / 62

Early Machine Learning for Fact Selection over Mizar

‚ 2003: Can existing ATPs (E, SPASS, Vampire) be used on the freshly
translated Mizar library?

‚ About 80000 nontrivial math facts at that time – impossible to use them all
‚ Mizar Proof Advisor (2003):
‚ Learn fact selection from previous proof!
‚ Recommend relevant premises when proving new conjectures
‚ Give them to existing ATPs
‚ First results over the whole Mizar library in 2003:

‚ about 70% coverage in the first 100 recommended premises
‚ chain the recommendations with strong ATPs to get full proofs
‚ about 14% of the Mizar theorems were then automatically provable (SPASS)
‚ sometimes we can find simpler proofs!

‚ Done with much more developed tools for Flyspeck in 2012, Mizar, HOL4,
Coq, ...

41 / 62

Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 45% success rate

42 / 62

Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 45% success rate

42 / 62

Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 45% success rate

42 / 62

Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 45% success rate
42 / 62

High-level feedback loops – MALARea
‚ Machine Learner for Autom. Reasoning (2006) – infinite hammering
‚ feedback loop interleaving ATP with learning premise selection
‚ both syntactic and semantic features for characterizing formulas:
‚ evolving set of finite (counter)models in which formulas evaluated
‚ ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

43 / 62

44 / 62

45 / 62

Low-level: Statistical Guidance of Connection Tableau

‚ learn guidance of every clausal inference in connection tableau (leanCoP)
‚ set of first-order clauses, extension and reduction steps
‚ proof finished when all branches are closed
‚ a lot of nondeterminism, requires backtracking
‚ Iterative deepening used in leanCoP to ensure completeness
‚ good for learning – the tableau compactly represents the proof state

Clauses:

c1 : Ppxq

c2 : Rpx ; yq _ Ppxq _Qpyq

c3 : Spxq _ Qpbq

c4 : Spxq _ Qpxq

c5 : Qpxq _ Rpa; xq

c6 : Rpa; xq _Qpxq

Closed Connection Tableau: Ppaq

Rpa; bq

 Rpa; bq Qpbq

 Qpbq Rpa; bq

 Ppaq Qpbq

Spbq

 Spbq Qpbq

 Qpbq

46 / 62

Statistical Guidance of Connection Tableau – rlCoP

‚ MaLeCoP (2011): first prototype Machine Learning Connection Prover
‚ Fairly Efficient MaLeCoP = FEMaLeCoP (15% better than leanCoP)
‚ 2018: stronger learners via C interface to OCAML (boosted trees)
‚ remove iterative deepening, the prover can go deep (completeness bad!)
‚ Monte-Carlo Tree Search (MCTS) governs the search (AlphaGo/Zero!)
‚ MCTS search nodes are sequences of clause application
‚ a good heuristic to explore new vs exploit good nodes:

wi

ni
` c ¨ pi ¨

d

ln N
ni

(UCT - Kocsis, Szepesvari 2006)

‚ learning both policy (clause selection) and value (state evaluation)
‚ clauses represented not by names but also by features (generalize!)
‚ binary learning setting used: | proof state | clause features |
‚ mostly term walks of length 3 (trigrams), hashed into small integers
‚ many iterations of proving and learning

47 / 62

Statistical Guidance of Connection Tableau – rlCoP

‚ On 32k Mizar40 problems using 200k inference limit
‚ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

‚ rlCoP with policy/value after 5 proving/learning iters on the training data
‚ 1624{1143 “ 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

48 / 62

TacticToe: Tactic Guidance of ITPs (Gauthier et al.)

‚ learns from human tactical HOL4 proofs to solve new goals
‚ no translation or reconstruction needed
‚ similar to rlCoP: policy/value learning
‚ however much more technically challenging:

‚ tactic and goal state recording
‚ tactic argument abstraction
‚ absolutization of tactic names
‚ nontrivial evaluation issues

‚ policy: which tactic/parameters to choose for a current goal?
‚ value: how likely is this proof state succeed?
‚ 2018: 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
‚ work in progress for Coq

49 / 62

Side Note on Symbolic Learning with NNs

‚ Recurrent NNs with attention recently very good at the inf2formal task
‚ Experiments with using them for symbolic rewriting (Piotrowski et. al)
‚ We can learn rewrite rules from sufficiently many data
‚ 80-90% on algebra datasets, 70-99% on normalizing polynomials
‚ again, complements symbolic methods like ILP that suffer if too much

data
‚ Similar use for conjecturing (Chvalovsky et al):
‚ Learn consistent translations between different math contexts:
‚ additive groups Ñ multiplicative groups

50 / 62

Side Note on Symbolic Learning with NNs

Table: Examples in the AIM data set.

Rewrite rule: Before rewriting: After rewriting:
b(s(e,v1),e)=v1 k(b(s(e,v1),e),v0) k(v1,v0)
o(V0,e)=V0 t(v0,o(v1,o(v2,e))) t(v0,o(v1,v2))

Table: Examples in the polynomial data set.

Before rewriting: After rewriting:
(x * (x + 1)) + 1 x ˆ 2 + x + 1
(2 * y) + 1 + (y * y) y ˆ 2 + 2 * y + 1
(x + 2) * ((2 * x) + 1) + (y + 1) 2 * x ˆ 2 + 5 * x + y + 3

51 / 62

Side Note on Conjecturing with RNNs

We can obtain a new valid automatically provable lemma

pX X Y qzZ “ pXzZ q X pY zZ q

from

pX Y Y qzZ “ pXzZ q Y pY zZ q

Examples of false but syntactically consistent conjectures:

for n, m being natural numbers holds n gcd m = n div m;

for R being Relation holds
with_suprema(A) <=> with_suprema(inverse_relation(A));

52 / 62

Statistical Guidance the Given Clause in E Prover

‚ harder for learning than tableau
‚ the proof state are two large heaps of clauses processed/unprocessed
‚ 2017: ENIGMA - manual feature engineering (Jakubuv & JU 2017)
‚ 2017: Deep guidance (neural nets) (Loos et al. 2017)
‚ both learn on E’s proof search traces, put classifier in E
‚ positive examples: given clauses used in the proof
‚ negative examples: given clauses not used in the proof
‚ ENIGMA: fast feature extraction followed by fast/sparse linear classifier
‚ about 80% improvement on the AIM benchmark
‚ Deep guidance: convolutional nets - no feature engineering but slow
‚ ENIGMA-NG: better features and ML, gradient-boosted trees, tree NNs
‚ NNs made competitive in real-time, boosted trees still best

53 / 62

Feedback loop for ENIGMA on Mizar data

‚ Similar to rlCoP - interleave proving and learning of ENIGMA guidance
‚ Done on 57880 Mizar problems very recently
‚ Ultimately a 70% improvement over the original strategy
‚ Example Mizar proof found by ENIGMA: http://grid01.ciirc.cvut.
cz/~mptp/7.13.01_4.181.1147/html/knaster#T21

‚ Its E-ENIGMA proof:
http://grid01.ciirc.cvut.cz/~mptp/t21_knaster

S S dM0
9 S ‘M

0
9 S dM1

9 S ‘M
1
9 S dM2

9 S ‘M
2
9 S dM3

9 S ‘M
3
9

solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S` +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S´ -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S dM3
12 S ‘M3

12 S dM3
16 S ‘M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S` +9761 +10063 +10476 +10647
S´ -535 -295 -309 -183

54 / 62

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/knaster#T21
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/knaster#T21
http://grid01.ciirc.cvut.cz/~mptp/t21_knaster

Neural Autoformalization (Wang et al., 2018)

‚ generate about 1M Latex - Mizar pairs based on Bancerek’s work
‚ train neural seq-to-seq translation models (Luong – NMT)
‚ evaluate on about 100k examples
‚ many architectures tested, some work much better than others
‚ very important latest invention: attention in the seq-to-seq models
‚ more data very important for neural training – our biggest bottleneck (you

can help!)
‚ Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!

55 / 62

Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then limps8`s7q “

lim s8` lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
} { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $.

Correct seq1 is convergent & seq2 is convergent implies lim (seq1
+ seq2) = (lim seq1) + (lim seq2) ;

Snapshot-
1000

x in dom f implies (x * y) * (f | (x | (y | (y | y)
))) = (x | (y | (y | (y | y))))) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim (seq + seq9) = (lim seq) + (lim seq9) ;

56 / 62

Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1 ast t) ;
s . (i + 1) = tt . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier (f) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC (V) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1) . t ;
s . (i + 1) = tau1 . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng (H1 ./. y) ;
a * L = ZeroLC (V) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [x , y] in A ;

57 / 62

More Personal Notes
‚ Think globally, act locally. Big dreams about AI, etc. But act by trying

small steps/experiments.
‚ Sometimes need to commit a lot. The Mizar-to-ATP translation took

years, but bore a lot of fruit. Today millions USD in Google HOL/RL.
‚ Follow your dream mercilessly - avoid distractions (stay focused - hard for

many smart people). Find/do what you are convinced/passionate about.
‚ Avoid the "theorem envy". AI is not Math. We want to replace

mathematicians, not be them. Always reflect and implement your thinking.
‚ Many AI improvements me from bringing ideas/systems together:

"Automate, automate, automate!"
‚ Become a hacker. Learn rapid prototyping. Learn to gain maximum info

from initial experiments, then iterate. "Experience, not only doctrine".
‚ Learn at least one high-level symbolic language - lisp, prolog, ml, haskell.

At least one scripting language: perl, python, ruby, shell.
‚ Stay motivated by reading giants of science: Einstein, Poincare, Russel,

Heisenberg, Turing, Deutsch, Dawkins
‚ Read good sci-fi: Heinlein, Stephenson, Stroth, ...

58 / 62

More Personal Notes – Conferences, Evaluation

‚ This is a constant search related to evaluation metrics.
‚ Good conferences in CS today count more than journals.
‚ Part of what we do should influence the metrics – value of a theorem?
‚ In my research several communities: ITP/Formalization, ATP, AI, ML, DL
‚ Citation counts wildly differ across the communities (ML vs AR vs Math).
‚ Reviewing wildly differs across the communities.
‚ I had mixed successes with ATP conferences, more with ITP, IJCAI/AAAI

can be hard for new topics.
‚ The best reviewing processes and open-mindedness I have seen is now

in the NIPS/ICLR community (ML).
‚ They should be focused to deep neural nets. But managed to attract

non-neural and even reasoning topics when combined with ML. One of
the reasons for their success.

‚ ERC: currently the best evaluation worldwide. Much deeper than just
bean-counting. Inspiration in many ways.

‚ Today also high-paid research jobs in AI companies/startups (a bubble?).
59 / 62

Acknowledgments

‚ Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
‚ Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar

Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri
Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...

‚ HOL(y)Hammer group in Innsbruck:
‚ Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima,

Shawn Wang
‚ ATP and ITP people:

‚ Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry
Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow,
Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...

‚ Learning2Reason people at Radboud University Nijmegen:
‚ Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,

‚ Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi,
Francois Chollet, Sarah Loos

‚ ... and many more ...
‚ Funding: Marie-Curie, NWO, ERC

60 / 62

http://arg.ciirc.cvut.cz/

Some References
‚ ARG ML&R course: http://arg.ciirc.cvut.cz/teaching/mlr19/index.html
‚ C. Kaliszyk: http://cl-informatik.uibk.ac.at/teaching/ss18/mltp/content.php
‚ C. Kaliszyk, J. Urban, H. Michalewski, M. Olsak: Reinforcement Learning of Theorem Proving. CoRR

abs/1805.07563 (2018)
‚ Z. Goertzel, J. Jakubuv, S. Schulz, J. Urban: ProofWatch: Watchlist Guidance for Large Theories in E.

CoRR abs/1802.04007 (2018)
‚ T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR

abs/1804.00596 (2018).
‚ J. Jakubuv, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine. CICM 2017:

292-302
‚ S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
‚ L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning

61(1-4): 423-453 (2018)
‚ J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized

Reasoning 9(1): 101-148 (2016)
‚ G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for

Premise Selection. NIPS 2016: 2235-2243
‚ C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large

Theories. IJCAI 2015: 3084-3090
‚ J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning

with Semantic Guidance. IJCAR 2008: 441-456
‚ C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of

Mathematics. ITP 2017: 12-27
‚ Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal

Mathematics. CoRR abs/1805.06502 (2018)
‚ J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS

7788, 240-257, 2013.
61 / 62

http://arg.ciirc.cvut.cz/teaching/mlr19/index.html
http://cl-informatik.uibk.ac.at/teaching/ss18/mltp/content.php

Thanks and Advertisement

‚ Thanks for your attention!
‚ AITP – Artificial Intelligence and Theorem Proving
‚ March 22–27, 2020, Aussois, France, aitp-conference.org
‚ ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
‚ Discussion-oriented and experimental - submit a talk abstract!
‚ Grown to 80 people in 2019

62 / 62

aitp-conference.org

	Motivation: AI via Combining Learning and Reasoning
	Computer Understandable (Formal) Math and Why Do It?
	What Has Been Formalized?
	Learning of Theorem Proving
	Demos
	Examples of Combining Learning and Reasoning
	More Personal Notes

