# ENiGMA's proof of Pythagoras theorem

#### Josef Urban

#### Czech Technical University in Prague Czech Institute for Informatics, Robotics and Cybernetics





Established by the European Commission

JOSEF URBAN (CTU, PRAGUE) ENIGMA'S PROOF OF PYTHAGORAS THEOREM

### Can You (or Your Machine) Prove the Pythagoras Theorem?

- What are those nerds on 6th floor doing all nights there?
- Formal statement and 15-line human-written verified proof:

```
:: The Pythagorean theorem
theorem :: BHSP 5:6
for X being RealUnitarySpace
for x, y being Point of X st x, y are orthogonal holds
||.(x + y).||^{2} = (||.x.||^{2}) + (||.y.||^{2})
proof
let X be RealUnitarySpace; :: thesis:
let x, y be Point of X; :: thesis:
assume x, y are_orthogonal ; :: thesis:
then A1: x \mid y = 0 by BHSP 1:def 3;
A2: (x + y) . |. (x + y) \ge 0 by BHSP 1:def 2;
A3: x . |. x >= 0 by BHSP 1:def 2:
A4: v .|. v >= 0 by BHSP 1:def 2;
||.(x + y).||^{2} = (sqrt ((x + y) .|. (x + y)))^{2} by BHSP 1:def 4
.= (x + y) .|. (x + y) by A2, SQUARE_1:def 2
= ((x \cdot | \cdot x) + (2 \cdot (x \cdot | \cdot y))) + (y \cdot | \cdot y) by BHSP 1:16
.= ((sqrt (x .|. x)) ^2) + (y .|. y) by A1, A3, SQUARE 1:def 2
.= ((sqrt (x .|. x)) ^2) + ((sqrt (y .|. y)) ^2) by A4, SQUARE_1:def 2
.= (||.x.|| ^2) + ((sqrt (y .|. y)) ^2) by BHSP_1:def 4
.= (||.x.|| ^2) + (||.v.|| ^2) by BHSP 1:def 4 ;
hence ||.(x + y).||^2 = (||.x.||^2) + (||.y.||^2); :: thesis:
end;
```

- Our automatically found proof the ENIGMA system: http://grid01.ciirc.cvut.cz/~mptp/enigma\_ prf/t6\_bhsp\_5.out
- http://grid01.ciirc.cvut.cz/~mptp/7.13.01\_ 4.181.1147/html/bhsp\_5.html#T6

```
# Proof object clause steps
                                       : 181
#
 Proof object initial clauses used : 51
 Proof object initial formulas used : 34
#
 Proof object simplifying inferences : 210
#
# Parsed axioms
                                        : 342
# Initial clauses in saturation
                                        : 440
# Processed clauses
                                        : 8804
# ... remaining for further processing
                                        : 4119
# Generated clauses
                                        : 65094
# ... of the previous two non-trivial : 60807
                           : 28.629 s
# User time
```

JOSEF URBAN (CTU, PRAGUE) ENIGMA'S PROOF OF PYTHAGORAS THEOREM



- Jan Jakubuv (the main developer of ENIGMA) has proved it automatically on May 6 2020 in 30s (are you that fast?)
- ENIGMA was guided by 150 decision trees each of max depth 80 and having maximum 8000 leaves
- Trained by the LightGBM gradient boosted tree toolkit (state of the art ML, fast).
- On a corpus of ca 500k previous automatically found proofs.
- We could not prove the theorem automatically before that even with much higher time limits.

- The proof attempt started with 342 mathematical facts.
- You can think of the facts as flat language sentences.
- In fact they are first-order logic parse trees that can interact in many ways.
- Preselected from a knowledge base (math library) of ca 150k math facts
- The initial facts logically interact, producing more and more facts (inferences)
- Their number quickly explodes (millions) unless some control is introduced
- In 30s this proof attempt has generated "only" 60k more nontrivial facts

- Each of the 60k facts was scored by the 150 LightGBM decision trees
- I.e. on average we scored 2k facts per second (on a single commodity CPU)
- This is also thanks to our fast (but accurate and memory efficient) characterization of the facts by syntactic features
- The scoring was gradually choosing the best of the generated facts
- These are the ones used to perform inferences with the previously chosen (processed) ones
- This is called the given clause loop and it is the basis of today's strongest theorem provers

- ENIGMA gradually chose 4k facts from the 60k and did all possible inferences (modus-ponens style) among them
- When the last one was chosen, it interacted with the previous facts in such a way that the proof was finished
- In the end, only 34 of the 342 initial facts were needed for the proof
- And the proof needed only 181 steps, not 4k (and could generate much fewer than 60k facts)
- So if we were smarter, we could do it even faster!
- We could learn from this proof saying which facts/inferences were good/bad
- And in the next proving attempt, we would probably do the proof better
- So we could interleave proving and learning from proofs
- And thus train better and better automated mathematicians!

### Feedback loop for ENIGMA on Mizar data

- Interleave proving and learning of ENIGMA guidance
- Done on 57880 Mizar problems very recently
- Ultimately a 70% improvement over the original strategy
- From 14933 proofs to 25397 proofs (all 10s no cheating)
- As of 2021 we have 42519 proofs

|                 | ${\mathcal S}$ | $\mathcal{S} \odot \mathcal{M}_9^0$ | $\mathcal{S}\oplus\mathcal{M}_9^0$ | $\mathcal{S} \odot \mathcal{M}_9^1$ | $\mathcal{S}\oplus \mathcal{M}_9^1$ | $\mathcal{S} \odot \mathcal{M}_9^2$ | $\mathcal{S} \oplus \mathcal{M}^2_9$ | $\mathcal{S} \odot \mathcal{M}_9^3$ |
|-----------------|----------------|-------------------------------------|------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|--------------------------------------|-------------------------------------|
| solved          | 14933          | 16574                               | 20366                              | 21564                               | 22839                               | 22413                               | 23467                                | 22910                               |
| $\mathcal{S}\%$ | +0%            | +10.5%                              | +35.8%                             | +43.8%                              | +52.3%                              | +49.4%                              | +56.5%                               | +52.8%                              |
| $\mathcal{S}+$  | +0             | +4364                               | +6215                              | +7774                               | +8414                               | +8407                               | +8964                                | +8822                               |
| $\mathcal{S}-$  | -0             | -2723                               | -782                               | -1143                               | -508                                | -927                                | -430                                 | -845                                |

|                 | $\mathcal{S}\odot\mathcal{M}^3_{12}$ | $\mathcal{S} \oplus \mathcal{M}^3_{12}$ | $\mathcal{S}\odot\mathcal{M}^3_{16}$ | $\mathcal{S} \oplus \mathcal{M}^3_{16}$ |
|-----------------|--------------------------------------|-----------------------------------------|--------------------------------------|-----------------------------------------|
| solved          | 24159                                | 24701                                   | 25100                                | 25397                                   |
| $\mathcal{S}\%$ | +61.1%                               | +64.8%                                  | +68.0%                               | +70.0%                                  |
| $\mathcal{S}+$  | +9761                                | +10063                                  | +10476                               | +10647                                  |
| $\mathcal{S}-$  | -535                                 | -295                                    | -309                                 | -183                                    |