# ENiGMA's proof of Pythagoras theorem 

Josef Urban

## Czech Technical University in Prague

 Czech Institute for Informatics, Robotics and Cybernetics

## Can You (or Your Machine) Prove the Pythagoras Theorem?

- What are those nerds on 6th floor doing all nights there?
- Formal statement and 15 -line human-written verified proof:

```
:: The Pythagorean theorem
theorem :: BHSP_5:6
for X being RealUnitarySpace
for x, y being Point of X st x,y are_orthogonal holds
||.(x + y).|| ^2 = (||.x.|| ^2) + (||.y.|| ^2)
proof
let X be RealUnitarySpace; :: thesis:
let x, y be Point of X; :: thesis:
assume x,y are_orthogonal ; :: thesis:
then A1: x . |. y = 0 by BHSP_1:def 3;
A2: (x + y) .|. ( }\textrm{x}+\textrm{y}) >= 0 by BHSP_1:def 2;
A3: x . |. x >= 0 by BHSP_1:def 2;
A4: y .|. y >= 0 by BHSP_1:def 2;
||.(x + y).|| ^2 = (sqrt ((x + y) .|. (x + y))) ^^2 by BHSP_1:def 4
.= (x + y) .|. (x + y) by A2, SQUARE_1:def 2
.=((x.|. x) + (2 * (x.|. y))) + (y.|. y) by BHSP_1:16
.= ((sqrt (x.|. x)) ^2) + (y.|. y) by A1, A3, SQUARE_1:def 2
.= ((sqrt (x.|. x)) ^2) + ((sqrt (y.|. y)) ^ 2) by A4, SQUARE_1:def 2
.= (||.x.|| ^2) + ((sqrt (y .|. y)) ^2) by BHSP_1:def 4
.= (||.x.|| ^2) + (||.y.|| ^2) by BHSP_1:def 4 ;
hence ||.(x + y).|| ^2 = (||.x.|| ^2) + (||.y.|| ^2) ; :: thesis:
end;
```

Can You Prove the Pythagoras Theorem? - Details

- Our automatically found proof - the ENIGMA system: http://grid01.ciirc.cvut.cz/~mptp/enigma_ prf/t6_bhsp_5.out
- http://grid01.ciirc.cvut.cz/~mptp/7.13.01_ 4.181.1147/html/bhsp_5.html\#T6
\# Proof object clause steps
\# Proof object initial clauses used : 51
\# Proof object initial formulas used
\# Proof object simplifying inferences
\# Parsed axioms
\# Initial clauses in saturation
\# Processed clauses
\# ...remaining for further processing
\# Generated clauses
\# ...of the previous two non-trivial


## Can You Prove the Pythagoras Theorem? - Details

- Jan Jakubuv (the main developer of ENIGMA) has proved it automatically on May 62020 in 30s (are you that fast?)
- ENIGMA was guided by 150 decision trees each of max depth 80 and having maximum 8000 leaves
- Trained by the LightGBM gradient boosted tree toolkit (state of the art ML, fast).
- On a corpus of ca 500 k previous automatically found proofs.
- We could not prove the theorem automatically before that even with much higher time limits.


## Can You Prove the Pythagoras Theorem? - Details

- The proof attempt started with 342 mathematical facts.
- You can think of the facts as flat language sentences.
- In fact they are first-order logic parse trees that can interact in many ways.
- Preselected from a knowledge base (math library) of ca 150k math facts
- The initial facts logically interact, producing more and more facts (inferences)
- Their number quickly explodes (millions) unless some control is introduced
- In 30s this proof attempt has generated "only" 60k more nontrivial facts


## Can You Prove the Pythagoras Theorem? - Details

- Each of the 60k facts was scored by the 150 LightGBM decision trees
- I.e. on average we scored $2 k$ facts per second (on a single commodity CPU)
- This is also thanks to our fast (but accurate and memory efficient) characterization of the facts by syntactic features
- The scoring was gradually choosing the best of the generated facts
- These are the ones used to perform inferences with the previously chosen (processed) ones
- This is called the given clause loop and it is the basis of today's strongest theorem provers


## Can You Prove the Pythagoras Theorem? - Details

- ENIGMA gradually chose 4 k facts from the 60 k and did all possible inferences (modus-ponens style) among them
- When the last one was chosen, it interacted with the previous facts in such a way that the proof was finished
- In the end, only 34 of the 342 initial facts were needed for the proof
- And the proof needed only 181 steps, not 4 k (and could generate much fewer than 60k facts)
- So if we were smarter, we could do it even faster!
- We could learn from this proof - saying which facts/inferences were good/bad
- And in the next proving attempt, we would probably do the proof better
- So we could interleave proving and learning from proofs
- And thus train better and better automated mathematicians!


## Feedback loop for ENIGMA on Mizar data

- Interleave proving and learning of ENIGMA guidance
- Done on 57880 Mizar problems very recently
- Ultimately a $70 \%$ improvement over the original strategy
- From 14933 proofs to 25397 proofs (all 10s - no cheating)
- As of 2021 we have 42519 proofs

|  | $\mathcal{S}$ | $\mathcal{S} \odot \mathcal{M}_{9}^{0}$ | $\mathcal{S} \oplus \mathcal{M}_{9}^{0}$ | $\mathcal{S} \odot \mathcal{M}_{9}^{1}$ | $\mathcal{S} \oplus \mathcal{M}_{9}^{1}$ | $\mathcal{S} \odot \mathcal{M}_{9}^{2}$ | $\mathcal{S} \oplus \mathcal{M}_{9}^{2}$ | $\mathcal{S} \odot \mathcal{M}_{9}^{3}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| solved | 14933 | 16574 | 20366 | 21564 | 22839 | 22413 | 23467 | 22910 |
| $\mathcal{S} \%$ | $+0 \%$ | $+10.5 \%$ | $+35.8 \%$ | $+43.8 \%$ | $+52.3 \%$ | $+49.4 \%$ | $+56.5 \%$ | $+52.8 \%$ |
| $\mathcal{S}+$ | +0 | +4364 | +6215 | +7774 | +8414 | +8407 | +8964 | +8822 |
| $\mathcal{S}-$ | -0 | -2723 | -782 | -1143 | -508 | -927 | -430 | -845 |


|  | $\mathcal{S} \odot \mathcal{M}_{12}^{3}$ | $\mathcal{S} \oplus \mathcal{M}_{12}^{3}$ | $\mathcal{S} \odot \mathcal{M}_{16}^{3}$ | $\mathcal{S} \oplus \mathcal{M}_{16}^{3}$ |
| :--- | :---: | :---: | :---: | :---: |
| solved | 24159 | 24701 | 25100 | 25397 |
| $\mathcal{S} \%$ | $+61.1 \%$ | $+64.8 \%$ | $+68.0 \%$ | $+70.0 \%$ |
| $\mathcal{S}+$ | +9761 | +10063 | +10476 | +10647 |
| $\mathcal{S}-$ | -535 | -295 | -309 | -183 |

