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Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

§ Isabelle (Auth, Jinja) – Sledgehammer
§ Mizar / MML – MPTP, MizAR – this talk
§ Flyspeck (including core HOL Light and Multivariate) –

HOL(y)Hammer
§ HOL4 (Gauthier and Kaliszyk) , TacTicToe (Gauthier et al.)
§ CoqHammer (Czajka and Kaliszyk) – 40% on Coq st. lib.

« 45% success rate
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Jan Jakubův, Josef Urban Hammering Mizar by Learning Clause Guidance 4 / 23



Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

§ Isabelle (Auth, Jinja) – Sledgehammer
§ Mizar / MML – MPTP, MizAR – this talk
§ Flyspeck (including core HOL Light and Multivariate) –

HOL(y)Hammer
§ HOL4 (Gauthier and Kaliszyk) , TacTicToe (Gauthier et al.)
§ CoqHammer (Czajka and Kaliszyk) – 40% on Coq st. lib.

« 45% success rate
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Our Main Result

§ Strengthening the E prover on the Mizar library by 70%

§ Done by several iterations of proving and learning over many
math problems

§ The learning and guidance is done directly in E prover

§ This requires strong and fast learning systems

§ ... and good engineering choices

§ The good news is: it works! Machine learning helps a lot!

§ We can gradually learn better and better mathematical tricks
by proving and learning over a large math library!

§ But it took us some time to get there
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Basic Saturation Style ATP Loop – E Prover

Proc = {}

Unproc = all available clauses

while (no proof found)

{

select a given clause C from Unproc

move C from Unproc to Proc

apply inference rules to C and Proc

put inferred clauses to Unproc

}

The main non-determinism point:
Which clauses to select as given for further inferences?
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E Prover Strategies

§ Collections of parameters influencing the proof search

§ Weight functions select the “good” clauses

§ Can be arbitrarily complicated

§ Can be combined in a round-robin way

(10 * ClauseWeight1(10,0.1,...),
1 * ClauseWeight2(...),

20 * ClauseWeight3(...))
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ENIGMA

§ Idea: Train classifiers by machine learning from a large
number of proofs to do good inferences!

§ The idea works in other TP contexts and is 20 years old – e.g.
premise selection

§ The problem is to make it work – and efficiently

§ ENIGMA – since 2017 – stands for. . .

Efficient learNing-based Inference Guiding MAchine
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Clauses as Feature Vectors

Features are descending paths of length 3 (triples of symbols).
Collect and enumerate all the features. Count the clause features.
Take the counts as a feature vector.

‘

“

f

f f

g

d d

f

# feature count

1 (‘,=,a) 0
...

...
...

11 (‘,=,f) 1
12 (‘,=,g) 1
13 (=,f,f) 2
14 (=,g,d) 2
15 (g,d,f) 1
...

...
...
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Enigma Model Construction

1. Collect training examples from E runs (useful/useless clauses).

2. Translate clauses to feature vectors.

3. Translate conjectures to feature vectors.

4. Train a classifier on good/bad vector pairs (clause,conjecture)
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Tree Boosting Classifiers – XGBoost

§ State of the art in Machine Learning (before linear/neural ML)
§ Much more efficient than deep neural nets
§ Stronger than linear classifiers and comparably fast
§ An XGBoost model consists of a set of decision trees.
§ Leaf scores are summed and translated into probabilities.
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Fast Feature Hashing

§ In large ITP libraries there are milions of features.

§ Handling too long vectors (ą 105) is ineffiecient.

§ Solution: Reduce vector dimension with feature hashing.

§ Encode features by strings and . . .

§ . . . use a general purpose string hashing function.

§ The string hash is reduced to a small integer (e.g. 0..215)

§ Values are summed in the case of a collision.
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Evaluation: Hammering Mizar

§ 57880 problems extracted from the Mizar Library (MML).

§ Good E strategy S fixed – solves 14933 problems

§ We train an XGBoost classifier M on the proofs

§ S is combined in two ways with the trained classifier M:
S dM and S ‘M

§ All strategies evaluated with time limit of 10 seconds.
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Solved problems: one looping iteration

§ Decision trees depth = 9

§ M0 is trained on problems solved by S
§ Mn (n ą 0) is trained on problems solved by S and
S dMi (for all i ă n) and S ‘Mi (for all i ă n)

S S dM0 S ‘M0 S dM1 S ‘M1

solved 14933 16574 20366 21564 22839
S% +0% +10.5% +35.8% +43.8% +52.3%
S` +0 +4364 +6215 +7774 +8414
S´ -0 -2723 -782 -1143 -508
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Solved problems: more loops

S S ‘M0 S ‘M1 S ‘M2 S ‘M3

solved 14933 20366 22839 23467 23753
S% +0% +35.8% +52.3% +56.5% +58.4
S` +0 +6215 +8414 +8964 +9274
S´ -0 -782 -508 -430 -454
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Solved problems: deeper trees

§ Increase tree depth to 12 and 16

§ Train the model on the same data as M3

§ Our ultimate strategy solves 70% more than the original in
the same real time!

S dM3
12 S ‘M3

12 S dM3
16 S ‘M3

16

solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S` +9761 +10063 +10476 +10647
S´ -535 -295 -309 -183
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ENIGMA Proof Example – Knaster

§ 135-long E proof, using 1k given clauses, generating 6k clauses
§ solved in the last iteration in 5 seconds:
http://grid01.ciirc.cvut.cz/~mptp/t21_knaster

§ 60-line original proof in MML:
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/knaster#T21

for L being complete Lattice for f being monotone UnOp of L

ex a being Element of L st a is_a_fixpoint_of f

proof

let L be complete Lattice;

let f be monotone UnOp of L;

set H = {h where h is Element of L: h [= f.h};

set fH = {f.h where h is Element of L: h [= f.h};

set uH = "\/"(H, L);

set fuH = "\/"(fH, L);

take uH;

now

[... code skipped ]

end;

then fH is_less_than f.uH by LATTICE3:def 17;

then

A3: fuH [= f.uH by LATTICE3:def 21;

now

[... code skipped ]

end;

then uH [= fuH by LATTICE3:47;

then

A5: uH [= f.uH by A3,LATTICES:7;

then f.uH [= f.(f.uH) by QUANTAL1:def 12;

then f.uH in H;

then f.uH [= uH by LATTICE3:38;

hence uH = f.uH by A5,LATTICES:8;

end;
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Statistics: data, tree depths, training times, models, speed

§ 1.8 M features (hashed to 215)

§ vector dimension is 216

§ input trains file is 38 GB

§ . . . and contains 63 M training samples (4.2M pos x 59M neg)

§ . . . with 5000 M non-zero values (density 0.1%)

depth error real time CPU time size (MB) speed

9 0.201 2h41m 4d20h 5.0 5665.6
12 0.161 4h12m 8d10h 17.4 4676.9
16 0.123 6h28m 11d18h 54.7 3936.4
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Future work

§ Do it on other large ITP libraries - AFP, Flyspeck, HOL4, ...

§ Dynamic and semantic proof state characterization
(ENIGMAWatch)

§ Name-independent features (seem to work well)

§ Joint training on all ITP libraries (harder)

§ Even more iterations and data (now possible)

§ Efficient Tree and Graph neural nets? (our CADE’19 paper)

§ Other ML methods

§ ...
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Thank you.

Questions?

Jan Jakubův, Josef Urban Hammering Mizar by Learning Clause Guidance 23 / 23


	Overview: Hammers, Main Result, ATPs & Given Clauses
	Enigma: The story so far…
	Enigma: What's new?
	Hammering Mizar

