Hammering Mizar by Learning Clause Guidance

Jan Jakubův¹ Josef Urban¹

¹Czech Technical University in Prague, Czech Republic

ITP'19, Portland, USA, 9th September 2019

Established by the European Commission

Enigma: The story so far...

Enigma: What's new?

Hammering Mizar

Jan Jakubův, Josef Urban

Enigma: The story so far...

Enigma: What's new?

Hammering Mizar

Jan Jakubův, Josef Urban

How much can it do?

How much can it do?

- Isabelle (Auth, Jinja) Sledgehammer
- Mizar / MML MPTP, MizAR this talk
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk), TacTicToe (Gauthier et al.)
- CoqHammer (Czajka and Kaliszyk) 40% on Coq st. lib.

Jan Jakubův, Josef Urban

How much can it do?

- Isabelle (Auth, Jinja) Sledgehammer
- Mizar / MML MPTP, MizAR this talk
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk), TacTicToe (Gauthier et al.)
- ▶ CoqHammer (Czajka and Kaliszyk) 40% on Coq st. lib.

\approx 45% success rate

Jan Jakubův, Josef Urban

Our Main Result

- \blacktriangleright Strengthening the E prover on the Mizar library by 70%
- Done by several iterations of proving and learning over many math problems
- The learning and guidance is done directly in E prover
- This requires strong and fast learning systems
- ... and good engineering choices
- The good news is: it works! Machine learning helps a lot!
- We can gradually learn better and better mathematical tricks by proving and learning over a large math library!
- But it took us some time to get there

```
Proc = {}
Unproc = all available clauses
while (no proof found)
{
    select a given clause C from Unproc
    move C from Unproc to Proc
    apply inference rules to C and Proc
    put inferred clauses to Unproc
}
```

The main non-determinism point: Which clauses to select as given for further inferences?

Jan Jakubův, Josef Urban

- Collections of parameters influencing the proof search
- Weight functions select the "good" clauses
- Can be arbitrarily complicated
- Can be combined in a round-robin way
 - (10 * ClauseWeight1(10,0.1,...),
 - 1 * ClauseWeight2(...),
 - 20 * ClauseWeight3(...))

Enigma: The story so far...

Enigma: What's new?

Hammering Mizar

Jan Jakubův, Josef Urban

- Idea: Train classifiers by machine learning from a large number of proofs to do good inferences!
- The idea works in other TP contexts and is 20 years old e.g. premise selection
- The problem is to make it work and efficiently
- ENIGMA since 2017 stands for...

Efficient learNing-based Inference Guiding MAchine

Clauses as Feature Vectors

Features are descending paths of length 3 (triples of symbols). Collect and enumerate all the features. Count the clause features. Take the counts as a feature vector.

	#	feature	count
\oplus	1	(⊕,=,a)	0
=	÷	÷	÷
	11	(⊕,=,f)	1
f g	12	(⊕,=,g)	1
	13	(=,f,⊛)	2
	14	(=,g,⊙)	2
*	15	(g,⊙,⊛)	1
<u> </u>	÷	:	÷

Clauses as Feature Vectors

Features are descending paths of length 3 (triples of symbols). Collect and enumerate all the features. Count the clause features. Take the counts as a feature vector.

	#	feature	count
\oplus	1	(⊕,=,a)	0
=	÷	:	:
\sim	11	(⊕,=,f)	1
f g	12	(⊕,=,g)	1
	13	(=,f,⊛)	2
	14	(=,g,⊙)	2
*	15	(g,⊙,⊛)	1
Ŭ	÷	:	÷

- 1. Collect training examples from E runs (useful/useless clauses).
- 2. Translate clauses to feature vectors.
- 3. Translate conjectures to feature vectors.
- 4. Train a classifier on good/bad vector pairs (clause, conjecture)

Enigma: The story so far...

Enigma: What's new?

Hammering Mizar

Jan Jakubův, Josef Urban

Tree Boosting Classifiers – XGBoost

- State of the art in Machine Learning (before linear/neural ML)
- Much more efficient than deep neural nets
- Stronger than linear classifiers and comparably fast
- An XGBoost model consists of a set of decision trees.
- Leaf scores are summed and translated into probabilities.

- In large ITP libraries there are milions of features.
- Handling too long vectors $(> 10^5)$ is ineffiecient.
- Solution: Reduce vector dimension with feature hashing.
- Encode features by strings and ...
- ... use a general purpose string hashing function.
- ▶ The string hash is reduced to a small integer (e.g. 0..2¹⁵)
- Values are summed in the case of a collision.

Enigma: The story so far...

Enigma: What's new?

Hammering Mizar

Jan Jakubův, Josef Urban

Evaluation: Hammering Mizar

- 57880 problems extracted from the Mizar Library (MML).
- Good E strategy S fixed solves 14933 problems
- \blacktriangleright We train an XGBoost classifier ${\cal M}$ on the proofs
- S is combined in two ways with the trained classifier \mathcal{M} : $S \odot \mathcal{M}$ and $S \oplus \mathcal{M}$
- All strategies evaluated with time limit of 10 seconds.

Solved problems: one looping iteration

- Decision trees depth = 9
- ${\scriptstyle \blacktriangleright}~ {\cal M}^0$ is trained on problems solved by ${\cal S}$
- \mathcal{M}^n (n > 0) is trained on problems solved by S and $S \odot \mathcal{M}^i$ (for all i < n) and $S \oplus \mathcal{M}^i$ (for all i < n)

	${\mathcal S}$	$\mathcal{S} \odot \mathcal{M}^{0}$	$\mathcal{S} \oplus \mathcal{M}^0$	$\mathcal{S} \odot \mathcal{M}^1$	$\mathcal{S} \oplus \mathcal{M}^1$
solved	14933	16574	20366	21564	22839
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414
$\mathcal{S}-$	-0	-2723	-782	-1143	-508

Solved problems: more loops

	\mathcal{S}	$\mathcal{S} \oplus \mathcal{M}^{0}$	$\mathcal{S} \oplus \mathcal{M}^1$	$\mathcal{S}\oplus\mathcal{M}^2$	$\mathcal{S} \oplus \mathcal{M}^3$
solved	14933	20366	22839	23467	23753
$\mathcal{S}\%$	+0%	+35.8%	+52.3%	+56.5%	+58.4
$\mathcal{S}+$	+0	+6215	+8414	+8964	+9274
$\mathcal{S}-$	-0	-782	-508	-430	-454

Solved problems: deeper trees

- Increase tree depth to 12 and 16
- ${\scriptstyle \bullet}\,$ Train the model on the same data as ${\cal M}^3$
- Our ultimate strategy solves 70% more than the original in the same real time!

	$\mathcal{S} \odot \mathcal{M}^3_{12}$	$\mathcal{S} \oplus \mathcal{M}^3_{12}$	$\mathcal{S} \odot \mathcal{M}^3_{16}$	$\mathcal{S} \oplus \mathcal{M}^3_{16}$
solved	24159	24701	25100	25397
$\mathcal{S}\%$	+61.1%	+64.8%	+68.0%	+70.0%
$\mathcal{S}+$	+9761	+10063	+10476	+10647
$\mathcal{S}-$	-535	-295	-309	-183

ENIGMA Proof Example – Knaster

- ▶ 135-long E proof, using 1k given clauses, generating 6k clauses
- solved in the last iteration in 5 seconds: http://grid01.ciirc.cvut.cz/~mptp/t21_knaster
- 60-line original proof in MML: http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/knaster#T21

```
for L being complete Lattice for f being monotone UnOp of L
ex a being Element of L st a is_a_fixpoint_of f
proof
  let L be complete Lattice:
  let f be monotone UnOp of L;
  set H = {h where h is Element of L: h [= f.h};
  set fH = \{f, h \text{ where } h \text{ is Element of } L; h [= f, h];
  set uH = "\/"(H, L):
  set fuH = "\/"(fH, L);
  take uH:
  now
     [... code skipped ]
  end:
  then fH is_less_than f.uH by LATTICE3:def 17;
  then
A3: fuH [= f.uH by LATTICE3:def 21;
  nou
    [... code skipped ]
  end:
  then uH [= fuH by LATTICE3:47:
  then
A5: uH [= f.uH by A3,LATTICES:7;
  then f.uH [= f.(f.uH) by QUANTAL1:def 12;
  then f.uH in H:
  then f.uH [= uH by LATTICE3:38;
  hence uH = f.uH by A5,LATTICES:8;
end:
```

Statistics: data, tree depths, training times, models, speed

- ▶ 1.8 M features (hashed to 2¹⁵)
- vector dimension is 2¹⁶
- input trains file is 38 GB
- ... and contains 63 M training samples (4.2M pos × 59M neg)
- ... with 5000 M non-zero values (density 0.1%)

depth	error	real time	CPU time	size (MB)	speed
9	0.201	2h41m	4d20h	5.0	5665.6
12	0.161	4h12m	8d10h	17.4	4676.9
16	0.123	6h28m	11d18h	54.7	3936.4

Future work

- Do it on other large ITP libraries AFP, Flyspeck, HOL4, ...
- Dynamic and semantic proof state characterization (ENIGMAWatch)
- Name-independent features (seem to work well)
- Joint training on all ITP libraries (harder)
- Even more iterations and data (now possible)
- Efficient Tree and Graph neural nets? (our CADE'19 paper)
- Other ML methods

<u>►</u> ...

Questions?