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Leibniz’s/Hilbert’'s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

wl, too, cveowed
this wan's dveom:
To find the perfect
logical wiethod for solving
all problews, from
Logic, all the way up
to Huwan

el to find o way of
obsolutely vight

Let's have
a picture of
Leibniz

B

Andl so? What
does it tell us, that
you dicn't achieve
"Lefoniz's Dreow''?

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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How Do We Automate Math, Science, Programming?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!
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Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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What is Formal Mathematics and Theorem Proving?

- 1900s: Mathematics put on formal logic foundations — symbolic logic

+ Culmination of a program by Leibniz/Frege/Russell/Hilbert/Church/...

+ ... led also to the rise of computers (Turing/Church, 1930s)

+ ... and rise of Al - Turing’s 1950 paper: Learning Machines, Chess, etc.
» 1950s: First Al program: Logic Theorist by Newell & Simon

« Formalization of math (60s): combine formal foundations and computers
» Proof assistants/Interactive theorem provers and their large libraries:

+ Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
« Automated theorem provers - search for proofs automatically:

« Otter, Vampire, E, SPASS, Prover9, CVC4, Z3, Satallax, ...

« more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ..))

« TP-motivated PLs: ML, Prolog, (logic programming - Hayes, Kowalski)

« My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
« Since: Do Al/TP over (in)formal math corpora: Mizar, Isabelle, HOL, ...
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Why Do This Today?

Practically Useful for Verification of Complex HW/SW and Math
» Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
» Formal Proof of the Feit-Thompson Theorem (2 books, 2012 — Gonthier)
« Verification of several math textbooks and CS algorithms
« Verification of compilers (CompCert)
* Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
« Verification of cryptographic protocols (Amazon), etc.

Blue Sky Al Visions:
+ Get strong Al by learning/reasoning over large KBs of human thought?
* Big formal theories: good semantic approximation of such thinking KBs?
» Deep non-contradictory semantics — better than scanning books?

+ Gradually try learning math/science
« automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

* What are the components (inductive/deductive thinking)?
* How to combine them together?
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Using Learning to Guide Theorem Proving

« high-level: pre-select lemmas from a large library, give them to ATPs

+ high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

« low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

« mid-level: invent suitable ATP strategies for classes of problems

« mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories
 proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal
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Al/TP Examples and Demos

+ ENIGMA/hammer proofs of Pythagoras : https://bit.1ly/2MVPAn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1ly/30GBdRz,

» 3-phase ENIGMA: https://bit.1ly/3C0Lwa8s,
https://bit.ly/3BWgR6K

+ Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

« Extreme Deepire/AVATAR proof of ¢y = W’ nttps://bit.ly/3NedWNX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

« TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

+ Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

« QSynt: Al rediscovers the Fermat primality test:

https://www.youtube.com/watch?v=240ejR9wsXs
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https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\k /—\k
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
» Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success by 2016, 60% on Mizar as of 2021
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High-level feedback loops — MALARea, ATPBoost

» Machine Learner for Autom. Reasoning (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

« both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated

« winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

v
initial settings
solve problems ]

(ATP)

<_all proved? >— stop
.'
learn
| from proofs (ML)

( premise
selections (ML)

L 1
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Number of proved theorems

Prove-and-learn loop on MPTP2078 data set

L

1100-
1000-
900- 0O OO0 —0=-0—0—0--0—0—0=-0—0
Method
o= kNN
800~ =o= XGB_simple
=o= XGB_short
700- =o= XGB_negmin_1
=e= XGB_negmin_all
@~ XGB_negmin_rand
600~
500-
400-

Round
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Number of all found proofs

Prove-and-learn loop on MPTP2078 data set

7000~
6000 -
Method
o= kNN
5000 -
o= XGB_simple
=o= XGB_short
=o= XGB_negmin_1
4000 - =e= XGB_negmin_all
@~ XGB_negmin_rand
3000~
2000~

Round
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Number of theorems

250~

200-

i
a
=

=
o
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I
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0-

Number of found proofs per theorem at the end of the loop

% 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Number of different proofs
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Low-level: Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses:

Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v -Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b)  —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)
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Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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ENIGMA (2017): Guiding the Best ATPs like E Prover

« The proof state are two large heaps of clauses processed/unprocessed
« learn on E’s proof search traces, put classifier in E
« positive examples: clauses (lemmas) used in the proof
- negative examples: clauses (lemmas) not used in the proof
« 2021 multi-phase architecture (combination of different methods):
« fast gradient-boosted decision trees (GBDTSs) used in 2 ways

« fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
» Sparse - vastly more efficient than transformers (~100k symbols)

» 2021: leapfrogging and Split&Merge:

+ aiming at learning reasoning/algo components
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Feedback prove/learn loop for ENIGMA on Mizar data

« Done on 57880 Mizar problems recently

« Serious ML-guidance breakthrough applied to the best ATPs

« Ultimately a 70% improvement over the original strategy in 2019

« From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

« Went up to 40k in more iterations and 60s time in 2020

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

S |sSoM] seMl|soM] SeMi|SoM: SeaME|SOM] SeMS
solved [14933| 16574 20366 | 21564 22839 | 22413 23467 | 22910 23753
S% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8%  +58.4
S+ +0 | +4364 46215 | +7774  +8414 | +8407  +8964 | +8822  +9274
S— -0 | 2723 782 | -1143  -508 | -927  -430 | -845  -454

| SoMd, semMd, | Somd semMi

solved | 24159 24701 25100 25397

% +61.1%  +64.8% | +68.0%  +70.0%

S+ +9761 +10063 | +10476  +10647

S— -535 -295 -309 -183
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https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

« The GNN and GBDTs only learn from formula structure, not symbols

« Not from symbols like + and x as Transformer & Co.

- E.g., learning on additive groups thus transfers to multiplicative groups
« Evaluation of old-Mizar ENIGMA on 242 new Mizar articles

+ 13370 new theorems, > 50% of them with new terminology:

+ The 3-phase ENIGMA is 58% better on them than unguided E

« While 53.5% on the old Mizar (where this ENIGMA was trained)

» Generalizing, analogizing and transfer abilities unusual in the large
transformer models

+ Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)
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3-phase Anonymous ENIGMA

The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

Given Clause L

3-phase ENIGMA

Cemntributicn £

ccccc
implif

implify

(unprocessed clauses)
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Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
« build a classifier for recognizing good clauses
+ good are those that appeared in past proofs

Deepire’s contributions:
- Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.
« Integrate using layered clause queues
A smooth improvement of the base clause selection strategy.
« Tree Neural Networks: constant work per derived clause
A signature agnostic approach
« Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
+ Learn from 63595 proofs of 23071 problems (three 30s runs)
« Deepire solves 26217 (i.e. +4054) problems in a single 10s run
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More on Conjecturing in Mathematics

Targeted: generate intermediate lemmas (cuts) for a harder conjecture

- Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory

+ One of the most interesting activities mathematicians do (how?)

Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

- ... just (recursively) divide Fermat into many subtasks ...

... and conquer (I mean: hammer) them away
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Conjecturing and Proof Synthesis by Neural Language

models

- Karpathy’15 - RNN experiments with generating fake Math over Stacks

« | have tried to use that for formal math in 2016 but it looked weak

« GPT (-2,3) looks stronger

- Renewed experiments in 2020 on:

 All Mizar articles, stripped of comments and concatenated together (78M)
« Articles with added context/disambiguation (156M) (types, names, thesis)
» TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

- Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
« Quickly taken up by others on HOL, Isabelle, MetaMath ...

23/43



Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥  Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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A correct conjecture that was too hard to prove

+ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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More cuts

- In total 33100 in this experiment
» Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.
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QSynt: Semantics-Aware Synthesis of Math Objects

« Gauthier'19-22
« Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

« Tree Neural Nets and RL (MCTS, policy/value), used for:

 Guiding synthesis of a diophantine equation characterizing a given set
« Guiding synthesis of combinators for a given lambda expression

« 2022: invention of programs for OEIS sequences from scratch

» 50k sequences discovered so far:
https://www.youtube.com/watch?v=240ejR9wsXs,
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

« Many conjectures invented: 4 different characterizations of primes

» Non-neural (Turing complete) computing and semantics collaborates with
the statistical learning
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https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
« and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that 0,1,2,x,y € P,and if a,b,c € P and

f,g € F then:
a+b,a—b,ax b,adivb,amod b,cond(a,b,c) € P
A(x,y).a € F, loop(f, a, b), loop2(f, g, a, b, c), compr(f,a) € P

- Programs are built in reverse polish notation

« Start from an empty stack

» Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x, 1), built by:

[1=x X =y DYl = XX Y] =x XXy, X]

—1 [X X y)X)1] _>/OOP [IOOp(A(X,y) X X y7X71)]
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QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y, x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x, 1)

« —1 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

=\

one-hot —4
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QSynt program search - Monte Carlo search tree

7 iterations of the search loop gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

V]
l2 17
[x,¥] v, x]
A s
[x mod y] [x x y¥]
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QSynt web interface for program invention

® Applications Places @ ® & #1896 MHz ¢ Mon11:40  Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
> QSynt:AlrediscoversFer x @ grid01.ciirc.cvut.cz/~thib: X +

e | gridot.ciirc.cvut.cz @ ¥ §1 = O @ Incognito @

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
10

Generated integers (maximum 100)
[32

| Send || Reset
A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256
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QSynt inventing Fermat pseudoprimes

Positive integers k such that 2 =2 mod k. (341 = 11 x 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 [153ew
3+ for iin range (1,X + 1):
4 2
5
6
7
8
9
(x +2) 0
F1(X)
18 ~ for x in range(32):
19 print (fo(x))
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Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr (\(x,y).(loop2(\(x,y).x + vy, \(x,¥).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci (n+l)+fibonacci(n-1)

)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if(b(n)==0,1if (isprime(n),0,print(n))))
1

705

2465

2737

3745
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QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2
10~ for x in range(32):

11 print (fo(x))
12
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Are two QSynt programs equivalent?

+ As with primes, we often find many programs for one OEIS sequence
« It may be quite hard to see that the programs are equivalent
+ A simple example for 0,2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+f(n—1)ifn>0
cg(n)=2xn
* conjecture: Vn € N.g(n) = f(n)
« We can ask mathematicians, but we have thousands of such problems
+ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!

+ Here is one SMT encoding by Mikolas Janota:
(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1))))

(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (x 2 c))))))
(check-sat)
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Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($Sproduct(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. s$product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(skK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2,$sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iGO(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(1l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(1l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iG0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s 36/43



Future: AITP Challenges/Bets from 2014

- 3 AITP bets from my 2014 talk at Institut Henri Poincare

* In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

* In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)

* In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math
curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than | expected)

« My (conservative?) estimate when we will do Fermat:

» Human-assisted formalization: by 2050

« Fully automated proof (hard to define precisely): by 2070

» See the Foundation of Math thread: https://bit.1y/300k9Pm

- Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)
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Thanks and Advertisement

+ Thanks for your attention!

» AITP — Artificial Intelligence and Theorem Proving

« September 4-9, 2022, Aussois, France, aitp-conference.org

+ ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Discussion-oriented and experimental

» Grown to 80 people in 2019

« Will be hybrid in 2022 as in 2021 and 2020

- Invited talks by J. Araujo, K. Buzzard, J. Brandstetter, W. Dean and A.
Naibo, M. Rawson, T. Ringer, S. Wolfram
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