SOME RECENT COMBINATIONS OF Al AND
THEOREM PROVING METHODS

Josef Urban

Czech Technical University in Prague

ENSPM 2022
July 18, 2022

Leibniz’s/Hilbert’'s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

wl, too, cveowed
this wan's dveom:
To find the perfect
logical wiethod for solving
all problews, from
Logic, all the way up
to Huwan

el to find o way of
obsolutely vight

Let's have
a picture of
Leibniz

B

Andl so? What
does it tell us, that
you dicn't achieve
"Lefoniz's Dreow''?

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

2/43

How Do We Automate Math, Science, Programming?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!

3/43

Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

4/43

What is Formal Mathematics and Theorem Proving?

- 1900s: Mathematics put on formal logic foundations — symbolic logic

+ Culmination of a program by Leibniz/Frege/Russell/Hilbert/Church/...

+ ... led also to the rise of computers (Turing/Church, 1930s)

+ ... and rise of Al - Turing’s 1950 paper: Learning Machines, Chess, etc.
» 1950s: First Al program: Logic Theorist by Newell & Simon

« Formalization of math (60s): combine formal foundations and computers
» Proof assistants/Interactive theorem provers and their large libraries:

+ Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
« Automated theorem provers - search for proofs automatically:

« Otter, Vampire, E, SPASS, Prover9, CVC4, Z3, Satallax, ...

« more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ..))

« TP-motivated PLs: ML, Prolog, (logic programming - Hayes, Kowalski)

« My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
« Since: Do Al/TP over (in)formal math corpora: Mizar, Isabelle, HOL, ...

5/43

Why Do This Today?

Practically Useful for Verification of Complex HW/SW and Math
» Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
» Formal Proof of the Feit-Thompson Theorem (2 books, 2012 — Gonthier)
« Verification of several math textbooks and CS algorithms
« Verification of compilers (CompCert)
* Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
« Verification of cryptographic protocols (Amazon), etc.

Blue Sky Al Visions:
+ Get strong Al by learning/reasoning over large KBs of human thought?
* Big formal theories: good semantic approximation of such thinking KBs?
» Deep non-contradictory semantics — better than scanning books?

+ Gradually try learning math/science
« automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

* What are the components (inductive/deductive thinking)?
* How to combine them together?

6/43

Using Learning to Guide Theorem Proving

« high-level: pre-select lemmas from a large library, give them to ATPs

+ high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

« low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

« mid-level: invent suitable ATP strategies for classes of problems

« mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories
 proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal

7143

Al/TP Examples and Demos

+ ENIGMA/hammer proofs of Pythagoras : https://bit.1ly/2MVPAn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1ly/30GBdRz,

» 3-phase ENIGMA: https://bit.1ly/3C0Lwa8s,
https://bit.ly/3BWgR6K

+ Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

« Extreme Deepire/AVATAR proof of ¢y = W’ nttps://bit.ly/3NedWNX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

« TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

+ Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

« QSynt: Al rediscovers the Fermat primality test:

https://www.youtube.com/watch?v=240ejR9wsXs
8/43

https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\k /—\k
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
» Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success by 2016, 60% on Mizar as of 2021

9/43

High-level feedback loops — MALARea, ATPBoost

» Machine Learner for Autom. Reasoning (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

« both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated

« winning AI/ATP benchmarks (MPTPChallenge, CASC 2008/12/13/18)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

v
initial settings
solve problems]

(ATP)

<_all proved? >— stop
.'
learn
| from proofs (ML)

(premise
selections (ML)

L 1

10/43

Number of proved theorems

Prove-and-learn loop on MPTP2078 data set

L

1100-
1000-
900- 0O OO0 —0=-0—0—0--0—0—0=-0—0
Method
o= kNN
800~ =o= XGB_simple
=o= XGB_short
700- =o= XGB_negmin_1
=e= XGB_negmin_all
@~ XGB_negmin_rand
600~
500-
400-

Round

11/43

Number of all found proofs

Prove-and-learn loop on MPTP2078 data set

7000~
6000 -
Method
o= kNN
5000 -
o= XGB_simple
=o= XGB_short
=o= XGB_negmin_1
4000 - =e= XGB_negmin_all
@~ XGB_negmin_rand
3000~
2000~

Round

12/43

Number of theorems

250~

200-

i
a
=

=
o
S

I
=

0-

Number of found proofs per theorem at the end of the loop

% 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Number of different proofs

13/43

Low-level: Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses:

Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v -Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b) —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)

14/43

Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning

15/43

Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

16/43

ENIGMA (2017): Guiding the Best ATPs like E Prover

« The proof state are two large heaps of clauses processed/unprocessed
« learn on E’s proof search traces, put classifier in E
« positive examples: clauses (lemmas) used in the proof
- negative examples: clauses (lemmas) not used in the proof
« 2021 multi-phase architecture (combination of different methods):
« fast gradient-boosted decision trees (GBDTSs) used in 2 ways

« fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
» Sparse - vastly more efficient than transformers (~100k symbols)

» 2021: leapfrogging and Split&Merge:

+ aiming at learning reasoning/algo components

17/43

Feedback prove/learn loop for ENIGMA on Mizar data

« Done on 57880 Mizar problems recently

« Serious ML-guidance breakthrough applied to the best ATPs

« Ultimately a 70% improvement over the original strategy in 2019

« From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

« Went up to 40k in more iterations and 60s time in 2020

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

S |sSoM] seMl|soM] SeMi|SoM: SeaME|SOM] SeMS
solved [14933| 16574 20366 | 21564 22839 | 22413 23467 | 22910 23753
S% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4
S+ +0 | +4364 46215 | +7774 +8414 | +8407 +8964 | +8822 +9274
S— -0 | 2723 782 | -1143 -508 | -927 -430 | -845 -454

| SoMd, semMd, | Somd semMi

solved | 24159 24701 25100 25397

% +61.1% +64.8% | +68.0% +70.0%

S+ +9761 +10063 | +10476 +10647

S— -535 -295 -309 -183

18/43

https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

« The GNN and GBDTs only learn from formula structure, not symbols

« Not from symbols like + and x as Transformer & Co.

- E.g., learning on additive groups thus transfers to multiplicative groups
« Evaluation of old-Mizar ENIGMA on 242 new Mizar articles

+ 13370 new theorems, > 50% of them with new terminology:

+ The 3-phase ENIGMA is 58% better on them than unguided E

« While 53.5% on the old Mizar (where this ENIGMA was trained)

» Generalizing, analogizing and transfer abilities unusual in the large
transformer models

+ Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)

19/43

3-phase Anonymous ENIGMA

The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

Given Clause L

3-phase ENIGMA

Cemntributicn £

ccccc
implif

implify

(unprocessed clauses)

12 20/43

Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
« build a classifier for recognizing good clauses
+ good are those that appeared in past proofs

Deepire’s contributions:
- Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.
« Integrate using layered clause queues
A smooth improvement of the base clause selection strategy.
« Tree Neural Networks: constant work per derived clause
A signature agnostic approach
« Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
+ Learn from 63595 proofs of 23071 problems (three 30s runs)
« Deepire solves 26217 (i.e. +4054) problems in a single 10s run

21/43

More on Conjecturing in Mathematics

Targeted: generate intermediate lemmas (cuts) for a harder conjecture

- Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory

+ One of the most interesting activities mathematicians do (how?)

Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

- ... just (recursively) divide Fermat into many subtasks ...

... and conquer (I mean: hammer) them away

22/43

Conjecturing and Proof Synthesis by Neural Language

models

- Karpathy’15 - RNN experiments with generating fake Math over Stacks

« | have tried to use that for formal math in 2016 but it looked weak

« GPT (-2,3) looks stronger

- Renewed experiments in 2020 on:

 All Mizar articles, stripped of comments and concatenated together (78M)
« Articles with added context/disambiguation (156M) (types, names, thesis)
» TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

- Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
« Quickly taken up by others on HOL, Isabelle, MetaMath ...

23/43

Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥ Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!

24/43

A correct conjecture that was too hard to prove

+ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

25/43

More cuts

- In total 33100 in this experiment
» Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.

26/43

QSynt: Semantics-Aware Synthesis of Math Objects

« Gauthier'19-22
« Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

« Tree Neural Nets and RL (MCTS, policy/value), used for:

 Guiding synthesis of a diophantine equation characterizing a given set
« Guiding synthesis of combinators for a given lambda expression

« 2022: invention of programs for OEIS sequences from scratch

» 50k sequences discovered so far:
https://www.youtube.com/watch?v=240ejR9wsXs,
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

« Many conjectures invented: 4 different characterizations of primes

» Non-neural (Turing complete) computing and semantics collaborates with
the statistical learning

27/43

https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
« and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that 0,1,2,x,y € P,and if a,b,c € P and

f,g € F then:
a+b,a—b,ax b,adivb,amod b,cond(a,b,c) € P
A(x,y).a € F, loop(f, a, b), loop2(f, g, a, b, c), compr(f,a) € P

- Programs are built in reverse polish notation

« Start from an empty stack

» Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x, 1), built by:

[1=x X =y DYl = XX Y] =x XXy, X]

—1 [X X y)X)1] _>/OOP [IOOp(A(X,y) X X y7X71)]

28/43

QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y, x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x, 1)

« —1 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

=\

one-hot —4

29/43

QSynt program search - Monte Carlo search tree

7 iterations of the search loop gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

V]
l2 17
[x,¥] v, x]
A s
[x mod y] [x x y¥]

30/43

QSynt web interface for program invention

® Applications Places @ ® & #1896 MHz ¢ Mon11:40 Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
> QSynt:AlrediscoversFer x @ grid01.ciirc.cvut.cz/~thib: X +

e | gridot.ciirc.cvut.cz @ ¥ §1 = O @ Incognito @

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
10

Generated integers (maximum 100)
[32

| Send || Reset
A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256

31/43

QSynt inventing Fermat pseudoprimes

Positive integers k such that 2 =2 mod k. (341 = 11 x 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 [153ew
3+ for iin range (1,X + 1):
4 2
5
6
7
8
9
(x +2) 0
F1(X)
18 ~ for x in range(32):
19 print (fo(x))

32/43

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr (\(x,y).(loop2(\(x,y).x + vy, \(x,¥).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci (n+l)+fibonacci(n-1)

)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if(b(n)==0,1if (isprime(n),0,print(n))))
1

705

2465

2737

3745

33/43

QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2
10~ for x in range(32):

11 print (fo(x))
12
34/43

Are two QSynt programs equivalent?

+ As with primes, we often find many programs for one OEIS sequence
« It may be quite hard to see that the programs are equivalent
+ A simple example for 0,2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+f(n—1)ifn>0
cg(n)=2xn
* conjecture: Vn € N.g(n) = f(n)
« We can ask mathematicians, but we have thousands of such problems
+ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!

+ Here is one SMT encoding by Mikolas Janota:
(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1))))

(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (x 2 c))))))
(check-sat)

35/43

Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($Sproduct(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. s$product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(skK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2,$sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iGO(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(1l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(1l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iG0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s 36/43

Future: AITP Challenges/Bets from 2014

- 3 AITP bets from my 2014 talk at Institut Henri Poincare

* In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

* In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)

* In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math
curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than | expected)

« My (conservative?) estimate when we will do Fermat:

» Human-assisted formalization: by 2050

« Fully automated proof (hard to define precisely): by 2070

» See the Foundation of Math thread: https://bit.1y/300k9Pm

- Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)

37/43

https://bit.ly/300k9Pm

Acknowledgments

» Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar
Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri
Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
« HOL(y)Hammer group in Innsbruck:

» Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima,

Shawn Wang
ATP and ITP people:

» Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry
Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow,
Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...

 Learning2Reason people at Radboud University Nijmegen:
* Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,

« Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi,
Francois Chollet, Sarah Loos

e ... and many more ...
 Funding: Marie-Curie, NWO, ERC

38/43

http://arg.ciirc.cvut.cz/

Some General and Hammer/Tactical References

e J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized
Reasoning 9(1): 101-148 (2016)

* Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom.
Reason. 53(2): 173-213 (2014)

* Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)

* Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb.
Comput. 69: 109-128 (2015)

e Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kihlwein, Josef Urban: A
Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)

* Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP
Feedback. IJCAR 2018: 566-574

* T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR
abs/1804.00596 (2018).

* Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof
Assistant. LPAR 2020: 138-150

* Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless,
Interactive Tactic Learner and Prover for Cog. CoRR abs/2008.00120 (2020)

* L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning
61(1-4): 423-453 (2018)

* G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for
Premise Selection. NIPS 2016: 2235-2243

* C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large
Theories. [JCAI 2015: 3084-3090

¢ J. Urban, G. Sutcliffe, P. Pudlak, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning
with Semantic Guidance. IJCAR 2008: 441-456

* J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging Al Field. LNCS
7788, 240-257, 2013.

39/43

Some References on E/ENIGMA, CoPs and Related

* Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
* S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507

* J. Jakubuy, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016:
151-156

e J. Jakubuv,J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302

¢ Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsak: Reinforcement Learning of Theorem
Proving. NeurlPS 2018: 8836-8847

* Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for
Large Theories in E. ITP 2018: 270-288

* S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105

* Karel Chvalovsky, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and
Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215

* Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8

* Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA.
TABLEAUX 2019: 374-388

* Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415

* Jan Jakubuv, Karel Chvalovsky, Miroslav Olsak, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA
Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463

* Zsolt Zombori, Adrian Csiszarik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding
Longer Proofs. CoRR abs/1905.13100 (2019)

* Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover -
(System Description). IJCAR (2) 2020: 489-507

* Miroslav Olsék, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning.
ECAI 2020: 1395-1402

40/43

Some Conjecturing References

* Douglas Bruce Lenat. AM: An Atrtificial Intelligence Approach to Discovery in Mathematics as Heuristic
Search. PhD thesis, Stanford, 1976.

¢ Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1-3):113-118, 1988.

* Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer
London, 2012.

* Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory
exploration in a proof assistant. In CICM 2014, pages 108-122, 2014.

* Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over
large formal corpora. In CICM’16 WiP Proceedings, pages 219-228, 2016.

* Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015:
372-386

* Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.

* Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR,
abs/1912.01525, 2019.

* Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn
Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)

* Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende
Abstract). AITP 2019.

* Karel Chvalovsky, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing
(Extended Abstract). AITP 2019.

* Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic.
LPAR 2020: 230-248

* Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural
Networks. CICM 2020: 309-314

* Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

41/43

References on PCFG and Neural Autoformalization

« Cezary Kaliszyk, Josef Urban, Jiri Vyskocil: Learning to Parse on Aligned
Corpora (Rough Diamond). ITP 2015: 227-233

 Cezary Kaliszyk, Josef Urban, Jiri Vyskocil, Herman Geuvers:
Developing Corpus-Based Translation Methods between Informal and
Formal Mathematics: Project Description. CICM 2014: 435-439

« C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical
and Semantic Parsing of Mathematics. ITP 2017: 12-27

« Cezary Kaliszyk, Josef Urban, Jiri Vyskocil: System Description:
Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017:
169-172

« Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation
of Informal to Formal Mathematics. CICM 2018: 255-270

 Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban:
Exploration of neural machine translation in autoformalization of
mathematics in Mizar. CPP 2020: 85-98

42/43

Thanks and Advertisement

+ Thanks for your attention!

» AITP — Artificial Intelligence and Theorem Proving

« September 4-9, 2022, Aussois, France, aitp-conference.org

+ ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Discussion-oriented and experimental

» Grown to 80 people in 2019

« Will be hybrid in 2022 as in 2021 and 2020

- Invited talks by J. Araujo, K. Buzzard, J. Brandstetter, W. Dean and A.
Naibo, M. Rawson, T. Ringer, S. Wolfram

43/43

aitp-conference.org

	Computer Understandable (Formal) Math
	Learning of Theorem Proving
	Examples and Demos
	Low Level Guidance of Theorem Provers

