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Abstract

1 Introduction

2 Syntax

We work over a first-order logic with five types: M (sets), M (generalized sets),
P (generalized propositions), S (substitutions) and A (assignments). For each
type T, let Vp be an infinite set of variables of type T. We assume that if
T # T', then Vp and Vp are disjoint. We will use x,y to range over variables
and more specifically 7 to range over variables of type T

We define the set of terms 77 of type T" by mutual recursion as follows:

(XY) Tu = M) UCO(U, )

(@6) Ta = *kl(X>a)|(0a)

(0.r) T = aSfid 1 |(Uo)Gor)

OV) Ty = KOOUE)I@)IW)UI € V: 8} (@)
@) T = aPlofo]|(UEV)(U=V)|L|(@>w)|(7e)

We use s,t to range over terms over any type. Once we have the sets of typed
terms, we define the set of formulas as follows:

(p,) formulas p(®,a)|s =7 t|X € Y|L|(¢ = ¢¥)|Ve.¢ where s,t € Tp

We write =p for ¢ — L, o V4 for ~p — 9, o A for =(¢ — ), ¢ <> 9 for
(o = ) A (¥ — ), and Jx.p for =Va.—p.
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VaMaMe X - aMecy) » (VaMaM ey - aM e X) - X =Y (X €0)
(X € p(Y)) & (VaMaM e X — aMeY)
(X el )« @MaM ey AX eaM)

(X e v({U]. € V;®},0) & (F2MaM e v(V, a)AX = v(U, 2M>a) Ap(@, 2M>a))

(P, X>a) = p(P,e(P)>a) infinity?

Figure 1: Set Theoretic Axioms

Lo)=1 (@=>U)[o] = (@[o]=¥[o]) (Ve)[o] = (V@[0-(o0 1)])
(U=V)[o] = (Ulo]=V]o]) (UEV)[o] = (Ulo]eV]o])
e(U)lo] = e(U[0-(o0 1)]) 0fo] = 0 o(U)[o] = p(U[o])

U)ol =JWle) {1 € Vi @}o] = {Ul0-(o0 1)l € Vio]: @[0-(o0 1]}
Ulid]=U Ofid] =@ 0[(U.o)=U Ulol[r] = Ulo o 7]
O[o][r] = Do o 7] idoo=0¢ coid=o¢ ToU-0)=0

(Uo)or=Ulr]e(oor) (01003)003=010(02003)  v(k(X) a)=X

v(Ulo], @) = o(U, (o)) ido = o (0, (X>a)) = X
(U-0)a = v(U,)>(0w) (0 07)a = o(ra) v(,0) =0
v(H(U), @) = p(v(U,a)) v(U(U),a) = Jww, )
p(®[o], a) < p(®, (0a)) p(UEV,a) < v(U, @) € v(V, )
p(U=V,a) < v(U,a) = v(V,a) -p(L, )
p(@5T,a) < (p(®,0) = p(¥, ) p(V®, a) & Ve p(®, (zM>a))

Figure 2: Axioms for substitutions and assignments



3 Interpretations

Wheng: A— Band f: B— C wewill use fog to denote the usual composition
of functions, as given by (f o g)(a) = f(g(a)). Let A be a set. We use ld4 to
denote the identity function from A to A, omitting the subscript when it is clear
in context. Likewise, we let {14 denote the function from A% to A“ given by
fta (f)(n) = f(n+ 1), omitting the subscript A when it is clear in context.
Given an element a € A and function f € A%, we write (ap f) for the function
from w to A given by (a»f)(0) = a and (a»f)(n+1) = f(n). This will serve as
the intended interpretation of the > operation for assignments. Given functions
g:AY - Aand h: AY — A%, we write (g©h) for the function from A“ to A%
given by (goh)(f)(0) = g(f) and (¢@h)(f)(n+1) = h(f)(n). This will serve as
the intended interpretation of the - operation for substitions.

An interpretation of the set theory is given by taking five nonempty sets
Dr for T € {M,A,S, I\A/I7 FA’} and interpretations of the basic operators. We will
further require the following:

e Dy is a model of ZFC, where we also use €, §), p and |J to refer to the
corresponding semantic notions in this model.

e There is a global choice operator € : p(Du) — Dm where £(0) = () and
Z(u) € u for each nonempty u C Dy

e Dp C (Du)~.

e Ds C (Dp)Pr.

e Dy C (Dw)P-.

o Dy C 2P,

e |d € Ds, € Ds and Ds is closed under composition.
e For X € Dy and « € Dp, (X»a) € Da.

e For U € Dy, and 0 € Ds, (U®0) € Ds.

Given these restrictions, it is easy to define an evaluation function [—]_ for terms
by recursion. The evaluation is relative to an environment v : | J, Vr — U; Dr
where ¢(x) € Dy for each & € Vr and each type T. The definition is given in
Figure 3.

We can now define validity of a formula in such an interpretation in the
obvious manner.

':u p((I),O() if [[(I)]]V([[a]]u) =1

E, s =rtif [s], = [t].-

K, L.

E. (¢ — ) if either (&, ¢ or =, .

For z € Vp =, (Va.¢) if =, 4= ¢ for every v € Dy where v,z := v is the
environment agreeing with v except sending x to v.



[], =v(@) [l =0 [pX)] =e(X]l) [UJXL =UJIX])
[v(U, )]s = [U]([e].) [kol () =0 [(Xea)], = [X].»[a].
[(ca)ly = [o]u([edy)  [idl.=1d [t =t  [(U-0)], = [Ul.Clo]ly
[(0om), = lo]. o [7]. [k(X)]v(v) = [X] [0]..(7) = ~(0)
el () =Wl ()  [BLm=0  [BU)L0O)=e([ULM0)

UL () = Jawl.m)
[{U. € V; 8}, (7) = {[VT, (o )]o € [V],(7) where [®], (v9)}
(@), (1) = 5{v € Dul[@], ()} [@[o]l () = [®], (Io]. (1)
[[UéV]]l,(’y) _ { 1 if [[U]]u(’y) € [[VHV(’V)

0 otherwise

W=Vl ={ o e ~ 0 L] () =0

[(@20)],(v) = { L if [@]u(v) =0o0r [¥],(y) =1

0 otherwise

- [ 1 it [®],(vwy) =1 for every v € Dy
[v2)] () = { 0 otherwise



4 Examples

Consider the informal proposition VXYz.z € {z € X|z €Y} < 2€ X Az €Y.
To represent this as a formula, we must find a way to represent the term {x €
X|x € Y}. If we reconsider {x € X|z € Y} as {z|z € X;x € Y}, then we can
use the generalized set construct {U|. € V;®} where the de Bruijn variable 0
will play the role of the bound variable. The sets X and Y will need to be lifted
via k to be generalized sets in order use them in this context, giving the term
{0]. € k(X);0 € k(Y)}. In order to use this term as a set, we must evaluate
it using some assignment «. In this case we simply use the assignment ky. A
formula corresponding to the original proposition is given by

VXY zzev({0]. e k(X);0ek(Y)} k) <22 X NzeY

where X, Y,z € V.
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