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Abstract

1 Introduction

2 Syntax

We work over a first-order logic with five types: M (sets), M̂ (generalized sets),

P̂ (generalized propositions), S (substitutions) and A (assignments). For each
type T , let VT be an infinite set of variables of type T . We assume that if
T 6= T ′, then VT and VT ′ are disjoint. We will use x, y to range over variables
and more specifically xT to range over variables of type T .

We define the set of terms TT of type T by mutual recursion as follows:

(X,Y ) TM := xM|∅|℘(X)|
⋃

(X)|v(U,α)
(α, β) TA := xA|k∅|(X⊲α)|(σα)
(σ, τ) TS := xS|id| ↑ |(U ·σ)|(σ ◦ τ)

(U, V ) T
M̂

:= xM̂|k(X)|0|U [σ]|∅̂|℘̂(U)| ˆ
⋃

(U)|{U |. ∈ V ; Φ}|ε(Φ)

(Φ,Ψ) T
P̂

:= xP̂|Φ[σ]|(U ∈̂V )|(U=̂V )|⊥̂|(Φ→̂Ψ)|(∀̂Φ)

We use s, t to range over terms over any type. Once we have the sets of typed
terms, we define the set of formulas as follows:

(ϕ,ψ) formulas p(Φ, α)|s =T t|X ∈ Y |⊥|(ϕ→ ψ)|∀x.φ where s, t ∈ TT

We write ¬ϕ for ϕ → ⊥, ϕ ∨ ψ for ¬ϕ → ψ, ϕ ∧ ψ for ¬(ϕ → ¬ψ), ϕ ↔ ψ for
(ϕ→ ψ) ∧ (ψ → ϕ), and ∃x.ϕ for ¬∀x.¬ϕ.
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(∀xM.xM ∈ X → xM ∈ Y ) → (∀xM.xM ∈ Y → xM ∈ X) → X = Y ¬(X ∈ ∅)

(X ∈ ℘(Y )) ↔ (∀xM.xM ∈ X → xM ∈ Y )

(X ∈
⋃

(Y )) ↔ (∃xM.xM ∈ Y ∧X ∈ xM)

(X ∈ v({U |. ∈ V ; Φ}, α) ↔ (∃xM.xM ∈ v(V, α)∧X = v(U, xM⊲α)∧p(Φ, xM⊲α))

p(Φ, X⊲α) → p(Φ, ε(Φ)⊲α) infinity?

Figure 1: Set Theoretic Axioms

⊥̂[σ] = ⊥̂ (Φ→̂Ψ)[σ] = (Φ[σ]→̂Ψ[σ]) (∀̂Φ)[σ] = (∀̂Φ[0·(σ◦ ↑)])

(U=̂V )[σ] = (U [σ]=̂V [σ]) (U ∈̂V )[σ] = (U [σ]∈̂V [σ])

ε(U)[σ] = ε(U [0·(σ◦ ↑)]) ∅̂[σ] = ∅̂ ℘̂(U)[σ] = ℘̂(U [σ])

ˆ⋃
(U)[σ] =

ˆ⋃
(U [σ]) {U |. ∈ V ; Φ}[σ] = {U [0·(σ◦ ↑)]|. ∈ V [σ]; Φ[0·(σ◦ ↑)]}

U [id] = U Φ[id] = Φ 0[(U.σ)] = U U [σ][τ ] = U [σ ◦ τ ]

Φ[σ][τ ] = Φ[σ ◦ τ ] id ◦ σ = σ σ ◦ id = σ ↑ ◦(U ·σ) = σ

(U ·σ) ◦ τ = U [τ ] ◦ (σ ◦ τ) (σ1 ◦ σ2) ◦ σ3 = σ1 ◦ (σ2 ◦ σ3) v(k(X), α) = X

v(U [σ], α) = v(U, (σα)) idα = α v(0, (X⊲α)) = X

(U ·σ)α = v(U,α)⊲(σα) (σ ◦ τ)α = σ(τα) v(∅̂, α) = ∅

v(℘̂(U), α) = ℘(v(U,α)) v(
ˆ⋃
(U), α) =

⋃

(v(U,α))

p(Φ[σ], α) ↔ p(Φ, (σα)) p(U ∈̂V, α) ↔ v(U,α) ∈ v(V, α)

p(U=̂V, α) ↔ v(U,α) = v(V, α) ¬p(⊥̂, α)

p(Φ→̂Ψ, α) ↔ (p(Φ, α) → p(Ψ, α)) p(∀̂Φ, α) ↔ ∀xM.p(Φ, (xM⊲α))

Figure 2: Axioms for substitutions and assignments
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3 Interpretations

When g : A→ B and f : B → C we will use f◦g to denote the usual composition
of functions, as given by (f ◦ g)(a) = f(g(a)). Let A be a set. We use IdA to
denote the identity function from A to A, omitting the subscript when it is clear
in context. Likewise, we let ⇑A denote the function from Aω to Aω given by
⇑A (f)(n) = f(n + 1), omitting the subscript A when it is clear in context.
Given an element a ∈ A and function f ∈ Aω, we write (a◮f) for the function
from ω to A given by (a◮f)(0) = a and (a◮f)(n+1) = f(n). This will serve as
the intended interpretation of the ⊲ operation for assignments. Given functions
g : Aω → A and h : Aω → Aω, we write (g⊙h) for the function from Aω to Aω

given by (g⊙h)(f)(0) = g(f) and (g⊙h)(f)(n+1) = h(f)(n). This will serve as
the intended interpretation of the · operation for substitions.

An interpretation of the set theory is given by taking five nonempty sets
DT for T ∈ {M,A, S, M̂, P̂} and interpretations of the basic operators. We will
further require the following:

• DM is a model of ZFC, where we also use ∈, ∅, ℘ and
⋃

to refer to the
corresponding semantic notions in this model.

• There is a global choice operator ε : ℘(DM) → DM where ε(∅) = ∅ and
ε(u) ∈ u for each nonempty u ⊆ DM

• DA ⊆ (DM)
ω.

• DS ⊆ (DA)
DA .

• D
M̂
⊆ (DM)

DA .

• D
P̂
⊆ 2DA .

• Id ∈ DS, ⇑∈ DS and DS is closed under composition.

• For X ∈ DM and α ∈ DA, (X◮α) ∈ DA.

• For U ∈ D
M̂

and σ ∈ DS, (U⊙σ) ∈ DS.

Given these restrictions, it is easy to define an evaluation function J−K− for terms
by recursion. The evaluation is relative to an environment ν :

⋃

T VT →
⋃

T DT

where φ(x) ∈ DT for each x ∈ VT and each type T . The definition is given in
Figure 3.

We can now define validity of a formula in such an interpretation in the
obvious manner.

• |=ν p(Φ, α) if JΦKν(JαKν) = 1.

• |=ν s =T t if JsKν = JtKν .

• 6|=ν ⊥.

• |=ν (φ→ ψ) if either 6|=ν φ or |=ν ψ.

• For x ∈ VT |=ν (∀x.φ) if |=ν,x:=v φ for every v ∈ DT where ν, x := v is the
environment agreeing with ν except sending x to v.
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JxKν = ν(x) J∅Kν = ∅ J℘(X)Kν = ℘(JXKν) J
⋃

(X)Kν =
⋃

(JXKν)

Jv(U,α)Kν = JUKν(JαKν) Jk∅Kν(γ) = ∅ J(X⊲α)Kν = JXKν◮JαKν

J(σα)Kν = JσKν(JαKν) JidKν = Id J↑Kν =⇑ J(U ·σ)Kν = JUKν⊙JσKν

J(σ ◦ τ)Kν = JσKν ◦ JτKν Jk(X)Kν(γ) = JXKν J0Kν(γ) = γ(0)

JU [σ]Kν(γ) = JUKν(JσKν(γ)) J∅̂Kν(γ) = ∅ J℘̂(U)Kν(γ) = ℘(JUKν(γ))

J
ˆ⋃
(U)Kν(γ) =

⋃

(JUKν(γ))

J{U |. ∈ V ; Φ}Kν(γ) = {JUKν(v◮γ)|v ∈ JV Kν(γ) where JΦKν(v◮γ)}

Jε(Φ)Kν(γ) = ε{v ∈ DM|JΦKν(v◮γ)} JΦ[σ]Kν(γ) = JΦKν(JσKν(γ))

JU ∈̂V Kν(γ) =

{

1 if JUKν(γ) ∈ JV Kν(γ)
0 otherwise

JU=̂V Kν(γ) =

{

1 if JUKν(γ) = JV Kν(γ)
0 otherwise

J⊥̂Kν(γ) = 0

J(Φ→̂Ψ)Kν(γ) =

{

1 if JΦKν(γ) = 0 or JΨKν(γ) = 1
0 otherwise

J(∀̂Φ)Kν(γ) =

{

1 if JΦKν(v◮γ) = 1 for every v ∈ DM

0 otherwise
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4 Examples

Consider the informal proposition ∀XY z.z ∈ {x ∈ X|x ∈ Y } ↔ z ∈ X ∧ z ∈ Y .
To represent this as a formula, we must find a way to represent the term {x ∈
X|x ∈ Y }. If we reconsider {x ∈ X|x ∈ Y } as {x|x ∈ X;x ∈ Y }, then we can
use the generalized set construct {U |. ∈ V ; Φ} where the de Bruijn variable 0
will play the role of the bound variable. The sets X and Y will need to be lifted
via k to be generalized sets in order use them in this context, giving the term
{0|. ∈ k(X); 0 ∈ k(Y )}. In order to use this term as a set, we must evaluate
it using some assignment α. In this case we simply use the assignment k∅. A
formula corresponding to the original proposition is given by

∀XY z.z ∈ v({0|. ∈ k(X); 0 ∈ k(Y )}, k∅) ↔ z ∈ X ∧ z ∈ Y

where X,Y, z ∈ VM.
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