SOME COMBINATIONS OF MACHINE LEARNING AND
THEOREM PROVING METHODS

Josef Urban

Czech Technical University in Prague

Colloquium at the University of Florence
April 29, 2025, Florence

Computer Understandable (Formal) Math

2/97

Leibniz’s/Hilbert’'s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

wl, too, cveowed
this wan's dveom:
To find the perfect
logical wiethod for solving
all problews, from
Logic, all the way up
to Huwan

el to find o way of
obsolutely vight

Let's have
a picture of
Leibniz

B

Andl so? What
does it tell us, that
you dicn't achieve
"Lefoniz's Dreow''?

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

3/97

How Do We Automate Math, Science, Programming?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!

4/97

Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

5/97

Induction/Learning vs Reasoning — Henri Poincaré

 Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

- “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

« | believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

6/97

Learning vs Reasoning — Alan Turing 1950 — Al

« 1950: Computing machinery and intelligence — Al, Turing test

- “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

« last section on Learning Machines:

“But which are the best ones [fields] to start [learning on] with?”

« “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

+ Why not try with math? It is much more (universally?) expressive ...

7197

What is Formal Mathematics?

« Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
- Mathematics put on formal logic foundations (symbolic computation)
+ ... which btw. led also to the rise of computers (Turing/Church, 1930s)

» Formal math (1950/60s): combine formal foundations and the newly
available computers

» Conceptually very simple:

« Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them

 Use the computer to check that your proofs follow the rules

- But in practice, it turns out not to be so simple

« Many approaches, still not mainstream, but big breakthroughs recently

8/97

Bird’s Eye View of ITP Systems by T. Hales

HOL Light

Once the clear front-runner, it now shows signs of age. 04 18 built of modular components

HOL Light has an exquisite minimal Do not expect on a foundation of dependent type
design. It has the smallest kernel of any 1o understand the inner workings of this system unless theory. This system has grown one
system. John Harrison is the sole you have been PhD thesis at a time.

Lean

Isabelle

Designed for use with multiple foundational Does this really work? Defying expectations, [can is ambitious, and it will be massive. Do
architectures, Isabelle’s early Metamath seems to function not be fooled by the name.

development featured classical constructions in set ~ shockingly well for those who are happy to “Construction area keep out” signs are
theory. However, live without plumbing. prominently posted on the perimeter fencing.

9/97

F. Wiedijk: Irrationality of +/2 (informal text)

tiny proof from Hardy & Wright, texts collected by F. Wiedijk:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If /2

is rational, then the equation
& =2b? (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence & is even, and
therefore a is even. If a = 2¢, then 4¢? = 2b?, 2¢®> = b?, and b is
also even, contrary to the hypothesis that (a, b) = 1. O

10/97

Irrationality of +/2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sgqrt 2 is irrational
proof
assume sqgrt 2 is rational;
consider a,b such that
4 3 1: a2 = 2+«b”2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4xc"2 = 2xb"2;
2+xch2 = b"2;
b is even;
thus contradiction;
end;

11/97

Irrationality of +/2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC [NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)°
(fun th -> MESON_TAC([th]) THEN
SIMP_TAC [SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < q <=> ~(q = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

12/97

Irrationality of +/2 in Isabelle/HOL

Wheorem sqrt2_ not rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)]| = real m / real n"
and lowest terms: "gcd m n = 1" .
from n nonzero and sqrt_rat have “real m = |sqrt (real 2)1 * real n" by simp

E then have "real (m?) = (s sqrt (real 2))2 * real (n2)"

] by (auto simp add: power2 eq square)

' also have "(sqrt (real 2))? = real 2" by simp

' also have "... * real (m?) = real (2 * n?)" by simp

v finally have eq: "m? = 2 * n2"

' hence "2 dvd m2"

' with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
' then obtain k where "m = 2 * k" ..

' with eq have "2 * n? = 22 * k2" by (auto simp add: power2_eq_square mult_ac)
' hence "n? = 2 * k" by simp

' hence "2 dvd n2" ..

' with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)

' with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)

' with lowest _terms have "2 dvd 1" by simp

' thus False by arith

\qed

13/97

Irrationality of +/2 in Coq

Theorem irrational_sqrt_2: irrational (sgrt 2%nat).

intros p g H HO; case H.

apply (main_thm (Zabs_nat p)).

replace (Div2.double (g * q)) with (2 * (g x q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (g * q))); auto; intros HI.
case (not_nm_INR _ _ H1l); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.

rewrite HO; auto with real.

assert (g <> 0%R :> R); auto with real.

field; auto with real; case p; simpl; intros; ring.
Qed.

14/97

Irrationality of +/2 in Metamath

${

sd xy $.

$(The square root of 2 is irrational. $)

sqr2irr $p |- (sqr * 2) e/ QQ $=
(vx vy c2 csqgr cfv cqg wnel wcel wn cv cdiv co wceqg cn wrex Cz Cexp
cmulc sqgr2irrlem3 sqgr2irrlemb5 bi2rexa mtbir cc0O clt wbr wa wi wb nngtOt
adantr cr axOre ltmuldivt mp3anl nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breg2 mpbii syl5bir cc nncnt mulzer2t syl breqld adantl sylibd
exp rl9.23adv anc2li elnnz syl6ibr impac rl19.22i2 mto elq df-nel mpbir)
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJIANOZWLWEF CQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWIWJAPNWEPHZWIWENHZWNWIWNUCWEUDUEZUFWOWNWJIWPWNWIWPBNWNWGNHZW
IWPUGWNWQUF ZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWIXAUHZWQWNUFUCWGUDUEZXB
WOXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWEUMUNWGUOWEUPUQURUSW
TUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWP UHWNWQWSUCWEUDWQWGVEHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDEWBWC $.
$([8-Jan-02] $)

15/97

Irrationality of +/2 in Metamath Proof Explorer

sqr2irr - Metamath Proof Explorer - Chromium
R, sqr2irr - Metama x \0y
(4 € [us.metamath.org, 2 ZIIeE

Proof of Theorem sqr2irr

step] Hyp | Ref Expression

| lsar2irrlem3 1| - 3z € N3y N (212) = (2 (412))

2 sardilems ool o ((zeNAyeN) = () =(=/y) = (=12) =(2-(+12))
B R fore F(@zeNTyeN(/2)=(z/y) o dze NIye N(z129) = 2-(+12))
b L3 F-3zeN3yeN(/)=(=/)

s 2 2R

3 2 0<2

7 56 Fo<(/2)

8 (/) =(=/¥) = (0<(/Do0<(2/3))
L8 oF (V) =(z/y)»0<(=/v)

10 2F(zeZ—zeR)

11 |io F((zeZAayeN)—zeR)

12 2F(yeN-yeR)

13 (12 F(z€ZAyeN) —yeR)

14 2h(yeN-0<y)

15 |14 F{(zeZAyeN)—0<y)

16 F(zeRAyERA0<Y = (0<z = 0<(2/7)
17 |11 13,15, F(z€ZAyeM—(0<z00<(z/9)

18 [0.17 F(zeZAyeN) > (/) =(=/5) = 0< 2)

19 F(zeZAyeN) o =el)

o [18.10 F(z€ZAyeN) o (D=(2/9) > (ZELAO<A)
b1 F(zeNo(zeZA0<2)

2 o.21 T (zEZAyeN) = (/D =(=/9)— zeN)

B3 2 F(zeZ—(FyeN(/2)=(z/9) > zeN)

b2 |3 F(zeZAIeNW/'D) =(z/v) > (zeNATyeN/D) =(=/ V)|
5 | F(@zeZIveN(/)=(z/y)»IzeNIyeN(/2) =(=/9)
6 |4.25 FodzeZIgeN(/)=(z/y)

27 (/) eQeo3zelIy eN(/Y)=(=/y)

28 |26, 27 2o (/2 eQ

29 2H (V2 ¢Q e~ (/2)eQ)

Bo |8 20 (/2 €Q

Colors of variables: wi .

s s st sweal s2e & swmal Ao Teveas s alace alaseolace s~ e ises (ol alase alareen e T o aee

16/97

Irrationality of /2 in Otter

Problem

set (auto) .

set (ur_res) .
assign(max_distinct_vars, 1).
list (usable) .

X = X.

m(l,x) = x. %identity

m(x,1l) = x.

m(x,m(y,z)) = m(m(x,y),z). %$assoc
m(x,y) = m(y,x). %comm
m(x,y) != m(x,z) | y = z. $cancel
—d(x,y) | m(X f(x,y)) = y. %divides
m(x,z) !=y | d(x,y).

-d(2,m(x,y)) | d(2 x) | d(2,y). %2 prime
m(a,a) = m(2,m(b,b)) % a/b=sqgrt (2)
-d(x,a) | -d(x,b) | x = 1. % a/b lowest
2 !=1.

end_of_list.

1 [] m(x,y)!=m(x,z)|ly=z.

2 [1 -d(x,y) Im(x,£(x,¥))=

3 [] m(x,y)!=z|d(x,2).

4 [1 -d(2,m(x,y)) 1d(2,x)[1d(2,y) .

5 [] -d(x,a)| -d(x,b)[x=1.

6 [] 2!=1.

7 [factor,4.2.3] -d(2,m(x,x)) |d(2,x).

13 [] m(x,m(y,z))=m(m(x,y),z).

14 [copy,13,flip.1] m(m(x,y),z)=m(x,m(y,
16 [] m(x,y)=m(y,x).

17 [] m(a,a)=m(2,m(b,b)).

18 [copy,17,flip.1] m(2,m(b,b))=m(a,a) .
30 [hyper,18,3] d(2,m(a,a))

39 [para_from,18.1.1,1.1.1] m(a,a) !=m(2,
42 [hyper,30,7] d(2,a).

46 [hyper,42,2] m(2,£f(2,a))=a.

48 [ur,42,5,6] -d(2,b)

50 [ur,48,7] -d(2,m(b,b)).

59 [ur,50,3] m(2,x)!=m(b,b).

60 [copy,59,flip.1] m(b,b)!=m(2,x) .

145 [para_from,46.1.1,14.1.1.1,flip.1] m
189 [ur,60,39] m(a,a)!=m(2,m(2,x)).
190 [copy,189,flip.1] m(2,m(2,x)) !=m(a,a
1261 [para_into,145.1.1.2,16.1.1] m(2,m(
1272 [para_from,145.1.1,190.1.1.2] m(2,m
1273 [binary,1272.1,1261.1] $F.

17/97

Today: Computers Checking Large

SCI = NEWS

Math Proofs

Researchers Find 40,000-Year-Old Figurative
Paintings in Bornean Cave

HOME ASTRONOMY ~ SPACEEXPLORATION ~ ARCHAEOLOGY ~PALEONTOLOGY ~ BIOLOGY PHYSICS MEDICINE

GENETICS

GEOLOGY ~ MORE

LATEST NEWS

Scientists Deliver Formal Proof of
Famous Kepler Conjecture

Jun 16, 2017 by News Staff / Source

«Previous | Next»

Published in An international team of mathematicians led by University of Pittsburgh
Mathematics Professor Thomas Hales has delivered a formal proof of the Kepler
Tagged as conjecture, a famous problem in discrete geometry. The team's paper is

Johannes Kepler
Kepler conjecture

published in the journal Forum of Mathematics, Pi.

Follow
You'Might Like

Researchers
Develop First-

Innovations

SPHERE Captures Young Exoplanet
Beta Pictoris b Orbiting around Its
Star

Now 13,2018 | Astronomy

Mirarce eatoni: Newly-Discovered
Cretaceous Bird Lived Among
Dinosaurs, Was Strong Flier

Now 13, 2018 | Paleontology

Juno Takes Closer Look at Jupiter’s
Magnificent, Swirling Clouds
Nov 13, 2018 | Space Exploration

Physicists Solve Structure of
Unusually Complex Form of
Nitrogen

Nov 13, 2018 | Physical Chemistry

Natural Compound Protects

Hypertensive Rats against Heart
isease

Now 13, 2018 | Medicine

Inventive Orangutans Make Hook
Tools o Retrieve Food
Now 12,2018 | Biology

Researchers Find 40,000-Year-Old
Figurative Paintings in Bornean Cave
Nov 12,2018 | Archacology

Hubble Sees Lensing Galaxy Cluster,

cdn.scinews.com/images/enlarge3/image_4960e-Kepler-Conjecture jpg

Today’s Applications

Homa » Other Sciences » Mathematics » October 12, 2012

Six-year journey leads to proof of Feit-Thompson Theorem

October 12, 2012 by Rob Knies, Miorosoft

Featured Last comments Popular

Gaia spots a ‘ghost’ galaxy next door © 19
hours ago ® 81

reddit
*
Favorites How plants evolved to make ants their
servants © Nov 12,2018 ® 21
™ Georges Gonthier.
Email
. Physicists build fractal shape out of
At 5:46 p.m. on Sept. 20, Georges Gonthier, principal researcher at Microsoft Research Cambridge, electrons © Nov 12, 201
sent a brief email to his colleagues at the Microsoft Research-Inria Joint Centre in Paris. It read, in R
print full: "This is really the End." =

Dark matter "hurricane’ offers chance to

Those five innocuous words heralded the culmination of a project that had consumed more than six
detect axions © 18 hours ago

years and resulted in the formal proof of the Feit-Thompson Theorem, the first major step of the
classification of finite simple groups.

&
PO

The theorem, first proved by Walter Feit and John Griggs Thompson in 1963 and also known as the How to drive a robot on Mars © Nov 12, 2018
Odd-Order Theorem, states that in mathematical group theory, every finite group of odd order is h 2
solvable.

19/97

Big Example: The Flyspeck project

+ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

™
V= WiT ~ 74%
- Formal proof finished in 2014
« 20000 lemmas in geometry, analysis, graph theory
« Allofitat https://code.google.com/p/flyspeck/
+ All of it computer-understandable and verified in HOL Light:
*» polyhedron s /\ ¢ face_of s ==> polyhedron c

- However, this took 20 — 30 person-years!

20/97

https://code.google.com/p/flyspeck/

History and Motivation for AI/ML/TP

Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...

« Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:

Learning from Previous Proof Experience

« My MSc (1998): Try ILP to learn explainable rules/heuristics from Mizar
« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
+ ... hammer-style methods, feedback loops, internal guidance, ...

More details — AGI'18 keynote: https://bit.1ly/3qifhg4

« Al vs DL: Ben Goertzel’s Prague talk: https://youtu.be/zt 2HSTUGBNS
Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
Practical impact: boost today’s large ITP verification projects

21/97

https://bit.ly/3qifhg4
https://youtu.be/Zt2HSTuGBn8

Why Do This Today?

Practically Useful for Verification of Complex HW/SW and Math
» Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
» Formal Proof of the Feit-Thompson Theorem (2 books, 2012 — Gonthier)
« Verification of several math textbooks and CS algorithms
« Verification of compilers (CompCert)
* Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
« Verification of cryptographic protocols (Amazon), etc.

Blue Sky Al Visions:
+ Get strong Al by learning/reasoning over large KBs of human thought?
* Big formal theories: good semantic approximation of such thinking KBs?
» Deep non-contradictory semantics — better than scanning books?

+ Gradually try learning math/science
« automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

* What are the components (inductive/deductive thinking)?
* How to combine them together?

22/97

Learning of Theorem Proving

23/97

Using Learning to Guide Theorem Proving

« high-level: pre-select lemmas from a large library, give them to ATPs

+ high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

« low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

« mid-level: invent suitable ATP strategies for classes of problems

« mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories
 proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal

24/97

Sample of Learning Approaches

- k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions (simple but very good in ITP when terminology changes)

 haive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features (just multiplying
probabilities)

« support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

- neural networks (statistical ML) — backpropagation, deep learning,
convolutional, recurrent, etc.

- decision trees, random forests — find good classifying attributes (and/or
their values); more explainable

« inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

- genetic algorithms — evolve large population by crossover and mutation

- various combinations of statistical and symbolic approaches

* supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward)
25/97

Learning — Features and Data Preprocessing

« Extremely important - if irrelevant, there is no use to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery — a big field

» Deep Learning — design neural architectures that automatically find
important high-level features for a task

« Latent Semantics, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them

« word2vec and related methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

« math and theorem proving: syntactic/semantic patterns/abstractions
» how do we represent math objects (formulas, proofs, ideas) in our mind?

26/97

Examples and Demos

27/97

Al/TP Examples and Demos

+ ENIGMA/hammer proofs of Pythagoras : https://bit.1ly/2MVPAn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1ly/30GBdRz,

» 3-phase ENIGMA: https://bit.1ly/3C0Lwa8s,
https://bit.ly/3BWgR6K

+ Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

« Extreme Deepire/AVATAR proof of ¢y = W’ nttps://bit.ly/3NedWNX

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

« TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

+ Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

« QSynt: Al rediscovers the Fermat primality test:

https://www.youtube.com/watch?v=240ejR9wsXs
28/97

https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

High-level Reasoning Guidance: Premise Selection

29/97

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

- About 80000 nontrivial math facts at that time —impossible to use them all

« Is good premise selection for proving a new conjecture possible at all?

« Oris it a mysterious power of mathematicians? (Penrose)

» Today: Premise selection is not a mysterious property of mathematicians!

+ Reasonably good algorithms started to appear (more below).

Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)

Since 2004 (my PhD): many examples of nontrivial alternative proofs
proposed by the Als - in Mizar, Flyspeck, Isabelle, ..

- The premise selection algorithms see wider than humans

30/97

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\k /—\k
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
» Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success by 2016, 60% on Mizar as of 2021

31/97

High-level feedback loops — MALARea, ATPBoost

» Machine Learner for Autom. Reasoning (2006) — infinite hammering
feedback loop interleaving ATP with learning premise selection

both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated
winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

\J

initial settings

solve problems
(ATP)
v o
Z o * GGt MO NS
<all proved? ——p- st
LI i MalARe] E Zipperpil] Leo-Ill |ATPBoos| GKC | Leodil
N 09 LTB-25 LTB-20 LTB-15 10 LTB05.1 LTB-1.4
-y Solvediomo 7054 0m0] 33931000 1699 00m] 1413100| 1237000] 493 u10m| 1341000
leamn i 7054 0-|_3393 500 1699 0] 141310 12371 493 m] 1341
from proofs (ML)
premise
selections (ML)
L 1

32/97

Number of proved theorems

Prove-and-learn loop on MPTP2078 data set

L

1100-
1000-
900- 0O OO0 —0=-0—0—0--0—0—0=-0—0
Method
o= kNN
800~ =o= XGB_simple
=o= XGB_short
700- =o= XGB_negmin_1
=e= XGB_negmin_all
@~ XGB_negmin_rand
600~
500-
400-

Round

33/97

Number of all found proofs

Prove-and-learn loop on MPTP2078 data set

7000~
6000 -
Method
o= kNN
5000 -
o= XGB_simple
=o= XGB_short
=o= XGB_negmin_1
4000 - =e= XGB_negmin_all
@~ XGB_negmin_rand
3000~
2000~

Round

34/97

Number of theorems

250~

200-

i
a
=

=
o
S

I
=

0-

Number of found proofs per theorem at the end of the loop

% 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Number of different proofs

35/97

FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(“!s:real”N->bool c. polyhedron s /\ c face_of s ==> polyhedron c?‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC [RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[Yf: (real”N->bool)->bool'; ‘a:(real”N->bool)->real”N?';
‘b: (real”N->bool)->real'] THEN
STRIP_TAC THEN
MP_TAC (ISPECL [‘s:real”N->bool‘; ‘f: (real”N->bool)->bool?;
‘a: (real”N->bool)->real”N'; ‘b: (real”N->bool)->real]
FACE_OF_POLYHEDRON_EXPLICIT) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN (MP_TAC o SPEC ‘c:real”N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real”N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real”N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC [FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC [POLYHEDRON_HYPERPLANE]) ; ;

36/97

FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ ¢ face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX :
Face t of a convex set s is equal to the intersection of s with the affine hull of £.

FACE_OF_STILLCONVEX:

!'s t:real”N->bool. convex s ==>

(t face_of s <=>

t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:

!'s:real”N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!'s t:real”N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
!'s. polyhedron(affine hull s)

37/97

Low Level Guidance of Theorem Provers

38/97

Low-level: Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses:

Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v -Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b) —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)

39/97

Statistical Guidance of Connection Tableau

» MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions

- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
 20-time search shortening on the MPTP Challenge

 second version: 2015, with C. Kaliszyk

« both prover and naive Bayes in OCAML, fast indexing

« Fairly Efficient MaLeCoP = FEMaLeCoP

+ 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones

40/97

Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning

41/97

Tree Example

42/97

Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

43/97

More trees

(tableau starting
atom)
(r=0.3099)
n=1182

p-022 p-035 RelStr(c1)
3 r=0.2889

upper(c1)
Subset(union(c2),carrier(c1))

p=0.17
r=0.2554 . ,
t(c2,powerset(carrier(c1’

36 more MCTS tree levels until proved

44/97

ENIGMA (2017): Guiding the Best ATPs like E Prover

« The proof state are two large heaps of clauses processed/unprocessed
« learn on E’s proof search traces, put classifier in E
« positive examples: clauses (lemmas) used in the proof
- negative examples: clauses (lemmas) not used in the proof
« 2021 multi-phase architecture (combination of different methods):
« fast gradient-boosted decision trees (GBDTSs) used in 2 ways

« fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
» Sparse - vastly more efficient than transformers (~100k symbols)

» 2021: leapfrogging and Split&Merge:

+ aiming at learning reasoning/algo components

45/97

Feedback prove/learn loop for ENIGMA on Mizar data

« Done on 57880 Mizar problems recently

« Serious ML-guidance breakthrough applied to the best ATPs

« Ultimately a 70% improvement over the original strategy in 2019

« From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

« Went up to 40k in more iterations and 60s time in 2020

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

S |sSoM] seMl|soM] SeMi|SoM: SeaME|SOM] SeMS
solved [14933| 16574 20366 | 21564 22839 | 22413 23467 | 22910 23753
S% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4
S+ +0 | +4364 46215 | +7774 +8414 | +8407 +8964 | +8822 +9274
S— -0 | 2723 782 | -1143 -508 | -927 -430 | -845 -454

| SoMd, semMd, | Somd semMi

solved | 24159 24701 25100 25397

% +61.1% +64.8% | +68.0% +70.0%

S+ +9761 +10063 | +10476 +10647

S— -535 -295 -309 -183

46/97

https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

« The GNN and GBDTs only learn from formula structure, not symbols

« Not from symbols like + and x as Transformer & Co.

- E.g., learning on additive groups thus transfers to multiplicative groups
« Evaluation of old-Mizar ENIGMA on 242 new Mizar articles

+ 13370 new theorems, > 50% of them with new terminology:

+ The 3-phase ENIGMA is 58% better on them than unguided E

« While 53.5% on the old Mizar (where this ENIGMA was trained)

» Generalizing, analogizing and transfer abilities unusual in the large
transformer models

+ Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)

47/97

3-phase Anonymous ENIGMA

The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

Given Clause L

3-phase ENIGMA

Cemntributicn £

ccccc
implif

implify

(unprocessed clauses)

12 48/97

More Low-Level Guidance of Various Creatures

+ Neural (TNN) clause selection in Vampire (Deepire - M. Suda):
Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.

Fast and surprisingly good: Extreme Deepire/AVATAR proof of

€ = W https://bit.1ly/3NedWNX

+ 1193-long proof takes about the same resources as one GPT-3/4 reply
GNN-based guidance in iProver (Chvalovsky, Korovin, Piepenbrock)

« New (dynamic data) way of training

Led to doubled real-time performance of iProver’s instantiation mode

- CVC5: neural & GBDT instantiation guidance (Piepenbrock, Jakubuv)
very recently 20% improvement on Mizar

« Hints method for Otter/Prover9 (Veroff):

boost inferences on clauses that match a lemma used in a related proof
+ 100k-step long proofs in the AIM project (2021)

symbolic ML - can be combined with statistical - proof completion vectors

49/97

https://bit.ly/3Ne4WNX

Behold: 1-CPU vampiric “GenAl” proving €p = W

o
©
o
]
o
©

Refutation found. Thanks to Tanya!

SZS status Theorem for t36_ordinalb

SZS output start Proof for t36_ordinal5

fof (£2863755,plain, ($false), inference (avatar_sat_refutation,
2500 lines of proof ...]

SZS output end Proof for t36_ordinalb

Version: Vampire 4.5.1 (commit 110£f4142 on 2020-10-16 16:55:15 +0200)

Termination reason: Refutation

Input formulas: 73

Proof axioms: 49

Proof steps: 1193

Main loop iterations started: 38065

Generated clauses: 2392519

SAT solver time: 181.936 s

congruence closure: 167.665 s (own 156.041 s)

neural model evaluation: 18.493 s

other: 503.976 s (own 26.185 s)

o0 oo —

o o° o0 d° A o0 o° o° o° o° o°

50/97

Mid-level Reasoning Guidance

51/97

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

« TTT learns from human and its own tactical HOL4 proofs
 No translation or reconstruction needed - native tactical proofs
+ Fully integrated with HOL4 and easy to use
« Similar to riCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
« tactic and goal state recording
« tactic argument abstraction
« absolutization of tactic names
* nontrivial evaluation issues
« these issues have often more impact than adding better learners

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

« similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

52/97

Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

« Tactical guidance of Coq proofs
+ Technically very challenging to do right - the Coq internals again nontrivial

+ 39.3% on the Coq standard library, 56.7% in a union with CogHammer
(orthogonal)

« Fast approximate hashing for k-NN makes a lot of difference
« Fast re-learning more important than “cooler”/slower learners
« Fully integrated with Coq, should work for any development

» User friendly, installation friendly, integration friendly and maintenance
friendly

 Took several years, but could become a very common tool for Coq
formalizers

53/97

More on Conjecturing in Mathematics

Targeted: generate intermediate lemmas (cuts) for a harder conjecture

- Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory

+ One of the most interesting activities mathematicians do (how?)

Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

- ... just (recursively) divide Fermat into many subtasks ...

... and conquer (I mean: hammer) them away

54/97

Conjecturing and Proof Synthesis by Neural Language

models

- Karpathy’15 - RNN experiments with generating fake Math over Stacks

« | have tried to use that for formal math in 2016 but it looked weak

« GPT (-2,3) looks stronger

- Renewed experiments in 2020 on:

 All Mizar articles, stripped of comments and concatenated together (78M)
« Articles with added context/disambiguation (156M) (types, names, thesis)
» TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

- Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
« Quickly taken up by others on HOL, Isabelle, MetaMath ...

55/97

Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥ Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!

56/97

A correct conjecture that was too hard to prove

+ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

57/97

More cuts

- In total 33100 in this experiment
» Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.

58/97

Neural Autoformalization (Wang et al., 2018)

+ generate ca 1M Latex/Mizar pairs based on Bancerek’s work

- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

« many architectures tested, some work much better than others

- very important latest invention: attention in the seqg-to-seq models

« more data very important for neural training — our biggest bottleneck (you
can help!)

+ Recent addition: unsupervised methods (Lample et all 2018) — no need
for aligned data!

59/97

Neural Autoformalization data

Rendered IATEX fXCYCZthenXCZ
Mizar

X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteq Y \subseteq Z$, then $X \subseteq z$.

Tokenized ATEX

If $ X \subseteqg Y \subseteqg Z $, then $ X \subseteq Z $.

60/97

Neural Autoformalization results

Parameter Final Test Final Test Identical Identical
Perplexity BLEU Statements (%) No-overlap (%)

128 Units 3.06 411 40121 (38.12% 6458 (13.43%)

256 Units 1.59 64.2 63433 (60.27% 19685 (40.92%)

1024 Units 1.51 61.6 69179 (65.73% 22978 (47.77%)

)
)
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%)
)
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%)

61/97

Neural Fun — Performance after Some Training

Rendered
IATEX
Input IKTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and sy is convergent . Then lim(sg+S7) = lim Sg+ lim s7

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
}y {4+ 1Y {s_ {71} }) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } §

seql is convergent & seqg2 is convergent implies lim (seql
+ seqg2) = (lim seql) + (lim seqg2) ;
x in dom f implies (x xy) (£ | (x| (y | (y | y)
)y)y =(x [(y !l (y |l CylLy))y)y)y):i

seq 1is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seg2
is convergent ;

seq 1s convergent & seg9 is convergent implies
lim (seq + seq9) = (lim seq) + (lim seq9) ;

62/97

QSynt: Semantics-Aware Synthesis of Math Objects

« Gauthier (et al) 2019-24
« Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

« Tree Neural Nets and Monte Carlo Tree Search (a la AlphaZero)

» Recently also various (small) language models with their search methods
+ Invent programs for OEIS sequences FROM SCRATCH (no LLM cheats)

- 126k OEIS sequences (out of 350k) solved so far (670 iterations):
https://www.youtube.com/watch?v=240e jR9wsXs,
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

+ ~4.5M explanations invented: 50+ different characterizations of primes

» Non-neural (Turing complete) symbolic computing and semantics
collaborate with the statistical/neural learning

 Program evolution governed by high-level criteria (Occam, efficiency)

63/97

https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: > 350000 finite sequences

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
:RE%S OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane
235711 || Search | Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2,3,5,7,11

Displaying 1-10 of 1163 results found. page12345678910...117
Sort: relevance | references | number | modified | created Format: long | short | data

q +30

A000040 The prime numbers. e

(Formerly M0652 N0241)
2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,

text; internal format)
OFFSET 1,1

COMMENTS See A065091 for comments, formulas etc. concerning only odd primes. For all
information concerning prime powers, see AB00961. For contributions concerning
"almost primes" see A002808.
A number p is prime if (and only if) it is greater than 1 and has no positive
divisors except 1 and p.
A natural number is prime if and only if it has exactly two (positive) divisors.
A prime has exactlv one proper positive divisor. 1. 64/97

Generating programs for OEIS sequences

0,1,3,6,10,15,21, . ..

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

Fast program (efficiency criteria):

65/97

Programming language

- Constants: 0,1,2

- Variables: x, y

- Arithmetic: +, —, x, div, mod

- Condition :if ... < 0Othen...else...
- loop(f, a, b) := uz where uy = b,

Un = f(Un—1,N)
- Two other loop constructs: loop2, a while loop
Example:

X =T[’_,2 = loop(2 x x,x,1)
X! =[T,_, y = loop(y x x,X,1)

66/97

QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
« and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that 0,1,2,x,y € P,and if a,b,c € P and

f,g € F then:
a+b,a—b,ax b,adivb,amod b,cond(a,b,c) € P
A(x,y).a € F, loop(f, a, b), loop2(f, g, a, b, c), compr(f,a) € P

- Programs are built in reverse polish notation

« Start from an empty stack

» Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x, 1), built by:

[1=x X =y DYl = XX Y] =x XXy, X]

—1 [X X y)X)1] _>/OOP [IOOp(A(X,y) X X y7X71)]

67/97

QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y, x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x, 1)

« —1 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

=\

one-hot —4

68/97

QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

V]
l2 17
[x,¥] v, x]
A s
[x mod y] [x x y¥]

69/97

Encoding OEIS for Language Models

« Input sequence is a series of digits
+ Separated by an additional token # at the integer boundaries

+ Output program is a sequence of tokens in Polish notation
- Parsed by us to a syntax tree and translatable to Python

- Example: a(n) = n!

jonancc
sppyerspTRyAY,

NANAN
e e S S R e S S T
&

NMT layer - l l l l l
== m
def £(X) 4 // / /

for y in range(1, X+1):

X S By - =

-
return x = P
- _-- _-
£~ L P

T 70/97

Search-Verify-Train Positive Feedback Loop

programs

Search

examples

+ Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — Machine Learner for Automated Reasoning — MaLARea))

- However, the OEIS setting allows much faster feedback on symbolic
conjecturing

71/97

Search-Verify-Train Feedback Loop for OEIS

search phase: LM synthesizes many programs for input sequences

« typically 240 candidate programs for each input using beam search

84M programs for OEIS in several hours on the GPU (depends on model)
checking phase: the millions of programs efficiently evaluated

« resource limits used, fast indexing structures for OEIS sequences

check if the program generates any OEIS sequence (hindsight replay)

» we keep the shortest (Occams’s razor) and fastest program (efficiency)
from iter. 501, we also keep the program with the best speed/length ratio

- learning phase: LM trains to translate the “solved” OEIS sequences into
the best program(s) generating them

- from iter. 336: train LMs to transform (generalization, optimization)
our learned version of human-coded methods like ILP and compilation

72/97

Search-Verify-Train Feedback Loop

« The weights of the LM either trained from scratch or continuously updated
- This yields new minds vs seasoned experts (who have seen it all)
« We also train experts on varied selections of data, in varied ways
« Orthogonality: common in theorem proving - different experts help
« Each iteration of the self-learning loop discovers more solutions

- ... also improves/optimizes existing solutions

- The alien mathematician thus self-evolves

« Occam’s razor and efficiency are used for its weak supervision

+ Quite different from today’s LLM approaches:

+ LLMs do one-time training on everything human-invented

+ Our alien instead starts from zero knowledge

- Evolves increasingly nontrivial skills, may diverge from humans

« Turing complete (unlike Go/Chess) — arbitrary complex algorithms

73/97

QSynt web interface for program invention

® Applications Places @ ® & #1896 MHz ¢ Mon11:40 Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
> QSynt:AlrediscoversFer x @ grid01.ciirc.cvut.cz/~thib: X +

e | gridot.ciirc.cvut.cz @ ¥ §1 = O @ Incognito @

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
10

Generated integers (maximum 100)
[32

| Send || Reset
A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256

74/97

QSynt inventing Fermat pseudoprimes

Positive integers k such that 2 =2 mod k. (341 = 11 x 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 [153ew
3+ for iin range (1,X + 1):
4 2
5
6
7
8
9
(x +2) 0
F1(X)
18 ~ for x in range(32):
19 print (fo(x))

75/97

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr (\(x,y).(loop2(\(x,y).x + vy, \(x,¥).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci (n+l)+fibonacci(n-1)

)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if(b(n)==0,1if (isprime(n),0,print(n))))
1

705

2465

2737

3745

76/97

QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2
10~ for x in range(32):

11 print (fo(x))
12
77/97

Speed Evolution — Technology Breakthroughs

Avrg. Time

== fast == small

600000
400000

200000

80000
60000
40000
20000

25 50 75 100 125 150 175

Generation

Figure: Avrg. time in iterations 78/97

Singularity Take-Off X-mas Card

Solutions

800

600

400

200

16
20

24
28

32
36
40

44

48

52
56
60

Nuke the server room!!!

64
68
72
76

Generation

80

84

88

92

96
100

N

104

108

112

116

120

79/97

Human Made Technology Jumps

=7 = T T T
. g 2
1.2-10° = — n
= &
= &
2 ﬁ
-
1-10° g 2 o n
oz ° $
I 2 = ~ ©
X e = = .

3 E = o =
£80.000 15 £ | z g |
8 T & Z &

5 S o =] —
= g g =}
260,000 |-& £ R
) S E
wv i O

= [~4

o

40,000

20,000

+Bigger model (it. 170) —
P-O virus created (it. 295)
Analogizing added (it. 336)
Memoization revolution (it. 456)

| | | | | |
00 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

80/97

%
o
S
S
=
>
(@)}
o
o
c
<
5
T
(D)
©
©
=
c
©
S
=
I

(€19 "M JSTT payoeay

(10S "1m) uonnjos pig

Traind

(9¢€ 1) pappe Surzisoeuy

(S6T M) pareard snaia O-4

(0L1 1) [opow 123319+

ing OB clusters

(9S¥ 1) UONIOAIT UOEZTOWOA -

(it. 446)

|
500 550 600 650 700

50 100 150 200 250 300 350 400 450

400 |}

300 |
0

saouanbag

0

Iteration

81/97

n
o
£
-]
>
>
(@)}
o
o
C
e
5
T
9
)
©
S
©)
-
)
<
o
S
©)
w

(659) 1001 Uiy

(#46) 3001 1Enbs
(€-T16) oseqNBIp

(61+) Wua1OY§200/a[SuRL) —
(6L€) swd/dxs —

(Lg€) Terwoukfod/orwoiooko —
(#-00¢) Terwouk[od/oTu0301040

(8G7) aseq/Imd20

8L
(%Y

) "wourq/o[3uern

1) uorsuedxa (¢-1¢ 1) sownd

150 200 250 300 350 400 450 500 550 600 650 700

50 100

500

| | | |
o o o o
= S S S
<t & N —
soouanbag

0
0

Iteration

82/97

Some Invented Explanations

* https://oeis.org/A4578: Expansion of sqrt(8) in base 3:
loop2(((y *y) div (X +y)) +V, ¥, X + X, 2, loop((1 + 2) * x, X, 2)) mod (1 + 2)

» https://oeis.org/A4001: Hofstadter-Conway $10k seq: a(n) =
a(a(n-1)) + a(n-a(n-1)) with a(1) = a(2) = 1:
loop(push(loop(pop(x), y-x,pop(x)),x) + loop(pop(x), x-1, x), x - 1, 1)

* https://oeis.org/A40: prime numbers:

2 + compr((loop(x * y, X, 2) + x) mod (2 + x), X)

* https://oeis.org/A30184: Expand n(q) * n(q%) * n(g°) * n(q'®) in
powers of g (elliptic curves):
loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (1 + (y +y))) <= 0 then (x + x) else x, 2, y)) else x, y, push(0, y))) + x,
y, push(0, x)), x) divy, x, 1)

» https://oeis.org/A51023: Wolfram’s $30k Rule 30 automaton:
loop2(y, y div 2, x, 1, loop2(loop2((((y div (0 - (2 + 2))) mod 2) + X) + X, y
div2,y, 1, loop2(((y mod 2) + x) + X, y div2,y, 1, x)), 2 +y, x, 0, 1)) mod 2

. https://oeis.org/A2580: v/2 Hales’s blog: https://t.ly/tHsld

83/97

https://oeis.org/A4578
https://oeis.org/A4001
https://oeis.org/A40
https://oeis.org/A30184
https://oeis.org/A51023
https://oeis.org/A2580
https://t.ly/tHs1d

Translation vs Transformation

Sequences

200

150

100

50

| L |
O
3‘50 460 4!’)0 5(50 5‘50 660 65‘0 700

Iteration

84/97

Generalization of the Solutions to Larger Indices

+ Are the programs correct?

« Can we experimentally verify Occam’s razor?
(implications for how we should be designing ML/Al systems!)

« OEIS provides additional terms for some of the OEIS entries

« Among 78118 solutions, 40,577 of them have a b-file with 100 terms
- We evaluate both the small and the fast programs on them

« Here, 14,701 small and 11,056 fast programs time out.

+ 90.57% of the remaining slow programs check

« 77.51% for the fast programs

+ This means that SHORTER EXPLANATIONS ARE MORE RELIABLE!
(Occam was right, so why is everybody building trillion-param LLMs?7?7?)

« Common error: reliance on an approximation of a real number, such as .

85/97

Are two QSynt programs equivalent?

+ As with primes, we often find many programs for one OEIS sequence
Currently we have almost 4.5M programs for the 126k sequences

It may be quite hard to see that the programs are equivalent
Extend to Schmidhuber’s Gédel Machine?
A simple example for 0,2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+1f(n—-1)ifn>0
cg(n)=2%n
« conjecture: Vn € N.g(n) = f(n)

« We can ask mathematicians, but we have thousands of such problems
« Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
+ Here is one SMT encoding by Janota & Gauthier:

(set-logic UFLIA)

(define-fun-rec £ ((x Int)) Int (ite (<= x 0) 0 (+ 2 (£ (- x 1))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (x 2 c))))))
(check-sat)

86/97

Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($Sproduct(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. s$product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(skK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2,$sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iGO(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(1l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(1l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iG0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s 87/97

Infinite Math-Nerd Sniping

« We have 4.5M problems for math nerds like this one:

« JU: This thing works for the first 1k values (just checked) - any idea why?
* https://oeis.org/A004578 - Expansion of sqrt(8) in base 3.

« loop2(((y *y) div (X +y)) +V, ¥, X + X, 2, loop((1 + 2) * X, X, 2)) mod (1 + 2)

« MO: Not a proof, just a rough idea: The program iterates the function q
[-> 2+q/ 1+q, where q is a rational number. This converges to sqgrt(2).
The number q is represented by an integer ‘a’ such thata = 3* x (2 q),
where ’x’ is the input. Once the approximation is good enough,

a = floor(3* * sqrt(8)), so a mod 3 is the digit we want.

88/97

https://oeis.org/A004578

Serious Math Conjecturing — Elliptic Curves

AB6571: Expansion of g * Productk> 1(1=g")% % (
A30187: Expansion of 7(q) * n(q?) * n(q’) * (q4
A30184: Expansion of 7(q) * n(q®) * 7(¢°) * n(q’

Sander Dahmen: Here are some OEIS labels related to éelliptic curves
(and hence modular forms), ordered by difficulty. It would be interesting
to know if some of these appear in your results.

A006571 A030187 A030184 A128263 A187096 A251913

JU: We have the first three:

AB6571 : loop((push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then ((if (y mod
loop(1 + (X + X), 2, 2)) <= 0 then (x - y) else x) - y) else x, y, push(0, y))) + X, Y,
push(0, x)), x) * 2) divy, x, 1)

» A30187 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (((2 +y) *y) - 1)) <= 0 then (x + X) else X, 2, y)) else x, y, push(0, y))) + X, V,
push(0, x)), x) divy, x, 1)

A30184 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (1 + (y +Y))) <= 0 then (x + X) else x, 2, y)) else x, y, push(0, y))) + X, Y,
push(0, x)), x) div y, x, 1)

1— 11*k)

) in powers of g.

%)

in powers of q.
89/97

More Bragging

+ Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with
a(1)=a(2) =1.
+ D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of

Integers and Patterns of Thought Processes, Lecture in DIMACS
Conference on Challenges of Identifying Integer Sequences, 2014.

Date: Sun, Mar 17, 2024
To: <dughof@indiana.edu>

Dear Douglas,

our system [1l] has today (iteration 552) found a solution of
https://oeis.org/A004074. The solution in Thibault’s programming
language [1] (with push/pop added on top of [1]) is:

((2% 1oop (push (Lloop (pop (x) , x-1, x) , x) +100p (POp (x) , y=X, pop (x)) , x-1,1)) -1) -x

The related A4001 was solved in iteration 463 and the solution is:
loop (push (loop (pop (x), y-x,pop(x)),x) + loop(pop(x), x-1, x), x — 1, 1)

90/97

Future: AITP Challenges/Bets from 2014

- 3 AITP bets from my 2014 talk at Institut Henri Poincare

* In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

* In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)

* In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math
curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than | expected)

« My (conservative?) estimate when we will do Fermat:

» Human-assisted formalization: by 2050

« Fully automated proof (hard to define precisely): by 2070

» See the Foundation of Math thread: https://bit.1y/300k9Pm

- Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)

91/97

https://bit.ly/300k9Pm

Thanks and Advertisement

 Thanks for your attention!
» AITP — Artificial Intelligence and Theorem Proving

« August 31 - September 5, 2025, Aussois, France,
aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Discussion-oriented and experimental
+ Grown to 80 people in 2019

92/97

aitp-conference.org

	Computer Understandable (Formal) Math
	Learning of Theorem Proving
	Examples and Demos
	High-level Reasoning Guidance: Premise Selection
	Low Level Guidance of Theorem Provers
	Mid-level Reasoning Guidance

