Boolean Properties of Sets --- Theorems

Library Committee*

* Association of Mizar Users
MML identifier: XBOOLE_1, version:

The notation and terminology used in this paper have been introduced in the following articles: \cite{HIDDEN.ABS}, \cite{XBOOLE_0.ABS}, and \cite{TARSKI.ABS}.

1. Main Part

In this paper $x$, $A$, $B$, $X$, $X'$, $Y$, $Y'$, $Z$, $V$ denote sets. Now we state the propositions:
(1) Modus Barbara:
If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$.
(2) ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{}{\subseteq}}} X$.
(3) If $X \mathrel{{\href{}{\subseteq}}} {\href{xboole_0.html#func1}{\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(4) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$.
(5) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$.
(6) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$.
(7) $X \mathrel{{\href{}{\subseteq}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$.
(8) If $X \mathrel{{\href{}{\subseteq}}} Z$ and $Y \mathrel{{\href{}{\subseteq}}} Z$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{\subseteq}}} Z$.
(9) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$.
(10) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathrel{{\href{}{\subseteq}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$.
(11) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$.
(12) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Y$.
(13) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} V$.
(14) Suppose $Y \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{}{\subseteq}}} X$ and for every $V$ such that $Y \mathrel{{\href{}{\subseteq}}} V$ and $Z \mathrel{{\href{}{\subseteq}}} V$ holds $X \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathrel{{\href{}{=}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$.
(15) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(16) $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)$.
(17) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} X$.
(18) If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$.
(19) If $Z \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{}{\subseteq}}} Y$, then $Z \mathrel{{\href{}{\subseteq}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(20) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$ and for every $V$ such that $V \mathrel{{\href{}{\subseteq}}} Y$ and $V \mathrel{{\href{}{\subseteq}}} Z$ holds $V \mathrel{{\href{}{\subseteq}}} X$. Then $X \mathrel{{\href{}{=}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(21) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X$.
(22) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$.
(23) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(24) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$.
(25) $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathop{{\href{xboole_0.html#func3}{\cap}}} X \mathrel{{\href{}{=}}} ((X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)) \mathop{{\href{xboole_0.html#func3}{\cap}}} (Z\mathop{{\href{xboole_0.html#func2}{\cup}}} X)$.
(26) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(27) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} V$.
(28) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$.
(29) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$.
(30) Suppose $X \mathrel{{\href{}{\subseteq}}} Z$. Then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(31) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$.
(32) If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} Y$.
(33) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(34) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$.
(35) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} V \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(36) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} X$.
(37) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$ if and only if $X \mathrel{{\href{}{\subseteq}}} Y$.
(38) If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(39) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X) \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$.
(40) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$.
(41) $(X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$.
(42) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$.
(43) If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$.
(44) If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$.
(45) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$.
(46) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(47) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$.
(48) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(49) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(50) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(51) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathrel{{\href{}{=}}} X$.
(52) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(53) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$.
(54) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$.
(55) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$.
(56) If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$.
(57) not $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} X$.
(58) If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$.
(59) If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$.
(60) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{}{\not\subset}}} X$.
(61) If $X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$, then ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{}{\subset}}} X$.
(62) $X \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1}{\emptyset}}$.
Now we state the propositions:
(63) Modus Darii:
If $X \mathrel{{\href{}{\subseteq}}} Y$ and $Y$ misses $Z$, then $X$ misses $Z$.
(64) If $A \mathrel{{\href{}{\subseteq}}} X$ and $B \mathrel{{\href{}{\subseteq}}} Y$ and $X$ misses $Y$, then $A$ misses $B$.
(65) $X$ misses ${\href{xboole_0.html#func1}{\emptyset}}$.
(66) $X$ meets $X$ if and only if $X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(67) If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$ and $Y$ misses $Z$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
Let us consider non empty set $A$. Now we state the propositions:
(68) If $A \mathrel{{\href{}{\subseteq}}} Y$ and $A \mathrel{{\href{}{\subseteq}}} Z$, then $Y$ meets $Z$.
(69) If $A \mathrel{{\href{}{\subseteq}}} Y$, then $A$ meets $Y$.
Now we state the propositions:
(70) $X$ meets $Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$ if and only if $X$ meets $Y$ or $X$ meets $Z$.
(71) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$ misses $Y$ and $Z$ misses $Y$, then $X \mathrel{{\href{}{=}}} Z$.
(72) If $X'\mathop{{\href{xboole_0.html#func2}{\cup}}} Y' \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$ misses $X'$ and $Y$ misses $Y'$, then $X \mathrel{{\href{}{=}}} Y'$.
(73) If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$ and $X$ misses $Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$.
(74) If $X$ meets $Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$, then $X$ meets $Y$.
(75) If $X$ meets $Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ meets $Y$.
(76) If $Y$ misses $Z$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(77) If $X$ meets $Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$, then $X$ meets $Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(78) If $X$ misses $Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(79) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$ misses $Y$.
(80) If $X$ misses $Y$, then $X$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(81) If $X$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$, then $Y$ misses $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(82) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$.
(83) $X$ misses $Y$ if and only if $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X$.
(84) If $X$ meets $Y$ and $X$ misses $Z$, then $X$ meets $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(85) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X$ misses $Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$.
(86) If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X$ misses $Z$, then $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$.
(87) Suppose $Y$ misses $Z$. Then $(X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$.
(88) If $X$ misses $Y$, then $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X$.
(89) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$.
(90) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $Y$.
(91) $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (Y{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z)$.
(92) $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(93) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(94) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(95) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)$.
(96) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y$.
(97) Suppose $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$ and $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathrel{{\href{}{\subseteq}}} Z$. Then $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} Z$.
(98) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$.
(99) $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))$.
(100) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(101) $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$.
(102) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(103) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y$.
(104) $X \mathrel{{\href{}{\subset}}} Y$ or $X \mathrel{{\href{}{=}}} Y$ or $Y \mathrel{{\href{}{\subset}}} X$ if and only if $X$ and $Y$ are \hbox{$\subseteq$}-comparable.

2. Appendix

Now we state the propositions:
(105) Let us consider sets $X$, $Y$. Suppose $X \mathrel{{\href{}{\subset}}} Y$. Then $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(106) If $X \mathrel{{\href{}{\subseteq}}} A \mathop{{\href{xboole_0.html#func4}{\setminus}}} B$, then $X \mathrel{{\href{}{\subseteq}}} A$ and $X$ misses $B$.
(107) $X \mathrel{{\href{}{\subseteq}}} A{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} B$ if and only if $X \mathrel{{\href{}{\subseteq}}} A\mathop{{\href{xboole_0.html#func2}{\cup}}} B$ and $X$ misses $A \mathop{{\href{xboole_0.html#func3}{\cap}}} B$.
(108) If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} A$.
(109) If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} A$.
(110) If $X \mathrel{{\href{}{\subseteq}}} A$ and $Y \mathrel{{\href{}{\subseteq}}} A$, then $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} A$.
(111) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(112) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$.
(113) $((X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} V \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} ((Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} V)$.
(114) Let us consider sets $A$, $B$, $C$, $D$. Suppose
  1. $A$ misses $D$, and
  2. $B$ misses $D$, and
  3. $C$ misses $D$.
Then $(A\mathop{{\href{xboole_0.html#func2}{\cup}}} B)\mathop{{\href{xboole_0.html#func2}{\cup}}} C$ misses $D$.
(115) $A \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1}{\emptyset}}$.
(116) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)$.
(117) Let us consider sets $P$, $G$, $C$. Suppose $C \mathrel{{\href{}{\subseteq}}} G$. Then $P \mathop{{\href{xboole_0.html#func4}{\setminus}}} C \mathrel{{\href{}{=}}} (P \mathop{{\href{xboole_0.html#func4}{\setminus}}} G)\mathop{{\href{xboole_0.html#func2}{\cup}}} P \mathop{{\href{xboole_0.html#func3}{\cap}}} (G \mathop{{\href{xboole_0.html#func4}{\setminus}}} C)$.
Received April 08, 2002