| * | Association of Mizar Users |
| (1) |
Modus Barbara: If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$. |
|---|
| (2) | ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{}{\subseteq}}} X$. |
|---|
| (3) | If $X \mathrel{{\href{}{\subseteq}}} {\href{xboole_0.html#func1}{\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (4) | $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. |
|---|
| (5) | $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. |
|---|
| (6) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$. |
|---|
| (7) | $X \mathrel{{\href{}{\subseteq}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$. |
|---|
| (8) | If $X \mathrel{{\href{}{\subseteq}}} Z$ and $Y \mathrel{{\href{}{\subseteq}}} Z$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{\subseteq}}} Z$. |
|---|
| (9) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. |
|---|
| (10) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathrel{{\href{}{\subseteq}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$. |
|---|
| (11) | If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$. |
|---|
| (12) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Y$. |
|---|
| (13) | Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} V$. |
|---|
| (14) | Suppose $Y \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{}{\subseteq}}} X$ and for every $V$ such that $Y \mathrel{{\href{}{\subseteq}}} V$ and $Z \mathrel{{\href{}{\subseteq}}} V$ holds $X \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathrel{{\href{}{=}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. |
|---|
| (15) | If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (16) | $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)$. |
|---|
| (17) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} X$. |
|---|
| (18) | If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$. |
|---|
| (19) | If $Z \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{}{\subseteq}}} Y$, then $Z \mathrel{{\href{}{\subseteq}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (20) | Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$ and for every $V$ such that $V \mathrel{{\href{}{\subseteq}}} Y$ and $V \mathrel{{\href{}{\subseteq}}} Z$ holds $V \mathrel{{\href{}{\subseteq}}} X$. Then $X \mathrel{{\href{}{=}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (21) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X$. |
|---|
| (22) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$. |
|---|
| (23) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (24) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. |
|---|
| (25) | $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathop{{\href{xboole_0.html#func3}{\cap}}} X \mathrel{{\href{}{=}}} ((X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)) \mathop{{\href{xboole_0.html#func3}{\cap}}} (Z\mathop{{\href{xboole_0.html#func2}{\cup}}} X)$. |
|---|
| (26) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (27) | Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} V$. |
|---|
| (28) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$. |
|---|
| (29) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. |
|---|
| (30) | Suppose $X \mathrel{{\href{}{\subseteq}}} Z$. Then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (31) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. |
|---|
| (32) | If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} Y$. |
|---|
| (33) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (34) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$. |
|---|
| (35) | Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} V \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (36) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} X$. |
|---|
| (37) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$ if and only if $X \mathrel{{\href{}{\subseteq}}} Y$. |
|---|
| (38) | If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (39) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X) \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$. |
|---|
| (40) | $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$. |
|---|
| (41) | $(X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. |
|---|
| (42) | $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$. |
|---|
| (43) | If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$. |
|---|
| (44) | If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. |
|---|
| (45) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$. |
|---|
| (46) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (47) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$. |
|---|
| (48) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (49) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (50) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (51) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathrel{{\href{}{=}}} X$. |
|---|
| (52) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (53) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$. |
|---|
| (54) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$. |
|---|
| (55) | $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$. |
|---|
| (56) | If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. |
|---|
| (57) | not $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} X$. |
|---|
| (58) | If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. |
|---|
| (59) | If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. |
|---|
| (60) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{}{\not\subset}}} X$. |
|---|
| (61) | If $X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$, then ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{}{\subset}}} X$. |
|---|
| (62) | $X \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (63) |
Modus Darii: If $X \mathrel{{\href{}{\subseteq}}} Y$ and $Y$ misses $Z$, then $X$ misses $Z$. |
|---|
| (64) | If $A \mathrel{{\href{}{\subseteq}}} X$ and $B \mathrel{{\href{}{\subseteq}}} Y$ and $X$ misses $Y$, then $A$ misses $B$. |
|---|
| (65) | $X$ misses ${\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (66) | $X$ meets $X$ if and only if $X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (67) | If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$ and $Y$ misses $Z$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (68) | If $A \mathrel{{\href{}{\subseteq}}} Y$ and $A \mathrel{{\href{}{\subseteq}}} Z$, then $Y$ meets $Z$. |
|---|
| (69) | If $A \mathrel{{\href{}{\subseteq}}} Y$, then $A$ meets $Y$. |
|---|
| (70) | $X$ meets $Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$ if and only if $X$ meets $Y$ or $X$ meets $Z$. |
|---|
| (71) | If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$ misses $Y$ and $Z$ misses $Y$, then $X \mathrel{{\href{}{=}}} Z$. |
|---|
| (72) | If $X'\mathop{{\href{xboole_0.html#func2}{\cup}}} Y' \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$ misses $X'$ and $Y$ misses $Y'$, then $X \mathrel{{\href{}{=}}} Y'$. |
|---|
| (73) | If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$ and $X$ misses $Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$. |
|---|
| (74) | If $X$ meets $Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$, then $X$ meets $Y$. |
|---|
| (75) | If $X$ meets $Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ meets $Y$. |
|---|
| (76) | If $Y$ misses $Z$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (77) | If $X$ meets $Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$, then $X$ meets $Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (78) | If $X$ misses $Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (79) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$ misses $Y$. |
|---|
| (80) | If $X$ misses $Y$, then $X$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (81) | If $X$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$, then $Y$ misses $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (82) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$ misses $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$. |
|---|
| (83) | $X$ misses $Y$ if and only if $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X$. |
|---|
| (84) | If $X$ meets $Y$ and $X$ misses $Z$, then $X$ meets $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (85) | If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X$ misses $Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$. |
|---|
| (86) | If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X$ misses $Z$, then $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. |
|---|
| (87) | Suppose $Y$ misses $Z$. Then $(X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$. |
|---|
| (88) | If $X$ misses $Y$, then $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X$. |
|---|
| (89) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$. |
|---|
| (90) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $Y$. |
|---|
| (91) | $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (Y{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z)$. |
|---|
| (92) | $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (93) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (94) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (95) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)$. |
|---|
| (96) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y$. |
|---|
| (97) | Suppose $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$ and $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathrel{{\href{}{\subseteq}}} Z$. Then $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} Z$. |
|---|
| (98) | $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$. |
|---|
| (99) | $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))$. |
|---|
| (100) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (101) | $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. |
|---|
| (102) | $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{{\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (103) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$ misses $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y$. |
|---|
| (104) | $X \mathrel{{\href{}{\subset}}} Y$ or $X \mathrel{{\href{}{=}}} Y$ or $Y \mathrel{{\href{}{\subset}}} X$ if and only if $X$ and $Y$ are \hbox{$\subseteq$}-comparable. |
|---|
| (105) | Let us consider sets $X$, $Y$. Suppose $X \mathrel{{\href{}{\subset}}} Y$. Then $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (106) | If $X \mathrel{{\href{}{\subseteq}}} A \mathop{{\href{xboole_0.html#func4}{\setminus}}} B$, then $X \mathrel{{\href{}{\subseteq}}} A$ and $X$ misses $B$. |
|---|
| (107) | $X \mathrel{{\href{}{\subseteq}}} A{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} B$ if and only if $X \mathrel{{\href{}{\subseteq}}} A\mathop{{\href{xboole_0.html#func2}{\cup}}} B$ and $X$ misses $A \mathop{{\href{xboole_0.html#func3}{\cap}}} B$. |
|---|
| (108) | If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} A$. |
|---|
| (109) | If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} A$. |
|---|
| (110) | If $X \mathrel{{\href{}{\subseteq}}} A$ and $Y \mathrel{{\href{}{\subseteq}}} A$, then $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} A$. |
|---|
| (111) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (112) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. |
|---|
| (113) | $((X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} V \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} ((Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} V)$. |
|---|
| (114) | Let us consider sets $A$, $B$, $C$, $D$. Suppose Then $(A\mathop{{\href{xboole_0.html#func2}{\cup}}} B)\mathop{{\href{xboole_0.html#func2}{\cup}}} C$ misses $D$. |
|---|
| (115) | $A \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1}{\emptyset}}$. |
|---|
| (116) | $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} (X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z)$. |
|---|
| (117) | Let us consider sets $P$, $G$, $C$. Suppose $C \mathrel{{\href{}{\subseteq}}} G$. Then $P \mathop{{\href{xboole_0.html#func4}{\setminus}}} C \mathrel{{\href{}{=}}} (P \mathop{{\href{xboole_0.html#func4}{\setminus}}} G)\mathop{{\href{xboole_0.html#func2}{\cup}}} P \mathop{{\href{xboole_0.html#func3}{\cap}}} (G \mathop{{\href{xboole_0.html#func4}{\setminus}}} C)$. |
|---|