***** Boolean Properties of Sets --- Theorems ***** **** Library Committee* **** * Association of Mizar Users MML identifier: XBOOLE_1, version: The notation and terminology used in this paper have been introduced in the following articles: \cite{HIDDEN.ABS}, \cite{XBOOLE_0.ABS}, and \cite {TARSKI.ABS}. **** 1. Main Part **** In this paper $x$, $A$, $B$, $X$, $X'$, $Y$, $Y'$, $Z$, $V$ denote sets. Now we state the propositions: (1) Modus Barbara: If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$. (2) ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{}{\subseteq}}} X$. (3) If $X \mathrel{{\href{}{\subseteq}}} {\href{xboole_0.html#func1} {\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1} {\emptyset}}$. (4) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href {xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} X\mathop{{\href {xboole_0.html#func2}{\cup}}} (Y\mathop{{\href{xboole_0.html#func2} {\cup}}} Z)$. (5) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href {xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href {xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2} {\cup}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. (6) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y$. (7) $X \mathrel{{\href{}{\subseteq}}} X\mathop{{\href{xboole_0.html#func2} {\cup}}} Y$. (8) If $X \mathrel{{\href{}{\subseteq}}} Z$ and $Y \mathrel{{\href{} {\subseteq}}} Z$, then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{\subseteq}}} Z$. (9) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href {xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{ {\href{xboole_0.html#func2}{\cup}}} Z$. (10) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathrel{{\href{} {\subseteq}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$. (11) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{} {\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Z$. (12) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Y$. (13) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{} {\subseteq}}} V$. Then $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2} {\cup}}} V$. (14) Suppose $Y \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{} {\subseteq}}} X$ and for every $V$ such that $Y \mathrel{{\href{} {\subseteq}}} V$ and $Z \mathrel{{\href{}{\subseteq}}} V$ holds $X \mathrel{{\href{}{\subseteq}}} V$. Then $X \mathrel{{\href{}{=}}} Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. (15) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. (16) $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href {xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} (Y \mathop{{\href{xboole_0.html#func3} {\cap}}} Z)$. (17) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{} {\subseteq}}} X$. (18) If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href {xboole_0.html#func3}{\cap}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$. (19) If $Z \mathrel{{\href{}{\subseteq}}} X$ and $Z \mathrel{{\href{} {\subseteq}}} Y$, then $Z \mathrel{{\href{}{\subseteq}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y$. (20) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{} {\subseteq}}} Z$ and for every $V$ such that $V \mathrel{{\href{} {\subseteq}}} Y$ and $V \mathrel{{\href{}{\subseteq}}} Z$ holds $V \mathrel{{\href{}{\subseteq}}} X$. Then $X \mathrel{{\href{}{=}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (21) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} X$. (22) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$. (23) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href {xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y\mathop{{\href{xboole_0.html#func2} {\cup}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (24) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathop{{\href {xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3} {\cap}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)$. (25) $(X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href {xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3} {\cap}}} Z)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathop{{\href {xboole_0.html#func3}{\cap}}} X \mathrel{{\href{}{=}}} ((X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func3} {\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)) \mathop{{\href {xboole_0.html#func3}{\cap}}} (Z\mathop{{\href{xboole_0.html#func2} {\cup}}} X)$. (26) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href {xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{ {\href{xboole_0.html#func3}{\cap}}} Z$. (27) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{} {\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func3} {\cap}}} V$. (28) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X$. (29) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{} {\subseteq}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$. (30) Suppose $X \mathrel{{\href{}{\subseteq}}} Z$. Then $X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y \mathop{{\href{xboole_0.html#func3} {\cap}}} Z \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2} {\cup}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (31) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href {xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3} {\cap}}} Z \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href {xboole_0.html#func2}{\cup}}} Z$. (32) If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href {}{=}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} Y$. (33) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. (34) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Z \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z \mathop{{\href{xboole_0.html#func4}{\setminus}}} X$. (35) Suppose $X \mathrel{{\href{}{\subseteq}}} Y$ and $Z \mathrel{{\href{} {\subseteq}}} V$. Then $X \mathop{{\href{xboole_0.html#func4} {\setminus}}} V \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z$. (36) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{} {\subseteq}}} X$. (37) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{} {=}}} {\href{xboole_0.html#func1}{\emptyset}}$ if and only if $X \mathrel {{\href{}{\subseteq}}} Y$. (38) If $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} X$, then $X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1}{\emptyset}}$. (39) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} X) \mathrel{{\href{}{=}}} X\mathop{ {\href{xboole_0.html#func2}{\cup}}} Y$. (40) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X \mathop{ {\href{xboole_0.html#func4}{\setminus}}} Y$. (41) $(X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} X \mathop{ {\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href {xboole_0.html#func2}{\cup}}} Z)$. (42) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z \mathrel{{\href{}{=}}} (X \mathop{ {\href{xboole_0.html#func4}{\setminus}}} Z)\mathop{{\href {xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} Z)$. (43) If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2} {\cup}}} Z$, then $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} Z$. (44) If $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href {}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subseteq}}} Y\mathop{ {\href{xboole_0.html#func2}{\cup}}} Z$. (45) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} X)$. (46) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X\mathop{{\href {xboole_0.html#func2}{\cup}}} Y) \mathrel{{\href{}{=}}} {\href {xboole_0.html#func1}{\emptyset}}$. (47) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y$. (48) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y) \mathrel{{\href{}{=}}} X \mathop{ {\href{xboole_0.html#func3}{\cap}}} Y$. (49) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{ {\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} Z$. (50) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} X \mathop{ {\href{xboole_0.html#func3}{\cap}}} Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (51) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y\mathop{{\href {xboole_0.html#func2}{\cup}}} (X \mathop{{\href{xboole_0.html#func4} {\setminus}}} Y) \mathrel{{\href{}{=}}} X$. (52) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z) \mathrel{{\href{}{=}}} (X \mathop{ {\href{xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href {xboole_0.html#func2}{\cup}}} X \mathop{{\href{xboole_0.html#func3} {\cap}}} Z$. (53) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href {xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y) \mathop{{\href{xboole_0.html#func3} {\cap}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$. (54) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathop{{\href {xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y)\mathop{{\href{xboole_0.html#func2} {\cup}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z)$. (55) $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href {xboole_0.html#func4}{\setminus}}} X \mathop{{\href{xboole_0.html#func3} {\cap}}} Y \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4} {\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} (Y \mathop{ {\href{xboole_0.html#func4}{\setminus}}} X)$. (56) If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. (57) not $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subset}}} X$. (58) If $X \mathrel{{\href{}{\subset}}} Y \mathrel{{\href{}{\subseteq}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. (59) If $X \mathrel{{\href{}{\subseteq}}} Y \mathrel{{\href{}{\subset}}} Z$, then $X \mathrel{{\href{}{\subset}}} Z$. (60) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $Y \mathrel{{\href{} {\not\subset}}} X$. (61) If $X\mathrel{{\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$, then ${\href{xboole_0.html#func1}{\emptyset}} \mathrel{{\href{} {\subset}}} X$. (62) $X \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1} {\emptyset}}$. Now we state the propositions: (63) Modus Darii: If $X \mathrel{{\href{}{\subseteq}}} Y$ and $Y$misses$Z$, then $X$misses$Z$. (64) If $A \mathrel{{\href{}{\subseteq}}} X$ and $B \mathrel{{\href{} {\subseteq}}} Y$ and $X$misses$Y$, then $A$misses$B$. (65) $X$misses${\href{xboole_0.html#func1}{\emptyset}}$. (66) $X$meets$X$ if and only if $X\mathrel{{\href{}{\neq}}} {\href {xboole_0.html#func1}{\emptyset}}$. (67) If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X \mathrel{{\href{} {\subseteq}}} Z$ and $Y$misses$Z$, then $X \mathrel{{\href{}{=}}} {\href {xboole_0.html#func1}{\emptyset}}$. Let us consider non empty set $A$. Now we state the propositions: (68) If $A \mathrel{{\href{}{\subseteq}}} Y$ and $A \mathrel{{\href{} {\subseteq}}} Z$, then $Y$meets$Z$. (69) If $A \mathrel{{\href{}{\subseteq}}} Y$, then $A$meets$Y$. Now we state the propositions: (70) $X$meets$Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z$ if and only if $X$meets$Y$ or $X$meets$Z$. (71) If $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} Z\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$misses$Y$ and $Z$misses$Y$, then $X \mathrel{{\href{}{=}}} Z$. (72) If $X'\mathop{{\href{xboole_0.html#func2}{\cup}}} Y' \mathrel{{\href{} {=}}} X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y$ and $X$misses$X'$ and $Y$misses$Y'$, then $X \mathrel{{\href{}{=}}} Y'$. (73) If $X \mathrel{{\href{}{\subseteq}}} Y\mathop{{\href{xboole_0.html#func2} {\cup}}} Z$ and $X$misses$Z$, then $X \mathrel{{\href{}{\subseteq}}} Y$. (74) If $X$meets$Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$, then $X$meets$Y$. (75) If $X$meets$Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$meets$Y$. (76) If $Y$misses$Z$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$misses$X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (77) If $X$meets$Y$ and $X \mathrel{{\href{}{\subseteq}}} Z$, then $X$meets$Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (78) If $X$misses$Y$, then $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathrel{{\href{}{=}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (79) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$misses$Y$. (80) If $X$misses$Y$, then $X$misses$Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} Z$. (81) If $X$misses$Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$, then $Y$misses$X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z$. (82) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y$misses$Y \mathop{ {\href{xboole_0.html#func4}{\setminus}}} X$. (83) $X$misses$Y$ if and only if $X \mathop{{\href{xboole_0.html#func4} {\setminus}}} Y \mathrel{{\href{}{=}}} X$. (84) If $X$meets$Y$ and $X$misses$Z$, then $X$meets$Y \mathop{{\href {xboole_0.html#func4}{\setminus}}} Z$. (85) If $X \mathrel{{\href{}{\subseteq}}} Y$, then $X$misses$Z \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y$. (86) If $X \mathrel{{\href{}{\subseteq}}} Y$ and $X$misses$Z$, then $X \mathrel{{\href{}{\subseteq}}} Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} Z$. (87) Suppose $Y$misses$Z$. Then $(X \mathop{{\href{xboole_0.html#func4} {\setminus}}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} Z \mathrel{ {\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z) \mathop{ {\href{xboole_0.html#func4}{\setminus}}} Y$. (88) If $X$misses$Y$, then $(X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{=}}} X$. (89) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$misses$X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y$. (90) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y$misses$Y$. (91) $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href {xboole_0.html#func5}{\dot-}}} Z \mathrel{{\href{}{=}}} X{\href {xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} (Y {\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot- }}} Z)$. (92) $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} X \mathrel{{\href{}{=}}} {\href{xboole_0.html#func1} {\emptyset}}$. (93) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X {\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot- }}} Y)\mathop{{\href{xboole_0.html#func2}{\cup}}} X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y$. (94) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} (X {\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot- }}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$. (95) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{=}}} (X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} Y){\href{xboole_0.html#func5}{ \mathop{}}{\href {xboole_0.html#func5}{\dot-}}} (X\mathop{{\href{xboole_0.html#func2} {\cup}}} Y)$. (96) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{} {\subseteq}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href {xboole_0.html#func5}{\dot-}}} Y$. (97) Suppose $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{ {\href{}{\subseteq}}} Z$ and $Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} X \mathrel{{\href{}{\subseteq}}} Z$. Then $X{\href {xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} Z$. (98) $X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y \mathrel{{\href{}{=}}} X {\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot- }}} (Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X)$. (99) $(X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} Z \mathrel{ {\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{{\href {xboole_0.html#func2}{\cup}}} (Y \mathop{{\href{xboole_0.html#func4} {\setminus}}} (X\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))$. (100) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{} {=}}} X{\href{xboole_0.html#func5}{ \mathop{}}{\href {xboole_0.html#func5}{\dot-}}} X \mathop{{\href{xboole_0.html#func3} {\cap}}} Y$. (101) $X{\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5} {\dot-}}} Y \mathrel{{\href{}{=}}} (X\mathop{{\href{xboole_0.html#func2} {\cup}}} Y) \mathop{{\href{xboole_0.html#func4}{\setminus}}} X \mathop{ {\href{xboole_0.html#func3}{\cap}}} Y$. (102) $X \mathop{{\href{xboole_0.html#func4}{\setminus}}} (Y{\href {xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Z) \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4} {\setminus}}} (Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z))\mathop{ {\href{xboole_0.html#func2}{\cup}}} (X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y) \mathop{{\href{xboole_0.html#func3} {\cap}}} Z$. (103) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Y$misses$X{\href {xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y$. (104) $X \mathrel{{\href{}{\subset}}} Y$ or $X \mathrel{{\href{}{=}}} Y$ or $Y \mathrel{{\href{}{\subset}}} X$ if and only if $X$ and $Y$ are \hbox {$\subseteq$}-comparable. **** 2. Appendix **** Now we state the propositions: (105) Let us consider sets $X$, $Y$. Suppose $X \mathrel{{\href{}{\subset}}} Y$. Then $Y \mathop{{\href{xboole_0.html#func4}{\setminus}}} X\mathrel{ {\href{}{\neq}}} {\href{xboole_0.html#func1}{\emptyset}}$. (106) If $X \mathrel{{\href{}{\subseteq}}} A \mathop{{\href {xboole_0.html#func4}{\setminus}}} B$, then $X \mathrel{{\href{} {\subseteq}}} A$ and $X$misses$B$. (107) $X \mathrel{{\href{}{\subseteq}}} A{\href{xboole_0.html#func5}{ \mathop {}}{\href{xboole_0.html#func5}{\dot-}}} B$ if and only if $X \mathrel{ {\href{}{\subseteq}}} A\mathop{{\href{xboole_0.html#func2}{\cup}}} B$ and $X$misses$A \mathop{{\href{xboole_0.html#func3}{\cap}}} B$. (108) If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href {xboole_0.html#func3}{\cap}}} Y \mathrel{{\href{}{\subseteq}}} A$. (109) If $X \mathrel{{\href{}{\subseteq}}} A$, then $X \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y \mathrel{{\href{}{\subseteq}}} A$. (110) If $X \mathrel{{\href{}{\subseteq}}} A$ and $Y \mathrel{{\href{} {\subseteq}}} A$, then $X{\href{xboole_0.html#func5}{ \mathop{}}{\href {xboole_0.html#func5}{\dot-}}} Y \mathrel{{\href{}{\subseteq}}} A$. (111) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathop{{\href {xboole_0.html#func4}{\setminus}}} Y \mathop{{\href{xboole_0.html#func3} {\cap}}} Z \mathrel{{\href{}{=}}} (X \mathop{{\href{xboole_0.html#func4} {\setminus}}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (112) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} Z{\href {xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot-}}} Y \mathop{{\href{xboole_0.html#func3}{\cap}}} Z \mathrel{{\href{}{=}}} (X {\href{xboole_0.html#func5}{ \mathop{}}{\href{xboole_0.html#func5}{\dot- }}} Y) \mathop{{\href{xboole_0.html#func3}{\cap}}} Z$. (113) $((X\mathop{{\href{xboole_0.html#func2}{\cup}}} Y)\mathop{{\href {xboole_0.html#func2}{\cup}}} Z)\mathop{{\href{xboole_0.html#func2} {\cup}}} V \mathrel{{\href{}{=}}} X\mathop{{\href{xboole_0.html#func2} {\cup}}} ((Y\mathop{{\href{xboole_0.html#func2}{\cup}}} Z)\mathop{{\href {xboole_0.html#func2}{\cup}}} V)$. (114) Let us consider sets $A$, $B$, $C$, $D$. Suppose i. $A$misses$D$, and ii. $B$misses$D$, and iii. $C$misses$D$. Then $(A\mathop{{\href{xboole_0.html#func2}{\cup}}} B)\mathop{{\href {xboole_0.html#func2}{\cup}}} C$misses$D$. (115) $A \mathrel{{\href{}{\not\subset}}} {\href{xboole_0.html#func1} {\emptyset}}$. (116) $X \mathop{{\href{xboole_0.html#func3}{\cap}}} (Y \mathop{{\href {xboole_0.html#func3}{\cap}}} Z) \mathrel{{\href{}{=}}} (X \mathop{ {\href{xboole_0.html#func3}{\cap}}} Y) \mathop{{\href {xboole_0.html#func3}{\cap}}} (X \mathop{{\href{xboole_0.html#func3} {\cap}}} Z)$. (117) Let us consider sets $P$, $G$, $C$. Suppose $C \mathrel{{\href{} {\subseteq}}} G$. Then $P \mathop{{\href{xboole_0.html#func4} {\setminus}}} C \mathrel{{\href{}{=}}} (P \mathop{{\href {xboole_0.html#func4}{\setminus}}} G)\mathop{{\href{xboole_0.html#func2} {\cup}}} P \mathop{{\href{xboole_0.html#func3}{\cap}}} (G \mathop{{\href {xboole_0.html#func4}{\setminus}}} C)$. Received April 08, 2002 ===============================================================================