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This talk is an experiment

� Normally I give “serious” talks – I am considered crazy enough
� But this is Tom’s Birthday Party, so we are allowed to have some fun:
� This could be in principle a talk about our work on automation and AI for

reasoning and formalization, and Tom’s great role in these areas. But the
motivations and allusions go back to alchemistic Prague of 1600s and the
(un)scientific pursuits of then versions of "singularity", provoking comparisons
with our today’s funny attempts at building AI and reasoning systems for solving
the great questions of Math, the Universe and Everything. I wonder where this will
all take us.

� Part 1 (Proofs?):
� Learning automated theorem proving on top of Flyspeck and other corpora
� Learning formalization (autoformalization) on top of them

� Part 2 (Conjectures?):
� How did we get here?
� What were Kepler & Co trying to do in 1600s?
� What are we trying to do today?
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The Flyspeck project – A Large Proof Corpus

� Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V =
�p
18

� 74%

� Proved by Hales & Ferguson in 1998, 300-page proof + computations
� Big: Annals of Mathematics gave up reviewing after 4 years
� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c
� However, this took 20 – 30 person-years!
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Automated Theorem Proving (ATP) in Large Theories

� Can we automatically prove simple conjectures over large theories like
Flyspeck?

� In standard ATP we start with a few axioms and symbols
� Standard ATPs human-optimized for small theories (groups)
� In large-theory ATP we start with thousands of axioms and symbols
� The combinatorial explosion of ATP shows from the very beginning
� Algorithms for fact selection and proof guidance developed recently
� Such algorithms often use machine learning methods
� Use large corpora like Flyspeck for learning math thinking?
� Combine learning and reasoning? Strong AI?
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Early Machine Learning for Fact Selection over Mizar

� 2003: Can existing ATPs (E, SPASS, Vampire) be used on the freshly
translated Mizar library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Mizar Proof Advisor (2003):
� Learn fact selection from previous proof!
� Recommend relevant premises when proving new conjectures
� Give them to existing ATPs
� First results over the whole Mizar library in 2003:

� about 70% coverage in the first 100 recommended premises
� chain the recommendations with strong ATPs to get full proofs
� about 14% of the Mizar theorems were then automatically provable (SPASS)
� sometimes we can find simpler proofs!

� Done with much more developed tools for Flyspeck in 2012
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer (Paulson, Blanchette)
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk)
� CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

� 45% success rate
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

� HOL Light proof: could not be re-played by ATPs
� Alternative proof found by a hammer based on FACE_OF_STILLCONVEX
� Face t of a convex set s is equal to the intersection of s with the affine

hull of t .
� AI selection of relevant facts can today sometimes beat humans!

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t

==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)
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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� ...
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Statistical Guidance of Connection Tableau

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� Iterative deepening used in leanCoP to ensure completeness
� good for learning – the tableau compactly represents the proof state

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)
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Statistical Guidance of Connection Tableau – rlCoP

� MaLeCoP (2011): first prototype Machine Learning Connection Prover
� Fairly Efficient MaLeCoP = FEMaLeCoP (15% better than leanCoP)
� 2018: stronger learners via C interface to OCAML (boosted trees)
� remove iterative deepening, the prover can go deep (completeness bad!)
� Monte-Carlo Tree Search (MCTS) governs the search (AlphaGo/Zero!)
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
ln N
ni

(UCT - Kocsis, Szepesvari 2006)

� learning both policy (clause selection) and value (state evaluation)
� clauses represented not by names but also by features (generalize!)
� binary learning setting used: | proof state | clause features |
� mostly term walks of length 3 (trigrams), hashed into small integers
� many iterations of proving and learning
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Statistical Guidance of Connection Tableau – rlCoP

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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TacticToe: Tactic Guidance of ITPs (Gauthier et al.)

� learns from human tactical HOL4 proofs to solve new goals
� no translation or reconstruction needed
� similar to rlCoP: policy/value learning
� however much more technically challenging:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 2018: 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� work in progress for Coq
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Statistical/Semantic Parsing of Informalized Flyspeck

� Goal: Learn understanding of informal math formulas and reasoning
� Statistical translation combined with semantic hammers in feedback loops
� Training/testing examples exported from Flyspeck formulas (thanks Tom!)
� Along with their informalized versions
� First version: Train probabilistic parser on 20k grammar parse trees

� Annotate each (nonterminal) symbol with its HOL type
� Also “semantic (formal)” nonterminals annotate overloaded terminals
� guiding analogy: word-sense disambiguation using CYK is common

� Terminals exactly compose the textual form, for example:
� REAL_NEGNEG: 8x :��x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

� becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))
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Example grammar trees

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0
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Online parsing system
� Induce PCFG (probabilistic context-free grammar) from the trees
� CYK: dynamic-programming algorithm for parsing ambiguous sentences
� input: sentence – a sequence of words and a binarized PCFG
� output: N most probable parse trees
� Transformed to HOL parse trees (preterms, Hindley-Milner)
� typed checked in HOL and then given to an ATP (hammer)
� “sin ( 0 * x ) = cos pi / 2”
� produces 16 parses
� of which 11 get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
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Flyspeck Progress

17 / 30



Neural Autoformalization (Wang et al., 2018)

� generate about 1M Latex - Mizar pairs based on Bancerek’s work
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck
� You can help! – Just contribute to Tom’s Formal Abstracts project!
� Many example from yesterday’s talks: Integers act (anti)holomorphically?
� AI feedback loops:
� more disambiguated formal math, more formal proofs, stronger

automated reasoning via learning, stronger semantic filtering helping the
disambiguation, more/better formal data, ...
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Neural Autoformalization data

Rendered LATEX If X � Y � Z , then X � Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization Results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Part 2 – How did we get here?

� How did we get here?
� What were Kepler & Co trying to do in 1600s?
� What are we trying to do today?
� Kepler’s Conjecture in Strena in 1611 (among many other conjectures)
� Kepler’s laws, Galileo, Newton, ..., age of science, math, machines
� ..., Poincare, Russell, Von Neumann, Turing, ... age of computing

machines?
� 1998 computing machine helps to find a proof of Kepler’s Conjecture
� 2014 computing machine verifies a proof of Kepler’s Conjecture
� ... 2050? computing machine finds a proof of Kepler’s Conjecture?
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Part 2 – Kepler & Co.
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What were Kepler & Co. Trying To Do?

� Kepler: Mysterium Cosmographicum (1596)
� God’s geometrical plan for the universe (Platonic solids)
� Didn’t work – he needed data!
� Off he went to Prague in 1600 - Tycho Brahe
� Brahe was collecting precise data since the supernova of 1572
� Kicked out off Denmark and invited by Rudolf II in 1599
� Imperial Court Astronomer
� Kepler appointed the imperial mathematician after Brahe’s death
� Observed snowflakes while walking across the Charles bridge in 1610
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Prague around 1600s

� Rudolf II inviting all sorts artists, alchemist, astrologists (eventually
astronomers, geometers, chemists, scientists?)

� Brahe, Dee, Kelly, Kepler, Sendivogius, Rabbi Loew ben Bezalel, ....
� About 40 alchemists at the top - working hard on:

� searching for the Philosopher’s Stone (gold, immortality, and all that)
� cosmic harmony through numbers and combinations of symbols
� mysticism, Kabbalah and “Harmony of spheres”

� Dee’s claims that world will soon go through a miracle reform
� Kepler’s claim that Earth has a soul – subjected to astrological harmony
� Conjecturing about the shape of snowflakes and stacking of spheres?
� What gives the shell of the snail its spiral form?
� Why do most flowers have five petals?
� Explain the Universe through math and geometry? Scientific Revolution?
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Scientific Revolution of 1600s: Data, Math, Induction

� Brahe, Kepler, Galileo, Newton, Bacon, Descartes, ..
� Experience Not Only Doctrine! Data-driven science! (Natural Philosophy)
� Bacon: not just Aristotelian deduction/syllogisms, but induction from data
� Men have sought to make a world from their own conception and to draw from

their own minds all the material which they employed, but if, instead of doing so,
they had consulted experience and observation, they would have the facts and
not opinions to reason about, and might have ultimately arrived at the knowledge
of the laws which govern the material world.

� Mathematization of philosophy: rebellion by the mathematicians against
philosophers

� apparent in Newton’s title: Mathematical Principles of Natural Philosophy
� Before Newton there was Kepler:
� Kepler’s New Astronomy deliberately conflates the worlds of the mathematician

(who deals with astronomy) and natural philosopher (who deals with physics and
with causation in nature)
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Their Science Revolution vs AI Revolution of Today?

� They were obsessed with the nature, its data and conjectures over them
� Produced lots of observation/experimental data
� And we are obsessed with our thinking process (AI)
� Pat Langley (PhD at CMU under H. Simon) – the Bacon system (1978):
� learn the laws: Kepler’s third law , Coulomb’s law, Ohm’s law, ...
� ... from the observation data
� But they also produced thinking data (science and math)
� Today the thinking data is made understandable to our thinking machines
� Today’s proof libraries are our data, and we are trying to come up with

algorithms that learn our thinking
� Shall we teach machines to discover the proof of Kepler’s conjecture?
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Their Science Revolution vs AI Revolution of Today?

� They strive to understand and predict the universe, explore and exploit it
� Among other things leading to the discovery of many useful machines
� Among them the computing machine
� We strive to understand and speed up our discovery process
� by better and better algorithms for the computing machines
� Development of thinking machines? (singularity?)
� I wonder what would Kepler say to today’s crazy Simulation conjectures

linking God(s) with builders of thinking machines and simulations?
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Where does this lead us?

� Acceleration of science? - feedback loops between:
� Better observation/exploration, more data, better theories, better thinking

tools, even better theories, even better observations, ....
� Is this already some "singularity"?
� Not clear - e.g. in AlphaGo/Zero the feedback loop plateaus at some point
� In a similar way our learning/proving loops currently plateau
� There might be physical limits to our observation and thinking tools

limiting how far the feedback loops can get
� But physics as we know it will likely be quickly outdated when automated

science takes off
� ... and likely also our current thinking tools
� It’s very hard to believe that our (or our thinking successors’) discovery

process of the universe could stop somehow
� At least math seems at the moment unfinishable
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The End: Dreams and their Realizations

� I’ll stop here
� My dreaming/conjecturing is clearly weak compared to Kepler’s
� Just read his Dream (Somnium): First sci-fi (1608) – flying to the Moon
� He almost predicts rockets:
� The initial shock is the worst part, since they are launched upward as if

by a gunpowder explosion and they fly over mountains and seas.
� The man who realizes the dream is the Icelander Duracotus
� Tom, you come from Iceland, and you are realizing Kepler’s dreams
� So I wish you many more flights to many interesting places!
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