:: BINARI_6 semantic presentation

theorem Th1: :: BINARI_6:1
for b1 being boolean set holds TRUE 'imp' b1 = b1
proof end;

theorem Th2: :: BINARI_6:2
for b1 being boolean set holds FALSE 'imp' b1 = TRUE
proof end;

theorem Th3: :: BINARI_6:3
for b1 being boolean set holds
( b1 'imp' b1 = TRUE & 'not' (b1 'imp' b1) = FALSE )
proof end;

theorem Th4: :: BINARI_6:4
for b1, b2 being boolean set holds 'not' (b1 'imp' b2) = b1 '&' ('not' b2)
proof end;

theorem Th5: :: BINARI_6:5
for b1 being boolean set holds
( b1 'imp' ('not' b1) = 'not' b1 & 'not' (b1 'imp' ('not' b1)) = b1 )
proof end;

theorem Th6: :: BINARI_6:6
for b1 being boolean set holds ('not' b1) 'imp' b1 = b1
proof end;

theorem Th7: :: BINARI_6:7
for b1 being boolean set holds TRUE 'eqv' b1 = b1
proof end;

theorem Th8: :: BINARI_6:8
for b1 being boolean set holds FALSE 'eqv' b1 = 'not' b1
proof end;

theorem Th9: :: BINARI_6:9
for b1 being boolean set holds
( b1 'eqv' b1 = TRUE & 'not' (b1 'eqv' b1) = FALSE )
proof end;

theorem Th10: :: BINARI_6:10
for b1 being boolean set holds ('not' b1) 'eqv' b1 = FALSE
proof end;

theorem Th11: :: BINARI_6:11
for b1, b2, b3 being boolean set holds b1 '&' (b2 'eqv' b3) = (b1 '&' (('not' b2) 'or' b3)) '&' (('not' b3) 'or' b2)
proof end;

theorem Th12: :: BINARI_6:12
for b1, b2, b3 being boolean set holds b1 '&' (b2 'nand' b3) = (b1 '&' ('not' b2)) 'or' (b1 '&' ('not' b3))
proof end;

theorem Th13: :: BINARI_6:13
for b1, b2, b3 being boolean set holds b1 '&' (b2 'nor' b3) = (b1 '&' ('not' b2)) '&' ('not' b3)
proof end;

theorem Th14: :: BINARI_6:14
for b1, b2 being boolean set holds b1 '&' (b1 '&' b2) = b1 '&' b2
proof end;

theorem Th15: :: BINARI_6:15
for b1, b2 being boolean set holds b1 '&' (b1 'or' b2) = b1 'or' (b1 '&' b2)
proof end;

theorem Th16: :: BINARI_6:16
for b1, b2 being boolean set holds b1 '&' (b1 'xor' b2) = b1 '&' ('not' b2)
proof end;

theorem Th17: :: BINARI_6:17
for b1, b2 being boolean set holds b1 '&' (b1 'imp' b2) = b1 '&' b2
proof end;

theorem Th18: :: BINARI_6:18
for b1, b2 being boolean set holds b1 '&' (b1 'eqv' b2) = b1 '&' b2
proof end;

theorem Th19: :: BINARI_6:19
for b1, b2 being boolean set holds b1 '&' (b1 'nand' b2) = b1 '&' ('not' b2)
proof end;

theorem Th20: :: BINARI_6:20
for b1, b2 being boolean set holds b1 '&' (b1 'nor' b2) = FALSE
proof end;

theorem Th21: :: BINARI_6:21
for b1, b2, b3 being boolean set holds b1 'or' (b2 'xor' b3) = (b1 'or' (('not' b2) '&' b3)) 'or' (b2 '&' ('not' b3))
proof end;

theorem Th22: :: BINARI_6:22
for b1, b2, b3 being boolean set holds b1 'or' (b2 'eqv' b3) = ((b1 'or' ('not' b2)) 'or' b3) '&' ((b1 'or' ('not' b3)) 'or' b2)
proof end;

theorem Th23: :: BINARI_6:23
for b1, b2, b3 being boolean set holds b1 'or' (b2 'nand' b3) = (b1 'or' ('not' b2)) 'or' ('not' b3)
proof end;

theorem Th24: :: BINARI_6:24
for b1, b2, b3 being boolean set holds
( b1 'or' (b2 'nor' b3) = (b1 'or' ('not' b2)) '&' (b1 'or' ('not' b3)) & b1 'or' (b2 'nor' b3) = (b2 'imp' b1) '&' (b3 'imp' b1) )
proof end;

theorem Th25: :: BINARI_6:25
for b1, b2 being boolean set holds b1 'or' (b1 'or' b2) = b1 'or' b2
proof end;

theorem Th26: :: BINARI_6:26
for b1, b2 being boolean set holds b1 'or' (b1 'imp' b2) = TRUE
proof end;

theorem Th27: :: BINARI_6:27
for b1, b2 being boolean set holds b1 'or' (b1 'eqv' b2) = b2 'imp' b1
proof end;

theorem Th28: :: BINARI_6:28
for b1, b2 being boolean set holds b1 'or' (b1 'nand' b2) = TRUE
proof end;

theorem Th29: :: BINARI_6:29
for b1, b2 being boolean set holds b1 'or' (b1 'nor' b2) = b2 'imp' b1
proof end;

theorem Th30: :: BINARI_6:30
for b1, b2, b3 being boolean set holds b1 'imp' (b2 'xor' b3) = (('not' b1) 'or' (('not' b2) '&' b3)) 'or' (b2 '&' ('not' b3))
proof end;

theorem Th31: :: BINARI_6:31
for b1, b2, b3 being boolean set holds b1 'imp' (b2 'eqv' b3) = ((('not' b1) 'or' ('not' b2)) 'or' b3) '&' ((('not' b1) 'or' b2) 'or' ('not' b3))
proof end;

theorem Th32: :: BINARI_6:32
for b1, b2, b3 being boolean set holds b1 'imp' (b2 'nand' b3) = (('not' b1) 'or' ('not' b2)) 'or' ('not' b3)
proof end;

theorem Th33: :: BINARI_6:33
for b1, b2, b3 being boolean set holds
( b1 'imp' (b2 'nor' b3) = (('not' b1) 'or' ('not' b2)) '&' (('not' b1) 'or' ('not' b3)) & b1 'imp' (b2 'nor' b3) = (b1 'imp' ('not' b2)) '&' (b1 'imp' ('not' b3)) )
proof end;

theorem Th34: :: BINARI_6:34
for b1, b2 being boolean set holds b1 'imp' (b1 '&' b2) = b1 'imp' b2
proof end;

theorem Th35: :: BINARI_6:35
for b1, b2 being boolean set holds b1 'imp' (b1 'or' b2) = TRUE
proof end;

theorem Th36: :: BINARI_6:36
for b1, b2 being boolean set holds b1 'imp' (b1 'xor' b2) = ('not' b1) 'or' ('not' b2)
proof end;

theorem Th37: :: BINARI_6:37
for b1, b2 being boolean set holds b1 'imp' (b1 'imp' b2) = b1 'imp' b2
proof end;

theorem Th38: :: BINARI_6:38
for b1, b2 being boolean set holds
( b1 'imp' (b1 'eqv' b2) = b1 'imp' b2 & b1 'imp' (b1 'eqv' b2) = b1 'imp' (b1 'imp' b2) )
proof end;

theorem Th39: :: BINARI_6:39
for b1, b2 being boolean set holds b1 'imp' (b1 'nand' b2) = 'not' (b1 '&' b2)
proof end;

theorem Th40: :: BINARI_6:40
for b1, b2 being boolean set holds b1 'imp' (b1 'nor' b2) = 'not' b1
proof end;

theorem Th41: :: BINARI_6:41
for b1, b2, b3 being boolean set holds
( b1 'nand' (b2 'imp' b3) = (('not' b1) 'or' b2) '&' (('not' b1) 'or' ('not' b3)) & b1 'nand' (b2 'imp' b3) = (b1 'imp' b2) '&' (b1 'imp' ('not' b3)) )
proof end;

theorem Th42: :: BINARI_6:42
for b1, b2, b3 being boolean set holds b1 'nand' (b2 'eqv' b3) = 'not' ((b1 '&' (('not' b2) 'or' b3)) '&' (('not' b3) 'or' b2))
proof end;

theorem Th43: :: BINARI_6:43
for b1, b2, b3 being boolean set holds
( b1 'nand' (b2 'nand' b3) = (('not' b1) 'or' b2) '&' (('not' b1) 'or' b3) & b1 'nand' (b2 'nand' b3) = (b1 'imp' b2) '&' (b1 'imp' b3) )
proof end;

theorem Th44: :: BINARI_6:44
for b1, b2, b3 being boolean set holds b1 'nand' (b2 'nor' b3) = (('not' b1) 'or' b2) 'or' b3
proof end;

theorem Th45: :: BINARI_6:45
for b1, b2 being boolean set holds b1 'nand' (b1 '&' b2) = 'not' (b1 '&' b2)
proof end;

theorem Th46: :: BINARI_6:46
for b1, b2 being boolean set holds b1 'nand' (b1 'xor' b2) = b1 'imp' b2
proof end;

theorem Th47: :: BINARI_6:47
for b1, b2 being boolean set holds b1 'nand' (b1 'imp' b2) = 'not' (b1 '&' b2)
proof end;

theorem Th48: :: BINARI_6:48
for b1, b2 being boolean set holds b1 'nand' (b1 'eqv' b2) = 'not' (b1 '&' b2)
proof end;

theorem Th49: :: BINARI_6:49
for b1, b2 being boolean set holds b1 'nand' (b1 'nand' b2) = b1 'imp' b2
proof end;

theorem Th50: :: BINARI_6:50
for b1, b2 being boolean set holds b1 'nand' (b1 'nor' b2) = TRUE
proof end;

theorem Th51: :: BINARI_6:51
for b1, b2, b3 being boolean set holds b1 'nor' (b2 'xor' b3) = 'not' ((b1 'or' (('not' b2) '&' b3)) 'or' (b2 '&' ('not' b3)))
proof end;

theorem Th52: :: BINARI_6:52
for b1, b2, b3 being boolean set holds b1 'nor' (b2 'eqv' b3) = 'not' (((b1 'or' ('not' b2)) 'or' b3) '&' ((b1 'or' ('not' b3)) 'or' b2))
proof end;

theorem Th53: :: BINARI_6:53
for b1, b2, b3 being boolean set holds b1 'nor' (b2 'nand' b3) = (('not' b1) '&' b2) '&' b3
proof end;

theorem Th54: :: BINARI_6:54
for b1, b2, b3 being boolean set holds b1 'nor' (b2 'nor' b3) = (('not' b1) '&' b2) 'or' (('not' b1) '&' b3)
proof end;

theorem Th55: :: BINARI_6:55
for b1, b2 being boolean set holds b1 'nor' (b1 '&' b2) = 'not' b1
proof end;

theorem Th56: :: BINARI_6:56
for b1, b2 being boolean set holds b1 'nor' (b1 'or' b2) = ('not' b1) '&' ('not' b2)
proof end;

theorem Th57: :: BINARI_6:57
for b1, b2 being boolean set holds b1 'nor' (b1 'xor' b2) = ('not' b1) '&' ('not' b2)
proof end;

theorem Th58: :: BINARI_6:58
for b1, b2 being boolean set holds b1 'nor' (b1 'imp' b2) = FALSE
proof end;

theorem Th59: :: BINARI_6:59
for b1, b2 being boolean set holds b1 'nor' (b1 'eqv' b2) = ('not' b1) '&' b2
proof end;

theorem Th60: :: BINARI_6:60
for b1, b2 being boolean set holds b1 'nor' (b1 'nand' b2) = FALSE
proof end;

theorem Th61: :: BINARI_6:61
for b1, b2 being boolean set holds b1 'nor' (b1 'nor' b2) = ('not' b1) '&' b2
proof end;

theorem Th62: :: BINARI_6:62
for b1, b2, b3 being boolean set holds b1 'xor' (b2 '&' b3) = (b1 'or' (b2 '&' b3)) '&' (('not' b1) 'or' ('not' (b2 '&' b3)))
proof end;

theorem Th63: :: BINARI_6:63
for b1, b2 being boolean set holds b1 'xor' (b1 '&' b2) = b1 '&' ('not' b2)
proof end;

theorem Th64: :: BINARI_6:64
for b1, b2 being boolean set holds b1 'xor' (b1 'or' b2) = ('not' b1) '&' b2
proof end;

theorem Th65: :: BINARI_6:65
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'xor' b2) = ('not' b1) '&' b2
proof end;

theorem Th66: :: BINARI_6:66
for b1, b2 being boolean set holds b1 '&' ('not' (b1 'xor' b2)) = b1 '&' b2
proof end;

theorem Th67: :: BINARI_6:67
for b1, b2 being boolean set holds b1 'xor' (b1 'xor' b2) = b2
proof end;

theorem Th68: :: BINARI_6:68
for b1, b2 being boolean set holds b1 '&' ('not' (b1 'imp' b2)) = b1 '&' ('not' b2)
proof end;

theorem Th69: :: BINARI_6:69
for b1, b2 being boolean set holds b1 'xor' (b1 'imp' b2) = ('not' b1) 'or' ('not' b2)
proof end;

theorem Th70: :: BINARI_6:70
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'eqv' b2) = ('not' b1) '&' ('not' b2)
proof end;

theorem Th71: :: BINARI_6:71
for b1, b2 being boolean set holds b1 '&' ('not' (b1 'eqv' b2)) = b1 '&' ('not' b2)
proof end;

theorem Th72: :: BINARI_6:72
for b1, b2 being boolean set holds b1 'xor' (b1 'eqv' b2) = 'not' b2
proof end;

theorem Th73: :: BINARI_6:73
for b1, b2 being boolean set holds b1 'xor' (b1 'nand' b2) = b1 'imp' b2
proof end;

theorem Th74: :: BINARI_6:74
for b1, b2 being boolean set holds b1 'xor' (b1 'nor' b2) = b2 'imp' b1
proof end;

theorem Th75: :: BINARI_6:75
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'imp' b2) = ('not' b1) 'or' (('not' b1) '&' b2)
proof end;

theorem Th76: :: BINARI_6:76
for b1, b2, b3 being boolean set holds ('not' b1) '&' (b2 'eqv' b3) = (('not' b1) '&' (('not' b2) 'or' b3)) '&' (('not' b3) 'or' b2)
proof end;

theorem Th77: :: BINARI_6:77
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'eqv' b2) = (('not' b1) '&' ('not' b2)) '&' (('not' b1) 'or' b2)
proof end;

theorem Th78: :: BINARI_6:78
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'nand' b2) = ('not' b1) 'or' (('not' b1) '&' ('not' b2))
proof end;

theorem Th79: :: BINARI_6:79
for b1, b2 being boolean set holds ('not' b1) '&' (b1 'nor' b2) = ('not' b1) '&' ('not' b2)
proof end;

theorem Th80: :: BINARI_6:80
for b1, b2 being boolean set holds ('not' b1) 'or' (b1 'imp' b2) = ('not' b1) 'or' b2
proof end;

theorem Th81: :: BINARI_6:81
for b1, b2 being boolean set holds ('not' b1) 'or' (b1 'eqv' b2) = ('not' b1) 'or' b2
proof end;

theorem Th82: :: BINARI_6:82
for b1, b2 being boolean set holds ('not' b1) 'or' (b1 'nand' b2) = ('not' b1) 'or' ('not' b2)
proof end;

theorem Th83: :: BINARI_6:83
for b1, b2 being boolean set holds ('not' b1) 'xor' (b1 'imp' b2) = b1 '&' b2
proof end;

theorem Th84: :: BINARI_6:84
for b1, b2 being boolean set holds ('not' b1) 'xor' (b2 'imp' b1) = (b1 '&' (b1 'or' ('not' b2))) 'or' (('not' b1) '&' b2)
proof end;

theorem Th85: :: BINARI_6:85
for b1, b2 being boolean set holds 'not' (b1 'imp' b2) = b1 '&' ('not' b2)
proof end;

theorem Th86: :: BINARI_6:86
for b1, b2 being boolean set holds 'not' (b1 'eqv' b2) = (b1 '&' ('not' b2)) 'or' (b2 '&' ('not' b1))
proof end;

theorem Th87: :: BINARI_6:87
for b1, b2 being boolean set holds ('not' b1) 'xor' (b1 'eqv' b2) = b2
proof end;