:: BVFUNC23 semantic presentation
theorem Th1: :: BVFUNC23:1
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b3,
b2 = (((b4 '/\' b5) '/\' b6) '/\' b7) '/\' b8
theorem Th2: :: BVFUNC23:2
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b4,
b2 = (((b3 '/\' b5) '/\' b6) '/\' b7) '/\' b8
theorem Th3: :: BVFUNC23:3
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b5,
b2 = (((b3 '/\' b4) '/\' b6) '/\' b7) '/\' b8
theorem Th4: :: BVFUNC23:4
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b6,
b2 = (((b3 '/\' b4) '/\' b5) '/\' b7) '/\' b8
theorem Th5: :: BVFUNC23:5
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b7,
b2 = (((b3 '/\' b4) '/\' b5) '/\' b6) '/\' b8
theorem Th6: :: BVFUNC23:6
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
CompF b8,
b2 = (((b3 '/\' b4) '/\' b5) '/\' b6) '/\' b7
theorem Th7: :: BVFUNC23:7
for
b1,
b2,
b3,
b4,
b5,
b6 being
set for
b7 being
Function for
b8,
b9,
b10,
b11,
b12,
b13 being
set st
b1 <> b2 &
b1 <> b3 &
b1 <> b4 &
b1 <> b5 &
b1 <> b6 &
b2 <> b3 &
b2 <> b4 &
b2 <> b5 &
b2 <> b6 &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b4 <> b5 &
b4 <> b6 &
b5 <> b6 &
b7 = (((((b2 .--> b9) +* (b3 .--> b10)) +* (b4 .--> b11)) +* (b5 .--> b12)) +* (b6 .--> b13)) +* (b1 .--> b8) holds
(
b7 . b1 = b8 &
b7 . b2 = b9 &
b7 . b3 = b10 &
b7 . b4 = b11 &
b7 . b5 = b12 &
b7 . b6 = b13 )
theorem Th8: :: BVFUNC23:8
for
b1,
b2,
b3,
b4,
b5,
b6 being
set for
b7 being
Function for
b8,
b9,
b10,
b11,
b12,
b13 being
set st
b7 = (((((b2 .--> b9) +* (b3 .--> b10)) +* (b4 .--> b11)) +* (b5 .--> b12)) +* (b6 .--> b13)) +* (b1 .--> b8) holds
dom b7 = {b1,b2,b3,b4,b5,b6}
theorem Th9: :: BVFUNC23:9
for
b1,
b2,
b3,
b4,
b5,
b6 being
set for
b7 being
Function for
b8,
b9,
b10,
b11,
b12,
b13 being
set st
b1 <> b2 &
b1 <> b3 &
b1 <> b4 &
b1 <> b5 &
b1 <> b6 &
b2 <> b3 &
b2 <> b4 &
b2 <> b5 &
b2 <> b6 &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b4 <> b5 &
b4 <> b6 &
b5 <> b6 &
b7 = (((((b2 .--> b9) +* (b3 .--> b10)) +* (b4 .--> b11)) +* (b5 .--> b12)) +* (b6 .--> b13)) +* (b1 .--> b8) holds
rng b7 = {(b7 . b1),(b7 . b2),(b7 . b3),(b7 . b4),(b7 . b5),(b7 . b6)}
theorem Th10: :: BVFUNC23:10
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 for
b9,
b10 being
Element of
b1 for
b11 being
Function st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 holds
EqClass b10,
((((b4 '/\' b5) '/\' b6) '/\' b7) '/\' b8) meets EqClass b9,
b3
theorem Th11: :: BVFUNC23:11
for
b1 being non
empty set for
b2 being
Subset of
(PARTITIONS b1) for
b3,
b4,
b5,
b6,
b7,
b8 being
a_partition of
b1 for
b9,
b10 being
Element of
b1 for
b11 being
Function st
b2 is
independent &
b2 = {b3,b4,b5,b6,b7,b8} &
b3 <> b4 &
b3 <> b5 &
b3 <> b6 &
b3 <> b7 &
b3 <> b8 &
b4 <> b5 &
b4 <> b6 &
b4 <> b7 &
b4 <> b8 &
b5 <> b6 &
b5 <> b7 &
b5 <> b8 &
b6 <> b7 &
b6 <> b8 &
b7 <> b8 &
EqClass b9,
(((b5 '/\' b6) '/\' b7) '/\' b8) = EqClass b10,
(((b5 '/\' b6) '/\' b7) '/\' b8) holds
EqClass b10,
(CompF b3,b2) meets EqClass b9,
(CompF b4,b2)