:: GATE_2 semantic presentation
theorem Th1: :: GATE_2:1
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
b16,
b17,
b18,
b19,
b20,
b21,
b22 being
set holds
not ( (
$ b1 implies
$ AND3 (NOT1 b19),
(NOT1 b18),
(NOT1 b17) ) & (
$ AND3 (NOT1 b19),
(NOT1 b18),
(NOT1 b17) implies
$ b1 ) & (
$ b2 implies
$ AND3 (NOT1 b19),
(NOT1 b18),
b17 ) & (
$ AND3 (NOT1 b19),
(NOT1 b18),
b17 implies
$ b2 ) & (
$ b3 implies
$ AND3 (NOT1 b19),
b18,
(NOT1 b17) ) & (
$ AND3 (NOT1 b19),
b18,
(NOT1 b17) implies
$ b3 ) & (
$ b4 implies
$ AND3 (NOT1 b19),
b18,
b17 ) & (
$ AND3 (NOT1 b19),
b18,
b17 implies
$ b4 ) & (
$ b5 implies
$ AND3 b19,
(NOT1 b18),
(NOT1 b17) ) & (
$ AND3 b19,
(NOT1 b18),
(NOT1 b17) implies
$ b5 ) & (
$ b6 implies
$ AND3 b19,
(NOT1 b18),
b17 ) & (
$ AND3 b19,
(NOT1 b18),
b17 implies
$ b6 ) & (
$ b7 implies
$ AND3 b19,
b18,
(NOT1 b17) ) & (
$ AND3 b19,
b18,
(NOT1 b17) implies
$ b7 ) & (
$ b8 implies
$ AND3 b19,
b18,
b17 ) & (
$ AND3 b19,
b18,
b17 implies
$ b8 ) & (
$ b9 implies
$ AND3 (NOT1 b22),
(NOT1 b21),
(NOT1 b20) ) & (
$ AND3 (NOT1 b22),
(NOT1 b21),
(NOT1 b20) implies
$ b9 ) & (
$ b10 implies
$ AND3 (NOT1 b22),
(NOT1 b21),
b20 ) & (
$ AND3 (NOT1 b22),
(NOT1 b21),
b20 implies
$ b10 ) & (
$ b11 implies
$ AND3 (NOT1 b22),
b21,
(NOT1 b20) ) & (
$ AND3 (NOT1 b22),
b21,
(NOT1 b20) implies
$ b11 ) & (
$ b12 implies
$ AND3 (NOT1 b22),
b21,
b20 ) & (
$ AND3 (NOT1 b22),
b21,
b20 implies
$ b12 ) & (
$ b13 implies
$ AND3 b22,
(NOT1 b21),
(NOT1 b20) ) & (
$ AND3 b22,
(NOT1 b21),
(NOT1 b20) implies
$ b13 ) & (
$ b14 implies
$ AND3 b22,
(NOT1 b21),
b20 ) & (
$ AND3 b22,
(NOT1 b21),
b20 implies
$ b14 ) & (
$ b15 implies
$ AND3 b22,
b21,
(NOT1 b20) ) & (
$ AND3 b22,
b21,
(NOT1 b20) implies
$ b15 ) & (
$ b16 implies
$ AND3 b22,
b21,
b20 ) & (
$ AND3 b22,
b21,
b20 implies
$ b16 ) & (
$ b20 implies
$ NOT1 b17 ) & (
$ NOT1 b17 implies
$ b20 ) & (
$ b21 implies
$ XOR2 b17,
b18 ) & (
$ XOR2 b17,
b18 implies
$ b21 ) & (
$ b22 implies
$ OR2 (AND2 b19,(NOT1 b17)),
(AND2 b17,(XOR2 b18,b19)) ) & (
$ OR2 (AND2 b19,(NOT1 b17)),
(AND2 b17,(XOR2 b18,b19)) implies
$ b22 ) & not ( (
$ b10 implies
$ b1 ) & (
$ b1 implies
$ b10 ) & (
$ b11 implies
$ b2 ) & (
$ b2 implies
$ b11 ) & (
$ b12 implies
$ b3 ) & (
$ b3 implies
$ b12 ) & (
$ b13 implies
$ b4 ) & (
$ b4 implies
$ b13 ) & (
$ b14 implies
$ b5 ) & (
$ b5 implies
$ b14 ) & (
$ b15 implies
$ b6 ) & (
$ b6 implies
$ b15 ) & (
$ b16 implies
$ b7 ) & (
$ b7 implies
$ b16 ) & (
$ b9 implies
$ b8 ) & (
$ b8 implies
$ b9 ) ) )
theorem Th2: :: GATE_2:2
for
b1,
b2,
b3,
b4 being
set holds
(
$ AND3 (AND2 b1,b2),
(AND2 b3,b2),
(AND2 b4,b2) iff
$ AND2 (AND3 b1,b3,b4),
b2 )
theorem Th3: :: GATE_2:3
for
b1,
b2,
b3,
b4 being
set holds
( ( not
$ AND2 b1,
b2 implies
$ OR2 (NOT1 b1),
(NOT1 b2) ) & (
$ OR2 (NOT1 b1),
(NOT1 b2) implies not
$ AND2 b1,
b2 ) & (
$ OR2 b1,
b2 &
$ OR2 b3,
b2 implies
$ OR2 (AND2 b1,b3),
b2 ) & (
$ OR2 (AND2 b1,b3),
b2 implies (
$ OR2 b1,
b2 &
$ OR2 b3,
b2 ) ) & (
$ OR2 b1,
b2 &
$ OR2 b3,
b2 &
$ OR2 b4,
b2 implies
$ OR2 (AND3 b1,b3,b4),
b2 ) & (
$ OR2 (AND3 b1,b3,b4),
b2 implies (
$ OR2 b1,
b2 &
$ OR2 b3,
b2 &
$ OR2 b4,
b2 ) ) & not (
$ OR2 b1,
b2 & (
$ b1 implies
$ b3 ) & (
$ b3 implies
$ b1 ) & not
$ OR2 b3,
b2 ) )
theorem Th4: :: GATE_2:4
for
b1,
b2,
b3,
b4,
b5,
b6,
b7,
b8,
b9,
b10,
b11,
b12,
b13,
b14,
b15,
b16,
b17,
b18,
b19,
b20,
b21,
b22,
b23 being
set holds
not ( (
$ b1 implies
$ AND3 (NOT1 b19),
(NOT1 b18),
(NOT1 b17) ) & (
$ AND3 (NOT1 b19),
(NOT1 b18),
(NOT1 b17) implies
$ b1 ) & (
$ b2 implies
$ AND3 (NOT1 b19),
(NOT1 b18),
b17 ) & (
$ AND3 (NOT1 b19),
(NOT1 b18),
b17 implies
$ b2 ) & (
$ b3 implies
$ AND3 (NOT1 b19),
b18,
(NOT1 b17) ) & (
$ AND3 (NOT1 b19),
b18,
(NOT1 b17) implies
$ b3 ) & (
$ b4 implies
$ AND3 (NOT1 b19),
b18,
b17 ) & (
$ AND3 (NOT1 b19),
b18,
b17 implies
$ b4 ) & (
$ b5 implies
$ AND3 b19,
(NOT1 b18),
(NOT1 b17) ) & (
$ AND3 b19,
(NOT1 b18),
(NOT1 b17) implies
$ b5 ) & (
$ b6 implies
$ AND3 b19,
(NOT1 b18),
b17 ) & (
$ AND3 b19,
(NOT1 b18),
b17 implies
$ b6 ) & (
$ b7 implies
$ AND3 b19,
b18,
(NOT1 b17) ) & (
$ AND3 b19,
b18,
(NOT1 b17) implies
$ b7 ) & (
$ b8 implies
$ AND3 b19,
b18,
b17 ) & (
$ AND3 b19,
b18,
b17 implies
$ b8 ) & (
$ b9 implies
$ AND3 (NOT1 b22),
(NOT1 b21),
(NOT1 b20) ) & (
$ AND3 (NOT1 b22),
(NOT1 b21),
(NOT1 b20) implies
$ b9 ) & (
$ b10 implies
$ AND3 (NOT1 b22),
(NOT1 b21),
b20 ) & (
$ AND3 (NOT1 b22),
(NOT1 b21),
b20 implies
$ b10 ) & (
$ b11 implies
$ AND3 (NOT1 b22),
b21,
(NOT1 b20) ) & (
$ AND3 (NOT1 b22),
b21,
(NOT1 b20) implies
$ b11 ) & (
$ b12 implies
$ AND3 (NOT1 b22),
b21,
b20 ) & (
$ AND3 (NOT1 b22),
b21,
b20 implies
$ b12 ) & (
$ b13 implies
$ AND3 b22,
(NOT1 b21),
(NOT1 b20) ) & (
$ AND3 b22,
(NOT1 b21),
(NOT1 b20) implies
$ b13 ) & (
$ b14 implies
$ AND3 b22,
(NOT1 b21),
b20 ) & (
$ AND3 b22,
(NOT1 b21),
b20 implies
$ b14 ) & (
$ b15 implies
$ AND3 b22,
b21,
(NOT1 b20) ) & (
$ AND3 b22,
b21,
(NOT1 b20) implies
$ b15 ) & (
$ b16 implies
$ AND3 b22,
b21,
b20 ) & (
$ AND3 b22,
b21,
b20 implies
$ b16 ) & (
$ b20 implies
$ AND2 (NOT1 b17),
b23 ) & (
$ AND2 (NOT1 b17),
b23 implies
$ b20 ) & (
$ b21 implies
$ AND2 (XOR2 b17,b18),
b23 ) & (
$ AND2 (XOR2 b17,b18),
b23 implies
$ b21 ) & (
$ b22 implies
$ AND2 (OR2 (AND2 b19,(NOT1 b17)),(AND2 b17,(XOR2 b18,b19))),
b23 ) & (
$ AND2 (OR2 (AND2 b19,(NOT1 b17)),(AND2 b17,(XOR2 b18,b19))),
b23 implies
$ b22 ) & not ( (
$ b10 implies
$ AND2 b1,
b23 ) & (
$ AND2 b1,
b23 implies
$ b10 ) & (
$ b11 implies
$ AND2 b2,
b23 ) & (
$ AND2 b2,
b23 implies
$ b11 ) & (
$ b12 implies
$ AND2 b3,
b23 ) & (
$ AND2 b3,
b23 implies
$ b12 ) & (
$ b13 implies
$ AND2 b4,
b23 ) & (
$ AND2 b4,
b23 implies
$ b13 ) & (
$ b14 implies
$ AND2 b5,
b23 ) & (
$ AND2 b5,
b23 implies
$ b14 ) & (
$ b15 implies
$ AND2 b6,
b23 ) & (
$ AND2 b6,
b23 implies
$ b15 ) & (
$ b16 implies
$ AND2 b7,
b23 ) & (
$ AND2 b7,
b23 implies
$ b16 ) & (
$ b9 implies
$ OR2 b8,
(NOT1 b23) ) & (
$ OR2 b8,
(NOT1 b23) implies
$ b9 ) ) )