:: GATE_4 semantic presentation

theorem Th1: :: GATE_4:1
for b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38 being set st $ b1 & $ b13 & ( $ b26 implies $ XOR2 b38,(AND2 b1,b25) ) & ( $ XOR2 b38,(AND2 b1,b25) implies $ b26 ) & ( $ b27 implies $ XOR2 b14,(AND2 b2,b25) ) & ( $ XOR2 b14,(AND2 b2,b25) implies $ b27 ) & ( $ b28 implies $ XOR2 b15,(AND2 b3,b25) ) & ( $ XOR2 b15,(AND2 b3,b25) implies $ b28 ) & ( $ b29 implies $ XOR2 b16,(AND2 b4,b25) ) & ( $ XOR2 b16,(AND2 b4,b25) implies $ b29 ) & ( $ b30 implies $ XOR2 b17,(AND2 b5,b25) ) & ( $ XOR2 b17,(AND2 b5,b25) implies $ b30 ) & ( $ b31 implies $ XOR2 b18,(AND2 b6,b25) ) & ( $ XOR2 b18,(AND2 b6,b25) implies $ b31 ) & ( $ b32 implies $ XOR2 b19,(AND2 b7,b25) ) & ( $ XOR2 b19,(AND2 b7,b25) implies $ b32 ) & ( $ b33 implies $ XOR2 b20,(AND2 b8,b25) ) & ( $ XOR2 b20,(AND2 b8,b25) implies $ b33 ) & ( $ b34 implies $ XOR2 b21,(AND2 b9,b25) ) & ( $ XOR2 b21,(AND2 b9,b25) implies $ b34 ) & ( $ b35 implies $ XOR2 b22,(AND2 b10,b25) ) & ( $ XOR2 b22,(AND2 b10,b25) implies $ b35 ) & ( $ b36 implies $ XOR2 b23,(AND2 b11,b25) ) & ( $ XOR2 b23,(AND2 b11,b25) implies $ b36 ) & ( $ b37 implies $ XOR2 b24,(AND2 b12,b25) ) & ( $ XOR2 b24,(AND2 b12,b25) implies $ b37 ) holds
( ( $ b25 implies $ AND2 b13,b25 ) & ( $ AND2 b13,b25 implies $ b25 ) & ( $ b24 implies $ XOR2 b37,(AND2 b12,b25) ) & ( $ XOR2 b37,(AND2 b12,b25) implies $ b24 ) & ( $ b23 implies $ XOR2 b36,(AND2 b11,b25) ) & ( $ XOR2 b36,(AND2 b11,b25) implies $ b23 ) & ( $ b22 implies $ XOR2 b35,(AND2 b10,b25) ) & ( $ XOR2 b35,(AND2 b10,b25) implies $ b22 ) & ( $ b21 implies $ XOR2 b34,(AND2 b9,b25) ) & ( $ XOR2 b34,(AND2 b9,b25) implies $ b21 ) & ( $ b20 implies $ XOR2 b33,(AND2 b8,b25) ) & ( $ XOR2 b33,(AND2 b8,b25) implies $ b20 ) & ( $ b19 implies $ XOR2 b32,(AND2 b7,b25) ) & ( $ XOR2 b32,(AND2 b7,b25) implies $ b19 ) & ( $ b18 implies $ XOR2 b31,(AND2 b6,b25) ) & ( $ XOR2 b31,(AND2 b6,b25) implies $ b18 ) & ( $ b17 implies $ XOR2 b30,(AND2 b5,b25) ) & ( $ XOR2 b30,(AND2 b5,b25) implies $ b17 ) & ( $ b16 implies $ XOR2 b29,(AND2 b4,b25) ) & ( $ XOR2 b29,(AND2 b4,b25) implies $ b16 ) & ( $ b15 implies $ XOR2 b28,(AND2 b3,b25) ) & ( $ XOR2 b28,(AND2 b3,b25) implies $ b15 ) & ( $ b14 implies $ XOR2 b27,(AND2 b2,b25) ) & ( $ XOR2 b27,(AND2 b2,b25) implies $ b14 ) & ( $ b38 implies $ XOR2 b26,(AND2 b1,b25) ) & ( $ XOR2 b26,(AND2 b1,b25) implies $ b38 ) )
proof end;

theorem Th2: :: GATE_4:2
for b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38, b39, b40, b41, b42, b43, b44, b45, b46, b47, b48, b49, b50 being set st $ b1 & $ b17 & ( $ b34 implies $ XOR2 b50,(AND2 b1,b33) ) & ( $ XOR2 b50,(AND2 b1,b33) implies $ b34 ) & ( $ b35 implies $ XOR2 b18,(AND2 b2,b33) ) & ( $ XOR2 b18,(AND2 b2,b33) implies $ b35 ) & ( $ b36 implies $ XOR2 b19,(AND2 b3,b33) ) & ( $ XOR2 b19,(AND2 b3,b33) implies $ b36 ) & ( $ b37 implies $ XOR2 b20,(AND2 b4,b33) ) & ( $ XOR2 b20,(AND2 b4,b33) implies $ b37 ) & ( $ b38 implies $ XOR2 b21,(AND2 b5,b33) ) & ( $ XOR2 b21,(AND2 b5,b33) implies $ b38 ) & ( $ b39 implies $ XOR2 b22,(AND2 b6,b33) ) & ( $ XOR2 b22,(AND2 b6,b33) implies $ b39 ) & ( $ b40 implies $ XOR2 b23,(AND2 b7,b33) ) & ( $ XOR2 b23,(AND2 b7,b33) implies $ b40 ) & ( $ b41 implies $ XOR2 b24,(AND2 b8,b33) ) & ( $ XOR2 b24,(AND2 b8,b33) implies $ b41 ) & ( $ b42 implies $ XOR2 b25,(AND2 b9,b33) ) & ( $ XOR2 b25,(AND2 b9,b33) implies $ b42 ) & ( $ b43 implies $ XOR2 b26,(AND2 b10,b33) ) & ( $ XOR2 b26,(AND2 b10,b33) implies $ b43 ) & ( $ b44 implies $ XOR2 b27,(AND2 b11,b33) ) & ( $ XOR2 b27,(AND2 b11,b33) implies $ b44 ) & ( $ b45 implies $ XOR2 b28,(AND2 b12,b33) ) & ( $ XOR2 b28,(AND2 b12,b33) implies $ b45 ) & ( $ b46 implies $ XOR2 b29,(AND2 b13,b33) ) & ( $ XOR2 b29,(AND2 b13,b33) implies $ b46 ) & ( $ b47 implies $ XOR2 b30,(AND2 b14,b33) ) & ( $ XOR2 b30,(AND2 b14,b33) implies $ b47 ) & ( $ b48 implies $ XOR2 b31,(AND2 b15,b33) ) & ( $ XOR2 b31,(AND2 b15,b33) implies $ b48 ) & ( $ b49 implies $ XOR2 b32,(AND2 b16,b33) ) & ( $ XOR2 b32,(AND2 b16,b33) implies $ b49 ) holds
( ( $ b33 implies $ AND2 b17,b33 ) & ( $ AND2 b17,b33 implies $ b33 ) & ( $ b32 implies $ XOR2 b49,(AND2 b16,b33) ) & ( $ XOR2 b49,(AND2 b16,b33) implies $ b32 ) & ( $ b31 implies $ XOR2 b48,(AND2 b15,b33) ) & ( $ XOR2 b48,(AND2 b15,b33) implies $ b31 ) & ( $ b30 implies $ XOR2 b47,(AND2 b14,b33) ) & ( $ XOR2 b47,(AND2 b14,b33) implies $ b30 ) & ( $ b29 implies $ XOR2 b46,(AND2 b13,b33) ) & ( $ XOR2 b46,(AND2 b13,b33) implies $ b29 ) & ( $ b28 implies $ XOR2 b45,(AND2 b12,b33) ) & ( $ XOR2 b45,(AND2 b12,b33) implies $ b28 ) & ( $ b27 implies $ XOR2 b44,(AND2 b11,b33) ) & ( $ XOR2 b44,(AND2 b11,b33) implies $ b27 ) & ( $ b26 implies $ XOR2 b43,(AND2 b10,b33) ) & ( $ XOR2 b43,(AND2 b10,b33) implies $ b26 ) & ( $ b25 implies $ XOR2 b42,(AND2 b9,b33) ) & ( $ XOR2 b42,(AND2 b9,b33) implies $ b25 ) & ( $ b24 implies $ XOR2 b41,(AND2 b8,b33) ) & ( $ XOR2 b41,(AND2 b8,b33) implies $ b24 ) & ( $ b23 implies $ XOR2 b40,(AND2 b7,b33) ) & ( $ XOR2 b40,(AND2 b7,b33) implies $ b23 ) & ( $ b22 implies $ XOR2 b39,(AND2 b6,b33) ) & ( $ XOR2 b39,(AND2 b6,b33) implies $ b22 ) & ( $ b21 implies $ XOR2 b38,(AND2 b5,b33) ) & ( $ XOR2 b38,(AND2 b5,b33) implies $ b21 ) & ( $ b20 implies $ XOR2 b37,(AND2 b4,b33) ) & ( $ XOR2 b37,(AND2 b4,b33) implies $ b20 ) & ( $ b19 implies $ XOR2 b36,(AND2 b3,b33) ) & ( $ XOR2 b36,(AND2 b3,b33) implies $ b19 ) & ( $ b18 implies $ XOR2 b35,(AND2 b2,b33) ) & ( $ XOR2 b35,(AND2 b2,b33) implies $ b18 ) & ( $ b50 implies $ XOR2 b34,(AND2 b1,b33) ) & ( $ XOR2 b34,(AND2 b1,b33) implies $ b50 ) )
proof end;

theorem Th3: :: GATE_4:3
for b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38, b39 being set st $ b1 & $ b13 & not $ b38 & ( $ b26 implies $ XOR2 b39,b25 ) & ( $ XOR2 b39,b25 implies $ b26 ) & ( $ b27 implies $ XOR2 b14,(AND2 b2,b26) ) & ( $ XOR2 b14,(AND2 b2,b26) implies $ b27 ) & ( $ b28 implies $ XOR2 b15,(AND2 b3,b26) ) & ( $ XOR2 b15,(AND2 b3,b26) implies $ b28 ) & ( $ b29 implies $ XOR2 b16,(AND2 b4,b26) ) & ( $ XOR2 b16,(AND2 b4,b26) implies $ b29 ) & ( $ b30 implies $ XOR2 b17,(AND2 b5,b26) ) & ( $ XOR2 b17,(AND2 b5,b26) implies $ b30 ) & ( $ b31 implies $ XOR2 b18,(AND2 b6,b26) ) & ( $ XOR2 b18,(AND2 b6,b26) implies $ b31 ) & ( $ b32 implies $ XOR2 b19,(AND2 b7,b26) ) & ( $ XOR2 b19,(AND2 b7,b26) implies $ b32 ) & ( $ b33 implies $ XOR2 b20,(AND2 b8,b26) ) & ( $ XOR2 b20,(AND2 b8,b26) implies $ b33 ) & ( $ b34 implies $ XOR2 b21,(AND2 b9,b26) ) & ( $ XOR2 b21,(AND2 b9,b26) implies $ b34 ) & ( $ b35 implies $ XOR2 b22,(AND2 b10,b26) ) & ( $ XOR2 b22,(AND2 b10,b26) implies $ b35 ) & ( $ b36 implies $ XOR2 b23,(AND2 b11,b26) ) & ( $ XOR2 b23,(AND2 b11,b26) implies $ b36 ) & ( $ b37 implies $ XOR2 b24,(AND2 b12,b26) ) & ( $ XOR2 b24,(AND2 b12,b26) implies $ b37 ) holds
( ( $ b37 implies $ XOR2 (XOR2 b24,(AND2 b12,b25)),(XOR2 b38,(AND2 b12,b39)) ) & ( $ XOR2 (XOR2 b24,(AND2 b12,b25)),(XOR2 b38,(AND2 b12,b39)) implies $ b37 ) & ( $ b36 implies $ XOR2 (XOR2 b23,(AND2 b11,b25)),(XOR2 b38,(AND2 b11,b39)) ) & ( $ XOR2 (XOR2 b23,(AND2 b11,b25)),(XOR2 b38,(AND2 b11,b39)) implies $ b36 ) & ( $ b35 implies $ XOR2 (XOR2 b22,(AND2 b10,b25)),(XOR2 b38,(AND2 b10,b39)) ) & ( $ XOR2 (XOR2 b22,(AND2 b10,b25)),(XOR2 b38,(AND2 b10,b39)) implies $ b35 ) & ( $ b34 implies $ XOR2 (XOR2 b21,(AND2 b9,b25)),(XOR2 b38,(AND2 b9,b39)) ) & ( $ XOR2 (XOR2 b21,(AND2 b9,b25)),(XOR2 b38,(AND2 b9,b39)) implies $ b34 ) & ( $ b33 implies $ XOR2 (XOR2 b20,(AND2 b8,b25)),(XOR2 b38,(AND2 b8,b39)) ) & ( $ XOR2 (XOR2 b20,(AND2 b8,b25)),(XOR2 b38,(AND2 b8,b39)) implies $ b33 ) & ( $ b32 implies $ XOR2 (XOR2 b19,(AND2 b7,b25)),(XOR2 b38,(AND2 b7,b39)) ) & ( $ XOR2 (XOR2 b19,(AND2 b7,b25)),(XOR2 b38,(AND2 b7,b39)) implies $ b32 ) & ( $ b31 implies $ XOR2 (XOR2 b18,(AND2 b6,b25)),(XOR2 b38,(AND2 b6,b39)) ) & ( $ XOR2 (XOR2 b18,(AND2 b6,b25)),(XOR2 b38,(AND2 b6,b39)) implies $ b31 ) & ( $ b30 implies $ XOR2 (XOR2 b17,(AND2 b5,b25)),(XOR2 b38,(AND2 b5,b39)) ) & ( $ XOR2 (XOR2 b17,(AND2 b5,b25)),(XOR2 b38,(AND2 b5,b39)) implies $ b30 ) & ( $ b29 implies $ XOR2 (XOR2 b16,(AND2 b4,b25)),(XOR2 b38,(AND2 b4,b39)) ) & ( $ XOR2 (XOR2 b16,(AND2 b4,b25)),(XOR2 b38,(AND2 b4,b39)) implies $ b29 ) & ( $ b28 implies $ XOR2 (XOR2 b15,(AND2 b3,b25)),(XOR2 b38,(AND2 b3,b39)) ) & ( $ XOR2 (XOR2 b15,(AND2 b3,b25)),(XOR2 b38,(AND2 b3,b39)) implies $ b28 ) & ( $ b27 implies $ XOR2 (XOR2 b14,(AND2 b2,b25)),(XOR2 b38,(AND2 b2,b39)) ) & ( $ XOR2 (XOR2 b14,(AND2 b2,b25)),(XOR2 b38,(AND2 b2,b39)) implies $ b27 ) & ( $ b26 implies $ XOR2 (XOR2 b38,(AND2 b1,b25)),(XOR2 b38,(AND2 b1,b39)) ) & ( $ XOR2 (XOR2 b38,(AND2 b1,b25)),(XOR2 b38,(AND2 b1,b39)) implies $ b26 ) )
proof end;

theorem Th4: :: GATE_4:4
for b1, b2, b3, b4, b5, b6, b7, b8, b9, b10, b11, b12, b13, b14, b15, b16, b17, b18, b19, b20, b21, b22, b23, b24, b25, b26, b27, b28, b29, b30, b31, b32, b33, b34, b35, b36, b37, b38, b39, b40, b41, b42, b43, b44, b45, b46, b47, b48, b49, b50, b51 being set st $ b1 & $ b17 & not $ b50 & ( $ b34 implies $ XOR2 b51,b33 ) & ( $ XOR2 b51,b33 implies $ b34 ) & ( $ b35 implies $ XOR2 b18,(AND2 b2,b34) ) & ( $ XOR2 b18,(AND2 b2,b34) implies $ b35 ) & ( $ b36 implies $ XOR2 b19,(AND2 b3,b34) ) & ( $ XOR2 b19,(AND2 b3,b34) implies $ b36 ) & ( $ b37 implies $ XOR2 b20,(AND2 b4,b34) ) & ( $ XOR2 b20,(AND2 b4,b34) implies $ b37 ) & ( $ b38 implies $ XOR2 b21,(AND2 b5,b34) ) & ( $ XOR2 b21,(AND2 b5,b34) implies $ b38 ) & ( $ b39 implies $ XOR2 b22,(AND2 b6,b34) ) & ( $ XOR2 b22,(AND2 b6,b34) implies $ b39 ) & ( $ b40 implies $ XOR2 b23,(AND2 b7,b34) ) & ( $ XOR2 b23,(AND2 b7,b34) implies $ b40 ) & ( $ b41 implies $ XOR2 b24,(AND2 b8,b34) ) & ( $ XOR2 b24,(AND2 b8,b34) implies $ b41 ) & ( $ b42 implies $ XOR2 b25,(AND2 b9,b34) ) & ( $ XOR2 b25,(AND2 b9,b34) implies $ b42 ) & ( $ b43 implies $ XOR2 b26,(AND2 b10,b34) ) & ( $ XOR2 b26,(AND2 b10,b34) implies $ b43 ) & ( $ b44 implies $ XOR2 b27,(AND2 b11,b34) ) & ( $ XOR2 b27,(AND2 b11,b34) implies $ b44 ) & ( $ b45 implies $ XOR2 b28,(AND2 b12,b34) ) & ( $ XOR2 b28,(AND2 b12,b34) implies $ b45 ) & ( $ b46 implies $ XOR2 b29,(AND2 b13,b34) ) & ( $ XOR2 b29,(AND2 b13,b34) implies $ b46 ) & ( $ b47 implies $ XOR2 b30,(AND2 b14,b34) ) & ( $ XOR2 b30,(AND2 b14,b34) implies $ b47 ) & ( $ b48 implies $ XOR2 b31,(AND2 b15,b34) ) & ( $ XOR2 b31,(AND2 b15,b34) implies $ b48 ) & ( $ b49 implies $ XOR2 b32,(AND2 b16,b34) ) & ( $ XOR2 b32,(AND2 b16,b34) implies $ b49 ) holds
( ( $ b49 implies $ XOR2 (XOR2 b32,(AND2 b16,b33)),(XOR2 b50,(AND2 b16,b51)) ) & ( $ XOR2 (XOR2 b32,(AND2 b16,b33)),(XOR2 b50,(AND2 b16,b51)) implies $ b49 ) & ( $ b48 implies $ XOR2 (XOR2 b31,(AND2 b15,b33)),(XOR2 b50,(AND2 b15,b51)) ) & ( $ XOR2 (XOR2 b31,(AND2 b15,b33)),(XOR2 b50,(AND2 b15,b51)) implies $ b48 ) & ( $ b47 implies $ XOR2 (XOR2 b30,(AND2 b14,b33)),(XOR2 b50,(AND2 b14,b51)) ) & ( $ XOR2 (XOR2 b30,(AND2 b14,b33)),(XOR2 b50,(AND2 b14,b51)) implies $ b47 ) & ( $ b46 implies $ XOR2 (XOR2 b29,(AND2 b13,b33)),(XOR2 b50,(AND2 b13,b51)) ) & ( $ XOR2 (XOR2 b29,(AND2 b13,b33)),(XOR2 b50,(AND2 b13,b51)) implies $ b46 ) & ( $ b45 implies $ XOR2 (XOR2 b28,(AND2 b12,b33)),(XOR2 b50,(AND2 b12,b51)) ) & ( $ XOR2 (XOR2 b28,(AND2 b12,b33)),(XOR2 b50,(AND2 b12,b51)) implies $ b45 ) & ( $ b44 implies $ XOR2 (XOR2 b27,(AND2 b11,b33)),(XOR2 b50,(AND2 b11,b51)) ) & ( $ XOR2 (XOR2 b27,(AND2 b11,b33)),(XOR2 b50,(AND2 b11,b51)) implies $ b44 ) & ( $ b43 implies $ XOR2 (XOR2 b26,(AND2 b10,b33)),(XOR2 b50,(AND2 b10,b51)) ) & ( $ XOR2 (XOR2 b26,(AND2 b10,b33)),(XOR2 b50,(AND2 b10,b51)) implies $ b43 ) & ( $ b42 implies $ XOR2 (XOR2 b25,(AND2 b9,b33)),(XOR2 b50,(AND2 b9,b51)) ) & ( $ XOR2 (XOR2 b25,(AND2 b9,b33)),(XOR2 b50,(AND2 b9,b51)) implies $ b42 ) & ( $ b41 implies $ XOR2 (XOR2 b24,(AND2 b8,b33)),(XOR2 b50,(AND2 b8,b51)) ) & ( $ XOR2 (XOR2 b24,(AND2 b8,b33)),(XOR2 b50,(AND2 b8,b51)) implies $ b41 ) & ( $ b40 implies $ XOR2 (XOR2 b23,(AND2 b7,b33)),(XOR2 b50,(AND2 b7,b51)) ) & ( $ XOR2 (XOR2 b23,(AND2 b7,b33)),(XOR2 b50,(AND2 b7,b51)) implies $ b40 ) & ( $ b39 implies $ XOR2 (XOR2 b22,(AND2 b6,b33)),(XOR2 b50,(AND2 b6,b51)) ) & ( $ XOR2 (XOR2 b22,(AND2 b6,b33)),(XOR2 b50,(AND2 b6,b51)) implies $ b39 ) & ( $ b38 implies $ XOR2 (XOR2 b21,(AND2 b5,b33)),(XOR2 b50,(AND2 b5,b51)) ) & ( $ XOR2 (XOR2 b21,(AND2 b5,b33)),(XOR2 b50,(AND2 b5,b51)) implies $ b38 ) & ( $ b37 implies $ XOR2 (XOR2 b20,(AND2 b4,b33)),(XOR2 b50,(AND2 b4,b51)) ) & ( $ XOR2 (XOR2 b20,(AND2 b4,b33)),(XOR2 b50,(AND2 b4,b51)) implies $ b37 ) & ( $ b36 implies $ XOR2 (XOR2 b19,(AND2 b3,b33)),(XOR2 b50,(AND2 b3,b51)) ) & ( $ XOR2 (XOR2 b19,(AND2 b3,b33)),(XOR2 b50,(AND2 b3,b51)) implies $ b36 ) & ( $ b35 implies $ XOR2 (XOR2 b18,(AND2 b2,b33)),(XOR2 b50,(AND2 b2,b51)) ) & ( $ XOR2 (XOR2 b18,(AND2 b2,b33)),(XOR2 b50,(AND2 b2,b51)) implies $ b35 ) & ( $ b34 implies $ XOR2 (XOR2 b50,(AND2 b1,b33)),(XOR2 b50,(AND2 b1,b51)) ) & ( $ XOR2 (XOR2 b50,(AND2 b1,b33)),(XOR2 b50,(AND2 b1,b51)) implies $ b34 ) )
proof end;