:: GRFUNC_1  semantic presentation
theorem Th1: :: GRFUNC_1:1
canceled; 
theorem Th2: :: GRFUNC_1:2
canceled; 
theorem Th3: :: GRFUNC_1:3
canceled; 
theorem Th4: :: GRFUNC_1:4
canceled; 
theorem Th5: :: GRFUNC_1:5
canceled; 
theorem Th6: :: GRFUNC_1:6
theorem Th7: :: GRFUNC_1:7
canceled; 
theorem Th8: :: GRFUNC_1:8
theorem Th9: :: GRFUNC_1:9
Lemma2: 
for b1, b2 being   set 
 for b3, b4 being  Function  st (rng b3) /\ (rng b4) =  {}  & b1 in  dom b3 & b2 in  dom b4 holds 
b3 . b1 <> b4 . b2
 
theorem Th10: :: GRFUNC_1:10
canceled; 
theorem Th11: :: GRFUNC_1:11
canceled; 
theorem Th12: :: GRFUNC_1:12
theorem Th13: :: GRFUNC_1:13
theorem Th14: :: GRFUNC_1:14
canceled; 
theorem Th15: :: GRFUNC_1:15
Lemma4: 
for b1, b2, b3, b4 being   set   st [b1,b2] in {[b3,b4]} holds 
( b1 = b3 & b2 = b4 )
 
theorem Th16: :: GRFUNC_1:16
theorem Th17: :: GRFUNC_1:17
canceled; 
theorem Th18: :: GRFUNC_1:18
theorem Th19: :: GRFUNC_1:19
for 
b1, 
b2, 
b3, 
b4 being   
set  holds 
 ( 
{[b1,b2],[b3,b4]} is   
Function iff ( 
b1 = b3 implies 
b2 = b4 ) )
theorem Th20: :: GRFUNC_1:20
canceled; 
theorem Th21: :: GRFUNC_1:21
canceled; 
theorem Th22: :: GRFUNC_1:22
canceled; 
theorem Th23: :: GRFUNC_1:23
canceled; 
theorem Th24: :: GRFUNC_1:24
canceled; 
theorem Th25: :: GRFUNC_1:25
theorem Th26: :: GRFUNC_1:26
theorem Th27: :: GRFUNC_1:27
theorem Th28: :: GRFUNC_1:28
theorem Th29: :: GRFUNC_1:29
for 
b1 being   
set  for 
b2, 
b3, 
b4 being  
Function  st 
b2 = b3 /\ b4 & 
b1 in  dom b2 holds 
( 
b2 . b1 = b3 . b1 & 
b2 . b1 = b4 . b1 )
theorem Th30: :: GRFUNC_1:30
theorem Th31: :: GRFUNC_1:31
theorem Th32: :: GRFUNC_1:32
Lemma9: 
for b1 being   set 
 for b2, b3, b4 being  Function  st b2 = b3 \/ b4 holds 
( b1 in  dom b2 iff ( b1 in  dom b3 or b1 in  dom b4 ) )
 
theorem Th33: :: GRFUNC_1:33
theorem Th34: :: GRFUNC_1:34
theorem Th35: :: GRFUNC_1:35
theorem Th36: :: GRFUNC_1:36
for 
b1 being   
set  for 
b2, 
b3, 
b4 being  
Function  st 
b1 in  dom b2 & 
b2 = b3 \/ b4 & not 
b2 . b1 = b3 . b1 holds 
b2 . b1 = b4 . b1
theorem Th37: :: GRFUNC_1:37
theorem Th38: :: GRFUNC_1:38
theorem Th39: :: GRFUNC_1:39
canceled; 
theorem Th40: :: GRFUNC_1:40
canceled; 
theorem Th41: :: GRFUNC_1:41
canceled; 
theorem Th42: :: GRFUNC_1:42
canceled; 
theorem Th43: :: GRFUNC_1:43
canceled; 
theorem Th44: :: GRFUNC_1:44
canceled; 
theorem Th45: :: GRFUNC_1:45
canceled; 
theorem Th46: :: GRFUNC_1:46
theorem Th47: :: GRFUNC_1:47
theorem Th48: :: GRFUNC_1:48
canceled; 
theorem Th49: :: GRFUNC_1:49
theorem Th50: :: GRFUNC_1:50
canceled; 
theorem Th51: :: GRFUNC_1:51
canceled; 
theorem Th52: :: GRFUNC_1:52
theorem Th53: :: GRFUNC_1:53
canceled; 
theorem Th54: :: GRFUNC_1:54
theorem Th55: :: GRFUNC_1:55
canceled; 
theorem Th56: :: GRFUNC_1:56
canceled; 
theorem Th57: :: GRFUNC_1:57
canceled; 
theorem Th58: :: GRFUNC_1:58
canceled; 
theorem Th59: :: GRFUNC_1:59
canceled; 
theorem Th60: :: GRFUNC_1:60
canceled; 
theorem Th61: :: GRFUNC_1:61
canceled; 
theorem Th62: :: GRFUNC_1:62
canceled; 
theorem Th63: :: GRFUNC_1:63
canceled; 
theorem Th64: :: GRFUNC_1:64
theorem Th65: :: GRFUNC_1:65
canceled; 
theorem Th66: :: GRFUNC_1:66
canceled; 
theorem Th67: :: GRFUNC_1:67
theorem Th68: :: GRFUNC_1:68
canceled; 
theorem Th69: :: GRFUNC_1:69
theorem Th70: :: GRFUNC_1:70
canceled; 
theorem Th71: :: GRFUNC_1:71
canceled; 
theorem Th72: :: GRFUNC_1:72
canceled; 
theorem Th73: :: GRFUNC_1:73
canceled; 
theorem Th74: :: GRFUNC_1:74
canceled; 
theorem Th75: :: GRFUNC_1:75
canceled; 
theorem Th76: :: GRFUNC_1:76
canceled; 
theorem Th77: :: GRFUNC_1:77
canceled; 
theorem Th78: :: GRFUNC_1:78
canceled; 
theorem Th79: :: GRFUNC_1:79
theorem Th80: :: GRFUNC_1:80
canceled; 
theorem Th81: :: GRFUNC_1:81
canceled; 
theorem Th82: :: GRFUNC_1:82
canceled; 
theorem Th83: :: GRFUNC_1:83
canceled; 
theorem Th84: :: GRFUNC_1:84
canceled; 
theorem Th85: :: GRFUNC_1:85
canceled; 
theorem Th86: :: GRFUNC_1:86
canceled; 
theorem Th87: :: GRFUNC_1:87
for 
b1, 
b2 being   
set  for 
b3 being  
Function holds 
 ( 
b1 in b3 " b2 iff ( 
[b1,(b3 . b1)] in b3 & 
b3 . b1 in b2 ) )
theorem Th88: :: GRFUNC_1:88
theorem Th89: :: GRFUNC_1:89