:: SIN_COS8 semantic presentation

Lemma1: for b1 being real number holds
( cosh b1 >= 1 & cosh 0 = 1 & sinh 0 = 0 )
proof end;

Lemma2: for b1 being real number st b1 >= 0 holds
sinh b1 >= 0
by SIN_COS5:46;

Lemma3: for b1 being real number holds
( sinh b1 = ((exp b1) - (exp (- b1))) / 2 & cosh b1 = ((exp b1) + (exp (- b1))) / 2 & tanh b1 = ((exp b1) - (exp (- b1))) / ((exp b1) + (exp (- b1))) )
proof end;

Lemma4: for b1 being real number holds
( ((cosh b1) ^2 ) - ((sinh b1) ^2 ) = 1 & ((cosh b1) * (cosh b1)) - ((sinh b1) * (sinh b1)) = 1 )
proof end;

theorem Th1: :: SIN_COS8:1
for b1 being real number holds
( tanh b1 = (sinh b1) / (cosh b1) & tanh 0 = 0 )
proof end;

Lemma6: for b1 being real number st b1 <> 0 holds
( sinh b1 <> 0 & tanh b1 <> 0 )
proof end;

Lemma7: for b1, b2 being real number st b1 - b2 <> 0 holds
sinh ((b1 / 2) - (b2 / 2)) <> 0
proof end;

Lemma8: for b1, b2 being real number st b1 + b2 <> 0 holds
sinh ((b1 / 2) + (b2 / 2)) <> 0
proof end;

Lemma9: for b1 being real number holds
( (sinh b1) ^2 = (1 / 2) * ((cosh (2 * b1)) - 1) & (cosh b1) ^2 = (1 / 2) * ((cosh (2 * b1)) + 1) )
proof end;

Lemma10: for b1 being real number holds
( sinh (- b1) = - (sinh b1) & cosh (- b1) = cosh b1 & tanh (- b1) = - (tanh b1) & coth (- b1) = - (coth b1) & sech (- b1) = sech b1 & cosech (- b1) = - (cosech b1) )
proof end;

theorem Th2: :: SIN_COS8:2
for b1 being real number holds
( sinh b1 = 1 / (cosech b1) & cosh b1 = 1 / (sech b1) & tanh b1 = 1 / (coth b1) )
proof end;

Lemma12: for b1 being real number holds (exp b1) + (exp (- b1)) >= 2
proof end;

theorem Th3: :: SIN_COS8:3
for b1 being real number holds
( sech b1 <= 1 & 0 < sech b1 & sech 0 = 1 )
proof end;

theorem Th4: :: SIN_COS8:4
for b1 being real number st b1 >= 0 holds
tanh b1 >= 0
proof end;

theorem Th5: :: SIN_COS8:5
for b1 being real number holds
( cosh b1 = 1 / (sqrt (1 - ((tanh b1) ^2 ))) & sinh b1 = (tanh b1) / (sqrt (1 - ((tanh b1) ^2 ))) )
proof end;

theorem Th6: :: SIN_COS8:6
for b1 being real number
for b2 being Nat holds
( ((cosh b1) + (sinh b1)) |^ b2 = (cosh (b2 * b1)) + (sinh (b2 * b1)) & ((cosh b1) - (sinh b1)) |^ b2 = (cosh (b2 * b1)) - (sinh (b2 * b1)) )
proof end;

theorem Th7: :: SIN_COS8:7
for b1 being real number holds
( exp b1 = (cosh b1) + (sinh b1) & exp (- b1) = (cosh b1) - (sinh b1) & exp b1 = ((cosh (b1 / 2)) + (sinh (b1 / 2))) / ((cosh (b1 / 2)) - (sinh (b1 / 2))) & exp (- b1) = ((cosh (b1 / 2)) - (sinh (b1 / 2))) / ((cosh (b1 / 2)) + (sinh (b1 / 2))) & exp b1 = (1 + (tanh (b1 / 2))) / (1 - (tanh (b1 / 2))) & exp (- b1) = (1 - (tanh (b1 / 2))) / (1 + (tanh (b1 / 2))) )
proof end;

theorem Th8: :: SIN_COS8:8
for b1 being real number st b1 <> 0 holds
( exp b1 = ((coth (b1 / 2)) + 1) / ((coth (b1 / 2)) - 1) & exp (- b1) = ((coth (b1 / 2)) - 1) / ((coth (b1 / 2)) + 1) )
proof end;

theorem Th9: :: SIN_COS8:9
for b1 being real number holds ((cosh b1) + (sinh b1)) / ((cosh b1) - (sinh b1)) = (1 + (tanh b1)) / (1 - (tanh b1))
proof end;

Lemma15: for b1, b2 being real number holds
( cosh (b1 + b2) = ((cosh b1) * (cosh b2)) + ((sinh b1) * (sinh b2)) & cosh (b1 - b2) = ((cosh b1) * (cosh b2)) - ((sinh b1) * (sinh b2)) & sinh (b1 + b2) = ((sinh b1) * (cosh b2)) + ((cosh b1) * (sinh b2)) & sinh (b1 - b2) = ((sinh b1) * (cosh b2)) - ((cosh b1) * (sinh b2)) & tanh (b1 + b2) = ((tanh b1) + (tanh b2)) / (1 + ((tanh b1) * (tanh b2))) & tanh (b1 - b2) = ((tanh b1) - (tanh b2)) / (1 - ((tanh b1) * (tanh b2))) )
proof end;

theorem Th10: :: SIN_COS8:10
for b1, b2 being real number st b1 <> 0 holds
( (coth b1) + (tanh b2) = (cosh (b1 + b2)) / ((sinh b1) * (cosh b2)) & (coth b1) - (tanh b2) = (cosh (b1 - b2)) / ((sinh b1) * (cosh b2)) )
proof end;

theorem Th11: :: SIN_COS8:11
for b1, b2 being real number holds
( (sinh b1) * (sinh b2) = (1 / 2) * ((cosh (b1 + b2)) - (cosh (b1 - b2))) & (sinh b1) * (cosh b2) = (1 / 2) * ((sinh (b1 + b2)) + (sinh (b1 - b2))) & (cosh b1) * (sinh b2) = (1 / 2) * ((sinh (b1 + b2)) - (sinh (b1 - b2))) & (cosh b1) * (cosh b2) = (1 / 2) * ((cosh (b1 + b2)) + (cosh (b1 - b2))) )
proof end;

theorem Th12: :: SIN_COS8:12
for b1, b2 being real number holds ((sinh b1) ^2 ) - ((cosh b2) ^2 ) = ((sinh (b1 + b2)) * (sinh (b1 - b2))) - 1
proof end;

Lemma17: for b1, b2 being real number holds
( (sinh b1) + (sinh b2) = (2 * (sinh ((b1 / 2) + (b2 / 2)))) * (cosh ((b1 / 2) - (b2 / 2))) & (sinh b1) - (sinh b2) = (2 * (sinh ((b1 / 2) - (b2 / 2)))) * (cosh ((b1 / 2) + (b2 / 2))) & (cosh b1) + (cosh b2) = (2 * (cosh ((b1 / 2) + (b2 / 2)))) * (cosh ((b1 / 2) - (b2 / 2))) & (cosh b1) - (cosh b2) = (2 * (sinh ((b1 / 2) - (b2 / 2)))) * (sinh ((b1 / 2) + (b2 / 2))) & (tanh b1) + (tanh b2) = (sinh (b1 + b2)) / ((cosh b1) * (cosh b2)) & (tanh b1) - (tanh b2) = (sinh (b1 - b2)) / ((cosh b1) * (cosh b2)) )
proof end;

theorem Th13: :: SIN_COS8:13
for b1, b2 being real number holds
( (((sinh b1) - (sinh b2)) ^2 ) - (((cosh b1) - (cosh b2)) ^2 ) = 4 * ((sinh ((b1 - b2) / 2)) ^2 ) & (((cosh b1) + (cosh b2)) ^2 ) - (((sinh b1) + (sinh b2)) ^2 ) = 4 * ((cosh ((b1 - b2) / 2)) ^2 ) )
proof end;

theorem Th14: :: SIN_COS8:14
for b1, b2 being real number holds ((sinh b1) + (sinh b2)) / ((sinh b1) - (sinh b2)) = (tanh ((b1 + b2) / 2)) * (coth ((b1 - b2) / 2))
proof end;

theorem Th15: :: SIN_COS8:15
for b1, b2 being real number holds ((cosh b1) + (cosh b2)) / ((cosh b1) - (cosh b2)) = (coth ((b1 + b2) / 2)) * (coth ((b1 - b2) / 2))
proof end;

theorem Th16: :: SIN_COS8:16
for b1, b2 being real number st b1 - b2 <> 0 holds
((sinh b1) + (sinh b2)) / ((cosh b1) + (cosh b2)) = ((cosh b1) - (cosh b2)) / ((sinh b1) - (sinh b2))
proof end;

theorem Th17: :: SIN_COS8:17
for b1, b2 being real number st b1 + b2 <> 0 holds
((sinh b1) - (sinh b2)) / ((cosh b1) + (cosh b2)) = ((cosh b1) - (cosh b2)) / ((sinh b1) + (sinh b2))
proof end;

theorem Th18: :: SIN_COS8:18
for b1, b2 being real number holds
( ((sinh b1) + (sinh b2)) / ((cosh b1) + (cosh b2)) = tanh ((b1 / 2) + (b2 / 2)) & ((sinh b1) - (sinh b2)) / ((cosh b1) + (cosh b2)) = tanh ((b1 / 2) - (b2 / 2)) )
proof end;

theorem Th19: :: SIN_COS8:19
for b1, b2 being real number holds ((tanh b1) + (tanh b2)) / ((tanh b1) - (tanh b2)) = (sinh (b1 + b2)) / (sinh (b1 - b2))
proof end;

Lemma18: for b1 being real number holds 1 + ((cosh b1) + (cosh b1)) <> 0
proof end;

Lemma19: for b1 being real number holds
( (cosh b1) + 1 > 0 & (cosh b1) - 1 >= 0 & ((cosh b1) + 2) + (cosh b1) <> 0 )
proof end;

theorem Th20: :: SIN_COS8:20
for b1, b2 being real number holds (((sinh (b1 - b2)) + (sinh b1)) + (sinh (b1 + b2))) / (((cosh (b1 - b2)) + (cosh b1)) + (cosh (b1 + b2))) = tanh b1
proof end;

Lemma20: for b1, b2 being real number holds
( ((sinh b1) * (cosh b2)) / ((cosh b1) * (cosh b2)) = tanh b1 & (sinh b1) * (cosh b2) = (tanh b1) * ((cosh b1) * (cosh b2)) & sinh b1 = (tanh b1) * (cosh b1) & (sinh b1) * (sinh b2) = ((tanh b1) * (tanh b2)) * ((cosh b1) * (cosh b2)) )
proof end;

theorem Th21: :: SIN_COS8:21
for b1, b2, b3 being real number holds
( sinh ((b1 + b2) + b3) = ((((((tanh b1) + (tanh b2)) + (tanh b3)) + (((tanh b1) * (tanh b2)) * (tanh b3))) * (cosh b1)) * (cosh b2)) * (cosh b3) & cosh ((b1 + b2) + b3) = (((((1 + ((tanh b1) * (tanh b2))) + ((tanh b2) * (tanh b3))) + ((tanh b3) * (tanh b1))) * (cosh b1)) * (cosh b2)) * (cosh b3) & tanh ((b1 + b2) + b3) = ((((tanh b1) + (tanh b2)) + (tanh b3)) + (((tanh b1) * (tanh b2)) * (tanh b3))) / (((1 + ((tanh b2) * (tanh b3))) + ((tanh b3) * (tanh b1))) + ((tanh b1) * (tanh b2))) )
proof end;

theorem Th22: :: SIN_COS8:22
for b1, b2, b3 being real number holds (((cosh (2 * b1)) + (cosh (2 * b2))) + (cosh (2 * b3))) + (cosh (2 * ((b1 + b2) + b3))) = ((4 * (cosh (b2 + b3))) * (cosh (b3 + b1))) * (cosh (b1 + b2))
proof end;

theorem Th23: :: SIN_COS8:23
for b1, b2, b3 being real number holds (((((sinh b1) * (sinh b2)) * (sinh (b2 - b1))) + (((sinh b2) * (sinh b3)) * (sinh (b3 - b2)))) + (((sinh b3) * (sinh b1)) * (sinh (b1 - b3)))) + (((sinh (b2 - b1)) * (sinh (b3 - b2))) * (sinh (b1 - b3))) = 0
proof end;

theorem Th24: :: SIN_COS8:24
for b1 being real number st b1 >= 0 holds
sinh (b1 / 2) = sqrt (((cosh b1) - 1) / 2)
proof end;

theorem Th25: :: SIN_COS8:25
for b1 being real number st b1 < 0 holds
sinh (b1 / 2) = - (sqrt (((cosh b1) - 1) / 2))
proof end;

theorem Th26: :: SIN_COS8:26
for b1 being real number holds
( sinh (2 * b1) = (2 * (sinh b1)) * (cosh b1) & cosh (2 * b1) = (2 * ((cosh b1) ^2 )) - 1 & tanh (2 * b1) = (2 * (tanh b1)) / (1 + ((tanh b1) ^2 )) )
proof end;

theorem Th27: :: SIN_COS8:27
for b1 being real number holds
( sinh (2 * b1) = (2 * (tanh b1)) / (1 - ((tanh b1) ^2 )) & sinh (3 * b1) = (sinh b1) * ((4 * ((cosh b1) ^2 )) - 1) & sinh (3 * b1) = (3 * (sinh b1)) - ((2 * (sinh b1)) * (1 - (cosh (2 * b1)))) & cosh (2 * b1) = 1 + (2 * ((sinh b1) ^2 )) & cosh (2 * b1) = ((cosh b1) ^2 ) + ((sinh b1) ^2 ) & cosh (2 * b1) = (1 + ((tanh b1) ^2 )) / (1 - ((tanh b1) ^2 )) & cosh (3 * b1) = (cosh b1) * ((4 * ((sinh b1) ^2 )) + 1) & tanh (3 * b1) = ((3 * (tanh b1)) + ((tanh b1) |^ 3)) / (1 + (3 * ((tanh b1) ^2 ))) )
proof end;

theorem Th28: :: SIN_COS8:28
for b1 being real number holds (((sinh (5 * b1)) + (2 * (sinh (3 * b1)))) + (sinh b1)) / (((sinh (7 * b1)) + (2 * (sinh (5 * b1)))) + (sinh (3 * b1))) = (sinh (3 * b1)) / (sinh (5 * b1))
proof end;

theorem Th29: :: SIN_COS8:29
for b1 being real number st b1 >= 0 holds
tanh (b1 / 2) = sqrt (((cosh b1) - 1) / ((cosh b1) + 1))
proof end;

theorem Th30: :: SIN_COS8:30
for b1 being real number st b1 < 0 holds
tanh (b1 / 2) = - (sqrt (((cosh b1) - 1) / ((cosh b1) + 1)))
proof end;

theorem Th31: :: SIN_COS8:31
for b1 being real number holds
( (sinh b1) |^ 3 = ((sinh (3 * b1)) - (3 * (sinh b1))) / 4 & (sinh b1) |^ 4 = (((cosh (4 * b1)) - (4 * (cosh (2 * b1)))) + 3) / 8 & (sinh b1) |^ 5 = (((sinh (5 * b1)) - (5 * (sinh (3 * b1)))) + (10 * (sinh b1))) / 16 & (sinh b1) |^ 6 = ((((cosh (6 * b1)) - (6 * (cosh (4 * b1)))) + (15 * (cosh (2 * b1)))) - 10) / 32 & (sinh b1) |^ 7 = ((((sinh (7 * b1)) - (7 * (sinh (5 * b1)))) + (21 * (sinh (3 * b1)))) - (35 * (sinh b1))) / 64 & (sinh b1) |^ 8 = (((((cosh (8 * b1)) - (8 * (cosh (6 * b1)))) + (28 * (cosh (4 * b1)))) - (56 * (cosh (2 * b1)))) + 35) / 128 )
proof end;

theorem Th32: :: SIN_COS8:32
for b1 being real number holds
( (cosh b1) |^ 3 = ((cosh (3 * b1)) + (3 * (cosh b1))) / 4 & (cosh b1) |^ 4 = (((cosh (4 * b1)) + (4 * (cosh (2 * b1)))) + 3) / 8 & (cosh b1) |^ 5 = (((cosh (5 * b1)) + (5 * (cosh (3 * b1)))) + (10 * (cosh b1))) / 16 & (cosh b1) |^ 6 = ((((cosh (6 * b1)) + (6 * (cosh (4 * b1)))) + (15 * (cosh (2 * b1)))) + 10) / 32 & (cosh b1) |^ 7 = ((((cosh (7 * b1)) + (7 * (cosh (5 * b1)))) + (21 * (cosh (3 * b1)))) + (35 * (cosh b1))) / 64 & (cosh b1) |^ 8 = (((((cosh (8 * b1)) + (8 * (cosh (6 * b1)))) + (28 * (cosh (4 * b1)))) + (56 * (cosh (2 * b1)))) + 35) / 128 )
proof end;

theorem Th33: :: SIN_COS8:33
for b1, b2 being real number holds
( (cosh (2 * b1)) + (cos (2 * b2)) = 2 + (2 * (((sinh b1) ^2 ) - ((sin b2) ^2 ))) & (cosh (2 * b1)) - (cos (2 * b2)) = 2 * (((sinh b1) ^2 ) + ((sin b2) ^2 )) )
proof end;