:: ZFMODEL2 semantic presentation
theorem Th1: :: ZFMODEL2:1
theorem Th2: :: ZFMODEL2:2
theorem Th3: :: ZFMODEL2:3
theorem Th4: :: ZFMODEL2:4
theorem Th5: :: ZFMODEL2:5
theorem Th6: :: ZFMODEL2:6
theorem Th7: :: ZFMODEL2:7
for
b1,
b2,
b3 being
Variable for
b4 being non
empty set for
b5,
b6,
b7 being
Element of
b4 for
b8 being
Function of
VAR ,
b4 st
b1 <> b2 &
b2 <> b3 &
b3 <> b1 holds
(
((b8 / b1,b5) / b2,b6) / b3,
b7 = ((b8 / b3,b7) / b2,b6) / b1,
b5 &
((b8 / b1,b5) / b2,b6) / b3,
b7 = ((b8 / b2,b6) / b3,b7) / b1,
b5 )
theorem Th8: :: ZFMODEL2:8
for
b1,
b2,
b3,
b4 being
Variable for
b5 being non
empty set for
b6,
b7,
b8,
b9 being
Element of
b5 for
b10 being
Function of
VAR ,
b5 st
b1 <> b2 &
b1 <> b3 &
b1 <> b4 &
b2 <> b3 &
b2 <> b4 &
b3 <> b4 holds
(
(((b10 / b1,b6) / b2,b7) / b3,b8) / b4,
b9 = (((b10 / b2,b7) / b3,b8) / b4,b9) / b1,
b6 &
(((b10 / b1,b6) / b2,b7) / b3,b8) / b4,
b9 = (((b10 / b3,b8) / b4,b9) / b1,b6) / b2,
b7 &
(((b10 / b1,b6) / b2,b7) / b3,b8) / b4,
b9 = (((b10 / b4,b9) / b2,b7) / b3,b8) / b1,
b6 )
theorem Th9: :: ZFMODEL2:9
for
b1,
b2,
b3,
b4 being
Variable for
b5 being non
empty set for
b6,
b7,
b8,
b9,
b10 being
Element of
b5 for
b11 being
Function of
VAR ,
b5 holds
(
((b11 / b1,b6) / b2,b7) / b1,
b8 = (b11 / b2,b7) / b1,
b8 &
(((b11 / b1,b6) / b2,b7) / b3,b9) / b1,
b8 = ((b11 / b2,b7) / b3,b9) / b1,
b8 &
((((b11 / b1,b6) / b2,b7) / b3,b9) / b4,b10) / b1,
b8 = (((b11 / b2,b7) / b3,b9) / b4,b10) / b1,
b8 )
theorem Th10: :: ZFMODEL2:10
theorem Th11: :: ZFMODEL2:11
for
b1 being non
empty set for
b2 being
ZF-formula for
b3 being
Function of
VAR ,
b1 st not
x. 0
in Free b2 &
b1,
b3 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b2 <=> ((x. 4) '=' (x. 0))))) holds
for
b4,
b5 being
Element of
b1 holds
(
(def_func' b2,b3) . b4 = b5 iff
b1,
(b3 / (x. 3),b4) / (x. 4),
b5 |= b2 )
Lemma11:
( x. 0 <> x. 3 & x. 0 <> x. 4 & x. 3 <> x. 4 )
by ZF_LANG1:86;
theorem Th12: :: ZFMODEL2:12
theorem Th13: :: ZFMODEL2:13
theorem Th14: :: ZFMODEL2:14
theorem Th15: :: ZFMODEL2:15
for
b1,
b2 being
Variable for
b3 being non
empty set for
b4 being
ZF-formula for
b5 being
Function of
VAR ,
b3 st not
x. 0
in Free b4 &
b3,
b5 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b4 <=> ((x. 4) '=' (x. 0))))) & not
b1 in variables_in b4 &
b2 <> x. 3 &
b2 <> x. 4 & not
b2 in Free b4 &
b1 <> x. 0 &
b1 <> x. 3 &
b1 <> x. 4 holds
( not
x. 0
in Free (b4 / b2,b1) &
b3,
b5 / b1,
(b5 . b2) |= All (x. 3),
(Ex (x. 0),(All (x. 4),((b4 / b2,b1) <=> ((x. 4) '=' (x. 0))))) &
def_func' b4,
b5 = def_func' (b4 / b2,b1),
(b5 / b1,(b5 . b2)) )
theorem Th16: :: ZFMODEL2:16
theorem Th17: :: ZFMODEL2:17
for
b1 being non
empty set for
b2 being
Nat for
b3 being
ZF-formula for
b4 being
Function of
VAR ,
b1 st not
x. 0
in Free b3 &
b1,
b4 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b3 <=> ((x. 4) '=' (x. 0))))) holds
ex
b5 being
ZF-formulaex
b6 being
Function of
VAR ,
b1 st
( ( for
b7 being
Nat st
b7 < b2 &
x. b7 in variables_in b5 & not
b7 = 3 holds
b7 = 4 ) & not
x. 0
in Free b5 &
b1,
b6 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b5 <=> ((x. 4) '=' (x. 0))))) &
def_func' b3,
b4 = def_func' b5,
b6 )
theorem Th18: :: ZFMODEL2:18
for
b1 being non
empty set for
b2 being
ZF-formula for
b3 being
Function of
VAR ,
b1 st not
x. 0
in Free b2 &
b1,
b3 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b2 <=> ((x. 4) '=' (x. 0))))) holds
ex
b4 being
ZF-formulaex
b5 being
Function of
VAR ,
b1 st
(
(Free b2) /\ (Free b4) c= {(x. 3),(x. 4)} & not
x. 0
in Free b4 &
b1,
b5 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b4 <=> ((x. 4) '=' (x. 0))))) &
def_func' b2,
b3 = def_func' b4,
b5 )
theorem Th19: :: ZFMODEL2:19
theorem Th20: :: ZFMODEL2:20
theorem Th21: :: ZFMODEL2:21
theorem Th22: :: ZFMODEL2:22
theorem Th23: :: ZFMODEL2:23
for
b1 being non
empty set for
b2,
b3,
b4 being
ZF-formula for
b5 being
Function of
VAR ,
b1 st
{(x. 0),(x. 1),(x. 2)} misses Free b2 &
b1,
b5 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b2 <=> ((x. 4) '=' (x. 0))))) &
{(x. 0),(x. 1),(x. 2)} misses Free b3 &
b1,
b5 |= All (x. 3),
(Ex (x. 0),(All (x. 4),(b3 <=> ((x. 4) '=' (x. 0))))) &
{(x. 0),(x. 1),(x. 2)} misses Free b4 & not
x. 4
in Free b4 holds
for
b6 being
Function st
dom b6 = b1 & ( for
b7 being
Element of
b1 holds
( (
b1,
b5 / (x. 3),
b7 |= b4 implies
b6 . b7 = (def_func' b2,b5) . b7 ) & (
b1,
b5 / (x. 3),
b7 |= 'not' b4 implies
b6 . b7 = (def_func' b3,b5) . b7 ) ) ) holds
b6 is_parametrically_definable_in b1
theorem Th24: :: ZFMODEL2:24
theorem Th25: :: ZFMODEL2:25