
FIRST EXPERIMENTS WITH LEARNING

INSTANTIATIONS

Konstantin Korovin Josef Urban

University of Manchester

Czech Technical University in Prague

ICMS 2018
July 27, 2018

1 / 11



Motivation: Lemmatization and Instantiation

� Lemmatization:
� Add to a problem lemmas useful in previous proofs
� Instantiation:
� Add to a problem instances useful in previous proofs

2 / 11



Previous Lemmatization Experiments - HOL Light and
Flyspeck

� Over 1B low-level (proof) lemmas in Flyspeck
� 1.5M-7M higher-level lemmas in Flyspeck
� Define fast preprocessing methods to extract the most important ones:
� PageRank, recursive dependency count, recursive use count, etc.
� Use the most important lemmas together with the toplevel theorems
� helps by 5-20% on HOL Light/Flyspeck
� Quite often the lemmas are instances or easy consequences

3 / 11



Example of Useful Flyspeck Proof Lemmas

Conjecture:

AFFINE_ALT: |- affine s <=> (!x y u. x IN s /\ y IN s
==> (&1 - u) % x + u % y IN s)

Easy, but useful lemmas (derived inside previous proofs):

NEWDEP309638: |- &1 - a + a = &1
NEWDEP310357: |- -- &1 * -- &1 = &1
NEWDEP272099_conjunct1: |- !m. &m + -- &m = &0

4 / 11



Previous Lemmatization Experiments - E prover

� refutational TPTP proofs of many Mizar problems
� postprocess (redirect) them to obtain direct proofs
� collect the proof lemmas derived only from the axioms
� Use them along with the toplevel premises for proving new conjectures
� 6% improvement on a Mizar-based benchmark

5 / 11



Example of Useful Mizar Proof Lemmas

Lemma:

X1 \ (X2 \ X1) = X1

proved in

X c= Y implies Z \ Y c= Z \ X

useful in

X \/ (Y \ X) = X \/ Y

(X \/ Y) \ Z = (X \ Z) \/ (Y \ Z)

etc.

6 / 11



Why Learn Instantiation?

� Many of the proof lemmas in the previous experiments are useful
instances

� A targeted instance prevents redundant inferences
� Instantiation-based ATP calculi are reaching state of the art
� SMT: quantifier instantation
� iProver: calculus based on gradual instantiation (and SAT)

7 / 11



iProver

� instantiate (abstract) all clauses with a unique constant and call a SAT
solver

� if unsatisfiable, we are done
� else add more complicated ground instances – the Inst-Gen rule:
� from L _ C, :L0

_ D create (L _ C)�, (:L0
_ D)�

� and continue
� Creation of the new instances is guided by the propositional assignment.
� In particular, we instantiate clauses with unifiable literals that have

different value in the ground model
� However, this is often still very non-deterministic

8 / 11



Our Idea and Plan

� If we immediately guess the right instantiations, we are done (if it’s
SAT-easy)

� How do we guess them?
� Machine learning from many related problems!
� Our research plan:

� Add all previously useful clause instances
� Train a ranker and add only some number of most useful clause instances

for the current context (analogous to premise selection)
� Generate new instances by learning useful terms for the current context

(another variant of premise selection)
� Generate new terms for the current context by a trained probabilistic

grammar

9 / 11



First Experiment

� Run standard iProver on 32525 Mizar problems
� solves 21685 problems with 10s time limit
� from the 21685 proofs extract the useful instances for each initial clause

C
� whenever an unsolved problem contains C, add all the previously useful

instances
� rerun iprover on the unsolved problems
� This adds 621 problems
� Many problems are too big - we really need the pruning

10 / 11



Future and Thanks

� That’s all we did for now
� Encouraging, but we need to proceed with the next steps
� Thanks for your attention!

11 / 11


