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Motivation: Learning vs. Reasoning

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fängt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
Novalis, quoted by Popper – The Logic of Scientific Discovery
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Leibniz’s/Hilbert’s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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How Do We Automate Math and Science?

‚ What is mathematical and scientific thinking?
‚ Pattern-matching, analogy, induction from examples
‚ Deductive reasoning
‚ Complicated feedback loops between induction and deduction
‚ Using a lot of previous knowledge - both for induction and deduction

‚ We need to develop such methods on computers
‚ Are there any large corpora suitable for nontrivial deduction?
‚ Yes! Large libraries of formal proofs and theories
‚ So let’s develop strong AI on them!
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History, Motivation, AI/TP/ML

‚ Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
‚ Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
‚ 50s-60s: Beginnings of ATP and ITP – Davis, Simon, Robinson, de Bruijn
‚ Lenat, Langley: AM, manually-written heuristics, learn Kepler laws,...
‚ Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:

Learning from Previous Proof Experience
‚ My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
‚ Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL

... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI

... hammer-style methods, internal guidance, feedback loops, ...
‚ AI vs ML vs DL?: Ben Goertzel’s 2018 Prague talk:
https://youtu.be/Zt2HSTuGBn8
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Intuition vs Formal Reasoning – Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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Induction/Learning vs Reasoning – Henri Poincaré

‚ Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

‚ “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

‚ I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)
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Learning vs Reasoning – Alan Turing 1950 – AI

‚ 1950: Computing machinery and intelligence – AI, Turing test
‚ “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
‚ last section on Learning Machines:
‚ “But which are the best ones [fields] to start [learning on] with?”
‚ “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
‚ Why not try with math? It is much more (universally?) expressive ...
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Induction/Learning vs Reasoning – Turing 1950 – AI

‚ 1950: Computing machinery and intelligence – AI, Turing test
‚ On pure deduction: “For at each stage when one is using a logical

system, there is a very large number of alternative steps, any of which
one is permitted to apply, so far as obedience to the rules of the logical
system is concerned. These choices make the difference between a
brilliant and a footling reasoner, not the difference between a sound and a
fallacious one.”
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Why Combine Learning and Reasoning Today?

1 It practically helps!
‚ Automated theorem proving for large formal verification is useful:

‚ Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
‚ Formal Proof of the Feit-Thompson Theorem (2012 – Gonthier)
‚ Verification of compilers (CompCert) and microkernels (seL4)
‚ ...

‚ But good learning/AI methods needed to cope with large theories!

2 Blue Sky AI Visions:
‚ Get strong AI by learning/reasoning over large KBs of human thought?
‚ Big formal theories: good semantic approximation of such thinking KBs?
‚ Deep non-contradictory semantics – better than scanning books?
‚ Gradually try learning math/science:

‚ What are the components (inductive/deductive thinking)?
‚ How to combine them together?
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The AITP Plan for World Domination

1 Make large formal thought (Mizar/MML, Isabelle/HOL/AFP, HOL/Flyspeck
...) accessible to strong reasoning and learning AI tools – DONE (or well
under way)

2 Test/Use/Evolve existing AI and ATP tools on such large corpora

3 Build custom/combined inductive/deductive tools/metasystems

4 Continuously test performance, define harder AI tasks as the
performance grows

Hilbert’s update for 21st century (AGI’18):

NO ONE SHALL DRIVE US FROM THE SEMANTIC AI PARADISE

OF COMPUTER-UNDERSTANDABLE MATH AND SCIENCE!

aitp-conference.org - since 2016
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What is Formal Mathematics?

‚ Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
‚ Mathematics put on formal logic foundations (symbolic computation)
‚ ... which btw. led also to the rise of computers (Turing/Church, 1930s)
‚ Formal math (1950/60s): combine formal foundations and computers
‚ Proof assistants/Interactive theorem provers and their large libraries:
‚ De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
‚ Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
‚ Conceptually very simple:
‚ Write all your axioms and theorems so that computer understands them
‚ Write all your inference rules so that computer understands them
‚ Use the computer to check that your proofs follow the rules
‚ But in practice, it turns out not to be so simple
‚ Many approaches, still not mainstream, but big breakthroughs recently
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The QED Manifesto – 1994

‚ QED is the very tentative title of a project to build a computer system that
effectively represents all important mathematical knowledge and
techniques.

‚ The QED system will conform to the highest standards of mathematical
rigor, including the use of strict formality in the internal representation of
knowledge and the use of mechanical methods to check proofs of the
correctness of all entries in the system.

‚ The QED project will be a major scientific undertaking requiring the
cooperation and effort of hundreds of deep mathematical minds,
considerable ingenuity by many computer scientists, and broad support
and leadership from research agencies.

‚ ....
‚ Never happened, but inspired a lot of development – “QED Singularity”
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Intros to ITP Systems and Formal Math

‚ Hales’s talk at Bourbaki seminar:
https://www.youtube.com/watch?v=wgfbt-X28XQ

‚ Harrison’s article on formalization:
http://www.cl.cam.ac.uk/~jrh13/papers/cacm.pdf

‚ Harrison, Urban, Wiedijk: History of Interactive Theorem Proving:
http://www.cl.cam.ac.uk/~jrh13/papers/joerg.html

‚ More recent: Just look up Kevin Buzzard on YouTube
‚ ITP, CPP, IJCAR, CADE conferences
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Bird’s Eye View of ITP Systems by T. Hales
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F. Wiedijk: Irrationality of
?

2 (informal text)

tiny proof from Hardy & Wright, texts collected by F. Wiedijk:

Theorem 43 (Pythagoras’ theorem).
?

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

?
2

is rational, then the equation

a2 “ 2b2 (4.3.1)

is soluble in integers a, b with pa;bq “ 1. Hence a2 is even, and
therefore a is even. If a “ 2c, then 4c2 “ 2b2, 2c2 “ b2, and b is
also even, contrary to the hypothesis that pa;bq “ 1. l
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Irrationality of
?

2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;
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Irrationality of
?

2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of
?

2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
��IURP�QBQRQ]HUR�DQG�VTUWBUDW�KDYH��UHDO�P� �hVTUW��UHDO���h�
�UHDO�Q��E\�VLPS
��WKHQ�KDYH��UHDO��Pt�� ��VTUW��UHDO����t�
�UHDO��Qt��
����E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�
��DOVR�KDYH���VTUW��UHDO����t� �UHDO����E\�VLPS
��DOVR�KDYH������
�UHDO��Pt�� �UHDO����
�Qt���E\�VLPS
��ILQDOO\�KDYH�HT���Pt� ���
�Qt����
��KHQFH����GYG�Pt����
��ZLWK�WZRBLVBSULPH�KDYH�GYGBP�����GYG�P��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��WKHQ�REWDLQ�N�ZKHUH��P� ���
�N����
��ZLWK�HT�KDYH����
�Qt� ��t�
�Nt��E\��DXWR�VLPS�DGG��SRZHU�BHTBVTXDUH�PXOWBDF�
��KHQFH��Qt� ���
�Nt��E\�VLPS
��KHQFH����GYG�Qt����
��ZLWK�WZRBLVBSULPH�KDYH����GYG�Q��E\��UXOH�SULPHBGYGBSRZHUBWZR�
��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG
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Irrationality of
?

2 in Coq

Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H H0; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.
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Irrationality of
?

2 in Metamath

${
$d x y $.
$( The square root of 2 is irrational. $)
sqr2irr $p |- ( sqr ‘ 2 ) e/ QQ $=
( vx vy c2 csqr cfv cq wnel wcel wn cv cdiv co wceq cn wrex cz cexp
cmulc sqr2irrlem3 sqr2irrlem5 bi2rexa mtbir cc0 clt wbr wa wi wb nngt0t
adantr cr ax0re ltmuldivt mp3an1 nnret zret syl2an mpd ancoms 2re 2pos
sqrgt0i breq2 mpbii syl5bir cc nncnt mulzer2t syl breq1d adantl sylibd
exp r19.23adv anc2li elnnz syl6ibr impac r19.22i2 mto elq df-nel mpbir )
CDEZFGWDFHZIWEWDAJZBJZKLZMZBNOZAPOZWKWJANOZWLWFCQLCWGCQLRLMZBNOANOABSWIWM
ABNNWFWGTUAUBWJWJAPNWFPHZWJWFNHZWNWJWNUCWFUDUEZUFWOWNWJWPWNWIWPBNWNWGNHZW
IWPUGWNWQUFZWIUCWGRLZWFUDUEZWPWRWTUCWHUDUEZWIWQWNWTXAUHZWQWNUFUCWGUDUEZXB
WQXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWFUMUNWGUOWFUPUQURUSW
IUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWPUHWNWQWSUCWFUDWQWGVFHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDFWBWC $.
$( [8-Jan-02] $)

$}
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Irrationality of
?

2 in Metamath Proof Explorer
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Irrationality of
?

2 in Otter

Problem

set(auto).
set(ur_res).
assign(max_distinct_vars, 1).
list(usable).
x = x.
m(1,x) = x. %identity
m(x,1) = x.
m(x,m(y,z)) = m(m(x,y),z). %assoc
m(x,y) = m(y,x). %comm
m(x,y) != m(x,z) | y = z. %cancel
-d(x,y) | m(x,f(x,y)) = y. %divides
m(x,z) != y | d(x,y).
-d(2,m(x,y)) | d(2,x) | d(2,y). %2 prime
m(a,a) = m(2,m(b,b)). % a/b=sqrt(2)
-d(x,a) | -d(x,b) | x = 1. % a/b lowest
2 != 1.
end_of_list.

Proof

1 [] m(x,y)!=m(x,z)|y=z.
2 [] -d(x,y)|m(x,f(x,y))=y.
3 [] m(x,y)!=z|d(x,z).
4 [] -d(2,m(x,y))|d(2,x)|d(2,y).
5 [] -d(x,a)| -d(x,b)|x=1.
6 [] 2!=1.
7 [factor,4.2.3] -d(2,m(x,x))|d(2,x).
13 [] m(x,m(y,z))=m(m(x,y),z).
14 [copy,13,flip.1] m(m(x,y),z)=m(x,m(y,z)).
16 [] m(x,y)=m(y,x).
17 [] m(a,a)=m(2,m(b,b)).
18 [copy,17,flip.1] m(2,m(b,b))=m(a,a).
30 [hyper,18,3] d(2,m(a,a)).
39 [para_from,18.1.1,1.1.1] m(a,a)!=m(2,x)|m(b,b)=x.
42 [hyper,30,7] d(2,a).
46 [hyper,42,2] m(2,f(2,a))=a.
48 [ur,42,5,6] -d(2,b).
50 [ur,48,7] -d(2,m(b,b)).
59 [ur,50,3] m(2,x)!=m(b,b).
60 [copy,59,flip.1] m(b,b)!=m(2,x).
145 [para_from,46.1.1,14.1.1.1,flip.1] m(2,m(f(2,a),x))=m(a,x).
189 [ur,60,39] m(a,a)!=m(2,m(2,x)).
190 [copy,189,flip.1] m(2,m(2,x))!=m(a,a).
1261 [para_into,145.1.1.2,16.1.1] m(2,m(x,f(2,a)))=m(a,x).
1272 [para_from,145.1.1,190.1.1.2] m(2,m(a,x))!=m(a,a).
1273 [binary,1272.1,1261.1] $F.
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Today: Computers Checking Large Math Proofs
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Big Example: The Flyspeck project

‚ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V “
�
?

18
« 74%

‚ Formal proof finished in 2014
‚ 20000 lemmas in geometry, analysis, graph theory
‚ All of it at https://code.google.com/p/flyspeck/
‚ All of it computer-understandable and verified in HOL Light:
‚ polyhedron s /\ c face_of s ==> polyhedron c

‚ However, this took 20 – 30 person-years!
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Kepler conjecture formally in HOL Light

|- packing V <=>
(!u v. u IN V /\ v IN V /\ dist(u,v) < &2 ==> u = v)

|- the_kepler_conjecture <=>
(!V. packing V

==> (?c. !r. &1 <= r
==> &(CARD(V INTER ball(vec 0,r))) <=

pi * r pow 3 / sqrt(&18) + c * r pow 2))
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Kepler conjecture informally

In words, we define the Kepler conjecture to be the following claim: for every
packing V , there exists a real number c such that for every real number r ě 1,
the number of elements of V contained in an open spherical container of
radius r centered at the origin is at most

� r3
?

18
` c r2:

An analysis of the proof shows that there exists a small computable constant
c that works uniformly for all packings V , but we only formalize the weaker
statement that allows c to depend on V . The restriction r ě 1, which bounds r
away from 0, is needed because there can be arbitrarily small containers
whose intersection with V is nonempty.
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Parts of Flyspeck

‚ combination of traditional mathematical argument and three separate
bodies of computer calculations.

‚ nearly a thousand nonlinear inequalities.
‚ The combinatorial structure of each possible counterexample to the

Kepler conjecture is encoded as a plane graph satisfying a number of
restrictive conditions. Any graph satisfying these conditions is said to be
tame.

‚ A list of all tame plane graphs up to isomorphism has been generated by
an exhaustive computer search. The formal statement that every tame
plane graph is isomorphic to one of these cases. This was part was done
in Isabelle and imported into HOL Light.

‚ a large collection of linear programs.

30 / 169



Independent verification of Flyspeck

‚ Mark Adams: HOL Zero system
‚ more secure than HOL Light, indepedently implemented
‚ an fast exporter of the HOL Light verifications based on kernel

modfications
‚ verification of every HOL Light kernel step inside HOL Zero
‚ so far only for the text part (the other parts are much slower)
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What Has Been Formalized? (2014)
top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999),
tracked by Freek Wiedijk - https://www.cs.ru.nl/~freek/100/

1.
?

2 R Q
2. fundamental theorem of algebra
3. |Q| “ @0

4. a
b

c
ñ a2

` b2
“ c2

5. �pxq „ x
ln x

6. Gödel’s incompleteness theorem

7.
` p

q

˘` q
p

˘

“ p´1q
p´1

2
q´1

2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 88%

HOL Light 86%

Mizar 57%
Isabelle 52%

Coq 49%
ProofPower 42%

Metamath 24%
ACL2 18%
PVS 16%
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What Has Been Formalized? (2022)
top 100 of interesting theorems/proofs (Paul & Jack Abad, 1999),
tracked by Freek Wiedijk - https://www.cs.ru.nl/~freek/100/

1.
?

2 R Q
2. fundamental theorem of algebra
3. |Q| “ @0

4. a
b

c
ñ a2

` b2
“ c2

5. �pxq „ x
ln x

6. Gödel’s incompleteness theorem

7.
` p

q

˘` q
p

˘

“ p´1q
p´1

2
q´1

2

8. impossibility of trisecting the
angle and doubling the cube

...
32. four color theorem
33. Fermat’s last theorem

...
99. Buffon needle problem

100. Descartes rule of signs

all together 98%

HOL Light 86%

Mizar 69%
Isabelle 86%

Coq 78%
ProofPower 43%

Metamath 74%
Lean 70%
ACL2 18%
PVS 22%
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Named Theorems in the Mizar Library
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Big Formalizations

‚ Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
‚ Feit-Thompson (odd-order) theorem

‚ Two graduate books
‚ Gonthier et all, 2012, Coq

‚ Compendium of Continuous Lattices (CCL)
‚ 60% of the book formalized in Mizar
‚ Bancerek, Trybulec et al, 2003

‚ The Four Color Theorem (Gonthier and Werner, 2005, Coq)
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Mid-size Formalizations

‚ Gödel’s First Incompleteness – N. Shankar (NQTHM), R. O’Connor (Coq)
‚ Brouwer Fixed Point Theorem – K. Pak (Mizar), J. Harrison (HOL Light)
‚ Jordan Curve Th. – T. Hales (HOL Light), A. Kornilowicz et al. (Mizar)
‚ Prime Number Th. – J. Avigad et al (Isab/HOL), J. Harrison (HOL Light)
‚ Gödel’s Second Incompleteness Theorem – L. Paulson (Isabelle/HOL)
‚ Central Limit Theorem – J. Avigad (Isabelle/HOL)
‚ Consistency of the Negation of CH – J. Han and F. van Doorn (Lean)
‚ ... and many more
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Large Software Verifications

‚ seL4 – operating system microkernel
‚ Gerwin Klein and his group at NICTA, Isabelle/HOL

‚ CompCert – a formally verified C compiler
‚ Xavier Leroy and his group at INRIA, Coq

‚ EURO-MILS – verified virtualization platform
‚ ongoing 6M EUR FP7 project, Isabelle

‚ CakeML – verified implementation of ML
‚ Magnus Myreen, HOL4
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Central Limit Theorem in Isabelle/HOL
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Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
(for H being Subgroup of G st H is_p-group_of_prime p holds
ex P being Subgroup of G st
P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P) &

(for P1,P2 being Subgroup of G
st P1 is_Sylow_p-subgroup_of_prime p & P2 is_Sylow_p-subgroup_of_prime p
holds P1,P2 are_conjugated);

theorem :: GROUP_10:15
for G being finite Group, p being prime (natural number) holds

card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
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Gödel Theorems in Isabelle
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Prime Number Theorem in HOL Light

|- ((\n. &(CARD {p | prime p /\ p <= n}) / (&n / log(&n)))
---> &1) sequentially
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Foundational Wars - Set Theory

‚ Mizar, MetaMath, Isabelle/ZF, Naproche/SAD
‚ ZFC
‚ Tarski-Grothendieck (added inaccessible cardinals)
‚ strong choice
‚ issues:

‚ how to add a type system (soft types - predicates with automation)
‚ how to handle higher-order reasoning
‚ how to compute
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Foundational Wars - Higher-order logic (HOL)

‚ HOL4, HOL Light, Isabelle/HOL, ProofPower, HOL Zero
‚ based on polymorphic simply-typed lambda calculus
‚ but quickly added extensionality and choice (classical)
‚ weaker than set theory - canonical model is V!`!zt0u
‚ HOL universe: U is a set of non-empty sets, such that

‚ U is closed under non-empty subsets, finite products and powersets
‚ an infinite set I P U exists
‚ a choice function ch over U exists (i.e., @X P U : chpX q P X )
‚ gurantees also function spaces (I Ñ I)

‚ Isabelle adds typeclasses, ad-hoc overloading
‚ issues:

‚ can be too weak
‚ not so well known foundations as ZFC
‚ the type system does not have dependent types (e.g. matrix over a ring)
‚ how to compute
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Foundational Wars - Type theory

‚ Coq, Lean, Agda, NuPrl, HoTT
‚ constructive type theory (classical in Lean)
‚ Curry-Howard isomorphism:

‚ formulas as types
‚ proofs as terms

‚ proofs are in your universe of discourse!
‚ two proofs of the same formula might not be equal!
‚ what does it mean?
‚ excluded middle avoided, classical math not supported so much
‚ computation is a big topic
‚ very rich type system
‚ lots of research issues for constructivists
‚ non-experts typically don’t have a good idea about the semantics of it all
‚ ‘they have been calling it baroque, but it’s almost rococo’ (A. Trybulec)
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Foundational Wars - Logical Frameworks

‚ LF, Twelf, MMT, Isabelle?, Metamath?
‚ Try to cater for everybody
‚ Let users encode their logic and inference rules (deep embedding)
‚ issues:

‚ None of them really used
‚ maintenance – the embedded systems evolve fast
‚ efficiency: Isabelle/Pure ended up enriching its kernel to fit HOL
‚ efficiency: things like computation
‚ probably needs a lot of investment to benefit multiple foundations
‚ more ad-hoc translations between systems are often cheaper to develop
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Implementation

‚ Most systems written in ML (OCAML or SML)
‚ Sometimes Lisp, Pascal, C++
‚ LCF approach (Milner): small inference kernel
‚ isolated by an abstract ML datatype "theorem"
‚ this means that only a small number of allowed inferences can result in a

"theorem"
‚ Every more complicated procedure has to produce the kernel inferences,

to get a "theorem"
‚ HOL Light - about 400 lines for the whole kernel
‚ Coq - about 20000 lines
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HOL Light kernel - terms and types

module Hol : Hol_kernel = struct

type hol_type = Tyvar of string
| Tyapp of string * hol_type list

type term = Var of string * hol_type
| Const of string * hol_type
| Comb of term * term
| Abs of term * term

type thm = Sequent of (term list * term)
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Today’s Applications

48 / 169



Today’s Applications

49 / 169



Today’s Applications

50 / 169



Today’s Applications

51 / 169



Today’s Applications

52 / 169



Today’s Applications

53 / 169



Outline

Motivation, Learning vs. Reasoning

Computer Understandable (Formal) Math

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

54 / 169



What Are Automated Theorem Provers?

‚ Computer programs that (try to) automatically determine if
‚ A conjecture C is a logical consequence of a set of axioms Ax
‚ The derivation of conclusions that follow inevitably from facts.

‚ Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, iProver, ...
‚ Brute-force search calculi (resolution, superposition, tableaux, inst-gen)
‚ more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)
‚ TP-motivated PLs: Prolog (logic programming - Hayes, Kowalski)
‚ Human-designed heuristics for pruning of the search space
‚ Combinatorial explosion on large KBs like Flyspeck and Mizar
‚ Need to be equipped with good domain-specific inference guidance ...
‚ ... and that is what I try to do ...
‚ ... typically by learning in various ways from large TP corpora ...
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Propositional – SAT-isfiability solving

‚ DPLL- Davis–Putnam–Logemann–Loveland algorithm
‚ choosing a literal
‚ assigning a truth value to it
‚ simplifying the formula
‚ recursively check if the simplified formula is satisfiable
‚ Unit propagation
‚ Pure literal elimination
‚ Clause learning - the CDCL revolution (J. Marques-Silva 1996)
‚ John Harrison in 2005: "People now say that a problem is NP-easy"
‚ Basis of many more-involved algorithms, hardware checking, model

checking, etc.
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Satisfiability Modulo Theories – SMT

‚ adds theories like arithmetics, bit-arrays, etc.
‚ works like SAT, but simplifies the theory literals whenever possible
‚ very useful for software and hardware verification
‚ a lot of development in the recent decade
‚ today also limited treatment of quantifiers (first-order logic):
‚ often incomplete for first-order logic
‚ related to complete instantiation-based methods:
‚ instantiate first-order terms by guessing their instances
‚ cross-fertilization and competition with ATPs
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First Order – Automated Theorem Proving (ATP)

‚ try to infer conjecture C from axioms Ax : Ax $ C
‚ most classical methods proceed by refutation: Ax ^ C $ K

‚ Ax ^ C are turned into clauses: universally quantified disjunctions of
atomic formulas and their negations

‚ skolemization is used to remove existential quantifiers
‚ strongest methods: resolution (generalized modus ponens) on clauses:
‚  manpX q _mortalpX q;manpsocratesq $ mortalpsocratesq
‚ resolution/superposition (equational) provers generate inferences,

looking for the contradiction (empty clause)
‚ tableaux, connection calculus
‚ instantiation-based – systematically add ground instances and use SAT

solvers to check satisfiability
‚ combined approaches - SAT run often inside the ATP (generalized

splitting)
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The CADE ATP System Competition (CASC)
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Using First/Higher Order Automated Theorem Proving

‚ 1996: Bill McCune proof of Robbins conjecture (Robbins algebras are
Boolean algebras)

‚ Robbins conjecture unsolved for 50 years by mathematicians like Tarski
‚ 2021: M. Kinyon, R. Veroff, Prover9: Weak AIM conjecture
‚ If Q is an Abelian Innner Mapping loop, then Q is nilpotent of class ď 3.
‚ ATP has currently only limited use for proving new conjectures
‚ mainly in very specialized algebraic domains
‚ however ATP has become very useful in Interactive Theorem Proving
‚ a recent (2020) performance jump in higher-order ATP:
‚ Zipperposition, HO-Vampire, E-HO (J. Blanchette, A Bentkamp, P.

Vukmirovic)
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Learning Approaches - Data vs Theory Driven

‚ John Shawe-Taylor and Nello Cristianini – Kernel Methods for Pattern
Analysis (2004):

‚ "Many of the most interesting problems in AI and computer science in
general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution."

‚ "As an example consider the problem of recognising genes in a DNA
sequence. We do not know how to specify a program to pick out the
subsequences of, say, human DNA that represent genes."

‚ "Similarly we are not able directly to program a computer to recognise a
face in a photo."
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Learning Approaches - Data vs Theory Driven

‚ "Learning systems offer an alternative methodology for tackling these
problems."

‚ "By exploiting the knowledge extracted from a sample of data, they are
often capable of adapting themselves to infer a solution to such tasks."

‚ "We will call this alternative approach to software design the learning
methodology."

‚ "It is also referred to as the data driven or data based approach, in
contrast to the theory driven approach that gives rise to precise
specifications of the required algorithms."
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For Fun: My Depressive Slide From 2011 AMS

‚ My personal puzzle:
‚ The year is 2011.
‚ The recent AI successes are data-driven, not theory-driven.
‚ Ten years after the success of Google.
‚ Fifteen years after the success of Deep Blue with Kasparov.
‚ Five year after a car drove autonomously across the Mojave desert.
‚ Four years after the Netflix prize was announced.
‚ Why am I still the only person training AI systems on large repositories of

human proofs like the Mizar library???
‚ (This finally started to change in 2011)
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Sample of Learning Approaches
‚ neural networks (statistical ML) – backpropagation, deep learning,

convolutional, recurrent, attention/transformers, tree NNs, graph NNs, etc.
‚ decision trees, random forests, gradient boosted trees – find good

classifying attributes (and/or their values); more explainable
‚ support vector machines – find a good classifying hyperplane, possibly

after non-linear transformation of the data (kernel methods)
‚ k-nearest neighbor – find the k nearest neighbors to the query, combine

their solutions
‚ naive Bayes – compute probabilities of outcomes assuming complete

(naive) independence of characterizing features (just multiplying
probabilities)

‚ inductive logic programming (symbolic ML) – generate logical
explanation (program) from a set of ground clauses by generalization

‚ genetic algorithms – evolve large population by crossover and mutation
‚ various combinations of statistical and symbolic approaches
‚ supervised, unsupervised, reinforcement learning (actions,

explore/exploit, cumulative reward)
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Learning – Features and Data Preprocessing

‚ Extremely important - if irrelevant, there is no way to learn the function
from input to output (“garbage in garbage out”)

‚ Feature discovery/engineering – a big field
‚ Deep Learning – design neural architectures that automatically find

important high-level features for a task
‚ Data Augmentation and Selection – how do we generate/select

more/better data to learn on?
‚ Latent Semantics, dimensionality reduction: use linear algebra

(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them

‚ word2vec and related methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

‚ math and theorem proving: syntactic/semantic/computational
patterns/abstractions/programs

‚ how do we represent math objects (formulas, proofs, ideas) in our mind?
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Future: AITP Challenges/Bets from 2014

‚ 3 AITP bets from my 2014 talk at Institut Henri Poincare
‚ In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable

automatically (same hardware, same libraries as in 2014 - about 40% then)
‚ In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)
‚ In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math

curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than I expected)

‚ My (conservative?) estimate when we will do Fermat:
‚ Human-assisted formalization: by 2050
‚ Fully automated proof (hard to define precisely): by 2070
‚ See the Foundation of Math thread: https://bit.ly/300k9Pm
‚ and the AITP’22 panel: https://bit.ly/3dcY5HW

‚ Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)
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Using Learning to Guide Theorem Proving

‚ high-level: pre-select lemmas from a large library, give them to ATPs
‚ high-level: pre-select a good ATP strategy/portfolio for a problem
‚ high-level: pre-select good hints for a problem, use them to guide ATPs
‚ low-level: guide every inference step of ATPs (tableau, superposition)
‚ low-level: guide every kernel step of LCF-style ITPs
‚ mid-level: guide application of tactics in ITPs, learn new tactics
‚ mid-level: invent suitable strategies/procedures for classes of problems
‚ mid-level: invent suitable conjectures for a problem
‚ mid-level: invent suitable concepts/models for problems/theories
‚ proof sketches: explore stronger/related theories to get proof ideas
‚ theory exploration: develop interesting theories by conjecturing/proving
‚ feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
‚ autoformalization: (semi-)automate translation from LATEX to formal
‚ ...
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Large Datasets

‚ Mizar / MML / MPTP – since 2003
‚ MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
‚ Isabelle (and AFP) – since 2005
‚ Flyspeck (including core HOL Light and Multivariate) – since 2012
‚ HOL4 – since 2014, CakeML – 2017, GRUNGE – 2019
‚ Coq – since 2013/2016
‚ ACL2 – 2014?
‚ Lean?, Stacks?, Arxiv?, ProofWiki?, ...
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AI/TP Examples and Demos
‚ ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7

(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz,

‚ 3-phase ENIGMA: https://bit.ly/3C0Lwa8,
https://bit.ly/3BWqR6K

‚ Long trig proof from 1k axioms: https://bit.ly/2YZ0OgX
‚ Extreme Deepire/AVATAR proof of �0 “ !!

!
:
:
:

https://bit.ly/3Ne4WNX
‚ Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
‚ TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

‚ TacticToe longer: https://www.youtube.com/watch?v=BO4Y8ynwT6Y
‚ Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

‚ Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

‚ QSynt: AI rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=24oejR9wsXs
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High-level ATP guidance: Premise Selection

‚ 2003: Can existing ATPs be used over the large Mizar library?
‚ About 80000 nontrivial math facts at that time – impossible to use them all
‚ Is good premise selection for proving a new conjecture possible at all?
‚ Or is it a mysterious power of mathematicians? (Penrose)
‚ Today: Premise selection is not a mysterious property of mathematicians!
‚ Reasonably good algorithms started to appear (more below).
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First system: Mizar Proof Advisor (2003)

‚ train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
‚ input features: conjecture symbols; output labels: names of facts
‚ recommend relevant facts when proving new conjectures
‚ give them to unmodified FOL ATPs
‚ possibly reconstruct inside the ITP afterwards (lots of work)
‚ First results over the whole Mizar library in 2003:

‚ about 70% coverage in the first 100 recommended premises
‚ chain the recommendations with strong ATPs to get full proofs
‚ about 14% of the Mizar theorems were then automatically provable (SPASS)

‚ Compare with 2016 methods: about 40-45% automatically provable
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ML Evaluation of methods on MPTP2078 – recall

‚ Coverage (recall) of facts needed for the Mizar proof in first n predictions
‚ MOR-CG – kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
‚ SINe, Aprils - heuristic (non-learning) fact selectors
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ATP Evaluation of methods on MPTP2078

‚ Number of the problems proved by ATP when given n best-ranked facts
‚ Good machine learning on previous proofs really matters for ATP!
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Combined (ensemble) methods on MPTP2078
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Large 2014 Evaluation on MML – 60k theorems

14 most covering (40.6%) ML/ATP methods ordered by greedy coverage
Method Parameters Prems. ATP ˚-SOTAC Theorem (%) Greedy (%)

comb min_2k_20_20 128 Epar 1728.34 15789 (27.3) 15789 (27.2)
lsi 3200ti_8_80 128 Epar 1753.56 15561 (26.9) 17985 (31.0)
comb qua_2k_k200_33_33 512 Epar 1520.73 13907 (24.0) 19323 (33.4)
knn is_40 96 Z3 1634.50 11650 (20.1) 20388 (35.2)
nb idf010 128 Epar 1630.77 14004 (24.2) 21057 (36.4)
knn is_80 1024 V 1324.39 12277 (21.2) 21561 (37.2)
geo r_99 64 V 1357.58 11578 (20.0) 22006 (38.0)
comb geo_2k_50_50 64 Epar 1724.43 14335 (24.8) 22359 (38.6)
comb geo_2k_60_20 1024 V 1361.81 12382 (21.4) 22652 (39.1)
comb har_2k_k200_33_33 256 Epar 1714.06 15410 (26.6) 22910 (39.6)
geo r_90 256 V 1445.18 13850 (23.9) 23107 (39.9)
lsi 3200ti_8_80 128 V 1621.11 14783 (25.5) 23259 (40.2)
comb geo_2k_50_00 96 V 1697.10 15139 (26.1) 23393 (40.4)
geo r_90 256 Epar 1415.48 14093 (24.3) 23478 (40.6)
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Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 40-45% success by 2016, 60% on Mizar as of 2021
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Various Improvements and Additions

‚ Model-based features for semantic similarity [IJCAR’08]
‚ Features encoding term matching/unification [IJCAI’15]
‚ Stronger learners: SVMs, weighted k-NN, boosted trees (XGBoost)
‚ Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
‚ Lemmatization – extracting and considering millions of low-level lemmas
‚ LSI, word2vec, first neural models, definitional embeddings (with Google)
‚ Combined with tactical search and MCTS: TacticToe (Gauthier, 2017)
‚ Learning in binary setting from many alternative proofs
‚ Negative/positive mining (ATPBoost - Piotrowski & JU, 2018)
‚ Stateful neural methods: RNNs and Transformers (Piotrowski & JU, 2020)
‚ Currently strongest: Property-invariant graph neural networks (Olsak,

2020)
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Summary of Features Used

‚ From syntactic to more semantic:
‚ Constant and function symbols
‚ Walks in the term graph
‚ Walks in clauses with polarity and variables/skolems unified
‚ Subterms, de Bruijn normalized
‚ Subterms, all variables unified
‚ Matching terms, no generalizations
‚ terms and (some of) their generalizations
‚ Substitution tree nodes
‚ All unifying terms
‚ LSI/PCA, word2vec, fasttext, etc.
‚ Neural embeddings: CNN, RNN, Tree NN, Graph CNN, ...
‚ Evaluation in a large set of (finite) models
‚ Vectors of proof similarities (proof search hidden states)
‚ Vectors of problems solved (for ATP strategies)
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High-level feedback loops – MALARea, ATPBoost
‚ Machine Learner for Autom. Reasoning (2006) – infinite hammering
‚ feedback loop interleaving ATP with learning premise selection
‚ both syntactic and semantic features for characterizing formulas:
‚ evolving set of finite (counter)models in which formulas evaluated
‚ winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
‚ ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs
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ATPBoost – Binary settings

There are two possible settings in which we can approach premise selection
with machine learning:

1 multilabel setting: here we treat premises used in the proofs as opaque
labels on theorems and we train a model capable of labeling conjectures
based on their features,

2 binary setting: here the aim of the learning model is to recognize
pairwise-relevance of the conjecture-premise pairs, i.e. to decide what is
the chance of the premise being relevant for proving the conjecture based
on the features of both the conjecture and the premise.

The first approach is more accessible and was more used so far. The second
setting, though, is more general and better for modern ML algorithms.
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ATPBoost

‚ Positive and negative examples for training set were initially generated
from the theorems with proofs in the following way:

‚ as positives we take pairs (theorem-premise) if premise appears in at least
one proof of the theorem,

‚ negatives are randomly taken from the set of pairs (theorem-premise) where
the premise is available for the theorem but there is no ATP-proof of the
theorem with this premise.

Every such pair is presented to the ML algorithm as concatenation of its
feature representation labeled by 0 or 1.

‚ After a predictor is trained, we use it to create ranking of premises
available for theorem from the outside of training set.
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MaLARea-SG1 (2008): ML plus Semantics

‚ Run finite countermodel finder (Paradox, Mace, ...) before ATPs when it
makes sense

‚ Paradox used when there are less then 64 axioms (and low time limit)
‚ Detects countersatisfiability much more often and much faster than ATPs

on small problems
‚ Thousands of (typically different) models usually found in MaLARea runs
‚ Creating an database of interesting models relevant for the large theory
‚ The model database usable for further purposes
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Combining ML with Semantic Selection in Malarea

‚ Use the semantic information for updating axiom relevance
‚ All formulas from the large theory are evaluated in the models found by

model finders
‚ Heuristically, axiom A is more useful for a negated conjecture  C if it

excludes more models of  C
‚ Also, the more rare the exclusion of a certain model of  C, the more

valuable is the axiom
‚ Invalidity in each model is another feature characterizing formulas ...
‚ ... So use it for machine learning as other features!
‚ This works in the Bayseian framework exactly the same as e.g.

symbol-based similarity:
‚ Axiom sharing a rare countermodel with a conjecture is promoted in the

same way as an axiom sharing a rare symbol with the conjecture
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Semantic features in MaLARea-SG1 - 2008 Evaluation

‚ Chainy division of the 2006 MPTP Challenge: 252 related problems
‚ Average size 400 formulas, 1500 formulas in total
‚ 21 hours overall timelimit
‚ The base ATPs (E,SPASS): 80 - 90 problems each with 300s
‚ 104 together (if each 64s for each problem)
‚ We add term-structure features (TS) and semantic guidance (SG)

Table: Full run of three versions of MaLARea on the MPTP Challenge

description total solved in passes in total last pass
solved 21 hours 21 hours passes with success

old 149 144 114 234 208
with TS 154 149 148 263 237
with TS & SG 165 161 121 195 170
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)
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Low-level: Statistical Guidance of Connection Tableau

‚ learn guidance of every clausal inference in connection tableau (leanCoP)
‚ set of first-order clauses, extension and reduction steps
‚ proof finished when all branches are closed
‚ a lot of nondeterminism, requires backtracking
‚ Iterative deepening used in leanCoP to ensure completeness
‚ good for learning – the tableau compactly represents the proof state

Clauses:

c1 : Ppxq

c2 : Rpx ; yq _  Ppxq _Qpyq

c3 : Spxq _  Qpbq

c4 :  Spxq _  Qpxq

c5 :  Qpxq _  Rpa; xq

c6 :  Rpa; xq _Qpxq

Closed Connection Tableau: Ppaq

Rpa; bq

 Rpa; bq Qpbq

 Qpbq  Rpa; bq

 Ppaq Qpbq

Spbq

 Spbq  Qpbq

 Qpbq
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leanCoP: Minimal FOL Theorem Prover

1 % prove ( Cla , Path , PathLim ,Lem, Set )
2 prove ( [ L i t | Cla ] , Path , PathLim ,Lem, Set ) :´
3 (´NegLit= L i t ;´ L i t =NegLi t ) ´>
4 (
5 member (NegL , Path ) ,
6 uni fy_wi th_occurs_check (NegL , NegLi t )
7 ;
8 % main nondeterminism
9 l i t ( NegLit , NegL , Cla1 , Grnd1 ) ,

10 uni fy_wi th_occurs_check (NegL , NegLi t ) ,
11 prove ( Cla1 , [ L i t | Path ] , PathLim ,Lem, Set )
12 ) ,
13 prove ( Cla , Path , PathLim ,Lem, Set ) .
14 prove ( [ ] , _ , _ , _ , _ ) .
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Statistical Guidance of Connection Tableau

‚ MaLeCoP (2011): first prototype Machine Learning Connection Prover
‚ extension rules chosen by naive Bayes trained on good decisions
‚ training examples: tableau features plus the name of the chosen clause
‚ initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
‚ 20-time search shortening on the MPTP Challenge
‚ second version: 2015, with C. Kaliszyk
‚ both prover and naive Bayes in OCAML, fast indexing
‚ Fairly Efficient MaLeCoP = FEMaLeCoP
‚ 15% improvement over untrained leanCoP on the MPTP2078 problems
‚ using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau – rlCoP

‚ 2018: stronger learners via C interface to OCAML (boosted trees)
‚ remove iterative deepening, the prover can go arbitrarily deep
‚ added Monte-Carlo Tree Search (MCTS)
‚ MCTS search nodes are sequences of clause application
‚ a good heuristic to explore new vs exploit good nodes:

wi

ni
` c ¨ pi ¨

d

lnN
ni

(UCT - Kocsis, Szepesvari 2006)

‚ learning both policy (clause selection) and value (state evaluation)
‚ clauses represented not by names but also by features (generalize!)
‚ binary learning setting used: | proof state | clause features |
‚ mostly term walks of length 3 (trigrams), hashed into small integers
‚ many iterations of proving and learning
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Tree Example

r=0.3489
n=1000

p=0.37
r=0.0218

n=287

p=0.70
r=0.0000

n=166

p=0.13
r=0.0000

n=25

p=0.18
r=0.0000

n=74

p=0.11
r=0.0000

n=6

p=0.12
r=0.0000

n=22

p=0.16
r=0.0000

n=39

p=0.30
r=0.1225

n=121

p=0.19
r=0.0000

n=14

p=0.81
r=0.1330

n=107

0.63
r=0.4805

n=713

Ś

p=0.31

0.18
r=0.3649

n=385

1.00
r=0.3649

n=385

Ś

p=0.31

0.14
r=0.3562

n=278

...

...
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Statistical Guidance of Connection Tableau – rlCoP

‚ On 32k Mizar40 problems using 200k inference limit
‚ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

‚ rlCoP with policy/value after 5 proving/learning iters on the training data
‚ 1624{1143 “ 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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More trees

r=0.3099
n=1182

p=0.24
r=0.3501

n=536

p=0.21
r=0.1859

n=28...
p=0.10

r=0.2038
n=9...

p=0.13
r=0.2110

n=14...
p=0.14

r=0.2384
n=21...

p=0.14
r=0.3370

n=181...
p=0.20

r=0.3967
n=279

p=0.30
r=0.1368

n=14...
p=0.15

r=0.0288
n=2...

p=0.56
r=0.4135

n=262

p=0.66
r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18
r=0.2633

n=8...
p=0.17

r=0.2554
n=6...

p=0.08
r=0.1116

n=3...

p=0.19
r=0.2289

n=58...
p=0.22

r=0.1783
n=40...

p=0.35
r=0.2889

n=548...

# (tableau starting
atom)

RelStr(c1)

upper(c1)

Subset(union(c2),carrier(c1))

Subset(c2,powerset(carrier(c1))
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Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

‚ FLoP – Finding Longer Proofs (Zombori et al, 2019)
‚ Curriculum Learning used for connection tableau over Robinson

Arithmetic
‚ addition and multiplication learned perfectly from 1 ˚ 1 “ 1
‚ headed towards learning algorithms/decision procedures from math data
‚ currently black-box, combinations with symbolic methods (ILP) our next

target
‚ Using RNNs for better tableau encoding, prediction of actions ...
‚ ... even guessing (decoding) next tableau literals (Piotrowski 2020)
‚ plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson) ...
‚ Zombori: learning new explainable Prolog actions (tactics) from proofs
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FLoP Training Proof
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Guiding Saturation-Based Theorem Proving
Basic Saturation Loop – Given Clause Loop

P :“ H (processed)
U :“ tclausified axioms and a negated conjectureu (unprocessed)
while (U ‰ H) do

if (K P U Y P) then return Unsatisfiable
g :“ selectpUq (choose a given clause)
P :“ P Y tgu (add to processed)
U :“ Uztgu (remove from unprocessed)
U :“ U Y tall clauses inferred from g and Pu (add inferences)

done
return Satisfiable

Typically, U grows quadratically wrt. P
1M clauses in U in 10s common – choosing good g gets harder

104 / 169



ENIGMA (2017): Guiding the Best ATPs like E Prover

‚ ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

‚ The proof state are two large heaps of clauses processed/unprocessed
‚ learn on E’s proof search traces, put classifier in E
‚ positive examples: clauses (lemmas) used in the proof
‚ negative examples: clauses (lemmas) not used in the proof
‚ 2021 multi-phase architecture (combination of different methods):

‚ fast gradient-boosted decision trees (GBDTs) used in 2 ways
‚ fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
‚ logic-based subsumption using fast indexing (discrimination trees - Schulz)

‚ The GNN scores many clauses (context/query) together in a large graph
‚ Sparse - vastly more efficient than transformers („100k symbols)
‚ 2021: leapfrogging and Split&Merge:
‚ aiming at learning reasoning/algo components
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Feedback prove/learn loop for ENIGMA on Mizar data

‚ Done on 57880 Mizar problems recently
‚ Serious ML-guidance breakthrough applied to the best ATPs
‚ Ultimately a 70% improvement over the original strategy in 2019
‚ From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
‚ Went up to 40k in more iterations and 60s time in 2020
‚ 75% of the Mizar corpus reached in July 2021 - higher times and many

runs: https://github.com/ai4reason/ATP_Proofs

S S dM0
9 S ‘M

0
9 S dM1

9 S ‘M
1
9 S dM2

9 S ‘M
2
9 S dM3

9 S ‘M
3
9

solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S` +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S´ -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S dM3
12 S ‘M3

12 S dM3
16 S ‘M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S` +9761 +10063 +10476 +10647
S´ -535 -295 -309 -183
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ENIGMA Anonymous: Learning from patterns only

‚ The GNN and GBDTs only learn from formula structure, not symbols
‚ Not from symbols like ` and ˚ as Transformer & Co.
‚ E.g., learning on additive groups thus transfers to multiplicative groups
‚ Evaluation of old-Mizar ENIGMA on 242 new Mizar articles
‚ 13370 new theorems, ą 50% of them with new terminology:
‚ The 3-phase ENIGMA is 58% better on them than unguided E
‚ While 53.5% on the old Mizar (where this ENIGMA was trained)
‚ Generalizing, analogizing and transfer abilities unusual in the large

transformer models
‚ Recently also trained on 300k Isabelle/AFP problems (Sledgehammer)

107 / 169



3-phase Anonymous ENIGMA
The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

12

Given Clause Loop in E + ML Guidance

Parental Guidance Filter:

Fast – GBDT        

Clause Selection Models:

2-phase – GBDT + GNN  

3-phase ENIGMA
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Clauses as Feature Vectors for ENIGMA

Collect and enumerate all the features. Count the clause features.

‘

“

f

f f

g

d d

f

# feature count

1 (‘,=,a) 0
...

...
...

11 (‘,=,f) 1
12 (‘,=,g) 1
13 (=,f,f) 2
14 (=,g,d) 2
15 (g,d,f) 1
...

...
...
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Clauses as Feature Vectors for ENIGMA

Take the counts as a feature vector.

‘

“

f

f f

g

d d

f

# feature count

1 (‘,=,a) 0
...

...
...

11 (‘,=,f) 1
12 (‘,=,g) 1
13 (=,f,f) 2
14 (=,g,d) 2
15 (g,d,f) 1
...

...
...
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ENIGMA Proof Example – Knaster
theorem Th21:
ex a st a is_a_fixpoint_of f

proof
set H = {h where h is Element of L: h [= f.h};
set fH = {f.h where h is Element of L: h [= f.h};
set uH = "\/"(H, L);
set fuH = "\/"(fH, L);
take uH;
now
let fh be Element of L;
assume fh in fH;
then consider h being Element of L such that

A1: fh = f.h and
A2: h [= f.h;

h in H by A2;
then h [= uH by LATTICE3:38;
hence fh [= f.uH by A1,QUANTAL1:def 12;

end;
then fH is_less_than f.uH by LATTICE3:def 17;
then

A3: fuH [= f.uH by LATTICE3:def 21;
now
let a be Element of L;
assume a in H;
then consider h being Element of L such that

A4: a = h & h [= f.h;
reconsider fh = f.h as Element of L;
take fh;
thus a [= fh & fh in fH by A4;

end;
then uH [= fuH by LATTICE3:47;
then

A5: uH [= f.uH by A3,LATTICES:7;
then f.uH [= f.(f.uH) by QUANTAL1:def 12;
then f.uH in H;
then f.uH [= uH by LATTICE3:38;
hence uH = f.uH by A5,LATTICES:8;
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Neural Clause Selection in Vampire (M. Suda)

Deepire: Similar to ENIGMA:
‚ build a classifier for recognizing good clauses
‚ good are those that appeared in past proofs

Deepire’s contributions:
‚ Learn from clause derivation trees only

Not looking at what it says, just who its ancestors were.
‚ Integrate using layered clause queues

A smooth improvement of the base clause selection strategy.
‚ Tree Neural Networks: constant work per derived clause
‚ A signature agnostic approach
‚ Delayed evaluation trick (not all derived need to be evaluated)

Preliminary Evaluation on Mizar “57880”
‚ Learn from 63595 proofs of 23071 problems (three 30s runs)
‚ Deepire solves 26217 (i.e. +4054) problems in a single 10s run
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Prover9 - Research-Level Open Conjectures

‚ Michal Kinyon, Bob Veroff and Prover9: quasigroup and loop theory
‚ the Abelian Inner Mappinngs (AIM) Conjecture (>10 year program)
‚ Strong AIM: Q is AIM implies Q/Nuc(Q) is abelian and Q/Z(Q) is a group
‚ The Weak AIM Conjecture positively resolved in August 2021
‚ Q is AIM implies Q is nilpotent of class at most 3.
‚ 20-200k long proofs by Prover9 assisting the humans
‚ Prover9 hints strategy (Bob Veroff): extract hints from easier proofs to

guide more difficult proofs
‚ Human-guided exploration to get good hints (not really automated yet)
‚ Millions of hints collected, various algorithms for their selection for a

particular conjecture
‚ Symbolic machine learning?
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ProofWatch: Symbolic/Statistical Guidance of E

‚ Bob Veroff’s hints method used for Prover9
‚ solve many easier/related problems, produce millions of lemmas
‚ load the useful lemmas on the watchlist (kind of conjecturing)
‚ boost inferences on clauses that subsume a watchlist clause
‚ watchlist parts are fast thinking, bridged by standard (slow) search
‚ symbolic guidance, initial attempts to choose good hints by statistical ML
‚ Very long proofs of open conjectures in quasigroup/loop theory (AIM)
‚ ProofWatch (Goertzel et al. 2018): load many proofs separately
‚ dynamically boost those that have been covered more
‚ needed for heterogeneous ITP libraries
‚ statistical: watchlists chosen using similarity and usefulness
‚ semantic/deductive: dynamic guidance based on exact proof matching
‚ results in better vectorial characterization of saturation proof searches
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ProofWatch: Statistical/Symbolic Guidance of E

theorem Th36: :: YELLOW_5:36
for L being non empty Boolean RelStr for a, b being Element of L
holds ( ’not’ (a "\/" b) = (’not’ a) "/\" (’not’ b)

& ’not’ (a "/\" b) = (’not’ a) "\/" (’not’ b) )

‚ De Morgan’s laws for Boolean lattices
‚ guided by 32 related proofs resulting in 2220 watchlist clauses
‚ 5218 given clause loops, resulting ATP proof is 436 clauses
‚ 194 given clauses match the watchlist and 120 (61.8%) used in the proof
‚ most helped by the proof of WAYBEL_1:85 – done for lower-bounded Heyting

theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds
for a, b being Element of H holds
’not’ (a "/\" b) >= (’not’ a) "\/" (’not’ b)
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ProofWatch: Vectorial Proof State

Final state of the proof progress for the 32 proofs guiding YELLOW_5:36

0 0.438 42/96 1 0.727 56/77 2 0.865 45/52 3 0.360 9/25
4 0.750 51/68 5 0.259 7/27 6 0.805 62/77 7 0.302 73/242
8 0.652 15/23 9 0.286 8/28 10 0.259 7/27 11 0.338 24/71
12 0.680 17/25 13 0.509 27/53 14 0.357 10/28 15 0.568 25/44
16 0.703 52/74 17 0.029 8/272 18 0.379 33/87 19 0.424 14/33
20 0.471 16/34 21 0.323 20/62 22 0.333 7/21 23 0.520 26/50
24 0.524 22/42 25 0.523 45/86 26 0.462 6/13 27 0.370 20/54
28 0.411 30/73 29 0.364 20/55 30 0.571 16/28 31 0.357 10/28
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EnigmaWatch: ProofWatch used with ENIGMA

‚ Use the proof completion ratios as features for characterizing proof state
‚ Instead of just static conjecture features - the proof vectors evolve
‚ Feed them to ML systems along with other features
‚ Good improvement, extendable in various ways
‚ Alternative to backtracking-based RL-style systems? (Doesn’t forget!)
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EnigmaWatch: ProofWatch used with ENIGMA

Baseline Mean Var Corr Rand Baseline Y Mean Total
1140 1357 1345 1337 1352 1416 1483

Table: ProofWatch evaluation: Problems solved by different versions.

loop ENIGMA Mean Var Corr Rand ENIGMA Y Mean Total
0 1557 1694 1674 1665 1690 1830 1974
1 1776 1815 1812 1812 1847 1983 2131
2 1871 1902 1912 1882 1915 2058 2200
3 1931 1954 1946 1920 1926 2110 2227

Table: ENIGMAWatch evaluation: Problems solved and the effect of looping.

‚ ENIGMAWatch initially much better, ENIGMA eventually catches up
‚ Still, EW produces simpler XGBoost models (easier learning)
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Example of an XGBoost decision tree

wl #194 < 0.19

wl #412 < 0.03

!POS

=.k1_xboole_0.k3_rlsub_1

...

< 16.5

=.k1_funct_1.k5_memstr_0

v1_rat_1:k2_jordan3:*

...

< 2.5 ... wl #153 < 0.29

=.k1_funct_1.k5_memstr_0

v1_rat_1:k2_jordan3:*

...

< 14.5

... ... ... ... ... ...
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RL of Neural Rewriting

‚ J. Piepenbrock (IJCAR’22): greatly improved RL for
‚ Gauthier’s normalization in Robinson arithmetic
‚ Achieved good performance also on the polynomial normalization tasks
‚ Hold-out performance better than a top equational prover (Waldmeister)

on AIM after 100 epochs of training on 2500 problems
‚ Combination with Prover9 outperforms also unguided Prover9
‚ Exciting: again, this is all in the verifiable/explainable proof format

METHOD SUCCESS RATE ON AIM HOLD-OUT SET

WALDMEISTER (60S) 0.655
NEURALLY GUIDED REWRITING(60S) 0.702 ˘ 0.015
PROVER9 (2S) 0.746
E (60S) 0.802
PROVER9 (60S) 0.833
NEURALLY GUIDED REWRITING (1S) + PROVER9 (59S) 0.902 ˘ 0.016
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TacticToe: mid-level ITP Guidance (Gauthier’17,18)

‚ TTT learns from human and its own tactical HOL4 proofs
‚ No translation or reconstruction needed - native tactical proofs
‚ Fully integrated with HOL4 and easy to use
‚ Similar to rlCoP: policy/value learning for applying tactics in a state
‚ However much more technically challenging - a real breakthrough:

‚ tactic and goal state recording
‚ tactic argument abstraction
‚ absolutization of tactic names
‚ nontrivial evaluation issues
‚ these issues have often more impact than adding better learners

‚ policy: which tactic/parameters to choose for a current goal?
‚ value: how likely is this proof state succeed?
‚ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
‚ similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)
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Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

‚ Tactical guidance of Coq proofs
‚ Technically very challenging to do right - the Coq internals again nontrivial
‚ 39.3% on the Coq standard library, 56.7% in a union with CoqHammer

(orthogonal)
‚ Fast approximate hashing for k-NN makes a lot of difference
‚ Fast re-learning more important than “cooler”/slower learners
‚ Fully integrated with Coq, should work for any development
‚ User friendly, installation friendly, integration friendly and maintenance

friendly
‚ Took several years, but could become a very common tool for Coq

formalizers
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More Mid-level guidance: BliStr: Blind Strategymaker

‚ ATP strategies are programs specified in rich DSLs - can be evolved
‚ The ATP strategies are like giraffes, the problems are their food
‚ The better the giraffe specializes for eating problems unsolvable by

others, the more it gets fed and further evolved
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The E strategy with longest specification in Jan 2012

Longest human-designed strategy:

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

4 * ConjectureGeneralSymbolWeight(
SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),

3 * ConjectureGeneralSymbolWeight(
PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),

1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed)
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BliStr: Blind Strategymaker

‚ Strategies characterized by the problems they solve
‚ Problems characterized by the strategies that solve them
‚ Improve on sets of similar easy problems to train for unsolved problems
‚ Interleave low-time training on easy problems with high-time evaluation
‚ Single strategy evolution done by ParamILS - Iterated Local Search

(Hutter et al. 2009 – genetic methods work too)
‚ Thus co-evolve the strategies and their training problems
‚ The hard problems gradually become easier and turn into training data

(the trees get lower for a taller giraffe)
‚ In the end, learn which strategy to use on which problem
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The Longest E Strategy After BliStr Evolution
Evolutionarily designed Franken-strategy (29 heuristics combined):
6 * ConjectureGeneralSymbolWeight(PreferNonGoals,100,100,100,50,50,1000,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,50,50,1.5,1.5,1)
4 * ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
10 * ConjectureRelativeSymbolWeight(PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 * ConjectureSymbolWeight(ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 * Clauseweight(ByCreationDate,2,1,0.8)
1 * Clauseweight(ConstPrio,3,1,1)
6 * Clauseweight(ConstPrio,1,1,1)
2 * Clauseweight(PreferProcessed,1,1,1)
6 * FIFOWeight(ByNegLitDist)
1 * FIFOWeight(ConstPrio)
2 * FIFOWeight(SimulateSOS)
8 * OrientLMaxWeight(ConstPrio,2,1,2,1,1)
2 * PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5)
10 * RelevanceLevelWeight(ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)
8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
2 * RelevanceLevelWeight2(PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
6 * RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,1.5,1)
8 * RelevanceLevelWeight2(SimulateSOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
5 * rweight21_g
3 * Refinedweight(PreferNonGoals,1,1,2,1.5,1.5)
1 * Refinedweight(PreferNonGoals,2,1,2,2,2)
2 * Refinedweight(PreferNonGoals,2,1,2,3,0.8)
8 * Refinedweight(PreferGoals,1,2,2,1,0.8)
10 * Refinedweight(PreferGroundGoals,2,1,2,1.0,1)
20 * Refinedweight(SimulateSOS,1,1,2,1.5,2)
1 * Refinedweight(SimulateSOS,3,2,2,1.5,2)
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BliStr Evaluation on 1000 Mizar problems

‚ Original E coverage: 597 problems
‚ After 30 hours of strategy growing: 22 strategies covering 670 problems
‚ Best strategy solves 598 problems (1 more than all original strategies)
‚ Portfolio of 14 strategies improves E auto-mode by 25% on new problems
‚ Similar results for the Flyspeck problems
‚ Future: enrich the DSLs with new methods (ENIGMA/Watch, etc.)
‚ Be lazy, don’t do "hard" theory-driven ATP research (a.k.a: thinking)
‚ Larry Wall (Programming Perl): "We will encourage you to develop the

three great virtues of a programmer: laziness, impatience, and hubris"
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Outline

Motivation, Learning vs. Reasoning

Computer Understandable (Formal) Math

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization
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Symbolic Rewriting with NNs

‚ Recurrent NNs with attention good at the inf2formal task
‚ Piotrowski 2018/19: Experiments with using RNNs for symbolic rewriting
‚ We can learn rewrite rules from sufficiently many data
‚ 80-90% success on AIM datasets, 70-99% on normalizing polynomials
‚ again, complements symbolic methods like ILP that suffer on big data
‚ in 2019 similar tasks taken up by Facebook - integration, etc.
‚ Similar use for conjecturing (Chvalovsky et al):
‚ Learn consistent translations between different math contexts:
‚ additive groups Ñ multiplicative groups
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Symbolic Rewriting Datasets

Table: Examples in the AIM data set.

Rewrite rule: Before rewriting: After rewriting:
b(s(e,v1),e)=v1 k(b(s(e,v1),e),v0) k(v1,v0)
o(V0,e)=V0 t(v0,o(v1,o(v2,e))) t(v0,o(v1,v2))

Table: Examples in the polynomial data set.

Before rewriting: After rewriting:
(x * (x + 1)) + 1 x ˆ 2 + x + 1
(2 * y) + 1 + (y * y) y ˆ 2 + 2 * y + 1
(x + 2) * ((2 * x) + 1) + (y + 1) 2 * x ˆ 2 + 5 * x + y + 3
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Alignment-based Conjecturing with RNNs
‚ Generate many "translations" of formulas by statistical concept

alignments (Gauthier)
‚ Train RNNs (language models) on such translations
‚ Try to translate a conjecture by an RNN into different contexts
‚ If provable there, try to translate back

We can obtain a new valid automatically provable lemma

pX X Y qzZ “ pXzZ q X pY zZ q

from

pX Y Y qzZ “ pXzZ q Y pY zZ q

Examples of false but syntactically consistent conjectures:

for n, m being natural numbers holds n gcd m = n div m;

for R being Relation holds
with_suprema(A) <=> with_suprema(inverse_relation(A));
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More on Conjecturing in Mathematics

‚ Targeted: generate intermediate lemmas (cuts) for a harder conjecture
‚ Unrestricted (theory exploration):
‚ Creation of interesting conjectures based on the previous theory
‚ One of the most interesting activities mathematicians do (how?)
‚ Higher-level AI/reasoning task - can we learn it?
‚ If so, we have solved math:
‚ ... just (recursively) divide Fermat into many subtasks ...
‚ ... and conquer (I mean: hammer) them away
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A bit of conjecturing history

‚ The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
‚ Combined with automated theorem proving by Colton et al. in early

2000s (HR)
‚ Theory exploration for Isabelle by Johansson et al (Hipster)
‚ Several learning-based/neural approaches by our groups since 2015:
‚ Based mainly on learning analogies and informalization followed by

probabilistic/neural disambiguation ...
‚ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU
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Conjecturing and Proof Synthesis by Neural Methods

‚ Karpathy’15 - RNN experiments with generating fake Math over Stacks
‚ I have tried to use that for formal math in 2016 but it looked weak
‚ GPT (-2,3) looks stronger
‚ Renewed experiments in 2020 (JU & J. Jakubuv: First Neural

Conjecturing Datasets and Experiments. CICM’20) on:
‚ All Mizar articles, stripped of comments and concatenated together (78M)
‚ Articles with added context/disambiguation (156M) (types, names, thesis)
‚ TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
‚ Just the conjecture and premises needed for the 28271 proofs printed in

prefix notation

‚ Quite interesting results, server for Mizar authors
‚ Quickly taken up by others on HOL, Isabelle, MetaMath ...
‚ Caveat: Watch for "model pretraining" on undisclosed corpora - often

GitHub/math repos that may contain (translations of) the testing data

134 / 169



Karpathy’15 - RNN generating fake Math over Stacks

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “Mizar proof” - typechecks!
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Mizar autocompletion server in action

Figure: MGG - Mizar Gibberish Generator. 137 / 169



Proving the conditioned completions - MizAR hammer

Figure: Mizar hammer ATP completions on the conditional completions.
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A correct conjecture that was too hard to prove

Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group
for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

The generalization that avoids finiteness:

for G being Group
for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic
holds G is commutative
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Gibberish Generator Provoking Algebraists

Figure: First successes in making mathematicians comment on AI.
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More cuts

‚ In total 33100 in this experiment
‚ Ca 9k proved by trained ENIGMA
‚ Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17

sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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QSynt: Semantics-Aware Synthesis of Math Objects

‚ Gauthier’19-22
‚ Synthesize math expressions based on semantic characterizations
‚ i.e., not just on the syntactic descriptions (e.g. proof situations)
‚ Tree Neural Nets and RL (MCTS, policy/value), used for:
‚ Guiding synthesis of a diophantine equation characterizing a given set
‚ Guiding synthesis of combinators for a given lambda expression
‚ 2022: invention of programs for OEIS sequences from scratch
‚ 50k sequences discovered so far:
https://www.youtube.com/watch?v=24oejR9wsXs,
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

‚ Many conjectures invented: 4 different characterizations of primes
‚ Non-neural (Turing complete) computing and semantics collaborates with

the statistical learning
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QSynt: synthesizing the programs/expressions

‚ Inductively defined set P of our programs and subprograms,
‚ and an auxiliary set F of binary functions (higher-order arguments)
‚ are the smallest sets such that 0;1;2; x ; y P P, and if a;b; c P P and

f ;g P F then:

a` b;a´ b;aˆ b;a div b;a mod b; condpa;b; cq P P

�px ; yq:a P F ; looppf ;a;bq; loop2pf ;g;a;b; cq; comprpf ;aq P P

‚ Programs are built in reverse polish notation
‚ Start from an empty stack
‚ Use ML to repeatedly choose the next operator to push on top of a stack
‚ Example: Factorial is loopp�px ; yq: x ˆ y ; x ;1q , built by:

r s Ñx rxs Ñy rx ; ys Ñˆ rx ˆ ys Ñx rx ˆ y ; xs

Ñ1 rx ˆ y ; x ;1s Ñloop rloopp�px ; yq: x ˆ y ; x ;1qs
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QSynt: Training of the Neural Net Guiding the Search
‚ The triple ppheadprx ˆ y ; xs; r1;1;2;6;24;120 : : :sq; Ñ1q is a training

example extracted from the program for factorial loopp�px ; yq: x ˆ y ; x ;1q
‚ Ñ1 is the action (adding 1 to the stack) required on rx ˆ y ; xs to progress

towards the construction of loopp�px ; yq: x ˆ y ; x ;1q.

x y

ˆ

x ˆ y

::

rx ˆ y ; xs r1;1;2;6;24;120; : : :s

head

one-hot Ñ1

::

r1;2;6;24;120; : : :s

::

1 r2;6;24;120; : : :s

::

2
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QSynt program search - Monte Carlo search tree

7 iterations of the search loop gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is t1; x ; y ; x ˆ y ; x mod yu.

r s

rxs rys

rx ; ys ry ; xs

rx ˆ ysrx mod ys

rx mod y ;1s

1 3

2

64

5

7
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QSynt web interface for program invention
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QSynt inventing Fermat pseudoprimes
Positive integers k such that 2k ” 2 mod k . (341 “ 11 ˚ 31 is the first non-prime)
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Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)

mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
705
2465
2737
3745
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QSynt inventing primes using Wilson’s theorem
n is prime iff pn ´ 1q!` 1 is divisible by n (i.e.: pn ´ 1q! ” ´1 mod n)
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Are two QSynt programs equivalent?

‚ As with primes, we often find many programs for one OEIS sequence
‚ It may be quite hard to see that the programs are equivalent
‚ A simple example for 0;2;4;6;8; ::: with two programs f and g:

‚ f p0q “ 0; f pnq “ 2` f pn ´ 1q if n ą 0
‚ gpnq “ 2 ˚ n
‚ conjecture: @n P N:gpnq “ f pnq

‚ We can ask mathematicians, but we have thousands of such problems
‚ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
‚ Here is one SMT encoding by Mikolas Janota:

(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1)))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (* 2 c))))))
(check-sat)
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Inductive proof by Vampire of the f “ g equivalence
% SZS output start Proof for rec2
1. f(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]
2. ? [X0 : $int] : ($greater(X0,0) & ~f(X0) = $product(2,X0)) [input]
[...]
43. ~$less(0,X0) | iG0(X0) = $sum(2,iG0($sum(X0,-1))) [evaluation 40]
44. (! [X0 : $int] : (($product(2,X0) = iG0(X0) & ~$less(X0,0)) => $product(2,$sum(X0,1)) = iG0($sum(X0,1)))

& $product(2,0) = iG0(0)) => ! [X1 : $int] : ($less(0,X1) => $product(2,X1) = iG0(X1)) [induction hypo]
[...]
49. $product(2,0) != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [resolution 48,41]
50. $product(2,0) != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [resolution 47,41]
51. $product(2,0) != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [resolution 46,41]
52. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [evaluation 49]
53. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [evaluation 50]
54. 0 != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [evaluation 51]
55. 0 != iG0(0) | ~$less(sK3,0) [subsumption resolution 54,39]
57. 1 <=> $less(sK3,0) [avatar definition]
59. ~$less(sK3,0) <- (~1) [avatar component clause 57]
61. 2 <=> 0 = iG0(0) [avatar definition]
64. ~1 | ~2 [avatar split clause 55,61,57]
65. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) [subsumption resolution 53,39]
67. 3 <=> $product(2,sK3) = iG0(sK3) [avatar definition]
69. $product(2,sK3) = iG0(sK3) <- (3) [avatar component clause 67]
70. 3 | ~2 [avatar split clause 65,61,67]
71. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) [subsumption resolution 52,39]
72. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) | 0 != iG0(0) [forward demodulation 71,5]
74. 4 <=> $product(2,$sum(1,sK3)) = iG0($sum(1,sK3)) [avatar definition]
76. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) <- (~4) [avatar component clause 74]
77. ~2 | ~4 [avatar split clause 72,74,61]
82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iG0($sum(X1,1)) = $sum(2,iG0($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]
251. $less(X1,0) | iG0($sum(X1,1)) = $sum(2,iG0(X1)) [evaluation 246]
[...]
1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]
1177. 1 | ~3 | 4 [avatar contradiction clause 1176]
1178. $false [avatar sat refutation 64,70,77,85,1177]
% SZS output end Proof for rec2
% Time elapsed: 0.016 s 151 / 169



Autoformalization

‚ Goal: Learn understanding of informal math formulas and reasoning
‚ Experiments with the CYK chart parser linked to semantic methods
‚ Experiments with neural methods
‚ Semantic methods: Type checking, theorem proving
‚ Corpora: Flyspeck, Mizar, Proofwiki, etc.
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Statistical/Semantic Parsing of Informalized HOL

‚ Training and testing examples exported form Flyspeck formulas
‚ Along with their informalized versions

‚ Grammar parse trees
‚ Annotate each (nonterminal) symbol with its HOL type
‚ Also “semantic (formal)” nonterminals annotate overloaded terminals
‚ guiding analogy: word-sense disambiguation using CYK is common

‚ Terminals exactly compose the textual form, for example:
‚ REAL_NEGNEG: @x :´´x “ x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

‚ becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))
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Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0
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CYK Learning and Parsing (KUV, ITP 17)

‚ Induce PCFG (probabilistic context-free grammar) from the trees
‚ Grammar rules obtained from the inner nodes of each grammar tree
‚ Probabilities are computed from the frequencies

‚ The PCFG grammar is binarized for efficiency
‚ New nonterminals as shortcuts for multiple nonterminals

‚ CYK: dynamic-programming algorithm for parsing ambiguous sentences
‚ input: sentence – a sequence of words and a binarized PCFG
‚ output: N most probable parse trees

‚ Additional semantic pruning
‚ Compatible types for free variables in subtrees
‚ Optionally merge equivalent subtrees (tricky)

‚ Allow small probability for each symbol to be a variable
‚ Top parse trees are de-binarized to the original CFG

‚ Transformed to HOL parse trees (preterms, Hindley-Milner)
‚ typed checked in HOL and then given to an ATP (hammer)
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Autoformalization based on PCFG and semantics

‚ “sin ( 0 * x ) = cos pi / 2”

‚ produces 16 parses
‚ of which 11 get type-checked by HOL Light as follows
‚ with all but three being proved by HOL(y)Hammer
‚ demo: http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
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Flyspeck Progress
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Neural Autoformalization (Wang et al., 2018)

‚ generate about 1M Latex - Mizar pairs synthetically (quite advanced)
‚ train neural seq-to-seq translation models (Luong – NMT)
‚ evaluate on about 100k examples
‚ many architectures tested, some work much better than others
‚ very important latest invention: attention in the seq-to-seq models
‚ more data crucial for neural training
‚ Recent addition: unsupervised MT methods (Lample et all 2018) – no

need for aligned data, improving a lot!
‚ Type-checking not yet internal (boosting well-typed data externally)
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Neural Autoformalization data

Rendered LATEX If X Ď Y Ď Z , then X Ď Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then limps8`s7q “

lim s8` lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ast t ) ;
s . ( i + 1 ) = tt . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier ( f ) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC ( V ) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply ( v2 , v1 ) . t ;
s . ( i + 1 ) = tau1 . ( i + 1 )
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng ( H1 ./. y ) ;
a * L = ZeroLC ( V ) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [ x , y ] in A ;
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More Personal Notes (written for AI/TP students)
‚ Think globally, act locally. Big dreams about AI, etc. But act by trying

many small steps/experiments. AI/TP is a very experimental science.
‚ Sometimes need to commit a lot. The first Mizar-to-ATP translation took

years, but bore a lot of fruit. Today millions USD in Google HOL/RL.
‚ Follow your dream mercilessly - avoid distractions (stay focused - hard for

many smart people). Find/do what you are convinced/passionate about.
‚ Avoid excessive "theorem envy". AI is often not Math. We want to replace

mathematicians, not be them. Always reflect and implement your thinking.
‚ Many AI improvements come from bringing ideas/systems together:

"Automate, automate, automate!"
‚ Become a hacker. Learn rapid prototyping. Learn to gain maximum info

from initial experiments, then iterate. "Experience, not only doctrine".
‚ Learn at least one high-level symbolic language - lisp, prolog, ml, haskell.

At least one scripting language: perl, python, ruby, shell.
‚ Stay motivated by reading giants of science: Einstein, Poincare, Russel,

Heisenberg, Turing, Deutsch, Dawkins ....
‚ Read good sci-fi: Clarke, Heinlein, Stephenson, Stroth, ...
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References on PCFG and Neural Autoformalization
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Thanks and Advertisement

‚ Thanks for your attention!
‚ AITP – Artificial Intelligence and Theorem Proving
‚ September 4–9, 2022, Aussois, France, aitp-conference.org
‚ ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
‚ Discussion-oriented and experimental
‚ Grown to 80 people in 2019
‚ Hybrid in 2022 as in 2021 and 2020
‚ Invited talks by J. Araujo, K. Buzzard, J. Brandstetter, W. Dean and A.

Naibo, M. Rawson, T. Ringer, S. Wolfram
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