DEVELOPMENTS IN AI AND THEOREM PROVING

Josef Urban

Czech Technical University in Prague

National Meeting of the SPM 2021 July 14, 2021

European Research Council Established by the European Commission

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?
- · Pattern-matching, analogy, induction from examples
- · Deductive reasoning
- · Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge both for induction and deduction
- · We need to develop such methods on computers
- · Are there any large corpora suitable for nontrivial deduction?
- · Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Why Combine Learning and Reasoning Today?

1 It practically helps!

- Automated theorem proving for large formal verification is useful:
 - Formal Proof of the Kepler Conjecture (2014 Hales 20k lemmas)
 - · Formal Proof of the Feit-Thompson Theorem (2012 Gonthier)
 - · Verification of compilers (CompCert) and microkernels (seL4)
 - · Verification hardware architectures, transport systems, trading rules
 - ...
- · But good learning/AI methods needed to cope with large theories!

2 Blue Sky Al Visions:

- Get strong AI by learning/reasoning over large KBs of human thought?
- · Big formal theories: good semantic approximation of such thinking KBs?
- · Deep non-contradictory semantics better than scanning books?
- Gradually try learning math/science:
 - · What are the components (inductive/deductive thinking)?
 - · How to combine them together?
 - · Automate/verify math, science, law, ...
 - · Leibniz: Calculemus resolve disputes
 - J. McCarthy: Mathematical Objectivity and the Power of Initiative

What is Formal Mathematics?

- · Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
- Mathematics put on formal logic foundations (symbolic computation)
- ... which btw. led also to the rise of computers (Turing/Church, 1930s)
- Formal math (1950/60s): combine formal foundations and the newly available computers
- De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
- · Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...
- Conceptually very simple:
- · Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them
- · Use the computer to check that your proofs follow the rules
- But in practice, it turns out not to be so simple
- · Many approaches, still not mainstream, but big breakthroughs recently

Freek Wiedijk's Example: Irrationality of $\sqrt{2}$ (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational. The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$a^2 = 2b^2$$
 (4.3.1)

is soluble in integers *a*, *b* with (a, b) = 1. Hence a^2 is even, and therefore *a* is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and *b* is also even, contrary to the hypothesis that (a, b) = 1.

Irrationality of $\sqrt{2}$ (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  consider a,b such that
4 3 1: a^2 = 2 \cdot b^2 and
    a,b are relative prime;
  a^2 is even;
  a is even;
  consider c such that a = 2 * c;
  4 \star c^2 = 2 \star b^2;
  2 \star c^2 = b^2;
  b is even;
  thus contradiction;
end;
```

Irrationality of $\sqrt{2}$ in HOL Light

let SQRT_2_IRRATIONAL = prove (`~rational(sqrt(&2))`, SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `~((&p / &q) pow 2 = sqrt(&2) pow 2)` (fun th -> MESON_TAC[th]) THEN SIMP_TAC[SQRT_POW_2; REAL_OS; REAL_POW_DIV] THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LI; REAL_POW_LT; ARITH_RULE `0 < q <=> ~(q = 0)`] THEN ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

Irrationality of $\sqrt{2}$ in Isabelle/HOL

```
theorem sgrt2 not rational:
  "sort (real 2) ∉ 0"
proof
 assume "sqrt (real 2) \in \mathbb{Q}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "!sqrt (real 2)! = real m / real n"
    and lowest_terms: "gcd m n = 1" ...
 from n_nonzero and sqrt_rat have "real m = {sqrt (real 2)} * real n" by simp
  then have "real (m^2) = (sort (real 2))^2 * real <math>(n^2)"
    by (auto simp add: power2 eg square)
  also have "(sgrt (real 2))<sup>2</sup> = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: m^2 = 2 * n^2 ...
  hence "2 dvd m<sup>2</sup>"...
  with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)
  then obtain k where "m = 2^* k"
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2"...
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd m have "2 dvd qcd m n" by (rule qcd greatest)
  with lowest terms have "2 dvd 1" by simp
 thus False by arith
ged
```

Big Example: The Flyspeck project

• Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

- Formal proof finished in 2014
- · 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- · All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!

What Are Automated Theorem Provers?

- · Computer programs that (try to) determine if
 - A conjecture C is a logical consequence of a set of axioms Ax
 - · The derivation of conclusions that follow from facts by inference rules
- Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
- Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
- · Human-designed heuristics for pruning of the search space
- Fast combinatorial explosion on large knowledge bases like Flyspeck and Mizar
- · Need to be equipped with good domain-specific inference guidance ...
- ... and that is what I try to do ...
- ... typically by learning in various ways from the knowledge bases ...

History and Motivation for AI/TP

- Intuition vs Formal Reasoning Poincaré vs Hilbert, Science & Method
- Turing's 1950 paper: Learning Machines, learn Chess?, undecidability??
- · Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
- Denzinger, Schulz, Goller, Fuchs late 90's, ATP-focused:
- Learning from Previous Proof Experience
- · My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
- · Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
- ... hammer-style methods, feedback loops, internal guidance, ...
- More details AGI'18 keynote: https://bit.ly/3qifhg4
- Al vs DL: Ben Goertzel's Prague talk: https://youtu.be/Zt2HSTuGBn8
- Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
- Practical impact: boost today's large ITP verification projects

Using Learning to Guide Theorem Proving

- · high-level: pre-select lemmas from a large library, give them to ATPs
- · high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- Iow-level: guide every inference step of ATPs (tableau, superposition)
- · low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- · proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from LATEX to formal

Large AI/TP Datasets

- Mizar / MML / MPTP since 2003
- MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
- Isabelle (and AFP) since 2005
- Flyspeck (including core HOL Light and Multivariate) since 2012
- HOL4 since 2014, CakeML 2017, GRUNGE 2019
- Coq since 2013/2016
- · AIM Veroff & Kinyon, Loops with Abelian Inner Mappings long proofs
- · Lean?, Stacks?, Arxiv?, ProofWiki?, ...

- ENIGMA/hammer proofs of Pythagoras: https://bit.ly/2MVPAn7 (more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and simplified Carmichael https://bit.ly/3oGBdRz
- Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Tactician for Coq:

https://blaauwbroek.eu/papers/cicm2020/demo.mp4, https://coq-tactician.github.io/demo.html

• Inf2formal over HOL Light:

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose)
- Today: Premise selection is not a mysterious property of mathematicians!
- · Reasonably good algorithms started to appear (more below).
- Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)
- Since 2004 (my PhD): many examples of nontrivial alternative proofs proposed by the Als in Mizar, Flyspeck, Isabelle, ...
- The premise selection algorithms see wider than humans

Today's AI-ATP systems (*-Hammers)

How much can it do?

- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk), Coq (Czajka and Kaliszyk)
- · Rigorous resource controlled train/test evaluations on toplevel lemmas:

 \approx 40-45% success rate by 2016 \approx 60% on Mizar as of 2021

Premise Selection and Hammer Methods

- · Many syntactic features (symbols, walks in the parse trees)
- More semantic features encoding
- · Term matching/unification, validity in models, latent semantics (LSI)
- Distance-weighted k-nearest neighbor, SVMs, Naive Bayes
- · Gradient boosted decision trees (GBDTs XGBoost, LightGBM)
- · Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs
- As of 2020, tough competition between GBDTs, GNNs and RNNs/Transformers (and relatives)
- · K-NN still very good, Olsak's logic-aware GNN probably best
- RNNs/Transformers good at stateful premise selection (Piotrowski 2019,2020)
- · Ensemble methods combining the different predictors help a lot

Premise Selection and Hammer Methods

- · Learning in a binary setting from many alternative proofs
- Interleaving many learning and proving runs (*MaLARea loop 2006*) to get positives/negatives (ATPBoost - Piotrowski 2018)
- Matching and transferring concepts and theorems between libraries (Gauthier & Kaliszyk) allows "superhammers", conjecturing, and more
- Lemmatization extracting and considering millions of low-level lemmas and learning from their proofs (Kaliszyk & JU 2013)
- Hammers combined with guided tactical search: TacticToe (Gauthier HOL4) and its later relatives

FACE_OF_POLYHEDRON_POLYHEDRON

```
let FACE OF POLYHEDRON POLYHEDRON = prove
 ('!s:real^N->bool c. polyhedron s /\ c face of s ==> polyhedron c',
 REPEAT STRIP TAC THEN FIRST ASSUM
   (MP TAC O GEN REWRITE RULE I [POLYHEDRON INTER AFFINE MINIMAL]) THEN
  REWRITE TAC[RIGHT IMP EXISTS THM; SKOLEM THM] THEN
  SIMP TAC[LEFT IMP EXISTS THM; RIGHT AND EXISTS THM; LEFT AND EXISTS THM] THEN
 MAP EVERY X GEN TAC
   ['f:(real^N->bool)->bool'; 'a:(real^N->bool)->real^N';
    'b: (real^N->bool) ->real'] THEN
  STRIP TAC THEN
 MP TAC(ISPECL ['s:real^N->bool': 'f:(real^N->bool)->bool':
                 `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
         FACE OF POLYHEDRON EXPLICIT) THEN
 ANTS TAC THENL [ASM REWRITE TAC]] THEN ASM MESON TAC]]; ALL TAC] THEN
  DISCH THEN (MP TAC o SPEC 'c:real^N->bool') THEN ASM REWRITE TAC[] THEN
 ASM CASES TAC 'c:real^N->bool = {}' THEN
 ASM REWRITE TAC[POLYHEDRON EMPTY] THEN
 ASM CASES TAC 'c:real^N->bool = s' THEN ASM REWRITE TAC[] THEN
  DISCH THEN SUBST1 TAC THEN MATCH MP TAC POLYHEDRON INTERS THEN
  REWRITE TAC[FORALL IN GSPEC] THEN
 ONCE REWRITE TAC[SIMPLE IMAGE GEN] THEN
 ASM SIMP TAC[FINITE IMAGE: FINITE RESTRICT] THEN
 REPEAT STRIP TAC THEN REWRITE TAC[IMAGE ID] THEN
 MATCH MP TAC POLYHEDRON INTER THEN
 ASM REWRITE TAC[POLYHEDRON HYPERPLANE]);;
```

FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX: Face *t* of a convex set *s* is equal to the intersection of *s* with the affine hull of *t*.

```
FACE_OF_STILLCONVEX:
 !s t:real^N->bool. convex s ==>
 (t face_of s <=>
  t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:
 !s:real^N->bool. polyhedron s ==> convex s
POLYHEDRON_INTER:
 !s t:real^N->bool. polyhedron s /\ polyhedron t
 ==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
 !s. polyhedron(affine hull s)
```

Statistical Guidance of a Simple Connection Prover

- · learn guidance of every clausal inference in connection tableau (leanCoP)
- · set of first-order clauses, extension and reduction steps
- · proof finished when all branches are closed
- · a lot of nondeterminism, requires backtracking
- the search space quickly explodes
- · good for learning the tableau compactly represents the proof state

Using Reinforcement Learning to Guide leanCoP

- Monte-Carlo Tree Search (MCTS) used in AlphaGo
- MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

$$\frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N}{n_i}}$$
 (UCT - Kocsis, Szepesvari 2006)

- we learn the *policy* clause selection
- ... and the value proof state evaluation
- · big issue: representing clauses and proofs for learning
- many approaches none too good yet, esp. for value
- deep learning not impressive yet and slower than GBDTs
- · feedback loop between proving and learning many iterations

Statistical Guidance of Connection Tableau - rlCoP

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	leanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	1143	431	804
Total problems proved	11581	4615	8152

- · rICoP with policy/value after 5 proving/learning iters on the training data
- 1624/1143 = 42.1% improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved	12325	13749	14155	14363	14403	14431	14342	14498
Testing proved	1354	1519	1566	1595	1624	1586	1582	1591

Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

FLoP – Finding Longer Proofs (Zombori et al, 2019)

- Curriculum Learning used for connection tableau over Robinson Arithmetic
- addition and multiplication learned perfectly from 1 * 1 = 1
- · headed towards learning algorithms/decision procedures from math data
- currently black-box, combinations with symbolic methods (ILP) our next target
- Using RNNs for better tableau encoding, prediction of actions ...
- ... even guessing (decoding) next tableau literals (Piotrowski 2020)
- plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)
- · Zombori: learning new explainable Prolog actions (tactics) from proofs

ENIGMA: Guiding the Best ATPs like E Prover

- · Similar to rICoP interleave proving and learning of ENIGMA guidance
- · resolution/superposition harder for learning than tableau
- the proof state are two large heaps of clauses processed/unprocessed
- Done on 57880 Mizar problems recently 6 prove/learn iterations
- · Feedback loop: 70% improvement over the original strategy in 2019
- From 14933 proofs to 25397 proofs (all 10s CPU no cheating)
- Went up to 40k proofs in more iterations and 60s time in 2020
- Many proof examples at https://github.com/ai4reason/ATP_Proofs

	S	$\mathcal{S} \odot \mathcal{M}_9^0$	$\mathcal{S} \oplus \mathcal{M}_9^0$	$\mathcal{S} \odot \mathcal{M}_9^1$	$\mathcal{S} \oplus \mathcal{M}_9^1$	$\mathcal{S} \odot \mathcal{M}_9^2$	$\mathcal{S} \oplus \mathcal{M}_9^2$	$S \odot \mathcal{M}_9^3$	$\mathcal{S} \oplus \mathcal{M}_9^3$
solved	14933	16574	20366	21564	22839	22413	23467	22910	23753
S%	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%	+58.4
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822	+9274
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845	-454

	$S \odot \mathcal{M}_{12}^3$	$\mathcal{S} \oplus \mathcal{M}^3_{12}$	$S \odot \mathcal{M}^3_{16}$	$S \oplus \mathcal{M}^3_{16}$
solved	24159	24701	25100	25397
$\mathcal{S}\%$	+61.1%	+64.8%	+68.0%	+70.0%
$\mathcal{S}+$	+9761	+10063	+10476	+10647
S-	-535	-295	-309	-183

ENIGMA Proof Example – Knaster fixed-point theorem

```
theorem Th21:
 ex a st a is a fixpoint of f
  set H = {h where h is Element of L: h [= f.h};
  set fH = {f.h where h is Element of L: h [= f.h};
  set uH = "\/"(H, L);
 set fuH = "\/"(fH, L);
 take uH;
  now
   let fh be Element of L;
   assume fh in fH;
   then consider h being Element of L such that
Al: fh = f.h and
A2: h [= f.h;
   h in H by A2;
   then h [= uH by LATTICE3:38;
   hence fh [= f.uH by Al,QUANTAL1:def 12;
  end;
  then fH is_less_than f.uH by LATTICE3:def 17;
  then
A3: fuH [= f.uH by LATTICE3:def 21;
  now
    let a be Element of L:
   assume a in H;
    then consider h being Element of L such that
A4: a = h \& h [= f.h;
    reconsider fh = f.h as Element of L:
    take fh;
    thus a [= fh & fh in fH by A4;
  end;
  then uH [= fuH by LATTICE3:47;
  then
A5: uH [= f.uH by A3, LATTICES: 7;
  then f.uH [= f.(f.uH) by QUANTAL1:def 12;
  then f.uH in H;
  then f.uH [= uH by LATTICE3:38;
 hence uH = f.uH by A5, LATTICES:8;
end;
```

Low-level Symbolic ATP guidance: Prover9 hints

- The Prover9 community: non-associative algebra, 20-100k long proofs
- · Hints (Bob Veroff): extract lemmas from easier proofs to guide new proofs
- The hints behave like checkpoints you are on the right track
- · Gluing the different ideas from many other proofs together by search
- Exploration to get good hints (not really automated yet)
- · Very recent huge breakthrough in the AIM project by Kinyon and Veroff

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

- TTT learns from human and its own tactical HOL4 proofs
- · No translation or reconstruction needed native tactical proofs
- · Fully integrated with HOL4 and easy to use
- · Similar to rICoP: policy/value learning for applying tactics in a state
- · However much more technically challenging a real breakthrough:
 - · tactic and goal state recording
 - · tactic argument abstraction
 - absolutization of tactic names
 - nontrivial evaluation issues
 - · these issues have often more impact than adding better learners
- · policy: which tactic/parameters to choose for a current goal?
- · value: how likely is this proof state succeed?
- 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
- · similar work for Isabelle (Nagashima 2018), HOL Light (Google), Coq

RL for Normalization and Synthesis Tasks

- · Gauthier'19, 20: synthesizing simple programs and conjectures in logic
- Tree Neural Nets and RL (MCTS, policy/value) for:
- Guiding normalization in Robinson arithmetic
- · Guiding synthesis of combinators for a given lambda expression
- · Guiding synthesis of a diophantine equation characterizing a given set
- Quite encouraging results with a good curriculum (LPAR'20, CICM'20)
- · Motivated by TacticToe: argument synthesis/conjecturing is important
- · The results are series of applications of correct/explainable rules
- · Gauthier's deep RL framework verifies the whole series (proof) in HOL4

More on Synthesis and Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):
- · Creation of interesting conjectures based on the previous theory
- · One of the most interesting activities mathematicians do (how?)
- · Higher-level Al/reasoning task can we learn it?
- If so, we have solved math:
- ... just (recursively) divide Fermat into many subtasks ...
- ... and conquer (I mean: hammer) them away
- · Goes back to Langley (Bacon), Lenat (AM), Fajtlowicz (Graffiti)
- Combined with TP by Colton et al. in early 2000s (HR)
- Statistical methods, RNNs and Transformers by our groups since 2014

Can you find the flaw(s) in this fake GPT-2 proof?

🛛 Applications Places 🌍	🚞 🙆 🐏 4,71 GHz 🖇	Wed 15:02	Wed 15:02
emacs@dell			• • •
File Edit Options Buffers Tools Index Mizar Hide/Show Help			_
generated theorem with "proot"			
theorem Th23: :: STIRL2_1:23			
for X, Y being finite set st not X is empty $\&$ X c= Y			
& card X = card Y holds X = Y			
proof			
let X, Y be finite set ;			
:: thesis: not X is empty & X c= Y & card X = card Y impli	es X = Y		
assume that			
A1: not X is empty and A2: X c= Y and A3: card X = card	ίΥ;		
:: thesis: $X = Y$			
card $(Y \setminus X) = (card Y) - (card X)$ by A1, A3, CARD 2:44;			
then A4: card $(Y \setminus X) = ((card Y) - 1) - (card X)$ by CARD	1:30;		
$X = Y \setminus X$ by A2 A3 Th22.			
hence $X = Y$ by A4 XBOOLE 0 def 10			
u thesis verum			
lena;			
-: card tst.miz 99% L2131 (Mizar Errors:13 hs Und	o-Tree)		

Figure: Fake full declarative GPT-2 "proof" - typechecks!

Proving the conditioned completions - MizAR hammer

Applications Places	emacs@dell	Wed 14:42	Wed 14:4
File Edit Options Buffers Tools Index Mizar Hide/Show Help P 🍙 🚍 🛪 🛤 Save 🔶 Undo 🔀 🌆 🛍 🔍			
begin			
for M, N being Cardinal holds card M c= M V N by XBOOLE_1	:7,CARD_3:44,CARD_1:7,CARD_1:3; :: [ATP details]		
for X, Y being finite set st not X is empty & X c= Y & card X =	= card Y holds X = Y by CARD_FIN:1; :: [ATP details]		
for M, N being Cardinal holds (M in N iff card M c= N) by Unsolved; :: [ATP details]			
for M, N being Cardinal holds (M in N iff card M in N) by CARD_3:44,CARD_1:9; :: [ATP det	tails]		
for M, N being Cardinal holds Sum (M> N) = M $*$ N by CAF	RD_2:65; :: [ATP details]		
for M, N being Cardinal holds M \wedge (union N) in N by Unsolved	d; :: [ATP details]		
for M, N being Cardinal holds M *' N = N *' M by ATP-Unsolv	ved; :: [ATP details]		
-: card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)		

Wrote /home/urban/mizwrk/7.13.01 4.181.1147/tst8/card tst.miz

Some GPT-2 conjectures

· Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10 for G being finite Group for N being normal Subgroup of G st N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st N is Subgroup of center G & G ./. N is cyclic holds G is commutative

· Some are clearly false, yet quite natural to ask:

```
theorem :: SINCOS10:17
sec is increasing on [0, pi/2)
leads to conjecturing the following:
Every differentiable function is increasing.
```

Gibberish Generator Provoking Algebraists

Applic	ations Place	es 🌍		Group	o conjecture -	josef.urt	ban@gmail	l.com - Gmai	il - Chromiu	m		-	<mark>0</mark> et 2	,28G	Hz 🎙	Wed 1	7:12	Wed 1	7:12 • • •
×	2500	0 0 0 0 0 0 0 0 0 0							*1518151		0	a		8 N				+	
$\leftarrow \rightarrow$	C 🔒	mail.google.com/mail/	u/0/?q=svobod	a#search/kiny	o/KtbxLvHcLq	BhDdXBp	oVcmNMshz	DrCQSSmSB			Q	$\dot{\mathbf{T}}$	•	0		× 6) s.	0	0
≡	M 0	Gmail	Q Sear	ch mail									*		0	63		C	
+)_←	0 0 1		9 Ø.	•	1										<	>	1	31
8,267	2	Michael Kinyon <rr to David, Ales, Petr, E</rr 	nkkinyon@gma Bob, Jan, Karel,	il.com> me ¥							T	iu, May	28, 5:4	1 PM	슙	*	:		9
0 > >		Yes, this is a standar say something like th Multiply two such ele	ird exercise in i his: fix a in G s ements togethe	undergraduate uch that G/N i er and check th	first courses in s generated by hat they comm	n abstract / the cose ute.	t algebra. Ti at aN. Every	he proof is e element of	asy. If I were G can be wr	e giving itten in t	way to he for	o mucl n a^i n	n of a hi for inte	nt to : ger i a	student: and som	i, I woul ie n in N	d 4.		
6°		····	(mars a dinicu	it word to say)	i aia a good jor	λ.												Ľ	+
9 1	*	David Stanovsky < to me, Michael, Ales, Hi, that's a two-line p classical exercise at Denote aN the gene	david.stanovsk Petr, Bob, Jan, proof, although the beginning erator of G/N, h	y@gmail.com Karel + certainly not a of a group the ence G is a ur	> an obvious one tory course): hion of all a^iN,	e (a , i in Z.					TI	iu, May	28, 5:4	2 PM	☆	÷	:		
() Sig	þ	Take g,h in G, write i calculate gh=a*ixa*j Finiteness makes no holds for infinite grou	them as g=a^b jy=a^{i+j}xy=hg o simplification ups if you repla	c, h=a^jy with a because x,y of the proof. T ice Nat be intered.	x,y in N, and are central. 'h18 you menti egers. It is bein	ion g													
Signin in will sign you into	Index for immung groups myou replace real cerimiques. In is overal Sophing used in my argument. in will d. for for for								>										

Figure: First successes in making mathematicians comment on AI.

Neural Autoformalization (Wang et al., 2018)

- · generate ca 1M Latex/Mizar pairs based on Bancerek's work
- train neural seq-to-seq translation models (Luong NMT)
- evaluate on about 100k examples, achieves 48% on unseen examples
- · many architectures tested, some work much better than others
- · very important latest invention: attention in the seq-to-seq models
- more data very important for neural training our biggest bottleneck
- Recent addition: unsupervised methods (Lample et all 2018) no need for aligned data!

Rendered ⊮T _E X	Suppose s_8 is convergent and s_7 is convergent . Then $\lim(s_8+s_7) = \lim s_8 + \lim s_7$
Input LATEX	<pre>Suppose \$ { s _ { 8 } } \$ is convergent and \$ { s _ { 7 } } \$ is convergent . Then \$ \mathop { \rm lim } ({ s _ { 8 } } { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim } { s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } \$.</pre>
Correct	<pre>seq1 is convergent & seq2 is convergent implies lim (seq1 + seq2) = (lim seq1) + (lim seq2) ;</pre>
Snapshot- 1000	x in dom f implies (x * y) * (f (x (y (y y)))) = (x (y (y (y y))))) ;
Snapshot- 2000	seq is summable implies seq is summable ;
Snapshot- 3000	seq is convergent & lim seq = 0c implies seq = seq ;
Snapshot- 4000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 5000	<pre>seq1 is convergent & lim seq2 = lim seq2 implies lim_inf seq1 = lim_inf seq2 ;</pre>
Snapshot- 6000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 7000	seq is convergent & seq9 is convergent implies lim (seq + seq9) = (lim seq) + (lim seq9) ;

Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 - Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
- HOL(y)Hammer group in Innsbruck:
 - Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima, Shawn Wang
- ATP and ITP people:
 - Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- · Learning2Reason people at Radboud University Nijmegen:
 - Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet, Sarah Loos
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Some General and Hammer/Tactical References

- J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized Reasoning 9(1): 101-148 (2016)
- Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom. Reason. 53(2): 173-213 (2014)
- Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)
- Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69: 109-128 (2015)
- Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, Josef Urban: A Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)
- Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback. IJCAR 2018: 566-574
- T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR abs/1804.00596 (2018).
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof Assistant. LPAR 2020: 138-150
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless, Interactive Tactic Learner and Prover for Coq. CoRR abs/2008.00120 (2020)
- L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning 61(1-4): 423-453 (2018)
- G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath Deep Sequence Models for Premise Selection. NIPS 2016: 2235-2243
- C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large Theories. IJCAI 2015: 3084-3090
- J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance. IJCAR 2008: 441-456
- J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS 7788, 240-257, 2013.

Some References on E/ENIGMA, CoPs and Related

- Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
- S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507
- J. Jakubuv, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016: 151-156
- J. Jakubuv, J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302
- Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsák: Reinforcement Learning of Theorem Proving. NeurIPS 2018: 8836-8847
- Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for Large Theories in E. ITP 2018: 270-288
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- Karel Chvalovský, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215
- Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8
- Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA. TABLEAUX 2019: 374-388
- Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415
- Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463
- Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding Longer Proofs. CoRR abs/1905.13100 (2019)
- Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover -(System Description). IJCAR (2) 2020: 489-507
- Miroslav Olsák, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning. ECAI 2020: 1395-1402

Some Conjecturing References

- Douglas Bruce Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search. PhD thesis, Stanford, 1976.
- Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1–3):113–118, 1988.
- Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer London, 2012.
- Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory exploration in a proof assistant. In *CICM 2014*, pages 108–122, 2014.
- Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over large formal corpora. In *CICM'16 WiP Proceedings*, pages 219–228, 2016.
- Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015: 372-386
- Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.
- Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR, abs/1912.01525, 2019.
- Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)
- Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende Abstract). AITP 2019.
- Karel Chvalovský, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing (Extended Abstract). AITP 2019.
- Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic. LPAR 2020: 230-248
- Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural Networks. CICM 2020: 309-314
- Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

References on PCFG and Neural Autoformalization

- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: Learning to Parse on Aligned Corpora (Rough Diamond). ITP 2015: 227-233
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, Herman Geuvers: Developing Corpus-Based Translation Methods between Informal and Formal Mathematics: Project Description. CICM 2014: 435-439
- C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of Mathematics. ITP 2017: 12-27
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: System Description: Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017: 169-172
- Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal Mathematics. CICM 2018: 255-270
- Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban: Exploration of neural machine translation in autoformalization of mathematics in Mizar. CPP 2020: 85-98

Thanks and Advertisement

- Thanks for your attention!
- · AITP Artificial Intelligence and Theorem Proving
- September 5-10, 2021, Aussois, France, aitp-conference.org
- ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
- · Discussion-oriented and experimental submit a talk abstract!
- Grown to 80 people in 2019
- Will be hybrid in 2021 as in 2020