Developments in Al and Theorem Proving

Josef Urban

Czech Technical University in Prague

National Meeting of the SPM 2021
July 14, 2021

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge - both for induction and deduction
- We need to develop such methods on computers
- Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Why Combine Learning and Reasoning Today?

1 It practically helps!

- Automated theorem proving for large formal verification is useful:
- Formal Proof of the Kepler Conjecture (2014 - Hales - 20k lemmas)
- Formal Proof of the Feit-Thompson Theorem (2012 - Gonthier)
- Verification of compilers (CompCert) and microkernels (seL4)
- Verification hardware architectures, transport systems, trading rules
- ...
- But good learning/Al methods needed to cope with large theories!

2 Blue Sky AI Visions:

- Get strong AI by learning/reasoning over large KBs of human thought?
- Big formal theories: good semantic approximation of such thinking KBs?
- Deep non-contradictory semantics - better than scanning books?
- Gradually try learning math/science:
- What are the components (inductive/deductive thinking)?
- How to combine them together?
- Automate/verify math, science, law, ...
- Leibniz: Calculemus - resolve disputes
- J. McCarthy: Mathematical Objectivity and the Power of Initiative

What is Formal Mathematics?

- Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
- Mathematics put on formal logic foundations (symbolic computation)
- ... which btw. led also to the rise of computers (Turing/Church, 1930s)
- Formal math (1950/60s): combine formal foundations and the newly available computers
- De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
- Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...
- Conceptually very simple:
- Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them
- Use the computer to check that your proofs follow the rules
- But in practice, it turns out not to be so simple
- Many approaches, still not mainstream, but big breakthroughs recently

Freek Wiedijk's Example: Irrationality of $\sqrt{2}$ (informal text)

tiny proof from Hardy \& Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{4.3.1}
\end{equation*}
$$

is soluble in integers a, b with $(a, b)=1$. Hence a^{2} is even, and therefore a is even. If $a=2 c$, then $4 c^{2}=2 b^{2}, 2 c^{2}=b^{2}$, and b is also even, contrary to the hypothesis that $(a, b)=1$.

Irrationality of $\sqrt{2}$ (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
    sqrt 2 is irrational
proof
    assume sqrt 2 is rational;
    consider a,b such that
4_3_1: a^^2 = 2* b^^2 and
        a,b are relative prime;
    a^2 is even;
    a is even;
    consider c such that a = 2*c;
    4*\mp@subsup{c}{}{\wedge}2=2*b^
    2*\mp@subsup{c}{}{\wedge}2= b^^2;
    b is even;
    thus contradiction;
end;
```


Irrationality of $\sqrt{2}$ in HOL Light

```
let SQRT_2_IRRATIONAL = prove
    ('~rational(sqrt (&2))',
    SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    SUBGOAL_THEN '~((&p / &q) pow 2 = sqrt (&2) pow 2)'
        (fun th -> MESON_TAC[th]) THEN
    SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
    ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
                            ARITH_RULE ` 0 < q <=> ~ (q = 0) `] THEN
    ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]); ;
```


Irrationality of $\sqrt{2}$ in Isabelle/HOL

```
!theorem sqrt2_not_rational:
    "sqrt (real 2) &\mathbb{Q"}
proof
    assume "sqrt (real 2) \in \mathbb{Q"}
    then obtain m n :: nat where
        n_nonzero: "n \not= 0" and sqrt_rat: "|sqrt (real 2)| = real m / real n"
        and lowest_terms: "gcd m n = 1" ..
    from n_nonze\overline{ro and sqrt_rat have "real m = {sqrt (real 2)| * real n" by simp}
    then hāve "real (m}\mp@subsup{|}{}{2})=\mathrm{ (sqrt (real 2))2 * real (n2)"
        by (auto simp add: power2_eq_square)
    also have "(sqrt (real 2))2- = real 2" by simp
    also have "... * real (m2) = real (2 * n2)" by simp
    finally have eq: "m2 = 2 * n" ..
    hence "2 dvd m"" ..
    with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
    then obtain k where "m = 2-* k" ..
    with eq have "2 * n' = 22 * k "" by (auto simp add: power2_eq_square mult_ac)
    hence "n}\mp@subsup{n}{}{2}=2* k2" by sim
    hence "2 dvd n2" ..
    with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
    with dvd_m have "2 dvd gcd m n" by (rule gcd_grēatest)
    with lowest_terms have "2 dvd 1" by simp
    thus False by arith
;qed
```


Big Example: The Flyspeck project

- Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

$$
V=\frac{\pi}{\sqrt{18}} \approx 74 \%
$$

- Formal proof finished in 2014
- 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- All of it computer-understandable and verified in HOL Light:
- polyhedron s / c face_of s ==> polyhedron c
- However, this took $20-30$ person-years!

What Are Automated Theorem Provers?

- Computer programs that (try to) determine if
- A conjecture C is a logical consequence of a set of axioms Ax
- The derivation of conclusions that follow from facts by inference rules
- Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
- Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
- Human-designed heuristics for pruning of the search space
- Fast combinatorial explosion on large knowledge bases like Flyspeck and Mizar
- Need to be equipped with good domain-specific inference guidance ...
- ... and that is what I try to do ...
- ... typically by learning in various ways from the knowledge bases ...

History and Motivation for AI/TP

- Intuition vs Formal Reasoning - Poincaré vs Hilbert, Science \& Method
- Turing's 1950 paper: Learning Machines, learn Chess?, undecidability??
- Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
- Denzinger, Schulz, Goller, Fuchs - late 90's, ATP-focused:
- Learning from Previous Proof Experience
- My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
- Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
- ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
- ... hammer-style methods, feedback loops, internal guidance, ...
- More details - AGl'18 keynote: https://bit.ly/3qifhg4
- Al vs DL: Ben Goertzel's Prague talk: https://youtu.be/zt2HSTuGBn8
- Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
- Practical impact: boost today's large ITP verification projects

Using Learning to Guide Theorem Proving

- high-level: pre-select lemmas from a large library, give them to ATPs
- high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)
- low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from ${ }^{\Delta T} T_{E} \mathrm{X}$ to formal
- ...

Large AI/TP Datasets

- Mizar / MML / MPTP - since 2003
- MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
- Isabelle (and AFP) - since 2005
- Flyspeck (including core HOL Light and Multivariate) - since 2012
- HOL4 - since 2014, CakeML - 2017, GRUNGE - 2019
- Coq - since 2013/2016
- AIM - Veroff \& Kinyon, Loops with Abelian Inner Mappings - long proofs
- Lean?, Stacks?, Arxiv?, ProofWiki?, ...

Demos

- ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7 (more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and simplified Carmichael https://bit.ly/3oGBdRz
- Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:

```
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
```

- Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4, https://coq-tactician.github.io/demo.html
- Inf2formal over HOL Light:

```
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
```


High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose)
- Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).
- Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)
- Since 2004 (my PhD): many examples of nontrivial alternative proofs proposed by the Als - in Mizar, Flyspeck, Isabelle, ..
- The premise selection algorithms see wider than humans

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk), Coq (Czajka and Kaliszyk)
- Rigorous resource controlled train/test evaluations on toplevel lemmas:
$\approx 40-45 \%$ success rate by 2016
$\approx 60 \%$ on Mizar as of 2021

Premise Selection and Hammer Methods

- Many syntactic features (symbols, walks in the parse trees)
- More semantic features encoding
- Term matching/unification, validity in models, latent semantics (LSI)
- Distance-weighted k-nearest neighbor, SVMs, Naive Bayes
- Gradient boosted decision trees (GBDTs - XGBoost, LightGBM)
- Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs
- As of 2020, tough competition between GBDTs, GNNs and RNNs/Transformers (and relatives)
- K-NN still very good, Olsak's logic-aware GNN probably best
- RNNs/Transformers good at stateful premise selection (Piotrowski 2019,2020)
- Ensemble methods combining the different predictors help a lot

Premise Selection and Hammer Methods

- Learning in a binary setting from many alternative proofs
- Interleaving many learning and proving runs (MaLARea loop - 2006) to get positives/negatives (ATPBoost - Piotrowski 2018)
- Matching and transferring concepts and theorems between libraries (Gauthier \& Kaliszyk) - allows "superhammers", conjecturing, and more
- Lemmatization - extracting and considering millions of low-level lemmas and learning from their proofs (Kaliszyk \& JU 2013)
- Hammers combined with guided tactical search: TacticToe (Gauthier HOL4) and its later relatives

FACE_OF_POLYHEDRON_POLYHEDRON

```
let FACE_OF_POLYHEDRON_POLYHEDRON = prove
    ('!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c',
    REPEAT STRIP_TAC THEN FIRST_ASSUM
        (MP_TAC O GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
        [`f:(real^N->bool)->bool`; `a:(real^N->bool)->real^N`;
            `b:(real^N->bool) ->real`] THEN
    STRIP_TAC THEN
    MP_TAC(ISPECL [`s:real^N->bool`; `f:(real^N->bool) ->bool`;
                            `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
            FACE_OF_POLYHEDRON_EXPLICIT) THEN
    ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(MP_TAC O SPEC `C:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `C:real^N->bool = {}' THEN
    ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
    ASM_CASES_TAC `c:real^N->bool = s` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
    REWRITE_TAC[FORALL_IN_GSPEC] THEN
    ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
    ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
    MATCH_MP_TAC POLYHEDRON_INTER THEN
    ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]); ;
```


FACE_OF_POLYHEDRON_POLYHEDRON

$$
\text { polyhedron } s / \backslash c \text { face_of } s==>\text { polyhedron } c
$$

HOL Light proof: could not be re-played by ATPs.
Alternative proof found by a hammer based on FACE_OF_STILLCONVEX: Face t of a convex set s is equal to the intersection of s with the affine hull of t.

```
FACE_OF_STILLCONVEX:
    !s t:real^N->bool. convex s ==>
    (t face_of s <=>
    t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:
    !s:real^N->bool. polyhedron s ==> convex s
POLYHEDRON_INTER:
    !s t:real^N->bool. polyhedron s /\ polyhedron t
        ==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
    !s. polyhedron(affine hull s)
```


Statistical Guidance of a Simple Connection Prover

- learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps
- proof finished when all branches are closed
- a lot of nondeterminism, requires backtracking
- the search space quickly explodes
- good for learning - the tableau compactly represents the proof state

Clauses:	Closed Connection Tableau:
$c_{1}: P(x)$	$R(a, b)$
$c_{2}: R(x, y) \vee \neg P(x) \vee Q(y)$	$\neg P(a)$
$c_{3}: S(x) \vee \neg Q(b)$	$\neg R(a, b)$
$c_{4}: \neg S(x) \vee \neg Q(x)$	$Q(b)$
$c_{5}: \neg Q(x) \vee \neg R(a, x)$	
$c_{6}: \neg R(a, x) \vee Q(x)$	$\neg Q(b) \neg \neg(a, b) \quad \neg S(b)$

Using Reinforcement Learning to Guide leanCoP

- Monte-Carlo Tree Search (MCTS) - used in AlphaGo
- MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

$$
\frac{w_{i}}{n_{i}}+c \cdot p_{i} \cdot \sqrt{\frac{\ln N}{n_{i}}}
$$

(UCT - Kocsis, Szepesvari 2006)

- we learn the policy - clause selection
- ... and the value - proof state evaluation
- big issue: representing clauses and proofs for learning
- many approaches - none too good yet, esp. for value
- deep learning not impressive yet and slower than GBDTs
- feedback loop between proving and learning - many iterations

Statistical Guidance of Connection Tableau - rICoP

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	leanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	$\mathbf{1 1 4 3}$	431	804
Total problems proved	11581	4615	8152

- rICoP with policy/value after 5 proving/learning iters on the training data
- $1624 / 1143=42.1 \%$ improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved	12325	13749	14155	14363	14403	14431	14342	$\mathbf{1 4 4 9 8}$
Testing proved	1354	1519	1566	1595	$\mathbf{1 6 2 4}$	1586	1582	1591

Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

- FLoP - Finding Longer Proofs (Zombori et al, 2019)

- Curriculum Learning used for connection tableau over Robinson Arithmetic
- addition and multiplication learned perfectly from $1 * 1=1$
- headed towards learning algorithms/decision procedures from math data
- currently black-box, combinations with symbolic methods (ILP) our next target
- Using RNNs for better tableau encoding, prediction of actions ...
- ... even guessing (decoding) next tableau literals (Piotrowski 2020)
- plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)
- Zombori: learning new explainable Prolog actions (tactics) from proofs

ENIGMA: Guiding the Best ATPs like E Prover

- Similar to rICoP - interleave proving and learning of ENIGMA guidance
- resolution/superposition harder for learning than tableau
- the proof state are two large heaps of clauses processed/unprocessed
- Done on 57880 Mizar problems recently - 6 prove/learn iterations
- Feedback loop: 70\% improvement over the original strategy in 2019
- From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
- Went up to 40k proofs in more iterations and 60s time in 2020
- Many proof examples at https://github.com/ai4reason/ATP_Proofs

	\mathcal{S}	$\mathcal{S} \odot \mathcal{M}_{9}^{0}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{0}$	$\mathcal{S} \odot \mathcal{M}_{9}^{1}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{1}$	$\mathcal{S} \odot \mathcal{M}_{9}^{2}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{2}$	$\mathcal{S} \odot \mathcal{M}_{9}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{9}^{3}$
solved	14933	16574	20366	21564	22839	22413	23467	22910	23753
$\mathcal{S} \%$	$+0 \%$	$+10.5 \%$	$+35.8 \%$	$+43.8 \%$	$+52.3 \%$	$+49.4 \%$	$+56.5 \%$	$+52.8 \%$	+58.4
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822	+9274
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845	-454

	$\mathcal{S} \odot \mathcal{M}_{12}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{12}^{3}$	$\mathcal{S} \odot \mathcal{M}_{16}^{3}$	$\mathcal{S} \oplus \mathcal{M}_{16}^{3}$
solved	24159	24701	25100	25397
$\mathcal{S} \%$	$+61.1 \%$	$+64.8 \%$	$+68.0 \%$	$+70.0 \%$
$\mathcal{S}+$	+9761	+10063	+10476	+10647
$\mathcal{S}-$	-535	-295	-309	-183

ENIGMA Proof Example - Knaster fixed-point theorem

```
theorem Th21:
    ex a st a is_a_fixpoint_of f
proof
    set H}={h\mathrm{ where h is Element of L: h [= f.h};
    set fH = {f.h where h is Element of L: h [= f.h};
    set uH = "\/"(H, L);
    set fuH = "\/"(fH, L);
    take uH;
    now
        let fh be Element of L;
        assume fh in fH;
        then consider h being Element of L such that
Al: fh = f.h and
A2: h [= f.h;
            h in H by A2;
            then h [= uH by LATTICE3:38;
            hence fh [= f.uH by Al,QUANTALI:def 12;
    end;
    then fH is_less_than f.uH by LATTICE3:def 17;
    then
A3: fuH [= f.uH by LATTICE3:def 21;
    now
        let a be Element of L;
            assume a in H;
            then consider h being Element of L such that
A4: a = h & h [= f.h;
            reconsider fh = f.h as Element of L;
            take fh;
            thus a [= fh & fh in fH by A4;
    end;
    then uH [= fuH by LATTICE 3:47;
    then
A5: uH [= f.uH by A3,LATTICES:7;
    then f.uH [= f.(f.uH) by QUANTAL1:def 12;
    then f.uH in H;
    then f.uH [= uH by LATTICE3:38;
    hence uH = f.uH by A5,LATTICES:8;
end;
```


Low-level Symbolic ATP guidance: Prover9 hints

- The Prover9 community: non-associative algebra, 20-100k long proofs
- Hints (Bob Veroff): extract lemmas from easier proofs to guide new proofs
- The hints behave like checkpoints - you are on the right track
- Gluing the different ideas from many other proofs together by search
- Exploration to get good hints (not really automated yet)
- Very recent huge breakthrough in the AIM project by Kinyon and Veroff

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

- TTT learns from human and its own tactical HOL4 proofs

- No translation or reconstruction needed - native tactical proofs
- Fully integrated with HOL4 and easy to use
- Similar to rlCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
- tactic and goal state recording
- tactic argument abstraction
- absolutization of tactic names
- nontrivial evaluation issues
- these issues have often more impact than adding better learners
- policy: which tactic/parameters to choose for a current goal?
- value: how likely is this proof state succeed?
- 66\% of HOL4 toplevel proofs in 60s (better than a hammer!)
- similar work for Isabelle (Nagashima 2018), HOL Light (Google), Coq

RL for Normalization and Synthesis Tasks

- Gauthier'19, 20: synthesizing simple programs and conjectures in logic
- Tree Neural Nets and RL (MCTS, policy/value) for:
- Guiding normalization in Robinson arithmetic
- Guiding synthesis of combinators for a given lambda expression
- Guiding synthesis of a diophantine equation characterizing a given set
- Quite encouraging results with a good curriculum (LPAR'20, CICM'20)
- Motivated by TacticToe: argument synthesis/conjecturing is important
- The results are series of applications of correct/explainable rules
- Gauthier's deep RL framework verifies the whole series (proof) in HOL4

More on Synthesis and Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):
- Creation of interesting conjectures based on the previous theory
- One of the most interesting activities mathematicians do (how?)
- Higher-level AI/reasoning task - can we learn it?
- If so, we have solved math:
- ... just (recursively) divide Fermat into many subtasks ...
- ... and conquer (I mean: hammer) them away
- Goes back to Langley (Bacon), Lenat (AM), Fajtlowicz (Graffiti)
- Combined with TP by Colton et al. in early 2000s (HR)
- Statistical methods, RNNs and Transformers by our groups since 2014

Can you find the flaw(s) in this fake GPT-2 proof?

```
0 Applications Places ©
emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
```



```
:: generated theorem with "proof"
theorem Th23: :: STIRL2_1:23
for X, Y being finite set st not X is empty & X C= Y
& card }X=\operatorname{card}Y\mathrm{ holds X = Y
proof
    let X, Y be finite set ;
:: thesis: not X is empty & X c= Y & card X = card Y implies X = Y
    assume that
    A1: not }X\mathrm{ is empty and A2: X C= Y and A3: card X = card Y;
:: thesis: X = Y
    card (Y\X) = (card Y) - (card X) by A1, A3, CARD_2:44;
    then A4: card (Y\X) = ((card Y) - 1) - (card X) by CARD_1:30;
    X = Y \X by A2, A3, Th22;
    hence X = Y by A4, XBOOLE_0:def_10;
:: thesis: verum
end;
```

-:--- card_tst.miz 99\% L2131 (Mizar Errors:13 hs Undo-Tree)

Figure: Fake full declarative GPT-2 "proof" - typechecks!

Proving the conditioned completions - MizAR hammer

```
O Applications Places %
emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
| F
begin
for M, N being Cardinal holds card M c= M V N by XBOOLE_1:7,CARD_3:44,CARD_1:7,CARD_1:3; :: [ATP details]
for X, Y being finite set st not X is empty & X c= Y & card X = card Y holds X = Y by CARD_FIN:1; :: [ATP details]
for M, N being Cardinal holds
( M in N iff card M c= N ) by Unsolved; :: [ATP details]
for M, N being Cardinal holds
( M in N iff card M in N ) by CARD_3:44,CARD_1:9; :: [ATP details]
[
for M, N being Cardinal holds Sum (M --> N) = M *` N by CARD_2:65; :: [ATP details]
for M,N being Cardinal holds M ^ (union N) in N by Unsolved; :: [ATP details]
for M, N being Cardinal holds M *` N = N *` M by ATP-Unsolved; :: [ATP details]
```


Some GPT-2 conjectures

- Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

```
theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
The generalization that avoids finiteness:
for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
```

- Some are clearly false, yet quite natural to ask:

```
theorem :: SINCOS10:17
sec is increasing on [0, pi/2)
leads to conjecturing the following:
Every differentiable function is increasing.
```


Gibberish Generator Provoking Algebraists

Figure: First successes in making mathematicians comment on AI.

Neural Autoformalization (Wang et al., 2018)

- generate ca 1M Latex/Mizar pairs based on Bancerek's work
- train neural seq-to-seq translation models (Luong - NMT)
- evaluate on about 100k examples, achieves 48% on unseen examples
- many architectures tested, some work much better than others
- very important latest invention: attention in the seq-to-seq models
- more data very important for neural training - our biggest bottleneck
- Recent addition: unsupervised methods (Lample et all 2018) - no need for aligned data!

Neural Fun - Performance after Some Training

Rendered ${ }^{14} T_{E} X$ Input ${ }_{L A T} T_{E X}$

Correct

Snapshot1000
Snapshot2000
Snapshot3000

Snapshot4000
Snapshot5000
Snapshot6000
Snapshot7000

Suppose s_{8} is convergent and s_{7} is convergent . Then $\lim \left(s_{8}+s_{7}\right)=\lim s_{8}+\lim s_{7}$

```
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{s_ { 8 } } { + } \mathop {\rm lim } {s _ { 7 } } $.
seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;
x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;
seq is summable implies seq is summable ;
seq is convergent & lim seq = Oc implies seq = seq ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;
seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;
seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
```


Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
- Jan Jakubuv, Chad Brown, Martin Suda, Karel Chvalovsky, Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Martin Smolik, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
- HOL(y)Hammer group in Innsbruck:
- Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima, Shawn Wang
- ATP and ITP people:
- Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- Learning2Reason people at Radboud University Nijmegen:
- Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet, Sarah Loos
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Some General and Hammer/Tactical References

- J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized Reasoning 9(1): 101-148 (2016)
- Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom. Reason. 53(2): 173-213 (2014)
- Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)
- Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb. Comput. 69: 109-128 (2015)
- Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kühlwein, Josef Urban: A Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)
- Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP Feedback. IJCAR 2018: 566-574
- T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR abs/1804.00596 (2018).
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof Assistant. LPAR 2020: 138-150
- Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless, Interactive Tactic Learner and Prover for Coq. CoRR abs/2008.00120 (2020)
- L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning 61(1-4): 423-453 (2018)
- G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for Premise Selection. NIPS 2016: 2235-2243
- C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large Theories. IJCAI 2015: 3084-3090
- J. Urban, G. Sutcliffe, P. Pudlák, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning with Semantic Guidance. IJCAR 2008: 441-456
- J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging AI Field. LNCS 7788, 240-257, 2013.

Some References on E/ENIGMA, CoPs and Related

- Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
- S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507
- J. Jakubuv, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016: 151-156
- J. Jakubuv,J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302
- Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsák: Reinforcement Learning of Theorem Proving. NeurIPS 2018: 8836-8847
- Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for Large Theories in E. ITP 2018: 270-288
- S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105
- Karel Chvalovský, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215
- Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8
- Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA. TABLEAUX 2019: 374-388
- Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415
- Jan Jakubuv, Karel Chvalovský, Miroslav Olsák, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463
- Zsolt Zombori, Adrián Csiszárik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding Longer Proofs. CoRR abs/1905.13100 (2019)
- Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover (System Description). IJCAR (2) 2020: 489-507
- Miroslav Olsák, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning. ECAI 2020: 1395-1402

Some Conjecturing References

- Douglas Bruce Lenat. AM: An Artificial Intelligence Approach to Discovery in Mathematics as Heuristic Search. PhD thesis, Stanford, 1976.
- Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1-3):113-118, 1988.
- Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer London, 2012.
- Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory exploration in a proof assistant. In CICM 2014, pages 108-122, 2014.
- Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over large formal corpora. In CICM'16 WiP Proceedings, pages 219-228, 2016.
- Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015: 372-386
- Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.
- Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR, abs/1912.01525, 2019.
- Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)
- Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende Abstract). AITP 2019.
- Karel Chvalovský, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing (Extended Abstract). AITP 2019.
- Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic. LPAR 2020: 230-248
- Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural Networks. CICM 2020: 309-314
- Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

References on PCFG and Neural Autoformalization

- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: Learning to Parse on Aligned Corpora (Rough Diamond). ITP 2015: 227-233
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil, Herman Geuvers: Developing Corpus-Based Translation Methods between Informal and Formal Mathematics: Project Description. CICM 2014: 435-439
- C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical and Semantic Parsing of Mathematics. ITP 2017: 12-27
- Cezary Kaliszyk, Josef Urban, Jirí Vyskocil: System Description: Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017: 169-172
- Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation of Informal to Formal Mathematics. CICM 2018: 255-270
- Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban: Exploration of neural machine translation in autoformalization of mathematics in Mizar. CPP 2020: 85-98

Thanks and Advertisement

- Thanks for your attention!
- AITP - Artificial Intelligence and Theorem Proving
- September 5-10, 2021, Aussois, France, aitp-conference.org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- Discussion-oriented and experimental - submit a talk abstract!
- Grown to 80 people in 2019
- Will be hybrid in 2021 as in 2020

