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How Do We Automate Math and Science?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!
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Why Combine Learning and Reasoning Today?

1 It practically helps!
� Automated theorem proving for large formal verification is useful:

� Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
� Formal Proof of the Feit-Thompson Theorem (2012 – Gonthier)
� Verification of compilers (CompCert) and microkernels (seL4)
� Verification hardware architectures, transport systems, trading rules
� ...

� But good learning/AI methods needed to cope with large theories!

2 Blue Sky AI Visions:
� Get strong AI by learning/reasoning over large KBs of human thought?
� Big formal theories: good semantic approximation of such thinking KBs?
� Deep non-contradictory semantics – better than scanning books?
� Gradually try learning math/science:

� What are the components (inductive/deductive thinking)?
� How to combine them together?
� Automate/verify math, science, law, ...
� Leibniz: Calculemus - resolve disputes
� J. McCarthy: Mathematical Objectivity and the Power of Initiative
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What is Formal Mathematics?

� Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
� Mathematics put on formal logic foundations (symbolic computation)
� ... which btw. led also to the rise of computers (Turing/Church, 1930s)
� Formal math (1950/60s): combine formal foundations and the newly

available computers
� De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
� Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...
� Conceptually very simple:
� Write all your axioms and theorems so that computer understands them
� Write all your inference rules so that computer understands them
� Use the computer to check that your proofs follow the rules
� But in practice, it turns out not to be so simple
� Many approaches, still not mainstream, but big breakthroughs recently
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Freek Wiedijk’s Example: Irrationality of
p

2
(informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem).
p

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

p
2

is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a;b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a;b) = 1. �
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Irrationality of
p

2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;
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Irrationality of
p

2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of
p

2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
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��ZLWK�GYGBP�KDYH����GYG�JFG�P�Q��E\��UXOH�JFGBJUHDWHVW�
��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG
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Big Example: The Flyspeck project

� Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

V =
�p
18

� 74%

� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c

� However, this took 20 – 30 person-years!
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What Are Automated Theorem Provers?

� Computer programs that (try to) determine if
� A conjecture C is a logical consequence of a set of axioms Ax
� The derivation of conclusions that follow from facts by inference rules

� Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
� Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
� Human-designed heuristics for pruning of the search space
� Fast combinatorial explosion on large knowledge bases like Flyspeck and

Mizar
� Need to be equipped with good domain-specific inference guidance ...
� ... and that is what I try to do ...
� ... typically by learning in various ways from the knowledge bases ...
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History and Motivation for AI/TP

� Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
� Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
� Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...
� Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:
� Learning from Previous Proof Experience
� My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
� Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
� ... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
� ... hammer-style methods, feedback loops, internal guidance, ...
� More details – AGI’18 keynote: https://bit.ly/3qifhg4
� AI vs DL: Ben Goertzel’s Prague talk: https://youtu.be/Zt2HSTuGBn8
� Big AI visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
� Practical impact: boost today’s large ITP verification projects
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Using Learning to Guide Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� autoformalization: (semi-)automate translation from LATEX to formal
� ...
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Large AI/TP Datasets

� Mizar / MML / MPTP – since 2003
� MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
� Isabelle (and AFP) – since 2005
� Flyspeck (including core HOL Light and Multivariate) – since 2012
� HOL4 – since 2014, CakeML – 2017, GRUNGE – 2019
� Coq – since 2013/2016
� AIM – Veroff & Kinyon, Loops with Abelian Inner Mappings – long proofs
� Lean?, Stacks?, Arxiv?, ProofWiki?, ...
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Demos

� ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7
(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz

� Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
� TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

� Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

� Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
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High-level ATP guidance: Premise Selection

� Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

� About 80000 nontrivial math facts at that time – impossible to use them all
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose)
� Today: Premise selection is not a mysterious property of mathematicians!
� Reasonably good algorithms started to appear (more below).
� Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)
� Since 2004 (my PhD): many examples of nontrivial alternative proofs

proposed by the AIs - in Mizar, Flyspeck, Isabelle, ..
� The premise selection algorithms see wider than humans
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk), Coq (Czajka and Kaliszyk)
� Rigorous resource controlled train/test evaluations on toplevel lemmas:

� 40-45% success rate by 2016
� 60% on Mizar as of 2021
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Premise Selection and Hammer Methods

� Many syntactic features (symbols, walks in the parse trees)
� More semantic features encoding
� Term matching/unification, validity in models, latent semantics (LSI)
� Distance-weighted k-nearest neighbor, SVMs, Naive Bayes
� Gradient boosted decision trees (GBDTs - XGBoost, LightGBM)
� Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs
� As of 2020, tough competition between GBDTs, GNNs and

RNNs/Transformers (and relatives)
� K-NN still very good, Olsak’s logic-aware GNN probably best
� RNNs/Transformers good at stateful premise selection (Piotrowski

2019,2020)
� Ensemble methods combining the different predictors help a lot
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Premise Selection and Hammer Methods

� Learning in a binary setting from many alternative proofs
� Interleaving many learning and proving runs (MaLARea loop - 2006) to

get positives/negatives (ATPBoost - Piotrowski 2018)
� Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
� Lemmatization – extracting and considering millions of low-level lemmas

and learning from their proofs (Kaliszyk & JU 2013 )
� Hammers combined with guided tactical search: TacticToe (Gauthier -

HOL4) and its later relatives
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)
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Statistical Guidance of a Simple Connection Prover

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� the search space quickly explodes
� good for learning – the tableau compactly represents the proof state

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)
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Using Reinforcement Learning to Guide leanCoP

� Monte-Carlo Tree Search (MCTS) – used in AlphaGo
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
lnN
ni

(UCT - Kocsis, Szepesvari 2006)

� we learn the policy – clause selection
� ... and the value – proof state evaluation
� big issue: representing clauses and proofs for learning
� many approaches - none too good yet, esp. for value
� deep learning not impressive yet and slower than GBDTs
� feedback loop between proving and learning - many iterations
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Statistical Guidance of Connection Tableau – rlCoP

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

� FLoP – Finding Longer Proofs (Zombori et al, 2019)
� Curriculum Learning used for connection tableau over Robinson

Arithmetic
� addition and multiplication learned perfectly from 1 � 1 = 1
� headed towards learning algorithms/decision procedures from math data
� currently black-box, combinations with symbolic methods (ILP) our next

target
� Using RNNs for better tableau encoding, prediction of actions ...
� ... even guessing (decoding) next tableau literals (Piotrowski 2020)
� plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)
� Zombori: learning new explainable Prolog actions (tactics) from proofs
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ENIGMA: Guiding the Best ATPs like E Prover
� Similar to rlCoP - interleave proving and learning of ENIGMA guidance
� resolution/superposition harder for learning than tableau
� the proof state are two large heaps of clauses processed/unprocessed
� Done on 57880 Mizar problems recently - 6 prove/learn iterations
� Feedback loop: 70% improvement over the original strategy in 2019
� From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
� Went up to 40k proofs in more iterations and 60s time in 2020
� Many proof examples at https://github.com/ai4reason/ATP_Proofs

S S �M0
9 S �M0

9 S �M1
9 S �M1

9 S �M2
9 S �M2

9 S �M3
9 S �M3

9
solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S� -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S �M3

12 S �M3
16 S �M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S� -535 -295 -309 -183
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ENIGMA Proof Example – Knaster fixed-point theorem
theorem Th21:
ex a st a is_a_fixpoint_of f

proof
set H = {h where h is Element of L: h [= f.h};
set fH = {f.h where h is Element of L: h [= f.h};
set uH = "\/"(H, L);
set fuH = "\/"(fH, L);
take uH;
now
let fh be Element of L;
assume fh in fH;
then consider h being Element of L such that

A1: fh = f.h and
A2: h [= f.h;

h in H by A2;
then h [= uH by LATTICE3:38;
hence fh [= f.uH by A1,QUANTAL1:def 12;

end;
then fH is_less_than f.uH by LATTICE3:def 17;
then

A3: fuH [= f.uH by LATTICE3:def 21;
now
let a be Element of L;
assume a in H;
then consider h being Element of L such that

A4: a = h & h [= f.h;
reconsider fh = f.h as Element of L;
take fh;
thus a [= fh & fh in fH by A4;

end;
then uH [= fuH by LATTICE3:47;
then

A5: uH [= f.uH by A3,LATTICES:7;
then f.uH [= f.(f.uH) by QUANTAL1:def 12;
then f.uH in H;
then f.uH [= uH by LATTICE3:38;
hence uH = f.uH by A5,LATTICES:8;
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Low-level Symbolic ATP guidance: Prover9 hints

� The Prover9 community: non-associative algebra, 20-100k long proofs
� Hints (Bob Veroff): extract lemmas from easier proofs to guide new proofs
� The hints behave like checkpoints – you are on the right track
� Gluing the different ideas from many other proofs together by search
� Exploration to get good hints (not really automated yet)
� Very recent huge breakthrough in the AIM project by Kinyon and Veroff
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TacticToe: mid-level ITP Guidance (Gauthier’17,18)

� TTT learns from human and its own tactical HOL4 proofs
� No translation or reconstruction needed - native tactical proofs
� Fully integrated with HOL4 and easy to use
� Similar to rlCoP: policy/value learning for applying tactics in a state
� However much more technically challenging - a real breakthrough:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues
� these issues have often more impact than adding better learners

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� similar work for Isabelle (Nagashima 2018), HOL Light (Google), Coq
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RL for Normalization and Synthesis Tasks

� Gauthier’19, 20: synthesizing simple programs and conjectures in logic
� Tree Neural Nets and RL (MCTS, policy/value) for:
� Guiding normalization in Robinson arithmetic
� Guiding synthesis of combinators for a given lambda expression
� Guiding synthesis of a diophantine equation characterizing a given set
� Quite encouraging results with a good curriculum (LPAR’20, CICM’20)
� Motivated by TacticToe: argument synthesis/conjecturing is important
� The results are series of applications of correct/explainable rules
� Gauthier’s deep RL framework verifies the whole series (proof) in HOL4
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More on Synthesis and Conjecturing in Mathematics

� Targeted: generate intermediate lemmas (cuts) for a harder conjecture
� Unrestricted (theory exploration):
� Creation of interesting conjectures based on the previous theory
� One of the most interesting activities mathematicians do (how?)
� Higher-level AI/reasoning task - can we learn it?
� If so, we have solved math:
� ... just (recursively) divide Fermat into many subtasks ...
� ... and conquer (I mean: hammer) them away
� Goes back to Langley (Bacon), Lenat (AM), Fajtlowicz (Graffiti)
� Combined with TP by Colton et al. in early 2000s (HR)
� Statistical methods, RNNs and Transformers by our groups since 2014
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “proof” - typechecks!

31 / 42



Proving the conditioned completions - MizAR hammer

Figure: Mizar hammer ATP completions on the conditional completions.

32 / 42



Some GPT-2 conjectures

� Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

� Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Gibberish Generator Provoking Algebraists

Figure: First successes in making mathematicians comment on AI.
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Neural Autoformalization (Wang et al., 2018)

� generate ca 1M Latex/Mizar pairs based on Bancerek’s work
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples, achieves 48% on unseen examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck
� Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Thanks and Advertisement

� Thanks for your attention!
� AITP – Artificial Intelligence and Theorem Proving
� September 5–10, 2021, Aussois, France, aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
� Discussion-oriented and experimental - submit a talk abstract!
� Grown to 80 people in 2019
� Will be hybrid in 2021 as in 2020
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