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How Do We Automate Math and Science?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!
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Why Combine Learning and Reasoning Today?

HE It practically helps!

» Automated theorem proving for large formal verification is useful:
* Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)

* Verification hardware architectures, transport systems, trading rules

» But good learning/Al methods needed to cope with large theories!

Formal Proof of the Feit-Thompson Theorem (2012 — Gonthier)
Verification of compilers (CompCert) and microkernels (seL4)

Blue Sky Al Visions:

» Get strong Al by learning/reasoning over large KBs of human thought?
 Big formal theories: good semantic approximation of such thinking KBs?
» Deep non-contradictory semantics — better than scanning books?

» Gradually try learning math/science:

What are the components (inductive/deductive thinking)?

How to combine them together?

Automate/verify math, science, law, ...

Leibniz: Calculemus - resolve disputes

J. McCarthy: Mathematical Objectivity and the Power of Initiative
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What is Formal Mathematics?

+ Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
» Mathematics put on formal logic foundations (symbolic computation)
+ ... which btw. led also to the rise of computers (Turing/Church, 1930s)

« Formal math (1950/60s): combine formal foundations and the newly
available computers

+ De Bruijn, Milner, Trybulec, Boyer and Moore, Gordon, Huet, Paulson, ...
+ Automath, LCF, Mizar, NQTHM and ACL2, HOL, Coq, Isabelle, ...

« Conceptually very simple:

« Write all your axioms and theorems so that computer understands them
« Write all your inference rules so that computer understands them

« Use the computer to check that your proofs follow the rules

- Butin practice, it turns out not to be so simple

- Many approaches, still not mainstream, but big breakthroughs recently
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Freek Wiedijk’s Example: Irrationality of v/2

(informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If v/2

is rational, then the equation
& =2b? (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence & is even, and
therefore ais even. If a = 2¢, then 4¢2 = 202, 2¢2 = b2, and b is
also even, contrary to the hypothesis that (a, b) = 1. O
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Irrationality of +/2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sgqrt 2 is irrational
proof
assume sqgrt 2 is rational;
consider a,b such that
4 3 1: a2 = 2+«b”2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4xc"2 = 2xb"2;
2+xch2 = b"2;
b is even;
thus contradiction;
end;
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Irrationality of +/2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC [NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)°
(fun th -> MESON_TAC([th]) THEN
SIMP_TAC [SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < q <=> ~(q = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of +/2 in Isabelle/HOL

Wheorem sqrt2_ not rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)]| = real m / real n"
and lowest terms: "gcd m n = 1" .
from n nonzero and sqrt_rat have “real m = |sqrt (real 2)1 * real n" by simp

E then have "real (m?) = (s sqrt (real 2))2 * real (n2)"

] by (auto simp add: power2 eq square)

' also have "(sqrt (real 2))? = real 2" by simp

' also have "... * real (m?) = real (2 * n?)" by simp

v finally have eq: "m? = 2 * n2"

' hence "2 dvd m2"

' with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
' then obtain k where "m = 2 * k" ..

' with eq have "2 * n? = 22 * k2" by (auto simp add: power2_eq_square mult_ac)
' hence "n? = 2 * k" by simp

' hence "2 dvd n2" ..

' with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)

' with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)

' with lowest _terms have "2 dvd 1" by simp

' thus False by arith

\qed
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Big Example: The Flyspeck project

+ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

™
V= WiT ~ 74%
- Formal proof finished in 2014
« 20000 lemmas in geometry, analysis, graph theory
« Allofitat https://code.google.com/p/flyspeck/
+ All of it computer-understandable and verified in HOL Light:
*» polyhedron s /\ ¢ face_of s ==> polyhedron c

- However, this took 20 — 30 person-years!
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What Are Automated Theorem Provers?

» Computer programs that (try to) determine if

» A conjecture C is a logical consequence of a set of axioms Ax
» The derivation of conclusions that follow from facts by inference rules

Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
- Human-designed heuristics for pruning of the search space

Fast combinatorial explosion on large knowledge bases like Flyspeck and
Mizar

+ Need to be equipped with good domain-specific inference guidance ...
- ... and that is what I try to do ...
- ... typically by learning in various ways from the knowledge bases ...
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History and Motivation for Al/TP

Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
Lenat, Langley, etc: manually-written heuristics, learn Kepler laws,...

« Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:

Learning from Previous Proof Experience

« My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar

« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
+ ... hammer-style methods, feedback loops, internal guidance, ...

More details — AGI'18 keynote: https://bit.1ly/3qifhg4

« Al vs DL: Ben Goertzel’s Prague talk: https://youtu.be/zt 2HSTUGBNS
Big Al visions: automate/verify math, science, law, (Leibniz, McCarthy, ..)
Practical impact: boost today’s large ITP verification projects
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Using Learning to Guide Theorem Proving

« high-level: pre-select lemmas from a large library, give them to ATPs

+ high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

« low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

« mid-level: invent suitable ATP strategies for classes of problems

« mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories
 proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal
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Large AI/TP Datasets

» Mizar / MML / MPTP — since 2003

« MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)

+ Isabelle (and AFP) — since 2005

« Flyspeck (including core HOL Light and Multivariate) — since 2012

+ HOL4 — since 2014, CakeML — 2017, GRUNGE — 2019

« Coq - since 2013/2016

+ AIM — Veroff & Kinyon, Loops with Abelian Inner Mappings — long proofs
« Lean?, Stacks?, Arxiv?, ProofWiki?, ...
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Demos

« ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPANn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1y/30GBdRz

« Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/outd.ogv

- TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

» Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv
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High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

- About 80000 nontrivial math facts at that time —impossible to use them all

« Is good premise selection for proving a new conjecture possible at all?

« Oris it a mysterious power of mathematicians? (Penrose)

» Today: Premise selection is not a mysterious property of mathematicians!

+ Reasonably good algorithms started to appear (more below).

Extensive human (math) knowledge obsolete?? (cf. Watson, Debater, ..)

Since 2004 (my PhD): many examples of nontrivial alternative proofs
proposed by the Als - in Mizar, Flyspeck, Isabelle, ..

- The premise selection algorithms see wider than humans
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?

« Mizar / MML — MizAR

+ Isabelle (Auth, Jinja) — Sledgehammer

« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk), Coq (Czajka and Kaliszyk)

« Rigorous resource controlled train/test evaluations on toplevel lemmas:

~ 40-45% success rate by 2016
~ 60% on Mizar as of 2021
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Premise Selection and Hammer Methods

- Many syntactic features (symbols, walks in the parse trees)

» More semantic features encoding

- Term matching/unification, validity in models, latent semantics (LSI)
« Distance-weighted k-nearest neighbor, SVMs, Naive Bayes

- Gradient boosted decision trees (GBDTs - XGBoost, LightGBM)

+ Neural models: CNNs, RNNs/Attention/Transformers/GPT, GNNs

« As of 2020, tough competition between GBDTs, GNNs and
RNNs/Transformers (and relatives)

» K-NN still very good, Olsak’s logic-aware GNN probably best

« RNNs/Transformers good at stateful premise selection (Piotrowski
2019,2020)

« Ensemble methods combining the different predictors help a lot
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Premise Selection and Hammer Methods

« Learning in a binary setting from many alternative proofs

« Interleaving many learning and proving runs (MaLARea loop - 2006) to
get positives/negatives (ATPBoost - Piotrowski 2018)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

« Lemmatization — extracting and considering millions of low-level lemmas
and learning from their proofs (Kaliszyk & JU 2013 )

« Hammers combined with guided tactical search: TacticToe (Gauthier -
HOL4) and its later relatives
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(“!s:real”N->bool c. polyhedron s /\ c face_of s ==> polyhedron c?‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC [RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[Yf: (real”N->bool)->bool'; ‘a:(real”N->bool)->real”N?';
‘b: (real”N->bool)->real'] THEN
STRIP_TAC THEN
MP_TAC (ISPECL [‘s:real”N->bool‘; ‘f: (real”N->bool)->bool?;
‘a: (real”N->bool)->real”N'; ‘b: (real”N->bool)->real]
FACE_OF_POLYHEDRON_EXPLICIT) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN (MP_TAC o SPEC ‘c:real”N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real”N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real”N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC [FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC [POLYHEDRON_HYPERPLANE]) ; ;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ ¢ face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX :
Face t of a convex set s is equal to the intersection of s with the affine hull of £.

FACE_OF_STILLCONVEX:

!'s t:real”N->bool. convex s ==>

(t face_of s <=>

t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:

!'s:real”N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!'s t:real”N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
!'s. polyhedron(affine hull s)
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Statistical Guidance of a Simple Connection Prover

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

- the search space quickly explodes

+ good for learning — the tableau compactly represents the proof state

Clauses:

Closed Connection Tableau: P(a)
¢ P(x)
¢ : R(x,y) v -P(x) v Q(y) R(a, b) -P(a) Q(b)
s : S(x) v -Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b)  —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)
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Using Reinforcement Learning to Guide leanCoP

» Monte-Carlo Tree Search (MCTS) — used in AlphaGo
« MCTS search nodes are sequences of clause application
- a good heuristic to explore new vs exploit good nodes:

Wi +c-pi- lrlvN (UCT - Kocsis, Szepesvari 2006)

i i

- we learn the policy — clause selection

+ ... and the value — proof state evaluation

« big issue: representing clauses and proofs for learning

« many approaches - none too good yet, esp. for value

« deep learning not impressive yet and slower than GBDTs

- feedback loop between proving and learning - many iterations
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

23/42



Recent CoP Mutants: FLoP, GNN, RNN, lazyCoP

- FLoP — Finding Longer Proofs (Zombori et al, 2019)

« Curriculum Learning used for connection tableau over Robinson
Arithmetic

« addition and multiplication learned perfectly from 1 x 1 = 1
+ headed towards learning algorithms/decision procedures from math data

- currently black-box, combinations with symbolic methods (ILP) our next
target

- Using RNNs for better tableau encoding, prediction of actions ...

- ... even guessing (decoding) next tableau literals (Piotrowski 2020)

» plCoP (Zombori 20), GNN-CoP (Olsak 20), lazyCoP (Rawson)

« Zombori: learning new explainable Prolog actions (tactics) from proofs
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ENIGMA: Guiding the Best ATPs like E Prover

Similar to rlCoP - interleave proving and learning of ENIGMA guidance
resolution/superposition harder for learning than tableau

the proof state are two large heaps of clauses processed/ unprocessed
Done on 57880 Mizar problems recently - 6 prove/learn iterations
Feedback loop: 70% improvement over the original strategy in 2019
From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

Went up to 40k proofs in more iterations and 60s time in 2020

Many proof examples at https://github.com/aidreason/ATP_Proofs

S |SoM] seMi|SoM] SaMi|SoME SeME|SOM] Se M

solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 23753

%
S+
S

+0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4
+0 +4364  +6215 | +7774  +8414 | +8407 +8964 | +8822  +9274
-0 -2723 -782 -1143 -508 -927 -430 -845 -454

3 3 3 3
‘ $®M12 S$M12 S®M16 $®M16

solved 24159 24701 25100 25397
S$% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -5635 -295 -309 -183
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ENIGMA Proof Example — Knaster fixed-point theorem

theorem Th21:

ex a st a is_a_fixpoint_of f

proof

set H = {h where h is Element of L: h [= f.h};
set fH = {f.h where h is Element of L: h [= f.h};
set uH = "\/"(H, L);
set fuH = "\/"(fH, L);
take uH;
now

let fh be Element of L;

assume fh in fH;

then consider h being Element of L such that

Al: fh = f.h and

A2: h [= f.h;
h in H by A2;
then h [= uH by LATTICE3:38;
hence fh [= f.uH by Al,QUANTALl:def 12;
end;

A3:

Ad:

A5:

en:

then fH is_less_than f.uH by LATTICE3:def 17;
then

fuH [= f.uH by LATTICE3:def 21;
now
let a be Element of L;
assume a in H;
then consider h being Element of L such that
a=hs&h [= f.h;
reconsider fh = f.h as Element of L;
take fh;
thus a [= fh & fh in fH by A4;
end;
then uH [= fuH by LATTICE3:47;
then
uH [= f.uH by A3,LATTICES:7;
then f.uH [= f.(f.uH) by QUANTALl:def 12;
then f.uH in H;
then f.uH [= uH by LATTICE3:38;
hence uH = f.uH by A5,LATTICES:8;
d;
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Low-level Symbolic ATP guidance: Prover9 hints

« The Prover9 community: non-associative algebra, 20-100k long proofs

« Hints (Bob Veroff): extract lemmas from easier proofs to guide new proofs
« The hints behave like checkpoints — you are on the right track

« Gluing the different ideas from many other proofs together by search

« Exploration to get good hints (not really automated yet)

- Very recent huge breakthrough in the AIM project by Kinyon and Veroff
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TacticToe: mid-level ITP Guidance (Gauthier'17,18)

« TTT learns from human and its own tactical HOL4 proofs
 No translation or reconstruction needed - native tactical proofs
+ Fully integrated with HOL4 and easy to use
« Similar to riCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
« tactic and goal state recording
« tactic argument abstraction
« absolutization of tactic names
* nontrivial evaluation issues
« these issues have often more impact than adding better learners

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

« similar work for Isabelle (Nagashima 2018), HOL Light (Google), Coq
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RL for Normalization and Synthesis Tasks

« Gauthier’'19, 20: synthesizing simple programs and conjectures in logic
- Tree Neural Nets and RL (MCTS, policy/value) for:

« Guiding normalization in Robinson arithmetic

+ Guiding synthesis of combinators for a given lambda expression

» Guiding synthesis of a diophantine equation characterizing a given set
+ Quite encouraging results with a good curriculum (LPAR’20, CICM’20)
 Motivated by TacticToe: argument synthesis/conjecturing is important

+ The results are series of applications of correct/explainable rules

« Gauthier’s deep RL framework verifies the whole series (proof) in HOL4
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More on Synthesis and Conjecturing in Mathematics

« Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory
 One of the most interesting activities mathematicians do (how?)
Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

... just (recursively) divide Fermat into many subtasks ...

- ... and conquer (I mean: hammer) them away

« Goes back to Langley (Bacon), Lenat (AM), Fajtlowicz (Graffiti)
Combined with TP by Colton et al. in early 2000s (HR)

« Statistical methods, RNNs and Transformers by our groups since 2014
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Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥  Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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Proving the conditioned completions - MizAR hammer

© Applications Places &

emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
BERG Save &Undo L]

begin

for M, N being Cardinal holds card M c= MV N by XBOOLE_1:7,CARD_3:44,CARD_1:7,CARD_1:3; ::

for X, Y being finite set st not X is empty & X c=Y & card X = card Y holds X =Y by CARD_FIN:1; ::

for M, N being Cardinal holds
(Min N iff card M c= N ) by Unsolved; :: [ATP details]

for M, N being Cardinal holds
(Min N iff card M in N') by CARD_3:44,CARD_1:9; :: [ATP details]

for M, N being Cardinal holds Sum (M --> N) = M *' N by CARD_2:65; :: [ATP details]

for M, N being Cardinal holds M A (union N) in N by Unsolved; :: [ATP details]

for M, N being Cardinal holds M ** N = N ** M by ATP-Unsolved; :: [ATP details]

-i--- card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)

Wed 14:42 Wed 14:42

[ATP details]

[ATP details]

Wrote /home/urban/mizwrk/7.13.01_4.181.1147/tst8/card_tst.miz
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Some GPT-2 conjectures

+ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th1l0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Gibberish Generator Provoking Algebraists

Group conjecture - josef

e RHURIHEHEH el e

Lgoogl cossmse
= MM Gmail Q  Search mail
¢« B e o ¢ T ® : o
Michael Kinyon <mkkinyon @gmal com> TheMay 28, 541PM e da §

10 David, Ales, Petr, Bob, Jan, Karel, me ~

Yes, this is a standard exercise in undergraduate first courses in abstract algebra. The proof is easy. If | were giving way too much of a hint to students, | would
say something like this: fix a in G such that GIN is generated by the coset aN. Every element of G can be wrilten in the form ai n for integer i and some n in N. [/]
Multiply two such elements together and check that they commure.

So your conjecturer (1hat's a difficull word to say) did a goad job.
+

David Stanovsky <david stanovsky@amailcom> ThyMay 28, 5:02PM  fr da
10 me, Michael, Ales, Petr, Bob, Jan, Karel +

Hi, that's a two-line proof, although certainly not an obvious one (a
classical exercise at the beginning of a group theory course)

Denote aN the generator of GIN, hence G is a union of all a®iN, i in Z
Take g,1in G, write them as. Sy wilh xy in N, and
caleulate gh=arixay=a{i+j}y=hg, because x are central
Finiteness makes no simpification of the proof. Th18 you mention
holds for infnite groups if you replace Nat be integers. ILis being
used in my argument.

'l

F
@
(]
»
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Figure: First successes in making mathematicians comment on Al.
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Neural Autoformalization (Wang et al., 2018)

(==

- generate ca 1M Latex/Mizar pairs based on Bancerek’s work

- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples, achieves 48% on unseen examples
« many architectures tested, some work much better than others

« very important latest invention: atfention in the seg-to-seq models

- more data very important for neural training — our biggest bottleneck

« Recent addition: unsupervised methods (Lample et all 2018) — no need
for aligned data!
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Neural Fun — Performance after Some Training

Rendered
IATEX
Input IKTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and sy is convergent . Then lim(sg+S7) = lim Sg+ lim s7

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
}y {4+ 1Y {s_ {71} } ) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } §

seql is convergent & seqg2 is convergent implies lim ( seql
+ seqg2 ) = ( lim seql ) + ( lim seqg2 ) ;
x in dom f implies ( x xy ) (£ | (x| (y | (y | y)
)y )y =(x [ (y !l (y |l CylLy))y)y)y):i

seq 1is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seg2
is convergent ;

seq 1s convergent & seg9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Thanks and Advertisement

« Thanks for your attention!

AITP — Artificial Intelligence and Theorem Proving

» September 5-10, 2021, Aussois, France, aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Discussion-oriented and experimental - submit a talk abstract!

+ Grown to 80 people in 2019

« Will be hybrid in 2021 as in 2020
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