Learning Reasoning and Understanding in Mathematics

Josef Urban
Czech Technical University in Prague

Outline

Motivation, Learning vs. Reasoning

High-level Reasoning Guidance: Premise Selection

Low-level Reasoning Guidance

Combined inductive/deductive metasystems

Learning Informal to Formal Translation

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge - both for induction and deduction
- We need to develop such methods on computers
- Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Learning vs Reasoning - Alan Turing 1950 - Al

- 1950: Computing machinery and intelligence - AI, Turing test
- "We may hope that machines will eventually compete with men in all purely intellectual fields." (regardless of his 1936 undecidability result!)
- last section on Learning Machines:
- "But which are the best ones [fields] to start [learning on] with?"
- "... Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best."
- Why not try with math? It is much more (universally?) expressive ...

Why Combine Learning and Reasoning Today?

1 It practically helps!

- Automated theorem proving for large formal verification is useful:
- Large-theory Automated Reasoning over Mizar (2003), Isabelle (2005), HOLs (2012,2014), Coq (2016?)
- AI/ATP/ITP (AITP) systems like MaLARea, Sledgehammer, MizAR, HOL(y)Hammer,
- But good learning/Al methods needed to cope with large theories!

2 Blue Sky Al Visions:

- Get strong AI by learning/reasoning over large KBs of human thought?
- Big formal theories: good semantic approximation of such thinking KBs?
- Deep non-contradictory semantics - better than scanning books?
- Gradually try learning math/science:
- What are the components (inductive/deductive thinking)?
- How to combine them together?
- What is the disambiguation, conceptualization, conjecturing and knowledge-organization process?
- "Computing" is just a particular form of "reasoning" (cf. Prolog) - learn programming?

The Plan

1 Make large "formal thought" (Mizar/MML, HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools: DONE (or well under way)
2 Test/Use/Evolve existing AI tools on such large corpora:

- deductive AI: first-order/higher-order/inductive ATPs, SMTs, decision procs.
- inductive AI: statistical learning tools (Bayesian, kernels, neural,...),
- inductive AI: semantic learning tools (ILP - Progol; latent semantics - PCA; probabilistic grammars, ...),
3 Build custom/combined inductive/deductive tools/metasystems:
- usually combining ATP techniques with ML ideas
- axiom/clause selection, concept/lemma creation and analogy, strategy generation, etc.
- high- and low-level feedback loops between reasoning and learning:
- successful reasoning (a proof) \rightarrow informs learning \rightarrow allows better reasoning \rightarrow and so on ad infinitum ...
4 Continuously test performance, define harder AI tasks as the performance grows

Most of (Math|Mizar) Matches system (MoMM, 2002)

- Load all proof knowledge into an advising system
- some desired properties:
- when a new conjecture is "efficiently implied" by previous solution, tell us
- "efficiently implied": generalization with respect to the rich Mizar type system
- could be extended in various ways towards full theorem proving
- 1M (generalized) proof situations, interreduced in 40 minutes
- hacking of ATP (E prover) indexing datastructures for very large theories
- Most of Mizar Matches!
- More than half proof situations subsumed by a previous one
- Export has to be done correctly, otherwise contradiction subsumes all
- You do not have to do expensive proof search, quantity helps
- Let us do this for all of math!
- Mine Arxiv, Easychair, Planetmath, Wikipedia, textbooks

High-level ATP guidance: Premise Selection

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- Today: Premise selection is not a mysterious property of mathematicians!

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose!)
- Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).
- Will extensive human (math) knowledge get obsolete?? (cf. Watson)

Example system: Mizar Proof Advisor (started 2003)

- train naive-Bayse fact selection on all previous Mizar/MML proofs (50k)
- input features: conjecture symbols; output labels: names of facts
- recommend relevant facts when proving new conjectures
- First results over the whole Mizar library in 2003:
- about 70% coverage in the first 100 recommended premises
- chain the recommendations with strong ATPs to get full proofs
- about 14% of the Mizar theorems were then automatically provable (SPASS)

Today's AI-ATP systems (\star-Hammers)

Today's AI-ATP systems (\star-Hammers)

How much can it do?

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer

Today's AI-ATP systems (\star-Hammers)

How much can it do?

- Flyspeck (including core HOL Light and Multivariate) - HOL(y)Hammer
- Mizar / MML - MizAR
- Isabelle (Auth, Jinja) - Sledgehammer $\approx 45 \%$ success rate

Low-level Reasoning Guidance

Several systems/methods, I will only mention one

Low-level guidance: Machine Learning Connection Prover (MaLeCoP)

- MaLeCoP: put the AI methods inside a tableau ATP
- the learning/deduction feedback loop runs across problems and inside problems
- The more problems/branches you solve/close, the more solutions you can learn from
- The more solutions you can learn from, the more problems you solve
- first prototype (2011): very slow learning-based advice (1000 times slower than inference steps)
- already about 20-time proof search shortening on MPTP Challenge compared to leanCoP
- second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
- 2016: Learning guidance now also in Satallax, soon E prover, ITPs, ...

Large-theory Lemmatization and Conjecturing

- Over 1B low-level lemmas in Flyspeck
- 1.5M-7M higher-level lemmas in MML and Flyspeck
- Define fast preprocessing methods to extract the most important ones:
- PageRank, recursive dependency count, recursive use count, etc.
- Use the most important lemmas together with the toplevel theorems helps by $5-20 \%$ (needs more evaluations)
- Conjecturing: guessing the intermediate lemmas in longer proofs (we do not have the methods yet)

Examples of self-evolving metasystems

- Various positive feedback loops
- Machine Learner for Automated Reasoning (MaLARea)
- Blind Strategymaker (BliStr)

Machine Learner for Automated Reasoning

- Feedback loop interleaving ATP with learning premise selection:
- MaLARea 0.4 unordered mode, explore \& exploit, etc.
- The more problems you solve (and fail to solve), the more solutions (and failures) you can learn from
- The more you can learn from, the more you solve
- MaLARea 0.5 (ordered mode, many changes): solved 77\% more problems than the second system

Learning Informal to Formal Translation

- Dense Sphere Packings: A Blueprint for Formal Proofs
- 400 theorems and 200 concepts mapped
- simple wiki
- Compendium of Continuous Lattices (CCL)
- 60\% formalized in Mizar
- high-level concepts and theorems aligned
- Feit-Thompson theorem by Gonthier
- Two graduate books
- ProofWiki with detailed proofs and symbol linking
- General topology corresponence with Mizar
- Similar projects (PlanetMath, ...)

Aligned Formal and Informal Math - Flyspeck [сісшзя, זрүчя]

Informal Forma

Definition of [fan, blade] DSKAGVP (fan) [fan \leftrightarrow FAN]

Let (V, E) be a pair consisting of a set $V \subset \mathbb{R}^{3}$ and a set E of unordered pairs of distinct elements of V. The pair is said to be a fan if the following properties hold.

1. (CARDINALITY) V is finite and nonempty. [cardinality \leftrightarrow fan1]
2. (ORIGIN) $\mathbf{0} \notin V$. [origin \leftrightarrow fan2]
3. (NONPARALLEL) If $\{\mathbf{v}, \mathbf{w}\} \in E$, then \mathbf{v} and \mathbf{w} are not parallel. [nonparallel \leftrightarrow fan6]
4. (INTERSECTION) For all $\varepsilon, \varepsilon^{\prime} \in E \cup\{\{\mathbf{v}\}: \mathbf{v} \in V\}$, [intersection \leftrightarrow fan7]

$$
C(\varepsilon) \cap C\left(\varepsilon^{\prime}\right)=C\left(\varepsilon \cap \varepsilon^{\prime}\right)
$$

When $\varepsilon \in E$, call $C^{0}(\varepsilon)$ or $C(\varepsilon)$ a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.

Lnformal Forma

Lemma [CTVTAQA (subset-fan)
If (V, E) is a fan, then for every $E^{\prime} \subset E,\left(V, E^{\prime}\right)$ is also a fan.
Proof
This proof is elementary.
Lnformat Formal
Lemma [fan cyclic] XOHLED
E(v) \rightarrow set_of_edge] Let (V, E) be a fan. For each $\mathbf{v} \in V$, the set
is $c y c l i c$ with respect to $(\mathbf{0}, \mathbf{v})$.
Proof
If $\mathbf{w} \in E(\mathbf{v})=\{\mathbf{w} \in V:\{\mathbf{v}), \mathbf{w}\} \in E\}$

Informal Formal

\#DSKAGVP ${ }^{3}$

$\tan 6(x, V, E) / \backslash \tan 7(x, V, E))^{\prime}(x, v$

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.
Informan Formal

Statistical Parsing of Informalized HOL

- Experiments with the CYK chart parser linked to semantic methods
- Training and testing examples exported form Flyspeck formulas
- Along with their informalized versions
- Grammar parse trees
- Annotate each (nonterminal) symbol with its HOL type
- Also "semantic (formal)" nonterminals annotate overloaded terminals
- guiding analogy: word-sense disambiguation using CYK is common
- Terminals exactly compose the textual form, for example:
- REAL_NEGNEG: $\forall x .--x=x$

```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))
```

- becomes

```
(""̈Type bool).i ! ("\ddot{̈Type (fun real bool)) ii (Abs ("\ddot{̈Type real) ii}}\mathbf{|}\mathrm{ (Ty.}
(Var A0)) (""̈Type bool)" (""̈Type real)" real_neg (""Type real)"
real_neg (""̈Type real)" (Var A0)))) = ("(Type real)"; (Var A0))))))
```

Example grammars

CYK Learning and Parsing

- Induce PCFG (probabilistic context-free grammar) from the trees
- Grammar rules obtained from the inner nodes of each grammar tree
- Probabilities are computed from the frequencies
- The PCFG grammar is binarized for efficiency
- New nonterminals as shortcuts for multiple nonterminals
- CYK: dynamic-programming algorithm for parsing ambiguous sentences
- input: sentence - a sequence of words and a binarized PCFG
- output: N most probable parse trees
- Additional semantic pruning
- Compatible types for free variables in subtrees
- Allow small probability for each symbol to be a variable
- Top parse trees are de-binarized to the original CFG
- Transformed to HOL parse trees (preterms, Hindley-Milner)

Experiments with Informalized Flyspeck

- 22000 Flyspeck theorem statements informalized
- 72 overloaded instances like "+" for vector_add
- 108 infix operators
- forget all "prefixes"
- real_, int_, vector_, nadd_, hreal_, matrix_, complex_
- ccos, cexp, clog, csin, ...
- vsum, rpow, nsum, list_sum, ...
- Deleting all brackets, type annotations, and casting functors
- Cx and real_of_num (which alone is used 17152 times).
- online parsing/proving demo system
- 100-fold cross-validation

Online parsing system

- "sin (0 * x) = cos pi / 2"
- produces 16 parses
- of which 11 get type-checked by HOL Light as follows
- with all but three being proved by $\mathrm{HOL}(y) \mathrm{Hammer}$

```
sin (&0 * AO) = cos (pi / &2) where A0:real
sin (&0 * AO) = cos pi / &2 where A0:real
sin (&0 * &AO) = cos (pi / &2) where A0:num
sin (&0 * &AO) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * AO)) = cos pi / &2 where A0:num
Csin (Cx (&O * AO)) = Ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&0) * A0) = coos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * AO)) = ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&0 * AO)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
```


Results over Flyspeck

- First version (2015): In 39.4% of the 22,000 Flyspeck sentences the correct (training) HOL parse tree is among the best 20 parses
- its average rank: 9.34
- Second version (2016): 67.7\% success in top 20 and average rank 3.35
- 24% of them AITP provable

Betting Slide from a talk in Paris in 2014)

- In 20 years, 80% of Flyspeck and MML toplevel theorems will be provable automatically
- (same hardware, same library versions as in2014 - about 40\%)
- The same in 30 years - l'll give you 2:1, In 10 years: 60\%
- In 25 years, 50\% of the toplevel statements in LaTeX-written Msc-level math curriculum textbooks will be parsed automatically and with correct formal semantics
- Hurry up: I will only accept bets up to 10k EUR total (negotiable)

