ARTIFICIAL INTELLIGENCE AND THEOREM PROVING

Josef Urban

Czech Technical University in Prague

Established by the European Commission

Motivation, Learning vs. Reasoning

Demo

High-level Reasoning Guidance: Premise Selection

Low-level Reasoning Guidance

Combined inductive/deductive metasystems

AI/ATP Assisted Informal to Formal Translation

Further AI Challenges

How Do We Automate Math and Science?

- · What is mathematical and scientific thinking?
- · Pattern-matching, analogy, induction from examples
- · Deductive reasoning
- · Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge both for induction and deduction
- · We need to develop such methods on computers
- · Are there any large corpora suitable for nontrivial deduction?
- · Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Learning vs Reasoning – Alan Turing 1950 – Al

- 1950: Computing machinery and intelligence AI, Turing test
- "We may hope that machines will eventually compete with men in all purely intellectual fields." (regardless of his 1936 undecidability result!)
- · last section on Learning Machines:
- "But which are the best ones [fields] to start [learning on] with?"
- "... Even this is a difficult decision. Many people think that a very abstract activity, like the playing of chess, would be best."
- Why not try with math? It is much more (universally?) expressive ...

Why Combine Learning and Reasoning Today?

1 It practically helps!

- · Automated theorem proving for large formal verification is useful:
 - Formal Proof of the Kepler Conjecture (2014 Hales 20k lemmas)
 - Formal Proof of the Feit-Thompson Theorem (2012 Gonthier)
 - · Verification of compilers (CompCert) and microkernels (seL4)
 - ...
- · But good learning/AI methods needed to cope with large theories!

2 Blue Sky Al Visions:

- · Get strong AI by learning/reasoning over large KBs of human thought?
- · Big formal theories: good semantic approximation of such thinking KBs?
- Deep non-contradictory semantics better than scanning books?
- Gradually try learning math/science:
 - · What are the components (inductive/deductive thinking)?
 - · How to combine them together?

- Make large "formal thought" (Mizar/MML, Isabelle/HOL/AFP, HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools – DONE (or well under way)
- 2 Test/Use/Evolve existing AI and ATP tools on such large corpora
- 3 Build custom/combined inductive/deductive tools/metasystems
- Continuously test performance, define harder AI tasks as the performance grows

What is Formal Mathematics?

- Conceptually very simple:
- · Write all your axioms and theorems so that computer understands them
- · Write all your inference rules so that computer understands them
- · Use the computer to check that your proofs follow the rules
- · But in practice, it turns out not to be so simple

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational. The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$a^2 = 2b^2$$
 (4.3.1)

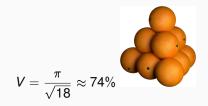
is soluble in integers *a*, *b* with (a, b) = 1. Hence a^2 is even, and therefore *a* is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and *b* is also even, contrary to the hypothesis that (a, b) = 1.

Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
  sqrt 2 is irrational
proof
  assume sqrt 2 is rational;
  consider a,b such that
4 3 1: a^2 = 2 \cdot b^2 and
    a,b are relative prime;
  a^2 is even;
  a is even;
  consider c such that a = 2 * c;
  4 \star c^2 = 2 \star b^2;
  2 \star c^2 = b^2;
  b is even;
  thus contradiction;
end;
```

Irrationality of 2 in HOL Light


let SQRT_2_IRRATIONAL = prove (`~rational(sqrt(&2))`, SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN SUBGOAL_THEN `~((&p / &q) pow 2 = sqrt(&2) pow 2)` (fun th -> MESON_TAC[th]) THEN SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LI; REAL_POW_LT; ARITH_RULE `0 < q <=> ~(q = 0)`] THEN ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;

Irrationality of 2 in Isabelle/HOL

```
theorem sgrt2 not rational:
  "sort (real 2) ∉ 0"
proof
 assume "sqrt (real 2) \in \mathbb{Q}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "!sqrt (real 2)! = real m / real n"
    and lowest_terms: "gcd m n = 1" ...
 from n_nonzero and sqrt_rat have "real m = {sqrt (real 2)} * real n" by simp
  then have "real (m^2) = (sort (real 2))^2 * real <math>(n^2)"
    by (auto simp add: power2_eq_square)
  also have "(sqrt (real 2))<sup>2</sup> = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: m^2 = 2 * n^2 ...
  hence "2 dvd m<sup>2</sup>"...
  with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)
  then obtain k where "m = 2^* k"
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2"...
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd m have "2 dvd gcd m n" by (rule gcd_greatest)
  with lowest terms have "2 dvd 1" by simp
 thus False by arith
ged
```

Big Example: The Flyspeck project

• Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

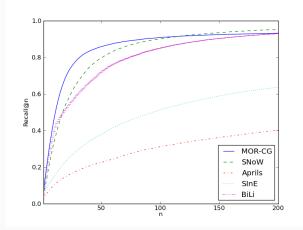
- Formal proof finished in 2014
- · 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- · All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!

What Are Automated Theorem Provers?

- · Computer programs that (try to) determine if
 - A conjecture C is a logical consequence of a set of axioms Ax
 - The derivation of conclusions that follow inevitably from facts.
- Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, ...
- Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
- · Human-designed heuristics for pruning of the search space
- Fast combinatorial explosion on large knowledge bases like Flyspeck and Mizar
- · Need to be equipped with good domain-specific inference guidance ...
- ... and that is what I try to do ...
- ... typically by learning in various ways from the knowledge bases ...

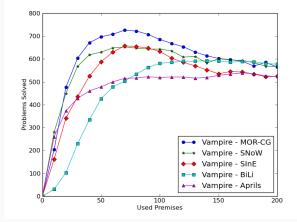
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv

High-level ATP guidance: Premise Selection

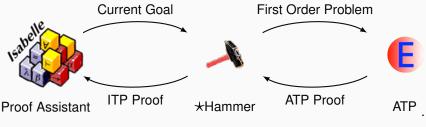

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time impossible to use them all
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose)
- · Today: Premise selection is not a mysterious property of mathematicians!
- · Reasonably good algorithms started to appear (more below).
- Will extensive human (math) knowledge get obsolete?? (cf. Watson)

Example system: Mizar Proof Advisor (2003)

- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
- · input features: conjecture symbols; output labels: names of facts
- · recommend relevant facts when proving new conjectures
- · First results over the whole Mizar library in 2003:
 - · about 70% coverage in the first 100 recommended premises
 - · chain the recommendations with strong ATPs to get full proofs
 - about 14% of the Mizar theorems were then automatically provable (SPASS)
- Today's methods: about 45-50% (and we are still just beginning!)


ML Evaluation of methods on MPTP2078 - recall

- Coverage (recall) of facts needed for the Mizar proof in first n predictions
- · MOR-CG kernel-based, SNoW naive Bayes, BiLi bilinear ranker
- · SINe, Aprils heuristic (non-learning) fact selectors



ATP Evaluation of methods on MPTP2078

- Number of the problems proved by ATP when given n best-ranked facts
- · Good machine learning on previous proofs really matters for ATP!

Today's AI-ATP systems (*-Hammers)

How much can it do?

- Isabelle (Auth, Jinja) Sledgehammer
- Flyspeck (+ HOL Light and Multivariate), HOL4 HOL(y)Hammer
- Mizar / MML MizAR

pprox 45% success rate

- Semantic features encoding term matching
- Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles (MePo)
- Matching and transfering concepts and theorems between libraries (Gauthier & Kaliszyk)
- · Lemmatization extracting and considering millions of low-level lemmas
- · Neural sequence models, definitional embeddings (Google Research)

FACE_OF_POLYHEDRON_POLYHEDRON

```
let FACE OF POLYHEDRON POLYHEDRON = prove
 ('!s:real^N->bool c. polyhedron s /\ c face of s ==> polyhedron c',
 REPEAT STRIP TAC THEN FIRST ASSUM
   (MP TAC O GEN REWRITE RULE I [POLYHEDRON INTER AFFINE MINIMAL]) THEN
  REWRITE TAC[RIGHT IMP EXISTS THM; SKOLEM THM] THEN
  SIMP TAC[LEFT IMP EXISTS THM; RIGHT AND EXISTS THM; LEFT AND EXISTS THM] THEN
 MAP EVERY X GEN TAC
   ['f:(real^N->bool)->bool'; 'a:(real^N->bool)->real^N';
    'b: (real^N->bool) ->real'] THEN
  STRIP TAC THEN
 MP_TAC(ISPECL ['s:real^N->bool'; 'f:(real^N->bool)->bool';
                 `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
         FACE OF POLYHEDRON EXPLICIT) THEN
 ANTS TAC THENL [ASM REWRITE TAC]] THEN ASM MESON TAC]]; ALL TAC] THEN
  DISCH THEN (MP TAC o SPEC 'c:real^N->bool') THEN ASM REWRITE TAC[] THEN
 ASM CASES TAC 'c:real^N->bool = {}' THEN
 ASM REWRITE TAC[POLYHEDRON EMPTY] THEN
 ASM CASES TAC 'c:real^N->bool = s' THEN ASM REWRITE TAC[] THEN
  DISCH THEN SUBST1 TAC THEN MATCH MP TAC POLYHEDRON INTERS THEN
  REWRITE TAC[FORALL IN GSPEC] THEN
 ONCE REWRITE TAC[SIMPLE IMAGE GEN] THEN
 ASM SIMP TAC[FINITE IMAGE: FINITE RESTRICT] THEN
 REPEAT STRIP TAC THEN REWRITE TAC[IMAGE ID] THEN
 MATCH MP TAC POLYHEDRON INTER THEN
 ASM REWRITE TAC[POLYHEDRON HYPERPLANE]);;
```

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

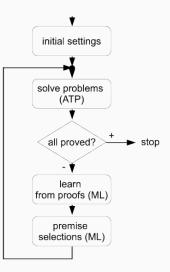
Alternative proof found by a hammer based on FACE_OF_STILLCONVEX: Face *t* of a convex set *s* is equal to the intersection of *s* with the affine hull of *t*.

```
FACE_OF_STILLCONVEX:
 !s t:real^N->bool. convex s ==>
 (t face_of s <=>
 t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:
 !s:real^N->bool. polyhedron s ==> convex s
POLYHEDRON_INTER:
 !s t:real^N->bool. polyhedron s /\ polyhedron t
 ==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
 !s. polyhedron(affine hull s)
```

Low-level guidance for tableau: Machine Learning Connection Prover (MaLeCoP)

- · MaLeCoP: put the AI methods inside a tableau ATP
- the learning/deduction feedback loop runs across problems and inside problems
- The more problems/branches you solve/close, the more solutions you can learn from
- · The more solutions you can learn from, the more problems you solve
- first prototype (2011): very slow learning-based advice (1000 times slower than inference steps)
- already about 20-time proof search shortening on MPTP Challenge compared to leanCoP
- second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
- about 15% improvement over untrained leanCoP on the MPTP problems

Low-level guidance for superposition: ENIGMA

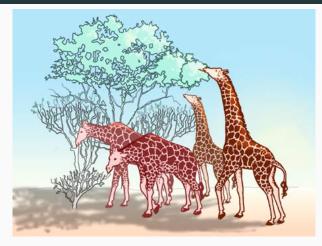

- · Train a fast classifier distinguishing good and bad generated clauses
- Plug it into a superposition prover (E prover) as a clause evaluation heuristic
- Combine it with various ways with more standard (common-sense) guiding methods
- · Very recent work, 86% improvement of the best tactic

Examples of self-evolving metasystems

- Various positive feedback loops
- Machine Learner for Automated Reasoning (MaLARea)
- Blind Strategymaker (BliStr)

Machine Learner for Automated Reasoning

Feedback loop interleaving ATP with learning premise selection


MaLARea

- MaLARea 0.4 (CASC@Turing) unordered mode, explore & exploit, etc.
- The more problems you solve (and fail to solve), the more solutions (and failures) you can learn from
- · The more you can learn from, the more you solve
- In some sense also conjecturing (omiting definitions)
- The CASC@Turing performance curve flat for quite a while:
- http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/ ResultsPlots.html#MRTProblems
- CASC 2013, MaLARea 0.5 (ordered mode, many changes): solved 77% more problems than the second system
- http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/ DivisionSummary1.html

BliStr: Blind Strategymaker

- · Problem: how do we put all the sophisticated ATP techniques together?
- · E.g., Is conjecture-based guidance better than proof-trace guidance?
- Grow a population of diverse strategies by iterative local search and evolution!
- · Dawkins: The Blind Watchmaker

BliStr: Blind Strategymaker

- · The strategies are like giraffes, the problems are their food
- The better the giraffe specializes for eating problems unsolvable by others, the more it gets fed and further evolved

BliStr: Blind Strategymaker

- · Use clusters of similar solvable problems to train for unsolved problems
- · Interleave low-time training with high-time evaluation
- Thus co-evolve the strategies and their training problems
- · In the end, learn which strategy to use on which problem

BliStr on 1000 Mizar@Turing problems

- original E coverage: 597 problems
- after 30 hours of strategy growing: 22 strategies covering 670 problems
- The best strategy solves 598 problems (1 more than all original strategies)
- A selection of 14 strategies improves E auto-mode by 25% on unseen problems
- Similar results for the Flyspeck problems
- Be lazy, don't do "hard" theory-driven ATP research (a.k.a: thinking)
- Larry Wall (Programming Perl): "We will encourage you to develop the three great virtues of a programmer: laziness, impatience, and hubris"

32/43

Learning Informal to Formal Translation

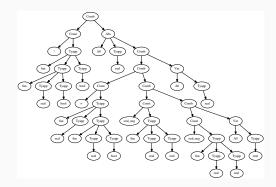
Dense Sphere Packings: A Blueprint for Formal Proofs	
 400 theorems and 200 concepts mapped simple wiki 	[Hales13]
 Feit-Thompson theorem by Gonthier 	[Gonthier13]
 Two graduate books 	
 Compendium of Continuous Lattices (CCL) 	
60% formalized in Mizarhigh-level concepts and theorems aligned	[BancerekRudnicki02]
 ProofWiki with detailed proofs and symbol linking 	
 General topology corresponence with Mizar Similar projects (PlanetMath,) 	

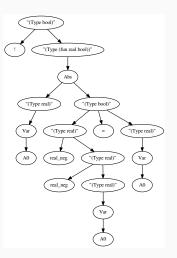
Aligned Formal and Informal Math - Flyspeck [CICM13, ITP'13]

Informal	Formal
----------	--------

Informal Formal	
Definition of [fan, blade] DSKAGVP (fan) [fan \leftrightarrow FAN]	
Let (V, E) be a pair consisting of a set $V \subset \mathbb{R}^3$ and a set E of unordered pairs of distinct elements of V . The pair is said to be a <i>fan</i> if the following properties hold.	
1. (CARDINALITY) V is finite and nonempty. [cardinality \leftrightarrow fan1] 2. (ORIGN) $0 \notin V$. [origin \leftrightarrow fan2] 3. (NOVPARALLE) if $\{\mathbf{x}, \mathbf{y}\} \notin \mathcal{E}$, then \mathbf{y} and \mathbf{w} are not parallel. [nonparallel \leftrightarrow fan6] 4. (INTERSECTION) For all $\varepsilon, \varepsilon' \in E \cup \{\{\mathbf{y}\} : \mathbf{w} \in V\}$. [Intersection \leftrightarrow fan7]	
$C(\varepsilon) \cap C(\varepsilon') = C(\varepsilon \cap \varepsilon').$	Informal Formal
When $arepsilon\in E,$ call $C^0(arepsilon)$ or $C(arepsilon)$ a blade of the fan.	$\frac{\text{aDSXGNOP}^2}{\text{Iter FAH-mew definition 'FAH(x,V,E)} \iff ((UNIONS E) SUBSET V) \land graph(E) \land fan1(x,V,E) \land fan2(x,V) \land fan2($
basic properties	basic properties
The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.	The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.
Informal Formal	Informal Formal
Lemma [] CTVTAQA (subset-fan)	<pre>Let CUTADAmprove('(x:real^3) (V:real^3->bool) (E:(real^3->bool)->bool) (E1:(real^3->bool)->bool) FM(x,V,E) /, E1 SUBSET E FM(x,V,E1);</pre>
If (V,E) is a fan, then for every $E'\subset E,$ (V,E') is also a fan.	<pre>FM(x,y,LL) , REPEAT GEN TAC THEN REWRITE TAC[FAN; fan1; fan2; fan6; fan7; graph]</pre>
Proof	THEN ASM_SET_TAC[]);;
This proof is elementary.	Informal Formal
Informal Formal	<pre>let XOHLED=prove(`!(x:real^3) (V:real^3->bool) (E:(real^3->bool).>bool) (v:real^3). FAN(x,V,E) / v IN V ==> cyclic set (set of edge v V E) x v',</pre>
Lemma [fan cyclic] XOHLED	MESON_TAC[CYCLIC_SET_EDGE_FAN]);;
$[E(v)\leftrightarrow { t set_of_edge}]$ Let (V,E) be a fan. For each ${f v}\in V,$ the set	
$E(\mathbf{v})=\{\mathbf{w}\in V \ : \ \{\mathbf{v},\mathbf{w}\}\in E\}$	
is cyclic with respect to $(0,\mathbf{v})$.	
Proof	
If $\mathbf{w}\in E(\mathbf{v}),$ then \mathbf{v} and \mathbf{w} are not parallel. Also, if $\mathbf{w} eq \mathbf{w}'\in E(\mathbf{v}),$ then	

Statistical Parsing of Informalized HOL


- · Experiments with the CYK chart parser linked to semantic methods
- · Training and testing examples exported form Flyspeck formulas
 - · Along with their informalized versions
- Grammar parse trees
 - · Annotate each (nonterminal) symbol with its HOL type
 - · Also "semantic (formal)" nonterminals annotate overloaded terminals
 - guiding analogy: word-sense disambiguation using CYK is common
- · Terminals exactly compose the textual form, for example:
- REAL_NEGNEG: $\forall x. -x = x$


```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Const (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real")))))
```

becomes

```
("ïType bool)" ! ("ïType (fun real bool))" (Abs ("ïType real)"
(Var A0)) ("ïType bool)" ("ïType real)" real_neg ("ïType real)"
real_neg ("ïType real)" (Var A0)))) = ("ïType real)" (Var A0)))))
```

Example grammars

CYK Learning and Parsing

- Induce PCFG (probabilistic context-free grammar) from the trees
 - · Grammar rules obtained from the inner nodes of each grammar tree
 - · Probabilities are computed from the frequencies
- · The PCFG grammar is binarized for efficiency
 - · New nonterminals as shortcuts for multiple nonterminals
- CYK: dynamic-programming algorithm for parsing ambiguous sentences
 - · input: sentence a sequence of words and a binarized PCFG
 - output: N most probable parse trees
- Additional semantic pruning
 - · Compatible types for free variables in subtrees
- · Allow small probability for each symbol to be a variable
- · Top parse trees are de-binarized to the original CFG
 - Transformed to HOL parse trees (preterms, Hindley-Milner)

Experiments with Informalized Flyspeck

- 22000 Flyspeck theorem statements informalized
 - 72 overloaded instances like "+" for vector_add
 - · 108 infix operators
 - · forget all "prefixes"
 - real_, int_, vector_, nadd_, hreal_, matrix_, complex_
 - ccos, cexp, clog, csin, ...
 - vsum, rpow, nsum, list_sum, ...
 - · Deleting all brackets, type annotations, and casting functors
 - Cx and real_of_num (which alone is used 17152 times).
- online parsing/proving demo system
- 100-fold cross-validation

Online parsing system

- "sin (0 * x) = cos pi / 2"
- produces 16 parses
- · of which 11 get type-checked by HOL Light as follows
- · with all but three being proved by HOL(y)Hammer

```
sin (&0 * A0) = cos (pi / &2) where A0:real

sin (&0 * A0) = cos pi / &2 where A0:real

sin (&0 * &A0) = cos (pi / &2) where A0:num

sin (&0 * &A0) = cos pi / &2 where A0:num

sin (&(0 * A0)) = cos (pi / &2) where A0:num

sin (&(0 * A0)) = cos pi / &2 where A0:num

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real^2

Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real

csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real^2
```

- First version (2015): In 39.4% of the 22,000 Flyspeck sentences the correct (training) HOL parse tree is among the best 20 parses
- its average rank: 9.34
- · Second version (2016): 67.7% success in top 20 and average rank 3.35
- · 24% of them AITP provable

Pointers to Formal Parsing

- Demo of the probabilistic/semantic parser trained on informal/formal Flyspeck pairs:
- http://colo12-c703.uibk.ac.at/hh/parse.html
- The linguistic/semantic methods explained in http://dx.doi.org/10.1007/978-3-319-22102-1_15
- Compare with Wolfram Alpha:
- https://www.wolframalpha.com/input/?i=sin+0+*+x+%3D+
 cos+pi+%2F+2

Further Challenges in AI over Large Formal KBs

- Refactoring of long ATP proofs for human consumption 70k-long proof by Bob Veroff & Prover9, 20k by David Stanovsky & Waldmeister, etc.
- Using strong AI/ATP to help automated disambiguation/understanding of arXiv, Stacks, everything?
- Emulating the layer on which mathematicians think learning from natural language proofs and theories, concept and theory invention
- Conjecturing in large theories several methods possible (recently tried concept/theory matching)
- · What will it take to prove Brouwer or Jordan fully automatically?

Acknowledgments

- Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 - Petr Stepanek, Jiri Vyskocil, Jan Jakubuv, Chad Brown, Martin Suda, Ondrej Kuncar, David Stanovsky, Krystof Hoder, Petr Pudlak, ...
- HOL(y)Hammer group in Innsbruck:
 - · Cezary Kaliszyk, Thibault Gauthier, Michael Faerber
- ATP and ITP people:
 - Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Jens Otten, Larry Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow, Mark Adams, Ramana Kumar, Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...
- Learning2Reason people at Radboud University Nijmegen:
 - Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze, Herman Geuvers
- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi, Francois Chollet
- ... and many more ...
- Funding: Marie-Curie, NWO, ERC

Thanks and Advertisement

- Thanks for your attention!
- AITP: http://aitp-conference.org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- Two EU-funded PhD positions on the AI4REASON project
- http://ai4reason.org/ai4reasonphd.txt
- Good background in logic and programming
- Interest in AI, Automated/Formal Reasoning, Machine Learning or Computational Linguistics
- Email to Josef.Urban@gmail.com