SOME ML TASKS IN THEOREM PROVING

Josef Urban

Czech Technical University in Prague

European Research Council
Established by the Eurapean Commission

1/38



Demos

Theorem Proving Overview

Motivation, Learning and Reasoning

Formal Math, Theorem Proving, Machine Learning

High-level Reasoning Guidance: Premise Selection and Hammers
Low-level Reasoning Guidance

Combined inductive/deductive metasystems

Al/ATP Assisted Informal to Formal Translation

Further Al Challenges and Connections

2/38



Demos

http://grid0l.ciirc.cvut.cz/~mptp/outd.ogv
http://colol2-c703.uibk.ac.at/hh/parse.html
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http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://colo12-c703.uibk.ac.at/hh/parse.html

Theorem Proving Overview

- Propositional — SATisfiability solving:
+ DPLL- Davis—Putnam—-Logemann-Loveland, CDCL

« basis of many more-involved algorithms, hardware checking, model
checking, etc.

« Satisfiability Modulo Theories — SMT

» works like SAT, but simplifies the theory literals whenever possible
« First Order — Automated Theorem Proving (ATP)

« try to infer conjecture C from axioms Ax: Ax - C

- tableaux/resolution/superposition (equational) provers generate
inferences, looking for the contradiction (empty clause)

- Interactive Theorem Proving — Formal Verification

« recently a lot of progress and large finished projects — Flyspeck, selL 4,
CompCert, Feit-Thompson
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Blue Sky Al Motivation: Automate Math/Science

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

« Complicated feedback loops between induction and deduction

« Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
» Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!
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Why Combine Learning and Reasoning Today?

It practically helps!
» Automated theorem proving for large formal verification is useful:

* Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
* Formal Proof of the Feit-Thompson Theorem (2012 — Gonthier)
* Verification of compilers (CompCert) and microkernels (seL4)

» But good learning/Al methods needed to cope with large theories!
Blue Sky Al Visions:
» Get strong Al by learning/reasoning over large KBs of human thought?
« Big formal theories: good semantic approximation of such thinking KBs?

» Deep non-contradictory semantics — better than scanning books?
» Gradually try learning math/science:

* What are the components (inductive/deductive thinking)?
* How to combine them together?
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The Plan

Make large “formal thought” (Mizar/MML, Isabelle/HOL/AFP,
HOL/Flyspeck ...) accessible to strong reasoning and learning Al tools —
DONE (or well under way)

Test/Use/Evolve existing Al and ATP tools on such large corpora
Build custom/combined inductive/deductive tools/metasystems

Continuously test performance, define harder Al tasks as the
performance grows
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Freek Wiedijk’s Example: Irrationality of 2

(informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If v/2

is rational, then the equation
& =2b? (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence & is even, and
therefore ais even. If a = 2¢, then 4¢2 = 202, 2¢2 = b2, and b is
also even, contrary to the hypothesis that (a, b) = 1. O
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Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sgqrt 2 is irrational
proof
assume sqgrt 2 is rational;
consider a,b such that
4 3 1: a2 = 2+«b”2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4xc"2 = 2xb"2;
2+xch2 = b"2;
b is even;
thus contradiction;
end;
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Irrationality of 2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC [NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN '~ ((&p / &q) pow 2 = sqrt(&2) pow 2)°
(fun th -> MESON_TAC([th]) THEN
SIMP_TAC [SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < q <=> ~(q = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of 2 in Coq

Theorem irrational_sqrt_2: irrational (sgrt 2%nat).

intros p g H HO; case H.

apply (main_thm (Zabs_nat p)).

replace (Div2.double (g * q)) with (2 * (g x q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (g * q))); auto; intros HI.
case (not_nm_INR _ _ H1l); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.

rewrite HO; auto with real.

assert (g <> O0%R :> R); auto with real.

field; auto with real; case p; simpl; intros; ring.
Qed.
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Irrationality of 2 in Isabelle/HOL

Wheorem sqrt2_ not rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)]| = real m / real n"
and lowest terms: "gcd m n = 1" .
from n nonzero and sqrt_rat have “real m = |sqrt (real 2)1 * real n" by simp

E then have "real (m?) = (s sqrt (real 2))2 * real (n2)"

] by (auto simp add: power2 eq square)

' also have "(sqrt (real 2))? = real 2" by simp

' also have "... * real (m?) = real (2 * n?)" by simp

v finally have eq: "m? = 2 * n2"

' hence "2 dvd m2"

' with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
' then obtain k where "m = 2 * k" ..

' with eq have "2 * n? = 22 * k2" by (auto simp add: power2_eq_square mult_ac)
' hence "n? = 2 * k" by simp

' hence "2 dvd n2" ..

' with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)

' with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)

' with lowest _terms have "2 dvd 1" by simp

' thus False by arith

\qed
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Big Example: The Flyspeck project

+ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

™
V= WiT ~ 74%
- Formal proof finished in 2014
« 20000 lemmas in geometry, analysis, graph theory
« Allofitat https://code.google.com/p/flyspeck/
+ All of it computer-understandable and verified in HOL Light:
*» polyhedron s /\ ¢ face_of s ==> polyhedron c

- However, this took 20 — 30 person-years!
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https://code.google.com/p/flyspeck/

High-level ATP guidance: Premise Selection

« Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

« About 80000 nontrivial math facts at that time — impossible to use them all

+ Is good premise selection for proving a new conjecture possible at all?

« Or is it a mysterious power of mathematicians? (Penrose)

- Today: Premise selection is not a mysterious property of mathematicians!

- Reasonably good algorithms started to appear (more below).

+ Will extensive human (math) knowledge get obsolete?? (cf. Watson)
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Example system: Mizar Proof Advisor (2003)

- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
input features: conjecture symbols; output labels: names of facts

recommend relevant facts when proving new conjectures
First results over the whole Mizar library in 2003:

» about 70% coverage in the first 100 recommended premises
« chain the recommendations with strong ATPs to get full proofs
» about 14% of the Mizar theorems were then automatically provable (SPASS)

Today’s methods: about 45-50% (and we are still just beginning!)
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ML Evaluation of methods on MPTP2078 — recall

« Coverage (recall) of facts needed for the Mizar proof in first n predictions
+ MOR-CG - kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
« SINe, Aprils - heuristic (non-learning) fact selectors
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ATP Evaluation of methods on MPTP2078

« Number of the problems proved by ATP when given n best-ranked facts

« Good machine learning on previous proofs really matters for ATP!
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/\A /\A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?

+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (+ HOL Light and Multivariate), HOL4 — HOL(y)Hammer
+ Mizar / MML — MizAR

~ 45% success rate
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Recent Improvements

« Semantic features encoding term matching

- Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles
(MePo)

« Matching and transfering concepts and theorems between libraries
(Gauthier & Kaliszyk)

- Lemmatization — extracting and considering millions of low-level lemmas
 Neural sequence models, definitional embeddings (Google Research)
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FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(“!s:real”N->bool c. polyhedron s /\ c face_of s ==> polyhedron c?‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC [RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[Yf: (real”N->bool)->bool'; ‘a:(real”N->bool)->real”N?';
‘b: (real”N->bool)->real'] THEN
STRIP_TAC THEN
MP_TAC (ISPECL [‘s:real”N->bool‘; ‘f: (real”N->bool)->bool?;
‘a: (real”N->bool)->real”N'; ‘b: (real”N->bool)->real]
FACE_OF_POLYHEDRON_EXPLICIT) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN (MP_TAC o SPEC ‘c:real”N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real”N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real”N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC [FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC [POLYHEDRON_HYPERPLANE]) ; ;
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FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ ¢ face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX :
Face t of a convex set s is equal to the intersection of s with the affine hull of £.

FACE_OF_STILLCONVEX:

!'s t:real”N->bool. convex s ==>

(t face_of s <=>

t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:

!'s:real”N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!'s t:real”N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
!'s. polyhedron(affine hull s)
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Low-level guidance for tableau:

Machine Learning Connection Prover (MaLeCoP)

» MaLeCoP: put the Al methods inside a tableau ATP

- the learning/deduction feedback loop runs across problems and inside
problems

« The more problems/branches you solve/close, the more solutions you
can learn from

« The more solutions you can learn from, the more problems you solve

« first prototype (2011): very slow learning-based advice (1000 times
slower than inference steps)

- already about 20-time proof search shortening on MPTP Challenge
compared to leanCoP

+ second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
« about 15% improvement over untrained leanCoP on the MPTP problems
- recent research: Monte Carlo Connection Prover
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Low-level guidance for superposition: ENIGMA

« Train a fast classifier (LIBLINEAR) distinguishing good and bad
generated clauses

 Plug it into a superposition prover (E prover) as a clause evaluation
heuristic

« ENIGMA: Efficient learNing-based Inference Guiding MAchine

- input: positive and negative examples (good/bad clauses as feature
vectors)

« output: model (a vector of feature weights)
- evaluation of a clause feature vector: dot product with the model

» Combine it with various ways with more standard (common-sense)
guiding methods

« Very recent work, 86% improvement of the best E tactic on the AIM 2016
CASC benchmark
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Examples of self-evolving metasystems

 Various positive feedback loops
» Machine Learner for Automated Reasoning (MaLARea)
« Blind Strategymaker (BIiStr)
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Machine Learner for Automated Reasoning

Feedback loop interleaving ATP with learning premise selection
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MaLARea

+ MaLARea 0.4 (CASC@Turing) - unordered mode, explore & exploit, etc.

» The more problems you solve (and fail to solve), the more solutions (and
failures) you can learn from

- The more you can learn from, the more you solve
+ In some sense also conjecturing (omiting definitions)
« The CASC@Turing performance curve flat for quite a while:

* http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/
ResultsPlots.html#MRTProblems

« CASC 2013, MaLARea 0.5 (ordered mode, many changes): solved 77%
more problems than the second system

e http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/
DivisionSummaryl.html
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BliStr: Blind Strategymaker

+ Problem: how do we put all the sophisticated ATP techniques together?
» E.g., Is conjecture-based guidance better than proof-trace guidance?

« Grow a population of diverse strategies by iterative local search and
evolution!
+ Dawkins: The Blind Watchmaker
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BliStr: Blind Strategymaker

+ The strategies are like giraffes, the problems are their food

« The better the giraffe specializes for eating problems unsolvable by
others, the more it gets fed and further evolved
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BliStr: Blind Strategymaker

« Use clusters of similar solvable problems to train for unsolved problems

« Interleave low-time training with high-time evaluation

« Thus co-evolve the strategies and their training problems

- In the end, learn which strategy to use on which problem

+ Recently improved by dividing the invention into hierarchies of parameters
- About 25% improvement on unseen problems

 Be lazy, don’t do "hard" theory-driven ATP research (a.k.a: thinking)

« Larry Wall (Programming Perl): "We will encourage you to develop the
three great virtues of a programmer: laziness, impatience, and hubris"
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BliStr on 1000 Mizar@ Turing training problems
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BliStr on 400 Mizar@Turing testing problems

Solved Problems Count
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Learning Informal to Formal Translation

+ Dense Sphere Packings: A Blueprint for Formal Proofs

» 400 theorems and 200 concepts mapped [Hales13]
+ simple wiki
+ Feit-Thompson theorem by Gonthier [Gonthier13]

» Two graduate books
+ Compendium of Continuous Lattices (CCL)

* 60% formalized in Mizar [BancerekRudnicki02]
« high-level concepts and theorems aligned

« ProofWiki with detailed proofs and symbol linking

» General topology corresponence with Mizar
« Similar projects (PlanetMath, ...)
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Aligned Formal and Informal Math - Flyspeck icicurs ime s

[informal [Formal

[Definition of [fan, blade] DSKAGVP (fan) [fan <+ FAN]
[Let (V, E) be a pair consisting of a set V' C R* and a set E of unordered pairs of distinct elements
f V. The pair is said to be a fan if the following properties hold.

1. (CARDINALITY) Vs finite and nonempty. [cardinality > fani]

2. (ORIGIN) O £ V. [origin > fan2]

3. (NONPARALLEL) If {v, w} € E. then v and w are not parallel. [nonparallel > fan6]
4. (INTERSECTION) For all¢,¢” € EU {{v} : v € V}, [intersection ¢ fan7]

Ce)nCE) =

ene).

hen ¢ € E, call C°(&) or C(e) a blade of the fan.

definition’ FAN|

= V,E) <=> ((UNIONS E) SUBSET V) /\ graph(E) /\ fanl(x,V,E) /\ fan2(x,V!
fan6(x,V,E)/\ fan7(x,V,E)"

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial
consequence of the definition.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely
the definition.

ivial consequence of

emma [] CTVTAQA (subset-fan)
If (V, E) is a fan, then for every E' C E, (V, E') is also a fan.
[Proof

This proof is elementary.

lLemma [fan cyclic] XOHLED

E(v) ¢ set_of_edge] Let (V, E) be a fan. For each v € V/, the set

weV : {v,w}eE}

s cyclic with respect to (0, v)

[Proof

Ifw € B(v)

Let CTVTAQA=prove("!(x:real™3) (Vireal"3->bool) (E: (real”3->bool)->bool) (E1:(real”3->bool)->bool)
FAN(x,V,E) /\ E1 SUBSET E

FAN(x,V,E)",

REPEAT GEN TAC
THEN REWRITE_TAC[FAN; fan1; fan2; fan; fan7;graph]
THEN ASM_SET_TAC(]) ;¢

Tet XOHLED=prove("!(x:real®3) (V:ireal*3->bool) (E:(real”3->hool)->bool) (v:real”3).
FAN(X,V,E) /A v IN V

cyclic_set (set_of edge v V E) x v',

MESON_TAC(CYCLIC_SET_EDGE_FAN]) ;;

. then v and w are not parallel. Also, if w # W' € E(v), then

33/38



Statistical Parsing of Informalized HOL

Experiments with the CYK chart parser linked to semantic methods
Training and testing examples exported form Flyspeck formulas

- Along with their informalized versions
« Grammar parse trees

» Annotate each (nonterminal) symbol with its HOL type
« Also “semantic (formal)” nonterminals annotate overloaded terminals
* guiding analogy: word-sense disambiguation using CYK is common

 Terminals exactly compose the textual form, for example:
« REAL_NEGNEG: Vx. — —x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")
(Tyapp "bool"))) (Abs "AO" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "AO" (Tyapp
"real"))))) (Var "AQO" (Tyapp "real")))))

- becomes
("(Type bool)# ! ("({Type (fun real bool))¥ (Abs ("(Type real)’
(var A0)) ("(Type bool)¥ ("(Type real)® real_neg ("(Type real)®
real_neg (" (Type real)® (var A0)))) = ("(Type real)' (var A0))))))
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Online parsing system

e “sin ( 0 * x ) = cos pi / 2"

produces 16 parses
« of which 11 get type-checked by HOL Light as follows

- with all but three being proved by HOL(y)Hammer

sin (&0 * AQ0) = cos (pi / &2) where AQ:real

sin (&0 % AO) = cos pi / &2 where AO:real

sin (&0 x &AQ0) = cos (pi / &2) where AO:num

sin (&0 % &AO) = cos pi / &2 where AOQ:num

sin (&(0 » AO0)) = cos (pi / &2) where AO:num

sin (&(0 » AO0)) = cos pi / &2 where AQ0:num

csin (Cx (&0 x= AQ)) = ccos (Cx (pi / &2)) where AO:real
csin (Cx (&0) % AQ) = ccos (Cx (pi / &2)) where AO:real”2
Cx (sin (&0 %= AQ)) = ccos (Cx (pi / &2)) where AQ0:real
csin (Cx (&0 x= AQ)) = Cx (cos (pi / &2)) where AQ:real
csin (Cx (&0) * AQ0) = Cx (cos (pi / &2)) where AO:real”2
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Results over Flyspeck

« First version (2015): In 39.4% of the 22,000 Flyspeck sentences the
correct (training) HOL parse tree is among the best 20 parses

- its average rank: 9.34
+ Second version (2016): 67.7% success in top 20 and average rank 3.35
» 24% of them AITP provable
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Further Challenges in Al over Large Formal KBs

Refactoring of long ATP proofs for human consumption — 70k-long proof
by Bob Veroff & Prover9, 20k by David Stanovsky & Waldmeister, etc.

- Using strong AI/ATP to help automated disambiguation/understanding of
arXiv, Stacks, everything?

Emulating the layer on which mathematicians think — learning from
natural language proofs and theories, concept and theory invention

 Conjecturing in large theories — several methods possible (recently tried
concept/theory matching)

What will it take to prove Brouwer or Jordan fully automatically?

Geometry: How to find the “magic function” used by Viazovska in solving
sphere packing in dim 8 (and 24)?
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Thanks and Advertisement

« Thanks for your attention!

« AITP: http://aitp-conference.org

+ ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
« Two EU-funded PhD positions on the AI4REASON project

* http://aidreason.org/aidreasonphd.txt

« Good background in logic and programming

- Interest in Al, Automated/Formal Reasoning, Machine Learning or
Computational Linguistics
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