Some ML Tasks in Theorem Proving

Josef Urban

Czech Technical University in Prague

Outline

Demos

Theorem Proving Overview

Motivation, Learning and Reasoning
Formal Math, Theorem Proving, Machine Learning
High-level Reasoning Guidance: Premise Selection and Hammers
Low-level Reasoning Guidance
Combined inductive/deductive metasystems
AI/ATP Assisted Informal to Formal Translation
Further AI Challenges and Connections

Demos

http://grid01.ciirc.cvut.cz/~mptp/out4.ogv http://colo12-c703.uibk.ac.at/hh/parse.html

Theorem Proving Overview

- Propositional - SATisfiability solving:
- DPLL- Davis-Putnam-Logemann-Loveland, CDCL
- basis of many more-involved algorithms, hardware checking, model checking, etc.
- Satisfiability Modulo Theories - SMT
- works like SAT, but simplifies the theory literals whenever possible
- First Order - Automated Theorem Proving (ATP)
- try to infer conjecture C from axioms $A x: A x \vdash C$
- tableaux/resolution/superposition (equational) provers generate inferences, looking for the contradiction (empty clause)
- Interactive Theorem Proving - Formal Verification
- recently a lot of progress and large finished projects - Flyspeck, seL4, CompCert, Feit-Thompson

Blue Sky Al Motivation: Automate Math/Science

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge - both for induction and deduction
- We need to develop such methods on computers
- Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories
- So let's develop strong AI on them!

Why Combine Learning and Reasoning Today?

1 It practically helps!

- Automated theorem proving for large formal verification is useful:
- Formal Proof of the Kepler Conjecture (2014 - Hales - 20k lemmas)
- Formal Proof of the Feit-Thompson Theorem (2012 - Gonthier)
- Verification of compilers (CompCert) and microkernels (seL4)
- ...
- But good learning/Al methods needed to cope with large theories!

2 Blue Sky Al Visions:

- Get strong Al by learning/reasoning over large KBs of human thought?
- Big formal theories: good semantic approximation of such thinking KBs?
- Deep non-contradictory semantics - better than scanning books?
- Gradually try learning math/science:
- What are the components (inductive/deductive thinking)?
- How to combine them together?

The Plan

1 Make large "formal thought" (Mizar/MML, Isabelle/HOL/AFP, HOL/Flyspeck ...) accessible to strong reasoning and learning AI tools DONE (or well under way)
2 Test/Use/Evolve existing AI and ATP tools on such large corpora
3 Build custom/combined inductive/deductive tools/metasystems
4 Continuously test performance, define harder AI tasks as the performance grows

Freek Wiedijk's Example: Irrationality of 2 (informal text)

tiny proof from Hardy \& Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$
\begin{equation*}
a^{2}=2 b^{2} \tag{4.3.1}
\end{equation*}
$$

is soluble in integers a, b with $(a, b)=1$. Hence a^{2} is even, and therefore a is even. If $a=2 c$, then $4 c^{2}=2 b^{2}, 2 c^{2}=b^{2}$, and b is also even, contrary to the hypothesis that $(a, b)=1$.

Irrationality of 2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

```
theorem Th43: :: Pythagoras' theorem
    sqrt 2 is irrational
proof
    assume sqrt 2 is rational;
    consider a,b such that
4_3_1: a^^2 = 2* b^^2 and
        a,b are relative prime;
    a^2 is even;
    a is even;
    consider c such that a = 2*c;
    4*\mp@subsup{c}{}{\wedge}2=2*b^
    2*\mp@subsup{c}{}{\wedge}2= b^^2;
    b is even;
    thus contradiction;
end;
```


Irrationality of 2 in HOL Light

```
let SQRT_2_IRRATIONAL = prove
    ('~rational(sqrt (&2))',
    SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
    REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
    DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
    SUBGOAL_THEN '~((&p / &q) pow 2 = sqrt (&2) pow 2)'
        (fun th -> MESON_TAC[th]) THEN
    SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
    ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
                            ARITH_RULE ` 0 < q <=> ~ (q = 0) `] THEN
    ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]); ;
```


Irrationality of 2 in Coq

```
Theorem irrational_sqrt_2: irrational (sqrt 2%nat).
intros p q H HO; case H.
apply (main_thm (Zabs_nat p)).
replace (Div2.double (q * q)) with (2 * (q * q));
    [idtac | unfold Div2.double; ring].
case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (q * q))); auto; intros H1.
case (not_nm_INR _ _ H1); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.
rewrite H0; auto with real.
assert (q <> 0%R :> R); auto with real.
field; auto with real; case p; simpl; intros; ring.
Qed.
```


Irrationality of 2 in Isabelle/HOL

```
'theorem sqrt2_not_rational:
    "sqrt (real 2) &\mathbb{Q"}
proof
    assume "sqrt (real 2) \in \mathbb{Q"}
    then obtain m n :: nat where
        n_nonzero: "n \not= 0" and sqrt_rat: "|sqrt (real 2)| = real m / real n"
        and lowest_terms: "gcd m n = 1" ..
    from n_nonze\overline{ro and sqrt_rat have "real m = {sqrt (real 2)| * real n" by simp}
    then hāve "real (m}\mp@subsup{|}{}{2})=\mathrm{ (sqrt (real 2))2 * real (n2)"
        by (auto simp add: power2_eq_square)
    also have "(sqrt (real 2))2- = real 2" by simp
    also have "... * real (m2) = real (2 * n2)" by simp
    finally have eq: "m2 = 2 * n'" ..
    hence "2 dvd m"" ..
    with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
    then obtain k where "m = 2-* k" ..
    with eq have "2 * n' = 22 * k "" by (auto simp add: power2_eq_square mult_ac)
    hence "n}\mp@subsup{n}{}{2}=2* k2" by sim
    hence "2 dvd n2" ..
    with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
    with dvd_m have "2 dvd gcd m n" by (rule gcd_grēatest)
    with lowest_terms have "2 dvd 1" by simp
    thus False by arith
;qed
```


Big Example: The Flyspeck project

- Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

$$
V=\frac{\pi}{\sqrt{18}} \approx 74 \%
$$

- Formal proof finished in 2014
- 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- All of it computer-understandable and verified in HOL Light:
- polyhedron s / c face_of s ==> polyhedron c
- However, this took $20-30$ person-years!

High-level ATP guidance: Premise Selection

- Early 2003: Can existing ATPs be used over the freshly translated Mizar library?
- About 80000 nontrivial math facts at that time - impossible to use them all
- Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose)
- Today: Premise selection is not a mysterious property of mathematicians!
- Reasonably good algorithms started to appear (more below).
- Will extensive human (math) knowledge get obsolete?? (cf. Watson)

Example system: Mizar Proof Advisor (2003)

- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
- input features: conjecture symbols; output labels: names of facts
- recommend relevant facts when proving new conjectures
- First results over the whole Mizar library in 2003:
- about 70% coverage in the first 100 recommended premises
- chain the recommendations with strong ATPs to get full proofs
- about 14% of the Mizar theorems were then automatically provable (SPASS)
- Today's methods: about 45-50\% (and we are still just beginning!)

ML Evaluation of methods on MPTP2078 - recall

- Coverage (recall) of facts needed for the Mizar proof in first n predictions
- MOR-CG - kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
- SINe, Aprils - heuristic (non-learning) fact selectors

ATP Evaluation of methods on MPTP2078

- Number of the problems proved by ATP when given n best-ranked facts
- Good machine learning on previous proofs really matters for ATP!

Today's AI-ATP systems (\star-Hammers)

- Isabelle (Auth, Jinja) - Sledgehammer
- Flyspeck (+ HOL Light and Multivariate), HOL4 - HOL(y)Hammer
- Mizar / MML - MizAR
$\approx 45 \%$ success rate

Recent Improvements

- Semantic features encoding term matching
- Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles (MePo)
- Matching and transfering concepts and theorems between libraries (Gauthier \& Kaliszyk)
- Lemmatization - extracting and considering millions of low-level lemmas
- Neural sequence models, definitional embeddings (Google Research)

FACE_OF_POLYHEDRON_POLYHEDRON

```
let FACE_OF_POLYHEDRON_POLYHEDRON = prove
    ('!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c',
    REPEAT STRIP_TAC THEN FIRST_ASSUM
        (MP_TAC O GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
    REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
    SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
    MAP_EVERY X_GEN_TAC
        [`f:(real^N->bool)->bool`; `a:(real^N->bool)->real^N`;
            `b:(real^N->bool) ->real`] THEN
    STRIP_TAC THEN
    MP_TAC(ISPECL [`s:real^N->bool`; `f:(real^N->bool) ->bool`;
                            `a:(real^N->bool)->real^N`; `b:(real^N->bool)->real`]
            FACE_OF_POLYHEDRON_EXPLICIT) THEN
    ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
    DISCH_THEN(MP_TAC O SPEC `C:real^N->bool`) THEN ASM_REWRITE_TAC[] THEN
    ASM_CASES_TAC `C:real^N->bool = {}' THEN
    ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
    ASM_CASES_TAC `c:real^N->bool = s` THEN ASM_REWRITE_TAC[] THEN
    DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
    REWRITE_TAC[FORALL_IN_GSPEC] THEN
    ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
    ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
    REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
    MATCH_MP_TAC POLYHEDRON_INTER THEN
    ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]); ;
```


FACE_OF_POLYHEDRON_POLYHEDRON

$$
\text { polyhedron } s / \backslash c \text { face_of } s==>\text { polyhedron } c
$$

HOL Light proof: could not be re-played by ATPs.
Alternative proof found by a hammer based on FACE_OF_STILLCONVEX: Face t of a convex set s is equal to the intersection of s with the affine hull of t.

```
FACE_OF_STILLCONVEX:
    !s t:real^N->bool. convex s ==>
    (t face_of s <=>
    t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:
    !s:real^N->bool. polyhedron s ==> convex s
POLYHEDRON_INTER:
    !s t:real^N->bool. polyhedron s /\ polyhedron t
        ==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
    !s. polyhedron(affine hull s)
```


Low-level guidance for tableau: Machine Learning Connection Prover (MaLeCoP)

- MaLeCoP: put the AI methods inside a tableau ATP
- the learning/deduction feedback loop runs across problems and inside problems
- The more problems/branches you solve/close, the more solutions you can learn from
- The more solutions you can learn from, the more problems you solve
- first prototype (2011): very slow learning-based advice (1000 times slower than inference steps)
- already about 20-time proof search shortening on MPTP Challenge compared to leanCoP
- second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
- about 15\% improvement over untrained leanCoP on the MPTP problems
- recent research: Monte Carlo Connection Prover

Low-level guidance for superposition: ENIGMA

- Train a fast classifier (LIBLINEAR) distinguishing good and bad generated clauses
- Plug it into a superposition prover (E prover) as a clause evaluation heuristic
- ENIGMA: Efficient learNing-based Inference Guiding MAchine
- input: positive and negative examples (good/bad clauses as feature vectors)
- output: model (a vector of feature weights)
- evaluation of a clause feature vector: dot product with the model
- Combine it with various ways with more standard (common-sense) guiding methods
- Very recent work, 86\% improvement of the best E tactic on the AIM 2016 CASC benchmark

Examples of self-evolving metasystems

- Various positive feedback loops
- Machine Learner for Automated Reasoning (MaLARea)
- Blind Strategymaker (BliStr)

Machine Learner for Automated Reasoning

Feedback loop interleaving ATP with learning premise selection

MaLARea

- MaLARea 0.4 (CASC@Turing) - unordered mode, explore \& exploit, etc.
- The more problems you solve (and fail to solve), the more solutions (and failures) you can learn from
- The more you can learn from, the more you solve
- In some sense also conjecturing (omiting definitions)
- The CASC@Turing performance curve flat for quite a while:
-http://www.cs.miami.edu/~tptp/CASC/J6/TuringWWWFiles/ ResultsPlots.html\#MRTProblems
- CASC 2013, MaLARea 0.5 (ordered mode, many changes): solved 77\% more problems than the second system
-http://www.cs.miami.edu/~tptp/CASC/24/WWWFiles/ DivisionSummary1.html

BliStr: Blind Strategymaker

- Problem: how do we put all the sophisticated ATP techniques together?
- E.g., Is conjecture-based guidance better than proof-trace guidance?
- Grow a population of diverse strategies by iterative local search and evolution!
- Dawkins: The Blind Watchmaker

BliStr: Blind Strategymaker

- The strategies are like giraffes, the problems are their food
- The better the giraffe specializes for eating problems unsolvable by others, the more it gets fed and further evolved

BliStr: Blind Strategymaker

- Use clusters of similar solvable problems to train for unsolved problems
- Interleave low-time training with high-time evaluation
- Thus co-evolve the strategies and their training problems
- In the end, learn which strategy to use on which problem
- Recently improved by dividing the invention into hierarchies of parameters
- About 25\% improvement on unseen problems
- Be lazy, don't do "hard" theory-driven ATP research (a.k.a: thinking)
- Larry Wall (Programming Perl): "We will encourage you to develop the three great virtues of a programmer: laziness, impatience, and hubris"

BliStr on 1000 Mizar@Turing training problems

BliStr on 400 Mizar@Turing testing problems

Learning Informal to Formal Translation

- Dense Sphere Packings: A Blueprint for Formal Proofs
- 400 theorems and 200 concepts mapped
- simple wiki
- Feit-Thompson theorem by Gonthier
- Two graduate books
- Compendium of Continuous Lattices (CCL)
- 60% formalized in Mizar
- high-level concepts and theorems aligned
- ProofWiki with detailed proofs and symbol linking
- General topology corresponence with Mizar
- Similar projects (PlanetMath, ...)

Aligned Formal and Informal Math - Flyspeck [сісмя, грүчя]

Informal Forma

Definition of [fan, blade] DSKAGVP (fan) [fan \leftrightarrow FAN]

Let (V, E) be a pair consisting of a set $V \subset \mathbb{R}^{3}$ and a set E of unordered pairs of distinct elements of V. The pair is said to be a fan if the following properties hold.

1. (CARDINALITY) V is finite and nonempty. [cardinality \leftrightarrow fan1]
2. (ORIGIN) $\mathbf{0} \notin V$. [origin \leftrightarrow fan2]
3. (NONPARALLEL) If $\{\mathbf{v}, \mathbf{w}\} \in E$, then \mathbf{v} and \mathbf{w} are not parallel. [nonparallel \leftrightarrow fan6]
4. (INTERSECTION) For all $\varepsilon, \varepsilon^{\prime} \in E \cup\{\{\mathbf{v}\}: \mathbf{v} \in V\}$, [intersection \leftrightarrow fan7]

$$
C(\varepsilon) \cap C\left(\varepsilon^{\prime}\right)=C\left(\varepsilon \cap \varepsilon^{\prime}\right)
$$

When $\varepsilon \in E$, call $C^{0}(\varepsilon)$ or $C(\varepsilon)$ a blade of the fan.

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.

Lnformal Forma

Lemma [CTVTAQA (subset-fan)
If (V, E) is a fan, then for every $E^{\prime} \subset E,\left(V, E^{\prime}\right)$ is also a fan.
Proof
This proof is elementary.
Informan Formal
Lemma [fan cyclic] XOHLED
E(v) \rightarrow set_of_edge] Let (V, E) be a fan. For each $\mathbf{v} \in V$, the set
is cyclic with respect to $(\mathbf{0}, \mathbf{v})$. $\quad E(\mathbf{v})=\{\mathbf{w} \in V:\{\mathbf{v}, \mathbf{w}\} \in E\}$
Proof
If $\mathbf{w} \in E(\mathbf{v})$, then \mathbf{v} and \mathbf{w} are not parallel. Also, if $\mathbf{w} \neq \mathbf{w} \in E(\mathbf{v})$, then

Informal Formal

\#DSKAGVP?

 $\operatorname{fan6}(x, V, E) / \backslash \tan 7(X, V, E)$; ;

basic properties

The rest of the chapter develops the properties of fans. We begin with a completely trivial consequence of the definition.
Informal Formal

Statistical Parsing of Informalized HOL

- Experiments with the CYK chart parser linked to semantic methods
- Training and testing examples exported form Flyspeck formulas
- Along with their informalized versions
- Grammar parse trees
- Annotate each (nonterminal) symbol with its HOL type
- Also "semantic (formal)" nonterminals annotate overloaded terminals
- guiding analogy: word-sense disambiguation using CYK is common
- Terminals exactly compose the textual form, for example:
- REAL_NEGNEG: $\forall x .--x=x$

```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))
```

- becomes

```
(""̈Type bool).i ! ("\ddot{̈Type (fun real bool)) ii (Abs ("\ddot{̈Type real) ii}}\mathbf{|}\mathrm{ (Ty.}
(Var A0)) (""̈Type bool)" (""̈Type real)" real_neg (""Type real)"
real_neg ("\ddot{(Type real)" (Var AO)))) = ("(Type real)i}(\operatorname{Var A0))))))}
```


Online parsing system

- "sin (0 * x) = cos pi / 2"
- produces 16 parses
- of which 11 get type-checked by HOL Light as follows
- with all but three being proved by $\mathrm{HOL}(y) \mathrm{Hammer}$

```
sin (&0 * AO) = cos (pi / &2) where A0:real
sin (&0 * AO) = cos pi / &2 where A0:real
sin (&0 * &AO) = cos (pi / &2) where A0:num
sin (&0 * &AO) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * AO)) = cos pi / &2 where A0:num
Csin (Cx (&O * AO)) = Ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&0) * A0) = coos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * AO)) = ccos (Cx (pi / &2)) where A0:real
Csin (Cx (&0 * AO)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2
```


Results over Flyspeck

- First version (2015): In 39.4% of the 22,000 Flyspeck sentences the correct (training) HOL parse tree is among the best 20 parses
- its average rank: 9.34
- Second version (2016): 67.7\% success in top 20 and average rank 3.35
- 24% of them AITP provable

Further Challenges in AI over Large Formal KBs

- Refactoring of long ATP proofs for human consumption - 70k-long proof by Bob Veroff \& Prover9, 20k by David Stanovsky \& Waldmeister, etc.
- Using strong AI/ATP to help automated disambiguation/understanding of arXiv, Stacks, everything?
- Emulating the layer on which mathematicians think - learning from natural language proofs and theories, concept and theory invention
- Conjecturing in large theories - several methods possible (recently tried concept/theory matching)
- What will it take to prove Brouwer or Jordan fully automatically?
- Geometry: How to find the "magic function" used by Viazovska in solving sphere packing in dim 8 (and 24)?

Thanks and Advertisement

- Thanks for your attention!
- AITP: http://aitp-conference.org
- ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
- Two EU-funded PhD positions on the AI4REASON project
- http://ai4reason.org/ai4reasonphd.txt
- Good background in logic and programming
- Interest in AI, Automated/Formal Reasoning, Machine Learning or Computational Linguistics

