
BEYOND DEDUCTION

Josef Urban

Czech Technical University in Prague

1 / 32

Stephan at AITP’16

Deduction and Induction
A Match Made in Heaven

Stephan Schulz
The

Inference
Engine

Machine
Learning

or a Deal with the Devil?

2 / 32

Questions

� Where/how is machine learning useful in reasoning?
� How do we make it more useful and expand to more tasks?

3 / 32

Induction/Learning vs Reasoning – Henri Poincaré

� Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

� “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

� I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

4 / 32

Alan Turing 1950

“For at each stage when one is using a logical system, there is a very large
number of alternative steps, any of which one is permitted to apply, so far as
obedience to the rules of the logical system is concerned. These choices
make the difference between a brilliant and a footling reasoner, not the
difference between a sound and a fallacious one.”
Computing machinery and intelligence

5 / 32

AI vs Early Logic-based ATP (Stephanie Dick)
� AI practitioners did not recognize Resolution as a step towards their

goals. Reflecting on the history of their field, Argonne practitioners wrote:
� “When [our colleague] submitted a lovely paper on qualified

hyperresolution to one of the main AI journals, a senior editor did not
even send it out for refereeing; he just returned a short note stating, “the
JACM [Journal of the Association of Computing Machinery] is still
publishing such papers, although I don’t know why.” This last phrase
symbolized the broader AI community in our eyes. Like perceptrons,
formal logic had [. . .] been evaluated and found lacking. Artificial
Intelligence sought to make computers like people. Automated
Reasoning sought to find problem-solving paths that would be
inaccessible to humans, to open up reasoning and logic themselves, to
untether them from the laws of human thought.”

� Part of the criticism from AI, and others, concerned the fact that
Resolution and tools like it, took mathematical proof further and further
from human view, displacing the indubitable clarity and understanding
that earlier logical systems had tried to provide.

6 / 32

Larry Wos

7 / 32

Larry Wos

8 / 32

Low-level ATP guidance: Prover9 hints

� The Prover9 community (ADAM workshop): non-associative algebra,
20-50k long proofs by Prover9 and Waldmeister

� Prover9 hints strategy (Bob Veroff): extract hints from easier proofs to
guide more difficult proofs

� To get good hints Bob wants as little conjecture-based inferences as
possible:

� Get an “essentially forward proof” by various Prover9 setting
� Exploration to get good hints (not really automated yet)

9 / 32

P9 Example

list(given_selection).

% high

part(Hha,high,hint_age,hint & weight < 500 & hint_age < 200000)
= 500.

part(Hw, high, weight, hint & weight < 500) = 25.
part(Ha, high, age, hint & weight < 500) = 5.
part(Hr, high, random, hint & weight < 500) = 5.

% -false instead of true in case no truth value
part(Wf, low, weight, false) = 1.
part(Wnf, low, weight, -false) = 100.

% just in case something isn’t covered
part(TheRest, low, weight, all) = 1.

end_of_list.

10 / 32

High-level ATP guidance: Premise Selection

� Can existing ATPs be used over large math libraries?
� Is good premise selection for proving a new conjecture possible at all?
� Or is it a mysterious power of mathematicians? (Penrose, intuition?)
� Or should we use some complete exhaustive human-designed

algorithms?
� Today: Premise selection is not a mysterious property of mathematicians!
� Complete human-engineering is inferior to learning from a large corpus of

proofs

11 / 32

Example system: Mizar Proof Advisor (2003)

� train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
� input features: conjecture symbols; output labels: names of facts
� recommend relevant facts when proving new conjectures
� First results over the whole Mizar library in 2003:

� about 70% coverage in the first 100 recommended premises
� chain the recommendations with strong ATPs to get full proofs
� about 14% of the Mizar theorems were then automatically provable (SPASS)

� Today’s methods: about 45-50%
� My bet: at least 80% in 20 years
� http://ai4reason.org/aichallenges.html

12 / 32

http://ai4reason.org/aichallenges.html

ML Evaluation of methods on MPTP2078 – recall

� Coverage (recall) of facts needed for the Mizar proof in first n predictions
� MOR-CG – kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
� SINe, Aprils - heuristic (non-learning) fact selectors

13 / 32

ATP Evaluation of methods on MPTP2078

� Number of the problems proved by ATP when given n best-ranked facts
� Good machine learning on previous proofs really matters for ATP!

14 / 32

Recent Improvements and Additions

� Semantic features encoding term matching/unification [IJCAI’15]
� Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles

(MePo)
� Matching and transfering concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
� Lemmatization – extracting and considering millions of low-level lemmas
� First useful CoqHammer (Czajka & Kaliszyk 2016), 40%–50%

reconstruction/ATP success on the Coq standard library
� Neural sequence models, definitional embeddings (Google Research)
� Hammers combined with statistical tactical search: TacticToe (HOL4)

15 / 32

Summary of Features Used

� From syntactic to more semantic:
� Constant and function symbols
� Walks in the term graph
� Walks in clauses with polarity and variables/skolems unified
� Subterms, de Bruijn normalized
� Subterms, all variables unified
� Matching terms, no generalizations
� terms and (some of) their generalizations
� Substitution tree nodes
� All unifying terms
� Evaluation in a large set of (finite) models
� LSI/PCA combinations of above
� Neural embeddings of above

16 / 32

Feature Statistics

� MPTP2078 and MML1147 – 4.5k and 150k formulas

Method Speed (sec) Number of features Learning and prediction (sec)
MPTP2078 MML1147 total unique knn naive Bayes

SYM 0.25 10.52 30996 2603 0.96 11.80
TRM� 0.11 12.04 42685 10633 0.96 24.55
TRM0 0.13 13.31 35446 6621 1.01 16.70
MAT∅ 0.71 38.45 57565 7334 1.49 24.06
MATr 1.09 71.21 78594 20455 1.51 39.01
MATl 1.22 113.19 75868 17592 1.50 37.47
MAT1 1.16 98.32 82052 23635 1.55 41.13
MAT2 5.32 4035.34 158936 80053 1.65 96.41
MAT[6.31 4062.83 180825 95178 1.71 112.66

PAT 0.34 64.65 118838 16226 2.19 52.56
ABS 11 10800 56691 6360 1.67 23.40
UNI 25 N/A 1543161 6462 21.33 516.24

17 / 32

Low-level guidance for tableau:
Machine Learning Connection Prover (MaLeCoP)

� MaLeCoP: put the AI methods inside a tableau ATP (J. Otten - leanCoP)
� the learning/deduction feedback loop runs across problems and inside

problems
� The more problems/branches you solve/close, the more solutions you

can learn from
� The more solutions you can learn from, the more problems you solve
� first prototype (2011): very slow learning-based advice (1000 times

slower than inference steps)
� already about 20-time proof search shortening on MPTP Challenge

compared to leanCoP
� second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
� about 15% improvement over untrained leanCoP on the MPTP problems
� Recently Monte Carlo search (M. Faerber: MonteCop)
� Reinforcement learning (in progress)

18 / 32

Low-level guidance for superposition: ENIGMA

� Train a fast classifier (LIBLINEAR) distinguishing good and bad
generated clauses

� Plug it into a superposition prover (E prover) as a clause evaluation
heuristic

� ENIGMA: Efficient learNing-based Inference Guiding MAchine
� input: positive and negative examples (good/bad clauses as feature

vectors)
� output: model (a vector of feature weights)
� evaluation of a clause feature vector: dot product with the model
� Combine it with various ways with more standard (common-sense)

guiding methods
� Very recent work, 86% improvement of the best E tactic on the AIM 2016

CASC benchmark
� About 90% precision in predicting good/bad clauses
� Similar work using (much slower) neural guidance by Google (70-80%

precision)
19 / 32

Other guidance for ATPs

� Knowledge base of abstracted lemmas from previous proofs in E
(drawing analogies between different theories)

� nearest-neighbor guidance: ConjectureRelativeSymbolWeight in E
� further symbol weighting based on axiom relevance in E
� semantic (model-based) guidance: Prover9
� Waldmeister: theory recognition, optimization of term orderings, etc.
� Our recent work: search for good term orderings in Vampire
� Ongoing work for iProver, SMTs: do not enumerate instances but try the

most probable ones

20 / 32

Large-theory Lemmatization and Conjecturing

� Over 1B low-level lemmas in Flyspeck
� 1.5M-7M higher-level lemmas in MML and Flyspeck
� Define fast preprocessing methods to extract the most important ones:
� PageRank, recursive dependency count, recursive use count, etc.
� Use the most important lemmas together with the toplevel theorems -

helps by 5-20% (needs more evaluations)
� Conjecturing: guessing the intermediate lemmas in longer proofs
� Currently by learning statistical theory analogies and using probabilistic

grammars

21 / 32

BliStr: Blind Strategymaker

� Problem: how do we put all the sophisticated ATP techniques together?
� E.g., Is conjecture-based guidance better than proof-trace guidance?
� Grow a population of diverse strategies by iterative local search and

evolution!
� Dawkins: The Blind Watchmaker

22 / 32

BliStr: Blind Strategymaker

� The strategies are like giraffes, the problems are their food
� The better the giraffe specializes for eating problems unsolvable by

others, the more it gets fed and further evolved

23 / 32

BliStr: Blind Strategymaker

� Use clusters of similar solvable problems to train for unsolved problems
� Interleave low-time training with high-time evaluation
� Thus co-evolve the strategies and their training problems
� In the end, learn which strategy to use on which problem
� Recent improvements: BliStrTune – hierarchical approach
� Combine search for low-level and high-level parameters in a loop
� Include multiple ENIGMA models

24 / 32

The E strategy with longest specification in Jan 2012

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

--definitional-cnf=24 --simplify-with-unprocessed-units --tstp-in
--split-aggressive --split-clauses=4 --split-reuse-defs
--simul-paramod --forward-context-sr --destructive-er-aggressive
--destructive-er --prefer-initial-clauses -winvfreqrank -c1 -Ginvfreq
-F1 --delete-bad-limit=150000000 -WSelectMaxLComplexAvoidPosPred
-H’(
4 * ConjectureGeneralSymbolWeight(

SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),
3 * ConjectureGeneralSymbolWeight(

PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),
1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed))’
-s --print-statistics --print-pid --resources-info --memory-limit=192

25 / 32

Its clause evaluation heuristic

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

4 * ConjectureGeneralSymbolWeight(
SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),

3 * ConjectureGeneralSymbolWeight(
PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),

1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed)

26 / 32

The E strategy with longest specification in May 2014

atpstr_my_c7bb78cc4c665670e6b866a847165cb4bf997f8a:

6 * ConjectureGeneralSymbolWeight(PreferNonGoals,100,100,100,50,50,1000,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,50,50,1.5,1.5,1)
4 * ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
10 * ConjectureRelativeSymbolWeight(PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 * ConjectureSymbolWeight(ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 * Clauseweight(ByCreationDate,2,1,0.8)
1 * Clauseweight(ConstPrio,3,1,1)
6 * Clauseweight(ConstPrio,1,1,1)
2 * Clauseweight(PreferProcessed,1,1,1)
6 * FIFOWeight(ByNegLitDist)
1 * FIFOWeight(ConstPrio)
2 * FIFOWeight(SimulateSOS)
8 * OrientLMaxWeight(ConstPrio,2,1,2,1,1)
2 * PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5)
10 * RelevanceLevelWeight(ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)
8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
2 * RelevanceLevelWeight2(PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
6 * RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,1.5,1)
8 * RelevanceLevelWeight2(SimulateSOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
5 * rweight21_g
3 * Refinedweight(PreferNonGoals,1,1,2,1.5,1.5)
1 * Refinedweight(PreferNonGoals,2,1,2,2,2)
2 * Refinedweight(PreferNonGoals,2,1,2,3,0.8)
8 * Refinedweight(PreferGoals,1,2,2,1,0.8)
10 * Refinedweight(PreferGroundGoals,2,1,2,1.0,1)
20 * Refinedweight(SimulateSOS,1,1,2,1.5,2)
1 * Refinedweight(SimulateSOS,3,2,2,1.5,2)

27 / 32

BliStr on 1000 Mizar@Turing training problems

 560

 580

 600

 620

 640

 660

 680

 700

 720

 1 2 4 8 16 32 64 128

T
ot

al
 S

ol
ve

d
P

ro
bl

em
s

Iterations

BliStrTune (new weights)
BliStrTune (old weights)

BliStr

28 / 32

BliStr on 400 Mizar@Turing testing problems

 160

 180

 200

 220

 240

 260

 280

 1 2 4 8 16 32 64

S
ol

ve
d

P
ro

bl
em

s
C

ou
nt

Time [s]

E 1.9 (BliStrTune)
Vampire 4.0

E 1.9 (auto-schedule)

29 / 32

Statistical/Semantic Parsing of Informalized HOL

� Goal: Learn understanding of informal math formulas and reasoning
� Experiments with the CYK chart parser linked to semantic methods
� Training and testing examples exported form Flyspeck formulas

� Along with their informalized versions
� Grammar parse trees

� Annotate each (nonterminal) symbol with its HOL type
� Also “semantic (formal)” nonterminals annotate overloaded terminals
� guiding analogy: word-sense disambiguation using CYK is common

� Terminals exactly compose the textual form, for example:
� REAL_NEGNEG: 8x :��x = x

(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool"))
(Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Comb (Const "=" (Tyapp "fun"
(Tyapp "real") (Tyapp "fun" (Tyapp "real") (Tyapp "bool")))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const
"real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp
"real"))))) (Var "A0" (Tyapp "real")))))

� becomes
("(̈Type bool)"̈ ! ("(̈Type (fun real bool))"̈ (Abs ("(̈Type real)"̈
(Var A0)) ("(̈Type bool)"̈ ("(̈Type real)"̈ real_neg ("(̈Type real)"̈
real_neg ("(̈Type real)"̈ (Var A0)))) = ("(̈Type real)"̈ (Var A0))))))

30 / 32

Example grammars

Comb

Const Abs

! Tyapp

fun Tyapp Tyapp

fun Tyapp Tyapp

real bool

bool

A0 Tyapp Comb

real Comb Var

Const Comb

= Tyapp

fun Tyapp Tyapp

real fun Tyapp Tyapp

real bool

Const Comb

real_neg Tyapp

fun Tyapp Tyapp

real real

Const Var

real_neg Tyapp

fun Tyapp Tyapp

real real

A0 Tyapp

real

A0 Tyapp

real

"(Type bool)"

! "(Type (fun real bool))"

Abs

"(Type real)" "(Type bool)"

Var

A0

"(Type real)" = "(Type real)"

real_neg "(Type real)"

real_neg "(Type real)"

Var

A0

Var

A0

31 / 32

CYK Learning and Parsing

� Induce PCFG (probabilistic context-free grammar) from the trees
� Grammar rules obtained from the inner nodes of each grammar tree
� Probabilities are computed from the frequencies

� The PCFG grammar is binarized for efficiency
� New nonterminals as shortcuts for multiple nonterminals

� CYK: dynamic-programming algorithm for parsing ambiguous sentences
� input: sentence – a sequence of words and a binarized PCFG
� output: N most probable parse trees

� Additional semantic pruning
� Compatible types for free variables in subtrees

� Allow small probability for each symbol to be a variable
� Top parse trees are de-binarized to the original CFG

� Transformed to HOL parse trees (preterms, Hindley-Milner)

32 / 32

Online parsing system

� “sin (0 * x) = cos pi / 2”

� produces 16 parses
� of which 11 get type-checked by HOL Light as follows
� with all but three being proved by HOL(y)Hammer

sin (&0 * A0) = cos (pi / &2) where A0:real
sin (&0 * A0) = cos pi / &2 where A0:real
sin (&0 * &A0) = cos (pi / &2) where A0:num
sin (&0 * &A0) = cos pi / &2 where A0:num
sin (&(0 * A0)) = cos (pi / &2) where A0:num
sin (&(0 * A0)) = cos pi / &2 where A0:num
csin (Cx (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0) * A0) = ccos (Cx (pi / &2)) where A0:real^2
Cx (sin (&0 * A0)) = ccos (Cx (pi / &2)) where A0:real
csin (Cx (&0 * A0)) = Cx (cos (pi / &2)) where A0:real
csin (Cx (&0) * A0) = Cx (cos (pi / &2)) where A0:real^2

33 / 32

Results over Flyspeck

� First version (2015): In 39.4% of the 22,000 Flyspeck sentences the
correct (training) HOL parse tree is among the best 20 parses

� its average rank: 9.34
� Second version (2016): 67.7% success in top 20 and average rank 3.35
� 24% of them AITP provable
� Probabilistic conjecturing as a by-product

34 / 32

Thanks

� Thanks for your attention!
� If interested, come to AITP: http://aitp-conference.org
� ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists

35 / 32

http://aitp-conference.org

	High-level Reasoning Guidance: Premise Selection
	Statistics

	Low-level Reasoning Guidance – leanCoP

