LEARNING-BASED STATISTICAL AND SYMBOLIC GUIDANCE IN THEOREM PROVING

Josef Urban

Czech Technical University in Prague

Established by the European Commission

Intro - Stephan Schulz at AITP'16

Deduction and Induction

Intro - Stephan Schulz at AITP'16

Big Example: The Flyspeck project

• Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

- · Formal proof finished in 2014
- · 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- · All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!
- Our automation can now do about 45% of the lemmas

Intro - Stephan Schulz at AITP'16

Contradiction and Saturation

- Proof by contradiction
 - Assume negation of conjecture
 - Show that axioms and negated conjecture imply falsity
- Saturation
 - ▶ Convert problem to Clause Normal Form
 - Systematically enumerate logical consequences of axioms and negated conjecture
 - Goal: Explicit contradiction (empty clause)
- ► Redundancy elimination
 - Use contracting inferences to simplify or eliminate some clauses

Search control problem: How and in which order do we enumerate consequences?

Intro - Stephan Schulz at AITP'16

The Given-Clause Algorithm

- Aim: Move everything from U to P
- Invariant: All generating inferences with premises from *P* have been performed
- Invariant: P is interreduced
- Clauses added to U are simplified with respect to P

7

Low-level ATP guidance: Prover9 hints

- The Prover9 community (ADAM workshop): non-associative algebra, 20-50k long proofs by Prover9 and Waldmeister
- Prover9 hints strategy (Bob Veroff): extract hints from easier proofs to guide more difficult proofs
- To get good hints Bob wants as little conjecture-based inferences as possible:
- · Get an "essentially forward proof" by various Prover9 setting
- Exploration to get good hints (not really automated yet)
- · Our recent work: use machine learning to select good hints for a problem

P9 Example (Bob Veroff)

list(given_selection).

% high

part(Hha,high,hint_age,hint & weight < 500 & hint_age < 200000) = 500.

part(Hw, high, weight, hint & weight < 500) = 25. part(Ha, high, age, hint & weight < 500) = 5. part(Hr, high, random, hint & weight < 500) = 5.</pre>

% -false instead of true in case no truth value part(Wf, low, weight, false) = 1. part(Wnf, low, weight, -false) = 100.

% just in case something isn't covered part(TheRest, low, weight, all) = 1.

end_of_list.

High-level ATP guidance: Premise Selection

- · Can existing ATPs be used over large math libraries?
- · Is good premise selection for proving a new conjecture possible at all?
- Or is it a mysterious power of mathematicians? (Penrose, intuition?)
- Or should we use some complete exhaustive human-designed algorithms?
- Today: Premise selection is not a mysterious property of mathematicians!
- Complete human-engineering is inferior to learning from a large corpus of proofs

Example system: Mizar Proof Advisor (2003)

- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
- · input features: conjecture symbols; output labels: names of facts
- · recommend relevant facts when proving new conjectures
- · First results over the whole Mizar library in 2003:
 - · about 70% coverage in the first 100 recommended premises
 - · chain the recommendations with strong ATPs to get full proofs
 - about 14% of the Mizar theorems were then automatically provable (SPASS)
- Today's methods: about 45-50%
- My bet: at least 80% in 20 years
- http://ai4reason.org/aichallenges.html

ML Evaluation of methods on MPTP2078 - recall

- Coverage (recall) of facts needed for the Mizar proof in first n predictions
- · MOR-CG kernel-based, SNoW naive Bayes, BiLi bilinear ranker
- · SINe, Aprils heuristic (non-learning) fact selectors

ATP Evaluation of methods on MPTP2078

- Number of the problems proved by ATP when given n best-ranked facts
- · Good machine learning on previous proofs really matters for ATP!

Recent Improvements and Additions

- · Semantic features encoding term matching/unification [IJCAI'15]
- Distance-weighted k-nearest neighbor, TF-IDF, LSI, better ensembles (MePo)
- Matching and transfering concepts and theorems between libraries (Gauthier & Kaliszyk) allows "superhammers", conjecturing, and more
- · Lemmatization extracting and considering millions of low-level lemmas
- First useful CoqHammer (Czajka & Kaliszyk 2016), 40%–50% reconstruction/ATP success on the Coq standard library
- · Neural sequence models, definitional embeddings (Google Research)
- Hammers combined with statistical tactical search: TacticToe (HOL4)

Summary of Features Used

- From syntactic to more semantic:
- · Constant and function symbols
- Walks in the term graph
- · Walks in clauses with polarity and variables/skolems unified
- · Subterms, de Bruijn normalized
- · Subterms, all variables unified
- · Matching terms, no generalizations
- terms and (some of) their generalizations
- Substitution tree nodes
- All unifying terms
- · Evaluation in a large set of (finite) models
- · LSI/PCA combinations of above
- · Neural embeddings of above

MPTP2078 and MML1147 – 4.5k and 150k formulas

Method	Speed (sec)		Number of features		Learning and prediction (sec)	
	1011112070		ισιαί	unque	KIII	Haive Dayes
SYM	0.25	10.52	30996	2603	0.96	11.80
TRM_{α}	0.11	12.04	42685	10633	0.96	24.55
TRM ₀	0.13	13.31	35446	6621	1.01	16.70
MATø	0.71	38.45	57565	7334	1.49	24.06
MAT	1.09	71.21	78594	20455	1.51	39.01
MAT/	1.22	113.19	75868	17592	1.50	37.47
MAT ₁	1.16	98.32	82052	23635	1.55	41.13
MAT ₂	5.32	4035.34	158936	80053	1.65	96.41
MATu	6.31	4062.83	180825	95178	1.71	112.66
PAT	0.34	64.65	118838	16226	2.19	52.56
ABS	11	10800	56691	6360	1.67	23.40
UNI	25	N/A	1543161	6462	21.33	516.24

Low-level guidance for tableau: Machine Learning Connection Prover (MaLeCoP)

- · MaLeCoP: put the AI methods inside a tableau ATP (J. Otten leanCoP)
- the learning/deduction feedback loop runs across problems and inside problems
- The more problems/branches you solve/close, the more solutions you can learn from
- The more solutions you can learn from, the more problems you solve
- first prototype (2011): very slow learning-based advice (1000 times slower than inference steps)
- already about 20-time proof search shortening on MPTP Challenge compared to leanCoP
- second version (2015): Fairly Efficient MaLeCoP (= FEMaLeCoP)
- about 15% improvement over untrained leanCoP on the MPTP problems
- Recently Monte Carlo search (M. Faerber: MonteCop)
- · Reinforcement learning (in progress)

Low-level guidance for superposition: ENIGMA

- Train a fast classifier (LIBLINEAR) distinguishing good and bad generated clauses
- Plug it into a superposition prover (E prover) as a clause evaluation heuristic
- ENIGMA: Efficient learNing-based Inference Guiding MAchine
- input: positive and negative examples (good/bad clauses as feature vectors)
- output: model (a vector of feature weights)
- evaluation of a clause feature vector: dot product with the model
- Combine it with various ways with more standard (common-sense) guiding methods
- Very recent work, 86% improvement of the best E tactic on the AIM 2016 CASC benchmark
- About 90% precision in predicting good/bad clauses
- Similar work using (much slower) neural guidance by Google (70-80% precision)

Other guidance for ATPs

- Knowledge base of abstracted lemmas from previous proofs in E (drawing analogies between different theories)
- nearest-neighbor guidance: ConjectureRelativeSymbolWeight in E
- · further symbol weighting based on axiom relevance in E
- semantic (model-based) guidance: Prover9
- · Waldmeister: theory recognition, optimization of term orderings, etc.
- · Our recent work: search for good term orderings in Vampire
- Ongoing work for iProver, SMTs: do not enumerate instances but try the most probable ones

Large-theory Lemmatization and Conjecturing

- Over 1B low-level lemmas in Flyspeck
- 1.5M-7M higher-level lemmas in MML and Flyspeck
- Define fast preprocessing methods to extract the most important ones:
- PageRank, recursive dependency count, recursive use count, etc.
- Use the most important lemmas together with the toplevel theorems helps by 5-20% (needs more evaluations)
- · Conjecturing: guessing the intermediate lemmas in longer proofs
- Currently by learning statistical theory analogies and using probabilistic grammars

BliStr: Blind Strategymaker

- · Problem: how do we put all the sophisticated ATP techniques together?
- · E.g., Is conjecture-based guidance better than proof-trace guidance?
- Grow a population of diverse strategies by iterative local search and evolution!
- · Dawkins: The Blind Watchmaker

BliStr: Blind Strategymaker

- · The strategies are like giraffes, the problems are their food
- The better the giraffe specializes for eating problems unsolvable by others, the more it gets fed and further evolved

BliStr: Blind Strategymaker

- · Use clusters of similar solvable problems to train for unsolved problems
- · Interleave low-time training with high-time evaluation
- Thus co-evolve the strategies and their training problems
- · In the end, learn which strategy to use on which problem
- Recent improvements: BliStrTune hierarchical approach
- · Combine search for low-level and high-level parameters in a loop
- Include multiple ENIGMA models

The E strategy with longest specification in Jan 2012

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

-s --print-statistics --print-pid --resources-info --memory-limit=192

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

- 1 * Clauseweight (PreferProcessed, 1, 1, 1),
- 1 * FIFOWeight (PreferProcessed)

The E strategy with longest specification in May 2014

atpstr_my_c7bb78cc4c665670e6b866a847165cb4bf997f8a:

- 6 * ConjectureGeneralSymbolWeight (PreferNonGoals, 100, 100, 100, 50, 50, 1000, 100, 1.5, 1.5, 1)
- 8 * ConjectureGeneralSymbolWeight (PreferNonGoals, 200, 100, 200, 50, 50, 1, 100, 1.5, 1.5, 1)
- 8 * ConjectureGeneralSymbolWeight (SimulateSOS, 100, 100, 100, 50, 50, 50, 50, 1.5, 1.5, 1)
- 4 * ConjectureRelativeSymbolWeight(ConstPrio, 0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
- 10 * ConjectureRelativeSymbolWeight(PreferNonGoals, 0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
- 2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
- 10 * ConjectureSymbolWeight (ConstPrio, 10, 10, 5, 5, 5, 1.5, 1.5, 1.5)
- 1 * Clauseweight (ByCreationDate, 2, 1, 0.8)
- 1 * Clauseweight (ConstPrio, 3, 1, 1)
- 6 * Clauseweight (ConstPrio, 1, 1, 1)
- 2 * Clauseweight (PreferProcessed, 1, 1, 1)
- 6 * FIFOWeight (ByNegLitDist)
- 1 * FIFOWeight (ConstPrio)
- 2 * FIFOWeight (SimulateSOS)
- 8 * OrientLMaxWeight (ConstPrio, 2, 1, 2, 1, 1)
- 2 * PNRefinedweight (PreferGoals, 1, 1, 1, 2, 2, 2, 0.5)
- 10 * RelevanceLevelWeight (ConstPrio, 2, 2, 0, 2, 100, 100, 100, 100, 1.5, 1.5, 1)
- 8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
- 2 * RelevanceLevelWeight2(PreferGoals, 1, 2, 1, 2, 100, 100, 100, 400, 1.5, 1.5, 1)
- 6 * RelevanceLevelWeight2 (SimulateSOS, 0, 2, 1, 2, 100, 100, 100, 400, 1.5, 1.5, 1)
- 8 * RelevanceLevelWeight2 (SimulateSOS, 1, 2, 0, 2, 100, 100, 100, 400, 1.5, 1.5, 1)
- 5 * rweight21_g
- 3 * Refinedweight (PreferNonGoals, 1, 1, 2, 1.5, 1.5)
- 1 * Refinedweight (PreferNonGoals, 2, 1, 2, 2, 2)
- 2 * Refinedweight (PreferNonGoals, 2, 1, 2, 3, 0.8)
- 8 * Refinedweight (PreferGoals, 1, 2, 2, 1, 0.8)
- 10 * Refinedweight (PreferGroundGoals, 2, 1, 2, 1.0, 1)
- 20 * Refinedweight (SimulateSOS, 1, 1, 2, 1.5, 2)
- 1 * Refinedweight (SimulateSOS, 3, 2, 2, 1.5, 2)

BliStr on 1000 Mizar@Turing training problems

BliStr on 400 Mizar@Turing testing problems

- · Thanks for your attention!
- If interested, come to AITP: http://aitp-conference.org
- · ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists