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Course Overview

- Connections between two Al fields: Machine Learning (ML) and
Automated Reasoning (AR)

« ML: apply various forms of inductive reasoning to large datasets to obtain
the most plausible explanations, models and conjectures

« AR: apply various forms of deductive reasoning to prove that particular
explanations and conjectures are correct.

- Humans combine induction and deduction - let’s teach computers too!
« We will mostly explore ML/AR combinations in a formal proof setting
« Typical problem: How can learning help with logical reasoning?
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Course Overview - Particular settings and topics

» ML and first-order logic (FOL), saturation-style theorem provers (ATPs)
« Higher-order logic (HOL), Set theory, formal proof asistants (ITPs)

« ML and reasoning in large theories, hammers for ITP, premise selection
+ Symbolic vs statistical learning for theorem proving

« ML in tableau-style and tactical reasoning systems

« Learning in prpositional logic (SAT), QBF, SMT, instantiation-based
methods and model finding.

« Representations and conjecturing - how do we characterize reasoning
data for learning?

- Feeback loops for proving and learning, reinforcement learning of ATP,
positive/negative proof mining

- Alignment and translation between informal and formal corpora,
automated formalization

« Exam: do a small project in combining ML and AR
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Induction/Learning vs Reasoning — Henri Poincaré

 Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

- “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

« | believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)
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Learning vs Reasoning — Alan Turing 1950 — Al

« 1950: Computing machinery and intelligence — Al, Turing test

« “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

- last section on Learning Machines(!):

« “But which are the best ones [fields] to start [learning on] with?”

« “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

« Why not try with large computer-understandable math corpora?
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Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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What is Formal Mathematics?

« Developed thanks to the Leibniz/Russell/Frege/Hilbert/... program
- Mathematics put on formal logic foundations (symbolic computation)
+ ... which btw. led also to the rise of computers (Turing/Church, 1930s)

» Formal math (1950/60s): combine formal foundations and the newly
available computers

» Conceptually very simple:

« Write all your axioms and theorems so that computer understands them
- Write all your inference rules so that computer understands them

 Use the computer to check that your proofs follow the rules

- But in practice, it turns out not to be so simple

« Many approaches, still not mainstream, but big breakthroughs recently
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Irrationality of +/2 (informal text)

tiny proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem). /2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If /2

is rational, then the equation
& =2b? (4.3.1)

is soluble in integers a, b with (a,b) = 1. Hence & is even, and
therefore a is even. If a = 2¢, then 4¢? = 2b?, 2¢®> = b?, and b is
also even, contrary to the hypothesis that (a, b) = 1. O
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Irrationality of +/2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sgqrt 2 is irrational
proof
assume sqgrt 2 is rational;
consider a,b such that
4 3 1: a2 = 2+«b”2 and
a,b are relative prime;
a2 is even;
a is even;
consider c¢ such that a = 2xc;
4xc"2 = 2xb"2;
2+xch2 = b"2;
b is even;
thus contradiction;
end;
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Irrationality of +/2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational (sqrt (&2)) Y,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC [NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN (CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)°
(fun th -> MESON_TAC([th]) THEN
SIMP_TAC [SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;
ARITH_RULE ‘0 < q <=> ~(q = 0) ‘] THEN
ASM_MESON_TAC [NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of +/2 in Isabelle/HOL

Wheorem sqrt2_ not rational:
v "sqrt (real 2) ¢ Q"

proof
assume "sqrt (real 2) € Q"
then obtain m n :: nat where
n_nonzero: "n # 0" and sqrt_rat: "|sqrt (real 2)]| = real m / real n"
and lowest terms: "gcd m n = 1" .
from n nonzero and sqrt_rat have “real m = |sqrt (real 2)1 * real n" by simp

E then have "real (m?) = (s sqrt (real 2))2 * real (n2)"

] by (auto simp add: power2 eq square)

' also have "(sqrt (real 2))? = real 2" by simp

' also have "... * real (m?) = real (2 * n?)" by simp

v finally have eq: "m? = 2 * n2"

' hence "2 dvd m2"

' with two_is_prime have dvd_m: "2 dvd m" by (rule prime_dvd_power_two)
' then obtain k where "m = 2 * k" ..

' with eq have "2 * n? = 22 * k2" by (auto simp add: power2_eq_square mult_ac)
' hence "n? = 2 * k" by simp

' hence "2 dvd n2" ..

' with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)

' with dvd_m have "2 dvd gcd m n" by (rule gcd_greatest)

' with lowest _terms have "2 dvd 1" by simp

' thus False by arith

\qed
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Irrationality of 2 in Coq

Theorem irrational_sqrt_2: irrational (sgrt 2%nat).

intros p g H HO; case H.

apply (main_thm (Zabs_nat p)).

replace (Div2.double (g * q)) with (2 * (g x q));
[idtac | unfold Div2.double; ring].

case (eq_nat_dec (Zabs_nat p * Zabs_nat p) (2 * (g * q))); auto; intros HI.
case (not_nm_INR _ _ H1l); (repeat rewrite mult_INR).
rewrite <- (sqrt_def (INR 2)); auto with real.

rewrite HO; auto with real.

assert (g <> O0%R :> R); auto with real.

field; auto with real; case p; simpl; intros; ring.
Qed.
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Irrationality of 2 in Metamath

${

sd xy $.

$( The square root of 2 is irrational. $)

sqr2irr $p |- ( sqr * 2 ) e/ QQ $=
( vx vy c2 csqgr cfv cqg wnel wcel wn cv cdiv co wceqg cn wrex Cz Cexp
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WOXCWNWGUIUJWGUKHZWFUKHZXCXBUGZWQWNUCUKHXDXEXFULUCWGWEUMUNWGUOWEUPUQURUSW
TUCWDUDUEXACUTVAVBWDWHUCUDVCVDVEWQWTWP UHWNWQWSUCWEUDWQWGVEHWSUCMWGVGWGVHV
IVJVKVLVMVNVOWFVPVQVRVSVTABWDWAUBWDEWBWC $.
$( [8-Jan-02] $)
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Irrationality of 2 in Metamath Proof Explorer

sqr2irr - Metamath Proof Explorer - Chromium
R, sqr2irr - Metama x \0y
(4 € [ us.metamath.org, 2 ZIIeE

Proof of Theorem sqr2irr
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Today: Computers Checking Large

SCI = NEWS

Math Proofs

Researchers Find 40,000-Year-Old Figurative
Paintings in Bornean Cave

HOME  ASTRONOMY ~ SPACEEXPLORATION ~ ARCHAEOLOGY ~PALEONTOLOGY ~ BIOLOGY  PHYSICS  MEDICINE

GENETICS

GEOLOGY ~ MORE

LATEST NEWS

Scientists Deliver Formal Proof of
Famous Kepler Conjecture

Jun 16, 2017 by News Staff / Source

«Previous | Next»

Published in An international team of mathematicians led by University of Pittsburgh
Mathematics Professor Thomas Hales has delivered a formal proof of the Kepler
Tagged as conjecture, a famous problem in discrete geometry. The team's paper is

Johannes Kepler
Kepler conjecture

published in the journal Forum of Mathematics, Pi.

Follow
You'Might Like

Researchers
Develop First-

Innovations

SPHERE Captures Young Exoplanet
Beta Pictoris b Orbiting around Its
Star

Now 13,2018 | Astronomy

Mirarce eatoni: Newly-Discovered
Cretaceous Bird Lived Among
Dinosaurs, Was Strong Flier

Now 13, 2018 | Paleontology

Juno Takes Closer Look at Jupiter’s
Magnificent, Swirling Clouds
Nov 13, 2018 | Space Exploration

Physicists Solve Structure of
Unusually Complex Form of
Nitrogen

Nov 13, 2018 | Physical Chemistry

Natural Compound Protects

Hypertensive Rats against Heart
isease

Now 13, 2018 | Medicine

Inventive Orangutans Make Hook
Tools o Retrieve Food
Now 12,2018 | Biology

Researchers Find 40,000-Year-Old
Figurative Paintings in Bornean Cave
Nov 12,2018 | Archacology

Hubble Sees Lensing Galaxy Cluster,

cdn.scinews.com/images/enlarge3/image_4960e-Kepler-Conjecture jpg



Big Example: The Flyspeck project

+ Kepler conjecture (1611): The most compact way of stacking balls of the
same size in space is a pyramid.

™
V= WiT ~ 74%
- Formal proof finished in 2014
« 20000 lemmas in geometry, analysis, graph theory
« Allofitat https://code.google.com/p/flyspeck/
+ All of it computer-understandable and verified in HOL Light:
*» polyhedron s /\ ¢ face_of s ==> polyhedron c

- However, this took 20 — 30 person-years!
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https://code.google.com/p/flyspeck/

What Has Been Formalized?

top 100 of interesting theorems/proofs
(Paul & Jack Abad, 1999, tracked by Freek Wiedijk)

.V2¢Q

. fundamental theorem of algebra

|Q| = o

a% >d&+bP=c

m(X) ~ %

. Godel’s incompleteness theorem
p=1g-1

() ==

. impossibility of trisecting the

angle and doubling the cube

©NOOUA WD =

32. four color theorem
33. Fermat’s last theorem

99. Buffon needle problem
100. Descartes rule of signs
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Named Theorems in the Mizar Library

¢ @ [ fmuwb.edupl
Mizar home, The most important facts in MML (decode)
download add description
files: abstr, articles . .
o 5 See also Name carrving facts/theorems/ in MML
bin, doc. emacsgabs, 1\ o nderts Lemma” VOTE
finbibs, gabs (more) IOIE,|
semantic MML 2 "All Primes (1 mod 4) Equal the Sum of Two Squares” VOTE |
3 "Axiom of Choice" VOTE |
“ I 4 "Baire Category Theorem (Banach spaces)” LOPBAN 53 VOTE |
5 "Baire Category Theorem (Hausdorff spaces)” =>NORMSP_2:10 VOTE
2] 6 "Baire Category Theorem for Continuous Lattices" => WAYBEL12:30 VOTE
MML Query (beta) 7 "Banach Fix Point Theorem for Compact Spaces" => ALI:1 VOTE |
8 "Banach-Steinhaus theorem (uniform " =>LOPBAN 5.7 VOTE |
Template maker . ) .
Evirnmeniexplanaion 9 "Bertrand's Ballot Theorem' =>BALLOT 1:28 VOTE |
10 "Bertrand\s postulate” NAT. 4:56 VOTE
Mizar TWj " N . UTON:
I 11 "Bezout\s Theorem NEWTON:67 VOTE
JJ_Me T 12 "Bing Theorem" => NAGATA_2:22 VOTE |
Journals: 13 "Binomial Theorem" BINOM:25 VOTE |
e 14 "Birkhoff Variety Theorem" =>BIRKHOFE:sch 12 | VOTE |
el 15 "Bolzano theorem (intermediate value)" =>TOPREALS:8 VOTE
MM&A 16 "Bol strass Theorem (1 dimensi =>SEQ_4:40 VOTE |
(preparation) 17 "Borsuk Theorem on Decomposition of Strong Deformation Retracts" =>BORSUK_1:42 VOTE |
Syntax: xanl, bl 18 "Borsuk-Ulam Theorem" BORSUK_7Z:condreg 3| VOTE |
Downloads 19 "Boundary Points of Locally Euclidean Spaces” MFOLD_0:2 VOTE
20 "Brouwer Fixed Point Theorem" => BROUWER:14 VOTE
% | ot |
Mizarsyntax. xmnl &) wpouuer Fixed Point Theorem for Disks on the Plane” = BROUWER:15 VOTE |
MML 5.25.1220 22 "Brouwer Fixed Point Theorem for Intervals" =>TREAL 124 VOTE |
- most important facts 23 "Brown Theorem" =>GCD_1:40 VOTE )
other collection) " "
(uthr callostion 24 "Cantor Theorem' CARD_L:14 VOTE
« Birkhoff 25 "Cantor-Bernstein Theorem" =>CARD 110 VoTE | -
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Big Formalizations

« Kepler Conjecture (Hales et all, 2014, HOL Light, Isabelle)
- Feit-Thompson (odd-order) theorem

» Two graduate books
» Gonthier et all, 2012, Coq

« Compendium of Continuous Lattices (CCL)

* 60% of the book formalized in Mizar
» Bancerek, Trybulec et all, 2003

» The Four Color Theorem (Gonthier and Werner, 2005, Coq)
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Mid-size Formalizations

« Godel’s First Incompleteness Theorem — Natarajan Shankar (NQTHM),
Russell O’Connor (Coq)

 Brouwer Fixed Point Theorem — Karol Pak (Mizar), John Harrison (HOL
Light)

« Jordan Curve Theorem — Tom Hales (HOL Light), Artur Kornilowicz et al.
(Mizar)

» Prime Number Theorem — Jeremy Avigad et al (Isabelle/HOL), John
Harrison (HOL Light)

+ Godel’'s Second incompleteness Theorem — Larry Paulson
(Isabelle/HOL)

« Central Limit Theorem — Jeremy Avigad (Isabelle/HOL)
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Large Software Verifications

- selL4 — operating system microkernel
+ Gerwin Klein and his group at NICTA, Isabelle/HOL
» CompCert — a formaly verified C compiler
+ Xavier Leroy and his group at INRIA, Coq
« EURO-MILS - verified virtualization platform
» ongoing 6M EUR FP7 project, Isabelle
- CakeML — verified implementation of ML
» Magnus Myreen, HOL4

21/60



Central Limit Theorem in Isabelle/HOL

<

C

The Top 100 Theorems in Isabelle - Chromium
[ The Top 100 The: x

=

[ www.cse.unsw.edu.ay QA 0@ =

theorem (in prob_space) central limit theorem:

fixes
X :: "nat = 'a = real" and
jt :: "real measure" and
o :: real and
S :: "nat = 'a = real"
assumes

X _indep: "indep vars (Ai. borel) X UNIV" and

X_integrable: "An. integrable M (X n)" and

X_mean_0: "An. expectation (X n) = 0" and

g_pos: "o > 0" and

X_square_integrable: "/n. integrable M (Ax. (X n x)2)" and

X_variance: "An. variance (X n) = 2" and
X_distrib: "An. distr M borel (X n) = u"
defines

"Sn = Ax. » i<n. X i x"
shows
"weak_conv_m (An. distr M borel (Ax. S n x / sqrt (n * a2)))
(density lborel std_normal_density)"
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Sylow’s Theorems in Mizar

theorem :: GROUP_10:12
for G being finite Group, p being prime (natural number)
holds ex P being Subgroup of G st P is_Sylow_p-subgroup_of_prime p;

theorem :: GROUP_10:14
for G being finite Group, p being prime (natural number) holds
(for H being Subgroup of G st H is_p-group_of_prime p holds
ex P being Subgroup of G st
P is_Sylow_p-subgroup_of_prime p & H is Subgroup of P)
(for P1,P2 being Subgroup of G
st Pl is_Sylow_p-subgroup_of _prime p & P2 is_Sylow_p-subgroup_of prime p
holds P1,P2 are_conjugated);

&

theorem :: GROUP_10:15
for G being finite Group, p being prime (natural number) holds

card the_sylow_p-subgroups_of_prime(p,G) mod p = 1 &
card the_sylow_p-subgroups_of_prime(p,G) divides ord G;
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Godel Theorems in Isabelle

The Top 100 Theorems in Isabelle - Chromium

[ The Top 100 The« x

< € [) www.ese.unsw.edu.ay,

f
<]
1]

theorem Goedel I:

assumes "— {} - Fls"

obtains § where
"{} - & IFF Neg (PfP [4])"
" {} 8"
"= {} F Neg ¢"
"eval fm e o"
"ground fm §"

theorem Goedel II:
assumes "— {} + Fls"

shows "— {} F Neg (PfP [Fls])"

http://afp.sourceforge.net/entries/Incompleteness.shtml
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Today’s Applications

R e NewScientist E—
‘ ‘

News Technology Space Physics Health Environment Mind Video | Travel Live Jobs &Signin QSearch

Home | News | Technology POPULAR

TECHNOLOGY NEWS 16 September 2015 §
We thought the Incas couldn’t

write. These knots change

Unhackable kernel could keep all cverythng
computers safe from cyberattack ~ fofiami weten duisation

From helicopters to medical devices and power stations, [fIElNCIEAEENoRee] that The origins of sexism: How men
software at the heart of an operating system is secure could keep hackers out came to rule 12,000 years ago

The brain’s 7D sandcastles could be

Unhackable kernel could keep all computers safe from
cyberattack
IS quantum phys| d your

brain’s ability to think?
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Today’s Applications

© Applications Pl Tue 21:22 Tue

NS Unhac x ' &5 REMS x Robol x ' sp Startp x ¢ sp byron x | yror x | S0 AWS ' x utor x ' sp Start; x | w Pa

< C @ Secure | https://www.prover.com/references/

PR&EVER’

ALL  BELGIUM CANADA CHINA ENGLAND NEW YORK NORWAY PARIS STOCKHOLI

Solutions  References Expertise News Company SDA Forum

Our Formal Verification
Solution for RATP, Paris

Formal Verification of SSI
Software for NYCT, New York

New York City Transit (NYCT) is

Implementing Prover Trident
for SL, Stockholm

In this project, Prover Technology In this project Prover Technology

provides the Prover Trident solution
to Ansaldo STS, for development
and safety approval of interlocking
software for Roslagsbanan, a
mainline railway line that connects.

modernizing the signaling system in
its subway by installing CBTC and
replacing relay-based interlockings
with computerized, solid state
interlockings (SSls)

collaborated with RATP in creating a
formal verification solution to meet
RATP demand for safety verification
of interlocking software. RATP had
selected a computerized...
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Today’s Applications

¥ Tue21:15 Tue 21:15

@ Applications Places ®

NS Unhackabl: x & REMS % (jt Robotsche x [ Byron Cool x s AWSSecur x / @ Automatec x

Sp Startpage | x ( p byron cook x

C' @ Secure | htt

aws Contact Sales  Support My Account v
p—
Products Solutions Pricing Learn Partner Network ~ AWS Marl Explore More  Q

Search Blogs Q

BlogHome  Category »  Edition ~  Follow ~

Tag: Automated reasoning

How AWS SideTrail verifies key AWS cryptography code
oy Daiel Schwartz-Narbonne | on 15 OCT 2018 in Security, Identity, & Compliance | Permalink | @9 Comments | # Share
We know you want to spend your time learning valuable new skills, building innovative software, and scaling up applications — not
worrying about managing infrastructure. That's why we're always looking for ways to help you automate the management of AWS

services, particularly when it comes to cloud security. With that in mind, we recently developed [.

Read More

Next Gen Cloud Security Podcast: Al tech named automated reasoning provides next-gen cloud security
Security,Identity, & Complance | Permalink | @8 Comments | # Share

with Automated Reasoning

by Supriya Anand | on 08 OCT 2018 |

roviding you higher

AWS just released a new podcast on how next generation security technology, backed by automated reasoning,
levels of assurance for key components of your AWS architecture. Byron Cook, Director of the AWS Automated Reasoning Group,
discusses how automated reasoning is embedded within AWS services and code and the tools customers can [...]

Read More

Daniel Schwartz-Narbonne shares how automated reasoning is helping achieve the provable security of AWS boot code
Security, Security,Identity, & Compliance | Permalink | # Comments | ¢ Share

by Supriya Anand | on 02 OCT 2018 |
I recently sat down with Daniel Schwartz-Narbonne, a software development engineer in the Automated Reasoning Group (ARG) at
AWS, to learn more about the groundbreaking work his team is doing in cloud security. The team uses automated reasoning,
technology based on mathematical logic, to prove that key components of the cloud are operating as [

Read More
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Today’s Applications

® Applications Places ® Tue 21:40 Tue 21:40
NS x (& x \(jt/ x (sp x (sp B x (sp x (@ x (0 x (w x (e x(sp x)€ x (Y x
C @ Secure  https://www.absint.com/compcert/

Products Support About us Contact Search

ULl Howitworks  Newin18.10 _Trynow)

Formallyvetified compilation

CompCert s a formally verified optimizing C compiler. ts intended use is compiling safety-critical and mission-critical software
written in C and meeting high levels of assurance. It accepts most of the SO C 99 language, with some exceptions and a few
extensions. It produces machine code for ARM, PowerPC, x86, and RISC-V architectures.

What sets CompCert apart?

CompCert s the only production compiler that is formally verified, using machine-assisted mathematical proofs, to be exempt
from miscompilation issues. The code it produces is proved to behave exactly as specified by the semantics of the source

C program.

This level of confidence in the correctness of the compilation process is unprecedented and contributes to meeting the highest
levels of software assurance

The formal proof covers all transformations from the abstract syntax tree to the generated assembly code. To preprocess and

W serveimagejpeg  ~ showall | x
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Today’s Applications

Overview ch Education Industry I s ublications  Institutions  Jobs s Student Positions Log

<= the science of deep specification

spec

Deep isan dition in C: ing funded by the National Science Foundation.

We focus on the specification and verification of full functional correctness of software and hardware.

Research Education

We have several major research projects, and our ambitious To deliver secure and reliable products, the software industry
goal is to connect them at specification interfaces to prove of the future needs engineers trained in specification and
end-to-end correctness of whole systems. verification. We'll produce that curriculum.
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Today’s Applications

Homa » Other Sciences » Mathematics » October 12, 2012

Six-year journey leads to proof of Feit-Thompson Theorem

October 12, 2012 by Rob Knies, Miorosoft

Featured Last comments Popular

Gaia spots a ‘ghost’ galaxy next door © 19
hours ago ® 81

reddit
*
Favorites How plants evolved to make ants their
servants © Nov 12,2018 ® 21
™ Georges Gonthier.
Email
. Physicists build fractal shape out of
At 5:46 p.m. on Sept. 20, Georges Gonthier, principal researcher at Microsoft Research Cambridge, electrons © Nov 12, 201
sent a brief email to his colleagues at the Microsoft Research-Inria Joint Centre in Paris. It read, in R
print full: "This is really the End." =

Dark matter "hurricane’ offers chance to

Those five innocuous words heralded the culmination of a project that had consumed more than six
detect axions © 18 hours ago

years and resulted in the formal proof of the Feit-Thompson Theorem, the first major step of the
classification of finite simple groups.

&
PO

The theorem, first proved by Walter Feit and John Griggs Thompson in 1963 and also known as the How to drive a robot on Mars © Nov 12, 2018
Odd-Order Theorem, states that in mathematical group theory, every finite group of odd order is h 2
solvable.
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What Are Automated Theorem Provers?

Computer programs that (try to) determine if

» A conjecture C is a logical consequence of a set of axioms Ax
» The derivation of conclusions that follow inevitably from facts.

» Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, iProver, ...
« Brute-force search calculi (resolution, superposition, tableaux, SMT, ...)
« Human-designed heuristics for pruning of the search space

- Fast combinatorial explosion on large knowledge bases like Flyspeck and
Mizar

+ Need to be equipped with good domain-specific inference guidance ...
- ... this what we will try to do here ...

- ... by learning from the knowledge bases and reasoning feedback ...

+ Details on particular ATP systems and ML settings later
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Mizar demo

http://grid0l.ciirc.cvut.cz/~mptp/outd.ogv
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http://grid01.ciirc.cvut.cz/~mptp/out4.ogv

Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

- high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs

- mid-level: invent suitable ATP strategies for classes of problems

- mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
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Sample of Learning Approaches We Have Been Using

 neural networks (statistical ML) — backpropagation, deep learning,
convolutional, recurrent, etc.

- decision trees, random forests, gradient tree boosting — find good
classifying attributes (and/or their values); more explainable

- support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

- k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions

 naive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features (just multiplying
probabilities)

- inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

- genetic algorithms — evolve large population by crossover and mutation

« combinations of statistical and symbolic approaches (probabilistic
grammars, semantic features, ...)

« supervised, unsupervised, reinforcement learning (actions,
explore/exploit, cumulative reward) 34/60



Learning — Features and Data Preprocessing

« Extremely important - if irrelevant, there is no use to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery — a big field

» Deep Learning — design neural architectures that automatically find
important high-level features for a task

« Latent Semantics, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them

« word2vec and related methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

« math and theorem proving: syntactic/semantic patterns/abstractions
» how do we represent math objects (formulas, proofs, ideas) in our mind?
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Reasoning Datasets - Large ITP Libraries and Projects

» Mizar / MML / MPTP — since 2003

« MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)

- Isabelle (and AFP) — since 2005

« Flyspeck (including core HOL Light and Multivariate) — since 2012
» HOLStep — 2016, kernel inferences

« Coq - since 2013/2016

+ HOL4 — since 2014

+ ACL2 — 20147

« Lean? — 20177

+ Stacks?, ProofWiki?, Arxiv?
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High-level ATP guidance: Premise Selection

 Early 2003: Can existing ATPs be used over the freshly translated Mizar
library?

 About 80000 nontrivial math facts at that time — impossible to use them all

+ Is good premise selection for proving a new conjecture possible at all?

+ Oris it a mysterious power of mathematicians? (Penrose)

- Today: Premise selection is not a mysterious property of mathematicians!

- Reasonably good algorithms started to appear (more below).

« Will extensive human (math) knowledge get obsolete?? (cf. Watson,
Debater, etc)
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Example system: Mizar Proof Advisor (2003)

- train naive-Bayes fact selection on all previous Mizar/MML proofs (50k)
« input features: conjecture symbols; output labels: names of facts

« recommend relevant facts when proving new conjectures

« give them to unmodified FOL ATPs

« possibly reconstruct inside the ITP afterwards (lots of work)

« First results over the whole Mizar library in 2003:

« about 70% coverage in the first 100 recommended premises
* chain the recommendations with strong ATPs to get full proofs
» about 14% of the Mizar theorems were then automatically provable (SPASS)

- Today’s methods: about 45-50% (and we are still just beginning!)
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ML Evaluation of methods on MPTP2078 — recall

« Coverage (recall) of facts needed for the Mizar proof in first n predictions
+ MOR-CG - kernel-based, SNoW - naive Bayes, BiLi - bilinear ranker
« SINe, Aprils - heuristic (non-learning) fact selectors
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ATP Evaluation of methods on MPTP2078

« Number of the problems proved by ATP when given n best-ranked facts

« Good machine learning on previous proofs really matters for ATP!
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High-level ATP guidance: Premise Selection/Hammers

+ 2003: Can existing ATPs be used on the freshly translated Mizar library?
 About 80000 nontrivial math facts at that time — impossible to use them all
+ Mizar Proof Advisor (2003):

- train naive-Bayes fact selection on previous Mizar/MML

« recommend relevant premises when proving new conjectures

« give them to unmodified FOL ATPs

+ possibly reconstruct inside the ITP afterwards (lots of work)

« First results over the whole Mizar library in 2003:

» about 70% coverage in the first 100 recommended premises
« chain the recommendations with strong ATPs to get full proofs
» about 14% of the Mizar theorems were then automatically provable (SPASS)
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\A /—\A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
V\_/ V\_/

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

Proof Assistant ITP Proof *Hammer ATP Proof ATP _

How much can it do?
+ Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library
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Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
A A
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
+ Mizar / MML — MizAR
« Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
« HOL4 (Gauthier and Kaliszyk)
» CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 45% success rate
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Statistical Guidance of Connection Tableau

+ learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

« a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

+ good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)
¢ P(x) / |
c2: R(x,y) vV -P(x) Vv Qy) R(a, b) -P(a) Q(b)
s : S(x) v =Q(b) / \
¢ ~8(x) vV ~Q(x) -R(a,b) Q(b) S(b)  —Q(b)
s 1 ~Q(x) vV ~R(a, x) / N\ / N\

cs - = R(a,x) v Q(x) —Q(b) -R(a,b) ~S(b) -Q(b)
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Statistical Guidance of Connection Tableau

» MaLeCoP (2011): first prototype Machine Learning Connection Prover
- extension rules chosen by naive Bayes trained on good decisions

- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
 20-time search shortening on the MPTP Challenge

 second version: 2015, with C. Kaliszyk

« both prover and naive Bayes in OCAML, fast indexing

« Fairly Efficient MaLeCoP = FEMaLeCoP

+ 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones
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Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep

+ added Monte-Carlo Tree Search (MCTS)

- MCTS search nodes are sequences of clause application

+ a good heuristic to explore new vs exploit good nodes:

InN

i

% Yeop- (UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

« clauses represented not by names but also by features (generalize!)
- binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning
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Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP  bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591
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Statistical Guidance the Given Clause in E Prover

« harder for learning than tableau

« the proof state are two large heaps of clauses processed/unprocessed
« 2017: ENIGMA (features engineering), Deep guidance (neural nets)

- both learn on E’s proof search traces, put classifier in E

- positive examples: given clauses used in the proof

+ negative examples: given clauses not used in the proof

« ENIGMA: fast feature extraction followed by fast/sparse linear classifier
« about 80% improvement on the AIM benchmark

- Deep guidance: convolutional nets - no feature engineering but slow
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ProofWatch: Statistical/Semantic Guidance of E

« Bob Veroff’s hints method used for Prover9/AIM

solve many easier/related problems

- load their useful lemmas on the watchlist

boost inferences on clauses that subsume a watchlist clause
watchlist parts are fast thinking, bridged by standard search

- ProofWatch (2018): load many proofs separately

dynamically boost those that have been covered more

+ needed for heterogeneous ITP libraries

statistical: watchlists chosen using similarity and usefulness

- semantic/deductive: dynamic guidance based on exact proof matching
- results in better vectorial characterization of saturation proof searches
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ProofWatch: Statistical/Symbolic Guidance of E

theorem Th36: :: YELLOW_5:36
for L being non empty Boolean RelStr for a, b being Element of L
holds ( 'not’ (a "\/" b) = (‘not’ a) "/\" ('not’ b)

& 'not’ (a "/\" b) = (not’ a) "\/" ('‘not’ b) )

* De Morgan’s laws for Boolean lattices

 guided by 32 related proofs resulting in 2220 watchlist clauses

» 5218 given clause loops, resulting ATP proof is 436 clauses

* 194 given clauses match the watchlist and 120 (61.8%) used in the proof

» most helped by the proof of WAYBEL_1:85 — done for lower-bounded Heyting
theorem :: WAYBEL_1:85
for H being non empty lower-bounded RelStr st H is Heyting holds

for a, b being Element of H holds
"not’” (a "/\" b) >= ('not’ a) "\/" ('not’ D)
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ProofWatch: Vectorial Proof State

Final state of the proof progress for the 32 proofs guiding YELLOW_5:36

0 0438 42/96 | 1 0.727 56/77 | 2 0865 4552 | 3 0.360 9/25
4 0750 b51/68 | 5 0259 7/27 | 6 0805 62/77 | 7 0.302 73/242
8 0652 1523 | 9 0286 828 |10 0.259 7/27 | 11 0.338 24/71
12 0.680 17/25 | 13 0.509 27/53 | 14 0.357 10/28 | 15 0.568 25/44
16 0.703 52/74 | 17 0.029 8/272 | 18 0.379 33/87 | 19 0.424 14/33
20 0471 16/34 | 21 0.323 20/62 | 22 0.333 7/21 | 23 0.520 26/50
24 0524 22/42 | 25 0.523 45/86 | 26 0.462 6/13 | 27 0.370 20/54
28 0.411 30/73 |29 0.364 20/55 | 30 0.571 16/28 | 31 0.357 10/28
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Machine Learner for Automated Reasoning

» MaLARea (2006) — infinite hammering

- feedback loop interleaving ATP with learning premise selection

« both syntactic and semantic features for characterizing formulas:
- evolving set of finite (counter)models in which formulas evaluated

\J
initial settings
| solve problems )
(ATP)

v
<_all proved? >— stop

_'
learn
| from proofs (ML)

premise
selections (ML) |

L
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Recent Improvements and Additions

« Semantic features encoding term matching/unification [IJCAI'15]
- Distance-weighted k-nearest neighbor, LS|, boosted trees (XGBoost)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

« Lemmatization — extracting and considering millions of low-level lemmas

» First useful CogHammer (Czajka & Kaliszyk 2016), 40%—50%
reconstruction/ATP success on the Coq standard library

+ Neural sequence models, definitional embeddings (Google Research)
- Hammers combined with statistical tactical search: TacticToe (HOL4)
« Learning in binary setting from many alternative proofs

- Negative/positive mining (ATPBoost)
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Summary of Features Used

« From syntactic to more semantic:

« Constant and function symbols

« Walks in the term graph

« Walks in clauses with polarity and variables/skolems unified
+ Subterms, de Bruijn normalized

- Subterms, all variables unified

- Matching terms, no generalizations

- terms and (some of) their generalizations
« Substitution tree nodes

« All unifying terms

« Evaluation in a large set of (finite) models
+ LSI/PCA combinations of above

+ Neural embeddings of above
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TacticToe: mid-level ITP Guidance (Gauthier et al.)

« learns from human tactical HOL4 proofs to solve new goals
+ no translation or reconstruction needed
- similar to rlCoP: policy/value learning

+ however much more technically challenging:

« tactic and goal state recording
» tactic argument abstraction
* absolutization of tactic names
 nontrivial evaluation issues

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

» 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

- work in progress for Coq

« earlier Coq work: SEPIA (Gransden et al, 2015) - inferred automata
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Neural Autoformalization (Wang et al., 2018)

+ generate about 1M Latex - Mizar pairs based on Bancerek’s work
« train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

« many architectures tested, some work much better than others

- very important latest invention: atfention in the seg-to-seq models

« more data very important for neural training — our biggest bottleneck (you
can help!)
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Neural Autoformalization data

Rendered IATEX fXCYCZthenXCZ
Mizar

X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteq Y \subseteq Z$, then $X \subseteq z$.

Tokenized ATEX

If $ X \subseteqg Y \subseteqg Z $ , then $ X \subseteq Z $ .
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Neural Autoformalization results

Parameter  Final Test Final Test Identical Identical
Perplexity BLEU Statements (%) No-overlap (%)

128 Units 3.06 411 40121 (38.12% 6458 (13.43%)

256 Units 1.59 64.2 63433 (60.27% 19685 (40.92%)

1024 Units  1.51 61.6 69179 (65.73% 22978 (47.77%)

)
)
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%)
)
2048 Units  2.02 60 59637 (56.66%) 16284 (33.85%)
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Neural Fun — Performance after Some Training

Rendered
IATEX
Input IKTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and sy is convergent . Then lim(sg+S7) = lim Sg+ lim s7

Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }

$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
}y {4+ 1Y {s_ {71} } ) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } §

seql is convergent & seqg2 is convergent implies lim ( seql
+ seqg2 ) = ( lim seql ) + ( lim seqg2 ) ;
x in dom f implies ( x xy ) (£ | (x| (y | (y | y)
)y )y =(x [ (y !l (y |l CylLy))y)y)y):i

seq 1is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seg2
is convergent ;

seq 1s convergent & seg9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Thanks and Advertisement

+ Thanks for your attention!

» AITP — Artificial Intelligence and Theorem Proving

 April 8-12, 2019, Obergurgl, Austria, aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
+ Discussion-oriented and experimental

« Grown to 60 people in 2018
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