
International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

MoMM - FAST INTERREDUCTION AND RETRIEVAL IN LARGE

LIBRARIES OF FORMALIZED MATHEMATICS

JOSEF URBAN∗

Dept. of Theoretical Computer Science

Charles University

Malostranske nam. 25, Praha, Czech Republic

MoMM (in the narrower sense) is a tool allowing fast interreduction of a high number
of clauses, dumping and fast-loading of the interreduced clause sets, and their use for
real-time retrieval of matching clauses in an interactive mode. MoMM’s main task is
now providing these services for the world’s largest body of formalized mathematics
- the Mizar Mathematical Library (MML), which uses a richer formalism than just
pure predicate logic. This task leads to a number of features (strength, speed, memory

efficiency, dealing with the richer Mizar logic, etc.) required from MoMM, and we describe
the choices taken in its implementation corresponding to these requirements.

An important part of MoMM (in the wider sense) are the tools exporting the richer
logic of MML into the clause-like format suitable for fast interreduction, and the tools

allowing the use of MoMM as an interactive advisor for the authors of Mizar articles.
These tools and choices taken in their implementation are also described here. Next

we present some results of the interreduction of MML, which provide an interesting
information about subsumption and repetition in the MML and can be used for its
refactoring. This interreduction reveals that more than 2 percent of the main MML

theorems are subsumed by others, and that for more than 50 percent of the internal
lemmas proved by Mizar authors MoMM can provide useful advice for their justification.

Finally some problems and possible future work are discussed.

1. Motivation, Basic Ideas and Related Work

1.1. Motivation

The primary goal in the design of MoMMa was to have a fast tool for fetching match-

ing theorems from the Mizar Mathematical Library (MML)15,16 , which already now

contains some 40,000 theorems. The typical usage of such a tool is assistance during

authoring Mizar articles. A user writes a formula that he wants to justify, possibly

with a partial justification, like

A3: ψ by A1,A2;

and the tool tries to find Mizar theorems which subsume it (here we would look for

a theorem subsuming formula “(A1 & A2) implies ψ”) and thus complete the

∗urban@kti.ms.mff.cuni.cz
aThe current interpretation of this acronym is Most of Mizar Matches. See below for its justifica-
tion.

1

2 Josef Urban

justification. E.g. if in our example theorem Th1 was found, the following inference

A3: ψ by A1,A2,Th1;

should then be accepted by the Mizar checker27.

This goal is closely related to that of the interreduction of a set of clauses. We do

not want to load redundant theorems into our tool, and once it has the subsumption

functionality, we can use it to find the subsumed theorems first and not to load them

for the normal interactive usage. Detecting subsumed theorems is not only useful for

our tool, it is generally useful for the maintenance of a large body of mathematics

like the MML.

Having a good interreduction tool in turn leads to even more interesting appli-

cations. The main (exported) Mizar theorems usually have longer proofs written

in the Jaskowski natural deduction style9,13 containing a number of lemmas with

various degrees of difficulty. While the main Mizar theorems are often used (and

thus also searched for) by Mizar authors, and the probability of an unspotted re-

dundant theorem should be quite low, the various lemmas used for proving the main

theorems are usually forgotten once they served their purpose in the proof. If such

lemmas are correctly exported from the context provided by the layered supposi-

tion structure of the Jaskowski-style proofs, they become universally valid formulas,

which can be interreduced and used for subsumption in the same way as the main

Mizar theorems (and together with them). Such large-scale (there are now almost

900,000 clauses generated from the Mizar lemmas) interreduction can give us

• the strongest versions of such internal lemmas

• the usage counts of these strongest versions, which give a general “use-

fulness” criterion for classification of all lemmas (as well as theorems), and

can be used e.g. for upgrading the most frequent lemmas into regular Mizar

theorems

• the possibility of “refactoring” of the Jaskowski-style proofs by replacing

the proofs of repeated or subsumed lemmas with just a single reference to

the strongest versions

• an interesting general statistics about subsumption and repetition in a large

body of formal mathematics

As we show later in this article, the last item already now really justifies one of

the interpretations of the acronym MoMM:

Most of Mizar Matches

I.e., more than a half of the lemmas written by the Mizar authors are subsumed

by another lemma or theorem. This does not necessarily mean that the subsumed

lemmas are redundant at the particular point of a Mizar proof. Replacing one big

proof step with two smaller proof steps, typically with an explicit instantiations of

the universal formulas that justify them, can be useful both for the limited (but

fast) Mizar checker and for the human readers. This statistic just means that for

more than a half of the lemmas, useful advice can be given by MoMM. This is

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 3

strong evidence that formalization together with quite simple “brute force” meth-

ods (“store and index everything, unless it is redundant”) can give some very real

benefits to mathematicians. We can only speculate about similar statistics for all

of mathematics, if we ever succeed in providing some common formal language for

it or at least for a large part of it. The author’s personal opinion is that it is quite

a safe bet to replace ’Mizar’ with ’Mathematics’ in the above given acronym in-

terpretation. Again, that does not have to mean that only less than a half of, e.g.,

the “original” results published in mathematical journals are really original, but

we conjecture that for many lemmas useful advice could be given in exactly the

same way as we do for Mizar. The repetition rate might be even higher due to the

limitation of the human memory and text processing, the lack of a common formal

language and the lack of a semantically searchable central repository.

1.2. Related Work and Basic Ideas

Mizar substantially differs from many other proof assistants28 in the following as-

pects important for the work presented here:

• It is practically a classical first-order systemb, which makes it suitable for

cooperation with the first-order theorem proving technology. Many other

proof assistants (Coq, HOL, etc.) use some kind of higher-order logic or use

some non-classical logics.

• It has a large, maintained and internally consistent repository of formalized

mathematics written mostly by humans, which can be used as a source for

all kinds of data-mining experiments.

Especially the second aspect forces us to look for solutions that are as efficient as

possible in terms of memory consumption and speed, while systems with hundreds

or at most thousands of theorems can afford to neglect such issues to a great extent.

Closer to the MoMM’s area of application in the given aspects could actually be

large ontologies and common sense systems like OpenCyc12 or Cyc, where first-order

representation seems to be used (at least at some level).

Related is also the normal database technology that is being used, e.g., in the

MMLQuery5 system for Mizar and also in corresponding projects done for other

systems. This technology is good for various symbol-based queries, like “Give me

all theorems containing all symbols from theorem T1”, but it is hard to extend to

queries involving the term structure.

On the other side, there is the full automated theorem proving, used, e.g., in the

MPTP26 project. Initial experiments with selecting suitable hints and attempting a

proof of an arbitrary theorem from the MML are described in26, but at the time of

bIts axiomatics is the Tarski-Grothendieck set theory22,23 which is very close to ZFC. Therefore
the language allows infinite schemes of axioms (like Replacement) and theorems parameterized by

second-order variables. The usage of such second-order features is however quite rare and limited

by the language.

4 Josef Urban

writing this article, MPTP is not yet an interactive tool available to Mizar authors.

This functionality is planned in some short time, but even when it is implemented,

a full theorem proving attempt will typically take a longer time, and will be able to

use only a (well chosen) fraction of MML theorems, because of the high sensitivity

of full theorem proving to the initial number of formulas.

What we want for a system like MoMM are thus just the very efficient index-

ing methods14,11,7,10 developed for automated theorem provers (ATPs), which have

already enabled ATPs to quickly find matchings or unifications in clause sets con-

taining millions of clauses, without those parts of ATPs which generate new clauses.

MoMM is based on such indexing methods implemented in the E prover17, and it

started as a modified version of the CSSCPA20 subsumption tool written by Stephan

Schulz and Geoff Sutcliffe.

2. Basic Description

MoMM is available at the author’s sitec and it now consists of the following parts

(1) The main matching and interreduction tool (also called MoMM), based on ver-

sion 0.7 of the E prover17, particularly on the CSSCPA tool written by Stephan

Schulz and Geoff Sutcliffe.

(2) The programs exporting the MML into a clause-like (TPTP21-like) format suit-

able for MoMM.

(3) The interreduced clausebasesd created from MML. Some of them are comple-

mented with termbankse which speed up their fast-loading.

This distribution is tailored to the real-time interaction during authoring Mizar

articles, therefore the clausebases are already suitably interreduced and for some of

them terms are dumped into termbanks, which accelerates their fast-loading for the

real-time interaction. The “raw” (i.e. noninterreduced) clausebases corresponding

to the MMLf can be downloaded from the author’s siteg. The export programs

(relcprem and tptpexp available in the distribution) can be used to build the “raw”

clausebases from any compatible Mizar distribution.

An important part of the MoMM’s functionality is implemented in the Mizar

mode for Emacs25, which is available in the standard Mizar distribution and there-

fore does not have to be included in the MoMM distribution. This part provides a

user interface allowing real-time interaction with MoMM during authoring Mizar

articles.

The MoMM production and usage stages can be described as follows:

chttp://kti.ms.mff.cuni.cz/˜urban/MoMM/MoMM.tar.gz
dfiles containing clauses in a format suitable for direct loading into E’s datastructures
efiles containing terms in an abbreviated notation suitable for direct loading into E’s datastructures
fversion 4.04.834
ghttp://kti.ms.mff.cuni.cz/˜urban/MoMM/MoMM834 raw.tar.gz

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 5

(1) Exporting MML to the clause-like format. Currently both the main Mizar the-

orems (about 64,000 clauses) and all Mizar internal lemmas (about 860,000

clauses) are exported.

(2) Interreducing the exported clausebases. This has many options and can also

provide useful statistics and hints for refactoring of the MML.

(3) Fast-loading MoMM with suitable clausebases during authoring new Mizar ar-

ticles.

(4) Using a modified Mizar verifier (very similar to the exporting tool) which gen-

erates MoMM queries from the currently authored article (typically from the

parts which are not accepted by the Mizar checker, i.e. lacking sufficient justi-

fication).

(5) The generated queries are associated with their counterparts in the Mizar ar-

ticle, and the author can use the interactive Emacs functions for sending the

queries to the MoMM process.

(6) If such a query is successful (i.e. a match was found by MoMM) and it is a

MML theorem, it can be used for direct justification of the corresponding Mizar

formula. If the match is an unexported Mizar lemma, the author is presented

with its exact position in the MML and can copy its justification into his article.

3. Implementation of MoMM

As noted, the main matching and interreduction tool is based on the E prover and

derived from the CSSCPA tool. The E prover is a clausal first order theorem prover,

the main data structures are clauses made of literals. E is an equational prover, so

predicates and functors are treated almost in the same way by the implementation.

Atomic formulas are represented as pairs of terms, expressing their equality, and

a special term TRUE accompanies in these pairs all the “terms” which have a

non-equality predicate in the top position. E’s main indexing data structure is the

perfect discrimination tree, described, e.g., in14. There are other efficient indexing

techniques, e.g., the code trees or context trees11, however perfect discrimination

trees are still among the most efficient, and apart from being used in E, e.g., the

very efficient Waldmeister equational prover8 has been using them for several years.

One of the first things that had to be changed in E’s implementation of the per-

fect discrimination trees was its usage of a dynamic array indexed by the functor

codes at each node. We want to load all MML theorems into MoMM, and want to

make it possible for normal Mizar users, without any special hardware. The prob-

lem is that MML has a very large signature - about 7,000 functors and predicates

are created from various Mizar constructorsh. Having an array 7,000 integers long

at each tree node consumes memory very quickly. After some experimenting the

dynamic array was replaced with a splay tree19i of functor codes at each node, and

hThe Mizar syntax and logic is richer than the standard predicate calculus, see the next two

sections for explanation of Mizar constructors and their translation for MoMM.
iSplay tree is a common data structure in E.

6 Josef Urban

the memory consumption dropped very significantly. The expected drop in speed

actually did not come (about 1 percent), which was quite surprisingj.

To speed up the subsumption a bit further, a signature pretest for pairs of clauses

was implemented. Each term keeps an array of its symbols, which is cheap thanks

to the banks of shared terms used in E. Such an array is also created for each clause,

and we reject the subsumption, if the subsumer contains symbols that are not in the

candidate for subsumption. The speed up was about 50 percent. Recently, similar

functionality has been implemented by Stephan Schulz in a more advanced way in

E 0.8, so the plan is to switch to his implementation.

Quite significant modifications of the E’s algorithms and data structures have

been done in order to efficiently implement a fast, type-aware subsumption algo-

rithm that would resemble that of Mizar. These modifications are explained later

in this article, after the explanation of the Mizar type system that motivates them.

Despite all these modifications, there still are parts of mathematics formalized in

Mizar that are very hard to deal with in MoMM, and the worst-case complexity

of subsumption can be observed on them. Such parts are, e.g., the formalizations

of various geometric configurations and properties (e.g., the AFF series of Mizar

articles1,2,3,4 and its relatives), where there often occur formulas with many literals

based on just one predicate, with either variables or very shallow terms, and with

very few type constraints. Since computing subsumption between two such formulas

can be very time consuming, we have implemented a hard last-resort limit, which is

currently set to 1,000 literal matchings before we give up with the particular sub-

sumption attempt. This setting has been adjusted experimentally and (depending

on the MML version) it causes roughly hundreds of subsumption attempts to be

aborted. If this should become a serious problem, more “targeted” versions of such

a hard limit are easy to implement.

4. Exporting Mizar for MoMM

4.1. Export of the Mizar language

Mizar is a system for formalizing mathematics by humans, consisting of several

parts. The main “product” of Mizar is its large and growing mathematical library,

containing more than 800 articles from various fields of mathematics. One of the

main concerns of the Mizar designers is the suitability of the Mizar language for

such large scale formalization, which leads to its quite complicated structure. On

the proof level, Mizar is based on the Jaskowski’s system of suppositions9, which is

often put among natural deduction systems13. The language of formulas is basically

first order logic, but since MML is built on a variant of ZFC (Tarski-Grothendieck

jThe measurement of the slowdown caused by this was not exhaustive, but was done on problems

with “normal” small signature. Stephan Schulz has pointed out that the good performance can

be due to the fact that the splay trees rebalance themselves for frequent queries. He also reported

that the development release of E already switches automatically between dynamic arrays and

splay trees, according to their efficiency.

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 7

set theory), a language expressing infinite schemes of axioms is sometimes needed.

This means that some second-order constructs are also allowed, though they appear

only in quite a small part of MML. The symbols in Mizar can be overloaded in dif-

ferent ways (some frequently used mathematical symbols like “∗” or “+” have more

than 100 (re)definitions in the MML), which is indispensable for human authoring.

It is important to know that beneath this (sometimes complicated) notation there

is a semantic layer, in which all symbols are disambiguated into so called “construc-

tors”. This constructor representation is then used for proof checking. There is a

default naming scheme for this constructor representation, used already now, e.g.,

by MMLQuery and MPTP. It is based on numbering of the constructors as they are

defined in the Mizar articles, so e.g. the first mode (type constructor) in the article

SUBSET 1 (with the user symbol “Element”) gets the name “m1 subset 1”. The

transformation from the constructor format back into the user format is generally

difficult, not unique, and sometimes probably impossible. Being a semantic tool,

MoMM obviously has to use this constructor representation took.

4.2. The Mizar type system, Mizar-like Horn theories and their

implementation in MoMM

Mizar employs a number of methods for easy human authoring, many of them fall

into the category that can be generally called “the Mizar type system”. Examples

and explanation of these type rules are presented in24, we will just try to explain

the main ideas here.

The Mizar types are formed by clusters of attributes (e.g., empty, finite, real,

measurable, etc.) that play the linguistic role of adjectives, and by type radices

(e.g. set, Function, Lattice), which provide the main inheritance relationship. Both

attributes and types are semantically predicates, however they differ from Mizar

predicates by the existence of the type and cluster hierarchies. E.g., every type has

to specify its parent type, and obviously, if a formula is universally quantified with

a variable of type T, it can be correctly applied only to variables of type T or

a more special type. Functors also have to specify their result types, and similar

mechanisms are also used for attributes.

The Mizar type system (without the attributive part) as exported in MoMM can

actually be thought of as a Horn theory with some strong “stratification” properties

allowing fast traversal of the type hierarchies. We will call it here a Mizar-like Horn

theory, and give an abstract description that is useful for further understanding of

kHaving more user-friendly names for the Mizar constructors would be useful for all the tools

working with the semantic layer of Mizar and also for communication with other formalization

projects. However keeping such names in an external table outside the MML would quickly make

such a table outdated, since the MML is very often revised. The proper solution seems to be

keeping unique user-friendly names inside Mizar articles. This would however require a simple

addition to the Mizar language, and some additional effort either from the Mizar authors or from
the Library Committee.

8 Josef Urban

the type representation employed in MoMM. It might be useful also as an example

of one particular way of dealing with term-dependent type hierarchies which are

preferred in several proof assistants28 to the simple non-dependent type hierarchies

for their expressivity, but are generally more difficult to implement in a decidable

and fast way. We start with an example from MML, to make the formal definition

easier to understand.

Example 4.1. In the following Mizar definition (taken from article RELSET 1) the

result type of the functor dom (domain of relation of sets X,Y) is set to the param-

eterized type Element of bool X. The parameter of this result type is the term bool

X (the set of subsets of X, i.e., its powerset). This definition just says that domain

of relation of X,Y is subset of X.

definition let X,Y be set, R be Relation of X,Y;

redefine func dom R -> Element of bool X;

end;

The absolute names are as follows:

Mizar symbol dom Element bool Relation set

MoMM name k4 relset 1 m1 subset 1 k1 zfmisc 1 m2 relset 1 m1 hidden

Since dom is here defined for the argument R with the parameterized type

Relation of X,Y, it depends not only on R, but also on R’s parameters X and Y .

X and Y are called hidden arguments l of the functor dom. Hidden arguments are

computed by Mizar from the user notation, and they are used explicitly on the

semantic (constructor) layer. Therefore the constructor k4 relset 1 corresponding

to dom takes three arguments, and the Horn clause created from this definition is

m1_subset_1(k4_relset_1(A1,A2,A3),k1_zfmisc_1(A1)).

Definition 1. Mizar-like Horn theory M

(M1) The signature of a Mizar-like Horn theory M is finite, and consists of the

disjoint sets of functor symbols FsM and type symbols TsM . There is a given

linear ordering <M of the set of all symbols (i.e., FsM ∪TsM). This is the order

in which the symbols are defined in the MML.

(M2) A Mizar-like Horn theory M is a union of its type hierarchy part THM and

functor types part FTM , i.e., M = THM ∪ FTM . These parts are explained in

the following conditions.

(M3) The type hierarchy part of M is a finite set of Horn clauses of the form:

t1(X,T1, ..., Tm) :- t2(X,Y1, ..., Yn).

lHidden arguments are another convinience for human authoring. Today, several other proof as-

sistants use them in a similar way as Mizar

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 9

Such clauses mean that if X has a (parameterized) type t2, then it also has its

parent type t1, and they must satisfy the following two conditions:

(M3.1) t1, t2 ∈ TsM and t1 <M t2 (i.e. the parent type t1 has to be introduced

earlier in the MML).

(M3.2) T1, ..., Tm are terms over {fl ∈ FsM : fl <M t2}∪{Y1, ..., Yn}, i.e. they use

only the signature defined earlier than t2, cannot introduce new variables and

the “typed variable” X is not allowed in them.

(M4) The functor types part of M is a finite set of Horn clauses of the form:

t(f(X1, ..., Xn), T1, ..., Tm).

Such clauses mean that t is the (parameterized) result type of the functor f , and

they must satisfy the following two conditions (similar to (M3.1) and (M3.2)):

(M4.1) t ∈ TsM , f ∈ FsM and t <M f (i.e. the result type t has to be introduced

earlier in the MML).

(M4.2) T1, ..., Tm are terms over {fl ∈ FsM : fl <M f}∪{X1, ..., Xn}, i.e. they use

only the signature defined earlier than f , and cannot introduce new variables.

Note that in this definition nothing prevents multiple inheritance both for the

types and for the functors. The usage of multiple inheritance in Mizar is however

quite limited (to the Mizar structures). Also note that the parent and result type

clauses are completely insensitive to the types of arguments. This may feel counter-

intuitive to Mizar users, who are accustomed to the vast parametric polymorphism

in Mizar (e.g. a more special result type can be given for a functor, when it has

more special argument types), however this is really a faithful description of how

Mizar behaves at the constructor level. The parametric polymorphism is dealt with

in Mizar simply by having formally different constructors (i.e., functors and types)

with different parent or result types when polymorphism occurs. The bottom line

of this approach is that equality of the various polymorphic variants is internally

used in many places in Mizar, while it is not captured by the notion of a Mizar-like

Horn theory, and therefore neither by the current MoMM subsumption algorithm,

which is based on that notion. This makes the matching in MoMM weakerm than

in Mizar and it could probably be improved in the future by similar techniques as

in Mizar, i.e. by keeping tables of the same polymorphic variants and doing the

matching “modulo” them.
We want MoMM subsumption algorithm (described below) to be aware of the

Mizar type hierarchies. For that, we need to be able to determine the types of terms
during matching and quickly traverse the parent type hierarchy. For the relatively
simple Mizar-like Horn theory of the nonattributive part of the Mizar type system,
it is implemented in MoMM in the following way. The Horn theory of the Mizar
types is exported as a special typetablen, which for each functor or type tells how
to obtain its result or parent type (if it is nontrivial). This information is then used

mIt is hard to quantify exactly how much weaker this makes the MoMM matching than the Mizar
matching. The estimate is that the “polymorphism identification” can be involved in ca. 10 - 20%

of Mizar matchings.
nThis is the file all.typ in the MoMM distribution.

10 Josef Urban

by MoMM for proper computing of the complete set of types for each (nonvariable)
term. The types of variables obviously have to be kept in the clauses. Hence, e.g., for
the functor k4 relset 1 (user symbol dom, see Example 4.1 above) the exported
typetable entry is:

type(k4_relset_1(A1,A2,A3),m1_subset_1(k4_relset_1(A1,A2,A3),k1_zfmisc_1(A1))).

To get a type of a term with the top-level functor k4 relset 1, MoMM will first

match its arguments against the variables A1, A2, A3, and then instantiate the par-

ent type

m1_subset_1(k4_relset_1(A1,A2,A3),k1_zfmisc_1(A1))

with the resulting substitution. Thanks to the usage of banks of shared terms in

E, we do this only once for each term, and remember the beginning of its type

hierarchy in an added “type” slot of the term structure. The type hierarchy is

always finite, thanks to the strong “stratification” properties of Mizar-like Horn

theories, and the type literals forming it can be normally shared in E’s common

termbanks, thanks to the above mentioned insensitivity of the Mizar-like Horn

theory clauses to the types of its argument termso. This mechanism allows us to

access the complete (nonattributive) type hierarchy for a given nonvariable term

when it is needed, i.e., not only its immediate parent type, but all of its ancestor

types. This implementation has currently one drawback: it pretends that there is

no multiple inheritance in Mizar. Having multiple inheritance requires generally

an array of parent types instead of just one “type” slot of the term structure and

some modifications of the type hierarchy traversing algorithms, which is not yet

implemented. So for the rare cases (some structure types) when Mizar uses multiple

inheritance, we export only the first parent type to the typetable. This is a limitation

which may make the typed subsumption fail in cases when it succeeds in Mizar, but

the frequency of such cases is quite low.

To handle the types of variables, we use the fact that they are normalized in

clauses and keep their types in a fixed array associated with the clause, where

look-up can be done according to their numbers. Variables can be given only one

initial type in Mizar formulas, and its ancestor hierarchy is again normally accessible

through its “type” slot. The situation is more complicated with Mizar attributes,

as we explain in the next subsection.

4.3. Attributive extensions of the Mizar-like Horn theories and

their implementation in MoMM

The attributive part of the Mizar type system is a bit more complicated and it is

no longer a Horn theory because negated versions of attributes (e.g. “non empty”)

oNote that this would be hard to do, if the parent type of some term could vary, e.g., with varying

of the types of variables contained in it.

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 11

are allowed in its formulationp. It is also more relaxed than the strongly stratified

Mizar-like Horn theory and while direct and fast inheritance algorithms are suffi-

cient for the non-attributive part, graph-based or fixpoint algorithms are needed

for the attributive part. It differs also by generally taking into account the types of

arguments. We start again with an example illustrating the abstract definition.

Example 4.2. In the following Mizar registration (taken from article RELSET 1) the

attribute Relation-like is added to the parameterized type Element of bool [:X,Y:].

This is the type of subsets of the cartesian product of sets X and Y (the meaning of

the functor bool is again powerset, and the meaning of the functor brackets [:X,Y:]

is cartesian product of X and Y).

registration let X,Y be set;

cluster -> Relation-like Element of bool [:X,Y:];

end;

The absolute names are as follows:

Mizar symbol Relation-like Element bool [:,:] set

MoMM name v1 relat 1 m1 subset 1 k1 zfmisc 1 k2 zfmisc 1 m1 hidden

The Horn clause created from this registration is

v1_relat_1(A3) :- m1_subset_1(A3,k1_zfmisc_1(k2_zfmisc_1(A1,A2))),

m1_hidden(A1), m1_hidden(A2).

The literals m1 hidden(A1) and m1 hidden(A2) are actually redundant in this

clause. They encode the types of the parameters X and Y (set), however everything

in Mizar is set, so such literals are always reduced to true and omitted in the MoMM

export. The reason for showing them explicitly in this example is to emphasize that

the clauses (or rather rules) encoding the attributive part of the Mizar type system

generally have to take into account the types (and attributes) of all parameters

present in them. This complication is discussed later below.

Definition 2. Mizar-like type theory with attributes MA

(MA1) MA extends the notion of a Mizar-like Horn theory M by extending M ’s

signature with a finite set of attribute symbols AsMA (disjoint from FsMA and

TsMA). Although in practice the MML ordering <M applies also to AsMA, it

has no significance for the conditions given here.

pIt can be trivially changed into a Horn theory by creating new symbols for the negated attributes

and adding their dependencies, and this is actually used in some parts of the Mizar implementation,
but such renaming is not currently used in the MoMM export. The Horn-like presentation is more

elucidating as it suggests one-directional (rule-like) usage of the clauses, which is actually used in

Mizar. Adding new permutations of existing rules really changes Mizar’s behavior.

12 Josef Urban

(MA2) MA adds to the type hierarchy part THMA and functor types part FTMA

the conditional clusters part CCMA and functor clusters part FCMA, i.e. MA =

THMA ∪ FTMA ∪ CCMA ∪ FCMA. The conditions for THMA and FTMA are

the same as above.

(MA3) The conditional clusters part of MA is a finite set of (generally non-Horn)

clauses (or rather “rules”) of the form:

(not)a1(X) :- (not)a2(X),, (not)an(X), t(X,T1(Ȳ), ..., Tm(Ȳ)), τ(Ȳ).

Such clauses mean that if the variable X has attributes (not)a2,, (not)an

and a (parameterized) type t (with the types of its parameters’ variables Ȳ

specified by the set of type and attribute declarations τ(Ȳ)), then it also has

the attribute (not)a1. The reason for writing the clause in an implicative form is

that the Mizar implementation really makes use of only this implicative version

of the clause, other implicative variants have to be stated explicitly if the user

wants that Mizar used them too. The additional formal specifications are:

(MA3.1) a1, ..., an ∈ AsMA, t ∈ TsMA, T1(Ȳ), ..., Tm(Ȳ) are terms not containing

X with all variables in the set Ȳ = {Y1, ...Yl} and τ(Ȳ) consists of type decla-

rations for the variables (i.e. atoms ti(Yi, T
i
1(Ȳ

i),, T i
mi

(Ȳ i) where i ∈ 1, ..., l,

Ȳ i ⊆ Ȳ \ {Y1, ..., Yi}) and attribute declarations for the variables (i.e. literals

(not)ai
1(Yi), ..., (not)a

i
ni

(Yi) where i ∈ 1, ..., l).

(MA4) The functor clusters part of MA is a finite set of (generally non-Horn)

clauses (or rather “rules”) of the form:

(not)a(T) :- τ(Ȳ).

Such clauses add the attribute (not)a (a ∈ AsMA) to the (nonvariable) term T

(with the types of its parameters’ variables Ȳ specified by the set of type and

attribute declarations τ(Ȳ)). The restrictions on τ(Ȳ) are as in (MA3.1), the

implicative form is used for the same reason as in (MA3).

Later in the article we will need to point out the fact that any M and MA satisfy

the following natural “monotonicity” condition and its extension to the application

of any term context. For its justification, just have a look at the kinds of clauses

present in M and MA.

(Monot) Let Y be a variable declared with the (parameterized) type t and at-

tributes (not)ai, and let T be a term having t (with the same parameters) as

its (not necessarily most special) result type, and also (at least) the attributes

(not)ai. Let θM,MA(Y) be the complete set of type and attribute literals gener-

ated by M and MA for Y , and let θM,MA(T) be the same thing generated for

T . Then θM,MA(Y) subsumes θM,MA(T) with the substitution {Y/T} (i.e. all

types and attributes generated for Y will also be generated for T). Similarly,

for any term context α(.) holds that θM,MA(α(Y)) subsumes θM,MA(α(T)).

Apart from the problem with generally slower (“graph-chasing”) algorithms for

collecting attributes of a given Mizar term, the most problematic aspect of the at-

tributive part of Mizar for a tool like MoMM is that unlike the simple result and

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 13

parent type hierarchies which are absolute across MML (i.e., one functor construc-

tor always gets the same result type, no matter what MML article it is used in), the

attributive part can vary in different articles. The attributive part is controlled by a

special “clusters” directive in each Mizar article and it is a modular, “information-

hiding” method for controlling the context in which Mizar does the verification.

For dealing with the attributive theory, using some “global” method similar to the

global typetable described in the previous subsection is therefore not only signifi-

cantly more difficult, but could also give some quite unexpected results to the Mizar

authors. That’s why we now use Mizar for collecting the terms’ attributes as they

are used in the particular articles and for passing them to MoMM, without any

further attribute computation in MoMM. Unlike in Mizar-like Horn theories, the

attributive theories are in general sensitive to the arguments’ types. This (together

with the article-locality of the attributive theories) prevents us from storing terms’

attributes at some special “attributes” slot of the shared term structure (which

would be similar to the way we store types). The complete attribute information

is therefore kept locally for each clause. For variables, this is again done in a fixed

array indexed by their number in the clause. The attributive literals of nonvariable

terms are kept in a splay tree.

4.4. A simple example of the export

We will now explain with an example the format used by MoMM, and how a Mizar

article is exported into it. Consider the Mizar theorem PARTFUN2:17 (17-th theorem

in article PARTFUN2):

f is one-to-one & x in dom f & y in dom f & f/.x = f/.y implies x = y;

The meaning of this theorem is that for one-to-one partial functions from C to D, an

element of its domain is determined by its value. The variables used in this theorem

have been earlier in the article (context) reserved with the following types:

reserve C,D for non empty set;

reserve f for PartFunc of C,D;

reserve x,y for set;

The first step done by Mizar is to add the quantifications explicitly:

for C,D being non empty set,

for f being PartFunc of C,D,

for x,y being set

holds

f is one-to-one & x in dom f & y in dom f & f/.x = f/.y implies x = y;

The parameterized type PartFunc of C,D is in Mizar just a macro (so called expand-

able mode) that expands to the type Function-like Relation of C,D. The type theory

14 Josef Urban

with attributes used by Mizar for article PARTFUN2 contains both the conditional

cluster described in Example 4.2:

registration let X,Y be set;

cluster -> Relation-like Element of bool [:X,Y:];

end;

and the type hierarchy information for the type Relation of C,D :

definition let X,Y be set;

redefine mode Relation of X,Y -> Element of bool [:X,Y:];

end;

Putting these two declarations together, we can see that the type theory with at-

tributes for PARTFUN2 will generate the attribute Relation-like for the parameter-

ized type Relation of C,D in our theorem. This expansion of PartFunc of C,D to

Function-like Relation-like Relation of C,D is done during the second step of Mizar

processing that also translates the user symbols into the constructors. We give

below the translation table for better orientation. Note also that the constructor

k4 relset 1 corresponding to the symbol dom has arity 3. This hidden parameters

feature is explained above in Example 4.1. Similar change in arity applies to the

constructor k4 finseq 4 corresponding to the user symbol /. (function application).

Mizar symbol dom Element bool Relation

MoMM name k4 relset 1 m1 subset 1 k1 zfmisc 1 m2 relset 1

Mizar symbol Relation-like Function-like empty one-to-one

MoMM name v1 relat 1 v1 funct 1 v1 xboole v2 funct 1

Mizar symbol /. = set in

MoMM name k4 finseq 4 r1 hidden m1 hidden r2 hidden

for C,D being non v1_xboole_0 m1_hidden,

for f being v1_funct_1 v1_relat_1 m2_relset_1 of C,D,

for x,y being m1_hidden

holds

f is v2_funct_1 & r2_hidden(x, k4_relset_1(C,D,f)) &

r2_hidden(y, k4_relset_1(C,D,f)) &

r1_hidden(k4_finseq_4(C,D,f,x), k4_finseq_4(C,D,f,y)) implies

r1_hidden(x,y)

This transformation to absolute notation alone suffices to make the theorem very

difficult to read. As noted above, attributes and types are just specially handled

predicates, so a formula of the form “for x being T holds P(x)” is translated to “for

x holds T(x) implies P(x)”. Hence our formula becomes:

for C,D,f,x,y holds

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 15

(not v1_xboole_0(C) & m1_hidden(C) &

not v1_xboole_0(D) & m1_hidden(D) &

v1_funct_1(f) & v1_relat_1(f) & m2_relset_1(f,C,D) &

m1_hidden(x) & m1_hidden(y)

)

implies

(v2_funct_1(f) & r2_hidden(x, k4_relset_1(C,D,f)) &

r2_hidden(y, k4_relset_1(C,D,f)) &

r1_hidden(k4_finseq_4(C,D,f,x), k4_finseq_4(C,D,f,y)) implies

r1_hidden(x,y)

)

The type set (m1 hidden) has no semantic content, everything in Mizar is set,

so such atomic formulas can be completely eliminated. Additionally, we clausify

the formula (which here results in only one clause), replace the Mizar equality

(r1 hidden) with E’s equality (equal), and put the “context information” (i.e. the

type and attribute literals) in the end. The result is in file partfun2.ths in the

MoMM distributionq:

accept: pos(partfun2, 1, 17, 219, 69, 0)

input_clause(th,axiom,

[--v2_funct_1(C_f)

, --r2_hidden(C_x,k4_relset_1(C_C,C_D,C_f))

, --r2_hidden(C_y,k4_relset_1(C_C,C_D,C_f))

, --equal(k4_finseq_4(C_C,C_D,C_f,C_x),k4_finseq_4(C_C,C_D,C_f,C_y))

, ++equal(C_x,C_y)

, --v1_relat_1(C_f)

, --v1_funct_1(C_f)

, --m2_relset_1(C_f,C_C,C_D)

, ++v1_xboole_0(C_C)

, ++v1_xboole_0(C_D)

, --$true], 6).

The number of literals obtained in this way is usually quite high, mainly be-

cause of the context literals. Clauses with 40 context literals are no exception. As

we explained above, the context information is handled specially in MoMM. The

number 6 following the literal list tells MoMM that the context literals start at that

position.

The initial line gives the status (accept - see below for its explanation) of the

clause, and its Mizar position. It contains

(1) The article name

qThe variables there are however numbered, while here they are created by prepending “C ” to
the original variable name, for better readability.

16 Josef Urban

(2) The kind of the exported clause (1 for theorems, 2 for definitional theorems, 3

for functor property formulas, etc.).

(3) Theorem or definition number if the kind is 1 or 2, otherwise 0.

(4) Line number in the Mizar article.

(5) Column number in the Mizar article.

(6) The serial number of the clause generated from this Mizar formula - sometimes

there are hundreds or thousands of clauses created from a single formula.

The status is used to tell MoMM what it should do with the clause. Status accept

means that tautology check and both forward and backward subsumptions should

be tried. There are several other statuses, documented in the MoMM help, e.g.,

the status nsaccept is used for fast loading of a clause base, without trying any

reductions.

4.5. Export of the proof lemmas

We export not only the main Mizar theorems, e.g., the PARTFUN2:17 given above,

but the great majority of the MoMM clauses are created by exporting the internal

lemmas introduced inside the proofs of the main Mizar theorems. There are two

kinds of these lemmas, those with a Simple Justification and those with a Proof.

The Simple Justification lemmas generally look as follows in Mizar:

A3: ψ by A1,A2,PARTFUN2:17;

This tells Mizar, that the formula ψ should be provable by the local references

A1,A2 and the MML theorem PARTFUN2:17. Both the formula ψ and the formulas

denoted by A1 and A2 can, apart from the standard Mizar signature, also contain

local constants, created on various levels of the Jaskowski-style proofs. The Mizar

checker is presented with the types of these local constants, the negation of ψ and

the formulas A1, A2 and PARTFUN2:17, and tries to infer a contradiction. The

Simple Justification lemmas are exported as implications

for local constants holds
∧
references implies conjecture;

This would be in our case

for local constants holds A1 ∧A2 ∧ PARTFUN2 : 17 implies ψ;

The changing of the local constants to universally quantified variables (with corre-

sponding types) is justified by the standard theorem about constants and the fact

that the only knowledge the checker has about them are their types. The reference

PARTFUN2:17 is a Mizar theorem, whose validity does not depend on any possible

suppositions done along the proof path to ψ. Therefore it can be removed from the

exported lemma, which then contracts just to

for local constants holds A1 ∧A2 implies ψ;

Note that in this kind of export only the universally valid theorems can be removed

in this way, the references A1 and A2 might be proved with the use of some local

supposition, and thus not be generally removable. Another kind of export of the

internal lemmas could be implemented by collecting all of the suppositions made

along the proof path to ψ. Such other kinds of export are not yet implemented.

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 17

The export of the internal lemmas with a Proof is similar. Each Proof can be

thought of as a block of justification steps. If we collect all the references used

inside the block, which are not introduced in the block (i.e., are external to it), it

gives the set of formulas from which the proved lemma logically follows. Again, the

universally valid theorems can be removed from that set and we can generalize over

all of the local constants.

5. Typed Subsumption in MoMM

We have described above several performance improvements to the basic indexing

and subsumption mechanism in E, however the crucial point is implementation of

a typed subsumption, which treats the context (i.e., type and attribute) literals

specially, in accordance with a given Mizar-like Horn theory M and its (rule-like)

attributive extension MA.

First, let us realize that the semantics of a clause C = {L1, ..., Ln} with vari-

ables Ȳ with initial types given by context literals Θ = {θ1,, θl} is simply
∧

Θ →
∨
C. The normal subsumption in E takes two lists of literals - subsum list

and sub cand list and tries to find a substitution σ such that σ(subsum list) ⊆

sub cand list. This works in theory for typed clauses too, if we put all of the con-

text literals generated by the given Mizar-like Horn theory M and its (rule-like)

attributive extension MA directly into them and treat them as normal clauses. In

more detail, suppose that we have two clauses C1 = {L1
1, ..., L

n1

1 , τ1
1 , ..., τ

m1

1 } and

C2 = {L1
2, ..., L

n2

2 , τ1
2 , ..., τ

m2

2 }, where Lj
i are the normal literals and τ j

i give the

full context information (i.e., full type hierarchies and full attribute information

for all terms in Ci). The sets of context literals {τ 1
i , ..., τ

mi

i } are generated by the

exhaustive application of M and MA to the terms appearing in Li = {L1
i , ..., L

ni

i }

using the initial types and attributes Θi = {θ1
i ,, θ

li
i } of the sets of variables Ȳi of

Ci. Note that in this “explicit context generating” process new terms (but not new

variables) can appear, due to the general parametric form of the clauses in M and

MA, but this process is finite, due to the stratification and finiteness properties of

M and MA and their signature, i.e., given finite initial Θi and Li , the number of

the full explicit context literals τ j
i is also finite.

Now suppose that we have found a substitution σ = {Y 1
1 /T

1
2 ,, Y

l1
1 /T l1

2 } such

that σ(C1) ⊆ C2. That particularly means that all Li
1 matched. It also means that

all of the initial types of variables from C1, e.g. θi
1 = ti1(Y

i
1 , S

1
1 , ..., S

ni

1) matched, i.e.,

that there was a type literal τ i
2 = ti2(T

i
2, S

1
2 , ..., S

ni

2) ∈ C2 such that σ(θi
1) = τ i

2, and

similarly for the initial attributes of these variables. In other words, all the bindings

Y i
1 /T

i
2 are correctly typed, since the bound terms have at least as special types (with

attributes) as required by the variable declarations for Y i
1 . It is easy to see that the

converse holds too, i.e., if there is a correctly typed substitution giving subsumption

on the “normal” literal parts of C1 and C2, it already gives complete subsumption

of C2 by C1 (i.e. also on all the context literals). Just observe (best by looking at

the kinds of clauses (or rules) forming M and MA) that all of the context literals

18 Josef Urban

generated by M and MA for C1 will be generated for the corresponding terms of

C2 too (the (Monot) property given above).

An inspection of the previous argument can confirm the intuitive requirement,

that adding only the initial variable types and attributes Θ1 to L1 is enough, if we

are looking for a subsumption of C2 by C1. This again follows from the (Monot)

property, i.e., once we know that the initial variable types and attributes matched,

we also know that their full context matched, and also any term context applied

to them. This improves the efficiency of the typed subsumption significantly, since

we do not have to include all the additional context literals into the subsumers.

This fact can also be used to decrease the sizes (both in the memory and in the

filesystem) occupied by the clausebanks: if we know that they will only be used

for forward subsumption of other formulas and no backward subsumption will be

applied to them. In that case, the attributive context of all nonvariable terms can

be removed.

The current implementation of the algorithm additionally organizes the literals

in such a way, that the “type checking” is done as early as possible, cutting off

the ill-typed bindings. Note however that the types are parameterized, so the “type

checking” can bind new variables. Therefore the implementation should be thought

of as a special version of a normal subsumption, steered by the additional type

information, rather than thinking of it as of two strictly divided “normal” and

“type checking” parts. The sketch of the subsumption algorithm that we implement

is following:

(1) Start with subsum list equal to the normal literals of the subsumer, and

sub cand list to those of the candidate.

(2) Each time a new variable V is bound, collect its initial types and attributes into

Θ(V) (they are kept in the fixed arrays associated with the clause, as explained

above). Also collect the complete types and attributes of the corresponding

term TV into τ(TV) (the types are obtained by traversing the type hierarchy

starting at the TV ’s “type” slot, the attributes are fetched from the splay tree

associated with the clause, as explained above).

(3) With the current partial substitution, try to find a subsumption between Θ(V)

and τ(TV), this may extend the current partial subsumption.

(4) If success, continue the suspended subsumption job, with the extended substi-

tution, otherwise try backtracking the type subsumption, and if no success the

previous matchings.

Note that the type subsumptions are not special in any way in this, and particularly,

they may also trigger further type subsumptions, when they really instantiate some

variable parameterizing the types. To implement this ’eager’ type checking, we need

a stack of ’subsumption jobs’, that we postponed because of the newly arrived type

subsumption jobs.

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 19

6. Processing Modes

MoMM has two basic purposes: interreduction of a set of clauses, and loading a

(possibly interreduced) set of clauses quickly for giving hints interactively. The pro-

cessing mode is influenced both by command line options, and by the clause status.

The status can tell MoMM, e.g., that a clause should be accepted unconditionally,

or that all checks should be used, and the clause accepted if not redundant, or that

the clause should just be checked and never accepted. The clauses are capable of

keeping the “subsumption” information, i.e., the positions of clauses which they

subsumed (recursively). This can be used after the interreduction for all kinds of

data-mining applications.

For the 65,702 theorem clauses generated from MML (version 7.0.04) we use

a complete mutual interreduction, with a complete Mizar typetable loaded. The

interreduced clause base is then dumped using numerical abbreviations for terms,

into the file all.ths.cb, and the corresponding termbank into the file all.ths.tb.

These files are then typically fast-loaded without any interreductions in a “read-

only” mode, and used for printing theorems that subsume the interactive queries.

The clauses generated from the internal lemmas are first interreduced by the

theorems from their articles, and then all the lemmas generated from one article

are mutually interreduced. This first fast interreduction usually removes a very

large portion of the internal lemmas (ca. 40 percent). Such (partially) interreduced

clausebanks are then compressed and available for the interactive use in the same

way as the theorems.

7. Results

The complete interreduction of the 65,702 typed theorem clauses from MML 7.0.04

takes about 9 minutes and about 180M RAM on Pentium 4 3GHz. The subsequent

fast loading of the interreduced theorem clause bank takes 14 seconds and 140M

RAM on the same machine. It is possible to load MoMM only with a part of the

MML theorems, but is seems that these time and space requirements are today

within the reach of most Mizar users.

Recently we have also tried an interreduction of the 860,000 clauses generated

from the internal Mizar lemmas, but without the backward subsumption. This in-

terreduction took 36 minutes and 1.4 GB RAM on Pentium 4 3GHz. More than a

half of the clauses were subsumed, and the strongest clauses subsumed a very high

number (thousands) of others, and thus suggest many useful changes to the struc-

ture of the MML. The Figure 1 below shows the cumulative subsumption counts for

this interreduction experiment, the border value means that the strongest 100,000

lemmas subsumed ca. 400,000 of other Mizar lemmas.

After the interreduction of the MML theorems, we are left with 64,009 clauses,

so 1,695 clauses generated from MML theorems are redundant, usually subsumed.

This finding alone confirms the necessity of tools like MoMM for management of

large libraries of formalized mathematics. There is quite a lot of attention paid

20 Josef Urban

Fig. 1. Cumulative subsumption counts of the internal lemmas

0

50000

100000

150000

200000

250000

300000

350000

400000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

"00test.tp6"

to the compactness and integrity of MML, however even the best informed main-

tainers cannot keep precise track of some 40,000 theorems. The information about

redundant theorems is available for further analysis in the interreduced clause bank

all.ths.cb in the distribution, because each time a clause C1 subsumes clause

C2, the position information of C2 is added to the “subsumed” list of C1. The

subsumption theorem pairs found by MoMM can be also viewed at the author’s

siter.

8. Problems and Future Work

There are still number of possibilities for improving the basic type subsumption

algorithm, both in the Mizar export and in MoMM. As noted, clusters are imple-

mented differently to types, because their hierarchy in Mizar is more complicated.

Also the export of Mizar structures pretends that they only have one ancestor in

the type hierarchy, while they usually inherit from more than one parent structure.

This is rather a problem of the export, and the appropriate tables in MoMM, the

subsumption algorithm itself can already deal with multiple inheritance.

The second order features of Mizar are not exported now, providing a solution

for this part of Mizar would be useful too. It is hard to say, how difficult that

would be. Generally, a certain kind of a “brute force” principle works for us even

if there are now such holes in the implementation: If a second order feature is used

often, it will often be formulated in its most frequently used first order instances,

and these we will capture. This is true, because we not only export theorems, but

also other (correctly generalized) parts of Mizar proofs, e.g., subproofs and simple

justifications.

Other mechanisms than just subsumption can be probably quite easily added,

going in the direction of a limited theorem prover. We might print not just the exact

rhttp://ktiml.mff.cuni.cz/˜urban/MoMM/pos1.cb2

MoMM - Fast Interreduction and Retrieval in Large Libraries of Formalized Mathematics 21

match if it is found, but also try to select the “best” matches (e.g., in terms of the

number of literals subsumed, etc.), and show them to users.

The dealing with types now differs from the MPTP export. Some compatibility

between the two would be useful, to be able to use MoMM as a fast postfilter e.g.

when using the MPTP translation with some prover as a theorem discovery tool.

9. Acknowledgments

Obviously my thanks go to Stephan Schulz, for implementing and GPL-ing the

E prover, which is not just very efficient, but also extremely cleanly written and

documented. Thanks also to Geoff Sutcliffe, who is (at least) a co-author of the idea

of the CSSCPA filter, which is a real Father of MoMM.

Thanks also to the anonymous referees for their numerous suggestions, which

significantly improved the language and presentation of this article.

References

1. Oryszczyszyn H. and Prazmowski K. [1990], Parallelity and Lines in Affine Spaces.
Journal of Formalized Mathematics, Volume 2, 1990.

2. Oryszczyszyn H. and Prazmowski K. [1990], Classical Configurations in Affine Planes.
Journal of Formalized Mathematics, Volume 2, 1990.

3. Kusak E., Oryszczyszyn H. and Prazmowski K. [1990], Affine Localizations of Desar-
gues Axiom. Journal of Formalized Mathematics, Volume 2, 1990.

4. Leonczuk W., Oryszczyszyn H. and Prazmowski K. [1990], Planes in Affine Spaces.
Journal of Formalized Mathematics, Volume 2, 1990.

5. Bancerek G. [2003], Information Retrieval in MML, In Andrea Asperti, Bruno Buch-
berger, James Davenport (eds.), Mathematical Knowledge Management, Proceedings
of MKM 2003, LNCS 2594.

6. Christiane Fellbaum (editor), WordNet: An Electronic Lexical Database. The MIT
Press, May 1998, ISBN 0-262-06197-X.

7. Graf P., Term Indexing. Springer, 1996, ISBN:3540610405.
8. Thomas Hillenbrand: Citius altius fortius: Lessons learned from the Theorem Prover

WALDMEISTER. Electr. Notes Theor. Comput. Sci. 86(1): (2003)
9. Jaskowski, S. (1934) On the Rules of Suppositions in Formal Logic” Studia Logica

v.1.
10. McCune, W, W. [1992], Experiments with Discrimination-Tree Indexing and Path

Indexing for Term Retrieval. J. Autom. Reasoning 9(2): 147-167 (1992).
11. Robert Nieuwenhuis, Thomas Hillenbrand, Alexander Riazanov and Andrei Voronkov

On the Evaluation of Indexing Techniques for Theorem Proving Int. Joint Conf. On
Automated Reasoning (IJCAR), Siena, Italy, 2001.

12. OpenCyc home page at http://www.opencyc.org/
13. Pelletier F. J. [1999], A Brief History of Natural Deduction. History and Philosophy

of Logic, vol. 20 (1999), pp. 1 - 31.
14. Ramakrishnan I. V. R. C. Sekar, Andrei Voronkov [2001]: Term Indexing. Handbook

of Automated Reasoning 2001: 1853-1964
15. Rudnicki P. [1992], An Overview of the Mizar Project, Proceedings of the 1992 Work-

shop on Types for Proofs and Programs, Chalmers University of Technology, Bastad.
16. Rudnicki, P. and Trybulec, A. [1999], On Equivalents of Well-foundedness. An ex-

22 Josef Urban

periment in Mizar, Journal of Automated Reasoning, Vol. 23, pp. 197 - 234, Kluwer
Academic Publishers, 1999.

17. Schulz S. [2002], E – A Brainiac Theorem Prover, Journal of AI Communications, Vol.
15, pp. 111-126.

18. Schulz S. [2001], Learning Search Control Knowledge for Equational Theorem Prov-
ing, In F. Baader and G. Brewka and T. Eiter (Eds.), Proceedings of the Joint Ger-
man/Austrian Conference on Artificial Intelligence (KI-2001), LNAI Vol. 2174, pp.
320–334, Springer.

19. Sleator D. D. and Tarjan E. R. [1985], Self-adjusting binary search trees, Journal of
the ACM, Volume 32 , Issue 3, pp. 652 - 686, ACM Press, 1985.

20. Sutcliffe, G. [2001], The Design and Implementation of a Compositional Competition-
Cooperation Parallel ATP System. In de Nivelle, H. and Schulz, S. (eds.), Proceedings
of the 2nd International Workshop on the Implementation of Logics, Havana, Cuba,
2001, Max-Planck-Institut für Informatik, Research Report nr. MPI-I-2001-2-006, pp.
92-102

21. Sutcliffe G. and Suttner C.B. [1998], The TPTP Problem Library: CNF Release v1.2.1,
Journal of Automated Reasoning, Vol. 21/2, pp. 177-203.

22. Tarski A. [1939], On Well-ordered Subsets of any Set, Fundamenta Mathematicae,
vol.32 (1939), pp.176-183

23. Trybulec A., Tarski Grothendieck Set Theory, Journal of Formalized Mathematics, 1,
1989.

24. Urban J. [2003], Translating Mizar for First Order Theorem Provers. In Andrea As-
perti, Bruno Buchberger, James Davenport (eds.), Mathematical Knowledge Manage-
ment, Proceedings of MKM 2003, LNCS 2594.

25. Urban J. [2002], MizarMode: Emacs Authoring Environment for Mizar, available on-
line at http://kti.mff.cuni.cz/˜urban/MizarModeDoc/html/

26. Josef Urban. MPTP - Motivation, Implementation, First Experiments. Ac-
cepted to editors Ingo Dahn, Deepak Kapur and Laurent Vigneron - Jour-
nal of Automated Reasoning, First-Order Theorem Proving Special Issue.
Kluwer Academic Publishers (supposed publication: 2005). Available online at
http://kti.ms.mff.cuni.cz/˜urban/MPTP/mptp-jar.ps.gz.

27. Wiedijk F. [2000], CHECKER - notes on the basic inference step in Mizar. available
at http://www.cs.kun.nl/˜freek/mizar/by.dvi

28. Wiedijk F. [2003] Comparing mathematical provers, In Andrea Asperti, Bruno Buch-
berger, James Davenport (eds.), Mathematical Knowledge Management, Proceedings
of MKM 2003, LNCS 2594, pp. 188-202.

