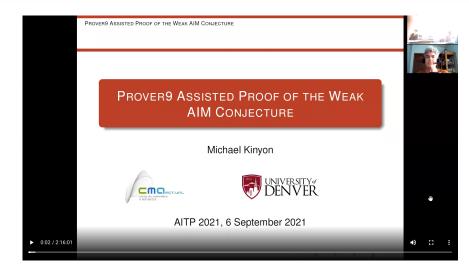
Trends in Reasoning (and AI?)

Josef Urban

Czech Institute for Informatics, Robotics and Cybernetics Czech Technical University in Prague

European Research Council Established by the European Commission


JOSEF URBAN (CTU, PRAGUE) AI4REASON

Computers Checking Large Math Proofs

JOSEF URBAN (CTU, PRAGUE) AI4REASON

Computers Proving Open Conjectures Automatically

Computers Proving Math Theorems Automatically

ENIGMA - The Rise of Computronium

Inbox ×

Josef Urban <josef.urban@gmail.com> Jul 26, 2021, 9:47 AM ☆ ← to Undisclosed, bcc: Stephan, bcc: Michael, bcc: Lawrence, bcc: Michael, bcc: Jesse, bcc: T ◄

:

I am happy to announce that the ENIGMA system ([1],[2],[3],[4],[5],[12],[18],[25]) of the E ([8],[9],[13]) lineage, helped by its Deepire ([22],[23],[24]) Vampiric ([26],[27]) cousin, has reached today the landmark of 75% automatically proved Mizar top-level problems.

This is measured in a setting when the premises for the proof can be selected from the library either by a human or by a machine.

Leibniz's/Hilbert's/Russell's Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems

bv reduction to logic/computation


[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis] AI4REASON

JOSEF URBAN (CTU, PRAGUE)

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?
- Pattern-matching, analogy, induction from examples
- Deductive reasoning
- Complicated feedback loops between induction and deduction
- Using a lot of previous knowledge both for induction and deduction
- We need to develop such methods on computers
- Turing: Logic is a *game* in which Math, Computing & Science is played
- So let's develop strong AI for large logic, math, science!

Applications – Verified Operating Systems

Minimal Example – Proving Equivalence of Two Programs

```
(* simple list reversal - runs in quadratic time *)
primrec rev :: "'a list => 'a list" where
"rev [] = []" |
"rev (x # xs) = rev xs @ [x]"
```

```
(* more advanced list reversal - runs in linear time *)
primrec itrev:: "'a list => 'a list => 'a list" where
  "itrev [] ys = ys" |
  "itrev (x#xs) ys = itrev xs (x#ys)"
```

```
strategy CDInd=Thens [Conjecture,Fastforce,Quickcheck,DInd]
strategy DInd_Or_CDInd = Ors [DInd, CDInd]
```

```
lemma "itrev xs [] = rev xs"
find_proof DInd_Or_CDInd
apply (subgoal_tac "\forall y. itrev xs y = Demo.rev xs @ y")
apply fastforce
apply (induct xs)
apply auto
done
```

The Technology: Automated Theorem Provers

Theorem Proving: Big Picture

Feedback loops between reasoning and learning

- 70% improvement of the best prover by ML/RL
- From 14933 proofs to 25397 proofs
- 75% of the Mizar corpus reached in July 2021 higher times and many runs:

https://github.com/ai4reason/ATP_Proofs

							$\mathcal{S}\oplus\mathcal{M}_9^2$	
solved	14933	16574	20366	21564	22839	22413	23467	22910
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845

	$\mathcal{S}\odot\mathcal{M}^3_{12}$	$\mathcal{S} \oplus \mathcal{M}^3_{12}$	$\mathcal{S}\odot\mathcal{M}^3_{16}$	$\mathcal{S} \oplus \mathcal{M}^3_{16}$
solved	24159	24701	25100	25397
$\mathcal{S}\%$	+61.1%	+64.8%	+68.0%	+70.0%
$\mathcal{S}+$	+9761	+10063	+10476	+10647
$\mathcal{S}-$	-535	-295	-309	-183

Future Potential - Science

- Use strong Al/reasoning and formal verification for:
- Science
 - Routinely verify complex math, software, hardware?
 - Make all of math/science computer-understandable?
 - Strong AI assistants for math/science?
- Examples
 - Automatically understand/verify/explain all arXiv papers?
 - Can we train a superhuman system like AlphaGo/Zero for math/physics? What will it take?
 - Can we prove that the Amazon Cloud cannot be hacked?
 - The same for critical government/private IT systems?

Future Potential - Society

- Use strong Al/reasoning and formal verification for:
- Society
 - Leibniz's dream: Let us Calculate! (solve any dispute)
 - J. McCarthy: Mathem. Objectivity and the Power of Initiative
 - Al/reasoning assistants for law/regulations
 - Verification of financial, transport/traffic systems, ...
 - Explainable and very securely verified systems
- Examples
 - Prove that two Paris metro trains will never crash?
 - Prove that a trading system doesn't violate regulations?
 - Prove that a new law is inconsistent with an old one?
 - Automatically debunk fallacies in political campaigns?

Misconceptions

- Rule based vs statistical vs symbolic:
- "symbolic" includes practically all human-written programs!
- this is a huge AI target! by no means "old" or "outdated by sub-symbolic"
- Alphazero is a rule based system. Anything programmed by humans is rule based. But, unlike many other systems, it also creates rules by itself.
- Push back against the superimportance of data:
- alphazero learns from scratch by self play
- the same for our math problem solving with the benefit of getting very unusual solutions
- unclear how much the current large language models generalize, understand logic, compute ...