FIRST EXPERIMENTS WITH NEURAL TRANSLATION OF INFORMAL MATHEMATICS TO FORMAL

Qingxiang Wang Cezary Kaliszyk Josef Urban

University of Innsbruck

Czech Technical University in Prague

ICMS 2018 July 25, 2018

Two Obstacles to Strong Al/Reasoning for Math

- Low reasoning power of automated reasoning methods, particularly over large complex theories
- Lack of computer understanding of current human-level (math and exact science) knowledge
 - The two are related: human-level math may require nontrivial reasoning to become fully explained. Fully explained math gives us a lot of data for training AI/TP systems.
 - And we want to train AI/TP on human-level proofs too. Thus getting interesting formalization/ATP/learning feedback loops.
 - In 2014 we have decided that the AI/TP systems are getting strong enough to try this. And we started to combine them with statistical translation of informal-to-formal math.

ProofWiki vs Mizar – our CICM'14 Example

// NB: Informal proofs are buggu!

Example: ProofWiki vs Mizar vs Mizar-style automated proof

```
== Theorem ==
                                                      Th9: e1 is_a_left_unity_wrt o &
Let (S, \circ) be an [[Definition:Algebraic Struc-
                                                      e2 is_a_right_unity_wrt o implies e1 = e2
                                                      proof
ture|algebraic structure]] that has a [[Definition:Zero
                                                      assume that A1: e1 is_a_left_unity_wrt o and
Element|zero element|] z \in S. Then z is unique.
                                                      A2: e2 is_a_right_unity_wrt o;
== Proof ==
                                                      thus e1 = o.(e1,e2) by A2, Def6 .= e2 by A1, Def5;
Suppose z_1 and z_2 are both zeroes of (S, \circ).
                                                      end:
Then by the definition of [[Definition:Zero Ele-
ment|zero element|]:
                                                      z1 is_a_unity_wrt o & z2 is_a_unity_wrt o
z_2 \circ z_1 = z_1 by dint of z_1 being a zero;
                                                      implies z1 = z2 proof
z_2 \circ z_1 = z_2 by dint of z_2 being a zero.
                                                      assume that A1: z1 is a unity wrt o and
So z_1 = z_2 \circ z_1 = z_2.
                                                      A2: z2 is_a_unitv_wrt o;
So z_1 = z_2 and there is only one zero after all.
                                                      A3: o.(z2,z1) = z1 by Th3,A2; :: [ATP]
{{qed}}
                                                      A4: o.(z2,z1) = z2 by Def 6, Def 7, A1, A3; :: [ATP]
                                                      hence z1 = z2 by Th9.A1.Def 7.A2: :: [ATP]
```

end;

Formal, Informal and Semiformal Corpora

- HOL Light and Flyspeck: some 25,000 toplevel theorems
- The Mizar Mathematical Library: some 60,000 toplevel theorems (most of them rather small lemmas), 10,000 definitions
- Coq: several large projects (Feit-Thompson theorem, ...)
- Isabelle, seL4 and the Archive of Formal Proofs
- Arxiv.org: 1M articles collected over some 20 years (not just math)
- · Wikipedia: 25,000 articles in 2010 collected over 10 years only
- Proofwiki LaTEX but very semantic, re-invented the Mizar proof style

Our Initial Approach/Plan

- There is not yet much aligned informal/formal data
- So try first with "ambiguated" (informalized) formal corpora
- · Try first with non black-box architectures such as probabilistic grammars
- Which can be easily enhanced internally by semantic pruning (e.g. type constraints)
- Develop feedback loops between training statistical parsing and theorem proving
- Start employing more sophisticated ML methods
- Progress to more complicated informal corpora/phenomena
- Both directly: ML/ATP with only cruder alignments (theorems, chapters, etc)
- And indirectly: train statistical/precise alignments across informal and formal corpora, use them to enhance our coverage
- Example: word2vec/Glove/neural learning of synonyms over Arxiv

Work Done So Far: Informalized Flyspeck

- 22000 Flyspeck theorem statements informalized
 - 72 overloaded instances like "+" for vector_add
 - 108 infix operators
 - forget "prefixes" real_, int_, vector_, matrix_, complex_, etc.
 - REAL NEGNEG: $\forall x. --x = x$

```
(Comb (Const "!" (Tyapp "fun" (Tyapp "fun" (Tyapp "real") (Tyapp "bool")) (Tyapp "bool"))) (Tyapp "bool"))) (Abs "A0" (Tyapp "real") (Comb (Const (Const "=" (Tyapp "fu (Tyapp "real") (Tyapp "bool")))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Comb (Const "real_neg" (Tyapp "fun" (Tyapp "real") (Tyapp "real"))) (Var "A0" (Tyapp "real"))))) (Var "A0" (Tyapp "real")))))
```

becomes

```
("(Type bool)" ! ("(Type (fun real bool))" (Abs ("(Type real)"
(Var A0)) ("(Type bool)" ("(Type real)" real_neg ("(Type real)"
real_neg ("(Type real)" (Var A0)))) = ("(Type real)" (Var A0))))))
```

- Training a probabilistic grammar (context-free, later with deeper context)
- CYK chart parser with semantic pruning (compatible types of variables)
- · Using HOL Light and HolyHammer to typecheck and prove the results

Example grammars

Online parsing system

- "sin (0 * x) = cos pi / 2"
- produces 16 parses
- of which 11 get type-checked by HOL Light as follows
- with all but three being proved by HOL(y)Hammer

Flyspeck Progress

Tried Also for Mizar

- More natural-language features than HOL (designed by a linguist)
- · Pervasive overloading
- Declarative natural-deduction proof style (re-invented in ProofWiki)
- · Adjectives, dependent types, hidden arguments, synonyms
- Addressed by using two layers
 - user (pattern) layer resolves overloading, but no hidden arguments completed, etc.
 - semantic (constructor) layer hidden arguments computed, types resolved, ATP-ready
 - · connected by ATP or a custom elaborator

First Mizar Results (100-fold Cross-validation)

Neural Autoformalization (Wang et al., 2018)

- generate about 1M Latex Mizar pairs
- Based on Bancerek's work: journal Formalized Mathematics http://fm.mizar.org/
- train neural seq-to-seq translation models (Luong NMT)
- evaluate on about 100k examples
- many architectures tested, some work much better than others
- very important latest invention: attention in the seq-to-seq models
- more data very important for neural training our biggest bottleneck (you can help!)

Neural Autoformalization data

Rendered LETEX Mizar	If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.
	X c= Y & Y c= Z implies X c= Z;
Tokenized Mizar	
	$X \subset Y \& Y \subset Z \text{ implies } X \subset Z ;$
LATEX	
- EV	
	If $X \simeq Y \simeq Z$, then $X \simeq Z$.
T '	
Tokenized LATEX	
	If $\ X \ \$ $\ X \ \$ $\ X \ \$.

Sequence-to-sequence models - decoder/encoder RNN

Seq2seq with Attention

Neural Autoformalization results

Parameter	Final Test	Final Test	Identical	Identical
	Perplexity	BLEU	Statements (%)	No-overlap (%)
128 Units	3.06	41.1	40121 (38.12%)	6458 (13.43%)
256 Units	1.59	64.2	63433 (60.27%)	19685 (40.92%)
512 Units	1.6	67.9	66361 (63.05%)	21506 (44.71%)
1024 Units	1.51	61.6	69179 (65.73%)	22978 (47.77%)
2048 Units	2.02	60	59637 (56.66%)	16284 (33.85%)

Neural Autoformalization - Mizar to LaTeX

Parameter	Final Test Perplex	Final Test ity BLEU	Identical Statemer	Percentage nts
512 Units Bidirectional Scaled Luong	2.91	57	54320	51.61%

Coverage and Edit Instance

	Identical Statements	0	≤ 1	≤ 2
Best Model	69179 (total)	65.73%	74.58%	86.07%
- 1024 Units	22978 (no-overlap)	47.77%	59.91%	70.26%
Top-5 Greedy Cover - 1024 Units - 4-Layer Bi. Res. - 512 Units - 6-Layer Adam Bi. Res. - 2048 Units	78411 (total) 28708 (no-overlap)	74.50% 59.68%	82.07% 70.85%	87.27% 78.84%
Top-10 Greedy Cover - 1024 Units - 4-Layer Bi. Res 512 Units - 6-Layer Adam Bi. Res 2048 Units - 2-Layer Adam Bi. Res 256 Units - 5-Layer Adam Res 6-Layer Adam Res 2-Layer Adam Res.	80922 (total)	76.89%	83.91%	88.60%
	30426 (no-overlap)	63.25%	73.74%	81.07%
Union of All 39 Models	83321 (total)	79.17%	85.57%	89.73%
	32083 (no-overlap)	66.70%	76.39%	82.88%

Neural Fun – Performance after Some Training

```
Rendered
               Suppose s_8 is convergent and s_7 is convergent. Then \lim(s_8+s_7)=\lim s_8+\lim s_7
LAT⊨X
Input LAT⊨X
                Suppose \{ \{ \{ \{ \} \} \} \} is convergent and \{ \{ \{ \{ \} \} \} \}
                $ is convergent . Then $ \mathbb{ \mathbb{I}}  ( $ _ { 8 } 
                } { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
                \{s \{8\}\} \{+\} \setminus \{nathop \{ rm lim \} \{s \{7\}\} \}.
Correct
                seq1 is convergent & seq2 is convergent implies lim ( seq1
                + seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;
Snapshot-
                x in dom f implies (x * y) * (f | (x | (y | (y | y)
1000
                (x) = (x | (y | (y | (y | y))));
Snapshot-
               seg is summable implies seg is summable ;
2000
Snapshot-
               seq is convergent & lim seq = Oc implies seq = seq ;
3000
Snapshot-
                seg is convergent & lim seg = lim seg implies seg1 + seg2
4000
                is convergent :
Snapshot-
                seq1 is convergent & lim seq2 = lim seq2 implies lim inf
5000
                seq1 = lim_inf seq2 ;
Snapshot-
                seg is convergent & lim seg = lim seg implies seg1 + seg2
6000
                is convergent ;
Snapshot-
                seg is convergent & seg9 is convergent implies
7000
                \lim (seq + seq9) = (\lim seq) + (\lim seq9);
```

Thanks and advertisement

- To push AI methods in math and theorem proving, we organize:
- · AITP Artificial Intelligence and Theorem Proving
- April 8-12, 2019, Obergurgl, Austria, aitp-conference.org
- ATP/ITP/ vs AI/Machine-Learning people, Computational linguists
- · Discussion-oriented and experimental