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Conjecturing in mathematics

Targeted: generate intermediate lemmas (cuts) for a harder conjecture
Unrestricted (theory exploration):

Creation of interesting conjectures based on the previous theory

One of the most interesting activities mathematicians do (how?)
Higher-level Al/reasoning task - can we learn it?
If so, we have solved math:

... just (recursively) divide Fermat into many subtasks ...
+ ... and conquer (I mean: hammer) them away
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A bit of conjecturing history

« The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)

« Combined with automated theorem proving by Colton et al. in early
2000s (HR)

« Theory exploration for Isabelle by Johansson et al (Hipster)
+ Several learning-based/neural approaches by our groups since 2015:

- Based mainly on learning analogies and informalization followed by
probabilistic/neural disambiguation ...

+ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU
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Neural language models - RNNs, Transformers, GPT

- RNNs (recurrent neural nets) for machine translation (Mikolov 2010/12)
- Karpathy’15 - RNN experiments with generating fake Math over Stacks
 Greatly improved on linguistic tasks by a mechanism called attention:
 Learn to “attend to” a certain part of the input

+ Evolved into Transformer (2017) - multiple attention layers

+ GPT (-2,3) - large language models based on Transformer

+ Millions/billions of parameters

» Capable of generating quite credible texts

+ Let’s try to use them for formal-math tasks and combine with ATP!
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Karpathy’s RNN Trained on Stacks

Applications Plac

|2

C  © Notsecure

o|[Z5]

The Unreasonable Effectiveness of Recurrent Neural Networks - Chromium

karpathy.github.io/2015/05/21/rn-effectiveness/

Algebraic Geometry (Latex)

The results above suggest that the model is actually quite good at learning complex syntactic structures.
Impressed by these results, my labmate (Justin Johnson) and | decided to push even further into structured

territories and got a hold of this book on algebraic stacks/geometry. We downloaded the raw Latex source file (a

16MB file) and trained a multilayer LSTM. Amazingly, the resulting sampled Latex almost compiles. We had to
step in and fix a few issues manually but then you get plausible looking math, it's quite astonishing:

For @y, Whero £,,, = 0, hence wo can find a closod subset # in H and
any sets F o X, U isa closed immersion of S, then U — T is a separated algebraic

space
Proof. Proof of (1). I also start we get
5= Spec(R) = U xx U xx U

d the compaialy i, he e prodct coveing we bave o prow the ke
gmwsnt iy 112 Consider the maps M along the set. of points
e e .,m-«.n-“.n of S in U in Section, 77 and the fact that

Hence we abtain a seheme § and any

;:

sce Morphisms, Lemma
i D 2 R i oy o W e

v=tixs, Ui

m we may assume that £ is of finite presentation over

which has a nonzero morphi
S. W clam that Oy  is a scheme where 7,2/, " € §' such that Ox,.» — 9
separate, By Algbr, Lemma 77 e can define a map of complexes GLg (/5"
and we wi [:}

47T is an object of Fxs for

o prove sy we e tha 7 i oving o 2,
odules on C a8 a F-module

0 ad %, exists and let 7, be o presheaf of Oy
o it 0 U7 e e 1 o
* =" Gspect) O = ' F)

s & unique morphism of algebraic stacks. Note that

Arrows = (Seh/S){EE . (Seh/S) s
and

= I(S5,0) — (U, Spec(4))
s an open subset of X. Thus U/ is affine. This is a continuous map of X is the
inverse, the groupoid scheme S,
Proof. See discussion of sheaves of sets. o
Th et forproveany open cvering ollvsfrom the s of Example 7. 1¢ my
replace +atc which gives an open subspace of X and T equal to Sz,
el e e i el b
regular over

Lemma 0.1. Assume (3) and (3) by the construction in the description
[ X| (by the formal open covering X and a single map Proj, (4) =
U compatible with the complez
Set(4) = D(X,Ox 0,
When in this case of to show that @ — Cz/x is stable under the following result
in'the sccond conditons of (1), and (3). This inihes the proc]. By Definion 72
(without clement s when the closed subschemes are catenary. If ' is surjective we
oy assume hat T is connectod with reidue fieds of S Moreover there cios a
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the uniqueness it suffces to check the fact that the following theorem
(1) 1 is loally of finite type. Since § = Spec(R) and ¥ = Spec(R)

Suppose X
Spec(B) 0

Proof. This is form all sheaves of sheaves on X. But given a scheme U and
st dalo morpisn U - X. Lot UU = L. Us b theschene X o
at the schemes X, - X and U = lim, X, a

The following lemuma surjeetive restrocomposes of this mplics that ,
Fipua

Fujs. St I=
Tugo Az works

Lemma 0.2. L
B CT, Since " C T are m

Lemma 0.3. In Situation 7?. Hence we may assume o'

X be a locally Noctherian scheme over S, E
e overig S is @ subset of

o

Prof. W will e the propery wese that p i the mext. unctr (77). O the
other hand, by Lemma. co that

D(Ox:) = Ox(D)

where K is an F-algebra where 6, is a scheme over . o

Sampled (fake) algebraic geometry. Here's the actual p.
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Full Mizar-based datasets for the GPT-2 Training

http://grid0l.ciirc.cvut.cz/~mptp/nn_conj20/

All Mizar articles, stripped of comments and concatenated together (78M)
Articles with added context/disambiguation (156M) (types, names, thesis)
TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation
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http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/

The same example in the four datasets

theorem
for W being strict Submodule of V holds W /\ W =W
proof
let W be strict Submodule of V;
the carrier of W = (the carrier of W) /\ (the carrier of W);
hence thesis by Defl5;
end;
theorem :: ZMODUL01:103

for V being Z_Module
for W being strict Submodule of V holds W /\ W =W

proof

let V be Z_Module; ::_thesis: for W being strict Submodule of V holds W /\ W = W

let W be strict Submodule of V; ::_thesis: W /\ W =W

the carrier of W = the carrier of W /\ the carrier of W ;

hence W /\ W = W by Defl5; ::_thesis: verum

end;

fof ( dl15_zmodulOl , axiom , ! [ X1 1 : ( ( ( ( ( C ( ¢ ( ( ~ ( v2_struct_0 ( X1 ) )
fof ( idempotence_k3_xboole_0 , axiom , ! [ X1 , X2 ] : k3_xboole_0 ( X1 , X1 ) = X1
fof ( tl103_zmodulOl , conjecture , ! [ X1 1 : ( ( ( ( ( ( ( ( ( ( ~ ( v2_struct_0 (
fof ( ¢c_0_3 , plain , ! [ X118 , X119 , X120 , X121 ] : ( ( X121 ! = k7_zmodulOl ( X
cnf ( c_0_6 , plain , ( X1 = k7_zmodulOl ( X4 , X2 , X3 ) | v2_struct_0 ( X4 ) |

c! b0 c=> c& c~ cv2_struct_0 b0 c& cvl3_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvec
c! b0 c=> c& c~ cv2_struct_0 b0 c& cvl3_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvec
c! b0 c! bl c= ck3_xboole_0 b0 b0 b0

8/24



Training GPT-2

+ Train GPT-2 for several weeks on the datasets

+ Save the models for later evaluation

« Print unconditioned samples produced during the training

« Megabytes of conjectures and “proofs” thus available for evaluation
- Addictive experience - don’t look at the samples - too much fun!

« The GPT-2 (linguistic) loss still decreasing after several weeks

Figure: Dataset 2 training and loss.
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Examples of similar theorems generated

# real MML theorem

theorem :: YELLOW10:61

for S, T being non empty up-complete Poset

for X being Subset of S

for Y being Subset of T st X is property(S) & Y is property(S) holds
[:X,Y:] is property(S)

# generated similar statement (nontrivial instantiation)

theorem :: WAYBEL30:56

for R being complete Lattice

for X being Subset of [:R,R:] st X is upper & X is property(S) holds
[:X,X:] is property(S)

# real MML theorem

theorem :: SEQ_4:47

for X being non empty real-membered set

for Y being real-membered set st X ¢c= Y & Y is bounded_below holds
lower_bound Y <= lower_bound X

# generated similar statement (non emptiness omitted)

theorem Th33: :: SEQ_4:33

for X being real-membered set

for Y being real-membered set st Y is bounded_below & X c= Y holds
lower_bound Y <= lower_bound X
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Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥  Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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Conditioned Completion - small premise selection eval

+ Use a trained model to autocomplete a particular formula/term/proof

« Done first on dataset 4 for a smaller selection of theorems about cardinals
+ 369 theorems from the CARD series of Mizar: generate premises

- Done later in a more complete way with full ATP eval

« Higher temperatures: new formulas generated, can contain new symbols
+ Lower temperatures: new formulas but parsable/typable

« Even lower temperatures: only existing premises generated

« Smooth transition from premise selection to conjecturing to symbol
generation!
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Conditioned Completion - original Mizar

- Used a model trained on Dataset 2
- Evaluated on a set of 462 partial formulas from the CARD articles
« Have fun online! - http://grid0l.ciirc.cvut.cz:5500/

for M, N being Cardinal holds

GPT-completes to:

(M =N iff M,N are_equipotent )

(M =N iff not 0 in M ) by ORDINAL3:8;
M x"N =N ' M

(M in N iff not M ¢c= N )

the_rank_of M = the_rank_of N by Th77;
nextcard (Sum M) = M ' N
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Mizar autocompletion server in action

@ Applications Places &

SisjefEEex|slnlela|

< C @ Notsecure | grido1.ciirc.cvut.cz:5500 Q

NUMDEr O SaMples (ewer 1s Taster)

3

Temperature (lower is less chaotic)

1.0

Length of output (shorter is faster)

30

Generate

Sample 1

theorem Tho: :: CARD_1:333
for M, N being Cardinal holds card M c=MV N
proof

let M, N be Cardinal;

Sample 2

theorem Tho: :: CARD_1:333

for M, N being Cardinal holds M ** Nis Cardinal
proof

let M, N be Cardinal; :_thesis: M ** Nis Cardinal
cf(

Sample 3
theorem ThO: :: CARD_1:333
for M, N being Cardinal holds Sum (M --> N) c= M ** N

proof
let M, N be Cardinal; :_thesis: Sum (M

thesis: card M c= M V/

github)

Figure: MGG - Mizar Gibberish Generator. 14/24



Proving the conditioned completions - MizAR hammer

© Applications Places &

emacs@dell
File Edit Options Buffers Tools Index Mizar Hide/Show Help
BERG Save &Undo L]

begin

for M, N being Cardinal holds card M c= MV N by XBOOLE_1:7,CARD_3:44,CARD_1:7,CARD_1:3; ::

for X, Y being finite set st not X is empty & X c=Y & card X = card Y holds X =Y by CARD_FIN:1; ::

for M, N being Cardinal holds
(Min N iff card M c= N ) by Unsolved; :: [ATP details]

for M, N being Cardinal holds
(Min N iff card M in N') by CARD_3:44,CARD_1:9; :: [ATP details]

for M, N being Cardinal holds Sum (M --> N) = M *' N by CARD_2:65; :: [ATP details]

for M, N being Cardinal holds M A (union N) in N by Unsolved; :: [ATP details]

for M, N being Cardinal holds M ** N = N ** M by ATP-Unsolved; :: [ATP details]

-i--- card_tst.miz 3% L47 (Mizar Errors:2 hs Undo-Tree)

Wed 14:42 Wed 14:42

[ATP details]

[ATP details]

Wrote /home/urban/mizwrk/7.13.01_4.181.1147/tst8/card_tst.miz
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Initial ATP Evaluation - part 1

« Uses Dataset 4 - ATP-ready conjectures and premises

« And a GPT-2 model M trained on the 28k examples

» M evaluated on 31792 Mizar theorems of which 6639 are not in the
training set

+ For each we produce 12 sets of premise predictions

- Yields 381432 predictions, deduplicated to 193320

« For 108564 no new conjectures - works as a premise selector

- 86899 of them CounterSatisfiable - linguistic loss differs from
premise-selection loss!

+ 11866 provable in 6s by E - proofs of 8105 theorems
« The premises also do not obey the MML chronological order
« Some new proofs however obtained - see the paper
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Initial ATP Evaluation - part 2

44524 problems use at least one newly proposed premise (cut)

To partially satisfy the chronology, we remove the theorem itself if it
appears

For 1515 problems a proof is found using the cut
We use this as the first interestingness filter for the cuts

The cuts may be however hard to prove.
Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th1l0: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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Gibberish Generator Provoking Algebraists

Group conjecture - josef

e RHURIHEHEH el e

Lgoogl cossmse
= MM Gmail Q  Search mail
¢« B e o ¢ T ® : o
Michael Kinyon <mkkinyon @gmal com> TheMay 28, 541PM e da §

10 David, Ales, Petr, Bob, Jan, Karel, me ~

Yes, this is a standard exercise in undergraduate first courses in abstract algebra. The proof is easy. If | were giving way too much of a hint to students, | would
say something like this: fix a in G such that GIN is generated by the coset aN. Every element of G can be wrilten in the form ai n for integer i and some n in N. [/]
Multiply two such elements together and check that they commure.

So your conjecturer (1hat's a difficull word to say) did a goad job.
+

David Stanovsky <david stanovsky@amailcom> ThyMay 28, 5:02PM  fr da
10 me, Michael, Ales, Petr, Bob, Jan, Karel +

Hi, that's a two-line proof, although certainly not an obvious one (a
classical exercise at the beginning of a group theory course)

Denote aN the generator of GIN, hence G is a union of all a®iN, i in Z
Take g,1in G, write them as. Sy wilh xy in N, and
caleulate gh=arixay=a{i+j}y=hg, because x are central
Finiteness makes no simpification of the proof. Th18 you mention
holds for infnite groups if you replace Nat be integers. ILis being
used in my argument.

'l

F
@
(]
»
>
5
o
°
-
a
9

Figure: First successes in making mathematicians comment on Al.
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More cuts

« In total 33100 in this experiment
+ Ca 9k proved by trained ENIGMA
+ Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Conclusion and Future Work

+ Neural conjecturing is good fun!

- The attention-based architectures can at least memorize ...
- ... and to some extent consistently analogize ...

- ... which sometimes also means generalize and instantiate
« This seems to be just the beginning ...

+ ... we can train in many other ways

+ ... do the learning/proving loop

- ... redefine the loss for Al/TP tasks

- ... Iry more targeted architectures

. ... etc ...
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Thanks and Advertisement

+ Thanks for your attention! Questions?
« AITP — Artificial Intelligence and Theorem Proving

« March 22-27 ==> September, 2020, Aussois, France,
aitp-conference.org

« ATP/ITP/Math vs Al/Machine-Learning people, Computational linguists
+ Discussion-oriented and experimental
+ Grown to 80 people in 2019
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aitp-conference.org
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