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Conjecturing in mathematics

‚ Targeted: generate intermediate lemmas (cuts) for a harder conjecture
‚ Unrestricted (theory exploration):
‚ Creation of interesting conjectures based on the previous theory
‚ One of the most interesting activities mathematicians do (how?)
‚ Higher-level AI/reasoning task - can we learn it?
‚ If so, we have solved math:
‚ ... just (recursively) divide Fermat into many subtasks ...
‚ ... and conquer (I mean: hammer) them away
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A bit of conjecturing history

‚ The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
‚ Combined with automated theorem proving by Colton et al. in early

2000s (HR)
‚ Theory exploration for Isabelle by Johansson et al (Hipster)
‚ Several learning-based/neural approaches by our groups since 2015:
‚ Based mainly on learning analogies and informalization followed by

probabilistic/neural disambiguation ...
‚ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU
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Neural language models - RNNs, Transformers, GPT

‚ RNNs (recurrent neural nets) for machine translation (Mikolov 2010/12)
‚ Karpathy’15 - RNN experiments with generating fake Math over Stacks
‚ Greatly improved on linguistic tasks by a mechanism called attention:
‚ Learn to “attend to” a certain part of the input
‚ Evolved into Transformer (2017) - multiple attention layers
‚ GPT (-2,3) - large language models based on Transformer
‚ Millions/billions of parameters
‚ Capable of generating quite credible texts
‚ Let’s try to use them for formal-math tasks and combine with ATP!
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Karpathy’s RNN Trained on Stacks

Figure: Karpathy’s fake Stacks.
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Full Mizar-based datasets for the GPT-2 Training

1 http://grid01.ciirc.cvut.cz/~mptp/nn_conj20/

2 All Mizar articles, stripped of comments and concatenated together (78M)

3 Articles with added context/disambiguation (156M) (types, names, thesis)

4 TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

5 Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation
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The same example in the four datasets

theorem
for W being strict Submodule of V holds W /\ W = W
proof
let W be strict Submodule of V;
the carrier of W = (the carrier of W) /\ (the carrier of W);
hence thesis by Def15;

end;

theorem :: ZMODUL01:103
for V being Z_Module
for W being strict Submodule of V holds W /\ W = W
proof
let V be Z_Module; ::_thesis: for W being strict Submodule of V holds W /\ W = W
let W be strict Submodule of V; ::_thesis: W /\ W = W
the carrier of W = the carrier of W /\ the carrier of W ;
hence W /\ W = W by Def15; ::_thesis: verum
end;

fof ( d15_zmodul01 , axiom , ! [ X1 ] : ( ( ( ( ( ( ( ( ( ( ~ ( v2_struct_0 ( X1 ) ) & ...
fof ( idempotence_k3_xboole_0 , axiom , ! [ X1 , X2 ] : k3_xboole_0 ( X1 , X1 ) = X1 ...
fof ( t103_zmodul01 , conjecture , ! [ X1 ] : ( ( ( ( ( ( ( ( ( ( ~ ( v2_struct_0 ( X1 ) ) ...
fof ( c_0_3 , plain , ! [ X118 , X119 , X120 , X121 ] : ( ( X121 ! = k7_zmodul01 ( X118 , ...
cnf ( c_0_6 , plain , ( X1 = k7_zmodul01 ( X4 , X2 , X3 ) | v2_struct_0 ( X4 ) | ...

c! b0 c=> c& c~ cv2_struct_0 b0 c& cv13_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvect_1 ...
c! b0 c=> c& c~ cv2_struct_0 b0 c& cv13_algstr_0 b0 c& cv2_rlvect_1 b0 c& cv3_rlvect_1 ...
c! b0 c! b1 c= ck3_xboole_0 b0 b0 b0
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Training GPT-2
‚ Train GPT-2 for several weeks on the datasets
‚ Save the models for later evaluation
‚ Print unconditioned samples produced during the training
‚ Megabytes of conjectures and “proofs” thus available for evaluation
‚ Addictive experience - don’t look at the samples - too much fun!
‚ The GPT-2 (linguistic) loss still decreasing after several weeks

Figure: Dataset 2 training and loss.
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Examples of similar theorems generated

# real MML theorem
theorem :: YELLOW10:61
for S, T being non empty up-complete Poset
for X being Subset of S
for Y being Subset of T st X is property(S) & Y is property(S) holds
[:X,Y:] is property(S)

# generated similar statement (nontrivial instantiation)
theorem :: WAYBEL30:56
for R being complete Lattice
for X being Subset of [:R,R:] st X is upper & X is property(S) holds
[:X,X:] is property(S)

# real MML theorem
theorem :: SEQ_4:47
for X being non empty real-membered set
for Y being real-membered set st X c= Y & Y is bounded_below holds
lower_bound Y <= lower_bound X

# generated similar statement (non emptiness omitted)
theorem Th33: :: SEQ_4:33
for X being real-membered set
for Y being real-membered set st Y is bounded_below & X c= Y holds
lower_bound Y <= lower_bound X
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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Conditioned Completion - small premise selection eval

‚ Use a trained model to autocomplete a particular formula/term/proof
‚ Done first on dataset 4 for a smaller selection of theorems about cardinals
‚ 369 theorems from the CARD series of Mizar: generate premises
‚ Done later in a more complete way with full ATP eval
‚ Higher temperatures: new formulas generated, can contain new symbols
‚ Lower temperatures: new formulas but parsable/typable
‚ Even lower temperatures: only existing premises generated
‚ Smooth transition from premise selection to conjecturing to symbol

generation!
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Conditioned Completion - original Mizar

‚ Used a model trained on Dataset 2
‚ Evaluated on a set of 462 partial formulas from the CARD articles
‚ Have fun online! - http://grid01.ciirc.cvut.cz:5500/

for M, N being Cardinal holds

GPT-completes to:

( M = N iff M,N are_equipotent )
( M = N iff not 0 in M ) by ORDINAL3:8;
M *‘ N = N *‘ M
( M in N iff not M c= N )
the_rank_of M = the_rank_of N by Th77;
nextcard (Sum M) = M *‘ N
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Mizar autocompletion server in action

Figure: MGG - Mizar Gibberish Generator. 14 / 24



Proving the conditioned completions - MizAR hammer

Figure: Mizar hammer ATP completions on the conditional completions.
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Initial ATP Evaluation - part 1

‚ Uses Dataset 4 - ATP-ready conjectures and premises
‚ And a GPT-2 model M trained on the 28k examples
‚ M evaluated on 31792 Mizar theorems of which 6639 are not in the

training set
‚ For each we produce 12 sets of premise predictions
‚ Yields 381432 predictions, deduplicated to 193320
‚ For 108564 no new conjectures - works as a premise selector
‚ 86899 of them CounterSatisfiable - linguistic loss differs from

premise-selection loss!
‚ 11866 provable in 6s by E - proofs of 8105 theorems
‚ The premises also do not obey the MML chronological order
‚ Some new proofs however obtained - see the paper
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Initial ATP Evaluation - part 2

‚ 44524 problems use at least one newly proposed premise (cut)
‚ To partially satisfy the chronology, we remove the theorem itself if it

appears
‚ For 1515 problems a proof is found using the cut
‚ We use this as the first interestingness filter for the cuts
‚ The cuts may be however hard to prove.
‚ Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative

The generalization that avoids finiteness:

for G being Group for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic holds G is commutative
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Gibberish Generator Provoking Algebraists

Figure: First successes in making mathematicians comment on AI.
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More cuts

‚ In total 33100 in this experiment
‚ Ca 9k proved by trained ENIGMA
‚ Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.
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Conclusion and Future Work

‚ Neural conjecturing is good fun!
‚ The attention-based architectures can at least memorize ...
‚ ... and to some extent consistently analogize ...
‚ ... which sometimes also means generalize and instantiate
‚ This seems to be just the beginning ...
‚ ... we can train in many other ways
‚ ... do the learning/proving loop
‚ ... redefine the loss for AI/TP tasks
‚ ... try more targeted architectures
‚ ... etc ...
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Thanks and Advertisement

‚ Thanks for your attention! Questions?
‚ AITP – Artificial Intelligence and Theorem Proving
‚ March 22–27 ==> September, 2020, Aussois, France,
aitp-conference.org

‚ ATP/ITP/Math vs AI/Machine-Learning people, Computational linguists
‚ Discussion-oriented and experimental
‚ Grown to 80 people in 2019
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