AI FOR THEOREM PROVING

Josef Urban

Czech Technical University in Prague ERC project AI4REASON

OECD Workshop on AI and the productivity of science November 5, 2021

European Research Council Established by the European Commission

Leibniz's/Hilbert's/Russell's Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

What is Formal Mathematics and Theorem Proving?

- 1900s: Mathematics put on formal logic foundations symbolic logic
- Culmination of a program by Leibniz/Frege/Russell/Hilbert/Church/...
- ... led also to the rise of computers (Turing/Church, 1930s)
- ... and rise of AI Turing's 1950 paper: Learning Machines, Chess, etc.
- 1950s: First AI program: Logic Theorist by Newell & Simon
- · Formalization of math (60s): combine formal foundations and computers
- Proof assistants/Interactive theorem provers and their large libraries:
- · Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
- Automated theorem provers search for proofs automatically:
- Otter, Vampire, E, SPASS, Prover9, CVC4, Z3, Satallax, ...
- more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)

Why Do This Today?

Practically Useful for Verification of Complex HW/SW and Math

- Formal Proof of the Kepler Conjecture (2014 Hales 20k lemmas)
- Formal Proof of the Feit-Thompson Theorem (2 books, 2012 Gonthier)
- · Verification of several math textbooks and CS algorithms
- Verification of compilers (CompCert)
- Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
- Verification of cryptographic protocols, the OpenSSL stack (Amazon), etc.

2 Blue Sky Al Visions:

- · Get strong AI by learning/reasoning over large KBs of human thought?
- · Big formal theories: good semantic approximation of such thinking KBs?
- · Deep non-contradictory semantics better than scanning books?
- · Gradually try learning math/science
- automate/verify them, include law, etc. (Leibniz, McCarthy, ..)
 - · What are the components (inductive/deductive thinking)?
 - · How to combine them together?

Example: Irrationality of $\sqrt{2}$ (informal text)

small proof from Hardy & Wright:

Theorem 43 (Pythagoras' theorem). $\sqrt{2}$ is irrational. The traditional proof ascribed to Pythagoras runs as follows. If $\sqrt{2}$ is rational, then the equation

$$a^2 = 2b^2$$
 (4.3.1)

is soluble in integers *a*, *b* with (a, b) = 1. Hence a^2 is even, and therefore *a* is even. If a = 2c, then $4c^2 = 2b^2$, $2c^2 = b^2$, and *b* is also even, contrary to the hypothesis that (a, b) = 1.

Irrationality of $\sqrt{2}$ in Isabelle/HOL

```
theorem sgrt2 not rational:
  "sort (real 2) ∉ 0"
proof
 assume "sqrt (real 2) \in \mathbb{Q}"
  then obtain m n :: nat where
    n_nonzero: "n \neq 0" and sqrt_rat: "!sqrt (real 2)! = real m / real n"
    and lowest_terms: "gcd m n = 1" ...
 from n_nonzero and sqrt_rat have "real m = {sqrt (real 2)} * real n" by simp
  then have "real (m^2) = (sort (real 2))^2 * real <math>(n^2)"
    by (auto simp add: power2 eg square)
  also have "(sgrt (real 2))<sup>2</sup> = real 2" by simp
  also have "... * real (m^2) = real (2 * n^2)" by simp
  finally have eq: m^2 = 2 * n^2 ...
  hence "2 dvd m<sup>2</sup>"...
  with two is prime have dvd m: "2 dvd m" by (rule prime dvd power two)
  then obtain k where "m = 2^* k"
  with eq have "2 * n^2 = 2^2 * k^2" by (auto simp add: power2 eq square mult ac)
  hence "n^2 = 2 * k^2" by simp
  hence "2 dvd n^2"...
  with two_is_prime have "2 dvd n" by (rule prime_dvd_power_two)
  with dvd m have "2 dvd qcd m n" by (rule qcd greatest)
  with lowest terms have "2 dvd 1" by simp
 thus False by arith
ged
```

Big Example: The Flyspeck project

• Kepler conjecture (1611): The most compact way of stacking balls of the same size in space is a pyramid.

$$V = \frac{\pi}{\sqrt{18}} \approx 74\%$$

$$\sqrt{18}$$

- Proved by Hales in 1998, 300-page proof + computations
- · Big: Annals of Mathematics gave up reviewing after 4 years
- Formal proof finished in 2014
- · 20000 lemmas in geometry, analysis, graph theory
- All of it at https://code.google.com/p/flyspeck/
- · All of it computer-understandable and verified in HOL Light:
- polyhedron s /\ c face_of s ==> polyhedron c
- However, this took 20 30 person-years!
- our 2014 work: AI/TP combinations can hammer 40% of the 20k lemmas

AI and ML Combinations with Theorem Proving

- · high-level: pre-select lemmas from a large library, give them to ATPs
- · high-level: pre-select a good ATP strategy/portfolio for a problem
- high-level: pre-select good hints for a problem, use them to guide ATPs
- low-level: guide every inference step of ATPs (tableau, superposition)
- · low-level: guide every kernel step of LCF-style ITPs
- mid-level: guide application of tactics in ITPs
- mid-level: invent suitable ATP strategies for classes of problems
- mid-level: invent suitable conjectures for a problem
- mid-level: invent suitable concepts/models for problems/theories
- · proof sketches: explore stronger/related theories to get proof ideas
- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from LATEX to formal

Today's AI-ATP systems (*-Hammers)

- Mizar / MML MizAR
- Isabelle (Auth, Jinja) Sledgehammer
- Flyspeck (including core HOL Light and Multivariate) HOL(y)Hammer
- HOL4 (Gauthier and Kaliszyk)
- CoqHammer (Czajka and Kaliszyk) about 40% on Coq standard library \approx 40-45% success by 2016, 60% on Mizar as of 2021

AI/TP Examples and Demos

- ENIGMA/hammer proofs of Pythagoras: https://bit.ly/2MVPAn7 (more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and simplified Carmichael https://bit.ly/3oGBdRz,
- 3-phase ENIGMA: https://bit.ly/3C0Lwa8,https://bit.ly/3BWqR6K
- Long trig proof from 1k axioms: https://bit.ly/2YZ00gX
- Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
- TacticToe on HOL4:

http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

Tactician for Coq:

https://blaauwbroek.eu/papers/cicm2020/demo.mp4, https://coq-tactician.github.io/demo.html

Inf2formal over HOL Light:

http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

ENIGMA (2017): Guiding the Best ATPs like E Prover

• ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

- The proof state are two large heaps of clauses processed/unprocessed
- · learn on E's proof search traces, put classifier in E
- · positive examples: clauses (lemmas) used in the proof
- · negative examples: clauses (lemmas) not used in the proof
- 2021 multi-phase architecture (combination of different methods):
 - · fast gradient-boosted decision trees (GBDTs)
 - · logic-aware graph neural network (GNN) run on a GPU server
 - · logic-based subsumption using fast indexing (discrimination trees)
- 2021: leapfrogging and Split&Merge:
- · aiming at learning reasoning/algo components

Feedback prove/learn loop for ENIGMA on Mizar data

- Done on 57880 Mizar problems recently
- · Serious ML-guidance breakthrough applied to the best ATPs
- Ultimately a 70% improvement over the original strategy in 2019
- From 14933 proofs to 25397 proofs (all 10s CPU no cheating)
- Went up to 40k in more iterations and 60s time in 2020
- 75% of the Mizar corpus reached in July 2021 higher times and many runs

	S	$S \odot \mathcal{M}_9^0$	$\mathcal{S} \oplus \mathcal{M}_9^0$	$S \odot \mathcal{M}_9^1$	$S \oplus \mathcal{M}_{S}^{1}$	$ S \odot \mathcal{M}_9^2 $	$\mathcal{S} \oplus \mathcal{M}_9^2$	$S \odot \mathcal{M}_9^3$	$S \oplus \mathcal{M}_9^3$
solved	14933	16574	20366	21564	22839	22413	23467	22910	23753
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%	+58.4
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822	+9274
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845	-454
			$ S \odot M$	t ³ S⊕	\mathcal{M}_{12}^3	$S \odot \mathcal{M}^3_{16}$	$\mathcal{S} \oplus \mathcal{M}^3_{16}$		
		solved	2415	9 24	701	25100	25397	_	
		$\mathcal{S}\%$	+61.1	% +64	1.8%	+68.0%	+70.0%		
		$\mathcal{S}+$	+976	1 +10	0063	+10476	+10647		
		$\mathcal{S}-$	-535	-2	95	-309	-183		

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

- TTT learns from human and its own tactical HOL4 proofs
- · No translation or reconstruction needed native tactical proofs
- · Fully integrated with HOL4 and easy to use
- · Similar to rICoP: policy/value learning for applying tactics in a state
- · However much more technically challenging a real breakthrough:
 - · tactic and goal state recording
 - · tactic argument abstraction
 - absolutization of tactic names
 - nontrivial evaluation issues
 - · these issues have often more impact than adding better learners
- · policy: which tactic/parameters to choose for a current goal?
- · value: how likely is this proof state succeed?
- 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
- · similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

Conjecturing/Proof Synthesis by Neural Models

- Karpathy'15 RNN experiments with generating fake Math over Stacks
- I have tried to use that for formal math in 2016 but it looked weak
- GPT (-2,3) looks stronger
- · Renewed experiments in 2020 on formal libraries and ATP proofs
- The models show lack of semantic understanding, but still quite interesting
- Typically they can learn various syntactic tasks quite well

Can you find the flaw(s) in this fake GPT-2 proof?

🛛 Applications Places 🌍	🚞 🙆 🖽 4,71 GHz 🖇	Wed 15:02	Wed 15:02
emacs@dell			• • •
File Edit Options Buffers Tools Index Mizar Hide/Show Help			_
generated theorem with "proof"			
theorem Th23: :: STIRL2_1:23			
for X, Y being finite set st not X is empty $\&$ X c= Y			
& card X = card Y holds X = Y			
proof			
let X, Y be finite set ;			
:: thesis: not X is empty & X c= Y & card X = card Y impl	es X = Y		
assume that			
A1: not X is empty and A2: X c= Y and A3: card X = car	d Y ;		
:: thesis: $X = Y$			
card $(Y \setminus X) = (card Y) - (card X)$ by A1, A3, CARD 2:44;			
then A4: card $(Y \setminus X) = ((card Y) - 1) - (card X)$ by CARD	1:30:		
$X = Y \setminus X$ by A2 A3 Th22.			
hence $X = Y$ by A4, XBOOLE 0:def 10:			
u thosis vorum			
lena;			
-: card tst.miz 99% L2131 (Mizar Errors:13 hs Und	lo-Tree)		

Figure: Fake full declarative GPT-2 "proof" - typechecks!

A correct GPT conjecture that was too hard to prove

Original Mizar theorem stated for finite groups:

```
theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G
st N is Subgroup of center G & G ./. N is cyclic holds
G is commutative
```

Kinyon and Stanovsky (algebraists) confirmed that this GPT generalization that avoids finiteness is valid:

```
for G being Group for N being normal Subgroup of G
st N is Subgroup of center G & G ./. N is cyclic holds
G is commutative
```

Prover9 - Research-Level Open Conjectures

- Michal Kinyon, Bob Veroff and Prover9: quasigroup and loop theory
- the Abelian Inner Mappinngs (AIM) Conjecture (>10 year program)
- The Weak AIM Conjecture positively resolved in August 2021
- 20-200k long proofs by Prover9 assisting the humans
- Prover9 hints strategy (Bob Veroff): extract hints from easier proofs to guide more difficult proofs
- · Human-guided exploration to get good hints (not really automated yet)
- Millions of hints collected, various algorithms for their selection for a particular conjecture

Neural Autoformalization (Wang et al., 2018)

- · generate ca 1M Latex/Mizar (informal/formal) pairs
- train neural seq-to-seq translation models (Luong NMT)
- evaluate on about 100k examples
- many architectures tested, some work much better than others
- very important latest invention: attention in the seq-to-seq models
- more data very important for neural training our biggest bottleneck
- Recent addition: unsupervised methods (Lample et all 2018) no need for aligned data!

Rendered LAT _E X Mizar	If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.
	X c= Y & Y c= Z implies X c= Z;
Tokenized Mizar	
	X c= Y & Y c= Z implies X c= Z ;
latex	
	If $X \sum Z^{,} \ Z^{,}$ then $X \sum Z^{,}$
Tokenized LATEX	
	If $ X \subseteq Y \subseteq X $, then $ X \subseteq Z $.

Rendered ⊮T _E X	Suppose s_8 is convergent and s_7 is convergent . Then $\lim(s_8+s_7) = \lim s_8 + \lim s_7$
Input LATEX	<pre>Suppose \$ { s _ { 8 } } \$ is convergent and \$ { s _ { 7 } } \$ is convergent . Then \$ \mathop { \rm lim } ({ s _ { 8 } } { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim } { s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } \$.</pre>
Correct	<pre>seq1 is convergent & seq2 is convergent implies lim (seq1 + seq2) = (lim seq1) + (lim seq2) ;</pre>
Snapshot- 1000	x in dom f implies (x * y) * (f (x (y (y y)))) = (x (y (y (y y))))) ;
Snapshot- 2000	seq is summable implies seq is summable ;
Snapshot- 3000	seq is convergent & lim seq = 0c implies seq = seq ;
Snapshot- 4000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 5000	<pre>seq1 is convergent & lim seq2 = lim seq2 implies lim_inf seq1 = lim_inf seq2 ;</pre>
Snapshot- 6000	<pre>seq is convergent & lim seq = lim seq implies seq1 + seq2 is convergent ;</pre>
Snapshot- 7000	seq is convergent & seq9 is convergent implies lim (seq + seq9) = (lim seq) + (lim seq9) ;

Future: AITP Challenges/Bets

- Big challenge: Learn complicated symbolic algorithms (not black box)
- · 3 AITP bets from my 2014 talk at Institut Henri Poincare
 - In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable automatically (same hardware, same libraries as in 2014 - about 40% then)
 - In 10 years: 60% (DONE already in 2021)
 - In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math curriculum textbooks will be parsed automatically and with correct formal semantics (this may be faster than I expected)
- My (conservative?) estimate when we will do Fermat:
 - Human-assisted formalization: by 2050
 - Fully automated proof (hard to define precisely): by 2070
 - See the Foundation of Math thread: https://bit.ly/300k9Pm