
Leonardo de Moura (Ed.)

 123

LN
AI

 1
03

95

26th International Conference on Automated Deduction
Gothenburg, Sweden, August 6–11, 2017
Proceedings

Automated Deduction –
CADE 26

Lecture Notes in Artificial Intelligence 10395

Subseries of Lecture Notes in Computer Science

LNAI Series Editors

Randy Goebel
University of Alberta, Edmonton, Canada

Yuzuru Tanaka
Hokkaido University, Sapporo, Japan

Wolfgang Wahlster
DFKI and Saarland University, Saarbrücken, Germany

LNAI Founding Series Editor

Joerg Siekmann
DFKI and Saarland University, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/1244

http://www.springer.com/series/1244

Leonardo de Moura (Ed.)

Automated Deduction –

CADE 26
26th International Conference on Automated Deduction
Gothenburg, Sweden, August 6–11, 2017
Proceedings

123

Editor
Leonardo de Moura
Microsoft Research
Redmond, WA
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Artificial Intelligence
ISBN 978-3-319-63045-8 ISBN 978-3-319-63046-5 (eBook)
DOI 10.1007/978-3-319-63046-5

Library of Congress Control Number: 2017946063

LNCS Sublibrary: SL7 – Artificial Intelligence

© Springer International Publishing AG 2017
The chapter ‘Certifying Confluence of Quasi-Decreasing Strongly Deterministic Conditional Term Rewrite
Systems’ is licensed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/). For further details see license information in the chapter.
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Preface

This volume contains the papers presented at the 26th International Conference on
Automated Deduction (CADE 26), held between August 6 and August 11, 2017 in
Gothenburg, Sweden. CADE is the major forum for the presentation of research in all
aspects of automated deduction.

The Program Committee decided to accept 26 regular papers and 5 system
descriptions from a total of 69 submissions. Each submission was reviewed by at least
3 Program Committee members and external reviewers. We would like to thank all the
members of the Program Committee for their careful and thoughtful deliberations.
Many thanks to Andrei Voronkov for providing the EasyChair system greatly facili-
tated the reviewing process, the electronic Program Committee meeting, and the
preparation of the proceedings. In addition to the contributed papers, the program
included three invited lectures by Philippa Gardner, Grant Passmore, and June
Andronick. We thank the invited speakers not only for their presentations, but also for
contributing full papers to the proceedings.

In addition, a diverse range of affiliated events took place. Five workshops:

– ARCADE: Automated Reasoning: Challenges, Applications, Directions, Exem-
plary Achievements

– PCR 2017: Workshop on Parallel Constraint Reasoning
– ThEdu 2017: Theorem Prover Components for Educational Software
– HCVS: Horn Clauses for Verification and Synthesis
– Vampire 2017: The 4th Vampire Workshop

One tutorial:

– Certified Functional (Co)programming with Isabelle/HOL

The CADE ATP System Competition (CASC) was also held. All this help to make
the conference a success.

During the conference, the Herbrand Award for Distinguished Contributions to
Automated Reasoning was presented to Lawrence Paulson for his pioneering contri-
butions to automation in proof assistants and the foundations of formal security pro-
tocol verification as well as his impressive formalizations of deep mathematical
theories. The Selection Committee for the Herbrand Award consisted of the CADE 26
Program Committee members, the trustees of CADE Inc., and the Herbrand Award
winners of the last ten years. The Herbrand Award ceremony and the acceptance
speech by Lawrence Paulson were part of the conference program.

Many people helped to make CADE 26 a success. We are very grateful to Wolfgang
Ahrendt and Moa Johansson (CADE general chairs), Magnus Myreen (publicity chair)
and Anneli Andersson for the tremendous effort they devoted to the organization of the

conference. We also like to thank Philipp Ruemmer (workshop chair), all the individual
workshop organizers, and tutorial speakers. Last but not least, we thank all authors who
submitted papers to CADE 26 and all conference participants.

June 2017 Leonardo de Moura

VI Preface

Organization

Program Committee

Clark Barrett Stanford University, USA
Christoph Benzmüller Freie Universität Berlin, Germany
Nikolaj Bjorner Microsoft Research
Jasmin Christian Blanchette Inria Nancy and LORIA, France
Maria Paola Bonacina Università degli Studi di Verona, Italy
Leonardo de Moura Microsoft Research
Hans De Nivelle Institute of Computer Science,

University of Wroclaw, Poland
Stephanie Delaune CNRS, IRISA, France
Gilles Dowek Inria and ENS Paris-Saclay, France
Amy Felty University of Ottawa, Canada
Silvio Ghilardi Università degli Studi di Milano, Italy
Marijn Heule The University of Texas at Austin, USA
Reiner Hähnle Technical University of Darmstadt, Germany
Moa Johansson Chalmers Tekniska Högskola, Sweden
Dejan Jovanović SRI International, USA
Deepak Kapur University of New Mexico, USA
Konstantin Korovin Manchester University, UK
Laura Kovacs Vienna University of Technology, Austria
Christopher Lynch Clarkson University, USA
Assia Mahboubi Inria, France
Aart Middeldorp University of Innsbruck, Austria
Dale Miller Inria and LIX/Ecole Polytechnique, France
Albert Oliveras Technical University of Catalonia, Spain
Lawrence Paulson University of Cambridge, UK
Ruzica Piskac Yale University, USA
Philipp Ruemmer Uppsala University, Sweden
Renate A. Schmidt University of Manchester, UK
Stephan Schulz DHBW Stuttgart, Germany
Roberto Sebastiani DISI, University of Trento, Italy
Viorica Sofronie-Stokkermans University of Koblenz-Landau, Germany
Geoff Sutcliffe University of Miami, USA
Cesare Tinelli University of Iowa, USA
Ashish Tiwari SRI International, USA
Andrei Voronkov University of Manchester, UK
Christoph Weidenbach Max Planck Institute for Informatics, Germany
Freek Wiedijk Radboud University Nijmegen, The Netherlands

Additional Reviewers

Alagi, Gábor
Aravantinos, Vincent
Audemard, Gilles
Avanzini, Martin
Bansal, Kshitij
Berdine, Josh
Bertrand, Nathalie
Beyersdorff, Olaf
Blanco, Roberto
Brotherston, James
Bubel, Richard
Carette, Jacques
Chaudhuri, Kaustuv
Claus, Maximilian
Dinsdale-Young, Thomas W.
Echenim, Mnacho
Escobar, Santiago
Felgenhauer, Bertram
Flores-Montoya, Antonio
Frumin, Daniil
Färber, Michael
Gianola, Alessandro
Graham-Lengrand, Stéphane
Griggio, Alberto
Gurfinkel, Arie
Hladik, Jan
Hojjat, Hossein
Huisman, Marieke
Hustadt, Ullrich
Höfner, Peter
Kaliszyk, Cezary
Katz, Guy
Kiesl, Benjamin
Kohlhase, Michael
Kop, Cynthia
Letz, Reinhold

Lobo Valbuena, Irene
Lonsing, Florian
Magron, Victor
McMillan, Ken
Nakazawa, Koji
Narboux, Julien
Noetzli, Andres
Passmore, Grant
Popescu, Andrei
Pratt-Hartmann, Ian
Reger, Giles
Reis, Giselle
Reynolds, Andrew
Rodríguez Carbonell, Enric
Rossi, Matteo
Schlatte, Rudolf
Schürmann, Carsten
Sighireanu, Mihaela
Sinz, Carsten
Smallbone, Nicholas
Steen, Alexander
Sturm, Thomas
Suda, Martin
Syeda, Hira
Teucke, Andreas
Thiemann, René
Tourret, Sophie
Trentin, Patrick
Van Oostrom, Vincent
Veanes, Margus
Voigt, Marco
Wand, Daniel
Wisniewski, Max
Xue, Anton
Zeljic, Aleksandar

VIII Organization

Contents

Reasoning About Concurrency in High-Assurance, High-Performance
Software Systems . 1

June Andronick

Towards Logic-Based Verification of JavaScript Programs 8
José Fragoso Santos, Philippa Gardner, Petar Maksimović,
and Daiva Naudžiūnienė

Formal Verification of Financial Algorithms. 26
Grant Olney Passmore and Denis Ignatovich

Satisfiability Modulo Theories and Assignments . 42
Maria Paola Bonacina, Stéphane Graham-Lengrand,
and Natarajan Shankar

Notions of Knowledge in Combinations of Theories Sharing Constructors . . . 60
Serdar Erbatur, Andrew M. Marshall, and Christophe Ringeissen

On the Combination of the Bernays–Schönfinkel–Ramsey Fragment
with Simple Linear Integer Arithmetic . 77

Matthias Horbach, Marco Voigt, and Christoph Weidenbach

Satisfiability Modulo Transcendental Functions
via Incremental Linearization . 95

Alessandro Cimatti, Alberto Griggio, Ahmed Irfan, Marco Roveri,
and Roberto Sebastiani

Satisfiability Modulo Bounded Checking . 114
Simon Cruanes

Short Proofs Without New Variables . 130
Marijn J.H. Heule, Benjamin Kiesl, and Armin Biere

Relational Constraint Solving in SMT . 148
Baoluo Meng, Andrew Reynolds, Cesare Tinelli, and Clark Barrett

Decision Procedures for Theories of Sets with Measures 166
Markus Bender and Viorica Sofronie-Stokkermans

A Decision Procedure for Restricted Intensional Sets 185
Maximiliano Cristiá and Gianfranco Rossi

http://dx.doi.org/10.1007/978-3-319-63046-5_1
http://dx.doi.org/10.1007/978-3-319-63046-5_1
http://dx.doi.org/10.1007/978-3-319-63046-5_2
http://dx.doi.org/10.1007/978-3-319-63046-5_3
http://dx.doi.org/10.1007/978-3-319-63046-5_4
http://dx.doi.org/10.1007/978-3-319-63046-5_5
http://dx.doi.org/10.1007/978-3-319-63046-5_6
http://dx.doi.org/10.1007/978-3-319-63046-5_6
http://dx.doi.org/10.1007/978-3-319-63046-5_7
http://dx.doi.org/10.1007/978-3-319-63046-5_7
http://dx.doi.org/10.1007/978-3-319-63046-5_8
http://dx.doi.org/10.1007/978-3-319-63046-5_9
http://dx.doi.org/10.1007/978-3-319-63046-5_10
http://dx.doi.org/10.1007/978-3-319-63046-5_11
http://dx.doi.org/10.1007/978-3-319-63046-5_12

Decidability of the Monadic Shallow Linear First-Order Fragment
with Straight Dismatching Constraints . 202

Andreas Teucke and Christoph Weidenbach

Efficient Certified RAT Verification . 220
Luís Cruz-Filipe, Marijn J.H. Heule, Warren A. Hunt Jr.,
Matt Kaufmann, and Peter Schneider-Kamp

Efficient Verified (UN)SAT Certificate Checking . 237
Peter Lammich

Translating Between Implicit and Explicit Versions of Proof 255
Roberto Blanco, Zakaria Chihani, and Dale Miller

A Unifying Principle for Clause Elimination in First-Order Logic 274
Benjamin Kiesl and Martin Suda

Splitting Proofs for Interpolation . 291
Bernhard Gleiss, Laura Kovács, and Martin Suda

Detecting Inconsistencies in Large First-Order Knowledge Bases 310
Stephan Schulz, Geoff Sutcliffe, Josef Urban, and Adam Pease

Theorem Proving for Metric Temporal Logic over the Naturals. 326
Ullrich Hustadt, Ana Ozaki, and Clare Dixon

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution. 344
Daniyar Itegulov, John Slaney, and Bruno Woltzenlogel Paleo

WorkflowFM: A Logic-Based Framework for Formal Process Specification
and Composition. 357

Petros Papapanagiotou and Jacques Fleuriot

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL. . . . 371
Florian Lonsing and Uwe Egly

CSI: New Evidence – A Progress Report . 385
Julian Nagele, Bertram Felgenhauer, and Aart Middeldorp

Scalable Fine-Grained Proofs for Formula Processing 398
Haniel Barbosa, Jasmin Christian Blanchette, and Pascal Fontaine

Certifying Confluence of Quasi-Decreasing Strongly Deterministic
Conditional Term Rewrite Systems . 413

Christian Sternagel and Thomas Sternagel

X Contents

http://dx.doi.org/10.1007/978-3-319-63046-5_13
http://dx.doi.org/10.1007/978-3-319-63046-5_13
http://dx.doi.org/10.1007/978-3-319-63046-5_14
http://dx.doi.org/10.1007/978-3-319-63046-5_15
http://dx.doi.org/10.1007/978-3-319-63046-5_16
http://dx.doi.org/10.1007/978-3-319-63046-5_17
http://dx.doi.org/10.1007/978-3-319-63046-5_18
http://dx.doi.org/10.1007/978-3-319-63046-5_19
http://dx.doi.org/10.1007/978-3-319-63046-5_20
http://dx.doi.org/10.1007/978-3-319-63046-5_21
http://dx.doi.org/10.1007/978-3-319-63046-5_22
http://dx.doi.org/10.1007/978-3-319-63046-5_22
http://dx.doi.org/10.1007/978-3-319-63046-5_23
http://dx.doi.org/10.1007/978-3-319-63046-5_24
http://dx.doi.org/10.1007/978-3-319-63046-5_25
http://dx.doi.org/10.1007/978-3-319-63046-5_26
http://dx.doi.org/10.1007/978-3-319-63046-5_26

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms . . . 432
Heiko Becker, Jasmin Christian Blanchette, Uwe Waldmann,
and Daniel Wand

Certifying Safety and Termination Proofs for Integer Transition Systems 454
Marc Brockschmidt, Sebastiaan J.C. Joosten, René Thiemann,
and Akihisa Yamada

Biabduction (and Related Problems) in Array Separation Logic 472
James Brotherston, Nikos Gorogiannis, and Max Kanovich

Automatically Verifying Temporal Properties of Pointer Programs
with Cyclic Proof . 491

Gadi Tellez and James Brotherston

Satisfiability of Compositional Separation Logic with Tree Predicates
and Data Constraints . 509

Zhaowei Xu, Taolue Chen, and Zhilin Wu

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL . . . 528
Yutaka Nagashima and Ramana Kumar

The Binomial Pricing Model in Finance: A Formalization in Isabelle. 546
Mnacho Echenim and Nicolas Peltier

Monte Carlo Tableau Proof Search . 563
Michael Färber, Cezary Kaliszyk, and Josef Urban

Author Index . 581

Contents XI

http://dx.doi.org/10.1007/978-3-319-63046-5_27
http://dx.doi.org/10.1007/978-3-319-63046-5_28
http://dx.doi.org/10.1007/978-3-319-63046-5_29
http://dx.doi.org/10.1007/978-3-319-63046-5_30
http://dx.doi.org/10.1007/978-3-319-63046-5_30
http://dx.doi.org/10.1007/978-3-319-63046-5_31
http://dx.doi.org/10.1007/978-3-319-63046-5_31
http://dx.doi.org/10.1007/978-3-319-63046-5_32
http://dx.doi.org/10.1007/978-3-319-63046-5_33
http://dx.doi.org/10.1007/978-3-319-63046-5_34

Reasoning About Concurrency
in High-Assurance, High-Performance

Software Systems

June Andronick(B)

Data61, CSIRO (formerly NICTA) and UNSW, Sydney, Australia
june.andronick@data61.csiro.au

Abstract. We describe our work in the Trustworthy Systems group
at Data61 (formerly NICTA) in reasoning about concurrency in high-
assurance, high-performance software systems, in which concurrency
may come from three different sources: multiple cores, interrupts and
application-level interleaving.

1 Formal Verification – Mentality Shift

Recent years have seen a shift in the perception of formal software verification in
the academic community and, to some more emerging extent, in the industrial
community. The strength of a mathematical proof to guarantee the correctness,
security and safety of programs deployed in high-assurance systems has made its
way from utopia to reality, and the absence of such strong evidence will hopefully
soon be considered negligence for critical systems.

This shift was possible thanks to highly successful verified artifacts, such as
the CompCert compiler [16] and the seL4 operating system (OS) kernel [14,15].
A remaining grand challenge in formal software verification is concurrency rea-
soning, much harder than sequential reasoning because of the explosion of the
number of interleaved executions that need to be considered.

Concurrency in software systems can have three different sources: multiple
cores, interrupts and application-level interleaving. In this paper we first briefly
explain these kinds of concurrency and their challenges, and we then describe
our recent and current work in providing concurrency reasoning framework and
verifying concurrent software systems in these three areas.

2 Software Systems and Concurrency – Background

Multicore platforms provide a computing power boost that is hard to resist
for a very competitive software system market, even for high-security solutions.
Code execution can be parallelised on different cores, and the challenge, for
implementation as well as verification, is to ensure safe sharing between cores.
This can be done using locking mechanisms: a core can access shared data only
after acquiring a lock guaranteeing that no other core is manipulating the data
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 1–7, 2017.
DOI: 10.1007/978-3-319-63046-5 1

2 J. Andronick

at the same time. This effectively eliminates concurrency, but has a performance
impact and bears liveness risks (e.g. potential for deadlocks). Another option
is to let cores access shared data without any locking, relying on more indirect
arguments that the resulting race conditions are still safe. This requires much
more careful reasoning.

Interrupts introduce a different kind of concurrency, where interleaving is
controlled in the sense that the only thing that truly happens in parallel with
code execution is the occurrence of interrupts (i.e. a flag’s being set in hardware).
The code being executed can still be stopped at any time, and control switched to
handler code that will service the interrupt; but the execution of the handler code
is then sequential until the return from interrupt (except when nested interrupts
are supported, in which case further interleaving is allowed). Handler code and
“normal” code may share data (e.g. the list of runnable threads), whose access
needs to be carefully designed. Once again, there is a radical way of ensuring safe
sharing: manually switching off interrupts during manipulation of data shared
with handlers. However, that has a performance and latency impact.

Application-level, or user-level, concurrency is another form of controlled
concurrency. In an OS-based system, the OS kernel provides hardware abstrac-
tion primitives, such as threads, to applications. Threads run concurrently in the
sense that the OS kernel will simulate parallel execution through scheduling and
time sharing between threads. For better latency, threads are often preemptible
by the kernel: their execution can be paused at any time by the kernel, their
execution context saved, and execution switched to another thread. Safe mem-
ory sharing between threads can also be handled via locking mechanisms, where
more feature-rich sychronisation mechanisms can be provided by the kernel.

For all these types of concurrency, the general trend on the reasoning and
verification side is to aim for limiting the concurrency as much as possible: local
operations can be parallelised, but sharing should be done only when mutual
exclusion can be guaranteed (by locking or other indirect arguments). This app-
roach is the basis of many existing verification frameworks and verified systems
(e.g. [8,9,11,18]).

However, on the implementation side, the trend goes for more racing to
improve performance: some systems need to run with interrupts enabled as much
as possible, or to run some critical code unlocked. We are targeting such real-
world systems, where the possible races need to be proven not to violate the
desired properties for the system.

3 Interrupt-Induced Concurrency

Our work on reasoning about interrupt-induced concurrency is initially moti-
vated by the verification of eChronos [2], a small embedded real-time operating
system in commercial use in medical devices. In an eChronos-based system, the
kernel runs with interrupts enabled, even during scheduling operations, to be able
to satisfy stringent latency requirements. The formal verification of eChronos’
correctness and key properties thus required a reasoning framework for controlled

Reasoning About Concurrency 3

concurrency that describes interleaving between “normal” code (application code
and kernel code) and interrupt-handler code. We want such a framework to sup-
port potentially racy sharing between handlers and normal code, rather than
having to bear the cost of interrupt disabling to ensure safe sharing.

We developed a simple, yet scalable framework for such controlled interleav-
ing and have used it to define a high-level model of eChronos scheduling behav-
ior [7]. We then proved its main scheduling property: that the running task is
always the highest-priority runnable task [6]. Our framework is embedded in
Isabelle/HOL [17] and the verification relies on the automation of modern theo-
rem provers to automatically discharge most of the generated proof obligations.
Our models and proofs are available online [1].

Our modelling framework builds on foundational methods for fine-grained
concurrency, with support for explicit concurrency control and the composi-
tion of multiple, independently proven invariants. The foundational method is
Owicki-Gries [19], a simple extension on Hoare logic with parallel composition,
await statements for synchronisation, and rules to reason about such programs
by inserting assertions, proving their (local) correctness sequentially as in Hoare
logic, and then proving that they are not interfered with by any other statement
in parallel.

We model an interruptible software system as a parallel composition of its
code with code from a number of interrupt handlers. We also model the hardware
mechanisms that switch execution to handlers and that return from interrupts,
via the scheduler. Such parallel composition allows more interleaving than can
happen in reality – for instance it allows the execution of the handler code
suddenly to jump back to executing application code at any time. We therefore
then restrict the interleaving by a control mechanism, that we call await painting:
every instruction is guarded by a condition, which by default enforces sequential
execution, but is relaxed for all hardware mechanisms that do allow interleaving,
such as taking an interrupt or returning from one.

For the verification, the main property of interest in an invariant, which, as
most invariants, rely on a number of helper invariants. To make the verification
scalable, we have a compositionality theorem allowing the proof of helper lemmas
independently, with separate Owicki-Gries assertions, after which those invari-
ants can be assumed when proving further invariants. We have also developed
proof-engineering techniques to address scalability issues in the verification of the
generated proof obligations. These techniques range from subgoal deduplicating
and caching, to exploiting Isabelle’s parallelisation and powerful simplifier.

With this framework, we proved eChronos’ main scheduling property with a
single tactic application. This proof is about a high-level model of eChronos and
the obvious missing piece is the link to the implementation.

To bridge the gap to the implementation, we have developed a verifica-
tion framework for concurrent C-like programs, called COMPLX [3], available
online [10]. The COMPLX language builds on SIMPL [22], a generic imperative,
sequential language embedded in Isabelle/HOL. SIMPL allows formal reasoning
about sequential C programs via the translation of C programs into SIMPL by

4 J. Andronick

the C-to-Isabelle translation [24]. It has been used for the verification of seL4: the
C-level formal specification of seL4 is in SIMPL, inside Isabelle/HOL. COMPLX
extends SIMPL with parallel composition and await statements, and we devel-
oped a logic for Owicki-Gries reasoning as well as its compositional counter-part
Rely-Guarantee reasoning [13]. Using this framework to extend the eChronos
verification to the implementation and to full functional correctness is future
work. We are also planning to use it in our ongoing verification of the multicore
version of seL4.

4 Multicore Concurrency

The seL4 microkernel is a landmark in software verification [14,15]. It is the
world’s “most verified” OS kernel, while also being the world’s fastest operating
system designed for security/safety. It has formal, mechanically checked theo-
rems for functional correctness, binary verification, integrity- and information-
flow security, and verified system initialisation. It has seen 3rd-party use, demon-
strated in automotive, aviation, space, military, data distribution, IoT, compo-
nent OS, and military/intelligence. It is also the only verified kernel that has
been maintained, extended with new features and ported to new platforms over
a number of years. A direct implication is a very large (and evolving) proof stack
(0.74M lines of specifications and proofs). One of the remaining challenges is to
extend the formal verification, so far for unicore platforms, to multicore.

A multicore version of seL4 has been developed following a (mostly – as we
will explain shortly) big-lock kernel approach. The idea of a big-lock kernel allows
us to run kernel-based systems on multicore machines, where the user code can
make use of the multicore computation power, while parallelism during kernel
calls is reduced by a so called “big lock” around all kernel executions. Recent
work in our group [20] indicates that this coarse-grained locking approach, at
least for a well-designed microkernel with short system calls, can have less over-
head than a fine-grained locking approach on modern hardware, and performs
indistinguishably from fine-grained locking in macro-benchmarks on processors
with up to 8 cores. The reason is that the time spent inside a fast microkernel
using big lock is comparable to the time spent in fine-grained locks in mono-
lithic kernels like Linux. Fine-grained locking is traditionally used for scalable
multicore implementations, but comes with considerable complexity. Since the
big-lock approach implies a drastic reduction in interleaving, it makes real-world
verification of multicore kernels feasible.

The challenges in verifying this multicore seL4 are manifold. Firstly, the
kernel is only mostly locked when executed. Some kernel code executes outside
of the lock, for performance reasons and to deal with unavoidable hardware-
software sharing. Indeed some hardware registers that are shared between cores
are accessed by critical code in kernel calls, such as the deletion of a thread from
another core. These operations cannot be locked and need careful design and
reasoning to avoid data corruption. To start addressing this, we have performed
a formal proof that the validity of such critical registers is always preserved.

Reasoning About Concurrency 5

This involves proving the correctness of the complex OS design for deletion on
multicore. This proof is done on a very high-level model of interleaving (reusing
the verification framework from our eChronos verification). It still needs to be
connected to more concrete models of seL4, but it already identifies the guar-
antees that need to be provided by each core for the safe execution of the other
cores.

The second challenge is to identify correctly the shared state between cores.
This can be shared state between user code on one core and kernel code on
another core, or shared state between two instances of kernel execution (at least
one unlocked). There exists an earlier formal argument for an experimental mul-
ticore version of seL4 that lifts large parts of the sequential functional correctness
proof to the multicore version [23]. This version relies on an informal identifi-
cation of the shared state between the kernel and the user components (and
very limited code outside the lock), and an informal argument that this shared
state does not interfere (and therefore cannot invalidate) the kernel’s (sequential)
correctness result.

In our current work, we are aiming for a more foundational verification, and
support for kernel-to-kernel interaction. We want to model all possible inter-
ference, then exclude the impossible ones by proof and finally show that the
remaining ones do not violate the kernel invariants and properties. In particu-
lar we want, at the bottom level, to model explicitly the parallel composition of
cores, with a framework like COMPLX (with potentially further work to port the
guarantees to binary and to weak memory). This raises the question of bridging
the gap, through refinement, between the high-level model of multicore seL4, a
functional specification of seL4 and the lowest implementation level.

This leads to the remaining challenge, which is to leverage the existing large
proof stack, whose complexity reflects the complexity of a high-performance,
non-modular microkernel. This is ongoing work. We are aiming for an approach
that will preserve as much as possible the sequential specifications and the cor-
responding refinement theorems.

5 User-Level Concurrency

Our vision for proving security for entire large systems [4,12,21] is to build them
on a trustworthy foundation like seL4 and then to leverage its isolation properties
in a way that the applications can be componentised into trusted- and untrusted
components, avoiding in particular having to verify any of the untrusted com-
ponents, thanks to the kernel’s integrity and confidentiality enforcement.

We have previously built [5] an initial prototype framework that provides,
for such microkernel-based, componentised systems, and for any targeted system
invariant, a list of proof obligations. Once proved by the user of the framework,
these theorems will imply that the invariant is preserved at the source code level
of the whole system. We have already demonstrated this approach on a simplistic
system with two components: a small trusted component with write access to
a critical memory area, and one potentially very large untrusted component

6 J. Andronick

with only read access to the same region and otherwise isolated. We were able
to prove properties about the memory content without any proof about the
untrusted components, relying only on seL4’s integrity enforcement.

This approach however suffered from strong limitations in terms of scalability
and the kind of properties supported (they needed to rely solely on integrity
enforcement). This piece of work was prior to the more foundational treatment of
concurrency we developed more recently for the ongoing verification of eChronos
and multicore seL4. Our current aim is to incorporate the possibility of user-level
reasoning in the modelling and refinement framework currently developed for the
multicore seL4, with proper explicit modelling of user-to-user interactions and
the specification of rely- and guarantee conditions.

6 Conclusion

Tackling the formal verification of concurrent high-performance software systems
is both challenging due to the combined complexity of high-performance and
concurrency, and indispensable to keep such systems real-world relevant. We
have presented challenges, progress made, and future work in building reasoning
frameworks that can support such scale and complexity, and their application
to the verification of real-world operating systems such as eChronos and seL4.

Acknowledgements. The author would like to thank the people that have worked
on the research presented in this paper: Sidney Amani, Maksym Bortin, Gerwin Klein,
Corey Lewis, Daniel Matichuk, Carroll Morgan, Christine Rizkallah, and Joseph Tuong.
The author also thanks Carroll Morgan, Gerwin Klein and Gernot Heiser for their
feedback on drafts of this paper.

Parts of the work presented are supported by the Air Force Office of Scientific
Research, Asian Office of Aerospace Research and Development (AOARD) and U.S.
Army International Technology Center - Pacific under grant FA2386-15-1-4055. Other
parts have been supported by AOARD grants FA2386-12-1-4022 and FA2386-10-1-
4105.

References

1. eChronos model and proofs. https://github.com/echronos/echronos-proofs
2. The eChronos OS. http://echronos.systems
3. Amani, S., Andronick, J., Bortin, M., Lewis, C., Christine, R., Tuong, J.: Com-

plx: a verification framework for concurrent imperative programs. In: Bertot, Y.,
Vafeiadis, V. (eds.) CPP, pp. 138–150. ACM, Paris (2017)

4. Andronick, J., Greenaway, D., Elphinstone, K.: Towards proving security in the
presence of large untrusted components. In: Huuck, R., Klein, G., Schlich, B. (eds.)
SSV, p. 9. USENIX, Vancouver (2010)

5. Andronick, J., Klein, G.: Formal system verification - extension 2, final report
AOARD #FA2386-12-1-4022. Technical report, NICTA, Sydney, Australia, August
2012

https://github.com/echronos/echronos-proofs
http://echronos.systems

Reasoning About Concurrency 7

6. Andronick, J., Lewis, C., Matichuk, D., Morgan, C., Rizkallah, C.: Proof of
OS scheduling behavior in the presence of interrupt-induced concurrency. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 52–68. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 4

7. Andronick, J., Lewis, C., Morgan, C.: Controlled Owicki-gries concurrency: reason-
ing about the preemptible eChronos embedded operating system. In: van Glabbeek,
R.J., Groote, J.F., Höfner, P. (eds.) Workshop on Models for Formal Analysis of
Real Systems (MARS 2015), pp. 10–24, Suva, Fiji, November 2015

8. Appel, A.W.: Verified software toolchain. In: Barthe, G. (ed.) ESOP 2011. LNCS,
vol. 6602, pp. 1–17. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19718-5 1

9. Chen, H., Wu, X.N., Shao, Z., Lockerman, J., Gu, R.: Toward compositional veri-
fication of interruptible OS kernels and device drivers. In: Proceedings of the 37th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2016, pp. 431–447. ACM, New York (2016)

10. COMPLX entry in the Archive of Formal Proofs. https://www.isa-afp.org/entries/
Complx.shtml

11. Gu, R., Shao, Z., Chen, H., Wu, X.N., Kim, J., Sjöberg, V., Costanzo, D.: Cer-
tiKOS: an extensible architecture for building certified concurrent OS kernels. In:
OSDI, November 2016

12. Heiser, G., Andronick, J., Elphinstone, K., Klein, G., Kuz, I., Ryzhyk, L.: The
road to trustworthy systems. In: ACMSTC, pp. 3–10. ACM, October 2010

13. Jones, C.B.: Tentative steps towards a development method for interfering pro-
grams. Trans. Program. Lang. Syst. 5(4), 596–619 (1983)

14. Klein, G., Andronick, J., Elphinstone, K., Heiser, G., Cock, D., Derrin, P.,
Elkaduwe, D., Engelhardt, K., Kolanski, R., Norrish, M., Sewell, T., Tuch, H.,
Winwood, S.: seL4: formal verification of an operating-system kernel. CACM 53(6),
107–115 (2010)

15. Klein, G., Andronick, J., Elphinstone, K., Murray, T., Sewell, T., Kolanski, R.,
Heiser, G.: Comprehensive formal verification of an OS microkernel. Trans. Com-
put. Syst. 32(1), 2:1–2:70 (2014)

16. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler
with a proof assistant. In: Morrisett, J.G., Jones, S.L.P. (eds.) 33rd POPL, pp.
42–54. ACM, Charleston (2006)

17. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL. LNCS, vol. 2283.
Springer, Heidelberg (2002). doi:10.1007/3-540-45949-9

18. OHearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

19. Owicki, S., Gries, D.: An axiomatic proof technique for parallel programs. Acta
Informatica 6, 319–340 (1976)

20. Peters, S., Danis, A., Elphinstone, K., Heiser, G.: For a microkernel, a big lock is
fine. In: APSys, Tokyo, JP, July 2015

21. Potts, D., Bourquin, R., Andresen, L., Andronick, J., Klein, G., Heiser, G.: Math-
ematically verified software kernels: raising the bar for high assurance implemen-
tations. Technical report, NICTA, Sydney, Australia, July 2014

22. Schirmer, N.: Verification of sequential imperative programs in Isabelle/HOL.
Ph.D. thesis, Technische Universität München (2006)

23. von Tessin, M.: The clustered multikernel: an approach to formal verification of
multiprocessor operating-system kernels. Ph.D. thesis, School Comp. Sci. & Engin.,
UNSW, Sydney, Australia, December 2013

24. Tuch, H., Klein, G., Norrish, M.: Types, bytes, and separation logic. In: Hofmann,
M., Felleisen, M. (eds.) POPL, pp. 97–108. ACM, Nice (2007)

http://dx.doi.org/10.1007/978-3-319-43144-4_4
http://dx.doi.org/10.1007/978-3-642-19718-5_1
https://www.isa-afp.org/entries/Complx.shtml
https://www.isa-afp.org/entries/Complx.shtml
http://dx.doi.org/10.1007/3-540-45949-9

Towards Logic-Based Verification
of JavaScript Programs

José Fragoso Santos1, Philippa Gardner1, Petar Maksimović1,2(B),
and Daiva Naudžiūnienė1

1 Imperial College London, London, UK
p.maksimovic@imperial.ac.uk

2 Mathematical Institute of the Serbian Academy of Sciences and Arts,
Belgrade, Serbia

Abstract. In this position paper, we argue for what we believe is a
correct pathway to achieving scalable symbolic verification of JavaScript
based on separation logic. We highlight the difficulties imposed by the
language, the current state-of-the-art in the literature, and the sequence
of steps that needs to be taken. We briefly describe JaVerT, our semi-
automatic toolchain for JavaScript verification.

1 Introduction

JavaScript is one of the most widespread languages for Web programming today:
it is the de facto language for client-side Web applications; it is used for server-
side scripting via Node.js; and it is even run on small embedded devices with
limited memory. Standardised by the ECMAScript committee and natively sup-
ported by all major browsers, JavaScript is a complex and evolving language.

The ubiquitous use of JavaScript, especially in security-critical contexts,
mandates a high level of trust in the written code. However, the dynamic nature
of JavaScript, coupled with its intricate semantics, makes the understanding
and development of correct JavaScript code notoriously difficult. It is because
of this complexity that JavaScript developers still have very little tool support
for catching errors early in development, contrasted with the abundance of tools
(such as IDEs and specialised static analysis tools) available for more traditional
languages, such as C and Java. The transfer of analysis techniques to the domain
of JavaScript is known to be a challenging task.

In this position paper, we argue for what we believe is a correct pathway to
achieving scalable, logic-based symbolic verification of JavaScript, highlighting
the difficulties imposed by the language, the current state-of-the-art in the liter-
ature, and the sequence of steps that needs to be taken. Using our approach, we
illustrate how to give functionally correct specifications of JavaScript programs,
written in a separation logic for JavaScript. We aim to have such specifications
be as agnostic as possible to the internals of JavaScript and provide an interface
that gives meaningful feedback to the developer. We give a brief description of
JaVerT, our semi-automatic toolchain for JavaScript verification.
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 8–25, 2017.
DOI: 10.1007/978-3-319-63046-5 2

Towards Logic-Based Verification of JavaScript Programs 9

2 Motivation

We illustrate the complexity of JavaScript by appealing to a JavaScript priority
queue library, which uses an implementation based on singly-linked node lists. It
is a variation on a Node.js priority queue library that uses doubly linked lists [18],
simplified for exposition. We use this example to showcase the intricacies of
JavaScript semantics as well as some of the major challenges that need to be
addressed before JavaScript programs can be verified.

1 /* @id PQLib */
2 var PriorityQueue = (function () {
3 var counter = 0;
4

5 /* @id Node */
6 var Node = function (pri, val) {
7 this.pri = pri;
8 this.val = val;
9 this.next = null;

10 counter++;
11 }
12

13 /* @id insert */
14 Node.prototype.insert =
15 function (nl) {
16 if (nl === null) {
17 return this
18 }
19 if (this.pri >= nl.pri) {
20 this.next = nl;
21 return this
22 }
23 var tmp = this.insert (nl.next);
24 nl.next = tmp;
25 return nl
26 }
27

28 /* @id PQ */
29 var PQ = function () {
30 this._head = null
31 };

32 /* @id enqueue */
33 PQ.prototype.enqueue =
34 function(pri, val) {
35 if (counter > 42) {
36 throw new Error()
37 }
38 var n = new Node(pri, val);
39 this._head = n.insert(this._head);
40 };
41

42 /* @id dequeue */
43 PQ.prototype.dequeue =
44 function () {
45 if (this._head === null) {
46 throw new Error()
47 }
48 var first = this._head;
49 this._head = this._head.next;
50 counter--;
51 return {pri: first.pri,
52 val: first.val};
53 };
54

55 return PQ;
56 })();
57

58 var q = new PriorityQueue();
59 q.enqueue(1, "last");
60 q.enqueue(3, "bar");
61 q.enqueue(2, "foo");
62 var r = q.dequeue();

Fig. 1. A simple JavaScript priority queue library (lines 1–56) and client (lines 58–62).
For verification purposes, each function literal is annotated with a unique identifier.

2.1 A Priority Queue Library

In Fig. 1, we present the priority queue library (lines 1–56) together with a simple
client program (lines 58–62). The priority queue is implemented as an object with
property _head pointing to a singly-linked list of node objects, ordered in descend-
ing order of priority. A new priority queue object is constructed using the PQ func-
tion (lines 28–31), which declares that property _head has value null, that is, that
the queue is initially empty. The enqueue and dequeue functions (lines 32–53) pro-
vide the functionality to enqueue and dequeue nodes of the queue. These functions
should be accessible by all priority queue objects. This is accomplished by follow-
ing the standard JavaScript prototype inheritance paradigm, which, in this case,
means storing these two functions within the object PQ.prototype.

10 J.F. Santos et al.

The enqueue function constructs a new node object, and then adds it to the
node list in the appropriate place given by its priority. A node object is constructed
using the Node function (lines 5–11) which declares three properties, a priority, a
value and a pointer to the next node in the node list, and increments the variable
counter, which keeps track of how many nodes were created (lines 3,10) by the
library. We limit the number of nodes that a library can create (lines 35–37) to
illustrate scoping further. The node object is then inserted into the node list using
the insert function (lines 13–26) which, again using prototype inheritance, is a
property of Node.prototype and is accessible by all node objects.

Let us now show how the example actually works. Our first step is to ini-
tialise the priority queue library in lines 1–50. This involves: (1) setting up the
functionalities of node objects (lines 5–26); (2) setting up the functionalities of
priority queue objects (lines 28–53); and (3) providing the interface from the
priority queue library to the client (line 55). At this point, the client can con-
struct a new, empty priority queue, by calling new PriorityQueue(), and enqueue
and dequeue nodes of the queue, by calling the enqueue and dequeue functions.

We demonstrate how this library can be used via a small client program (lines
58–62). Line 58 constructs an empty queue, identified by the variable q. In doing
so, the node counter associated with q is set to zero, as no nodes have yet been
created (line 3). Lines 59–62 call the enqueue and dequeue functions, for adding
and removing elements from the queue. For example, the command statement
q.enqueue(1,"last") in line 59 inserts a new node with priority 1 and value "last"

into the (at this point empty) queue q. To do so, it first checks if the node limit
has been reached and, since the value of the node counter is zero, it proceeds.
Next, it uses the Node function to construct a new node object (line 38), say n,
with the given priority (pri=1), value (val="last"), and a pointer to the next
node (initially next = null). Finally, it then calls n.insert(this._head) (line 39),
which inserts n into the existing node list at this._head, returns the head of the
new node list and stores it in this._head. In this case, since we are inserting
the node n into an empty queue, this head of the new node list will be n. The
statements q.enqueue(3, "bar") and q.enqueue(2, "foo") behave in a similar way.
After their execution, we have a queue containing three elements and the node
counter is equal to 3. Finally, the statement var r = q.dequeue() removes the first
element from the queue by swinging the _head pointer to the second element of
the node list, decreases the node counter to 2, creates a new object containing
the priority property with value 3 and the value property with value "bar", and
returns the address of this new object.

Ideally, it should be possible to abstract the details of Node so that the client
works with the functionalities of the priority queue. In Java, it is possible to
define a Node constructor and its associated functionalities to be private. In
JavaScript, there is no native mechanism that provides encapsulation. Instead,
the standard approach to establish some form of encapsulation is to use function
closures. For example, the call of the function Node inside the body of enqueue

(line 38) refers to the variable Node declared in the enclosing scope. This makes it
impossible for the clients of the library to see the Node function and use it directly.

Towards Logic-Based Verification of JavaScript Programs 11

However, they still can access and modify constructed nodes and Node.prototype

through the _head property of the queue, breaking encapsulation. Our goal is
to provide specifications of the queue library functions that ensure functionally
correct behaviour and behavioural properties of encapsulation.

2.2 The Complexity of JavaScript

JavaScript is a highly dynamic language, featuring a number of non-standard
concepts and behaviours. In this section, we describe the JavaScript initial
heap and elaborate on the challenges that need to be addressed for tractable
JavaScript verification to be possible.

Initial Heap. Before the execution of any JavaScript program, an initial heap has
to be established. It contains the global object, which holds all global variables
such as PriorityQueue, q and r from the example. It also contains the func-
tions of all JavaScript built-in libraries, widely used by developers: for example,
Object, Function and Error. In the example, the Error built-in function is used to
construct a new error object when trying to dequeue an empty queue (line 36).

Internal Functions. In the ECMAScript standard, the semantics of JavaScript
is described operationally, that is, the behaviour of each JavaScript expression
and statement is broken down into a number of steps. These steps heavily rely
on a wide variety of internal functions, which capture the fundamental inner
workings of the language; most notably, object property management (e.g. cre-
ation (DefineOwnProperty), lookup (GetValue), mutation (PutValue) and deletion
(Delete)) and type conversions (e.g. ToString and ToNumber).

To better understand the extent of the use of the internal functions, consider
the JavaScript assignment o["foo"] = 42. According to its definition in the stan-
dard, it calls the internal functions five times: GetValue thrice, and ToString and
PutValue once. This, however, is only at top-level: GetValue, in turn, calls Get,
which calls GetProperty, which calls GetOwnProperty and possibly itself recur-
sively; PutValue calls Put, which calls CanPut and DefineOwnProperty, which calls
GetOwnProperty. In the end, a simple JavaScript assignment will make more than
ten and, in some cases, even more than twenty calls to various internal func-
tions. The more complex a JavaScript command is, the greater the number of
the internal functions that it calls. Therefore, in order to be able to reason about
JavaScript programs, one first has to tackle the internal functions. This brings
us to the following challenge:

Challenge:
To reason robustly and abstractly about the
JavaScript internal functions.

JavaScript Objects. Objects in JavaScript differ C++ and Java objects in several
defining ways. First, JavaScript objects are extensible, that is, properties can be
added and removed from an object after creation. Second, property access in
JavaScript is dynamic; we cannot guarantee statically which property of the

12 J.F. Santos et al.

object will be accessed. Third, JavaScript objects have two types of properties:
internal and named.

Internal properties are hidden from the user, but are critical for the mecha-
nisms underlying JavaScript, such as prototype inheritance. To illustrate, stan-
dard objects have three internal properties: @proto, @class, and @extensible.
For example, all node objects constructed using the Node function have proto-
type Node.prototype, class "Object", and are extensible. JavaScript objects con-
structed by some of the built-in libraries can have additional internal properties.
For example, a String object, associated with a string literal, has properties that
represent the characters of that literal.

Named properties, which correspond to standard fields of C++ and Java
objects, are associated not with values, but instead with property descriptors,
which are lists of attributes that describe the ways in which a property can be
accessed or modified. Depending on the attributes they contain, named proper-
ties can either be data properties or accessor properties. Here, we focus on data
properties, which have the following attributes: value, holding the actual value of
the property; writable, describing if the value can be changed; configurable, allow-
ing property deletion and any change to non-value attributes; and enumerable,
stating if a property may be used in a for−in enumeration. The values of these
attributes depend on how the property is created. For example, if a property
of an object is created using a property accessor (for example, this.pri = pri),
then by default it is writable, configurable and enumerable. On the other hand,
if a property is declared as a variable, then by default it is not configurable (for
example, q in the global object).

Additionally, certain JavaScript commands and functions, such as for−in or
Object.keys, traverse over all enumerable properties of an object. As JavaScript
objects are extensible, these properties need not be known statically. Also, the
for−in loop may modify the object over which it is traversing. This behaviour
is difficult to capture and further illustrates the dynamic nature of JavaScript.

In summary, JavaScript objects have an additional, highly non-trivial layer
of complexity related to object property management with respect to objects
in C++ or Java. Furthermore, this complexity cannot be captured natively by
the existing tools for verifying C++ or Java programs (see Sect. 3.2 for a more
detailed discussion). This constitutes an important challenge:

Challenge:
To reason about extensible objects, dynamic property access,
property descriptors, and property traversal.

Fig. 2. The prototype chain of Node objects.

Towards Logic-Based Verification of JavaScript Programs 13

Prototype-based inheritance. JavaScript models inheritance through prototype
chains. To look up the value of a property of an object, we first check the object
itself. If the property is not there, we walk along the prototype chain, follow-
ing the @proto internal properties, checking for the property at each object. In
our example, all node objects constructed using the enqueue function (line 38)
have a prototype chain like the one given in Fig. 2. There, the lookup of prop-
erty val starting from object n only needs to check n. The lookup of property
insert starting from n first checks n, which does not have the property, then
checks Node.Prototype, which does. In general, prototype chains can be of arbi-
trary length, typically finishing at Object.prototype, but they cannot be circular.
Moreover, prototype chain traversal is additionally complicated in the presence
of String objects, which have properties that do not exist in the heap.

Prototype chain traversal is one of the fundamental building blocks of the
JavaScript language and is prominently featured in the behaviour of almost every
JavaScript command. This brings us to our next challenge:

Challenge: To reason about prototype chains of arbitrary complexity.

Functions, Function objects. Functions are also stored in the JavaScript heap as
objects. Each function object has three specific internal properties: (1) @code,
storing the code of the original function; (2) @scope, storing a representation
of the scope in which the function was defined; and (3) prototype, storing the
prototype of those objects created using that function as the constructor. For
example, Node.prototype is the prototype of all node objects constructed using
the Node function, and is the place to find the insert function.

There are two main challenges related to reasoning about function objects.
The first involves the interaction between function objects and scoping, which we
address in the following paragraph. The second has to do with higher-order func-
tions. Namely, JavaScript has full support for higher-order functions, meaning
that a function can take another function as an argument, or that a function can
return another function as a result. This behaviour is not easily captured, par-
ticularly in a program logic setting, but is often used in practice and verification
of JavaScript programs should ultimately be able to tackle it.

Challenge: To reason about higher-order functions of arbitrary complexity.

Scoping, Function Closures. In JavaScript, scope is modelled using environment
records (ERs). An ER is an internal object, created upon the invocation of a func-
tion, that maps the variables declared in the body of that function and its formal
parameters to their respective values. Variables are resolved with respect to a
list of ER locations, called a scope chain. In the non-strict mode of JavaScript,
standard JavaScript objects can also be part of a scope chain. In strict mode,
the only JavaScript object that can be part of a scope chain is the global object,
which is treated as the ER of the global code. Since functions in JavaScript can
be nested (e.g. Node, enqueue, dequeue) and can also be returned as outcomes of
other functions (e.g. the PQ function is returned by PQLib), it is possible to create
complex relationships between scope chains of various functions.

14 J.F. Santos et al.

We discuss scoping through the enqueue function, which uses five variables
in its body: pri, val, n, Node, and counter. The scope chain of enqueue contains
the ERs corresponding to enqueue, PQLib, and global code. As pri and val are
formal parameters and n is a local variable of enqueue, they are stored in the ER
of enqueue. However, Node and counter are not declared in enqueue and are not
its formal parameters, so we have to look for them in the rest of the scope chain
associated with enqueue, and we find them in the ER corresponding to PQLib.
This means that when we reason about enqueue, we need to capture not only its
ER, but also a part of the ER of PQLib. We should also note that while the value
of Node is static, the value of counter is changed both by Node and by dequeue,
and that this change is visible by all of the functions of the library. Overall,
the interaction of scope chains in JavaScript is very intricate, especially in the
presence of multiple function closures. Therefore, our next challenge is:

Challenge:
To reason about scope chains and function
closures of arbitrary complexity.

2.3 Specification of JavaScript libraries

There are two requirements necessary for the correct functioning of the prior-
ity queue library. First, the intention of the library developer is that all node
objects constructed using the Node function should have access to the function
insert. This means that the node objects themselves must not have the property
"insert". Second, we must always be able to construct a Node object. This means,
due to the semantics of JavaScript, that Node.Prototype and Object.Prototype

must not have properties "pri", "val" and "next", used in the node constructor,
declared as non-writable. We call these two requirements prototype safety. We
aim to provide a library specification for the priority queue that ensures pro-
totype safety, and believe that we have identified a desired pattern of library
behaviour suitable for JavaScript data structure libraries developed for Node.js.

Challenge:
To provide specifications of JavaScript
libraries that ensure prototype safety.

Hiding JavaScript internals. Our priority queue example illustrates some of the
complexities of JavaScript: extensible objects, prototype-based inheritance, func-
tions, scoping, and function closures. There is, in addition, much complexity that
is not exposed to the JavaScript developer: for example, property descriptors,
internal functions, as well as implicit type coercions, where values of one type are
coerced at runtime to values of another type in order to delay error reporting.
We would like to provide specifications that are as opaque as possible to such
hidden features: since the code does not expose them, the specification should
not expose them either. However, all of these features have to be taken into
account when verifying that a program satisfies a specification. One solution is
to provide abstractions that hide these internal details from view.

Challenge:
To create abstractions that hide the internals of JavaScript
as much as possible and allow the developer to write speci-
fications in the style of C++ and Java specifications.

Towards Logic-Based Verification of JavaScript Programs 15

3 A Pathway to JavaScript Verification

Logic-based symbolic verification has recently become tractable for C and Java,
with compositional techniques that scale and properly engineered tools applied
to real-world code: for example, Infer, Facebook’s tool based on separation logic
for reasoning about for C, C++, Objective-C and Java [6]; Java Pathfinder, a
model checking tool for Java bytecode programs [27]; CBMC, a bounded model
checker for C, currently being adapted to Java at Amazon [20]; and WALA’s
analysis for Java using the Rosette symbolic analyser [12].

There has been little work on logic-based symbolic verification for JavaScript.
As far as we are aware, the only relevant work is KJS [8,22], a tested executable
semantics of JavaScript in the K framework [24] which is equipped with a sym-
bolic execution engine. The aim of K is to provide a unified environment for
analysing programming languages such as C, Java and JavaScript. Specifica-
tions are written in the reachability logic of K, and the authors use KJS to
specify operations on data structures, such as lists, binary search trees (BSTs)
and AVL trees, and to verify the correctness of several sorting algorithms. This
work does not address many of the challenges that laid out in the previous
section. For example, it does not provide a general, abstract way of reasoning
about prototype chains, scope chains, or function closures; the concrete shape
of a prototype chain or a scope chain always needs to be known. It does not
provide JavaScript-specific abstractions, so the specifications are cumbersome
and reveal all JavaScript internals. The internal functions are always executed
in full. More generally, function specifications are often not given, so the sym-
bolic execution cannot jump over function calls but executes the bodies instead.
This diminishes the scalability of KJS. We argue that a more JavaScript-specific
approach is needed in order to make JavaScript verification tractable.

3.1 Choosing the Battleground

We believe that separation logic has much to offer JavaScript, since it provides a
natural way of reasoning modularly about the JavaScript heap. Gardner, Smith
and Maffeis developed a sound separation logic for a small fragment of JavaScript
with many syntactic and semantic simplifications [13]. Their goal was to demon-
strate that separation logic can be used to reason about the variable store emu-
lated in the JavaScript heap. This approach is not extensible to the entire lan-
guage. For example, consider the general assignment e1 = e2, where e1 and e2

are arbitrary JavaScript expressions. Under the hood, this assignment evaluates
these two expressions and calls the GetValue and PutValue internal functions.
The evaluation of each expression, as well as each of these two internal functions
has tens of cases, so combining these case together would result in hundreds
of axioms for the JavaScript assignment alone. Such a logic would be extremely
difficult to prove sound, let alone automate. In order to reason about JavaScript,
we need to move to a simple intermediate representation.

Working directly with JavaScript is not tractable for verification based on

program logics. We need a simple intermediate representation.

16 J.F. Santos et al.

3.2 Moving to a Simpler World

Our conclusion that some sort of an intermediate representation (IR) is neces-
sary for JavaScript verification is not surprising. Most analysis tools, both for
JavaScript [1,14,17,19,23,26] and other languages [2,3,6,7,9,12,15], use an IR.
The next step is to understand what the desired features of an IR for logic-based
JavaScript verification are. We believe that the following criteria need to be met.

1. Expressiveness. JavaScript is a highly dynamic language, with extensible
objects, dynamic field access, and dynamic function calls. These features cre-
ate an additional level of complexity for JavaScript when compared to other
object-oriented languages such as C++ and Java. They should be supported
natively by the IR.

2. Simple control flow. JavaScript has complicated control flow constructs: for
example, for-in, which iterates on the fields of an object; try-catch-finally
for handling exceptions; and the breaking out of loops to arbitrary labelled
points in the code. Logic-based symbolic verification tools today typically
work on IRs with simple control flow. In particular, many of the separation-
logic tools for analysing C, C++, and Java use goto-based IRs: for example,
[2,3,6,7,9,15]. This suggests that our IR for JavaScript should be based on
simple low-level control flow constructs.

One option is to use an IR that has already been developed for analysing
JavaScript code. We can broadly divide these IRs into two categories: (1) those
that work for analyses that are syntax-directed, following the abstract syntax
tree (AST) of the program, such as λJS [14], S5 [23], and notJS [19]; and (2) those
that aim at analyses based on the control-flow graph of the program, such as
JSIR [21], WALA [12,26] and the IR of TAJS [1,17]. The IRs in (1) are nor-
mally well-suited for high-level analysis, such as type-checking and type inference
[14,23], whereas those belonging to (2) are generally the target of separation-
logic-based tools, such as Smallfoot [2], Slayer [3], JStar [9], VeriFast [15], Abduc-
tor [7], and Infer [6], as well as tools for tractable symbolic evaluation such as
CBMC [20] and Klee [5].

We believe that an IR for JavaScript verification should belong to (2). The
JSIR [21] and WALA [12,26] IRs both capture the dynamic features of JavaScript
and provide low-level control flow constructs. However, neither JSIR nor WALA
have associated compilers. In addition, they do not provide reference implemen-
tations of the JavaScript internal functions and built-in libraries, which makes it
very difficult for us to assess their usability. TAJS [1,17] does include a compiler,
originally for ECMAScript 3 (ES3) but now extended with partial models of the
ES5 standard library, the HTML DOM, and the browser API. As TAJS is used
for type analysis and abstract interpretation, its IR is more high-level than those
typically used for logic-based symbolic verification. In addition, we believe that
the aim for verification should be at least ECMAScript 5 (ES5) [10], which is
substantially different from ES3 and essentially provides the core language for
the more recent ES6 and ES7.

Towards Logic-Based Verification of JavaScript Programs 17

Another option is to consider using or adapting an IR supported by an exist-
ing separation-logic-based tool [2,3,6,7,9,15], where we would have to provide
the compiler from JavaScript, but the analysis for the IR could be reused. There
are two problems worth mentioning with this approach. First, these tools all tar-
get static languages that do not support extensible objects or dynamic function
calls. Hence, JavaScript objects could not be directly encoded using the built-
in constructs of these languages. Consequently, at the logical level, one would
need to use custom abstractions to reason about JavaScript objects and their
associated operations, effectively losing most of the native reasoning features of
the tool in question. Second, any program logic for JavaScript needs to take
into account the JavaScript binary and unary operators, such as toInt32 [10],
and it is not clear that these operators would be expressible using the assertion
languages of existing tools. This brings us to the following conclusion:

JavaScript requires a dedicated low-level control-flow-based IR for

verification: the simpler the IR, the better.

We have developed a simple JavaScript IR for our verification toolchain,
called JSIL. It comprises only the most basic control flow commands (uncon-
ditional and conditional gotos), the object management commands needed to
support extensible objects and dynamic field access, and top-level procedures.
In the following section, we use JSIL to discuss what it means to design and trust
the compilation and verification process. However, the methodology and princi-
ples that we lay out are general and apply to any verification IR for JavaScript.

3.3 Trusted Compilation of JavaScript

The development of an appropriate IR is tightly connected with the development
of the compiler from JavaScript to the IR, which brings up two challenges that
need to be addressed:

1. The compilation has to capture all of the behaviours and corner cases of the
JavaScript semantics, and must come with strong guarantees of correctness.

2. The reasoning at JavaScript level has to be strongly connected with the rea-
soning at the IR level; we refer to this as logic-preserving compilation.

To answer these two challenges, we unpack what it means to show that a
compiler can be trusted.

– Correctness by design. This approach assesses the compiler by looking at
the structure of the compiler code and at examples of compiled code. It is
greatly simplified by using semantics-driven compilation, where the compiler
and the compiled code follow the steps of the JavaScript English standard line-
by-line as much as possible. This approach is feasible, because the JavaScript
standard is given operationally, in an almost pseudo-code format. Given the
complexity of JavaScript, this approach, albeit quite informal in nature, can
give some confidence, particularly to the compiler developer, when it comes
to compiler correctness. Ultimately, however, it is not formal enough to be
sufficient on its own.

18 J.F. Santos et al.

– Correctness by testing. JavaScript is a real-world language that comes
with an official test suite, the ECMAScript Test262 [11]. Although Test262 is
known not to be comprehensive, it features over 20,000 tests that extensively
test most of the JavaScript behaviour. Correctly compiled JavaScript code
should pass all of the appropriate tests.

– Semantics-preserving compilation. This correctness condition for the
compiler is standard in compiler literature. It requires formalising the seman-
tics and memory model of JavaScript, formalising the semantics and memory
model of IR, giving a correspondence between the two memory models, and,
with this correspondence, proving that the semantics of the JavaScript and
compiled IR code match. For real-world languages, either a pen-and-paper
proof is given for a representative fragment or a mechanised proof is given,
in a proof assistant such as Coq, for the entire language.

– Logic-preserving compilation. This correctness condition for the com-
piler is not commonly emphasised in the analysis literature. It assumes
semantic-preserving compilation and additionally requires: giving a strong
correspondence between JavaScript and IR assertions; relating the seman-
tics of JavaScript triples with the semantics of the IR triples; and proving a
soundness result for the IR proof rules. In this way, one can formally lift IR
verification to JavaScript verification.

What follows is an insight into our design process for JSIL and JS-2-JSIL,
and the main lessons that we have learnt from it. We knew we wanted to achieve
logic-preserving compilation, using a separation logic for reasoning about heap
manipulation. From the start, a fundamental decision was to make the JavaScript
and JSIL memory models as close to each other as possible. In the end, the only
difference is the modelling of scope chains. We also chose to design JS-2-JSIL
so that the compiled code follows the ECMAScript standard line-by-line, which
meant that the choices for JSIL were quite apparent. This approach proved to be
important for JS-2-JSIL. It leverages on the operational aspect of the standard,
making the inspection and debugging of compiled code considerably easier.

Semantics-driven compilation is greatly beneficial.

We believe that testing is an indispensable part of establishing compiler cor-
rectness for real-world languages such as JavaScript. Regardless of how precise
proof of correctness may be, there still is plenty of room for discrepancies to
arise: for example, the implementation of the compiler might inadvertently devi-
ate from its formalisation; or the formalised JavaScript semantics might deviate
from the standard. For us, it was testing that guided our debugging process;
without it, we would not be able to claim correctness of JS-2-JSIL.

Extensive testing of the compiled code is essential.

When writing a language compiler, one might claim that correctness-by-
design and correctness-by-testing are sufficient: there is a clear design structure
to the compiler that can be checked by looking at the code and by testing.

Towards Logic-Based Verification of JavaScript Programs 19

This is not enough when using the compiler for logic-based verification. In this
case, we require logic-preserving compilation which formally connects JavaScript
verification with JSIL verification. Logic-preserving compilation depends on
semantic-preserving compilation, which is difficult to prove for such a complex
language as JavaScript. We give a pen-and-paper proof correctness proof for a
representative fragment of the language. We have given thought to providing a
Coq proof of correctness, leveraging on our previous JSCert mechanised specifi-
cation of JavaScript [4]. However, the process of formalising JSIL and JS-2-JSIL,
and then proving the correctness is beyond our manpower. In contrast, the proof
that the compiler is logic preserving is comparatively straightforward due to the
simple correspondence between the JavaScript and JSIL memory models. More-
over, we noticed that the complexity of our proofs is strongly related to the
complexity of this correspondence.

Semantic- and logic-preserving compilation is essential for verification.

A simple correspondence between JavaScript and IR heaps is essential for

containing the complexity of any correctness proofs.

3.4 Tackling the Javascript Internal Functions

The internal functions are described in the standard only in terms of pseudo-
code and not JavaScript. They must, therefore, be implemented directly in the
IR. With these implementations, we have identified two options on how to use
them in verification.

– Inlining. The entire body of an internal function is inlined every time the
function is supposed to be called in the compiled code.

– Axiomatic specification. Internal functions are treated as procedures of the
IR and, as such, are fully axiomatically specified. Calls to internal functions
are treated as standard procedure calls of the IR.

We do not believe that inlining is a viable option. Given the sheer number
of calls to the internal functions and their intertwined nature, the size of the
compiled code would quickly spiral out of control. We would also entirely lose the
visual correspondence between the compiled code and the standard. Moreover,
the bulk of verification time would be spent inside this code and the overall
verification process would be very slow.

With axiomatic specifications, on the other hand, the calls to internal func-
tions are featured in the compiled code as procedure calls to their IR implemen-
tations. In that sense, the compiled code reflects the English standard. During
verification, the only check that has to be made is that the current symbolic
state entails a precondition of the specification, which is both at a higher level of
abstraction as well as faster than running the body of the function every time.

Axiomatic specifications of the internal functions are essential for

tractable JavaScript verification.

20 J.F. Santos et al.

Creating axiomatic specifications does not come without its challenges. The
definitions of the internal functions are often intertwined, making it difficult to
fully grasp the control flow and allowed behaviours. Specifying such dependencies
axiomatically involves the joining of the specifications of all nested function calls
at the top level, which results in numerous branchings. Also, some of the internal
functions feature higher-order and, although it is possible to add higher-order
reasoning to separation logic [25], the soundness result is known to be difficult.
We believe that the resulting specifications, however, will be much more readable
than the operational definitions of the standard. We also hope that they can also
be easily reused for other types of analyses, by leveraging on executable code
created from the axiomatic specifications.

3.5 JavaScript Verification Toolchain

We are currently developing a JavaScript verification toolchain (JaVerT), which
targets the strict mode of the ES5 standard. It requires the JavaScript code to be
annotated with assertions written in our assertion language for JavaScript (JS
Logic). These annotations comprise specifications (the pre- and postconditions)
for functions and global code, together with loop invariants and unfold/fold
instructions for any user-defined predicates, such as a predicate for describing
priority queues. JaVerT also features a number of built-in predicates that provide
abstractions for the key concepts of JavaScript; in particular, for prototype inher-
itance, scoping, function objects and function closures. Such predicates enable
the developer to move away from the complexity of the JavaScript semantics
and write specifications in a logically clear and concise manner.

Fig. 3. JaVerT: JavaScript Verification Toolchain

Towards Logic-Based Verification of JavaScript Programs 21

Figure 3 presents the architecture of JaVerT, which rests on an infrastructure
that consists of three components: (1) JS-2-JSIL, our semantics-preserving1 and
logic-preserving compiler from JavaScript to JSIL which has been tested using
the official Test262 test suite, passing all the appropriate tests; (2) JSIL Verify,
our semi-automatic tool for JSIL verification, based on a sound program logic
for JSIL (JSIL Logic); and (3) our JSIL Logic axiomatic specifications of the
JavaScript internal functions, which have been verified using JSIL Verify against
their corresponding JSIL implementations.

Given a JavaScript program annotated with JS Logic specifications, JaVerT
uses our JS-2-JSIL compiler to translate it to JSIL and the JS-2-JSIL logic trans-
lator to translate JS Logic annotations to JSIL Logic. The resulting annotated
JSIL program is then automatically verified by JSIL Verify, taking advantage of
our specifications of the JavaScript internal functions.

Thus far, we have used JaVerT to specify and verify a variety of heap-
manipulating programs, including operations on lists (e.g. insertion sort), pri-
ority queues and BSTs, as well as a number of small JavaScript programs that
showcase our treatment of prototype chains, scoping, and function closures. All
examples can be found online at [16] and are continually being updated.

4 Specifying the Priority Queue Library

We illustrate JaVerT specifications by specifying the enqueue and dequeue meth-
ods of the priority queue library, given in Fig. 1. We show how these specifications
are used to verify the client program given in lines 58–62 of the example.

In order to specify enqueue and dequeue, we first need to have a predicate
Queue, describing a priority queue, and the predicate QueueProto, describing the
priority queue prototype. The predicate Queue(lq, qp, np, pri_q, len) describes a
priority queue at location lq, whose prototype is qp, whose nodes have node pro-
totype np, whose maximum priority is pri_q, and which contains len nodes. The
predicate QueueProto(qp, np, c) describes a priority queue prototype at location
qp for those priority queues built from node objects whose node prototype is
np. The parameter c records the value of the variable counter of the example
(line 3), and holds the total number of existing node objects.

These two abstractions, which we will not unfold in detail here, capture,
among others, the resource associated with the Node, insert, enqueue, and
dequeue function objects, as well as the resource corresponding to the function
closures of enqueue and dequeue: in particular, for enqueue, we need the vari-
able property Node from the ER of PQLib; and, for dequeue, we need the variable
resource counter from that same ER. They also capture the resources necessary
to express prototype safety for both Node and PQ, which we describe using a
technique from [13] for reasoning about the absence of properties in an object.
We explicitly require the insert property of node object n, and the pri, val, and
next properties of Node.prototype and Object.prototype not to be in the heap,
1 The formal result that the compiler is semantics-preserving has been done for a

fragment of the language.

22 J.F. Santos et al.

Fig. 4. Prototype safety for Node objects

as illustrated in Fig. 4 by the properties in red with value None. Note that the
Queue and QueueProto predicates do not expose the internals of JavaScript, such
as property descriptors and scope chains. Moreover, they do not expose func-
tions not accessible to the client, such as the Node function. They do expose
Node.prototype via the np parameter, but this is expected since the client can
access it through the _head property of a queue.

The following specification of enqueue states that it should be executed on a
priority queue of arbitrary length len, that the total number of existing nodes c

needs to be not greater than 42, and that it receives two arguments pri and val

with pri of type Num. The postcondition states that enqueue returns a priority
queue with len + 1 nodes and maximum priority max(pri_q, pri), and that the
total number of nodes has increased by one. Due to space requirements, we omit
the specification of enqueue corresponding to the error case in which the total
number of existing nodes is greater than 42.

{
Queue(this, qp, np, pri_q, len) * QueueProto(qp, np, c) *

types(pri: Num) * c <= 42

}

enqueue(pri, val){
Queue(ret, qp, np, max(pri q, pri), len+1) * QueueProto(qp, np, c+1)

}

The following specification of dequeue states that it should be executed on a
priority queue with length len greater than 0 and maximum priority pri_q. The
postcondition states that, afterwards, the length of the queue has decreased by
one, its priority has not increased, and the overall total number of nodes has
decreased by one. The function also returns a standard object with two fields,
pri with value pri_q and val with value #val which is existentially quantified.
We prefix existentially quantified variables with a ‘#’. In the postcondition,
the standardObject and dataField abstractions hide the internal properties and
property descriptors of JavaScript objects. Again, due to space requirements, we
omit the specification of dequeue where the queue from which we are dequeueing
is empty and an error is thrown.

{
Queue(this, qp, np, pri q, len) * QueueProto(qp, np, c) * len > 0

}
dequeue(){

Queue(this, qp, np, pri’, len-1) * QueueProto(qp, np, c-1) * pri’ <= pri_q *
standardObject(ret) * dataField(ret, "pri", pri_q) * dataField(ret, "val", #val)

}

Given the specifications of enqueue and dequeue, we can verify the client
program in lines 59–62. We show a proof sketch below, where we use the assertion

Towards Logic-Based Verification of JavaScript Programs 23

scope(x: v) to state that variable x has value v in the current scope. Starting from
an empty queue with maximum priority 0, we create three nodes, obtaining a
queue with three nodes and maximum priority 3. Then, we dequeue the head of
the queue (which we can do, as we know that the queue has 3 nodes), obtaining a
queue with 2 nodes and existentially quantified priority #pri not greater than 3.
Moreover, in the end, the variable r is bound to an object with two fields: pri,
with value 3; and val, with value #val which is existentially quantified.
{

scope(q: qv) * Queue(qv, qp, np, 0, 0) * QueueProto(qp, np, 0) * scope(r: undefined)
}

q.enqueue(1, "last"); q.enqueue(3, "bar"); q.enqueue(2, "foo"){
scope(q: qv) * Queue(qv, qp, np, 3, 3) * QueueProto(qp, np, 3) * scope(r: undefined)

}
var r = q.dequeue(){

scope(q: qv) * Queue(qv, qp, np, #pri, 2) * QueueProto(qp, np, 2) * #pri <= 3 *
scope(r: #r) * standardObject(#r) * dataField(#r, "pri", 3) * dataField(#r, "val", #val)

}

These specifications show that it is possible to successfully abstract over
JavaScript internals, allowing both the library developer and the client developer
to write specifications that are as free as possible from JavaScript-specific clutter.

4.1 Discussion

We conclude with a brief discussion of two important aspects of specifying
JavaScript libraries: capturing prototype safety; and enforcing encapsulation.
The situation for prototype safety is straightforward. It is not possible to verify
a specification of client code if it compromises prototype safety. The situation
for encapsulation is more subtle. In the example, a client can break encapsula-
tion by modifying node objects or Node.prototype. There are ways of breaking
encapsulation that we could choose to allow. The client could, for instance, add
more functionalities to Node.prototype or add more properties to node objects,
and this would not break the existing functionalities. However, there are ways of
breaking encapsulation that we should certainly disallow. The client could, for
instance, change the values of the pri, val, or next properties of a node object,
or change the implementation of the insert function in Node.prototype. One way
to ensure full encapsulation would be to keep the Queue and QueueProto predi-
cates opaque to the client code. Hence, in order to be successfully verified, client
code can only interact with a priority queue via its established interface, that
being the enqueue and dequeue methods. By keeping library predicates opaque,
we make sure that client code cannot break the existing abstractions.

Acknowledgments. Fragoso Santos, Gardner, and Maksimović were supported by
the EPSRC Programme Grant REMS: Rigorous Engineering for Mainstream Sys-
tems (EP/K008528/1), and the Department of Computing in Imperial College London.
Naudžiūnienė was supported by an EPSRC DTA award. Maksimović was also partially
supported by the Serbian Ministry of Education and Science through the Mathematical
Institute of Serbian Academy of Sciences and Arts, projects ON174026 and III44006.

24 J.F. Santos et al.

References

1. Andreasen, E., Møller, A.: Determinacy in static analysis for jQuery. In: OOPSLA
(2014)

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: Boer, F.S., Bonsangue, M.M., Graf, S., Roever,
W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp. 115–137. Springer, Heidelberg
(2006). doi:10.1007/11804192 6

3. Berdine, J., Cook, B., Ishtiaq, S.: Slayer: Memory safety for systems-level code. In:
Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 15

4. Bodin, M., Charguéraud, A., Filaretti, D., Gardner, P., Maffeis, S., Naudziuniene,
D., Schmitt, A., Smith, G.: A trusted mechanised JavaScript specification. In:
Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2014, pp. 87–100. ACM Press (2014)

5. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic generation
of high-coverage tests for complex systems programs. In: Draves, R., van Renesse,
R. (eds.) 8th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2008, 8–10 December 2008, San Diego, California, USA, Proceedings,
pp. 209–224. USENIX Association (2008)

6. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham (2015). doi:10.1007/
978-3-319-17524-9 1

7. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL (2009)

8. Ştefănescu, A., Park, D., Yuwen, S., Li, Y., Roşu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 31th Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2016), pp. 74–91.
ACM, November 2016

9. Distefano, D., Parkinson, M.: jStar: towards practical verification for Java. In:
OOPSLA (2008)

10. ECMAScript Committee. The 5th edn. of the ECMAScript Language Specification.
Technical report, ECMA (2011)

11. ECMAScript Committee. Test262 test suite (2017). https://github.com/tc39/
test262

12. Fink, S., Dolby, J.: WALA – The T.J. Watson Libraries for Analysis (2015). http://
wala.sourceforge.net/

13. Gardner, P., Maffeis, S., Smith, G.: Towards a program logic for JavaScript. In:
Proceedings of the 40th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2013, pp. 31–44. ACM Press (2012)

14. Guha, A., Saftoiu, C., Krishnamurthi, S.: The essence of JavaScript. In: D’Hondt,
T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 126–150. Springer, Heidelberg (2010).
doi:10.1007/978-3-642-14107-2 7

15. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

16. JaVerT Team. Javert (2017). http://goo.gl/au69SV

http://dx.doi.org/10.1007/11804192_6
http://dx.doi.org/10.1007/978-3-642-22110-1_15
http://dx.doi.org/10.1007/978-3-319-17524-9_1
http://dx.doi.org/10.1007/978-3-319-17524-9_1
https://github.com/tc39/test262
https://github.com/tc39/test262
http://wala.sourceforge.net/
http://wala.sourceforge.net/
http://dx.doi.org/10.1007/978-3-642-14107-2_7
http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://goo.gl/au69SV

Towards Logic-Based Verification of JavaScript Programs 25

17. Jensen, S.H., Møller, A., Thiemann, P.: Type analysis for JavaScript. In: Palsberg,
J., Su, Z. (eds.) SAS 2009. LNCS, vol. 5673, pp. 238–255. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-03237-0 17

18. Jones, J.: Priority queue data structure (2016). https://github.com/jasonsjones/
queue-pri

19. Kashyap, V., Dewey, K., Kuefner, E.A., Wagner, J., Gibbons, K., Sarracino, J.,
Wiedermann, B., Hardekopf, B.: JSAI: a static analysis platform for JavaScript.
In: FSE, pp. 121–132 (2014)

20. Kroening, D., Tautschnig, M.: CBMC – C bounded model checker. In: Ábrahám,
E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54862-8 26

21. Livshits, B.: JSIR, an intermediate representation for JavaScript analysis (2014).
http://too4words.github.io/jsir/

22. Park, D., Stefănescu, A., Roşu, G.: KJS: a complete formal semantics of JavaScript.
In: Proceedings of the 36th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, PLDI 2015, New York, USA, pp. 346–356. ACM
(2015)

23. Politz, J.G., Carroll, M.J., Lerner, B.S., Pombrio, J., Krishnamurthi, S.: A tested
semantics for getters, setters, and eval in JavaScript. In: Proceedings of the 8th
Symposium on Dynamic Languages (2012)

24. Roşu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

25. Schwinghammer, J., Birkedal, L., Reus, B., Yang, H.: Nested hoare triples and
frame rules for higher-order store. Logical Methods Comput. Sci. 7(3), 1–42 (2011)

26. Sridharan, M., Dolby, J., Chandra, S., Schäfer, M., Tip, F.: Correlation tracking
for points-to analysis of JavaScript. In: Noble, J. (ed.) ECOOP 2012. LNCS, vol.
7313, pp. 435–458. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31057-7 20

27. Visser, W., Pǎsǎreanu, C.S., Khurshid, S.: Test input generation with java
pathfinder. In: Proceedings of the 2004 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2004, New York, USA, pp. 97–107. ACM
(2004)

http://dx.doi.org/10.1007/978-3-642-03237-0_17
https://github.com/jasonsjones/queue-pri
https://github.com/jasonsjones/queue-pri
http://dx.doi.org/10.1007/978-3-642-54862-8_26
http://too4words.github.io/jsir/
http://dx.doi.org/10.1007/978-3-642-31057-7_20

Formal Verification of Financial Algorithms

Grant Olney Passmore1,2(B) and Denis Ignatovich1

1 Aesthetic Integration, Ltd., London, UK
{grant,denis}@aestheticintegration.com

2 Clare Hall, University of Cambridge, Cambridge, UK

Abstract. Many deep issues plaguing today’s financial markets are
symptoms of a fundamental problem: The complexity of algorithms under-
lying modern finance has significantly outpaced the power of traditional
tools used to design and regulate them. At Aesthetic Integration, we have
pioneered the use of formal verification for analysing the safety and fair-
ness of financial algorithms. With a focus on financial infrastructure (e.g.,
the matching logics of exchanges and dark pools and FIX connectivity
between trading systems), we describe the landscape, and illustrate our
Imandra formal verification system on a number of real-world examples.
We sketch many open problems and future directions along the way.

1 Introduction

The algorithms running modern financial markets are highly nontrivial engineer-
ing artefacts processing tremendous volumes of data at lightning speed. These
algorithms must operate in a dynamic environment, adapt to ever-changing client
demands and abide by numerous regulatory and internal controls. Despite this
complexity, trading system operators must demonstrate to their clients and reg-
ulators that the underlying algorithms are compliant with numerous regulatory
directives, and ensure that they in fact perform as described in disclosures and
marketing materials.

As with other safety-critical industries, the complexity of financial algorithms
has reached a point such that traditional (pre-formal) design, QA and regulation
techniques are wildly insufficient. The state-spaces of the systems are simply too
large, the corner cases too subtle and numerous to be managed by hand. From
dark pool matching logics to blockchain smart contracts, recent catastrophic
failures make it clear that formal verification is necessary to properly design,
implement and regulate these critical systems that run our global economies.

The goal of this paper is two-fold: (1) To describe the landscape of finan-
cial algorithms to the formal verification community, making the verification
opportunities and challenges concrete and accessible. Through the presentation
of real-world verification efforts undertaken at Aesthetic Integration, we aim
to help the practitioner develop useful intuitions and analogies with other more
familiar verification endeavours (e.g., hardware verification). (2) To convince the
reader that the complexity of financial algorithms has reached a point such that

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 26–41, 2017.
DOI: 10.1007/978-3-319-63046-5 3

Formal Verification of Financial Algorithms 27

the use of formal verification is no longer optional. It is critical that formal ver-
ification becomes a required part of financial practice and regulation. The more
this topic can become a mainstream focus for the verification community, the
more rapidly we shall be able to effect this important change.

1.1 Overview

We begin in Sect. 2 with what we call The Stack of Financial Algorithms. This
gives an overall structure to the landscape of financial algorithms, arranging
them in a hierarchy of increasing abstraction and dependence on lower subsys-
tems. We summarise salient features of key levels of the stack and briefly describe
their respective verification challenges.

In Sect. 3, we discuss our Imandra formal verification system and describe
some of its features uniquely suited to financial algorithm verification.

In Sect. 4, we focus upon the lowest level of the stack: Verifying regulatory
properties of trading venues. We present examples drawn from real-world case
studies: The analysis of the order priority logic of the UBS ATS dark pool, and
the analysis of the order pricing logic of a public exchange.

In Sect. 5, we focus on the “glue” that holds the stack together: Connec-
tivity logic, e.g., the FIX (Financial Information eXchange) protocol layer that
facilitates communication between trading systems. This is an area that benefits
greatly from formal specification, verification and model-based testing.

In Sect. 6, we consider the verification of other types of financial algorithms,
from blockchain smart contracts to market making algorithms. We touch on our
Imandra model of the Ethereum Virtual Machine (EVM) and discuss how it
can be used to analyse smart contracts. We consider ascending the stack further
and discuss the financial mathematics that must be formalised in order to do
so. We argue for the need for new financial mathematics that properly takes
into account the complex discrete behaviour of venue matching logics and other
subsystems low in the stack.

Finally, we conclude with some hopes for the future.

2 The Stack of Financial Algorithms

It is natural to view financial algorithms as arranged in a stack. From the veri-
fication perspective, there is a strong analogy between our stack given in Fig. 1
and verified towers of computing systems such as the CLI Stack [2]. In general,
we find the most complex critical infrastructure at low levels of the stack. This
infrastructure, including the algorithms running public exchanges such as New
York Stock Exchange, is shared and relied upon by market participants. As we
proceed up to higher levels, we find increasingly proprietary systems which rely
upon abstractions of those systems that came below.

Fundamentally, one cannot properly reason about the possible behaviours of
a system higher in the stack (e.g., an “execution algo”) unless one has verified
the relevant properties of the supporting subsystems that ultimately will be

28 G.O. Passmore and D. Ignatovich

Fig. 1. The stack of financial algorithms

executing its intentions (e.g., a “venue”). In fact, we view the matching logics
of venues as providing an Instruction Set Architecture (ISA) for the markets, in
much the same way that a microprocessor design provides an ISA relied upon
by higher-level compilers, operating systems and user-mode programs. As we
ascend the stack, the algorithms involved may utilise more abstractions and
higher mathematics, but ultimately their intentions (e.g., “send a MARKET
order to NASDAQ to buy 10000 shares of Google”) will be executed by systems
lower in the stack, finally resulting in trade(s) at a collection of venues.

2.1 Venues

At the base of the stack, we have trading venues. These systems, such as New
York Stock Exchange, London Stock Exchange, NASDAQ, a multilateral trading
facility (MTF) or a dark pool inside of a bank, maintain order books and facilitate
trades between clients.

Their functionality is high frequency and nonlinear with complex discrete
dynamics: At each time-step, the order book they maintain for a given security
is sorted with respect to an order priority criteria, and in one common mode of
operation (continuous trading), the top eligible bid (buy) and offer (sell) orders
are matched, potentially resulting in a fill (trade) at a price determined as a
function of the order types of the bid and offer and current market conditions.

The discrete behaviour of modern trading venues is staggering in its com-
plexity. They support a plethora of order types, transition between different
modes of operation based upon volatility triggers and times of day, and must
abide by client and jurisdiction specific constraints. Complex fairness and safety
regulations govern the behaviours of these systems [7–9,19].

Venues are an ideal target for formal verification. Indeed, if venues are not
safe, fair and correct, e.g., if one can exploit flaws in the venue matching logic

Formal Verification of Financial Algorithms 29

to jump the queue and have their orders unfairly prioritised over others, then
“all bets are off” as one ascends the stack to more complex algorithms. We shall
describe the verification of trading venue matching logics in Sect. 4.

2.2 Smart Order Routers

Modern markets are fragmented. The same financial instrument is often traded
on many different venues. The price and quantity available on different venues
may vary. Smart Order Routers (SORs) are systems which track the states of a
collection of venues, and attempt to decompose and route orders to venues in the
“best” possible way. SORs must satisfy many regulatory controls. For example,
the US Securities and Exchange Commission (SEC) Regulation NMS requires
order routing to abide by strict best execution requirements [18].

2.3 Execution Algorithms

Execution algorithms (or “algos”) typically operate on a “higher level” than SORs
and encode strategies for market participation on a lower time frequency. Their
objectives vary between following precise client instructions on an “agency” basis
whereby the client bears ultimate execution risk and cost, to those operating on
a “principal” basis such as automated market-making or inventory optimisation
strategies. These algorithms, often designed by “quants” (e.g., physicists who have
turned their attention to the markets), are typically closely guarded IP of finan-
cial institutions. The mathematics behind them may run the gamut of “financial
mathematics,” involving heavy use of statistics, machine learning, stochastic cal-
culus, nonlinear optimisation, Monte Carlo methods and so on.

From a regulatory perspective, one must ensure many invariants. For exam-
ple, an algo should not encode strategies for “spoofing” or unlawful market
manipulation. Modern formal verification may be directly brought to bear on
key safety and fairness criteria (e.g., for algos structured with discrete risk gates
and circuit breakers). For other analyses, new methods and formalised financial
mathematics are necessary. We discuss this more in Sect. 6.3.

2.4 Ascending the Stack

As we ascend the stack, we encounter many more kinds of algorithms. For
example, derivatives and other structured products may be represented as algo-
rithms [17]. There is a growing community built around trying to represent finan-
cial instruments and other legal contracts as so-called smart contracts, making
them amenable to formal analysis and perhaps executing them autonomously
on distributed ledger (“blockchain”) technology like Ethereum [3]. We discuss
the formal verification of smart contracts in Sect. 6.1. Similarly, the connectiv-
ity protocol layers facilitating communication between different trading systems
may be very complex, with numerous regulatory and compliance requirements.
We discuss connectivity in Sect. 5.

30 G.O. Passmore and D. Ignatovich

3 Introduction to Imandra

Imandra is our formal verification system designed specifically to meet the needs
of financial algorithm verification and analysis. Imandra is both a programming
language in which algorithms may be expressed and executed, and a reasoning
engine with which properties of these algorithms may be proved, refuted and
described. Programs and their properties are written in the Imandra Modelling
Language (IML), a functionally pure subset of OCaml [12]. Imandra’s logic is
built around an executable operational semantics for IML. At the lowest level, a
user interacts with Imandra via a textual toplevel read-eval-print loop, similar
to OCaml’s, but instrumented with additional verification features. Higher-level
graphical interfaces and DSLs empower stakeholders of varying levels of tech-
nicality to converge around precise formal models, using them as the basis for
design, testing, compliance and documentation generation (cf. Sect. 5). In many
ways, the core of Imandra can be seen as an adaptation of ideas of ACL2 [11] from
Common Lisp to OCaml, extended with first-class counterexamples, state-space
decompositions and automation (e.g., specialised nonlinear decision procedures)
supporting financial algorithm analysis.

Let us discuss a few features of Imandra which we find especially useful.

3.1 Computing with Counterexamples

When Imandra refutes a conjecture through the construction of a counterexam-
ple, that counterexample is reflected into the system (as a valid OCaml value)
and may be computed with like any other. Imandra’s reasoning engine is tai-
lored towards the construction of counterexamples, with nonlinear and model-
building SMT-based decision procedures integrated with its simplifier, induction
and recursion-unrolling techniques [4,14,16]. In our experience, this unified com-
putational environment for computing with formal models, verifying them and
investigating their counterexamples is crucial for efficiently debugging regula-
tory violations of trading systems, where counterexamples exhibiting unlawful
behaviour may consist of long sequences of FIX messages. This idea is so deeply
embedded in the design of the system, and subtle flaws in trading systems so
common, that we often view Imandra as an environment for “computing with
counterexamples.” A small example is given in Fig. 2.

3.2 Principal Region Decompositions

Imandra has a first-class notion of state-space decompositions which we call
principal region decompositions. These allow one to compute a symbolic repre-
sentation of the possible unique behaviours of a program subject to a given query
constraint. For example: “Compute all regions of the venue state-space in which
the price of the next trade will be the venue’s reference price,” or “Compute all
regions of the state-space that will cause the venue to transition into volatility
auction.” These region descriptions are subject to a given basis, a collection of

Formal Verification of Financial Algorithms 31

ve r i f y rank antisym (x , y) =
orde r h i ghe r r anked l ong (x , y)
==>
not (o rde r h i ghe r r anked l ong (y , x)) ; ;

Counterexample :

{ x = { o rd e r i d = 8 ;
o rde r type = Market ;
o rde r q ty = 9 ;
h i dd en l i q u i d i t y = true ;
max v i s i b l e q ty = 10 ;
d i sp l ay q ty = 11 ;
r e p l e n i s h q t y = 6 ;
o r d e r p r i c e = 25 . 0 ;
o rder t ime = 0 ;
o r d e r s r c = { c l i e n t i d = 7 ;

c l i e n t g r oup = GMM;
c l i e n t w i l l t r a d e a g a i n s t = [] ; } ;

o r d e r a t t r = Normal ; } ;
y = { o rd e r i d = 2 ;

o rde r type = Market ;
o rde r q ty = 3 ;
h i dd en l i q u i d i t y = true ;
max v i s i b l e q ty = 4 ;
d i sp l ay q ty = 5 ;
r e p l e n i s h q t y = 6 ;
o r d e r p r i c e = 25 . 0 ;
o rder t ime = 7719 ;
o r d e r s r c = { c l i e n t i d = 1 ;

c l i e n t g r oup = GMM;
c l i e n t w i l l t r a d e a g a i n s t = [] ; } ;

o r d e r a t t r = Normal ; } ; }

CX. x ; ;
− : o rder =
{ o rd e r i d = 8 ; o rde r type = Market ; o rde r q ty = 9 ;
h i dd en l i q u i d i t y = true ; max v i s i b l e q ty = 10 ;
d i sp l ay q ty = 11 ; r e p l e n i s h q t y = 6 ; o r d e r p r i c e = 2 5 . ;
o rde r t ime = 0 ;
o r d e r s r c = { c l i e n t i d = 7 ; c l i e n t g r oup = GMM;

c l i e n t w i l l t r a d e a g a i n s t = [] } ;
o r d e r a t t r = Normal}

CX. y . o rde r type ; ;
− : o rde r type = Market
orde r h i ghe r r anked l ong (CX. x ,CX. y) ; ;
− : bool = true
orde r h i ghe r r anked l ong (CX. y ,CX. x) ; ;
− : bool = true
v e r i f y rank ant i sym re f i n ed (x , y) =

x . o rde r type <> y . o rde r type
&& orde r h i ghe r r anked l ong (x , y)
&& not (x . h i d d en l i q u i d i t y | | y . h i d d en l i q u i d i t y)
==>
not (o rde r h i ghe r r anked l ong (y , x)) ; ;

thm rank ant i sym re f i n ed = <proved>

Fig. 2. Computing with counterexamples in Imandra

functions whose definitions will not be expanded and may carry lemmata expos-
ing facts about their behaviour. We compute these decompositions through a
special form of symbolic execution. Decompositions play a key role in how we
generate certified documentation and high-coverage test suites (cf. Sect. 4). We
often represent them as interactive hierarchical voronoi diagrams (cf. Fig. 3).

32 G.O. Passmore and D. Ignatovich

Fig. 3. A principal region decomposition of a venue pricing function

3.3 Staged Symbolic Execution

In Imandra, we typically model trading systems in the Boyer-Moore style of
machine operational semantics [2,11]. That is, we define a state record type
representing “all data” available to the system at any discrete time step, a
one step : state -> state function which executes a step of the machine,
and a (clocked) recursive run function which iterates one step until completion.
Inductive properties are proved for one step and then lifted to run. Imandra
supports staged symbolic execution [6,11]. We usually stage the toplevel run
function of a model, so that its recursive definition will not be unrolled unless
its arguments are maximally simplified. Let us examine this modelling paradigm
in practice.

Formal Verification of Financial Algorithms 33

4 Verifying Trading Venue Matching Logics

In this section, we examine the formal verification of a trading venue’s matching
logic1. We assume the reader has read Sect. 2.1.

4.1 A Primer on Market Microstructure

Venues maintain sorted order books (e.g., lists of buy and sell orders for a given
stock), process incoming messages and execute and report on trades2. Modern
venues support many complex order types. The simplest order type is a Market
order. A Market order is of the form: “Buy (or sell) 100 shares of Microsoft at
any price.” Market orders are the most aggressive kind of orders. They are risky
as the market can easily move against you, and there is nothing in your order
to protect you. Limit orders add in a level of protection. A typical Limit order
is of the form: “Buy (or sell) 100 shares of Microsoft at at most (or at least)
$70/share.” In a dark pool (e.g., a venue inside of a bank), orders may be pegged
to the National Best Bid/Offer (NBBO), a representation of market conditions
with accompanying regulations to ensure clients are filled at fair prices. So-called
Iceberg orders may possess hidden liquidity. Then there are Stop-Loss orders,
Stop-Limit orders, Conditional Indications (CIs), Quotes, Hide-Not-Slide orders,
Retail IOCs, Each order type may have wildly different discrete behaviour
than the next, and may even differ between venues (e.g., order X at venue V
may not behave the same as order X at venue V ′ at 3 pm on Wednesdays).

Nevertheless, venues must abide by strict regulatory constraints and provide
correct descriptions of their matching logics to clients and regulators. Regu-
lators are tasked with ensuring these systems satisfy regulations. Clients are
tasked with ensuring they understand the implications of the orders they sub-
mit. Currently, these disclosures describing how venues work are made in prose
documents, often hundreds of pages long. Imagine trying to build a skyscraper,
not with a mathematically analysable precise blueprint, but with the design
described in hundreds of pages of prose. This is clearly insufficient as the basis
of safe and fair markets.

Thus, a major thrust of our work has been to build tools for financial insti-
tutions and regulators to precisely specify the behaviours of their systems and
equip them with the power of formal verification to inspect them. We refer to
this as the Precise Specification Standard and have outlined its many benefits
to the US Securities and Exchange Commission [10].

4.2 Venue Verification Goals

At AI, we have built libraries of formal encodings of regulatory directives with
corresponding verification automation. For dark pools, a small subset includes:

1 More details and case studies may be found in AI technical whitepapers [7–9].
2 Harris’s Trading and Exchanges: Market Microstructure for Practitioners provides

an excellent introduction [5].

34 G.O. Passmore and D. Ignatovich

– Baseline:
• No fills outside NBBO
• Operator system halt ceases trading
• Orders entered into the book must have valid prices, rejected otherwise
• Orders entered into the book must have valid quantities (including mini-

mum quantity), rejected otherwise
– Fairness and Priority:

• Isolation of client information on effects of pricing and fills: client ID does
not play role in determining fill price

• No sub-penny pricing: prices only in exchange increments are accepted
• Verification of prioritisation stability and fairness: No sequence of events

can cause an order to unfairly jump the queue (price/time priority)
– Resilience/Market Volatility:

• Effective execution following halt recovery
• In crossed markets, no trading takes place
• In locked markets, orders are matched

– Order Types and Pricing:
• Orders cannot get filled for more than order quantity
• Orders cannot get filled for less than minimum quantity
• Fills cannot happen outside the limit prices; proper sliding and rounding
• FOK orders cannot be partially filled: either fully filled or rejected

Violations often arise with subtle, unforeseen interactions between order types.
With formal verification, we can symbolically analyse the entire state space and
eliminate potential exploits. Below, we shall see how rather innocuous looking
order priority logic can in fact be gamed.

4.3 UBS ATS and Transitivity of Order Ranking

Let us analyse the order priority logic of a dark pool. We base this analysis on
UBS’s June 1st, 2015 SEC filing (Form ATS) [7]. This work contributed to AI
winning first place in the UBS Future of Finance Challenge (out of 620 companies
from 52 countries).

In January of 2015, UBS was fined $14.4M for regulatory violations of UBS
ATS. In particular, UBS ATS allowed sub-penny orders and supported undis-
closed crossing constraints. The investigation took place over many years, with
much of the SEC’s work involving analysing post-trade data.

At AI, we set out to show how formal verification could be applied to find
and eliminate these issues at the design stage, before the dark pool violated
regulations. In the process, Imandra found a much more fundamental flaw in
the way UBS’s dark pool design prioritised orders in its book: The ranking
function used to prioritise orders was not transitive. If one then sorts the book
using it, the lack of transitivity may be exploited to allow unfair behaviour.
To show this, Imandra synthesised three orders and concrete market conditions
illustrating the violation.

Formal Verification of Financial Algorithms 35

Rank Transitivity. A detailed account of the priority logic, including defini-
tions of the order types and market condition logic may be found in AI’s Case
Study: 2015 SEC Fine Against UBS ATS [7]. Imandra formalisations of the
effective pricing and final ranking logic are given in Figs. 4 and 5.
A few points of note:

1. The order higher ranked function is used to sort the order book and deter-
mine which orders are next eligible to trade.

2. The effective price function takes into account order pegging and current
market conditions (NBBO).

3. The ci function checks whether or not an order is a Conditional Indication.
4. The less agg function determines the “least aggressive” of two prices on the

same side of the book.

l e t e f f e c t i v e p r i c e (s ide , o , mkt) =
l e t mkt a = i f s i d e = Buy then mkt . nbo e l s e mkt . nbb in
l e t mkt b = i f s i d e = Buy then mkt . nbb e l s e mkt . nbo in
l e t pegged pr i c e = match o . peg with

| Far −> l e s s a g g (s ide , o . pr i ce , mkt a)
| Mid −> l e s s a g g (s ide , o . pr i ce , mid point mkt)
| Near −> l e s s a g g (s ide , o . pr i ce , mkt b)
| No peg −> o . p r i c e in

l e t nbbo capped l imit =
i f s i d e = Buy then l e s s a g g (Buy , o . pr i ce , mkt . nbo)
e l s e l e s s a g g (Se l l , o . p r i ce , mkt . nbb) in

match o . o rde r type with
| Limit −> nbbo capped l imit
| Market −> mkt a
| Pegged −> pegged pr i c e
| Pegged CI −> pegged pr i c e
| Limit CI −> nbbo capped l imit
| Firm up pegged −> pegged pr i c e
| Firm up l imi t −> nbbo capped l imit

Fig. 4. Effective pricing

With the formal model in hand, we can now pose a query to Imandra:

v e r i f y r a n k t r a n s i t i v i t y (s ide , o1 , o2 , o3 , mkt) =
orde r h i ghe r ranked (s ide , o1 , o2 , mkt)
&& orde r h i ghe r ranked (s ide , o2 , o3 , mkt)
==>
o rde r h i ghe r ranked (s ide , o1 , o3 , mkt)

Imandra returns with a counterexample (we elide many components):

An iterative process of studying the counterexample, fixing flaws in the design
and verifying the result may then ensue [7–9].

36 G.O. Passmore and D. Ignatovich

l e t o rde r h i ghe r ranked (s ide , o1 , o2 , mkt) =
l e t ot1 = o1 . o rde r type in
l e t ot2 = o2 . o rde r type in
l e t p p r i c e 1 = e f f e c t i v e p r i c e (s ide , o1 , mkt) in
l e t p p r i c e 2 = e f f e c t i v e p r i c e (s ide , o2 , mkt) in
l e t w in s p r i c e =

i f s i d e = Buy then
i f p p r i c e 1 > p pr i c e 2 then 1
e l s e i f p p r i c e 1 = p pr i c e 2 then 0
e l s e −1

e l s e i f p p r i c e 1 < p pr i c e 2 then 1
e l s e i f p p r i c e 1 = p pr i c e 2 then 0
e l s e −1 in

l e t wins t ime =
i f o1 . time < o2 . time then 1
e l s e i f o1 . time = o2 . time then 0 e l s e −1 in

l e t wins qty =
i f o1 . qty > o2 . qty then 1
e l s e i f o2 . qty = o1 . qty then 0 e l s e −1 in

i f w in s p r i c e = 1 then true
e l s e i f w in s p r i c e = −1 then f a l s e
e l s e i f c i (ot1) && c i (ot2) then

i f wins qty = 0 then wins t ime = 1 e l s e
i f wins qty = 1 then true e l s e f a l s e

e l s e i f wins t ime = 1 then true
e l s e i f wins t ime = −1 then f a l s e
e l s e i f not (c i (ot1)) then true
e l s e o1 . qty > o2 . qty

Fig. 5. Order ranking logic

Beyond Order Priority. Once the order priority logic is bullet-proof, we may
turn our attention to verifying global properties of the venue design. For example,
though the venue must have access to the source of an order (e.g., so as to abide
by client-specific crossing constraints and communicate fills and order updates),
it must never be the case that the matching logic disadvantages one class of
clients over another when it comes to pricing or priority.

This non-interference property can be verified for a match price : state
-> price function (cf. Fig. 6), lifted to one step : state -> state and finally
proved by induction for run [9].

v e r i f y ma t ch p r i c e i g n o r e s o r d e r s r c (s , s ’ , b1 , s1 , b2 , s2) =
orde r s same excep t sou r c e (b1 , b2)
&& orde r s same excep t sou r c e (s1 , s2)
&& sta t e s s ame excep t o rde r book (s , s ’)
&& s id e s c o r r e spond (t l s . order book . buys , t l s ’ . order book . buys)
&& s id e s c o r r e spond (t l s . order book . s e l l s , t l s ’ . order book . s e l l s)
&& best buy s = Some b1
&& b e s t s e l l s = Some s1
&& best buy s ’ = Some b2
&& b e s t s e l l s ’ = Some s2
==>
match pr ice s = match pr ice s ’

Fig. 6. Verifying that customer data does not interfere with pricing

Formal Verification of Financial Algorithms 37

The final verified design can then be used in production, as the basis for QA
via model-based testing and the generation of high-coverage test suites, as a live
market monitor to ensure conformance to the specification, to generate (interac-
tive, queryable) documentation and disclosures and explore improvements (e.g.,
the addition of new order types) together with their regulatory ramifications.

5 Verifying Trading System Connectivity

Trading systems do not exist in isolation. A typical SOR may connect with tens
or even hundreds of venues. The FIX protocol is often used to facilitate this
communication.

FIX is an evolving global standard which gives users (i.e., trading system
operators) much freedom in the precise (customised) version of the protocol that
they support. These firms typically provide FIX specs to their clients, detailing
their precise subset and customisations of the protocol. FIX specifications are
complex documents, often written in hundreds of pages of prose, similar in com-
plexity to venue matching logic disclosures. Consider the task of an SOR devel-
oper connecting to two-hundred different venues, each with their own complex
FIX spec which may change multiple times a year. From design and testing to
compliance sign-off, enormous resources are spent on these connectivity tasks.

Formal FIX specs are clearly needed. Once we have precise specs, we can
utilise formal verification to analyse their consistency, perform model-based test-
ing, generate certified documentation, create simulation environments and auto-
mate many tasks around connectivity compliance.

We have introduced this functionality with our FIX DSL and Imandra Mar-
kets ecosystem. FIX DSL is a high-level language designed for building formal
FIX specs. FIX DSL compiles its models into IML and Imandra can then be
used to power deep analyses. Imandra Markets is a cloud-based collaborative
ecosystem for financial institutions to develop and share formal FIX specs with
one another. Armed with these specs, Imandra verifies key properties, creates
high-coverage test suites, simulators and certified documentation, and eliminates
many expensive and error-prone aspects of compliance and client onboarding.

As part of this effort, we have formalised the FIX protocol in Imandra and
verified an executable FIX administrative engine3. We hope this project will be
the beginning of an industry-wide effort to mathematically formalise the rules
and algorithms that run the financial markets.

FIX Engine Verification Example. Consider the following quote from Vol-
ume 2 of the FIX 4.4 specification:

When either end of a FIX connection has not sent any data for
[HeartBtInt] seconds, it will transmit a Heartbeat message.

3 We have released our verified FIX engine under an Apache 2.0 license. See http://
fix.readme.io for documentation and http://github.com/AestheticIntegration/
fix-engine for the code.

http://fix.readme.io
http://fix.readme.io
http://github.com/AestheticIntegration/fix-engine
http://github.com/AestheticIntegration/fix-engine

38 G.O. Passmore and D. Ignatovich

Fig. 7. Structure of our FIX engine + FIX application models

One way to formalise this statement is to create two verification goals:

1. Every outbound message will result in a properly updated last time
data sent field.

2. Every time update will result in a check as to whether a Heartbeat should
be transmitted.

v e r i f y l a s t t ime da t a s en t g e t s upda t ed (engine : f i x e n g i n e s t a t e) =
l e t engine ’ = one s tep (engine) in
engine . outgo ing f i x msg = None && engine ’ . ou tgo ing f i x msg <> None
==>
engine ’ . l a s t t ime da t a s e n t = engine ’ . cu r r t ime

v e r i f y h e a r t b e a t s e n t i f n o d a t a r e c e i v e d (engine : f i x e n g i n e s t a t e) =
l e t engine ’ = one s tep (engine) in
engine . f e curr mode = Act iveSe s s i on
&& i s i n t me s s a g e v a l i d (engine)
&& i s s t a t e v a l i d (engine)
&& t ime update r e c e ived (engine . incoming int msg ,

eng ine . l a s t t ime da t a s en t ,
engine . h e a r t b e a t i n t e r v a l)

==>
outbound msg heartbeat (engine ’ . ou tgo ing f i x msg)

Fig. 8. Verifying a heartbeat property of the FIX engine

We present Imandra encodings of these one step progress properties in Fig. 8.

6 Ascending the Stack

Thus far, we have presented work on the verification of critical financial infrastruc-
ture. In this section, we shall consider other classes of financial algorithms.

Formal Verification of Financial Algorithms 39

6.1 Ethereum Virtual Machine

Ethereum is popular blockchain platform for developing and executing smart
contracts [3]. Ethereum has a stack-based virtual machine (EVM), and contract
code is ultimately compiled into EVM bytecode. A non-mechanised semantics
for EVM bytecode was given in the so-called Ethereum “yellow paper” [20]. In
2015, we began building an executable Imandra formal model of the EVM. In
June 2016, a major flaw in an Ethereum smart contract was exploited, result-
ing in tens of millions of dollars of losses for investors. This so-called “DAO
fiasco” has made the need for formal verification utterly apparent to the smart
contract community. In October, 2016 we released our formal EVM model open
source4. Armed with this formal model, Imandra can analyse Ethereum byte-
code, be used to prove theorems about its possible behaviours, perform region
decompositions and symbolic executions and “lift” the bytecode into logic [15].
There is now a growing community of verification enthusiasts and practition-
ers in the blockchain space, with EVM bytecode analysis taking place at least in
Isabelle/HOL and Coq. New smart contract platforms are being developed, with
a focus towards “verifiability” at the forefront. This is often manifested through
a push for applicative (i.e., functionally pure) contract specification languages.
We are working on Imandra-based tools and APIs for the smart contract and
blockchain communities.

6.2 Derivatives and Structured Products

Derivatives and structured products may be represented as algorithms. For
example, the French company LexiFi has developed a DSL on top of OCaml
(MLFi) for describing, pricing and managing the lifecycle of these artefacts [17].
Integrated with Bloomberg products, these tools are widely used. While there
is no formal verification involved, we find this mainstream uptake of algorithmi-
cally described financial contracts encouraging. There are many exciting poten-
tial applications of formal verification in this space. Interesting work on formal
variants of LexiFi’s approach have been undertaken [1]. We see great potential
for this area, especially at the portfolio level.

6.3 Formalised (New) Financial Mathematics

As we continue up the stack and consider applying verification to new classes of
financial algorithms and models, we are faced with a major challenge: Much of
the “financial mathematics” involved in the design and analysis of these algo-
rithms has not yet been formalised in a proof assistant.

With Larry Paulson, we have developed a plan for the formalisation of some
of this material in Isabelle/HOL. It runs the gamut from real analysis to mar-
tingales, Wiener processes, stochastic calculus and PDEs. We aim to support

4 The model may be found in our Imandra Contracts Community Models repository
at http://github.com/AestheticIntegration/contracts.

http://github.com/AestheticIntegration/contracts

40 G.O. Passmore and D. Ignatovich

this work through funded PhD studentships, collaboration on formalisation and
automatic proof procedures, and the contribution of real-world Imandra models
of the underlying market microstructure [13].

Indeed, we believe strongly that fundamentally new financial mathematics
must be developed that takes into account the precise discrete behaviour of the
underlying software systems (venues, SORs, etc.). The stochastic and continuous
models typically used by financial economists abstract away so many important
details of the underlying systems, and for good reason: Before we had formal
models of the financial infrastructure, it was hardly possible to do better. But
as the actual precise discrete logic governing the markets becomes increasingly
available and amenable to formal verification, new powerful analytical tools will
make it possible to reason “closer to the metal,” with financial economic models
that are far more faithful to reality.

7 Conclusion

We have argued that formal verification is necessary to ensure the safety, fairness
and proper regulation of modern financial markets. From dark pool matching log-
ics to FIX connectivity and formalised financial mathematics, we have presented
our views on the verification opportunities and challenges. For some classes of
systems, especially infrastructure components low in the stack, there is a strong
analogy with other verification endeavours and much overlap in techniques. For
others, new methods are needed.

It is a most exciting time to be working in formal verification, ripe for funda-
mental breakthroughs. We hope that ten years from now, formal verification is
as common in finance as it is in microprocessor design. Perhaps the verification
practitioner of the future will be as familiar with verifying matching logics as
they are with verifying compilers.

Acknowledgements. We thank our incredible team at Aesthetic Integration. With-
out them, much of this work would not have been accomplished. In particular,
Konstantin Kanishev, Ewen Maclean, Sergey Grigorchuk and Matt Bray have been
crucially involved in the design and implementation of the Imandra FIX DSL and its
surrounding verification infrastructure. Elijah Kagan’s unique design perspective has
helped us communicate our ideas much more effectively and enjoyably than we would
have been able to otherwise.

Finally, we thank Jeremy Avigad, Bob Boyer, Gerry Dunning, Paul Jackson,
J Moore, Leo de Moura, Larry Paulson, John Detrixhe of Bloomberg, Philip Stafford
of the Financial Times, Jim Northey of the FIX Trading Community and Austin Gerig
of the US Securities and Exchange Commission for their encouragement, useful discus-
sions and advice.

Formal Verification of Financial Algorithms 41

References

1. Bahr, P., Berthold, J., Elsman, M.: Certified symbolic management of financial
multi-party contracts. In: 20th ACM SIGPLAN International Conference on Func-
tional Programming, ICFP 2015, pp. 315–327 (2015)

2. Bevier, W.R., Hunt, W.A., Moore, J.S., Young, W.D.: Special issue on system
verification. J. Autom. Reasoning 5(4), 409–530 (1989)

3. Buterin, V.: Ethereum: a next-generation smart contract and decentralized appli-
cation platform (2014). https://github.com/ethereum/wiki/wiki/White-Paper

4. De Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and appli-
cations. Commun. ACM 54(9), 69–77 (2011)

5. Harris, L.: Trading and Exchanges: Market Microstructure for Practitioners.
Oxford University Press, Oxford (2002)

6. Hunt Jr., W.A., Krug, R.B., Moore, J.: Integrating nonlinear arithmetic into ACL2.
In: Fifth International Workshop on the ACL2 Theorem Prover and Its Applica-
tions (2004)

7. Ignatovich, D.A., Passmore, G.O.: Case Study: 2015 SEC Fine Against UBS ATS.
Aesthetic Integration, Ltd., Technical Whitepaper (2015)

8. Ignatovich, D.A., Passmore, G.O.: Creating Safe and Fair Markets. Aesthetic Inte-
gration, Ltd., Technical Whitepaper (2015)

9. Ignatovich, D.A., Passmore, G.O.: Transparent Order Priority and Pricing. Aes-
thetic Integration, Ltd., Technical Whitepaper (2015)

10. Ignatovich, D.A., Passmore, G.O.: Comment on SEC Reg ATS-N: The Precise
Specification Standard, February 2016. https://www.sec.gov/comments/s7-23-15/
s72315-24.pdf

11. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

12. Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml
system (release 4.04): Documentation and user’s manual. INRIA (2017)

13. Li, W., Passmore, G.O., Paulson, L.C.: Deciding Univariate Polynomial Problems
Using Untrusted Certificates in Isabelle/HOL. J. Autom. Reasoning (2017)

14. Moura, L., Passmore, G.O.: The strategy challenge in SMT solving. In: Bonacina,
M.P., Stickel, M.E. (eds.) Automated Reasoning and Mathematics. LNCS, vol.
7788, pp. 15–44. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36675-8 2

15. Myreen, M.O.: Formal verification of machine-code programs. Ph.D. thesis, Uni-
versity of Cambridge (2009)

16. Passmore, G.O.: Combined decision procedures for nonlinear arithmetics, real and
complex. Ph.D. thesis, University of Edinburgh (2011)

17. Peyton Jones, S., Eber, J.M., Seward, J.: Composing contracts: an adventure in
financial engineering (functional pearl). SIGPLAN Not. 35(9), 280–292 (2000).
http://doi.acm.org/10.1145/357766.351267

18. US Securities and Exchange Commission: Regulation National Market System (Reg
NMS) (2005). https://www.sec.gov/rules/final/34-51808.pdf

19. US Securities and Exchange Commission: Regulation Alternative Trading Systems
(Reg ATS) (2015). https://www.sec.gov/rules/proposed/2015/34-76474.pdf

20. Wood, G.: Ethereum: a secure decentralised generalised transaction ledger (2014).
http://gavwood.com/paper.pdf

https://github.com/ethereum/wiki/wiki/White-Paper
https://www.sec.gov/comments/s7-23-15/s72315-24.pdf
https://www.sec.gov/comments/s7-23-15/s72315-24.pdf
http://dx.doi.org/10.1007/978-3-642-36675-8_2
http://doi.acm.org/10.1145/357766.351267
https://www.sec.gov/rules/final/34-51808.pdf
https://www.sec.gov/rules/proposed/2015/34-76474.pdf
http://gavwood.com/paper.pdf

Satisfiability Modulo Theories and Assignments

Maria Paola Bonacina1(B), Stéphane Graham-Lengrand2,3,
and Natarajan Shankar2

1 Università degli Studi di Verona, Verona, Italy
mariapaola.bonacina@univr.it

2 SRI International, Menlo Park, USA
graham-lengrand@lix.polytechnique.fr, shankar@csl.sri.com

3 CNRS - INRIA - École Polytechnique, Palaiseau, France

Abstract. The CDCL procedure for SAT is the archetype of conflict-
driven procedures for satisfiability of quantifier-free problems in a single
theory. In this paper we lift CDCL to CDSAT (Conflict-Driven Satisfia-
bility), a system for conflict-driven reasoning in combinations of disjoint
theories. CDSAT combines theory modules that interact through a global
trail representing a candidate model by Boolean and first-order assign-
ments. CDSAT generalizes to generic theory combinations the model-
constructing satisfiability calculus (MCSAT) introduced by de Moura
and Jovanović. Furthermore, CDSAT generalizes the equality sharing
(Nelson-Oppen) approach to theory combination, by allowing theories
to share equality information both explicitly through equalities and dis-
equalities, and implicitly through assignments. We identify sufficient con-
ditions for the soundness, completeness, and termination of CDSAT.

Keywords: Theory combination · Conflict-driven decision procedures ·
Model building · Satisfiability modulo assignment

1 Introduction

A growing trend in automated deduction is the generalization of conflict-driven
reasoning from propositional to first-order logic (cf. [2] for a brief coeval survey).
For propositional satisfiability (SAT), the conflict-driven clause learning (CDCL)
procedure works by guessing assignments to variables, propagating their conse-
quences through clauses, and learning new clauses, or lemmas, when assignments
lead to conflicts [14]. The conflict-driven paradigm has been extended to decide
the T -satisfiability of sets of literals when T is one of several fragments of arith-
metic [4,7,10–12,15,17,18]. Key features of such conflict-driven T -satisfiability
procedures are the use of assignments to first-order variables and the explanation
of conflicts with lemmas, which may contain atoms that are not in the input.
We illustrate these features by an example. Consider the following set of literals,
which is unsatisfiable in Linear Rational Arithmetic (LRA):

R = {l0 : (−2 ·x − y < 0), l1 : (x + y < 0), l2 : (x < −1)}.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 42–59, 2017.
DOI: 10.1007/978-3-319-63046-5 4

Satisfiability Modulo Theories and Assignments 43

A conflict-driven LRA-satisfiability procedure attempts to build a model by
guessing a value for one of the variables, say y←0. This lets l0 yield the lower
bound x > 0. Given the upper bound l2, the space of possible values for x is
empty, revealing that the guess and the constraints are in conflict. The procedure
explains the conflict by the new atom l3 : (−y < −2), the linear combination of
l0 and l2 that eliminates x. This excludes not only y←0, but also all assignments
y←c where c ≤ 2. Suppose the procedure retracts the assignment y←0 and tries
y←4. This lets l1 yield the upper bound x < −4, and l0 the lower bound x > −2.
The procedure explains this conflict by the new atom l4 : (y < 0), the linear
combination of l0 and l1 that eliminates x. As l4 is violated by the assignment
y←4, the procedure retracts y←4. Then no assignment to y can satisfy both l3
and l4. This third conflict is explained by the linear combination of l3 and l4 that
eliminates y, namely 0 < −2, which is also a new atom. Since this consequence
of the original problem is a contradiction, the procedure returns unsatisfiable.

Applications typically require deciding the satisfiability of arbitrary
quantifier-free formulae, or, equivalently, sets of ground clauses, in a combination
T of theories T1, . . . , Tn. The DPLL(T) approach [1,13] combines a CDCL-based
SAT-solver with a T -satisfiability procedure, obtained from Ti-satisfiability pro-
cedures by the equality sharing method [16], assuming that the theories Ti are
disjoint and stably infinite: they do not share symbols other than equality and
admit countably infinite models. The Ti-satisfiability procedures are combined as
black-boxes that only propagate equalities between shared variables. DPLL(T)
uses their combination as a black-box that only detects T -conflicts and propa-
gates T -lemmas, while the SAT-solver tries assignments and builds a candidate
model. If conflict-driven Ti-satisfiability procedures were integrated in this man-
ner, the combination would not be conflict-driven. To make it conflict-driven, the
Ti-satisfiability procedures need to cooperate to build a model, sharing assign-
ments and exporting lemmas to explain conflicts, possibly using new atoms.

MCSAT, for Model-Constructing Satisfiability, is a paradigm for integrating
a CDCL-based SAT-solver with a conflict-driven T -satisfiability procedure [5].
MCSAT uses first-order assignments on a par with Boolean ones, coordinates the
conflict explanation mechanisms at the Boolean and theory levels in a unified
manner, and incorporates the capability of creating new atoms. MCSAT lifted
CDCL to SMT in the sense of satisfiability modulo a single theory T , which was
instantiated to the theory of bit-vectors [19] and to non-linear integer arithmetic
[8]. A version of MCSAT was also given for the specific combination of LRA and
Equality with Uninterpreted Function symbols (EUF) [9], but the conflict-driven
combination of a generic range of theories remained an open problem.

In this paper we generalize conflict-driven reasoning to generic combinations
of disjoint theories, solving the problem of combining multiple conflict-driven
Ti-satisfiability procedures into a conflict-driven T -satisfiability procedure. We
introduce a new method for theory combination, called CDSAT for Conflict-
Driven Satisfiability. For example, it decides the satisfiability of problems in the
combination of LRA, EUF and the theory of arrays, such as

P = {f(select(store(a, i, v), j))� w, f(u)� w−2, i� j, u � v}.

44 M.P. Bonacina et al.

CDSAT treats propositional and theory reasoning uniformly: formulae are terms
of sort prop (for proposition); propositional logic is one of the theories T1, . . . , Tn;
and CDCL is one of the Ti-satisfiability procedures to be combined. With formu-
lae reduced to terms, assignments become the data manipulated by inferences.
CDSAT combines Ti-inference systems, called theory modules [6], rather than Ti-
satisfiability procedure. Ideally, a Ti-satisfiability procedure, like any reasoning
procedure, is defined by an inference system and a search plan. Since all conflict-
driven procedures have the same conflict-driven search plan, what needs to be
combined are the inference systems, while the common conflict-driven control is
factored out and handled centrally by CDSAT. We prove that CDSAT is sound,
complete, and terminating, identifying the sufficient conditions that theories and
theory modules need to fulfill for these properties to hold.

We believe that the abstraction of viewing combination of theories as com-
bination of inference systems, rather than procedures, allows us to bring sim-
plicity and elegance to theory combination. A Ti-satisfiability procedure that
is not conflict-driven can still be integrated in CDSAT by treating it as a the-
ory module whose only inference rule invokes the Ti-satisfiability procedure to
detect the Ti-unsatisfiability of a set of assignments. Therefore CDSAT sub-
sumes both MCSAT and equality sharing. CDSAT reduces to MCSAT, if there
are only propositional logic with CDCL and another theory T with a conflict-
driven T -satisfiability procedure. CDSAT reduces to equality sharing, if none of
the theories has a conflict-driven T -satisfiability procedure.

2 Preliminaries

We assume the basic definitions of multi-sorted first-order logic. A signature
Σ = (S, F) consists of a set S of sorts, including prop, and a set F of symbols,
including a collection �S of equality symbols �s : (s× s)→prop for every s ∈ S.
Sorts can be omitted when clear from context. The other symbols in F may be
constant, function, and predicate symbols, as well as logical connectives such as
∧, ∨, and ¬. Given a class V = (Vs)s∈S of sets of sorted variables, Σ[V]-terms are
defined as usual, and formulae are terms of sort prop. We use l for formulae and
t and u for terms of any sort. Formulae in the standard sense are obtained as the
closure of our formulae under quantifiers and logical connectives; Σ-sentences
are those with no free variables.

A Σ[V]-interpretation M interprets each sort s in S as a non-empty set
sM with propM = {true, false}; each symbol f : (s1× · · · ×sm) → s in F as a
function fM : sM

1 × · · · ×sM
m → sM with �M

s returning true if and only if its
arguments are identical; and each variable v ∈ Vs as an element vM ∈ sM. The
interpretation M(t) of a Σ[V]-term t is defined as usual. Σ[∅]-interpretations,
known as Σ-structures, suffice for Σ-sentences.

A theory T on signature Σ is defined axiomatically as a set of Σ-sentences,
called its axioms, or model-theoretically as the class of Σ-structures, called T -
models, that satisfy the axioms of T . A T [V]-model is any Σ[V]-interpretation
whose underlying Σ-structure is a T -model.

Satisfiability Modulo Theories and Assignments 45

Let T1, . . . , Tn be disjoint theories with signatures Σ1=(S1, F1),. . . ,
Σn=(Sn, Fn): they do not share symbols other than equality, but can share
sorts, meaning that Fi∩Fj = (�Si∩Sj

) for i �= j. Let T∞ be their union, with
signature Σ∞=(S∞, F∞) for S∞=

⋃n
k=1 Sk and F∞=

⋃n
k=1 Fk, and axiomati-

zation given by the union of those of T1, . . . , Tn. We fix a global collection of
variables V∞ = (Vs

∞)s∈S∞ , use variables for variables in V∞, and terms for
Σ∞[V∞]-terms.

Example 1. Problem P from Sect. 1 is written in the signatures

ΣLRA = ({prop, Q}, �{prop,Q} ∪ {0, 1:Q, +:Q×Q→Q} ∪ {q · :Q→Q | q ∈ Q})
ΣEUF = ({prop, Q, V }, �{prop,Q,V } ∪ {f :V →Q})
ΣArr = ({prop, V, I, A}, �{prop,V,I,A} ∪ {select :A×I→V, store :A×I×V →A})

where Q and Q are the sort and the set of the rationals, q · is scalar multiplication,
and A, I, and V are the sorts of arrays, indices, and values.

3 Assignments and Theory Modules

CDSAT solves T∞-satisfiability problems presented as assignments of values to
terms. For example, a set of formulae {l1, . . . , lm} is represented as the assign-
ment {l1←true, . . . , lm←true}. The input assignment may contain terms of any
sort. Assignments are public, meaning visible to all Tk-inference systems.

3.1 Assignments

We need to identify the language of values that the system can assign to terms,
besides true and false. Assignable values are not necessarily in the theories’ sig-
natures (e.g., consider x←

√
2 for the sort of the reals). Therefore, we intro-

duce for each theory Tk, 1≤ k ≤ n, a conservative extension T +
k with signature

Σ+
k = (Sk, F+

k), where F+
k is the extension of Fk with a possibly empty set

of new constant symbols called T +
k -values. An extension is conservative if any

T +
k -unsatisfiable set of Σk[V]-formulae is also Tk-unsatisfiable. This ensures that

reasoning in the extension does not change the problem: if CDSAT discovers T +
k -

unsatisfiability, the problem is Tk-unsatisfiable; if the problem is Tk-satisfiable,
there is a T +

k -model that CDSAT can build. A sort s ∈ Sk with at least one
T +

k -value is called Tk-public, as a term of sort s may be assigned a T +
k -value. A

sort s may be Ti-public and Tj-public for i �= j. We stipulate that sort prop is Tk-
public for all k, with T +

k -values true and false, which are valid and unsatisfiable,
respectively, in T +

k . We use b for true or false. We assume that the extended
theories are still disjoint except for the two Boolean values true and false.

Example 2. Let RA be the theory of real arithmetic with sorts {R, prop} and
symbols �{R,prop} ∪ {0, 1 : R; +,−, · : R×R→R}. RA+ adds a new constant for
every real number, so R is RA-public. The axioms of RA+ are the formulae that
hold in the standard model of the reals interpreting every RA+-value as itself.

46 M.P. Bonacina et al.

Extending the signature with names that denote all individuals in the domain
of a Tk-model is a standard move in automated reasoning, where models need
to be built out of syntax, and especially when Tk has an “intended model” as
in arithmetic. In such cases a T +

k -value is both the domain element and the
constant symbol that names it.

Definition 1 (Assignment). Given a theory T with extension T +, a T -
assignment is a set of pairs t←c, where t is a term and c is a T +-value of the same
sort. Term t and all its subterms are said to occur in the assignment. An assignment
is plausible if it does not contain both l←true and l←false for any formula l.

For example, {x←
√

2, x + y←
√

3} and {f(x)←
√

2, (1·x� x)←true} are
RA-assignments. If for all pairs t←c the sort of t and c is s, the T -assignment
is of sort s, and if s = prop it is Boolean. A first-order T -assignment is a
T -assignment that is not Boolean. We use J for generic T -assignments, A for
singleton ones, and L for Boolean singletons. We abbreviate l←true as l, l←false
as l, and t �s u ←false as t ��s u. The flip L of L assigns to the same formula the
opposite Boolean value. The union of T +

1 , . . . , T +
n is an extension T +

∞ of T∞, with
signature Σ+

∞ = (S∞, F+
∞) for F+

∞ =
⋃n

k=1 F+
k . We use H for T∞-assignments,

called assignments for short. Plausibility does not forbid an assignment {t ←
3.1, u ← 5.4, t ← red, u ← blue}, where the first two pairs are T1-assignments
and the last two are T2-assignments; the sort of t and u is both T1-public and
T2-public. When building a model from this assignment, 3.5 will be identified
with red and 5.4 with blue.

Definition 2 (Theory view). Let T and S be either T∞ and S∞, or Tk and
Sk for 1≤ k ≤n. The T -view of an assignment H is the T -assignment HT =

{t←c | t←c is a T − assignment in H} ∪
⋃n

k=1 ({t1 �s t2 | t1←c, t2←c are Tk − assignments in H of sort s∈S\{prop} } ∪
{t1 ��s t2 | t1←c1, t2←c2 are Tk − assignments in H of sort s∈S\{prop}, c1 �=c2}).

HT contains the T -assignments of H, plus all equalities and disequalities induced
by the Tk-assignments in H, 1≤ k ≤n. We introduce next theory modules, the
abstract counterpart of theory solvers or theory plugins [9].

Fig. 1. Equality inference rules: t1, t2, and t3 are terms of sort s

Satisfiability Modulo Theories and Assignments 47

3.2 Theory Modules

A theory module I for theory T is an inference system whose inferences, called
I-inferences and written J �I L, derive a singleton Boolean assignment L from
a T -assignment J . Since all theories include equality, all theory modules include
the equality inference rules of Fig. 1. The following inferences are IRA-inferences:

(x←
√

2), (y←
√

2) �IRA
(x·y � 1+1)

(y←
√

2), (x←
√

2) �IRA
(y � x)

(y←
√

2), (x←
√

3) �IRA
(y �� x)

I-inferences only derive Boolean assignments because CDSAT does not jus-
tify first-order assignments by inferences, not even when a first-order assignment
is forced by others (e.g., y←2 by x←1 and (x+y)←3). We assume we have theory
modules I1, . . . , In for T1, . . . , Tn. We now define acceptability and relevance.

Definition 3 (Acceptability). Given Tk-assignments t←c and J , t←c is
acceptable for J and Ik, if (i) J does not assign a value to t and (ii) either
t←c is Boolean or there are no Ik-inferences J ′, (t←c) �Ik

L with J ′, L ⊆ J .

When adding t ← c to J , acceptability prevents repetitions (cf. Condition
(i)) and contradictions: if t ← c is Boolean, its flip should not be in J , preserv-
ing plausibility (cf. Condition (i)); if t ← c is first-order, and therefore has no
flip, so that plausibility does not apply, acceptability ensures that none of the
consequences one inference step away has its flip in J (cf. Condition (ii)).

Definition 4 (Relevance). A term is Tk-relevant for an assignment H, if
either (i) it occurs in H and has a Tk-public sort, or (ii) it is an equality t1 �s t2
whose terms t1 and t2 occur in H and whose sort s ∈ Sk is not Tk-public.

Relevance organizes the division of labor among modules. For instance in the
assignment {x←

√
5, f(x)←

√
2, f(y)←

√
3}, x and y of sort R are RA-relevant,

not EUF-relevant, assuming R is not EUF-public, while x�R y is EUF-relevant,
not RA-relevant. Each theory has a mechanism to fix and communicate equalities
between terms of a known sort, such as x and y: EUF does it by assigning a truth-
value to x�R y; RA does it by assigning values to x and y.

4 Examples of Theory Modules

In this section we give theory modules for several theories. We may use ⊥ to stand
for the assignment (x�prop x)←false for an arbitrary variable x. For brevity, we
omit equality symbols from signatures and equality inference from modules.

4.1 A Module for Propositional Logic

ΣBool has only the sort prop and the symbols ¬ : prop → prop, and ∨,∧ :
(prop×prop)→prop. Let Bool+ be the trivial extension with only {true, false} as
Bool+-values. IBool features an evaluation inference rule that derives the truth

48 M.P. Bonacina et al.

value b of formula l, given truth values b1, . . . , bm of subformulae l1, . . . , lm,
and then, from left to right, two rules for negation, two rules for conjunction
elimination, and two rules for unit propagation:

l1←b1, . . . , lm←bm �Bool l←b

¬l �Bool l l1 ∨ · · · ∨ lm �Bool li l1 ∨ · · · ∨ lm, {lj | j �= i} �Bool li
¬l �Bool l l1 ∧ · · · ∧ lm �Bool li l1 ∧ · · · ∧ lm, {lj | j �= i} �Bool li

where 1 ≤ j, i ≤ m, and, for the first rule, l must be in the closure of l1, . . . , lm
with respect to the ΣBool-connectives. Although the evaluation rule alone is suf-
ficient for completeness (cf. Sect. 6.3), the other six rules, including in particular
unit propagation as in CDCL, are obviously desirable.

4.2 A Theory Module for LRA

Let ΣLRA be as in Example 1 and LRA+ be the extension that adds a constant
q̃ and the axiom q̃ �Q q ·1 for each rational number q ∈ Q. Here too, the first
rule of ILRA is an evaluation inference rule that derives the value b of formula l,
given values q̃1, . . . , q̃m of subterms t1, . . . , tm of sort Q:

Evaluation t1←q̃1, . . . , tm←q̃m �LRA l←b

Positivization t1 < t2 �LRA t2 ≤ t1
t1 ≤ t2 �LRA t2 < t1

Equality elimination t1 �Q t2 �LRA ti ≤ tj with {i, j} = {1, 2}
Disequality elimination (t1 ≤ x), (x ≤ t2), (t1 �Q t0), (t2 �Q t0), (x ��Q t0) �LRA ⊥
Fourier-Motzkin resolution (t1 �1 x), (x �2 t2) �LRA (t1 �3 t2)

where t0, t1, t2, and x are terms of sort Q; x is a ΣLRA-variable that is not
free in t0, t1, t2 (cf. Sect. 6); �1, �2, �3 ∈ {<,≤} and �3 is < if and only if
either �1 or �2 is <. For the first rule, l must be a formula whose normal
form is in the closure of t1, . . . , tm with respect to the symbols of FLRA. For
example, w−2�Q w can be normalized to −2�Q 0 and evaluates to false. In the
last two rules, each formula l appearing on the left stands for any formula that
can be normalized to l. For instance, Fourier-Motzkin (FM) resolution applies
to y−x < 2 ·y and 2 ·x < 3 yielding −y < 3

2 . The three linear combinations of
constraints in the solution of problem R in Sect. 1 are instances of FM resolution,
as a linear combination e1+z<c1, e2−z<c2 � e1+e2<c1+c2 is expressed as an
FM resolution e2−c2<z, z<c1−e1 �LRA e2−c2<c1−e1.

4.3 A Theory Module for EUF

For a signature ΣEUF = (S, �S ∪ F), IEUF may include
(ti � ui)i=1...m, f(t1, . . . , tm) �� f(u1, . . . , um) �EUF ⊥

(ti � ui)i=1...m �EUF f(t1, . . . , tm) � f(u1, . . . , um)
(ti � ui)i=1...m,i�=j , f(t1, . . . , tm) �� f(u1, . . . , um) �EUF tj �� uj

for all symbols f ∈ F . The first rule alone is sufficient for completeness: it cap-
tures a lazy approach that does not propagate anything before equalities between

Satisfiability Modulo Theories and Assignments 49

existing terms are found to be in contradiction with a congruence axiom [9]. The
other two rules can be used directly for eager congruence propagation. Since IEUF

does not use first-order assignments, no sort needs to be EUF-public, and the
only assignments assign truth values to equalities. Alternatively, one may make
the sorts in S EUF-public, with a countably infinite collection of EUF+-values
in each sort and no axioms about them. Equality inferences can employ assign-
ments of EUF+-values to determine whether terms are equal, using EUF+-values
as identifiers for equivalence classes of terms. For example, assume that c1, c2,
and c3 are distinct EUF+-values. The assignment {x←c1, y←c1, f(x)←c2} places
x and y in the equivalence class c1, and f(x) in class c2. If f(y)←c3 is added
to the assignment, two equality inferences and an application of the first rule of
IEUF expose a conflict in the above-mentioned lazy style.

4.4 A Theory Module for Arrays

The array sort constructor builds from an index sort I and a value sort V the
sort I⇒V of arrays with indices in I and values in V . Consider a signature
ΣArr = (S, F), where S is the free closure of a set of basic sorts with respect to
the array sort constructor, and F is

{selectI⇒V : (I⇒V)×I→V | (I⇒V) ∈ S}
∪ {storeI⇒V : (I⇒V)×I×V →(I⇒V) | (I⇒V) ∈ S}
∪ {diffI⇒V : (I⇒V)×(I⇒V)→I | (I⇒V) ∈ S},

where diffI⇒V is the Skolem function symbol that arises from clausifying the
extensionality axiom for array sort I⇒V . For brevity, subscripts are omitted,
select(a, i) is written as a[i], and store(a, i, v) as a[i]:=v. Module IArr features the
following rules, where a, b, c, d are variables of any I⇒V sort, u, v are variables
of sort V , and i, j, k of sort I:

a� b, i� j, a[i] �� b[j] �Arr ⊥
a� b, i� j, u � v, (a[i]:=u) �� (b[j]:=v) �Arr ⊥

b � (a[i]:=u), i� j, b[j] �� u �Arr ⊥
b � (a[i]:=u), i �� j, j � k, a[j] �� b[k] �Arr ⊥

a �� b �Arr a[diff (a, b)] �� b[diff (a, b)]
a� c, b� d, diff (a, b) �� diff (c, d) �Arr ⊥

The first two inference rules capture the congruence axioms for select and store.
The third and fourth rules correspond to the read-over-write axioms. The fifth
rule corresponds to the clausal form of the extensionality axiom; it is the only
rule that can produce new terms. The last rule states the congruence axiom for
diff . These rules are triggered by the truth-values of equalities. As with IEUF,
in order to determine whether equalities hold, one has the option of declaring
all sorts to be Arr-public, with infinitely many Arr+-values used as identifiers of
equivalence classes. One can also add rules for eager propagations of equalities.

4.5 Generic Theory Modules for Equality Sharing

Assume T is a stably infinite theory with signature Σ = (S, F) and equipped
with a T -satisfiability procedure. Its inference module IT comprises the rule

50 M.P. Bonacina et al.

l1←b1, . . . , lm←bm �T ⊥
that fires when the conjunction of the literals corresponding to the Boolean
assignments on the left is T -unsatisfiable. Unlike the previous ones, this mod-
ule is coarse-grained, in the sense that a single application of its inference rule
requires the execution of a T -satisfiability procedure. As with EUF and Arr, one
has the option of declaring non-Boolean sorts T -public to determine equalities.
If the T -satisfiability procedure can produce unsatisfiable cores, we can restrict
the above rule so that the assignment on the left is an unsatisfiable core. This
provides a more precise conflict resolution mechanism, which leads us to Sect. 5.

5 The CDSAT Inference System

In this section we present CDSAT and exemplify its features by applying it to
problems R and P in the introduction. A CDSAT derivation transforms a state
consisting of a trail Γ . A trail is a sequence of distinct singleton assignments
that are either justified assignments, denoted H�A, or decisions, denoted ?A.
The justification H in H�A is a set of singleton assignments that appear before
A in the trail. For instance, a theory inference J �Ik

L for some k, 1≤ k ≤n, can
justify adding J�L to the trail. A decision is written ?A because it is generally a
guess. A trail can be used as an assignment by ignoring order and justifications.

Fig. 2. CDSAT derivation in one theory (LRA)

The evolution of the trail for problem R is described in three successive phases
in Fig. 2. The input is shown above the horizontal line of Phase 1. In each pro-
ceeding phase, the assignments above the horizontal line are those inherited from
the previous phase. Assignments are numbered in chronological order, and their
numbers, shown in the first column, are used as identifiers. For every justified
assignment, the justification is shown as a set of identifiers in the third column.
In the sequel, Am

n is the assignment with identifier n in phase m. For example,
the justification of A1

4 is {0, 2}, because A1
4 is derived by the FM resolution rule

of ILRA from A1
0 and A1

2. The last column shows the level of A as defined next.

Satisfiability Modulo Theories and Assignments 51

Definition 5 (Level). Given a trail Γ with assignments A0, . . . , Am,

levelΓ (Ai) =

{
1 + max{levelΓ (Aj) | j < i} if Ai is a decision,
levelΓ (H) if Ai has justification H;

Given a T∞-assignment H ⊆ Γ ,

levelΓ (H) =

{
0 if H = ∅,
max{levelΓ (A) | A ∈ H} otherwise.

The restriction of a trail Γ to its elements of level at most m is written Γ≤m.

Fig. 3. The CDSAT inference system

The rules of the CDSAT inference system, given in Fig. 3, comprise search
rules, whose application is denoted by −→, and conflict resolution rules, whose
application is denoted by =⇒, with transitive closure =⇒∗. The system is para-
meterized by a set B of terms, called global basis, used to limit the range of terms
that CDSAT may generate, in order to ensure termination (cf. Sect. 6.2). The
global basis is fixed throughout a CDSAT derivation but depends on the input
problem. We describe next the CDSAT rules, beginning with the search rules.

The Decide rule extends a trail Γ with a theory assignment A without jus-
tifying it by a theory inference: it is a decision. A assigns a value to a relevant
term, and is acceptable for the theory view of the trail and the theory module
(cf. Definitions 2, 3 and 4). In Fig. 2, y is the relevant term in A1

3 and A2
4.

The Deduce rule extends a trail Γ with an assignment L justified by a theory
inference J �Ik

L. In Fig. 2, Deduce infers A1
4 from {A1

0, A
1
2}, A2

5 from {A2
0, A

2
1},

and A3
5 from {A3

3, A
3
4}, by using the FM resolution rule of ILRA.

52 M.P. Bonacina et al.

Rules Fail and ConflictSolve apply to a trail Γ that is conflicting because
a theory inference J �Ik

L contradicts an assignment L already present in Γ .
The set J ∪ {L} is the conflict. Its level is denoted levelΓ (J, L). If it is 0, rule
Fail returns unsat (e.g., E3 in Fig. 2). If it is greater than 0 (e.g., E1 and E2 in
Fig. 2), rule ConflictSolve triggers a series of conflict resolution steps transforming
Γ into a trail Γ ′ where the conflict is solved. In all three conflicts in Fig. 2, the
inferences that expose the conflict are applications of the evaluation rule of ILRA:
y←0 � −y < −2 for E1, y←4 � y < 0 for E2, and ∅ � 0 < −2 for E3.

Fig. 4. CDSAT derivation in three theories (LRA, EUF, and Arr)

We now describe the conflict resolution rules, referring to Figs. 2 and 4 for
their application to problems R and P , respectively. Conflict resolution rules
operate on pairs 〈Γ ;E〉, where Γ is a trail and E is a set of assignments in
Γ termed conflict. If the conflict contains a first-order decision A, whose level
n is greater than that of the rest of the conflict, rule Undo removes A and
all assignments of level greater than or equal to n. In Fig. 2, rule Undo solves
conflicts E1 and E2.

Satisfiability Modulo Theories and Assignments 53

The Backjump rule is similar in that the conflict contains an assignment
whose level is greater than that of all others. Backjump applies if this assignment
is a Boolean assignment L; its flip L is justified by the rest of the conflict E.
Therefore we backjump to the level of E, and add E�L to the trail. Assignment
L is a Unique Implication Point [14]. We see an application of this rule in Fig. 4.
Phase 1 starts with a series of decisions, from A1

4 through A1
9, where c is an Arr+-

value of sort V , and A1
5 is the only acceptable choice given A1

3 and A1
4. Then

Deduce generates A1
10 and A1

11 by equality inferences (cf. Fig. 1), and ConflictSolve
applies, as E1 �IEUF

⊥ by the first inference rule of IEUF. Rule Undo does not
apply to E1, because E1 does not contain first-order decisions, but rule Backjump
does apply, with A1

11 playing the role of L. CDSAT jumps back to level 3, the
level of A1

10, and places A1
11 on the trail with justification A1

10, named A2
7 in Phase

2. Deduce places A2
9 and A2

10 on the trail by transitivity of equality (cf. Fig. 1).
ConflictSolve applies as ∅ �LRA w−2 �� w.

Fig. 5. CDSAT derivation in two
theories (Bool and LRA)

The Resolve rule unfolds a conflict by
replacing an assignment A in the conflict with
its justification H, provided H does not intro-
duce a first-order decision of the same level as
that of the conflict. Starting from E2

1 in Fig. 4,
three Resolve steps yield conflict E2

4 . Resolve
does not apply to A2

7 because its justification
contains A2

6. Backjump solves E2
4 by jumping

back to level 0 and flipping A2
7 into A3

4. Then
CDSAT guesses A3

5 through A3
7, where A3

6 is
forced by A3

3 and A3
5. For A3

7, another Arr+-
value d of sort V is used, since A3

4 and A3
5 pre-

vent assigning c to (a[i]:=v)[j]. Deduce gener-
ates A3

8 by an equality inference, and conflict
E3 arises as (i� j), (v �� (a[i]:=v)[j]) �Arr ⊥.
Backjump solves E3 by jumping back to level 0
and flipping A3

8 into A4
5. The final conflict E4

violates transitivity of equality, and because
E4 is at level 0, rule Fail closes the derivation.

The UndoDecide rule corresponds to T-
backjump-decide [5] and semantic split [9]. It
applies when the conflict contains two assign-
ments L and L′ whose justifications include
a first-order decision of maximal level in the
conflict. Rule Resolve is barred from replacing
L or L′ by their justification, so the only way
to solve the conflict is to trade the first-order
decision for a Boolean decision on the flip of L or L′. In Fig. 5, conflict E4 is
solved by UndoDecide, as both A1

3 and A1
4 are justified by the first-order decision

A1
2. UndoDecide arbitrarily chooses to flip A1

3, and then values can be found for
variables without raising a conflict: the problem is satisfiable.

54 M.P. Bonacina et al.

6 Soundness, Termination, and Completeness of CDSAT

In this section we establish soundness, termination, and completeness of CDSAT.
The proofs of these theorems can be found in the technical report [3]. The key
point is to reduce such global properties to theory-local requirements for the
theory modules involved in the combination. In other words, we need to discover
sufficient conditions whose fulfillment by all theory modules I1, . . . , In ensures
soundness, termination, and completeness of the combined system.

This reduction raises the issue of how to handle the fact that assignments
contain symbols unknown to a theory. For the combination of theory modules
to be truly modular, Ik treats as a variable any subterm whose root is a symbol
foreign to Tk. Formally, if Σ = (S, F) is a signature included in Σ∞, the free Σ-
variables fvΣ(t) of a term t are the maximal subterms of t, in the subterm ordering
�, whose root is not in F . For a set X of terms, fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X},
and for an assignment H, fvΣ(H) = {u | u ∈ fvΣ(t), t←c ∈ H}. For problem P
in Sect. 1, signatures ΣLRA, ΣEUF, ΣArr of Example 1 define for instance:

fvΣLRA
(P) = {f(select(store(a, i, v), j)), w, f(u), i� j, u � v}

fvΣEUF
(P) = {select(store(a, i, v), j), w, u, w−2, i� j, v}

fvΣArr
(P) = {f(select(store(a, i, v))j)� w, f(u)� w−2, i, j, u, v}

In the next two definitions, T and Σ stand for either T∞ and Σ∞ or Tk and
Σk, 1≤ k ≤n. The identification of sufficient conditions for soundness and com-
pleteness and their proofs demand that we relate the assignments manipulated
by CDSAT to models. This is the purpose of the notion of endorsement :

Definition 6 (Endorsement). A T +[V]-model M endorses a T -assignment
J , such that fvΣ(J) ⊆ V , if for all t←c in J , M(t) = cM.

For Boolean assignments, it means that formulae are interpreted with the
correct truth values. Definition 6 uses T +-models, because assignments contain
T +-values (e.g.,

√
2), and therefore we need models that interpret T +-values,

and interpret them consistently with the axioms (e.g.,
√

2·
√

2 = 2).

Definition 7 (View endorsement). A T +[V]-model M view-endorses a T∞-
assignment H with fvΣ(H) ⊆ V , if it endorses its T -view HT .

This definition combines endorsement and view (cf. Definition 2) because
CDSAT works with T∞-assignments, which mix Tk-assignments for any k,
1≤ k ≤n. If H is Boolean, view endorsement collapses to endorsement.

6.1 Soundness

The sufficient condition for soundness is that for every theory module Ik, for all
Ik-inferences J �Ik

L, and all V such that fvΣk
(J ∪ {L}) ⊆ V , every T +

k [V]-
model that view-endorses J endorses L. Under this assumption, we prove that
CDSAT is sound, by showing that each transition rule produces a trail whose
restriction to level 0 is equisatisfiable to the input assignment.

Satisfiability Modulo Theories and Assignments 55

Theorem 1 (Soundness). For all input assignments H, if a CDSAT deriva-
tion from H reaches state unsat, no T +

∞ [V]-model with fvΣ∞(H) ⊆ V view-
endorses H; if H is Boolean, no T∞[V]-model with fvΣ∞(H) ⊆ V endorses H.

All theory modules in Sect. 4 satisfy the soundness requirement.

6.2 Termination

Fig. 6. Divergence

As CDSAT allows the introduction of terms that are
not in the input problem (cf. Deduce), termination is
imperiled. For instance, applying the FM resolution
rule of ILRA to problem R from Sect. 1, one can infer
the formulae of Fig. 6. Such divergence is prevented
by imposing finiteness of the global basis B, that is
the source of new terms in a CDSAT derivation.

Theorem 2 (Termination). If the global basis B
is finite, every CDSAT derivation is guaranteed to
terminate.

Then the issue is to give sufficient conditions for the existence of a global
basis B, that is finite, and yet sufficiently rich for CDSAT to be complete. To
address this question at the combination level we begin by imposing a similar
requirement at the single theory level. We require that each theory module comes
with a function basisk, called local basis, that maps any finite set X of terms to a
finite set of terms basisk(X), and has the following properties: it is (i) extensive
(X ⊆ basisk(X)), (ii) monotone (X ⊆ Y implies basisk(X) ⊆ basisk(Y)), (iii)
idempotent (basisk(basisk(X)) = basisk(X)), (iv) downward-closed with respect
to the subterm ordering (if t � u and u ∈ basisk(X) then t ∈ basisk(X)), (v)
closed with respect to equality (if t, u ∈ basisk(X), of a sort s different from
prop, then (t �s u) ∈ basisk(X)), and (vi) does not introduce foreign symbols
(fvΣk

(basisk(X)) ⊆ fvΣk
(X) ∪ V∞).

Intuitively, basisk(X) is the supply of terms that Ik is allowed to introduce
during a derivation from an input problem whose terms are in X. However,
basisk(X) is not pre-computed. Furthermore, basisk should provide enough terms
to make Ik complete, according to a notion of completeness of a theory module
defined in the sequel in terms of both Ik-inferences and basisk.

The divergence in Fig. 6 involves only ILRA. It can be avoided by assuming a
fixed arbitrary order ≺ on ΣLRA-variables [9], and defining basisLRA as the function
that saturates its argument with the terms introduced by all positivization infer-
ences and by the FM resolution inferences (t1�1x), (x�2 t2) �LRA (t1�3 t2) where
x is the ≺-greatest ΣLRA-variable in both t1 �1 x and x �2 t2. For Fig. 6, assume
that y ≺ x. Then l3, generated by (−y < 2 ·x), (2 ·x< −2) �LRA (−y < −2), is in
the local basis, whereas l4, generated by (x< −y), (−y < −2) �LRA (x< −2), is
not, so that the series of inferences halts.

56 M.P. Bonacina et al.

6.3 Completeness

As theory modules are used to extend the trail and reveal conflicts, the aim for
completeness is that whenever no theory module can extend the trail, then the
trail provides enough information to build a T +

∞ -model of the input problem. We
begin by formalizing the concept that a theory module can extend an assignment.

Definition 8 (Assignment extension). Module Ik with local basis basisk can
extend a Tk-assignment J if
– Either there exists a Tk-assignment t←c, for a Tk-relevant term t of J , that

is acceptable for J and Ik;
– Or there exist a Tk-assignment J ′ ⊆ J , a formula l ∈ basisk(J), and an

Ik-inference J ′ �Ik
(l ← b) such that (l ← b) �∈ J .

The first case is used for a Decide step and the second one for a Deduce, Fail,
or ConflictSolve step. A module Ik is said to be complete, if for all plausible Tk-
assignments J that Ik cannot extend, there exists a T +

k [fvΣk
(J)]-model M that

view-endorses J . However, when no theory module can extend its view of a trail
Γ , the existence of a theory-specific model for Γ for each theory does not imply
the existence of a model for the combination of the theories. As in the equality-
sharing method [16], these models need to agree on equalities between shared
variables and on cardinalities of shared sorts. If all theories are stably infinite,
the common cardinality is countably infinite. Nonetheless, there are interesting
combinations that involve finite cardinalities, such as combining a theory with
finite sorts and the theory of arrays with extensionality. CDSAT can handle such
cases, if one of the combined theories, say T1, knows all the sorts (i.e., S1 = S∞)
and offers information about their cardinalities. A combination of stably infinite
theories is the instance of this scheme where T1 is a theory TN whose models
interpret every sort in S∞\{prop} as a countably infinite set.

The theory-specific requirements for completeness of CDSAT are that I1 is
complete, and all other modules are complete relative to T1. The latter notion,
that we call T1-completeness, in turn relies on T1-compatibility, defined below.

Definition 9 (T1-compatibility). A Tk-assignment J is T1-compatible with
T +

k , sharing a set of terms G, if for any T +
1 [fvΣ1

(J ∪ G)]-model M1 that view-
endorses J , there exists a T +

k [fvΣk
(J ∪G)]-model M that view-endorses J , such

that for all sorts s ∈ Sk,
∣
∣sM∣

∣=
∣
∣sM1

∣
∣, and for all terms t and t′ in G of sort s,

M(t) = M(t′) if and only if M1(t) = M1(t′).

A module Ik is T1-complete, if for all plausible Tk-assignments J that Ik

cannot extend, J is T1-compatible with T +
k , sharing all terms that occur in J .

Then, the global basis B is stable, if basisk(B) ⊆ B holds for all k, 1≤ k ≤ n.

Theorem 3 (Completeness). For all input assignments H, if the global basis
B is stable and contains all terms that occur in H, whenever a CDSAT derivation
from H reaches a state Γ other than unsat such that no CDSAT inference applies,
there exists a T +

∞ [fvΣ∞(Γ)]-model that view-endorses Γ and H contained in Γ .

Satisfiability Modulo Theories and Assignments 57

The proof of this theorem [3] relies on the following:

Lemma 1 (Model glueing). Let H be an assignment and G be the collection
of shared terms inductively defined by:

(t←c)∈ H

t ∈ G

u, u′ ∈ G t ∈ fvΣi
(u)∩ fvΣj

(u′) i�=j

t ∈ G

u ∈ G t ∈ fvΣk
(u)\V∞

t ∈ G

If there exists a T +
1 [fvΣ1

(H)]-model that view-endorses H, and such that for all
k, 2≤ k ≤ n, the Tk-view HTk

is T1-compatible with T +
k sharing G, then there

exists a T +
∞ [fv(H)]-model that view-endorses H.

A derivation can reach a state satisfying the hypotheses of Lemma 1 long
before it reaches a state that no module can extend. An implementation of a
module could notify the main algorithm when the trail becomes T1-compatible
with its theory. In this sense, Theorem 3 covers the worst-case scenario. A
stable global basis can be obtained by taking B = basisπ(k)(. . . basisπ(1)(X)),
where X is the set of terms occurring in the input assignment and π is a
permutation of {1, . . . , k} that satisfies the following property: if i < j then
basisπ(i)(basisπ(j)(X)) ⊆ basisπ(j)(basisπ(i)(X)). A syntactic criterion on the local
bases implies this permutability property [3].

For all theory modules of Sect. 4, except ILRA, we can define a local basis
that makes them TN-complete (cf. [3] for stronger completeness properties).
For ILRA, the local basis basisLRA given above makes the module TN-complete
only under the strategy that assigns ΣLRA-variables in ≺-increasing order.
Otherwise, considering again problem R and the ordering y ≺ x, the LRA-
assignment l0, l1, l2, l3, (x←0) cannot be extended by ILRA even though it is
LRA-unsatisfiable. Indeed, the obvious FM resolution combining l1 and l3 would
eliminate y, which is not maximal in l1, as required by basisLRA. An additional
inference rule can be added to ILRA to make it complete regardless of strategy [3].

7 Discussion

In this paper we introduced CDSAT, a conflict-driven system for deciding the
satisfiability of quantifier-free problems in the union of disjoint theories. CDSAT
combines theory inference systems, termed theory modules. We presented several
theory modules, including one for arrays which is the first integration of this the-
ory in a conflict-driven combination. CDSAT lifts CDCL to SMT in the sense of
satisfiability modulo multiple theories. Since it accepts input problems contain-
ing Boolean and first-order assignments, CDSAT solves a class of problems that
extends SMT and that we call SMA for Satisfiability Modulo Assignments. For
such problems, the input format presupposes the theory extensions (cf. Sect. 3).

CDSAT generalizes MCSAT [5,8,9,19] to theory combinations. Furthermore,
CDSAT solves the hitherto open problem of integrating conflict-driven proce-
dures and the black-box solvers used in the equality sharing method [16]. CDSAT

58 M.P. Bonacina et al.

generalizes equality sharing itself, which corresponds to the case where all the-
ories are stably infinite, all theory modules are black-boxes (cf. Sect. 4.5), and
CDSAT decisions are limited to equalities between shared variables.

Clause learning, including theory lemmas, can be easily added to the version
of CDSAT presented here [3]. Directions for future work include: the generation
of proofs, by composition of theory inferences; efficient techniques to detect the
applicability of theory inference rules and determine whether an assignment is
acceptable (e.g., watched variables [9]); and heuristic strategies to make decisions
and prioritize theory inferences.

Acknowledgments. The authors thank Dejan Jovanović for fruitful discussions. Part
of this research was conducted while the first author was an international fellow at the
Computer Science Laboratory of SRI International, whose support is greatly appreci-
ated. This research was funded in part by NSF grants 1528153 and CNS-0917375, by
DARPA under agreement number FA8750-16-C-0043, and by grant “Ricerca di base
2015” of the Università degli Studi di Verona. The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of NSF, DARPA,
or the U.S. Government.

References

1. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS (LNAI),
vol. 4246, pp. 512–526. Springer, Heidelberg (2006). doi:10.1007/11916277 35

2. Bonacina, M.P.: On conflict-driven reasoning. In: Dutertre, B., Shankar, N. (eds.)
Proceedings of the Sixth Workshop on Automated Formal Methods (AFM), at
the Ninth NASA Formal Methods Symposium (NFM), pp. 1–9 (2017, to appear).
http://fm.csl.sri.com/AFM17/

3. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: A model-constructing
framework for theory combination. Technical Report 99/2016, Dipartimento di
Informatica, Università degli Studi di Verona, Verona, Italy, EU. https://hal.
archives-ouvertes.fr/hal-01425305, also Technical report of SRI International and
INRIA - CNRS - École Polytechnique; Revised April 2017

4. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K.,
Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 77–91. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15297-9 8

5. Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Gia-
cobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp.
1–12. Springer, Heidelberg (2013). doi:10.1007/978-3-642-35873-9 1

6. Ganzinger, H., Rueß, H., Shankar, N.: Modularity and refinement in inference sys-
tems. Technical report CSL-SRI-04-02, Computer Science Laboratory, SRI Inter-
national, Menlo Park, CA, USA (2004)

7. Haller, L., Griggio, A., Brain, M., Kroening, D.: Deciding floating-point logic
with systematic abstraction. In: Cabodi, G., Singh, S. (eds.) Proceedings of the
Twelfth International Conference on Formal Methods in Computer Aided Design
(FMCAD). ACM and IEEE (2012)

http://dx.doi.org/10.1007/11916277_35
http://fm.csl.sri.com/AFM17/
https://hal.archives-ouvertes.fr/hal-01425305
https://hal.archives-ouvertes.fr/hal-01425305
http://dx.doi.org/10.1007/978-3-642-15297-9_8
http://dx.doi.org/10.1007/978-3-642-35873-9_1

Satisfiability Modulo Theories and Assignments 59

8. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani,
A., Monniaux, D. (eds.) VMCAI 2017. LNCS, vol. 10145, pp. 330–346. Springer,
Heidelberg (2017). doi:10.1007/978-3-319-52234-0 18

9. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the
model-constructing satisfiability calculus. In: Jobstman, B., Ray, S. (eds.) Proceed-
ings of the Thirteenth Conference on Formal Methods in Computer Aided Design
(FMCAD). ACM and IEEE (2013)

10. Jovanović, D., Moura, L.: Cutting to the chase: solving linear integer arithmetic.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
338–353. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 26

11. Jovanović, D., Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 339–354. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 27

12. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 41

13. Krstić, S., Goel, A.: Architecting solvers for SAT modulo theories: Nelson-Oppen
with DPLL. In: Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS (LNAI), vol.
4720, pp. 1–27. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74621-8 1

14. Marques Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Biere, A., Heule, M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfia-
bility, Frontiers in Artificial Intelligence and Applications, vol. 185, pp. 131–153.
IOS Press (2009)

15. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer Logics. In:
Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 462–476. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02658-4 35

16. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM
Trans. Prog. Lang. Syst. 1(2), 245–257 (1979)

17. Wang, C., Ivančić, F., Ganai, M., Gupta, A.: Deciding separation logic formulae
by SAT and incremental negative cycle elimination. In: Sutcliffe, G., Voronkov,
A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 322–336. Springer, Heidelberg
(2005). doi:10.1007/11591191 23

18. Wolfman, S.A., Weld, D.S.: The LPSAT engine and its application to resource
planning. In: Dean, T. (ed.) Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence (IJCAI), vol. 1, pp. 310–316. Morgan Kaufmann
Publishers (1999)

19. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with
mcSAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
249–266. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40970-2 16

http://dx.doi.org/10.1007/978-3-319-52234-0_18
http://dx.doi.org/10.1007/978-3-642-22438-6_26
http://dx.doi.org/10.1007/978-3-642-31365-3_27
http://dx.doi.org/10.1007/978-3-642-04244-7_41
http://dx.doi.org/10.1007/978-3-642-04244-7_41
http://dx.doi.org/10.1007/978-3-540-74621-8_1
http://dx.doi.org/10.1007/978-3-642-02658-4_35
http://dx.doi.org/10.1007/11591191_23
http://dx.doi.org/10.1007/978-3-319-40970-2_16

Notions of Knowledge in Combinations
of Theories Sharing Constructors

Serdar Erbatur1, Andrew M. Marshall2, and Christophe Ringeissen3(B)

1 Ludwig-Maximilians-Universität, München, Germany
2 University of Mary Washington, Fredericksburg, USA

3 LORIA – INRIA Nancy-Grand Est, Villers-lès-Nancy, France
Christophe.Ringeissen@loria.fr

Abstract. One of the most effective methods developed for the analysis
of security protocols is an approach based on equational reasoning and
unification. In this approach, it is important to have the capability to
reason about the knowledge of an intruder. Two important measures of
this knowledge, defined modulo equational theories, are deducibility and
static equivalence. We present new combination techniques for the study
of deducibility and static equivalence in unions of equational theories
sharing constructors. Thanks to these techniques, we obtain new modu-
larity results for the decidability of deducibility and static equivalence. In
turn, this should allow for the analysis of protocols involving combined
equational theories which previous disjoint combination methods could
not address due to their non-disjoint axiomatization.

1 Introduction

The formal analysis of security protocols is a large area of research, with one
of its primary starting points the paradigm developed by Dolev and Yao [16] in
which equational theories play a central role. This field of research has resulted in
the development of several automated tools for the analysis of security issues in
protocols, including [3,8,14,19,21,23,26]. Unification procedures and their com-
binations are widely used in such tools, e.g., a disjoint combination procedure
[5,24] is the basic engine of Cl-AtSe [26]. This disjoint combination procedure
has been extended to solve satisfiability problems in non-disjoint hierarchical
intruder theories [10]. Verifying the security of protocols requires the develop-
ment of specific decision procedures to reason about the knowledge that an
attacker may have. Two important measures of this knowledge, which are useful
and widely used, are deducibility [20,22] and static equivalence [1]. Informally,
deducibility is the question of whether an attacker, given their deductive capa-
bilities and a set of messages representing their knowledge, can compute another
message representing some secret. This is a critical measure of the capability

C. Ringeissen—This work has received funding from the European Research Council
(ERC) under the H2020 research and innovation program (grant agreement No.
645865-SPOOC).

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 60–76, 2017.
DOI: 10.1007/978-3-319-63046-5 5

Notions of Knowledge in Combinations of Theories Sharing Constructors 61

of the protocol to maintain secrets. Deducibility is needed for many questions
about the security of protocols. However, there are some questions for which we
need to be able to decide more than deducibility. For some protocols, in addition
to deducibility, we would like to know if an attacker can distinguish between dif-
ferent runs of the protocol. For example, in protocols which attempt to transmit
encrypted votes we would like to know if, to the attacker, two different votes
are indistinguishable. One measure of this is static equivalence, which is a crit-
ical measure of the capability of the protocol to maintain indistinguishability
between different runs.

Much work has gone into investigating and developing decision procedures for
the questions of deducibility and static equivalence [1,7,12,15]. The equational
theories of interest are usually defined as unions of several simpler sub-theories.
In these cases, it is quite natural to try to proceed in a modular way by combining
the decision procedures already available for the sub-theories. This combination
problem has been investigated in the analysis of sequent calculi [25] for deducibil-
ity, and saturation-based decision procedures [13] for both deducibility and static
equivalence. However, these contributions [13,25] are restricted to the disjoint
case, where sub-theories are signature-disjoint. Until now, the non-disjoint case
remained unexplored. One difficulty in this study is that the sub-theories often
share some axioms. For example, encryption and decryption axioms are often
found in such equational theories. The approach of just removing the axioms
from one theory can often lead to a dead end: it may no longer be possible to
reuse any existing decision procedure for the theory if an axiom is removed.
Furthermore, along with these shared axioms are often found function symbols,
such as pairing, which are also shared between the combined theories. It is pos-
sible that the shared function symbol appear in some shared axioms and in some
non-shared. Thus, the non-disjoint case offers more complexities.

The approach developed in [13] to solve the disjoint case for deducibility and
static equivalence is based on locality principles, to restrict the application of
saturation-based decision procedures to the finitely many terms occurring in the
problem. Instead, we follow an approach based on the tuning of some combi-
nation techniques which are instrumental to prove the combination procedures
for deducibility and static equivalence. From our point of view, this combination
approach leads to simpler and shorter proofs.

Along the lines of previous works on non-disjoint combination [6,17,18], we
focus on equational theories sharing constructors. An originality of our approach
is the ability to consider both shared constructors and shared axioms as those
defining the access to the components of a constructor. In the first portion of the
paper, we clearly define the class of combined theories we consider. A combined
term rewrite system is used to identify the constructors. This term rewrite system
is useful to state results showing that some decision procedures known for sub-
theories can be reused without loss of completeness for the combined theory. In
particular, we are interested in solving some restricted context unification prob-
lems related to deducibility and static equivalence. The proposed combination
procedures purify the problems by replacing, as usual, alien subterms with fresh

62 S. Erbatur et al.

names. This reduction by purification is correct if the problems are first trans-
formed in an appropriate way: the knowledge specified by the problems must
be completed before purification. These transformations are borrowed from the
ones initiated in [13] for the disjoint case.

Outline. Section 2 presents the background information for this paper. Section 3
develops the new combination results for non-disjoint equational theories sharing
constructors. In Sect. 4 we apply the results from Sect. 3 to the two knowledge
questions from security protocols, deducibility in Sect. 4.1, and static equivalence
in Sect. 4.2.

2 Preliminaries

We use the standard notation of equational logic and term rewriting [4]. As in [1]
we use some concepts, such as names, borrowed from the applied pi calculus [2].

Given a first-order signature Σ, a set of names is a countable set of (free)
constants N , such that Σ ∩ N = ∅. Given a (countable) set of variables X, the
set of (Σ ∪ N)-terms over X is denoted by T (Σ ∪ N,X). The set of variables
in a term t is denoted by fv(t) and the set of names in t is denoted by fn(t).
A term t is ground if fv(t) = ∅. For any position p in a term t (including the
root position ε), t(p) denotes the symbol at position p, t|p denotes the subterm
of t at position p, and t[u]p denotes the term t in which t|p is replaced by u.
Given any Σ′ ⊆ Σ, A term t is said to be Σ′-rooted if t(ε) ∈ Σ′. A context,
C, is a first-order term with “holes”, or distinguished variable that occur only
once. We may write C [x1, . . . , xn], to illustrate that the context C contains n
distinguished variables.

Given a set E of Σ-axioms (i.e., pairs of Σ-terms, denoted by l = r), the
equational theory =E is the congruence closure of E under the law of substitu-
tivity. For any Σ-term t, the equivalence class of t with respect to =E is denoted
by [t]E . Since Σ ∩ N = ∅, the Σ-equalities in E do not contain any names in N .
A theory E is trivial if x =E y, for two distinct variables x and y. In this paper,
all the considered theories are assumed non-trivial.

A substitution σ is an endomorphism of T (Σ∪N,X) with only finitely many
variables not mapped to themselves. Application of a substitution σ to a term t
(resp. a substitution θ) is written tσ (resp. θσ). The domain of σ is Dom(σ) =
{x ∈ X | xσ �= x}. The range of σ is Ran(σ) = {xσ | x ∈ Dom(σ)}. Given a
substitution σ = {x1 �→ t1, . . . , xm �→ tm}, we have Dom(σ) = {x1, . . . , xm}
and Ran(σ) = {t1, . . . , tm}. When θ and σ are two substitutions with disjoint
domains and with only ground terms in their ranges, θσ = θ ∪ σ.

A term rewrite system (TRS) is a pair (Σ,R), where Σ is a signature and
R is a set of rewrite rules of the form l → r, such that l, r are Σ-terms, l is not
a variable and fv(r) ⊆ fv(l). When the signature is clear from the context, a
TRS is simply denoted by R. A term s rewrites to a term t, denoted by s →R t
(or simply s → t), if there exists a position p of s, a rule l → r ∈ R, and a
substitution σ such that s|p = lσ and t = s[rσ]p. A term s is a normal form with

Notions of Knowledge in Combinations of Theories Sharing Constructors 63

respect to the relation →R (or simply a normal form), if there is no term t such
that s →R t. This notion is lifted to substitutions as follows: a substitution σ is
normalized if, for every variable x in the domain of σ, xσ is a normal form. A
TRS R is terminating if there are no infinite reduction sequences with respect
to →R. A TRS R is confluent if, whenever t →∗

R s1 and t →∗
R s2, there exists a

term w such that s1 →∗
R w and s2 →∗

R w. A confluent and terminating TRS is
called convergent. In a convergent TRS R, any term t admits a unique R-normal
form denoted by t↓R. A TRS is finite if its set of rules is finite. From now on, a
finite TRS is denoted by a calligraphic letter, say R. Given a finite TRS (Σ,R),
D(R) = {l(ε) | l → r ∈ R} and C(R) = Σ\D(R). A finite convergent TRS R is
said to be subterm convergent if for any l → r ∈ R, r is either a strict subterm of
l or a constant. An equational theory is subterm convergent if it is presented by
a subterm convergent TRS. Both deducibility and static equivalence are known
to be decidable in subterm convergent theories [1].

3 Combination of Theories

In this section we begin with an example from security protocol analysis to help
elucidate the new presentation of non-disjoint combination below.

Example 1. Consider the following equational theories:

T1 =
{

enc(〈x, y〉, z) = 〈enc(x, z), enc(y, z)〉
dec(〈x, y〉, z) = 〈dec(x, z), dec(y, z)〉, dec(enc(x, y), y) = x

}

T2 = {h(〈x, y〉, z) = 〈h(x, z), h(y, z)〉}, T3 = {fst(〈x, y〉) = x, snd(〈x, y〉) = y}.
The theories E1 = T1 ∪ T3 and E2 = T2 ∪ T3 are two theories of homomorphism
studied respectively in [1] and in [11].

In the above example, if one wishes to ask questions about the combined
theory, E = E1 ∪ E2, then there are several problems.

First, there is the shared symbol, 〈〉, which, if the equalities are oriented
from left to right, is a shared constructor. In addition, there are two particular
shared destructors, again via a left-to-right orientation, fst(〈x, y〉) = x, and
snd(〈x, y〉) = y. This problem, having one or more axioms which are exactly
the same but in two different presentations of two different equational theories,
is common in theories arising from security protocols. For example, the axioms
in T3 are common, just like dec(enc(x, y), y) = x. To proceed by combination
techniques we could try to consider E as the union of three theories T1, T2 and T3.
However, this union would still share the symbol 〈〉 and thus we couldn’t rely on
current combination methods. Furthermore, there is an additional problem of the
availability of decision procedures for these three theories. Often, we are trying
to combine two or more theories for which we have decision procedures available
to obtain a decision procedure for the combined theory, E in our example. If
we remove equalities from a presentation, we are not guaranteed to still have
a decision procedure available. For example, deducibility has been studied for

64 S. Erbatur et al.

E1 and E2, but has not been studied for E1\T3. Therefore, we consider a new
method of non-disjoint combination which allows us to combine E1 and E2 and
maintain decidability of such questions as deducibility and static equivalence.

Before continuing to the details let us briefly outline some of the key top-
ics needed to achieve the combination results. In the following, the combined
theory E is handled thanks to a combined convergent TRS R sharing construc-
tors (cf. Definition 1). The purification of ground terms is processed by constant
abstraction, which is formally defined via a bijection between R-normal forms
and fresh names (cf. Definition 2). Fortunately, we can use layer-reduced forms
as a computable alternative to R-normal forms (cf. Definition 3). The knowledge
problems we focus on are expressed using the notion of frame defined as a ground
substitution together with a set of restricted names. A completion mechanism is
required to achieve all the knowledge encoded by a frame (cf. Definition 5). As
shown in Sect. 4, our combination methods are based on the constant abstraction
of completed frames.

3.1 Constructor-Sharing Theories

Let us formally describe the combined theories we are interested in. We focus
on combinations of theories T1 ∪ · · · ∪ Tn for which shared function symbols
can be interpreted as constructors. To formalize the notion of constructor, it
is convenient to rely on a term rewrite system. However, not every equational
theory can be equivalently presented by a term rewrite system. Fortunately, it is
always possible to rely on a ground term rewrite system that could be obtained
by unfailing completion [5]. More directly, this term rewrite system and the
related constructors are defined below with respect to a reduction ordering used
to orient heterogeneous ground instances of Ti-equalities.

Definition 1. Let Ti be an equational Ωi-theory for i = 1, . . . , n. Consider the
signature Σ = Ω1 ∪ · · · ∪ Ωn and the equational Σ-theory E = T1 ∪ · · · ∪ Tn. Let
> be a Noetherian reduction ordering on T (Σ ∪ V) (i.e., stable by context) such
that V denotes a (sufficiently large) finite set of free constants (including names)
which are minimal w.r.t >. Consider a (possibly infinite) set of Ωi-equalities Ai

such that:

– For any l = r ∈ Ai such that l(ε), r(ε) ∈ Ωi, and any substitution ψ such that
Ran(ψ) ⊆ T (Σ ∪ V), we have lψ > rψ or rψ > lψ.

– For any l = x ∈ Ai such that l(ε) ∈ Ωi, x is a variable, and any substitution
ψ such that Ran(ψ) ⊆ T (Σ ∪ V), we have lψ > xψ.

– the TRS Ri = {lψ → rψ | l = r ∈ Ai, lψ > rψ,Ran(ψ) ⊆ T (Σ ∪ V)} is
convergent on T (Σ ∪ V) and =Ri

is =Ti
on T (Σ ∪ V).

A function symbol f ∈ Σ is a constructor of Ri if for any terms t1, . . . , tm in
T (Σ ∪ V), f(t1, . . . , tm) ↓Ri

= f(t1 ↓Ri
, . . . , tm ↓Ri

). E is said to be constructor-
sharing (w.r.t >) if for any i, j ∈ {1, . . . n}, i �= j, function symbols in Ωi∩Ωj are
constructors of both Ri and Rj. In that case, R = R1 ∪ · · · ∪Rn is the combined
TRS of E and SC =

⋃
i�=j Ωi ∩ Ωj is the set of shared constructors of E.

Notions of Knowledge in Combinations of Theories Sharing Constructors 65

There are several ways to consider appropriate Ai’s following Definition 1. In
general, Ai can be chosen as the set of all Ωi-equalities l = r such that l =Ti

r.
In the following example, we detail the prominent case of theories presented by
finite convergent term rewrite systems.

Example 2. In Definition 1, consider Ti is presented by a finite convergent TRS
Ri for i = 1, . . . , n, such that R1 ∪ · · · ∪ Rn is terminating for a reduction
ordering on (the set of terms with variables) T (Σ,X). Then, rules in Ri can
be used to build Ai and Ri-normal forms are computable by Ri-normalization.
Assume that for any i, j ∈ {1, . . . n}, i �= j, we have Ωi ∩ Ωj ⊆ C(Ri) ∩ C(Rj).
Let R = R1 ∪ · · · ∪Rn. Then, the equational theory of R is constructor-sharing,
where normal forms are computable by R-normalization.

Proposition 1. If E is a constructor-sharing Σ-theory, then its combined TRS
R is a convergent TRS such that =R is =E on T (Σ ∪ V).

In Definition 1, note that the constructors of any Ri remain constructors of
R. If a term is R-reducible, then it is R-reducible by a rule whose left hand-side
is (Σ\SC)-rooted.

Assumption 1. Consider a constructor-sharing theory E = T1 ∪ · · · ∪ Tn as
in Definition 1, its combined TRS R, and its set of shared constructors SC. We
assume E is split into two non-disjoint theories E1 and E2, defined as follows. Let
K1,K2 ⊂ {1, . . . , n} such that K1 ∪ K2 = {1, . . . , n}. For i = 1, 2, consider the
signature Σi =

⋃
k∈Ki

Ωk and the Σi-theory Ei =
⋃

k∈Ki
Tk. So, Σ = Σ1 ∪ Σ2,

E = E1 ∪E2 and both E1, E2 include the equational theory
⋃

k∈K1∩K2
Tk. From

now on, the R-normal form of any t is simply denoted by t ↓.

We illustrate the above notion of constructor-sharing theories with several
examples. These examples originate from theories studied in the security protocol
analysis literature.

Example 3 (Example 1 continued). Assumption 1 holds with Ai = Ti for i =
1, 2, 3. Indeed, the left-to-right orientation of equalities in Ai leads to the TRS
Ri for i = 1, 2, 3. The TRS R =

⋃3
i=1 Ri is convergent, where 〈〉 is a constructor

of each TRS Ri for i = 1, 2, 3. Thus, E is a constructor-sharing theory.

Example 4. Consider the following equational theories:

T1 =

⎧⎨
⎩

fst(〈x, y〉) = x, snd(〈x, y〉) = y
adec(aenc(x, pk(y), z), y) = x, dec(enc(x, y), y) = x
check1(sign(x, y), pk(y)) = ok,msg(sign(x, y)) = x

⎫⎬
⎭

T2 =

⎧⎪⎪⎨
⎪⎪⎩

open(commit(x, y), y) = x, getpk(host(x)) = x
unblind(blind(x, y), y) = x
unblind(sign(blind(x, y), z), y) = sign(x, z)
check2(sign(x, y), pk(y)) = x

⎫⎪⎪⎬
⎪⎪⎭

The theories T1 and T2 are used for modeling respectively strong secrecy [9] and
blind signatures in e-voting protocols [1]. Let E1 = T1, E2 = T2 and E = E1∪E2.

66 S. Erbatur et al.

For the same reasons as in Example 1, E is a constructor-sharing theory, where
sign and pk are the shared constructors. Alternatively, it is also possible to
remove the axioms checki(sign(x, y), pk(y)) = . . . from Ti (i = 1, 2) and to
consider a third theory, say {check(sign(x, y), pk(y)) = x}, that would be shared
as the theory T3 in Example 1.

3.2 Equational Proofs in Combined Theories

A modular approach is possible due to the close relationship between combined
equational proofs (modulo E) and pure ones (modulo E1 and E2). To state this
relationship, we use a well-known notion, called abstraction [5]. In our context,
impure terms are abstracted by free constants, via a bijection denoted by π.

Definition 2 (Constant Abstraction). Let C be a set of (free) constants such
that V and C are disjoint. Let π : {t ↓ | t ∈ T (Σ ∪ V), t ↓/∈ V } −→ C be a bijec-
tion called a constant abstraction with range C. For i = 1, 2, the i-abstraction
of t is denoted by tπi and defined as follows:

– If t ∈ V , then tπi = t.
– If t = f(t1, . . . , tn) and f ∈ Σi, then tπi = f(tπi

1 , . . . , tπi
n).

– Otherwise (t is Σ\Σi-rooted), tπi = π(t ↓) if t ↓/∈ V , else tπi = t ↓.
An inverse mapping of π is a mapping π−1 : C −→ (T (Σ ∪ V)\V) such that
π(π−1(c) ↓) = c for any c ∈ C.

Given a signature Ω, AlienΩ(t) denotes the set of maximal subterms of t
rooted by a function symbol in Σ\Ω. AlienΣi

(t) is abbreviated into Alieni(t).
The terms in Alieni(t) are called the i-alien subterms of t. Given a substitution σ,
Alieni(σ) =

⋃
x∈Dom(σ) Alieni(xσ). The set of alien subterms of t is Alien(t) =

Alien1(t) ∪ Alien2(t)\{t}.

Lemma 1. Let t be an arbitrary term such that its i-alien subterms are R-
normalized. If t is R-reducible, then there exists a term t′ such that t →R t′ and
(t)πi =Ei

(t′)πi where the i-alien subterms of t′ are R-normalized.

Proof. Assume t is a term such that terms in Alieni(t) are R-normalized for
some i ∈ {1, 2}.

If t is variable, then t is R-irreducible. If t is Σ\Σi-rooted, then Alieni(t) =
{t}, and so t is R-irreducible by assumption.

Let us now assume t is Σi-rooted. Then, the redex position, p, in t occurs
necessarily above the i-alien subterms. Hence, without loss of generality, there
is some lψ → rψ ∈ R such that t|p = lψ, t′ = t[rψ]p, Alieni(t′) ⊆ Alieni(t) and
l =Ei

r where l, r are i-pure terms. On the one hand, we have (tπi)|p = (t|p)πi =
lψπi . On the other hand, (t′)πi = (t[rψ]p)πi = tπi [rψπi]p. Since l =Ei

r, we have
lψπi =Ei

rψπi . Therefore, tπi =Ei
tπi [rψπi]p = (t′)πi . ��

Lemma 1 can be applied inductively to obtain the following result.

Notions of Knowledge in Combinations of Theories Sharing Constructors 67

Lemma 2. Let t be a term such that its i-alien subterms are normalized. Then
tπi =Ei

(t ↓)πi .

The notion of layer-reduced form [17] aims at providing a computable term
with the same “theory shape” as the R-normal form.

Definition 3. A term t is in layer-reduced form if

– t ∈ V , or
– t = f(t1, . . . , tn), f ∈ SC and t1, . . . , tn are in layer-reduced form, or
– t(ε), t ↓ (ε) ∈ Ωi\SC and the terms in AlienΩi

(t) are in layer-reduced form.

A substitution σ is in layer-reduced form if xσ is in layer-reduced form for any
x ∈ Dom(σ).

Example 5 (Example 1 continued). Consider t = dec(〈enc(x, y), enc(x, z)〉, y).
The terms 〈x, dec(enc(x, z), y)〉, x, and dec(enc(x, z), y) are layer-reduced forms
of respectively t, fst(t) and snd(t).

As stated below, a layer-reduced form is computable provided that a partic-
ular case of match-equations is decidable for each Ωi-theory Ti involved in the
combined theory E = E1∪E2 =

⋃n
i=1 Ti. A SC-rooted pattern Ti-matching prob-

lem is any match-equation f(X1, . . . , Xm) = ?
Ti

t where f ∈ SC, X1, . . . , Xm are
pairwise distinct variables, and t is a ground Ωi-term. Of course, SC-rooted pat-
tern Ti-matching is decidable if Ti-matching is decidable. To get the decidability
of SC-rooted pattern Ti-matching, another sufficient condition is to assume that
Ti is presented by a finite convergent TRS Ri.

Proposition 2 [17]. It is possible to compute an E-equal layer-reduced form of
any term if SC-rooted pattern Ti-matching and Ti-equality is decidable for each
i = 1, . . . , n.

In Example 2, layer-reduced forms are computable by R-normalization.
Lemma 1 can again be applied inductively to rephrase Lemma2.

Lemma 3. Let t be a term such that its i-alien subterms are in layer-reduced
form. Then tπi =Ei

(t ↓)πi .

3.3 Frames in Combined Theories

Along the lines of Lemma 3, we present a new result which will be instrumen-
tal in proving the correctness of combination methods for knowledge problems
popular in protocol analysis, namely, the deduction and the static equivalence.
These problems are defined using the notion of frame to express the intruder
knowledge. A frame, φ = νñ.σ, consists of a finite set of restricted names, ñ, and
a substitution σ such that Ran(σ) contains only ground terms. This definition is
borrowed from the applied pi-calculus [2] and more insight behind the definition
is given is Sect. 4.

68 S. Erbatur et al.

We say that a frame φ = νñ.σ is in layer-reduced form if σ is in layer-
reduced form. Given a term t, St(t) = {t} ∪ ⋃

a∈Alien(t) St(a). For a set of
terms T , St(T) =

⋃
t∈T St(t) and fn(T) =

⋃
t∈T fn(t). For a substitution σ,

St(σ) = St(Ran(σ)). The set of terms T ∪ Ran(σ) is abbreviated into T � σ.

Definition 4. Let φ = νñ.σ be a frame, and t a ground term. We denote φ �E t
if there exists a term s such that sσ =E t and fn(s) ∩ ñ = ∅. The term s is
called a recipe of t in φ modulo E.

Abstraction constants are particular restricted names. When a constant
abstraction is performed to a get a pure problem, only finitely many terms are
abstracted and only finitely many fresh names are introduced. For sake of sim-
plicity, we assume that this finite set of abstraction constants is already included
in the set of restricted names (ñ) of the considered frame. Thanks to this assump-
tion, the i-abstraction of a frame can be defined without introducing new names
to be restricted: they are already restricted. Also, we can assume without loss
of generality that constants abstracting terms not in the knowledge problem are
not restricted. All these assumptions can be formalized as follows.

Assumption 2. Consider a finite set F of frames in layer-reduced form and
a finite set T of terms in layer-reduced form. Let Uσ = St(T � σ)\V for each
(νñ.σ) ∈ F and a bijection ρ from (

⋃
(νñ.σ)∈F Uσ)/ =E to a set of fresh constants.

We assume that each frame (νñ.σ) ∈ F is equipped with a constant abstraction
π with range C such that π(t ↓) = ρ([t]E) if t ∈ Uσ and ñ∩C = {ρ([t]E) | t ∈ Uσ}.

Assumption 2 is not restrictive. It clarifies the relationship between restricted
names ñ and constants C used by the constant abstraction.

Definition 5. Under Assumption 2 introducing F and T , let φ = νñ.σ be any
frame in F . The completion of φ is the frame φ∗ = νñ.σ∗ where

σ∗ = σ{χt �→ t | t ∈ St(T � σ) ∪ ñ, φ �E t, t /∈ Ran(σ)}

such that the fresh variables χt are bijectively mapped to the terms t.
The i-abstraction of φ∗ is the frame φπi∗ = νñ.σπi∗ where

σπi∗ = {x �→ (xσ∗)πi | x ∈ Dom(σ∗)}.

The completion of a frame always exists. We will see in Sect. 4.1 how to
compute it.

Example 6. Consider the theory E introduced in Example 1, T = ∅ and the
frame φ = νñ.σ where ñ\C = {s1, k1, k2} and σ = {x1 �→ 〈s2, k1〉, x2 �→
enc(s1, k1), x3 �→ h(s2, k2)}. Note that only the names s1, k1, and k2 are
restricted but not s2. We have St(σ) = {〈s2, k1〉, enc(s1, k1), h(s2, k2)} and
Ran(σ∗)\Ran(σ) includes s1 and k1, since we have dec(x2, snd(x1))σ =E s1

and snd(x1)σ =E k1. Later, we will be able to check that φ ��E k2.

Notions of Knowledge in Combinations of Theories Sharing Constructors 69

Theorem 1. Let φ∗ = νñ.σ∗ be the completion of any frame φ = νñ.σ following
Assumption 2. For any term t such that fn(t) ∩ ñ = ∅, there exists an i-pure
term ti such that fn(ti) ∩ ñ = ∅ and ((tσ∗) ↓)πi =Ei

tiσ
πi∗ .

Proof. Proof by induction on the theory height of t, formally defined as follows:

– ht(t) = 1 + maxa∈Alieni(t) ht(a) if t is Σi-rooted,
– ht(t) = 1 + maxa∈Alienj(t) ht(a) if t is Σj\Σi-rooted for j �= i.

If t is i-pure, then ((tσ∗) ↓)πi =Ei
(tσ∗)πi by Lemma 2, where (tσ∗)πi = tσπi∗ . In

that case, we can define ti = t. Let us now assume that t is not i-pure.

(1) Consider the case t is a Σi-rooted term Ci[a1, . . . , an] where a1, . . . an are
the i-aliens of t. Let (tσ∗)↓ be the term obtained from tσ∗ by replacing its
i-alien subterms by their normal forms. We have:

((tσ∗) ↓)πi =Ei
((tσ∗)↓)πi(by Lemma 2)

= Ci[((a1σ∗) ↓)πi , . . . , ((anσ∗) ↓)πi]
=Ei

Ci[a1,iσ
πi∗ , . . . , an,iσ

πi∗](by induction hypothesis)
= (Ci[a1,i, . . . , an,i])σπi∗

where Ci[a1,i, . . . , an,i] is an i-pure term satisfying the name restriction.
(2) Consider the case t is Σj\Σi-rooted for j �= i.

– If (tσ∗) ↓ is Σi-rooted, then there exists some Σi-rooted term t′ such
that (tσ∗) ↓ is equal to (t′σ∗) ↓, ht(t′) ≤ ht(t) and t′ satisfies the name
restriction. Then, the rest of the proof follows the case (1).

– If (tσ∗) ↓ is Σj\Σi-rooted, then ti is given as follows:
(i) if (tσ∗) ↓= s ↓ with s ∈ St(T � σ) ∪ ñ, then φ �E s and there exists

some x ∈ Dom(σ∗) such that xσ∗ = s, and we define ti = x;
(ii) otherwise, ti is defined as the abstraction constant ((tσ∗) ↓)πi . This

fresh constant cannot occur in ñ: otherwise, it would mean that (i) is
satisfied. ��

4 Application to Two Notions of Knowledge in Protocols

We now apply the results from Sect. 3 to two questions on knowledge in protocol
analysis; deduction and static equivalence. We begin by reviewing some back-
ground material on protocols and how knowledge can be represented in their
analysis. As mentioned in Sect. 3, the applied pi calculus and frames are used to
model attacker knowledge [2]. In this model, the set of messages or terms which
the attacker knows, and which could have been obtained from observing one or
more protocol sessions, are the set of terms in Ran(σ) of the frame φ = νñ.σ.
This allows us to not only keep the set of messages known by the attacker but
also the variables in the domain of σ allow for the consideration of each term
and the tracking of the order of transmission of each term. That is, it repre-
sents the order in which these messages/terms were obtained and transmitted.

70 S. Erbatur et al.

We also need to model such cryptographic concepts as nonces, keys, and publicly
known values. We do this by using names, which are essentially free constants.
Here also, we need to track the names which the attacker knows, such as public
values, and the names which the attacker does not know, such as freshly gener-
ated nonces. ñ consists of a finite set of restricted names. The intuition is that
these names represent freshly generated names which remain secret from the
attacker.

4.1 Deduction Problem

The first combination problem we consider is the problem of deduction. That
is, given a frame φ, representing the knowledge of the attacker, can a ground
term M be deduced from φ? We denote the deduction of M from φ modulo E
by φ �E M . Deduction is axiomatized by the inference system given in Fig. 1.

νñ.σ �E M
if ∃x ∈ Dom(σ) s.t. xσ = M

νñ.σ �E s
if s ∈ ñ

φ �E M1, . . . , φ �E Mk

φ �E f(M1, . . . , Mk)
if f ∈ Σ

φ �E M

φ �E M ′ M =E M ′

Fig. 1. Deduction axioms

However, a useful characterization of deduction has been given in [1], relating
�E to �E (introduced in Definition 4).

Lemma 4 [1]. φ �E M iff φ �E M .

Lemma 5. Under Assumption 2 introducing F and T , let φ = νñ.σ be any
frame in F . For any M ∈ St(T � σ) ∪ ñ, we have φ �E M if and only if
(φ∗)π1 �E1 Mπ1 or (φ∗)π2 �E2 Mπ2 .

Proof. The if-direction is simple. Let us focus on the only-if direction. By defini-
tion of φ∗, we have that φ �E M if and only if φ∗ �E M . Suppose t is a Σi-rooted
term for some i ∈ {1, 2} such that tσ∗ =E M with fn(t) ∩ ñ = ∅. By Lemma 3
and Theorem 1, we get an Ei-equality tiσ

πi∗ =Ei
((tσ∗) ↓)πi = (M ↓)πi =Ei

Mπi

where tiσ
πi∗ is an i-pure term. By construction, the fresh constants introduced

in ti are not restricted, i.e. fn(ti) ∩ ñ = ∅. ��
Notice that Lemma 5 now provides a modular method for computing σ∗.

Notions of Knowledge in Combinations of Theories Sharing Constructors 71

Corollary 1 (Computing σ∗). Assume the deduction problem modulo Ei is
decidable for each i = 1, 2. Under Assumption 2 introducing F and T , let
φ = νñ.σ be any frame in F . The completion φ∗ is computable and the range of
σ∗ is the set S such that Ran(σ) ⊆ S ⊆ St(T � σ) ∪ ñ and M ∈ S if and only if
(νñ.S)π1 �E1 Mπ1 or (νñ.S)π2 �E2 Mπ2 .

Proof. If M ∈ St(T � σ) ∪ ñ, then Lemma 5 applies: we have M ∈ Ran(σ∗) iff
φ �E M iff (φ∗)πi �Ei

Mπi for some i = 1, 2, where φ∗ = νñ.Ran(σ∗). ��
Example 7 (Example 1 continued). Assume t1 = 〈enc(h(a, b), c), enc(enc(c, d),
c)〉, t2 = 〈h(h(a, b), c), h(enc(c, d), c)〉 and t3 = 〈enc(h(a, b), a), enc(enc(c, d), a)〉.
Let T = {t1, t2, t3} and the frame φ = νñ.σ where ñ\C = {a, b, c} and σ = {X �→
〈h(a, b), enc(c, d)〉}. The completion φ∗ is νñ.σ{X1 �→ c,X2 �→ h(a, b),X3 �→
enc(c, d),X4 �→ t1,X5 �→ t2}.

Directly from Lemma 5, we obtain our main result on the deduction problem.

Theorem 2. Let E = E1 ∪ E2 be a constructor-sharing theory following
Assumption 1. The deduction problem modulo E is decidable if the deduction
problem modulo Ei is decidable for each i = 1, 2.

By applying Theorem2, the deduction problem is decidable in a modular
way for the combined theories given in Examples 1 and 4.

Example 8 (Example 7 continued). The following terms are deducible in φ mod-
ulo E since they occur in Ran(φ∗): c, with the recipe dec(snd(X), d); t1, with
the recipe enc(X, dec(snd(X), d)); t2, with the recipe h(X, dec(snd(X), d)). The
term t3 occurs in T\Ran(φ∗) and so φ ��E t3.

4.2 Static Equivalence

Another form of knowledge is the ability to tell if two frames are statically
equivalent modulo E, sometimes also called indistiguishability. Two terms s and t
are equal in a frame φ = νñ.σ modulo an equational theory E, denoted (s =E t)φ,
iff sσ =E tσ, and ñ ∩ (fn(s) ∪ fn(t)) = ∅. Two frames φ = νñ.σ and ψ = νñ.τ
are statically equivalent modulo E, denoted as φ ≈E ψ, if Dom(σ) = Dom(τ)
and for all terms s and t, we have (s =E t)φ iff (s =E t)ψ.

Given an equational Σ-theory E and a frame φ, EqE(φ) denotes the set of
Σ-equalities s = t such that (s =E t)φ. Thanks to the above notation, given
φ = νñ.σ and ψ = νñ.τ , we have φ ≈E ψ if and only if Dom(σ) = Dom(τ) and
EqE(φ) = EqE(ψ).

Definition 6. Let φ = νñ.σ be any frame following Assumption 2 (with T = ∅).
A pair (s = t, φ) is an equality candidate of φ if (fn(s) ∪ fn(t)) ∩ ñ = ∅. An
equality candidate (si = ti, φi) is i-pure if si, ti and φi are i-pure.

Let φ∗ = νñ.σ∗ be the completion of φ. An equality candidate (s = t, φ∗) is
an E-instance of an i-pure equality candidate (si = ti, φ

πi∗) if there exists some
substitution μ such that sσ∗ =E (siσ∗)μ and tσ∗ =E (tiσ∗)μ.

72 S. Erbatur et al.

We now state the relationship between EqE(φ∗) and EqEi
(φπi∗). First, any

E-instance of any equality in EqEi
(φπi∗) leads to an equality in EqE(φ∗).

Lemma 6 (Soundness). If si = ti ∈ EqEi
(φπi∗), then for any E-instance

(s = t, φ∗) of (si = ti, φ
πi∗), we have s = t ∈ EqE(φ∗).

Conversely, any equality in EqE(φ∗) is the E-instance of some equality in
EqEi

(φπi∗):

Lemma 7 (Completeness). If s = t ∈ EqE(φ∗), then there exists si = ti ∈
EqEi

(φπi∗) such that (s = t, φ∗) is an E-instance of (si = ti, φ
πi∗).

Proof. if sσ∗ =E tσ∗, then (sσ∗) ↓= (tσ∗) ↓. By Theorem 1, we have for any
i = 1, 2, si(σ∗)πi =Ei

((sσ∗) ↓)πi = ((tσ∗) ↓)πi =Ei
ti(σ∗)πi where si and ti are

i-pure terms satisfying the name restriction. Moreover, we have si(σ∗)πiπ−1 =E

(siσ∗)π−1 =E sσ∗ and ti(σ∗)πiπ−1 =E (tiσ∗)π−1 =E tσ∗. Consequently, (s =
t, φ∗) is an E-instance of (si = ti, φ

πi∗), where si = ti ∈ EqEi
(φπi∗). ��

Lemma 8. Let φ = νñ.σ and ψ = νñ.τ be any two frames following Assump-
tion 2 (with T = ∅). We have φ∗ ≈E ψ∗ iff (φ∗)π1 ≈E1 (ψ∗)π1 and (φ∗)π2 ≈E2

(ψ∗)π2 .

Proof. Follows from Lemmas 6 and 7. ��
To reduce any static equivalence problem φ ≈E ψ into a static equivalence

problem of completed frames φ∗ ≈E ψ∗, we still need an additional form of frame
extension introducing recipes [13].

Definition 7. Let φ = νñ.σ be a frame. A term t is compatible with φ if fn(t)∩
ñ = ∅ and tσ is ground. Let Π be a set of terms compatible with φ. The Π-
extension of φ is the frame Πφ = νñ.{χt �→ t | t ∈ Π}σ.

Given a term d E-deducible in φ, rcpφ(d) denotes an admissible recipe of
d in φ. By extension, given a set D of E-deducible terms in φ, Rcpφ(D) =
{rcpφ(d) | d ∈ D}. If the deduction problem modulo E is decidable, then it is
always possible to compute an admissible recipe of d. A brute force method
consists in enumerating all possible admissible terms until a recipe r satisfy-
ing rσ =E d is found. It is also possible to proceed in a modular way. If the
decision procedures known for the deduction problems modulo E1 and E2 are
indeed “recipe-producing”, then the combination method in Sect. 4.1 can easily
be adapted to get a “recipe-producing” decision procedure for the deduction
problem modulo E = E1 ∪ E2.

In a way similar to [13], the recipes are used to define a set Π of admissible
terms. Then, two new extended frames respectively E-equal to Πφ and Πψ are
considered. Formally, two frames φ = νñ.σ and φ′ = νñ.σ′ are said to be E-equal,
denoted by φ =E φ′, if Dom(σ) = Dom(σ′) and xσ =E xσ′ for any x ∈ Dom(σ).

Notions of Knowledge in Combinations of Theories Sharing Constructors 73

Lemma 9. Let φ = νñ.σ, ψ = νñ.τ , φ̄ =E Πφ, ψ̄ =E Πψ be any frames
following Assumption 2 (with T = ∅), where

Π = St(Rcpφ(Ran(σ∗)\Ran(σ)) ∪ Rcpψ(Ran(τ∗)\Ran(τ)))

Then, we have (i) (φ̄)∗ = φ̄ and (ψ̄)∗ = ψ̄; (ii) φ ≈E ψ if and only if φ̄ ≈E ψ̄.

Proof. Let us first prove that (φ̄)∗ = φ̄. The set of terms St(σ̄) ∪ ñ is a superset
of St(σ) ∪ ñ:

– For any t ∈ St(σ) ∪ ñ, we have t ∈ Ran(σ̄∗) implies t ∈ Ran(σ∗) and then
t ∈ Ran(σ̄);

– For any other term t̄ ∈ St(σ̄), t̄ ∈ Ran(σ̄) since St(Π) = Π.

Hence, Ran(σ̄∗) ⊆ Ran(σ̄) and so (φ̄)∗ = φ̄. Similarly, we prove that (ψ̄)∗ = ψ̄.
Let us now prove that φ ≈E ψ if and only if φ̄ ≈E ψ̄:

– (If direction) If φ �≈E ψ, then there exists s = t such that s = t ∈
Eq(φ), s = t /∈ EqE(ψ) or s = t /∈ Eq(φ), s = t ∈ EqE(ψ), where
fv(s = t) ∩ (Dom(σ̄)\Dom(σ)) = ∅.

– (Only-if direction) Assume φ ≈E ψ. For any s = t ∈ EqE(φ̄), there exist,
by definition of φ̄, two terms s′, t′ such that s′σ =E sσ̄ =E tσ̄ =E t′σ and
(fn(s′) ∪ fn(t′)) ∩ ñ = ∅. Hence s′ = t′ ∈ EqE(φ) and so, by assumption,
s′ = t′ ∈ EqE(ψ). Eventually, we have sτ̄ =E s′τ =E t′τ =E tτ̄ , which means
that s = t ∈ EqE(ψ̄). ��

Theorem 3. Let E = E1 ∪ E2 be a constructor-sharing theory following
Assumption 1. The static equivalence modulo E and the deduction problem mod-
ulo E are both decidable if the static equivalence modulo Ei and the deduction
problem modulo Ei are both decidable for each i = 1, 2.

Proof. By Lemmas 8, 9 and Theorem 2. ��
Example 9 (Example 1 continued). In [1], the authors introduce locally stable
theories and locally finite theories, where respectively the deduction problem
and the static equivalence are proven to be decidable. As an example, the theory
E1 is shown in [1] to be both locally stable and locally finite. By reusing the
same proof technique as in [1], we can show in a similar way that E2 is both
locally stable and locally finite. Then Theorem3 allows us to get the decidability
of the static equivalence and the deduction problem modulo E = E1 ∪ E2.

Example 10 (Example 4 continued). The decidability of the static equivalence
and the deduction problem modulo E = E1 ∪ E2 follows from Theorem 3,
since the static equivalence and the deduction problem are decidable modulo
E1 (because E1 is subterm convergent) and modulo E2 [1].

Example 11 (Example 1 continued). Let T = ∅, φ = νñ.σ, ψ = νñ.τ where
ñ\C = {k1, k2}, σ = {x1 �→ 〈enc(h(a, a), k1), h(c, c)〉, x2 �→ k2} and τ =
{x1 �→ 〈enc(h(b, b), k1), h(c, c)〉, x2 �→ k2}. By computing the completions,

74 S. Erbatur et al.

we have φ∗ = νñ.σ{x3 �→ enc(h(a, a), k1), x4 �→ h(c, c)} and ψ∗ = νñ.τ{x′
3 �→

enc(h(b, b), k1), x4 �→ h(c, c)}. Consider the set of admissible recipes Π =
{fst(x1), snd(x1)}. By Definition 7, we use fresh variables, say x3, x4, to denote
the respective instances of fst(x1), snd(x1) in Πφ and in Πψ. Thus, we have
φ̄ = νñ.σ{x3 �→ enc(h(a, a), k1), x4 �→ h(c, c)} =E Πφ and ψ̄ = νñ.τ{x3 �→
enc(h(b, b), k1), x4 �→ h(c, c)} =E Πψ. Notice that given φ̄ and ψ̄ there is
still no recipe for which subterms of h(a, a) and h(b, b) can be moved to the
root of a term modulo E. Therefore, one would need to use the subterms
enc(h(a, a), k1) and enc(h(b, b), k1) to distinguish two terms s and t such that
s = t ∈ EqE(φ̄) but s = t /∈ EqE(ψ̄). However, this would violate the restriction
that ñ ∩ (fn(t) ∪ fn(s)) = ∅. Hence, φ̄ ≈E ψ̄, and by Lemma 9, φ ≈E ψ. One
can verify that (φ̄)π1 ≈E1 (ψ̄)π1 and (φ̄)π2 ≈E2 (ψ̄)π2 , where

(φ̄)π1 = νñ.{x1 �→ 〈enc(a′, k1), c′〉, x2 �→ k2, x3 �→ enc(a′, k1), x4 �→ c′}
(ψ̄)π1 = νñ.{x1 �→ 〈enc(b′, k1), c′〉, x2 �→ k2, x3 �→ enc(b′, k1), x4 �→ c′}
(φ̄)π2 = νñ.{x1 �→ 〈ea, h(c, c)〉, x2 �→ k2, x3 �→ ea, x4 �→ h(c, c)}
(ψ̄)π2 = νñ.{x1 �→ 〈eb, h(c, c)〉, x2 �→ k2, x3 �→ eb, x4 �→ h(c, c)}.

Now consider a small modification to the frames. Let φ = νñ.σ, ψ = νñ.τ
such that σ = {x1 �→ 〈enc(h(a, a), k1), h(c, c)〉, x2 �→ k1} and τ = {x1 �→
〈enc(h(b, b), k1), h(c, c)〉, x2 �→ k1}. Now it seems to be the same situation as
above. However, φ∗ = νñ.σ{x3 �→ enc(h(a, a), k1), x4 �→ h(c, c), x5 �→ h(a, a)}
and ψ∗ = νñ.τ{x′

3 �→ enc(h(b, b), k1), x4 �→ h(c, c), x′
5 �→ h(b, b)}. The set

of admissible recipes is Π = {fst(x1), snd(x1), dec(fst(x1), x2)}. By Defini-
tion 7, we use fresh variables, say x3, x4, x5, to denote the respective instances of
fst(x1), snd(x1), dec(fst(x1), x2) in Πφ and in Πψ. Then, φ̄ = νñ.σ1{x3 �→
enc(h(a, a), k1), x4 �→ h(c, c), x5 �→ h(a, a)} =E Πφ and ψ̄ = νñ.σ2{x3 �→
enc(h(b, b), k1), x4 �→ h(c, c), x5 �→ h(b, b)} =E Πψ. Notice, if s = x5 and
t = h(a, a), then s = t ∈ EqE(φ̄) and s = t /∈ EqE(ψ̄). Hence, φ̄ �≈E ψ̄,
and by Lemma 9, φ �≈E ψ. One can verify that (φ̄)π2 �≈E2 (ψ̄)π2 , where

(φ̄)π2 = νñ.{x1 �→ 〈ea, h(c, c)〉, x2 �→ k1, x3 �→ ea, x4 �→ h(c, c), x5 �→ h(a, a)}
(ψ̄)π2 = νñ.{x1 �→ 〈eb, h(c, c)〉, x2 �→ k1, x3 �→ eb, x4 �→ h(c, c), x5 �→ h(b, b)}.

5 Conclusion

This paper presents new non-disjoint combination results for both deduction
and static equivalence. That is, if the deduction and static equivalence prob-
lems are decidable for two constructor sharing theories E1 and E2 (following
Assumption 1), then they are decidable for the theory E1 ∪ E2. The procedure
does not, however, require such properties as locally stable or locally finite [1].
While these are very useful for both obtaining decision procedures and combi-
nation (i.e., check for local stability in E1 ∪ E2), our approach is applicable to
theories which may not have such properties.

This new approach requires that the frames are extended with some finitely
many deducible (sub)terms. For the deduction problem, the notion of comple-
tion is sufficient. For the static equivalence, another form of frame extension,

Notions of Knowledge in Combinations of Theories Sharing Constructors 75

introducing recipes, is required to get a modular decision procedure. Thus, it
nicely illustrates some of the differences between the two problems.

A natural future work is to study how we could move beyond the sharing of
absolutely free constructors, e.g., to allow Associative-Commutative construc-
tors. One possible approach we are investigating is related to our work on hier-
archical combination [18].

Acknowledgments. We would like to thank Véronique Cortier and Steve Kremer for
the thoughtful comments and discussions.

References

1. Abadi, M., Cortier, V.: Deciding knowledge in security protocols under equational
theories. Theoret. Comput. Sci. 367(1–2), 2–32 (2006)

2. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2001, pp. 104–115. ACM, New York (2001)

3. Armando, A., et al.: The AVISPA tool for the automated validation of internet
security protocols and applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV
2005. LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005). doi:10.1007/
11513988 27

4. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

5. Baader, F., Schulz, K.U.: Unification in the union of disjoint equational theories:
combining decision procedures. J. Symb. Comput. 21(2), 211–243 (1996)

6. Baader, F., Tinelli, C.: Deciding the word problem in the union of equational
theories. Inf. Comput. 178(2), 346–390 (2002)

7. Baudet, M., Cortier, V., Delaune, S.: YAPA: a generic tool for computing intruder
knowledge. ACM Trans. Comput. Log. 14(1), 4 (2013)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules.
In: 14th IEEE Computer Security Foundations Workshop (CSFW-14 2001), 11–13
June 2001, Cape Breton, Nova Scotia, Canada, pp. 82–96. IEEE Computer Society
(2001)

9. Chadha, R., Cheval, V., Ciobâcă, Ş., Kremer, S.: Automated verification of equiv-
alence properties of cryptographic protocols. ACM Trans. Comput. Log. 17(4),
23:1–23:32 (2016). https://hal.inria.fr

10. Chevalier, Y., Rusinowitch, M.: Hierarchical combination of intruder theories. Inf.
Comput. 206(2–4), 352–377 (2008)

11. Comon-Lundh, H., Treinen, R.: Easy intruder deductions. In: Dershowitz, N. (ed.)
Verification: Theory and Practice. LNCS, vol. 2772, pp. 225–242. Springer, Heidel-
berg (2003). doi:10.1007/978-3-540-39910-0 10

12. Conchinha, B., Basin, D.A., Caleiro, C.: FAST: an efficient decision procedure
for deduction and static equivalence. In: Schmidt-Schauß, M. (ed.) Proceedings
of RTA 2011, Novi Sad, Serbia. LIPIcs, vol. 10, pp. 11–20. Schloss Dagstuhl -
Leibniz-Zentrum fuer Informatik (2011)

13. Cortier, V., Delaune, S.: Decidability and combination results for two notions of
knowledge in security protocols. J. Autom. Reason. 48(4), 441–487 (2010)

http://dx.doi.org/10.1007/11513988_27
http://dx.doi.org/10.1007/11513988_27
https://hal.inria.fr
http://dx.doi.org/10.1007/978-3-540-39910-0_10

76 S. Erbatur et al.

14. Cremers, C.J.F.: The scyther tool: verification, falsification, and analysis of security
protocols. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 414–418.
Springer, Heidelberg (2008). doi:10.1007/978-3-540-70545-1 38

15. Ciobâcă, Ş., Delaune, S., Kremer, S.: Computing knowledge in security protocols
under convergent equational theories. J. Autom. Reason. 48(2), 219–262 (2012)

16. Dolev, D., Yao, A.C.: On the security of public key protocols (extended abstract).
In: 22nd Annual Symposium on Foundations of Computer Science, 28–30 October
1981, Nashville, Tennessee, USA, pp. 350–357. IEEE Computer Society (1981)

17. Domenjoud, E., Klay, F., Ringeissen, C.: Combination techniques for non-disjoint
equational theories. In: Bundy, A. (ed.) CADE 1994. LNCS, vol. 814, pp. 267–281.
Springer, Heidelberg (1994). doi:10.1007/3-540-58156-1 19

18. Erbatur, S., Kapur, D., Marshall, A.M., Narendran, P., Ringeissen, C.: Hierarchical
combination. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
249–266. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 17

19. Escobar, S., Meadows, C., Meseguer, J.: Maude-NPA: cryptographic protocol
analysis modulo equational properties. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007–2009. LNCS, vol. 5705, pp. 1–50. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-03829-7 1

20. Millen, J., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of the 8th ACM Conference on Computer and
Communications Security, CCS 2001, pp. 166–175. ACM, New York (2001)

21. Mödersheim, S., Viganò, L.: The open-source fixed-point model checker for sym-
bolic analysis of security protocols. In: Aldini, A., Barthe, G., Gorrieri, R. (eds.)
FOSAD 2007–2009. LNCS, vol. 5705, pp. 166–194. Springer, Heidelberg (2009).
doi:10.1007/978-3-642-03829-7 6

22. Paulson, L.C.: The inductive approach to verifying cryptographic protocols. Com-
put. Secur. 6, 85–128 (1998)

23. Schmidt, B., Meier, S., Cremers, C.J.F., Basin, D.A.: Automated analysis of Diffie-
Hellman protocols and advanced security properties. In: Chong, S. (ed.) 25th IEEE
Computer Security Foundations Symposium, CSF 2012, 25–27 June 2012, Cam-
bridge, MA, USA, pp. 78–94. IEEE Computer Society (2012)

24. Schmidt-Schauß, M.: Unification in a combination of arbitrary disjoint equational
theories. J. Symb. Comput. 8, 51–99 (1989)

25. Tiu, A., Goré, R., Dawson, J.E.: A proof theoretic analysis of intruder theories.
Log. Methods Comput. Sci. 6(3:12), 1–37 (2010)

26. Turuani, M.: The CL-Atse protocol analyser. In: Pfenning, F. (ed.) RTA
2006. LNCS, vol. 4098, pp. 277–286. Springer, Heidelberg (2006). doi:10.1007/
11805618 21

http://dx.doi.org/10.1007/978-3-540-70545-1_38
http://dx.doi.org/10.1007/3-540-58156-1_19
http://dx.doi.org/10.1007/978-3-642-38574-2_17
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_1
http://dx.doi.org/10.1007/978-3-642-03829-7_6
http://dx.doi.org/10.1007/11805618_21
http://dx.doi.org/10.1007/11805618_21

On the Combination
of the Bernays–Schönfinkel–Ramsey Fragment

with Simple Linear Integer Arithmetic

Matthias Horbach1(B), Marco Voigt1,2(B), and Christoph Weidenbach1(B)

1 Max Planck Institute for Informatics,
Saarland Informatics Campus, Saarbrücken, Germany

matthiashorbach@gmx.de
2 Saarbrücken Graduate School of Computer Science,
Saarland Informatics Campus, Saarbrücken, Germany

{mvoigt,weidenbach}@mpi-inf.mpg.de

Abstract. In general, first-order predicate logic extended with linear
integer arithmetic is undecidable. We show that the Bernays-Schönfinkel-
Ramsey fragment (∃∗∀∗-sentences) extended with a restricted form of
linear integer arithmetic is decidable via finite ground instantiation. The
identified ground instances can be employed to restrict the search space
of existing automated reasoning procedures considerably, e.g., when rea-
soning about quantified properties of array data structures formalized
in Bradley, Manna, and Sipma’s array property fragment. Typically,
decision procedures for the array property fragment are based on an
exhaustive instantiation of universally quantified array indices with all
the ground index terms that occur in the formula at hand. Our results
reveal that one can get along with significantly fewer instances.

Keywords: Bernays–Schönfinkel–Ramsey fragment · Linear integer
arithmetic · Complete instantiation

1 Introduction

The Bernays-Schönfinkel-Ramsey (BSR) fragment comprises exactly the first-
order logic prenex sentences with the ∃∗∀∗ quantifier prefix, resulting in a CNF
where all occurring function symbols are constants. Formulas may contain equal-
ity. Satisfiability of the BSR fragment is decidable and NExpTime-complete [19].
Its extension with linear arithmetic is undecidable [10,11,13,23].

We prove decidability of the restriction to arithmetic constraints of the form
s � t, x � t, where � is one of the standard relations <,≤,=, �=,≥, > and s, t are
ground arithmetic terms, and x � y, where � stands for ≤, =, or ≥. Underlying
the result is the observation that similar to the finite model property of BSR,
only finitely many instances of universally quantified clauses with arithmetic
constraints need to be considered. Our construction is motivated by results from
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 77–94, 2017.
DOI: 10.1007/978-3-319-63046-5 6

78 M. Horbach et al.

quantifier elimination [20] and hierarchic superposition [3–5,11,18]. In particu-
lar, the insights gained from the quantifier elimination side lead to instantiation
methods that can result in significantly fewer instances than known, more naive
approaches for comparable logic fragments generate, such as the original instan-
tiation approach for the array property fragment [6,8]. For example, consider the
following two clauses (∧ and ∨ bind stronger than →)

x2 �= 5 ∧ R(x1) → Q(u1, x2)
y1 < 7 ∧ y2 ≤ 2 → Q(d, y2) ∨ R(y1)

where the variableu1 ranges over a freely selectable domain,xi, yi are variables over
the integers, and the constant d addresses an element of the same domain that u1

ranges over. All occurring variables are implicitly universally quantified. Our main
result reveals that this clause set is satisfiable if and only if a finite set of ground
instances is satisfiable in which (i) u1 is being instantiated with the constant d,
(ii) x2 and y2 are being instantiated with the (abstract) integer values 5 + 1 and
−∞, and (iii) x1 and y1 are being instantiated with −∞ only. The instantiation
does not need to consider the constraints y1 < 7, y2 ≤ 2, because it is sufficient to
explore the integers either from −∞ upwards—in this case upper bounds on inte-
ger variables can be ignored—or from +∞ downwards—ignoring lower bounds—,
as is similarly done in linear quantifier elimination over the reals [20]. Moreover,
instantiation does not need to consider the value 5+ 1 for x1 and y1, motivated by
the fact that the argument x1 of R is not affected by the constraint x2 �= 5.

The abstract values −∞ and +∞ are represented by Skolem constants over
the integers, together with defining axioms. For the example, we introduce
the fresh Skolem constant c−∞ to represent −∞ (a “sufficiently small” value)
together with the axiom c−∞ < 2, where 2 is the smallest occurring constant.
Eventually, we obtain the ground clause set

5 + 1 �= 5 ∧ R(c−∞) → Q(d, 5 + 1)
c−∞ �= 5 ∧ R(c−∞) → Q(d, c−∞)

c−∞ < 7 ∧ 5 + 1 ≤ 2 → Q(d, 5 + 1) ∨ R(c−∞)
c−∞ < 7 ∧ c−∞ ≤ 2 → Q(d, c−∞) ∨ R(c−∞)

c−∞ < 2
which has the model A with cA

−∞ = 1, RA = {1}, QA = {(d, 6), (d, 1)}.
After developing our instantiation methodology in Sect. 3, we show in Sect. 4

that our instantiation methods are also compatible with uninterpreted functions
and additional background theories under certain syntactic restrictions. These
results are based on an (un)satifiability-preserving embedding of uninterpreted
functions into BSR clauses. There are interesting known logic fragments that fall
into this syntactic category: many-sorted clause sets over stratified vocabularies
[1,16], the array property fragment [8], and the finite essentially uninterpreted
fragment, possibly extended with simple integer arithmetic [12]. Consequently,
reasoning procedures for these fragments that employ forms of instantiation may
benefit from our findings. The paper ends with a discussion in Sect. 5, where we
consider the impact of our results on automated reasoning procedures for our
and similar logic fragments and outline possible further improvements.

Due to space limitations, we mostly resort to sketches of proofs. The inter-
ested reader is referred to the extended version of the present paper [14].

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 79

2 Preliminaries

Hierarchic combinations of first-order logic with background theories build upon
sorted logic with equality [4,5]. We instantiate this framework with the BSR
fragment and linear arithmetic over the integers as the base theory. The base
sort Z shall always be interpreted by the integers Z. For simplicity, we restrict
our considerations to a single free sort S, which may be freely interpreted as
some nonempty domain, as usual.

We denote by VZ a countably infinite set of base-sort variables. Linear integer
arithmetic (LIA) terms are build from integer constants 0, 1,−1, 2,−2, . . ., the
operators +,−, and the variables from VZ . We moreover allow base-sort constant
symbols whose values have to be determined by an interpretation (Skolem con-
stants). They can be conceived as existentially quantified. The LIA constraints
we consider are of the form s � t, where � ∈ {<,≤,=, �=,≥, >} and s and t are
either LIA variables or ground LIA terms.

In order to hierarchically extend the base theory by the BSR fragment, we
introduce the free sort S, a countably infinite set VS of free-sort variables, a finite
set Ω of free (uninterpreted) constant symbols of sort S and a finite set Π of
free predicate symbols equipped with sort information. Note that every predicate
symbol in Π has a finite, nonnegative arity and can have a mixed sort over the
two sorts Z and S, e.g. P : Z × S × Z. We use the symbol ≈ to denote the
built-in equality predicate on S. To avoid confusion, we tacitly assume that no
constant or predicate symbol is overloaded, i.e. they have a unique sort.

Definition 1 (BSRwith Simple Linear Integer Constraints–BSR(SLI)).
A BSR(SLI) clause has the form Λ ‖Γ → Δ, where Λ, Γ , Δ are multisets of atoms
satisfying the following conditions.

(i) Every atom in Λ is a LIA constraint of the form s � t or x � t or x � y where
s, t are ground, �∈{<,≤,=, �=,≥, >}, and � ∈{≤,=,≥},

(ii) Every atom in Γ and Δ is either an equation s ≈ s′ with s, s′ ∈ Ω ∪ VS , or a
non-equational atom P (s1, . . . , sm), where every si of sortZ must be a variable
x ∈ VZ , and every si of sort S may be a variable u ∈ VS or a constant symbol
c ∈ Ω.

We omit the empty multiset left of “→” and denote it by � right of “→”
(where � at the same time stands for falsity). The clause notation separates
arithmetic constraints from the free (also: uninterpreted) part. We use the ver-
tical double bar “‖” to indicate this separation syntactically. Intuitively, clauses
Λ ‖Γ → Δ can be read as

(∧
Λ ∧

∧
Γ

)
→

∨
Δ, i.e. the multisets Λ, Γ stand for

conjunctions of atoms and Δ stands for a disjunction of atoms.
Requiring the free part Γ → Δ of clauses to not contain any base-sort terms

apart from variables does not limit expressiveness. Every base-sort term t �∈ VZ
in the free part can safely be replaced by a fresh base-sort variable xt when an
atomic constraint xt = t is added to the constraint part of the clause (a process
known as purification or abstraction [4,18]).

80 M. Horbach et al.

A hierarchic interpretation is an algebra A which interprets the base sort Z
as ZA = Z, assigns integer values to all occurring base-sort Skolem constants,
and interprets all LIA terms and constraints in the standard way. Moreover, A
comprises a nonempty domain SA, assigns to each free-sort constant symbol c
in Ω a domain element cA ∈ SA, and interprets every sorted predicate symbol
P :ξ1 × . . . × ξm in Π by a set PA ⊆ ξA

1 × . . . × ξA
m, as usual.

Given a hierarchic interpretation A and a sort-respecting variable assignment
β : VZ∪VS → ZA∪SA, we write A(β)(s) to address the value of the term s under
A with respect to the variable assignment β. The variables occurring in clauses
are implicitly universally quantified. Therefore, given a clause C, we call A a
hierarchic model of C, denoted A |= C, if and only if A, β |= C holds for every
variable assignment β. For clause sets N , A |= N holds if and only if A |= C
holds true for every clause C ∈ N . We call a clause C (a clause set N) satisfiable
if and only if there exists a hierarchic model A of C (of N). Two clauses C,D
(clause sets N,M) are equisatisfiable if and only if C (N) is satisfiable whenever
D (M) is satisfiable and vice versa.

Given a BSR(SLI) clause C, consts(C) denotes the set of all constant symbols
occurring in C. The set bconsts(N) (fconsts(N)) is the restriction of consts(N)
to base-sort (free-sort) constant symbols. By vars(C) we denote the set of all
variables occurring in C. Similar notation is used for other syntactic objects.

We define substitutions σ in the standard way as sort-respecting mappings
from variables to terms. The restriction of the domain of a substitution σ to
a set V of variables is denoted by σ|V and is defined such that vσ|V := vσ
for every v ∈ V and vσ|V = v for every v �∈ V . While the application of a
substitution σ to terms, atoms and multisets thereof is defined as usual, we need
to be more specific for clauses. Consider a BSR(SLI) clause C := Λ ‖Γ → Δ and
let x1, . . . , xk denote all base-sort variables occurring in C for which xiσ �= xi.
We then set Cσ := Λσ, x1 = x1σ, . . . , xk = xkσ ‖Γσ|VS → Δσ|VS .

A term, atom, etc. is called ground, if it does not contain any variables. A
BSR(SLI) clause C is called essentially ground if it does not contain free-sort
variables and for every base-sort variable x occurring in C there is a constraint
x = t in C for some ground LIA term t. A clause set N is essentially ground if
all the clauses it contains are essentially ground.

Definition 2 (Normal Form of BSR(SLI) Clauses). A BSR(SLI) clause
Λ ‖Γ → Δ is in normal form if

(1) all non-ground atoms in Λ have the form x � c or x ≤ y (or their symmetric
variants) where c is an integer or Skolem constant and � ∈{≤,=,≥},

(2) all base-sort variables that occur in Λ also occur in Γ → Δ, and
(3) Γ does not contain any equation of the form u ≈ t.

A BSR(SLI) clause set N is in normal form if all clauses in N are in normal
form and pairwise variable disjoint. Moreover, we assume that N contains at
least one free-sort constant symbol.

For every BSR(SLI) clause set N there is an equisatisfiable BSR(SLI) clause
set N ′ in normal form. It can be constructed from N by straightforward

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 81

purification/abstraction methods [4,18] and a simple procedure for eliminating
existentially quantified variables in LIA constraints (see [14] for details).

3 Instantiation for BSR(SLI)

In this section, we present and prove our main technical result:

Theorem 3. Satisfiability of a finite BSR(SLI) clause set N is decidable.

In essence, one can show that N is equisatisfiable to a finite set of essentially
ground clauses (cf. Lemma 12). There are calculi, such as hierarchic superposition
[3–5,11,18] or DPLL(T) [21], that can decide satisfiability of ground clause sets.
Our decidability result for BSR(SLI) does not come as a surprise, given the
similarity to other logic fragments that are known to be decidable, such as the
array property fragment by Bradley, Manna, and Sipma [7,8] and Ge and de
Moura’s finite essentially uninterpreted fragment extended with simple integer
arithmetic constraints [12].

More important than the obtained decidability result is the instantiation
methodology that we employ, in particular for integer-sort variables. Typically,
decision procedures for the integer-indexed array property fragment are based
on an exhaustive instantiation of universally quantified array indices with all
the ground index terms that occur in the formula at hand (cf. the original app-
roach [6,8] and standard literature [7,17]). In more sophisticated approaches,
only a relevant portion of the occurring arithmetic terms is singled out before
instantiation [12].

Our methodology will also be based on a concept of relevant terms, deter-
mined by connections between the arguments of predicate symbols and instan-
tiation points that are propagated along these connections. This part of our
method is not specific for the integers but can be applied to the free part of
our language as well. For integer variables, we investigate additional criteria to
filter out unnecessary instances, inspired by the Loos–Weispfenning quantifier
elimination procedure [20]. We elaborate on this in Sects. 3.1, 3.2, and 3.3.

3.1 Instantiation of Integer Variables

We first summarize the overall approach for the instantiation of integer variables
in an intuitive way. To keep the informal exposition simple, we pretend that all
LIA terms are constants from Z. We even occasionally refer to the improper
values −∞ / +∞ —“sufficiently small/large” integers. A formal treatment with
proper definitions will follow.

Given a finite BSR(SLI) clause set N in normal form, we intend to partition
Z into a set P of finitely many subsets p ∈ P such that satisfiability of N
necessarily leads to the existence of a uniform hierarchic model.

Definition 4 (Uniform Interpretations). A hierarchic interpretation A is
uniform with respect to a partition P of the integers if and only if for every free
predicate symbol Q occurring in N , every part p ∈ P, and all integers r1, r2 ∈ p
we have 〈. . . , r1, . . .〉 ∈ QA if and only if 〈. . . , r2, . . .〉 ∈ QA.

82 M. Horbach et al.

As soon as we have found such a finite partition P, we pick one integer value
rp ∈ p as representative from each and every part p ∈ P. Given a clause C that
contains a base-sort variable x, and given constant symbols d1, . . . , dk whose val-
ues cover all these representatives, i.e. {dA

1 , . . . , dA
k } = {rp | p ∈ P}, we observe

A |= C if and only if A |=
{
C

[
x/di

] ∣
∣ 1 ≤ i ≤ k

}
.

This equivalence claims that we can transform universal quantification over the
integer domain into finite conjunction over all representatives of subsets in P.
Formulated differently, we can extrapolate a model for a universally quantified
clause set, if we can find a model of finitely many instances of this clause set.
The formal version of this statement is given in Lemma 12. Uniform hierarchic
models play a key role in its proof.

When we extract the partition P from the given clause set N , we exploit
three aspects to increase efficiency:

(E-i) We group argument positions of free predicate symbols in such a way
that the instantiation points relevant for these argument positions are
identical. This means the variables that are associated to these argument
positions, e.g. because they occur in such a place in some clause, need to
be instantiated only with terms that are relevant for the respective group
of argument positions. This is illustrated in Example 5.

(E-ii) Concerning the relevant integer constraints, i.e. the ones that produce
instantiation points, one can choose to either stick to lower bounds exclu-
sively, use −∞ as a default (the lowest possible lower bound), and ignore
upper bounds. Alternatively, one can focus on upper bounds, use +∞
as default, and ignore lower bounds. This idea goes back to the Loos–
Weispfenning quantifier elimination procedure over the reals [20]. Exam-
ple 8 gives some intuition.

(E-iii) The choice described under (E-ii) can be made independently for every
integer variable that is to be instantiated. See Examples 8 and 13.

Example 5. Consider the following clauses:
C1 := 1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2) ,
C2 := y3 ≤ 7, y1 ≤ y3 ‖ Q(y1, y2) → R(y3) ,
C3 := 6 ≤ z1 ‖ T (z1) → � .

The variables x1, x2, y1, y2, y3, and z1 are affected by the constraints in which
they occur explicitly. Technically, it is more suitable to speak of the argument
position 〈T, 1〉 instead of variables x1 and z1 that occur as the first argument of
the predicate symbol T in C1 and C3, respectively. Speaking in such terms, argu-
ment position 〈T, 1〉 is directly affected by the constraints 1 ≤ x1 and 6 ≤ z1,
argument position 〈Q, 1〉 is directly affected by 1 ≤ x1 and y1 ≤ y3, 〈Q, 2〉 is
affected by x2 ≤ 0, and, finally, 〈R, 1〉 is affected by y3 ≤ 7 and y1 ≤ y3. Besides
such direct effects, there are also indirect effects that have to be taken into
account. For example, the argument position 〈Q, 1〉 is indirectly affected by the
constraint 6 ≤ z1, because C1 establishes a connection between argument posi-
tions 〈T, 1〉 and 〈Q, 1〉 via the simultaneous occurrence of x1 in both argument
positions and 〈T, 1〉 is affected by 6 ≤ z1. This is witnessed by the fact that

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 83

C1 and C3 together logically entail the clause D := 6 ≤ x, y ≤ 0 ‖ → Q(x, y).
D can be obtained by a hierarchic superposition step from C1 and C3, for
instance. Another entailed clause is 6 ≤ z, z ≤ 7 ‖ → R(z), the (simplified)
result of hierarchically resolving D with C2. Hence, 〈R, 1〉 is affected by the con-
straints 6 ≤ z and z ≤ 7. Speaking in terms of argument positions, this effect
can be described as propagation of the lower bound 6 ≤ y1 from 〈Q, 1〉 to 〈R, 1〉
via the constraint y1 ≤ y3 in C2. ��

One lesson learned from the example is that argument positions can be connected
by variable occurrences or constraints of the form x ≤ y. Such links in a clause
set N are expressed by the relation ⇒N .

Definition 6 (Connections Between Argument Positions and Argu-
ment Position Closures). Let N be a BSR(SLI) clause set in normal form.
We define ⇒N to be the smallest preorder (i.e. a reflexive and transitive relation)
over Π ×N such that 〈Q, j〉 ⇒N 〈P, i〉 whenever there is a clause Λ ‖Γ → Δ in
N containing free atoms Q(. . . , u, . . .) and P (. . . , v, . . .) in which the variable u
occurs at the j-th and the variable v occurs at the i-th argument position and

(1) either u = v,
(2) or u �= v, both are of sort Z and there are constraints u = v or u ≤ v in Λ,
(3) or u �= v, both are of sort S and there is an atom u ≈ v in Γ or in Δ.1

⇒N induces downward closed sets ⇓N 〈P, i〉 of argument positions, called argu-
ment position closures: ⇓N 〈P, i〉 :=

{
〈Q, j〉

∣
∣ 〈Q, j〉 ⇒N 〈P, i〉

}
.

Consider a variable v that occurs at the i-th argument position of a free
atom P (. . . , v, . . .) in N . We denote the argument position closure related to v’s
argument position in N by ⇓N (v), i.e. ⇓N (v) := ⇓N 〈P, i〉. If v is a free-sort
variable that exclusively occurs in equations, we set ⇓N (v) := ⇓〈Falsev, 1〉 (cf.
Footnote 1). To simplify notation a bit, we write ⇒, ⇓〈P, i〉, and ⇓(v) instead of
⇒N , ⇓N 〈P, i〉, and ⇓N (v), when the set N is clear from the context.

Notice that ⇒ confined to argument position pairs of the free sort is always
symmetric. Asymmetry is only introduced by atomic constraints x ≤ y.

While the relation ⇒ indicates how instantiation points are propagated
between argument positions, the set ⇓〈P, i〉 comprises all argument positions from
which instantiation points are propagated to 〈P, i〉. For a variable v the set ⇓(v)
contains all argument positions that may produce instantiation points for v.

Next, we collect the instantiation points that are necessary to eliminate base-
sort variables by means of finite instantiation.

Definition 7 (Instantiation Points for Base-Sort Argument Positions).
Let N be a BSR(SLI) clause set in normal form and let P : ξ1 × . . . × ξm be
1 For any free-sort variable v that occurs in a clause (Λ ‖ Γ → Δ) ∈ N exclusively

in equations, we pretend that Δ contains an atom Falsev(v), for a fresh predicate
symbol Falsev : S. This is merely a technical assumption. Without it, we would have
to treat such variables v as a separate case in all definitions. The atom Falsev(v) is
not added “physically” to any clause.

84 M. Horbach et al.

a free predicate symbol occurring in N . For every i with ξi = Z we define IP,i

to be the smallest set satisfying the following condition. We have d ∈ IP,i for
any constant symbol d for which there exists a clause C in N that contains an
atom P (. . . , x, . . .) in which x occurs as the i-th argument and that contains a
constraint x = d or x ≥ d.

The most apparent peculiarity about this definition is that LIA constraints
of the form x ≤ d are completely ignored when collecting instantiation points
for x’s argument position. This is one of the aspects that makes this definition
interesting from the efficiency point of view, because the number of instances
that we have to consider might decrease considerably in this way. The following
example may help to develop an intuitive understanding.

Example 8. Consider two clauses C := 3 ≤ x, x ≤ 5 ‖ → T (x) and D := x ≤
0 ‖T (x) → �. Recall that we are looking for a finite partition P of Z such that
we can construct a uniform hierarchic model A of {C,D}, i.e. for every subset
p ∈ P and all integers r1, r2 ∈ p we want r1 ∈ TA to hold if and only if r2 ∈ TA.
A natural candidate for P is {(−∞, 0], [1, 2], [3, 5], [6,+∞)}, which takes every
LIA constraint in C and D into account. Correspondingly, we find the candidate
model A with TA = [3, 5]. Obviously, A is uniform with respect to P.

But there are other interesting possibilities, for instance, the more coarse-
grained partition {(−∞, 2], [3,+∞)} together with the predicate TA = [3,+∞).
This latter candidate partition completely ignores the constraints x ≤ 0 and
x ≤ 5 that constitute upper bounds on x and in this way induces a sim-
pler partition. Dually, we could have concentrated on the upper bounds instead
(completely ignoring the lower bounds). This would have led to the partition
{(−∞, 0], [1, 5], [6,+∞)} and the candidate predicate TA = [1, 5] (or TA =
[1,+∞)). Both ways are possible, but the former yields a coarser partition and
is thus more attractive, as it will cause fewer instances in the end. ��

The example reveals quite some freedom in choosing an appropriate partition
of the integers. A large number of parts directly corresponds to a large number
of instantiation points—one for each interval—, and therefore leads to a large
number of instances that need to be considered by a reasoning procedure. Hence,
regarding efficiency, it is of great importance to keep the partition P of Z coarse.

It remains to address the question of why it is sufficient to consider lower
bounds only. At this point, we content ourselves with an informal explanation.

Let ϕ(x) be a satisfiable ∧-∨-combination of upper and lower bounds on
some integer variable x. For the sake of simplicity, we assume that every atom
in ϕ is of the form c ≤ x or x ≤ c with c ∈ Z. When we look for some value
of x that satisfies ϕ, we start from some “sufficiently small value” −∞. If −∞
yields a solution for ϕ, we are done. If [x�→−∞] �|= ϕ, there must be some lower
bound in ϕ that prevents −∞ from being a solution. In order to find a solution,
we successively increase the value of x until a solution is found. Interesting test
points r ∈ Z for x are those where r − 1 violates some lower bound c ≤ x in
ϕ and r satisfies the bound, i.e. r = c. Consider two lower bounds c1 ≤ x and
c2 ≤ x in ϕ such that c1 < c2 and ϕ contains no further bound d ≤ x with

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 85

c1 < d < c2. Any assignment [x�→r] with c1 < r < c2 satisfies exactly the same
lower bounds as the assignment [x�→c1] does. Moreover, any such assignment
satisfies at most the upper bounds that [x�→c1] satisfies. In fact, it may violate
some of them. Consequently, if neither [x�→c1] nor [x�→c2] satisfy ϕ, then [x�→r]
with c1 < r < c2 cannot satisfy ϕ either. In other words, it suffices to test only
values induced by lower bounds. The abstract value −∞ serves as the default
value, which corresponds to the implicit lower bound −∞ < x.

Definition 9 (Instantiation Points for Base-Sort Argument Position
Closures and Induced Partition). Let N be a BSR(SLI) clause set in normal
form and let A be a hierarchic interpretation. For every base-sort argument
position closure ⇓〈P, i〉 induced by ⇒ we define the following:

The set I⇓〈P,i〉 of instantiation points for ⇓〈P, i〉 is defined by I⇓〈P,i〉 :=
{c−∞} ∪

⋃
〈Q,j〉∈⇓〈P,i〉 IQ,j, where we assume c−∞ to be a distinguished base-

sort constant symbol that may occur in N .
Let the sequence r1, . . . , rk comprise all integers in the set

{
cA ∣

∣ c ∈ I⇓〈P,i〉 \
{c−∞}

}
ordered so that r1 < . . . < rk. The partition PA

⇓〈P,i〉 of the integers into
finitely many intervals is defined by

PA
⇓〈P,i〉 :=

{
(−∞, r1 − 1], [r1, r2 − 1], . . . , [rk−1, rk − 1], [rk,+∞)

}
.

Please note that partitions as described in the definition do always exist, and do
not contain empty parts.

Lemma 10. Let N be a BSR(SLI) clause set in normal form and let A be a
hierarchic interpretation. Consider two argument position pairs 〈Q, j〉, 〈P, i〉 for
which 〈Q, j〉 ⇒ 〈P, i〉 holds in N . Then I⇓〈Q,j〉 ⊆ I⇓〈P,i〉. Moreover, PA

⇓〈P,i〉 is a
refinement of PA

⇓〈Q,j〉, i.e. for every p ∈ PA
⇓〈P,i〉 there is some p′ ∈ PA

⇓〈Q,j〉 such
that p ⊆ p′.

Lemma 11. Let N be a BSR(SLI) clause set in normal form and let A be a
hierarchic interpretation. For every part p ∈ PA

⇓〈P,i〉 of the form p = [r�, ru] or
p = [r�,+∞) we find some constant symbol c⇓〈P,i〉,p ∈ I⇓〈P,i〉 with cA

⇓〈P,i〉,p = r�.

Note that the lemma did not say anything about the part (−∞, ru] which also
belongs to every PA

⇓〈P,i〉. Our intention is that the constant symbol c−∞ shall
be interpreted by a value from this interval. Hence, we add the set of clauses
Ψ−∞

N :=
{
(c−∞ ≥ c ‖ → �)

∣
∣ c ∈ bconsts(N) \ {c−∞}

}
whenever necessary.

Note that if A is a hierarchic model of a given BSR(SLI) clause set N , then A
can be turned into a model of Ψ−∞

N just by changing the interpretation of c−∞.
After this modification A is still a model of N , if c−∞ does not occur in N .

The next lemma shows that we can eliminate base-sort variables x from
clauses C in a finite BSR(SLI) clause set N by replacing C with finitely many
instances in which x is substituted with the instantiation points that we com-
puted for x. In addition, the axioms that stipulate the meaning of c−∞ need
to be added. Iterating this instantiation step for every base-sort variable in N
eventually leads to a clause set that is essentially ground with respect to the
constraint parts of the clauses it contains (free-sort variables need to be treated
separately, of course, see Sect. 3.3).

86 M. Horbach et al.

Lemma 12 (Finite Integer-Variable Elimination). Let N be a finite
BSR(SLI) clause set in normal form such that, if the constant symbol c−∞ occurs
in N , then Ψ−∞

N ⊆ N . Suppose there is a clause C in N which contains a base-
sort variable x. Let N̂x be the clause set N̂x :=

(
N \ {C}

)
∪

{
C

[
x/c

] ∣
∣ c ∈

I⇓N (x)

}
∪ Ψ−∞

N . N is satisfiable if and only if N̂x is satisfiable.

Proof sketch. The “only if”-part is trivial.
The “if”-part requires a more sophisticated argument. In what follows, the

notations ⇒ and ⇓ always refer to the original clause set N . Let A be a hierarchic
model of N̂x. We use A to construct the hierarchic model B |= N as follows. For
the domain SB we reuse A’s free domain SA. For every base-sort or free-sort
constant symbol c ∈ consts(N) we set cB := cA. For every predicate symbol
P : ξ1 × . . . × ξm that occurs in N , for every argument position i, 1 ≤ i ≤ m,
with ξi = Z, and for every interval p ∈ PA

⇓〈P,i〉 Lemma 11 and the extra clauses
in Ψ−∞

N guarantee the existence of a base-sort constant symbol c⇓〈P,i〉,p ∈ I⇓(x),
such that cA

⇓〈P,i〉,p ∈ p.
Based on this observation, we define the family of projection functions

π⇓〈P,i〉 : Z ∪ SB → Z ∪ SA by

π⇓〈P,i〉(a) :=

⎧
⎪⎨

⎪⎩

cA
⇓〈P,i〉,p if ξi = Z and p ∈ PA

⇓〈P,i〉
is the interval a lies in,

a if ξi = S.
Using the projection functions π⇓〈P,i〉, we define the sets PB in such a way that
for all domain elements a1, . . . , am of appropriate sorts〈

a1, . . . , am

〉
∈ PB if and only if

〈
π⇓〈P,1〉(a1), . . . , π⇓〈P,m〉(am)

〉
∈ PA.

We next show B |= N . Consider any clause C ′ := Λ′ ‖Γ ′ → Δ′ in N and let
β : VZ ∪ VS → Z ∪ SB be some variable assignment. From β we derive a special
variable assignment βπ for which we shall infer A, βπ |= C ′ as an intermediate
step: βπ(v) := π⇓(v)(β(v)) for every variable v. If C ′ �= C, then N̂x already
contains C ′, and thus A, βπ |= C ′ must hold. In case of C ′ = C, let p∗ be the
interval in PA

⇓(x) containing the value β(x), and let c∗ be an abbreviation for

c⇓(x),p∗ . Due to βπ(x) = cA
∗ and since A is a model of the clause C

[
x/c∗

]
in N̂x,

we conclude A, βπ |= C. Hence, in any case we can deduce A, βπ |= C ′. By case
distinction on why A, βπ |= C ′ holds, we may use this result to infer B, β |= C ′.
It follows that B |= N . ��

3.2 Independent Bound Selection

By now we have mainly focused on lower bounds as sources for instantiation
points. However, as we have already pointed out (cf. (E-ii) and (E-iii) in Sect. 3.1
and Example 8), there is also a dual approach in which upper bounds on inte-
ger variables play the central role. It turns out that the choice between the two
approaches can be made independently for every variable that is to be instanti-
ated. In the interest of efficiency, it makes sense to always choose the approach
that results in fewer non-redundant instances or, more abstractly speaking, a set

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 87

of instances whose satisfiability is easier to decide. Example 13 illustrates the
overall approach.

Given a clause set N in normal form, the relation ⇒N is defined as before.
Dually to the sets ⇓N 〈P, i〉, we define the sets ⇑N 〈P, i〉 :=

{
〈Q, j〉

∣
∣ 〈P, i〉 ⇒N

〈Q, j〉
}
, which constitute upwards closed sets with respect to ⇒N rather than

downwards closed sets. Regarding instantiation points, only LIA constraints x =
d and x ≤ d lead to d ∈ I⇑N (x). In addition, c+∞ is by default added to every
set I⇑N 〈P,i〉. In order to fix the meaning of c+∞, we introduce the set of axioms
Ψ+∞

N :=
{
(c+∞ ≤ c ‖ → �)

∣
∣ c ∈ bconsts(N) \ {c+∞}

}
. The dual versions of

Definitions 7 and 9 and Lemma 12 can be found in [14].
In both, Lemma 12 and its dual version, the equisatisfiable instantiation can

be applied to the respective variable independently of the instantiation steps
that have already been done or are still to be done in the future. This means,
we can choose independently, whether to stick to the lower or upper bounds for
instantiation. This choice can, for example, be made depending on the number
of non-redundant instances that have to be generated.

Example 13. Consider the following BSR(SLI) clause set N :
1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2) ,

y3 ≤ 7, y1 ≤ y3 ‖ Q(y1, y2) → R(y3) ,
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → � .

We intend to instantiate the variables y3, y1, x1, z1 in this order. For y3 we can
choose between I⇓N (y3) = {c−∞, 1, 6} and I⇑N (y3) = {7, c+∞}. Using the latter
option, we obtain the instances

7 ≤ 7, y1 ≤ 7, y3 = 7 ‖ Q(y1, y2) → R(y3)
c+∞ ≤ 7, y1 ≤ c+∞, y3 = c+∞ ‖ Q(y1, y2) → R(y3)

plus the clauses in Ψ+∞
N . The constraint 7 ≤ 7 can be removed, as it is redundant.

The second instance can be dropped immediately, since the constraint c+∞ ≤ 7
is false in any model satisfying Ψ+∞

N . Dual simplifications can be applied to con-
straints with c−∞. Let N ′ contain the clauses in Ψ+∞

N and the clauses
1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2) ,
y1 ≤ 7, y3 = 7 ‖ Q(y1, y2) → R(y3) ,
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → � .

For y1 we use I⇓N′ (y1) = {c−∞, 1, 6} rather than I⇑N′ (y1) = {7, 9, c+∞} for
instantiation and obtain N ′′ (after simplification):

1 ≤ x1, x2 ≤ 0 ‖ → T (x1), Q(x1, x2) ,
y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3) ,

y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3) ,
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3) ,
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → � ,

plus the clauses in Ψ−∞
N and Ψ+∞

N and plus the clause c−∞ ≥ c+∞‖ → �.
The sets of instantiation points for x1 in N ′′ are I⇓N′′ (x1) = {c−∞, 1, 6} and
I⇑N′′ (x1) = {c−∞, 1, 6, 9, c+∞}. The latter set nicely illustrates how instantia-
tion sets for particular variables can evolve during the incremental process of
instantiation. We take the set with fewer instantiation points and obtain N ′′′:

88 M. Horbach et al.

x2 ≤ 0, x1 = 1 ‖ → T (x1), Q(x1, x2) ,
x2 ≤ 0, x1 = 6 ‖ → T (x1), Q(x1, x2) ,

y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3) ,
y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3) ,
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3) ,
6 ≤ z1, z1 ≤ 9 ‖ T (z1) → � ,

plus Ψ−∞
N ∪ Ψ+∞

N ∪ {c−∞ ≥ c+∞‖ → �}. We instantiate z1 using the set
I⇓N′′′ (z1) = {c−∞, 1, 6} and not I⇑N′′′ (z1) = {c−∞, 1, 6, 9, c+∞}:

x2 ≤ 0, x1 = 1 ‖ → T (x1), Q(x1, x2) ,
x2 ≤ 0, x1 = 6 ‖ → T (x1), Q(x1, x2) ,

y3 = 7, y1 = c−∞ ‖ Q(y1, y2) → R(y3) ,
y3 = 7, y1 = 1 ‖ Q(y1, y2) → R(y3) ,
y3 = 7, y1 = 6 ‖ Q(y1, y2) → R(y3) ,

z1 = 6 ‖ T (z1) → � ,

plus Ψ−∞
N ∪ Ψ+∞

N ∪ {c−∞ ≥ c+∞‖ → �}. Until now, we have introduced
6 non-redundant instances. A completely naive instantiation approach where
x1, y1, y3, z1 are instantiated with all occurring constant symbols 0, 1, 6, 7, 9 leads
to 17 non-redundant instances. This corresponds to the originally proposed
method for the array property fragment, cf. [8]. A more sophisticated instan-
tiation approach where x1, y1, y3, z1 are instantiated with 1, 6, 7, 9 (as there is
no connection from 0 to x1, y1, y3, z1) leads to 13 non-redundant instances. For
instance, the methods described in [12] produce this set of instances. ��

3.3 Instantiation of Free-Sort Variables

We can also follow an instantiation approach for free-sort variables. In a nutshell,
we collect only relevant instantiation points for a given argument position cf.
(E-i) in Sect. 3.1. A similar approach is taken in [12]. Consult [14] for details.

4 Stratified Clause Sets

In this section we treat certain clause sets with uninterpreted non-constant func-
tion symbols. By a transformation into an equisatisfiable set of BSR clauses, we
show that our instantiation methods are also applicable in such settings.

Definition 14. Let N be a finite set of variable-disjoint first-order clauses in
which also non-constant function symbols occur. By ΠN and ΩN we denote the
set of occurring predicate symbols and function symbols (including constants),
respectively. N is considered to be stratified if we can define a mapping lvlN :
(ΠN ∪ΩN)×N → N that maps argument position pairs (of predicate and function
symbols) to nonnegative integers such that the following conditions are satisfied.

(a) For every function symbol f : ξ1 × . . . × ξm → ξm+1 and every i ≤ m we
have lvlN 〈f, i〉 > lvlN 〈f,m + 1〉.

(b) For every (sub)term g(s1, . . . , sk−1, f(t1, . . . , tm), sk+1, . . . , sm′) occurring in
N we have lvlN 〈f,m + 1〉 = lvlN 〈g, k〉. This includes the case where f is a
constant symbol and m = 0. Moreover, this also includes the case where g is
replaced with a predicate symbol P .

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 89

(c) For every variable v that occurs in two (sub)terms f(s1, . . . , sk−1, v, sk+1, . . . ,
sm) and g(t1, . . . tk′−1, v, tk′+1, . . . , tm′) in N we have lvlN〈f, k〉= lvlN〈g, k′〉.
The same applies, if f or g or both are replaced with predicate symbols.

(d) For every equation f(s1, . . . , sm) ≈ g(t1, . . . , tm′) we have lvlN 〈f,m + 1〉 =
lvlN 〈g,m′ + 1〉. This includes the cases where f or g or both are constant
symbols (with m = 0 or m′ = 0 or both, respectively).

Several known logic fragments fall into this syntactic category: many-sorted
clauses over stratified vocabularies as described in [1,16], and clauses belong-
ing to the finite essentially uninterpreted fragment (cf. Proposition 2 in [12]).

Lemma 15. Let C = Γ → Δ be a first-order clause and let f1, . . . , fn be a list of
all uninterpreted non-constant function symbols occurring in C. Let R1, . . . , Rn

be distinct predicate symbols that do not occur in C and that have the sort Ri :
ξ1 × . . . × ξm × ξm+1, if and only if fi has the sort ξ1 × . . . × ξm → ξm+1. Let Φ1

and Φ2 be the following sets of sentences:
Φ1 :=

{
∀x1 . . . xmuv. Ri(x1, . . . , xm, u) ∧ Ri(x1, . . . , xm, v) → u ≈ v

∣
∣ 1 ≤ i ≤ n

}

and Φ2 :=
{
∀x1 . . . xm∃v. Ri(x1, . . . , xm, v)

∣
∣ 1 ≤ i ≤ n

}
. There is a clause

D that does not contain non-constant function symbols and for which the set
{D} ∪ Φ1 ∪ Φ2 is equisatisfiable to C.

Proof sketch. We apply the following flattening rules. v stands for a fresh variable
that has not occurred yet. P ranges over predicate symbols different from ≈. s̄
and t̄ stand for tuples of arguments.

Γ, fi(s̄) ≈ fj(t̄) → Δ
(fun-fun left)

Γ,Ri(s̄, v), Rj(t̄, v) → Δ

Γ → Δ, fi(s̄) ≈ fj(t̄)
(fun-fun right)

Γ,Ri(s̄, v) → Δ,Rj(t̄, v)

Γ, fi(s̄) ≈ c → Δ
(fun-const left)

Γ,Ri(s̄, c) → Δ

Γ → Δ, fi(s̄) ≈ c
(fun-const right)

Γ → Δ,Ri(s̄, c)

Γ, fi(s̄) ≈ x → Δ
(fun-var left)

Γ,Ri(s̄, x) → Δ

Γ → Δ, fi(s̄) ≈ x
(fun-var right)

Γ → Δ,Ri(s̄, x)

Γ, P (. . . , fi(s̄), . . .) → Δ
(fun left)

Γ,Ri(s̄, v), P (. . . , v, . . .) → Δ

Γ → Δ,P (. . . , fi(s̄), . . .)
(fun right)

Γ,Ri(s̄, v) → Δ,P (. . . , v, . . .)
��

Given a BSR clause Γ → Δ, we consider an atom Rj(t̄, v) in Δ to be guarded,
if there is also an atom Ri(s̄, v) in Γ . With the exception of the rule (fun-var
right) the flattening rules presented in the proof of Lemma 15 preserve guard-
edness of atoms in Δ and introduce atoms Rj(t̄, v) on the right-hand side of
a clause only if at the same time a corresponding guard is introduced on the
left-hand side of the clause.

Hence, if we are given a stratified clause set in which the atoms x ≈ t in the
consequents of implications are subject to certain restrictions (e.g. t �= f(. . .)

90 M. Horbach et al.

and guardedness of atoms u ≈ c and u ≈ v), then the above flattening rules
yield clauses that belong to the following class of BSR(SLI) clauses—after nec-
essary purification and normalization steps. In the definition we mark certain
predicate symbols that are intended to represent uninterpreted functions. By
adding suitable axioms later on, these will be equipped with the properties of
function graphs.

Definition 16 (Stratified and Guarded BSR(SLI)). Consider a BSR(SLI)
clause set N in normal form. Let R1, . . . , Rn be a list of predicate symbols that
we consider to be marked in N . We call N stratified and guarded with respect
to R1, . . . , Rn, if and only if the following conditions are met.

(a) There is some function lvlN : Π × N → N that assigns to each argument
position pair 〈P, i〉 a nonnegative integer lvlN 〈P, i〉 such that

(a.1) 〈P, i〉 ⇒N 〈Q, j〉 entails lvlN 〈P, i〉 = lvlN 〈Q, j〉, and
(a.2) for every marked predicate symbol Rj : ξ1 × . . . × ξm × ξm+1 we have

lvlN 〈Rj , i〉 > lvlN 〈Rj ,m + 1〉 for every i ≤ m.
(b) In every clause Λ ‖Γ → Δ in N any occurrence of an atom Rj(s1, . . . , sm, v)

in Δ entails that Γ contains some atom R�(t1, . . . , tm′ , v).
(c) For every atom u ≈ t in N , where t is either a free-sort variable v or a

free-sort constant symbol, at least one of two cases applies:
(c.1) u ≈ t, which must occur in the consequent of a clause, is guarded by some

atom Rj(t1, . . . , tm, u) occurring in the antecedent of the same clause.
(c.2) For every marked predicate symbol Rj : ξ1 × . . . × ξm × ξm+1 and every

argument position closure ⇓N 〈Rj , i〉 with 1 ≤ i ≤ m we have ⇓N 〈Rj , i〉 ∩
⇓N (u) = ∅. If t = v, we in addition have ⇓N 〈Rj , i〉 ∩ ⇓N (v) = ∅.

Notice that any atom u ≈ v over distinct variables requires two guards R(s̄, u)
and R(t̄, v) in order to be guarded in accordance with Condition (c.1).

Let N be a finite BSR(SLI) clause set in normal form that is stratified
and guarded with respect to R1, . . . , Rn. Let Ri : ξ1 × . . . × ξm × ξm+1 be
marked in N and let P : ζ1 × . . . × ζm′ be any predicate symbol occurring
in N (be it marked or not). We write Ri � P if and only if lvlN 〈Ri,m +
1〉 ≥ min1≤�≤m′

(
lvlN 〈P, �〉

)
. Without loss of generality, we assume R1 �N

. . . �N Rn. Let Φ1 := {∀x1 . . . xmuu′.(Ri(x1, . . . , xm, u) ∧ Ri(x1, . . . , xm, u′)) →
u � u′ | Ri has arity m + 1} and Φ2 := {∀x1 . . . xm∃u.Ri(x1, . . . , xm, u) |
Ri has arity m + 1}, where “�” is a placeholder for “≈” in free-sort equations
and for “=” in base-sort equations.

Given a set M of BSR(SLI) clauses and an (m + 1)-ary predicate symbol R
that is marked in M , we define the set Φ(R,M) :=

{
R(c1, . . . , cm, dRc1...cm)

∣
∣ 〈c1, . . . , cm〉 ∈ I [m]

⇓M 〈R,·〉
}

∪
{
∀x1 . . . xm.

∨

〈c1,...,cm〉∈I[m]
⇓M 〈R,·〉

R(x1, . . . , xm, dRc1...cm)
}

∪
{
∀x1 . . . xmu. R(x1, . . . , xm, u) →

∨

〈c1,...,cm〉∈I[m]
⇓M 〈R,·〉

u � dRc1...cm

}

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 91

∪
{
∀x1 . . . xm. R(x1, . . . , xm, dRc1...cm), R(x1, . . . , xm, dRc′

1...c′
m

)

→ dRc1...cm � dRc′
1...c′

m

∣
∣ 〈c1, . . . , cm〉, 〈c′

1, . . . , c
′
m〉 ∈ I [m]

⇓M 〈R,·〉
}

where I [m]
⇓M 〈R,·〉 is used as an abbreviation for I⇓M 〈R,1〉 × . . .×I⇓M 〈R,m〉 and the

dRc1...cm are assumed to be fresh constant symbols. It is worth noticing that the
clauses corresponding to Φ(R,M) are stratified and guarded BSR(SLI) clauses.

We construct the sequence M0,M1, . . . ,Mn of finite clause sets as follows:
M0 := N , every M�+1 with � ≥ 0 is an extension of M� by the BSR(SLI) clauses
that correspond to the sentences in Φ(R�+1,M�).

Lemma 17. The set N ∪ Φ1 ∪ Φ2 is satisfiable if and only if Mn is satisfiable.

This lemma entails that all the instantiation methods developed in Sect. 3 can
be used to decide satisfiability of stratified and guarded BSR(SLI) clause sets.

We can add another background theory to the stratified and guarded frag-
ment of BSR(SLI) while preserving compatibility with our instantiation app-
roach. Let ΠT and ΩT be finite sets of sorted predicate symbols and sorted
function symbols, respectively, and let T be some theory over ΠT and ΩT . We
assume that ΠT is disjoint from the set Π of uninterpreted predicate symbols.
For any set X of variables, let TT (X) be the set of all well-sorted terms con-
structed from the variables in X and the function and constant symbols in ΩT .

Definition 18 (BSR(SLI+T)). A clause set N belongs to BSR(SLI+T) if it
complies with the syntax of a BSR(SLI) clause set that is stratified and guarded
with respect to certain predicate symbols R1, . . . , Rn with the following exceptions.
Let C := Λ ‖Γ → Δ be a clause in N . We allow atoms P (s1, . . . , sm) with
P ∈ ΠT and s1, . . . , sm ∈ TT (VZ ∪ VS)—including equations s1 ≈ s2—, if for
every variable u occurring in any of the si there is either a LIA guard of the
form u = t in Λ with t being ground, or there is a guard Rj(t1, . . . , tm′ , u) in Γ .

The instantiation methods presented in Sect. 3 are also applicable to
BSR(SLI+T), since Lemma 17 can be extended to cover finite BSR(SLI+T)
clause sets. When computing instantiation points for BSR(SLI+T) clause sets,
we ignore T -atoms. For example, a clause ‖R(t, u), P (s, c) → P (s′, u), Q(u)
where P (s, c) and P (s′, u) are T -atoms, does not lead to an instantiation point
c for ⇓〈Q, 1〉. If we stick to this approach, the proof of Lemma 17 can easily be
adapted to handle additional T -atoms. The involved model construction remains
unchanged. T -atoms are basically treated like guarded free-sort atoms u ≈ d.

Proposition 19. BSR(SLI+T) allows an (un)satisfiability-preserving embed-
ding of the array property fragment with integer-indexed arrays and element
theory T (cf. [8]) and of the finite essentially uninterpreted fragment extended
with simple integer arithmetic literals (cf. [12]) into BSR(SLI+T).

Example 20. The following formula ϕ belongs to the array property fragment
with integer indices and the theory of bit vectors as the element theory T . The
operator ∼ stands for bitwise negation of bit vectors and the relations � and ≈

92 M. Horbach et al.

are used as the “at most” and the equality predicate on bit vectors, respectively.
Moreover, a[i] denotes a read operation on the array a at index i.

ϕ := c ≥ 1 ∧ ∀ij. 0 ≤ i ≤ j → a[i] � a[j]
∧ ∀i. 0 ≤ i ≤ c − 1 → a[i] � ∼a[0]
∧ → a[c] ≈ ∼a[0]
∧ ∀i. i ≥ c + 1 → a[i] � ∼a[0]

Translating ϕ into BSR(SLI+T) yields the following clause set N , in which we
consider Pa to be marked.

c < 1 ‖ → �
e �= c − 1 ‖ → �
f �= c + 1 ‖ → �

0 ≤ i, i ≤ j ‖ Pa(i, u), Pa(j, v) → u � v
0 ≤ i, i ≤ e, y = 0 ‖ Pa(i, u), Pa(y, v) → u � ∼v

x = c, y = 0 ‖ Pa(x, u), Pa(y, v) → u ≈ ∼v
i ≥ f, y = 0 ‖ Pa(i, u), Pa(y, v) → u � ∼v

In order to preserve (un)satisfiability, functional axioms have to be added for Pa

(cf. the sets Φ1 and Φ2 that we used earlier). Doing so, we leave BSR(SLI+T).
The clause set N induces the set I⇓〈Pa,1〉 = {c−∞, 0, c, f} of instantiation

points for the index of the array. An adaptation of Lemma 17 for BSR(SLI+T)
entails that adding the clause set N ′ corresponding to the following set of sen-
tences yields a BSR(SLI+T) clause set N ∪ N ′ that is equisatisfiable to ϕ.{

Pa(c′, dPac′)
∣
∣ c′ ∈ {c−∞, 0, c, f}

}

∪
{
∀i.

∨
c′∈{c−∞,0,c,f} Pa(i, dPac′)

}

∪
{
∀iu. Pa(i, u) →

∨
c′∈{c−∞,0,c,f} u ≈ dPac′

}

∪
{
∀i. Pa(i, dPac′), Pa(i, dPac′′) → dPac′ ≈ dPac′′

∣
∣ c′, c′′ ∈ {c−∞, 0, c, f}

}

Using the instantiation methods that we have developed in Sects. 3.1, 3.2, and
3.3, the set N ∪ N ′ can be turned into an equisatisfiable quantifier-free clause
set. One possible (uniform) model A |= N ∪ N ′ assigns cA

−∞ = −1, eA = 2,
cA = 3, fA = 4, dA

Pac−∞ = 00, dA
Pa0

= 01, dA
Pae = 01, dA

Pac = 10, dA
Paf = 11, and

yields the array 〈01, 01, 01, 10, 11, 11, 11, . . .〉. ��

5 Discussion

We have demonstrated how universally quantified variables in BSR(SLI) clause
sets can be instantiated economically. In certain cases our methods lead to expo-
nentially fewer instances than a naive instantiation with all occurring integer
terms would generate. Moreover, we have sketched how defining suitable finite-
domain sort predicates instead of explicitly instantiating variables can avoid
immediate blow-ups caused by explicit instantiation. It is then left to the theo-
rem prover to actually instantiate variables as needed.

We have shown that our methods are compatible with uninterpreted, non-
constant functions under certain restrictions. Even another background theory T
may be added, leading to BSR(SLI+T). This entails applicability of our instan-
tiation approach to known logic fragments, such as the array property fragment
[8], the finite essentially uninterpreted fragment with arithmetic literals [12], and
many-sorted first-order formulas over stratified vocabularies [1,16].

The instantiation methodology that we have described specifically for integer
variables can also be adapted to work for universally quantified variables ranging

Bernays–Schönfinkel–Ramsey with Simple Linear Integer Arithmetic 93

over the reals [24]. Our computation of instantiation points considers all argu-
ment positions in predicate atoms independently. This can be further refined by
considering dependencies between argument positions and clauses. For example,
this refinement idea was successfully applied in first-order logic [9,16].

Once all the integer variables are grounded by successive instantiation, we
are left with a clause set where for every integer variable x in any clause there is
a defining equation x = c for some constant c. Thus, the clause set can actually
be turned into a standard first-order BSR clause set by replacing the integer
constants with respective fresh uninterpreted constants. Then, as an alternative
to further grounding the free-sort variables, any state-of-the-art BSR decision
procedure can be applied to test satisfiability [2,15,22]. It is even sufficient to
know the instantiation sets for the base sort variables. Then, instead of explicit
grounding, by defining respective finite-domain sort predicates for the sets, the
worst-case exponential blow-up of grounding can be prevented.

References

1. Abadi, A., Rabinovich, A., Sagiv, M.: Decidable fragments of many-sorted logic.
J. Symbolic Comput. 45(2), 153–172 (2010)

2. Alagi, G., Weidenbach, C.: NRCL – A model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol. 9322,
pp. 69–84. Springer, Cham (2015). doi:10.1007/978-3-319-24246-0 5

3. Althaus, E., Kruglov, E., Weidenbach, C.: Superposition modulo linear arithmetic
SUP(LA). In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS (LNAI), vol.
5749, pp. 84–99. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5 5

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Refutational theorem proving for
hierarchic first-order theories. Appl. Algebra Eng. Commun. Comput. 5, 193–212
(1994)

5. Baumgartner, P., Waldmann, U.: Hierarchic superposition with weak abstraction.
In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp. 39–57. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38574-2 3

6. Bradley, A.R.: Safety Analysis of Systems. PhD thesis (2007)
7. Bradley, A.R., Manna, Z.: The Calculus of Computation – Decision Procedures

with Applications to Verification. Springer, Heidelberg (2007)
8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In: Emer-

son, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–442.
Springer, Heidelberg (2005). doi:10.1007/11609773 28

9. Claessen, K., Lillieström, A., Smallbone, N.: Sort it out with monotonicity. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803,
pp. 207–221. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 17

10. Downey, P.J.: Undecidability of Presburger Arithmetic with a Single Monadic
Predicate Letter. Technical report, Center for Research in Computer Technology.
Harvard University (1972)

11. Fietzke, A., Weidenbach, C.: Superposition as a decision procedure for timed
automata. Math. Comput. Sci. 6(4), 409–425 (2012)

12. Ge, Y., Moura, L.: Complete instantiation for quantified formulas in satisfiabiliby
modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643,
pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

http://dx.doi.org/10.1007/978-3-319-24246-0_5
http://dx.doi.org/10.1007/978-3-642-04222-5_5
http://dx.doi.org/10.1007/978-3-642-38574-2_3
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/978-3-642-22438-6_17
http://dx.doi.org/10.1007/978-3-642-02658-4_25

94 M. Horbach et al.

13. Halpern, J.Y.: Presburger arithmetic with unary predicates is Π1
1 complete. J.

Symbolic Logic 56(2), 637–642 (1991)
14. Horbach, M., Voigt, M., Weidenbach, C.: On the combination of the Bernays-

Schönfinkel-Ramsey fragment with simple linear integer arithmetic. ArXiv
preprint, arXiv: 1705.08792 [cs.LO] (2017)

15. Korovin, K.: Inst–Gen – A modular approach to instantiation-based auto-
mated reasoning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Log-
ics. LNCS, vol. 7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-37651-1 10

16. Korovin, K.: Non-cyclic sorts for first-order satisfiability. In: Fontaine, P., Ringeis-
sen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI), vol. 8152, pp. 214–228.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-40885-4 15

17. Kroening, D., Strichman, O.: Decision Procedures. Texts in Theoretical Computer
Science. An EATCS Series, 2nd edn. Springer, Heidelberg (2016)

18. Kruglov, E., Weidenbach, C.: Superposition decides the first-order logic fragment
over ground theories. Math. Comput. Sci. 6(4), 427–456 (2012)

19. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

20. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J.
36(5), 450–462 (1993)

21. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J.
ACM 53, 937–977 (2006)

22. Piskac, R., de Moura, L.M., Bjørner, N.: Deciding effectively propositional logic
using DPLL and substitution sets. J. Autom. Reasoning 44(4), 401–424 (2010)

23. Putnam, H.: Decidability and essential undecidability. J. Symbolic Logic 22(1),
39–54 (1957)

24. Voigt, M., Weidenbach, C.: Bernays-Schönfinkel-Ramsey with simple bounds is
NEXPTIME-complete. ArXiv preprint, arXiv:1501.07209 [cs.LO] (2015)

http://arxiv.org/abs/1705.08792
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://dx.doi.org/10.1007/978-3-642-40885-4_15
http://arxiv.org/abs/1501.07209

Satisfiability Modulo Transcendental Functions
via Incremental Linearization

Alessandro Cimatti1, Alberto Griggio1, Ahmed Irfan1,2(B),
Marco Roveri1, and Roberto Sebastiani2

1 Fondazione Bruno Kessler, Trento, Italy
{cimatti,griggio,irfan,roveri}@fbk.eu
2 DISI, University of Trento, Trento, Italy

roberto.sebastiani@unitn.it

Abstract. In this paper we present an abstraction-refinement approach
to Satisfiability Modulo the theory of transcendental functions, such as
exponentiation and trigonometric functions. The transcendental func-
tions are represented as uninterpreted in the abstract space, which is
described in terms of the combined theory of linear arithmetic on the
rationals with uninterpreted functions, and are incrementally axioma-
tized by means of upper- and lower-bounding piecewise-linear functions.
Suitable numerical techniques are used to ensure that the abstractions
of the transcendental functions are sound even in presence of irrationals.
Our experimental evaluation on benchmarks from verification and math-
ematics demonstrates the potential of our approach, showing that it com-
pares favorably with delta-satisfiability/interval propagation and meth-
ods based on theorem proving.

1 Introduction

Many applications require dealing with transcendental functions (e.g., exponen-
tial, logarithm, sine, cosine). Nevertheless, the problem of Satisfiability Modulo
the theory of transcendental functions comes with many difficulties. First, the
problem is in general undecidable [22]. Second, we may be forced to deal with
irrational numbers - in fact, differently from polynomial, transcendental func-
tions most often have irrational values for rational arguments. (See, for example,
Hermite’s proof that exp(x) is irrational for rational non-zero x.)

In this paper, we describe a novel approach to Satisfiability Modulo the
quantifier-free theory of (nonlinear arithmetic with) transcendental functions
over the reals - SMT(NTA). The approach is based on an abstraction-refinement
loop, using SMT(UFLRA) as abstract space, UFLRA being the combined the-
ory of linear arithmetic on the rationals with uninterpreted functions. The Unin-
terpreted Functions are used to model nonlinear and transcendental functions.
Then, we iteratively incrementally axiomatize the transcendental functions with

This work was funded in part by the H2020-FETOPEN-2016-2017-CSA project SC2

(712689). We thank James Davenport and Erika Abraham for useful discussions.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 95–113, 2017.
DOI: 10.1007/978-3-319-63046-5 7

96 A. Cimatti et al.

a lemma-on-demand approach. Specifically, we eliminate spurious interpreta-
tions in SMT(UFLRA) by tightening the piecewise-linear envelope around the
(uninterpreted counterpart of) the transcendental functions.

A key challenge is to compute provably correct approximations, also in pres-
ence of irrational numbers. We use Taylor series to exactly compute suitable
accurate rational coefficients. We remark that nonlinear polynomials are only
used to numerically compute the coefficients –i.e., no SMT solving in the theory
of nonlinear arithmetic (SMT(NRA)) is needed– whereas the refinement is based
on the addition, in the abstract space, of piecewise-linear axiom instantiations,
which upper- and lower-bound the candidate solutions, ruling out spurious inter-
pretations. To compute such piecewise-linear bounding functions, the concavity
of the curve is taken into account. In order to deal with trigonometric func-
tions, we take into account the periodicity, so that the axiomatization is only
done in the interval between −π and π. Interestingly, not only this is helpful for
efficiency, but also it is required to ensure correctness.

Another distinguishing feature of our approach is a logical method to conclude
the existence of a solution without explicitly constructing it. We use a sufficient
criterion that consists in checking whether the formula is satisfiable under all pos-
sible interpretations of the uninterpreted functions (representing the transcenden-
tal functions) that are consistent with some rational interval bounds within which
the correct values for the transcendental functions are guaranteed to exist. We
encode the problem as a SMT(UFLRA) satisfiability check, such that an unsatis-
fiable result implies the satisfiability of the original SMT(NTA) formula.

We implemented the approach on top of the MathSAT SMT solver [7],
using the PySMT library [14]. We experimented with benchmarks from SMT-
based verification queries over nonlinear transition systems, including Bounded
Model Checking of hybrid automata, as well as from several mathematical prop-
erties from the MetiTarski [1] suite and from other competitor solver distri-
butions. We contrasted our approach with state-of-the-art approaches based on
interval propagation (iSAT3 and dReal), and with the deductive approach in
MetiTarski. The results show that our solver compares favourably with the
other solvers, being able to decide the highest number of benchmarks.

This paper is organized as follows. In Sect. 2 we describe some background. In
Sect. 3 we overview the approach, defining the foundation for safe linear approx-
imations. In Sect. 4 we describe the specific axiomatization for transcendental
functions. In Sect. 5 we discuss the related literature, and in Sect. 6 we present
the experimental evaluation. In Sect. 7 we draw some conclusions and outline
directions for future work.

2 Background

We assume the standard first-order quantifier-free logical setting and standard
notions of theory, satisfiability, and logical consequence. As usual in SMT, we
denote with LRA the theory of linear real arithmetic, with NRA that of non-linear
real arithmetic, with UF the theory of equality (with uninterpreted functions),

Satisfiability Modulo Transcendental Functions 97

and with UFLRA the combined theory of UF and LRA. Unless otherwise specified,
we use the terms variable and free constant interchangeably. We denote formulas
with ϕ,ψ, terms with t, variables with x, y, a, b, functions with f, tf , ftf , each pos-
sibly with subscripts. If x and y are two variables, we denote with ϕ{x �→ y} the
formula obtained by replacing all the occurrences of x in ϕ with y. We extend this
notation to ordered sequences of variables in the natural way. If μ is a model and
x is a variable, we write μ[x] to denote the value of x in μ, and we extend this
notation to terms and formulas in the usual way. If Γ is a set of formulas, we write∧

Γ to denote the formula obtained by taking the conjunction of all its elements.
We write t1 < t2 < t3 for t1 < t2 ∧ t2 < t3.

A transcendental function is an analytic function that does not satisfy a
polynomial equation (in contrast to an algebraic function [15,26]). Within this
paper we consider univariate exponential, logarithmic, and trigonometric func-
tions. We denote with NTA the theory of (non-linear) real arithmetic extended
with these transcendental functions.

A tangent line to a univariate function f(x) at a point of interest x = a is
a straight line that “just touches” the function at the point, and represents the
instantaneous rate of change of the function f at that one point. The tangent
line Tf,a(x) to the function f at point a is the straight line defined as follows:

Tf,a(x) def= f(a) +
d

dx
f(a) ∗ (x − a)

where d
dxf is the first-order derivative of f wrt. x.

A secant line to a univariate function f(x) is a straight line that connects
two points on the function plot. The secant line Sf,a,b(x) to a function f between
points a and b is defined as follows:

Sf,a,b(x) def=
f(a) − f(b)

a − b
∗ (x − a) + f(a).

For a function f that is twice differentiable at point c, the concavity of f
at c is the sign of its second derivative evaluated at c. We denote open and
closed intervals between two real numbers l and u as]l, u[and [l, u] respectively.
Given a univariate function f over the reals, the graph of f is the set of pairs
{〈x, f(x)〉 | x ∈ R}. We might sometimes refer to an element 〈x, f(x)〉 of the
graph as a point.

Taylor Series and Taylor’s Theorem. Given a function f(x) that has n + 1
continuous derivatives at x = a, the Taylor series of degree n centered around
a is the polynomial:

Pn,f(a)(x) def=
n∑

i=0

f (i)(a)
i!

∗ (x − a)i

where f (i)(a) is the evaluation of i-th derivative of f(x) at point x = a. The
Taylor series centered around 0 is also called Maclaurin series.

98 A. Cimatti et al.

Fig. 1. Solving SMT(NTA) via abstraction to SMT(UFLRA).

According to Taylor’s theorem, any continuous function f(x) that is n + 1
differentiable can be written as the sum of the Taylor series and the remainder
term:

f(x) = Pn,f(a)(x) + Rn+1,f(a)(x)

where Rn+1,f(a)(x) is basically the Lagrange form of the remainder, and for some
point b between x and a it is given by:

Rn+1,f(a)(x) def=
f (n+1)(b)
(n + 1)!

∗ (x − a)n+1.

The value of the point b is not known, but the upper bound on the size of the
remainder Rn+1,f(a)

u
(x) at a point x can be estimated by:

Rn+1,f(a)
u
(x) def= max

c∈[min(a,x),max(a,x)]
(|f (n+1)(c)|) ∗ |(x − a)n+1|

(n + 1)!
.

This allows to obtain two polynomials that are above and below the function
at a given point x, by considering Pn,f(a)(x) + Rn+1,f(a)

u
(x) and Pn,f(a)(x) −

Rn+1,f(a)
u
(x) respectively.

3 Overview of the Approach

Our procedure, which extends to SMT(NTA) and pushes further the approach
presented in [5] for SMT(NRA), works by overapproximating the input formula
with a formula over the combined theory of linear arithmetic and uninterpreted
functions. The main algorithm is shown in Fig. 1. The solving procedure follows
a classic abstraction-refinement loop, in which at each iteration, the current safe

Satisfiability Modulo Transcendental Functions 99

approximation ϕ̂ of the input SMT(NTA) formula ϕ is refined by adding new
constraints Γ that rule out one (or possibly more) spurious solutions, until one
of the following conditions occurs: (i) the resource budget (e.g. time, memory,
number of iterations) is exhausted; or (ii) ϕ̂ ∧ ∧

Γ becomes unsatisfiable in
SMT(UFLRA); or (iii) the SMT(UFLRA) satisfiability result for ϕ̂ ∧ ∧

Γ can
be lifted to a satisfiability result for the original formula ϕ. An initial current
precision is set (calling the function initial-precision), and this value is possibly
increased at each iteration (calling maybe-increase-precision) according to the
result of check-refine and some heuristic.

In Fig. 1 we distinguish between two different refinement procedures: (1)
check-refine, which is described below; (2) refine-extra, which is described in
Sect. 4, where we provide further details on the treatment of each specific tran-
scendental function that we currently support.

Initial Abstraction. The function initial-abstraction takes in input an
SMT(NTA) formula ϕ and returns a SMT(UFLRA) safe approximation ϕ̂ of
it. First, we flatten each transcendental function application tf(t) in ϕ in which
t is not a variable by replacing t with a fresh variable y, and by conjoining y = t
to ϕ. Then, we replace each transcendental function tf(x) in ϕ with a correspond-
ing uninterpreted function ftf(x), producing thus an SMT(UFLRA) formula ϕ̂.
Finally, we add to ϕ̂ some simple initial axioms for the different transcendental
functions, expressing general, simple mathematical properties about them. We
shall describe such axioms in Sect. 4.

If ϕ contains also non-linear polynomials, we handle them as described in [5]:
we replace each non-linear product t1 ∗ t2 with an uninterpreted function appli-
cation fmul(t1, t2), and add to the input formula some initial axioms expressing
general, simple mathematical properties of multiplications. (We refer the reader
to [5] for details.)

Fig. 2. The main refinement procedure.

100 A. Cimatti et al.

Spuriousness Check and Abstraction Refinement. The core of our pro-
cedure is the check-refine function, shown in Fig. 2.

First, if the formula contains also some non-linear polynomials, check-refine
performs the refinement of non-linear multiplications as described in [5]. In Fig. 2,
this is represented by the call to the function check-refine-NRA at line 1, which
may return some axioms to further constrain fmul terms. If no non-linear poly-
nomials occur in ϕ, then Γ is initialized as the empty set.

Then, the function iterates over all the transcendental function applications
tf(x) in ϕ (lines 3–7), and checks whether the SMT(UFLRA)-model μ̂ is consis-
tent with their semantics.

Intuitively, in principle, this amounts to check that tf(μ̂[x]) is equal to
μ̂[ftf(x)]. In practice, however, the check cannot be exact, since transcenden-
tal functions at rational points typically have irrational values (see e.g. [21]),
which cannot be represented in SMT(UFLRA). Therefore, for each tf(x) in ϕ,
we instead compute two polynomials, Pl(x) and Pu(x), with the property that
tf(μ̂[x]) belongs to the open interval]Pl(μ̂[x]), Pu(μ̂[x])[. The polynomials are
computed using Taylor series, according to the given current precision, by the
function poly-approx, which shall be described in Sect. 4.

If the model value μ̂[ftf(x)] for tf(x) is outside the above interval, then
the function get-lemmas-point is used to generate some linear lemmas that will
remove the spurious point 〈μ̂[x], μ̂[ftf(x)]〉 from the graph of the current abstrac-
tion of tf(x) (line 7).

If at least one point was refined in the loop of lines 3–7, the current set of
lemmas Γ is returned (line 10). If instead none of the points was determined
to be spurious, the function check-model is called (line 9). This function tries
to determine whether the abstract model μ̂ does indeed imply the existence of
a model for the original formula ϕ (more details are given below). If the check
fails, we repeat the check-refine call with an increased precision (line 12).

Refining a Spurious Point with Secant and Tangent Lines. Given a
transcendental function application tf(x), the get-lemmas-point function gener-
ates a set of lemmas for refining the interpretation of ftf(x) by constructing
a piecewise-linear approximation of tf(x) around the point μ̂[x], using one of
the polynomials Pl(x) and Pu(x) computed in check-refine. The kind of lemmas
generated, and which of the two polynomials is used, depend on (i) the posi-
tion of the spurious value μ̂[ftf(x)] relative to the correct value tf(μ̂[x]), and
(ii) the concavity of tf around the point μ̂[x]. If the concavity is positive (resp.
negative) or equal to zero, and the point lies below (resp. above) the function,
then the linear approximation is given by a tangent to the lower (resp. upper)
bound polynomial Pl (resp. Pu) at μ̂[x] (lines 4–9 of Fig. 3); otherwise, i.e. the
concavity is negative (resp. positive) and the point is below (resp. above) the
function, the linear approximation is given by a pair of secants to the lower (resp.
upper) bound polynomial Pl (resp. Pu) around μ̂[x] (lines 10–22 of Fig. 3). The
two situations are illustrated in Fig. 4.

Satisfiability Modulo Transcendental Functions 101

Fig. 3. Piecewise-linear refinement for the transcendental function tf(x) at point c.

Fig. 4. Piecewise-linear refinement illustration.

In the case of tangent refinement, the function get-tangent-bounds (line 7)
returns an interval [l, u] such that the tangent line is guaranteed not to cross the
transcendental function tf . In practice, this interval can be (under)approximated
quickly by exploiting known properties of the specific function tf under consid-
eration. For example, for the exponential function get-tangent-bounds always
returns [−∞,+∞]; for other functions, the computation can be based e.g. on an

102 A. Cimatti et al.

analysis of the (known, precomputed) inflection points of tf around the point of
interest μ̂[x] and the slope d

dxP (c) of the tangent line.
In the case of secant refinement, a second value, different from μ̂[x], is required

to draw a secant line. The function get-previous-secant-points returns the set of
all the points at which a secant refinement was performed in the past for tf(x).
From this set, we take the two points closest to μ̂[x], such that l < μ̂[x] < u
and that l, u do not cross any inflection point,1 and use those points to generate
two secant lines and their validity intervals. Before returning the set of the two
corresponding lemmas, we also store the new secant refinement point μ̂[x] by
calling store-secant-point.

Detecting Satisfiable Formulas. The function check-model tries to determine
whether the UFLRA-model μ̂ for ϕ̂∧∧

Γ implies the satisfiability of the original
formula ϕ. If, for all tf(x) in ϕ, tf has a rational value at the rational point μ̂[x],2

and μ̂[ftf(x)] is equal to tf(μ̂[x]), then μ̂ can be directly lifted to a model μ for ϕ.
In the general case, we exploit this simple observation: we can still conclude

that ϕ is satisfiable if we are able to show that ϕ̂ is satisfiable under all possible
interpretations of ftfthat are guaranteed to include also tf .

Using the model μ̂, we compute safe lower and upper bounds tf(μ̂[x])
l

and

tf(μ̂[x])
u

for the function tf at point μ̂[x] with the poly-approx function (see
above). Let FTF be the set of all ftf(x) terms occurring in ϕ̂. Let V be the set
of variables x for ftf(x) ∈ FTF , and F be the set of all the function symbols in
FTF . Intuitively, if we can prove the validity of the following formula:

∀ ftf ∈ F.

⎛
⎝ ∧

ftf(x)∈FTF

tf(μ̂[x])
l
≤ ftf(μ̂[x]) ≤ tf(μ̂[x])

u

⎞
⎠→ ϕ̂{V �→ μ̂[V]}

then the original formula ϕ is satisfiable.
In order to be able to use a quantifier-free SMT(UFLRA)-solver, we reduce

the problem to the validity check of a pure UFLRA formula. Let CT be the set
of all terms ftf(μ̂[x]) occurring in ϕ̂{V �→ μ̂[V]}. We replace each occurrence of
ftf(μ̂[x]) in CT with a corresponding fresh variable yftf(μ̂[x]) from a set Y . We
then check the validity of the formula:

ϕsat
μ̂

def
= ∀Y.

⎛
⎝
⎛
⎝ ∧

ftf(x)∈FTF

tf(μ̂[x])
l
≤ ftf(μ̂[x]) ≤ tf(μ̂[x])

u

⎞
⎠→ ϕ̂{V �→ μ̂[V]}

⎞
⎠ {CT �→ Y }.

1 For simplicity, we assume that this is always possible. If needed, this can be imple-
mented e.g. by generating the two points at random while ensuring that l < μ̂[x] < u
and that l, u do not cross any inflection point.

2 Although, as mentioned above, this is not the case in general (see e.g. [21]), it is true
for some special values, e.g. exp(0) = 1, sin(0) = 0.

Satisfiability Modulo Transcendental Functions 103

If ¬ϕsat
μ̂ is unsatisfiable, we conclude that ϕ is satisfiable. Clearly, this can be

checked with a quantifier-free SMT(UFLRA)-solver, since ¬∀x.φ is equivalent to
∃x.¬φ, and x can then be removed by Skolemization.

4 Abstraction Refinement for Transcendental Functions

In this section, we describe the implementation of the poly-approx and refine-extra
for the transcendental functions that we currently support, namely exp and sin.3

The poly-approx(tf(x), c, ε) function uses the Maclaurin series of the corre-
sponding transcendental function and Taylor’s theorem to find the lower and
upper polynomials. Essentially, this is done by expanding the series (and the
remainder approximation) up to a certain n, until the desired precision ε (i.e. the
difference between the upper and lower polynomials evaluated at c) is achieved.
Notice that, since we can precisely evaluate the derivative of any order at 0
for both exp and sin,4 the computation of both the Maclaurin series and the
remainder polynomial is always exact.

4.1 Exponential Function

Piecewise-LinearRefinement. ThepolynomialPn,exp(0)(x) givenby theMaclaurin
series behaves differently depending on the sign of x. For that reason, poly-approx
distinguishes three cases for finding the polynomials Pl(x) and Pu(x):

Case x = 0: since exp(0) = 1, we have Pl(0) = Pu(0) = 1;
Case x < 0: we have that Pn,exp(0)(x) < exp(x) if n is odd, and Pn,exp(0)(x) >

exp(x) if n is even (where Pn,exp(0)(x) =
∑n

i=0
xi

i!); we therefore set Pl(x) =
Pn,exp(0)(x) and Pu(x) = Pn+1,exp(0)(x) for a suitable n so that the required
precision ε is met;

Case x > 0: we have that Pn,exp(0)(x) < exp(x) and Pn,exp(0)(x) ∗ (1 −
xn+1

(n+1)!)
−1 > exp(x) when (1 − xn+1

(n+1)!) > 0, therefore we set Pl(x) =

Pn,exp(0)(x) and Pu(x) = Pn,exp(0)(x) ∗ (1 − xn+1

(n+1)!)
−1 for a suitable n.

Since the concavity of exp is always positive, the tangent refinement will
always give lower bounds for exp(x), and the secant refinement will give upper
bounds. Moreover, as exp has no inflection points, get-tangent-bounds always
returns [−∞,+∞].

3 We remark that our tool (see Sect. 6) can handle also log, cos, tan, arcsin, arccos,
arctan by means of rewriting. We leave as future work the possibility of handling
such functions natively.

4 Because (i) exp(0) = 1, sin(0) = 0, cos(0) = 1, (ii) exp(i)(x) = exp(x) for all i, and
(iii) | sin(i)(x)| is | cos(x)| if i is odd and | sin(x)| otherwise.

104 A. Cimatti et al.

Extra Refinement. The exponential function is monotonically increasing with a
non-linear order. We check this property between two fexp(x) and fexp(y) terms
in ϕ̂: if μ̂[x] < μ̂[y], but μ̂[fexp(x)] �< μ̂[fexp(y)], then we add the following extra
refinement lemma:

x < y ↔ fexp(x) < fexp(y)

Initial Axioms. We add the following initial axioms to ϕ̂.

Lower Bound: fexp(x) > 0
Zero: (x = 0 ↔ fexp(x) = 1) ∧ (x < 0 ↔ fexp(x) < 1)∧

(x > 0 ↔ fexp(x) > 1)
Zero Tangent Line: x = 0 ∨ fexp(x) > x + 1

4.2 Sin Function

Piecewise-Linear Refinement. The correctness of our refinement procedure relies
crucially on being able to compute the concavity of the transcendental function
tf at a given point c. This is needed in order to know whether a computed
tangent or secant line constitutes a valid upper or lower bound for tf around
c (see Fig. 3). In the case of the sin function, computing the concavity at an
arbitrary point c is problematic, since this essentially amounts to computing the
remainder of c and π, which, being π a transcendental number, cannot be exactly
computed.

In order to solve this problem, we exploit another property of sin, namely
its periodicity (with period 2π). More precisely, we split the reasoning about sin
depending on two kinds of periods: base period and extended period. A period is
a base period for the sin function if it is from −π to π, otherwise it is an extended
period. In order to reason about periods, we first introduce a symbolic variable
π̂, and add the constraint lπ < π̂ < uπ to ϕ̂, where lπ and uπ are valid rational
lower and upper bounds for the actual value of π (in our current implementation,
we have lπ = 333

106 and uπ = 355
113). Then, we introduce for each fsin(x) term an

“artificial” sin function application fsin(yx) (where yx is a fresh variable), whose
domain is the base period. This is done by adding the following constraints:

(−π̂ ≤ yx ≤ π̂) ∧ ((−π̂ ≤ x ≤ π̂) → yx = x) ∧ fsin(x) = fsin(yx).

We call these fresh variables base variables. Notice that the second and the third
constraint are saying that fsin(x) is the same as fsin(yy) in the base period.

Let Fsinbase be the set of fsin(yx) terms that have base variables as argu-
ments, Fsin be the set of all fsin(x) terms, and Fsinext

def= Fsin − Fsinbase.
The tangent and secant refinement is performed for the terms in Fsinbase, while
we add a linear shift lemma (described below) as refinement for the terms in
Fsinext. Using this transformation, we can easily compute the concavity of sin at
μ̂[yx] by just looking at the sign of μ̂[yx], provided that −lπ ≤ μ̂[yx] ≤ lπ, where
lπ is the current lower bound for π̂.5 In the case in which −uπ < μ̂[yx] < −lπ or
5 In the interval [−π, π], the concavity of sin(c) is the opposite of the sign of c.

Satisfiability Modulo Transcendental Functions 105

lπ < μ̂[yx] < uπ, we do not perform the tangent/secant refinement, but instead
we refine the precision of π̂. For each fsin(yx) ∈ FSinbase, poly-approx tries to
find the lower and upper polynomial using Taylor’s theorem, which ensures that:

Pn,sin(0)(yx) − Rn+1,sin(0)
u
(yx) ≤ sin(yx) ≤ Pn,sin(0)(yx) + Rn+1,sin(0)

u
(yx)

where Pn,sin(0)(yx) =
∑n

k=0
(−1)k∗y2k+1

x

(2k+1)! and Rn+1,sin(0)
u
(yx) = y2(n+1)

x

(2(n+1))! . There-

fore, we can set Pl(x) = Pn,sin(0)(x)−Rn+1,sin(0)
u
(x) and Pu(x) = Pn,sin(0)(x)+

Rn+1,sin(0)
u
(x).

Extra Refinement. For each fsin(x) ∈ Fsinext with the corresponding base vari-
able yx, we check whether the value μ̂[x] after shifting to the base period is equal
to the value of μ̂[yx]. We calculate the shift s of x as the rounding towards zero
of (μ̂[x] + μ̂[π̂])/(2 · μ̂[π̂]), and we then compare μ̂[yx] with μ̂[x] − 2s · μ̂[π̂]. If the
values are different, we add the following shift lemma for relating x with yx in
the extended period s:

(π̂ ∗ (2s − 1) ≤ x ≤ π̂ ∗ (2s + 1)) → yx = x − 2s ∗ π̂.

In this way, we do not need the tangent and secant refinement for the extended
period and we can reuse the refinements done in the base period. Note that even
if the calculated shift value is wrong (due to the imprecision of μ̂[π̂] with respect
to the real value π), we may generate something useless but never wrong.

We also check the monotonicity property of sin, which can be described for
the base period as: (i) the sin is monotonically increasing in the interval −π

2 to
π
2 ; (ii) the sin is monotonically decreasing in the intervals −π to −π

2 and π
2 to π.

We add one of the constraints below if it is in conflict according to the current
abstract model for some fsin(yx1), fsin(yx2) ∈ Fsinbase.

(− π̂

2
≤ yx1 < yx2 ≤ π̂

2
) → fsin(yx1) < fsin(yx2)

(−π̂ ≤ yx1 < yx2 ≤ − π̂

2
) → fsin(yx1) > fsin(yx2)

(
π̂

2
≤ yx1 < yx2 ≤ π̂) → fsin(yx1) > fsin(yx2)

Initial Axioms. For each fsin(z) ∈ Fsin, we add the generic lower and upper
bounds: −1 ≤ fsin(z) ≤ 1. For each fsin(yx) ∈ Fsinbase, we add the following
axioms.

Symmetry: fsin(yx) = − fsin(−yx)

Phase: (0 < yx < π̂ ↔ fsin(yx) > 0) ∧ (−π̂ < yx < 0 ↔ fsin(yx) < 0)

Zero Tangent: (yx > 0 → fsin(yx) < yx) ∧ (yx < 0 → fsin(yx) > yx)

πTangent :(yx < π̂ → fsin(yx) < −yx + π̂)∧
(yx > −π̂ → fsin(yx) > −yx − π̂)

106 A. Cimatti et al.

Significant Values: (fsin(yx) = 0 ↔ (yx = 0 ∨ yx = π̂ ∨ yx = −π̂))∧

(fsin(yx) = 1 ↔ yx =
π̂

2
) ∧ (fsin(yx) = −1 ↔ yx = − π̂

2
)∧

(fsin(yx) =
1

2
↔ (yx =

π̂

6
∨ yx =

5 ∗ π̂

6
))∧

(fsin(yx) = −1

2
↔ (yx = − π̂

6
∨ yx = −5 ∗ π̂

6
))

4.3 Optimization

We use infinite-precision to represent rational numbers. In our (model-driven)
approach, we may have to deal with numbers with very large numerators and/or
denominators. It may happen that we get such rational numbers from the bad
model μ̂ for the variables appearing as arguments of transcendental functions.
As a result of the piecewise-linear refinement, we will feed to the SMT(UFLRA)
solver numbers that have even (exponentially) larger numerators and/or denom-
inators (due to the fact that poly-approx uses power series). This might sig-
nificantly slow-down the performance of the solver. We address this issue by
approximating “bad” values μ̂[x] with too large numerators and/or denominators
by using continued fractions [20]. The precision of the rational approximation
is increased periodically over the number of iterations. Thus we delay the use
numbers with larger numerator and/or denominator, and eventually find those
numbers if they are really needed.

5 Related Work

The approach proposed in this paper is an extension of the approach adopted
in [5] for checking the invariants of transition systems over the theory of poly-
nomial Nonlinear Real Arithmetic. In this paper we extend the approach to
transcendental functions, with the critical issue of irrational valuations. Fur-
thermore, we propose a way to prove SAT without being forced to construct the
model.

In the following, we compare with related approaches found in the literature.

Interval Propagation and DELTASAT. The first approach to SMT(NTA)
was pioneered by iSAT3 [11], that carries out interval propagation for nonlinear
and transcendental functions. iSAT3 is both an SMT solver and bounded model
checker for transition systems. A subsequent but very closely related approach
is the dReal solver, proposed in [12]. dReal relies on the notion of delta-
satisfiability [12], which basically guarantees that there exists a variant (within
a user-specified δ “radius”) of the original problem such that it is satisfiable. The
approach cannot guarantee that the original problem is satisfiable, since it relies
on numerical approximation techniques that only compute safe overapproxima-
tions of the solution space.

Satisfiability Modulo Transcendental Functions 107

There are a few key insights that differentiate our approach. First, it is
based on linearization, it relies on solvers for SMT(UFLRA), and it proceeds
by incrementally axiomatizing transcendental functions. Compared to interval
propagation, we avoid numerical approximation (even if within the bounds from
DeltaSat). In a sense, the precision of the approximation is selectively detected
at run time, while in iSAT3 and dReal this is a user defined threshold that is
uniformly adopted in the computations. Second, our method relies on piecewise
linear approximations, which can provide substantial advantages when approxi-
mating a slope – intuitively, interval propagation ends up computing a piecewise-
constant approximation. Third, a distinguishing feature of our approach is the
ability to (sometimes) prove the existence of a solution even if the actual values
are irrationals, by reduction to an SMT-based validity check.

Deductive Methods. The MetiTarski [1] theorem prover relies on resolution
and on a decision procedure for NRA to prove quantified inequalities involving
transcendental functions. It works by replacing transcendental functions with
upper- or lower-bound functions specified by means of axioms (corresponding
to either truncated Taylor series or rational functions derived from continued
fraction approximations), and then using an external decision procedure for NRA
for solving the resulting formulas. Differently from our approach, MetiTarski

cannot prove the existence nor compute a satisfying assignment, while we are
able to (sometimes) prove the existence of a solution even if the actual values are
irrationals. Finally, we note that MetiTarski may require the user to manually
write axioms if the ones automatically selected from a predefined library are not
enough. Our approach is much simpler, and it is completely automatic.

The approach presented in [10], where the NTA theory is referred to as
NLA, is similar in spirit to MetiTarski in that it combines the SPASS the-
orem prover [27] with the iSAT3 SMT solver. The approach relies on the
SUP(NLA) calculus that combines superposition-based first-order logic reason-
ing with SMT(NTA). Similarly to our work, the authors also use a UFLRA
approximation of the original problem. This is however done only as a first
check before calling iSAT3. In contrast, we rely on solvers for SMT(UFLRA),
and we proceed by incrementally axiomatizing transcendental functions instead
of calling directly an NTA solver. Another similarity with our work is the pos-
sibility of finding solutions in some cases. This is done by post-processing an
inconclusive iSAT3 answer, trying to compute a certificate for a (point) solution
for the narrow intervals returned by the solver, using an iterative analysis of the
formula and of the computed intervals. Although similar in spirit, our technique
for detecting satisfiable instances is completely different, being based on a logical
encoding of the existence of a solution as an SMT(UFLRA) problem.

Combination of Interval Propagation and Theorem Proving. Gappa

[9,18] is a standalone tool and a tactic for the Coq proof assistant, that
can be used to prove properties about numeric programs (C-like) dealing
with floating-point or fixed-point arithmetic. Another related Coq tactic is

108 A. Cimatti et al.

Coq.Interval [19]. Both Gappa and Coq.Interval combine interval prop-
agation and Taylor approximations for handling transcendental functions. A
similar approach is followed also in [25], where a tool written in Hol-Light to
handle conjunctions of non-linear equalities with transcendental functions is pre-
sented. The work uses Taylor polynomials up to degree two. NLCertify [17] is
another related tool which uses interval propagation for handling transcendental
functions. It approximates polynomials with sums of squares and transcendental
functions with lower and upper bounds using some quadratic polynomials [2].
Internally, all these tools/tactics rely on multi-precision floating point libraries
for computing the interval bounds.

A similarity between these approaches and our approach is the use of the
Taylor polynomials. However, one distinguishing feature is that we use them to
find lower and upper linear constraints by computing tangent and secant lines.
Moreover, we do not rely on any floating point arithmetic library, and unlike
the mentioned approaches, we can also prove the existence of a solution. On
the other hand, some of the above tools employ more sophisticated/specialised
approximations for transcendental functions, which might allow them to succeed
in proving unsatisfiability of formulas for which our technique is not sufficiently
precise.

Finally, since we are in the context of SMT, our approach also has the benefits
of being: (i) fully automatic, unlike some of the above which are meant to be
used within interactive theorem provers; (ii) able to deal with formulas with an
arbitrary Boolean structure, and not just conjunctions of inequalities; and (iii)
capable of handling combinations of theories (including uninterpreted functions,
bit-vectors, arrays), which are beyond what the above, more specialised tools,
can handle.

6 Experimental Analysis

Implementation. The approach has been implemented on top of the Math-

SAT SMT solver [7], using the PySMT library [14]. We use the GMP infinite-
precision arithmetic library to deal with rational numbers. Our implementa-
tion and benchmarks are available at https://es.fbk.eu/people/irfan/papers/
cade17-smt-nta.tar.gz.

Setup. We have run our experiments on a cluster equipped with 2.6GHz Intel
Xeon X5650 machines, using a time limit of 1000 seconds and a memory limit
of 6 Gb.

We have run MathSAT in two configurations: with and without universal
check for proving SAT (resp. called MathSAT and MathSAT-noUniSAT).

The other systems used in the experimental evaluation are dReal [13],
iSAT3 [24], and MetiTarski [1], in their default configurations (unless oth-
erwise specified). Both iSAT3 and dReal were also run with higher precision
than the default one. The difference between the two configurations is rather
modest and, when run with higher precision, they decrease the number of

https://es.fbk.eu/people/irfan/papers/cade17-smt-nta.tar.gz
https://es.fbk.eu/people/irfan/papers/cade17-smt-nta.tar.gz

Satisfiability Modulo Transcendental Functions 109

MaybeSat answers. MetiTarski can prove the validity of quantified formulae,
answering either valid or unknown. As such, it is unfair to run it on satisfiable
benchmarks. In general, we interpret the results of the comparison taking into
account the features of the tools.

Benchmarks. We consider three classes of benchmarks. First, the bounded
model checking (BMC) benchmarks are the results of unrolling transition sys-
tems with nonlinear and transcendental transition relations, obtained from the
discretization of hybrid automata. We took benchmarks from the distributions of
iSAT3, from the discretization (by way of HyComp [6] and nuXmv [4]) of bench-
marks from [8] and from the hybrid model checkers HyST [3] and Hare [23].
Second, the Mathematical benchmarks are taken from the MetiTarski distrib-
ution. These are benchmarks containing quantified formulae over transcendental
functions, and are all valid, most of them corresponding to known mathematical
theorems. We selected the MetiTarski benchmarks without quantifier alter-
nation and we translated them into quantifier-free SMT(NTA) problems. The
third class of benchmarks consists of 944 instances from the dReal distribution
that contain transcendental functions.

Both the mathematical and the dReal benchmarks contain several transcen-
dental functions (log, cos, ...) that are not supported natively by our prototype.
We have therefore applied a preprocessing step that rewrites those functions in
terms of exp and sin.6 iSAT3 requires bounds on the variables and it is unable to
deal with the benchmarks above (that either do not specify any bound or specify
too wide bounds for the used variables). Thus, we scaled down the benchmarks
so that the variables are constrained in the [−300, 300] interval since for higher
bounds iSAT3 raises an exception due to reaching the machine precision limit.
Finally, for the BMC benchmarks, we run iSAT3 in BMC mode, in order to
ensure that its optimized unrolling is activated.

BMC and Mathematical Results. In Table 1, we present the results. The
benchmarks are classified as either Sat or Unsat when at least one of the
solvers has been able to return a definite answer. If only MaybeSat answers
are returned, then the benchmark is classified as Unknown. For each tool, we
report the number of answers produced within the used resource limits. For
the MaybeSat benchmarks, the numbers in parentheses indicate the instances
which have been classified as Sat/Unsat by at least one other tool. For example,
an entry “87 (32/7)” means that the tool returned MaybeSat for 87 instances,
of which 32 were classified as Sat and 7 Unsat by some other tool.7

First, we notice that the universal SAT technique directly results in 72 bench-
marks proved to be satisfiable by MathSAT, without substantial degrade on

6 Sometimes we used a relational encoding: e.g. if ϕ contains arcsin(x), we rewrite it
as ϕ{arcsin(x) �→ asx}∧sin(asx) = x∧− π̂

2
≤ asx ≤ π̂

2
, where asx is a fresh variable.

7 There was no case in which two tools reported Sat and Unsat for the same bench-
mark.

110 A. Cimatti et al.

Table 1. Results on the BMC and Metitarski benchmarks.

Benchmarks Bounded model checking (887) Mathematical (681)

Result SAT UNSAT MaybeSAT SAT UNSAT MaybeSAT

MetiTarski n.a. n.a. n.a. n.a. 530 n.a.

MathSAT 72 553 n.a. 0 210 n.a.

MathSAT-noUniSAT 44 554 n.a. 0 221 n.a.

iSAT3 n.a. n.a. n.a. n.a. n.a. n.a.

dReal n.a. 392 281 (67/23) n.a. 285 316 (0/253)

Benchmarks Scaled bounded model checking (887) Scaled mathematical (681)

Result SAT UNSAT MaybeSAT SAT UNSAT MaybeSAT

MathSAT 84 556 n.a. 0 215 n.a.

MathSAT-noUniSAT 48 556 n.a. 0 229 n.a.

iSAT3 35 470 87 (32/7) 0 212 137 (0/115)

dReal n.a. 403 251 (77/23) n.a. 302 245 (0/195)

the Unsat benchmarks. Second, we notice that MetiTarski is very strong to
deal with its own mathematical benchmarks, but is unable to deal with the
BMC ones, which contain features that are beyond what it can handle (Boolean
variables and tens of real variables).8

In the lower part of Table 1, we present the results on the scaled-down bench-
marks, so that iSAT3 can be run. The results for dReal and MathSAT are
consistent with the ones obtained on the original benchmarks – the benchmarks
are slightly simplified for MathSAT, that solves 12 more Sat instances and 2
more Unsat ones, and for dReal, that solves 11 more Unsat instances. The
performance of iSAT3 is quite good, halfway between dReal and MathSAT on
the bounded model checking benchmarks, and slightly lower than MathSAT on
the mathematical ones. In the BMC benchmarks, iSAT3 is able to solve 35 Sat

and 470 Unsat instances, 102 more than dReal and 135 less than MathSAT.
The MaybeSat results need further analysis. We notice that both iSAT3

and dReal often return MaybeSat on unsatisfiable benchmarks (e.g. all the
mathematical ones are Unsat). There are many cases where dReal returns a
DeltaSat result, but at the same time it prints an error message stating that
the numerical precision limit has been reached. Thus, it is unlikely that the
result is actually DeltaSat, but it should rather be interpreted as MaybeSat

in these cases.9

DREAL Benchmarks Results. The dReal benchmarks turn out to be very
hard. The results are reported in Table 2, where we show the performance of
dReal both on the original benchmarks and on the ones resulting from the
removal via pre-processing of the transcendental functions not directly supported

8 According to the documentation of MetiTarski, the tool is ineffective for problems
with more than 10 real variables. Our experiments on a subset of the instances
confirmed this.

9 We contacted the authors of dReal and they reported that this issue is currently
under investigation.

Satisfiability Modulo Transcendental Functions 111

Table 2. Results on the Dreal benchmarks.

Benchmarks DREAL (all) (944)

Status SAT UNSAT MaybeSAT

dReal (orig.) n.a. 102 524(3/4)

MathSAT 3 68 n.a.

dReal n.a. 44 57(3/4)

Benchmarks DREAL (exp/sin only) (96)

Status SAT UNSAT MaybeSAT

dReal (orig.) n.a. 17 37 (3/3)

MathSAT 3 39 n.a.

by MathSAT. The results shows that in the original format dReal solves many
more instances, and this suggests that dealing with other transcendental func-
tions in a native manner may lead to substantial improvement in MathSAT

too. Interestingly, if we focus on the subset of 96 benchmarks that only contain
exp and sin (and are dealt by MathSAT without the need of preprocessing),
we see that MathSAT is significantly more effective than dReal in proving
unsatisfiability, solving more than twice the number of instances (right part of
Table 2).

We conclude by noticing that overall MathSAT solves 906 benchmarks out of
2512, 127 more than dReal, the best among the other systems. A deeper analysis
of the results (not reported here for lack of space) shows that the performance of
the solvers is complementary: the “virtual-best system” solves 1353 benchmarks.
This suggests that the integration of interval propagation may yield further
improvements.

7 Conclusion

We present a novel approach to Satisfiability Modulo the theory of transcenden-
tal functions. The approach is based on an abstraction-refinement loop, where
transcendental functions are represented as uninterpreted ones in the abstract
space SMT(UFLRA), and are incrementally axiomatized by means of piecewise-
linear functions. We experimentally evaluated the approach on a large and het-
erogeneous benchmark set: the results demonstrates the potential of our app-
roach, showing that it compares favorably with both delta-satisfiabily and inter-
val propagation and with methods based on theorem proving.

In the future we plan to exploit the solver for the verification of infinite-state
transition systems and hybrid automata with nonlinear dynamics, and for the
analysis of resource consumption in temporal planning. Finally we would like to
define a unifying framework to compare linearization and interval propagation,
and to exploit the potential synergies.

112 A. Cimatti et al.

References

1. Akbarpour, B., Paulson, L.C.: MetiTarski: an automatic theorem prover for real-
valued special functions. JAR 44(3), 175–205 (2010)

2. Allamigeon, X., Gaubert, S., Magron, V., Werner, B.: Certification of inequalities
involving transcendental functions: combining SDP and max-plus approximation.
In: 2013 European Control Conference (ECC), pp. 2244–2250. IEEE (2013)

3. Bak, S., Bogomolov, S., Johnson, T.T.: HYST: a source transformation and trans-
lation tool for hybrid automaton models. In: Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, pp. 128–133. ACM
(2015)

4. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A.,
Mover, S., Roveri, M., Tonetta, S.: The nuXmv symbolic model checker. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 334–342. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9 22

5. Cimatti, A., Griggio, A., Irfan, A., Roveri, M., Sebastiani, R.: Invariant checking of
NRA transition systems via incremental reduction to LRA with EUF. In: Legay and
Margaria [16], pp. 58–75. https://es-static.fbk.eu/people/griggio/papers/tacas17.
pdf

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-Based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0 4

7. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT
solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp.
93–107. Springer, Heidelberg (2013). doi:10.1007/978-3-642-36742-7 7

8. Cimatti, A., Mover, S., Sessa, M.: From electrical switched networks to hybrid
automata. In: Fitzgerald, J., Heitmeyer, C., Gnesi, S., Philippou, A. (eds.)
FM 2016. LNCS, vol. 9995, pp. 164–181. Springer, Cham (2016). doi:10.1007/
978-3-319-48989-6 11

9. de Dinechin, F., Lauter, C., Melquiond, G.: Certifying the floating-point imple-
mentation of an elementary function using Gappa. IEEE Trans. Comput. 60(2),
242–253 (2011)

10. Eggers, A., Kruglov, E., Kupferschmid, S., Scheibler, K., Teige, T., Weidenbach, C.:
Superposition modulo non-linear arithmetic. In: Tinelli, C., Sofronie-Stokkermans,
V. (eds.) FroCoS 2011. LNCS (LNAI), vol. 6989, pp. 119–134. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-24364-6 9

11. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of
large non-linear arithmetic constraint systems with complex boolean structure.
JSAT 1(3–4), 209–236 (2007)

12. Gao, S., Avigad, J., Clarke, E.M.: δ-Complete decision procedures for satisfi-
ability over the reals. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR
2012. LNCS, vol. 7364, pp. 286–300. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31365-3 23

13. Gao, S., Kong, S., Clarke, E.M.: dReal: An SMT solver for nonlinear theories over
the reals. In: Bonacina, M.P. (ed.) CADE 2013. LNCS (LNAI), vol. 7898, pp.
208–214. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 14

14. Gario, M., Micheli, A.: PySMT: a solver-agnostic library for fast prototyping of
SMT-based algorithms. In: SMT, pp. 373–384 (2015)

15. Hazewinkel, M.: Encyclopaedia of Mathematics: Stochastic Approximation
Zygmund Class of Functions. Encyclopaedia of Mathematics. Springer,
Netherlands (1993). https://books.google.it/books?id=1ttmCRCerVUC

http://dx.doi.org/10.1007/978-3-319-08867-9_22
https://es-static.fbk.eu/people/griggio/papers/tacas17.pdf
https://es-static.fbk.eu/people/griggio/papers/tacas17.pdf
http://dx.doi.org/10.1007/978-3-662-46681-0_4
http://dx.doi.org/10.1007/978-3-642-36742-7_7
http://dx.doi.org/10.1007/978-3-319-48989-6_11
http://dx.doi.org/10.1007/978-3-319-48989-6_11
http://dx.doi.org/10.1007/978-3-642-24364-6_9
http://dx.doi.org/10.1007/978-3-642-31365-3_23
http://dx.doi.org/10.1007/978-3-642-31365-3_23
http://dx.doi.org/10.1007/978-3-642-38574-2_14
https://books.google.it/books?id=1ttmCRCerVUC

Satisfiability Modulo Transcendental Functions 113

16. Legay, A., Margaria, T. (eds.): TACAS 2017. LNCS, vol. 10205. Springer,
Heidelberg (2017)

17. Magron, V.: NLCertify: a tool for formal nonlinear optimization. In: Hong, H.,
Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 315–320. Springer, Heidelberg
(2014). doi:10.1007/978-3-662-44199-2 49

18. Martin-Dorel, É., Melquiond, G.: Proving tight bounds on univariate expressions
with elementary functions in Coq. J. Autom. Reasoning 57(3), 187–217 (2016)

19. Melquiond, G.: Coq-interval (2011)
20. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley-

Interscience, New York (1988)
21. Nieven, I.: Numbers: Rational and Irrational. Mathematical Association of America

(1961)
22. Ratschan, S.: Efficient solving of quantified inequality constraints over the real

numbers. TOCL 7(4), 723–748 (2006)
23. Roohi, N., Prabhakar, P., Viswanathan, M.: HARE: A hybrid abstraction refine-

ment engine for verifying non-linear hybrid automata. In: Legay and Margaria [16],
pp. 573–588

24. Scheibler, K., Kupferschmid, S., Becker, B.: Recent improvements in the SMT
solver iSAT. MBMV 13, 231–241 (2013)

25. Solovyev, A., Hales, T.C.: Formal verification of nonlinear inequalities with
taylor interval approximations. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM
2013. LNCS, vol. 7871, pp. 383–397. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-38088-4 26

26. Townsend, E.: Functions of a Complex Variable. Read Books (2007)
27. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:

SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663,
pp. 140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 10

http://dx.doi.org/10.1007/978-3-662-44199-2_49
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1007/978-3-642-38088-4_26
http://dx.doi.org/10.1007/978-3-642-02959-2_10

Satisfiability Modulo Bounded Checking

Simon Cruanes(B)

University of Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France
simon.cruanes@inria.fr

Abstract. We describe a new approach to find models for a compu-
tational higher-order logic with datatypes. The goal is to find counter-
examples for conjectures stated in proof assistants. The technique builds
on narrowing [14] but relies on a tight integration with a SAT solver to
analyze conflicts precisely, eliminate sets of choices that lead to failures,
and sometimes prove unsatisfiability. The architecture is reminiscent of
that of an SMT solver. We present the rules of the calculus, an imple-
mentation, and some promising experimental results.

1 Introduction

Computational higher-order logics are widely used to reason about purely func-
tional programs and form the basis of proof assistants such as ACL2 [12], Coq [8],
and Isabelle [15]. Searching for models in such logics is useful both for refuting
wrong conjectures and for testing — it is often faster and easier to test a prop-
erty than to prove it. In this work we focus on a logic with algebraic datatypes
and terminating recursive functions. Once proven terminating, these functions
have a natural interpretation in any model as least fixpoints.

The typical use case is for the users to specify a property they believe to
hold for the program they wrote and let a solver search for a (counter-)example
until some resource is exhausted — time, patience, etc. Our goal is to build a
tool that can be used for finding counter-examples in proof assistants. Figure 1
presents such a problem in TIP syntax [6] that defines natural numbers, lists,
and operations on lists, where the (unsatisfiable) goal is to find a list of natural
numbers that is a palindrome of length 2 with sum 3.

In the functional programming community, tools such as QuickCheck [5]
and SmallCheck [18] have been used to test conjectures against random values
or up to a certain depth. Feat [10] is similar to SmallCheck but enumerates
inputs by increasing size, rather than depth. However, QuickCheck is limited
when invariants have to be enforced (e.g. red-blackness of trees), forcing users to
write custom random generators, and SmallCheck and Feat can get lost quickly
in large search spaces. Lazy SmallCheck (LSC) is similar to SmallCheck but
relies on the lazy semantics of Haskell to avoid enumerating inputs that are not
needed to evaluate the property. LSC is close to narrowing [1,14], a symbolic
approach that has ties to functional logic programming [11] and builds a model
incrementally. Nevertheless, LSC and narrowing-based tools explore the space of

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 114–129, 2017.
DOI: 10.1007/978-3-319-63046-5 8

Satisfiability Modulo Bounded Checking 115

Fig. 1. Looking for impossible palindromes

possible inputs quite naively, making many counter-examples very hard to find.
All these approaches lack a way of analyzing why a given search path failed.

Modern SMT solvers are often efficient in difficult combinatorial problems.
They rely on a SAT solver to analyze conflicts and interleave theory reason-
ing with propositional choices. However, their focus is first-order classical logic,
where symbols are neatly partitioned between theory symbols that have a pre-
cise definition and user-provided symbols that are axiomatized. When a user
want to introduce their own parameterized operators, they must use quantifiers
and full first order logic, where solvers are usually incomplete. Some work has
been done on handling datatypes [4,16] and recursive functions in SMT solvers
such as CVC4 [17] or calling an SMT solver repeatedly while expanding function
definitions as in Leon [19], but each reduction step (e.g. function call) is very
expensive.

Bridging the gap between QuickCheck and SMT solvers is HBMC [7] (Haskell
Bounded Model Checker — not published yet). HBMC progressively encodes the
evaluation graph into propositional constraints (effectively “bit-blasting” recur-
sive functions and datatypes), leveraging the powerful constraint propagations of
modern SAT solvers. However, it suffers from the same weakness as SMT-based
techniques: every evaluation step has to be encoded, then performed, inside the
SAT solver, making computations slow.

We present a new technique, Satisfiability Modulo Bounded Checking (SMBC)
that occupies a middle ground between narrowing and HBMC. On the one hand,
it can evaluate terms more efficiently than pure bit-blasting although not quite
as fast as native code; on the other hand it benefits from propositional conflict-
driven clause learning (CDCL) of modern SAT solvers to never make the same
bad choice twice. Two main components are involved: (i) a symbolic evaluation
engine (Sect. 3), and (ii) a SAT solver with incremental solving under assump-
tions (Sect. 4). Those two components communicate following lazy SMT tech-
niques [3]. Inputs are lazily and symbolically enumerated using iterative deep-
ening (Sect. 5) to ensure fairness, but we use the ability of the SAT solver to
solve under assumptions to avoid the costly re-computations usually associated
with that technique. In addition, building on CDCL allows SMBC to sometimes

116 S. Cruanes

prove the unsatisfiability of the problem, something evaluation-based tools are
incapable of.

We can extend SMBC to support uninterpreted types and unspecified func-
tions (Sect. 6). After presenting refinements to the calculus (Sect. 7) and an
implementation (Sect. 8), we run some experiments (Sect. 9) to compare SMBC
with some of the previously mentioned tools on various families of problems.
Detailed proofs and additional content can be found in our report.1

2 Logic

We consider a multi-sorted higher-order classical logic, without polymorphism.
A finite set of mutually recursive datatypes d1, . . . , dk is defined by a system

(
di

def= ci,1(αi,1) | · · · | ci,ni
(αi,ni

)
)

i∈{1,...,k}

where the αi,j are tuples of type arguments. We consider only standard models,
in which the domain of a datatype is the set of terms freely generated from its
constructors. Similarly, mutually recursive functions f1, . . . , fk are defined by a
set of equations f1(x1)

def= t1, . . . , fk(xk) def= tk that we assume total and ter-
minating. The term language comprises bound variables, datatype constructors,
shallow pattern-matching over datatypes, λ-abstractions λx : τ. t, and applica-
tions f t1 . . . tn. Constructors are always fully applied. tσ is the application of
a substitution over bound variables σ to t. Bool def= {�,⊥} is a special datatype,
paired with tests if a b c that are short for case a of � → b | ⊥ → c end. A value is a
λ-abstraction or constructor application. The operators ∧ : Bool → Bool → Bool
and ¬ : Bool → Bool have the usual logical semantics; evaluation of ∧ is par-
allel rather than the usual sequential semantics it has in most programming
languages: t ∧ ⊥ reduces to ⊥ even if t is not a value. We will speak of parallel
conjunction. Other boolean connectives are encoded in terms of ∧ and ¬. We
also define an ad hoc polymorphic equality operator = that has the classic struc-
tural semantics on datatypes and booleans; comparison of functions is forbidden.
An unknown is simply an uninterpreted constant which must be given a value
in the model. This logic corresponds to the monomorphic fragment of TIP [6]
or the extension of SMT-LIB [2] with recursive functions, with the additional
assumption that they always terminate.

A data value is a term built only from constructor applications, bound vari-
ables, and λ-abstractions (without defined symbols, matching, or unknowns).
The depth of a data value is recursively defined as 1 on constant constructors,
1 + depth(t) for λx. t, and 1 + maxi=1...n depth(ti) on constructor applications
c(t1, . . . , tn).2 A goal set G is a set of boolean terms. A model of G is a mapping

1 https://cedeela.fr/∼simon/files/cade 17 report.pdf.
2 A more flexible definition depth(c(t1, . . . , tn)) = cost(c) + maxi=1...n depth(ti) can

also be used to skew the search towards some constructors, as long as cost(c) > 0
holds for all c.

https://cedeela.fr/~simon/files/cade_17_report.pdf

Satisfiability Modulo Bounded Checking 117

from unknowns of G to data values, such that
∧

t∈G t evaluates to �. The depth
of a model is the maximal depth of the data values in it.

In the rest of this paper, t, u will represent terms, k will be unknowns, c, d
will be constructors, and e will stand for explanations (conjunctions of literals).
We will use an injective mapping to propositional variables denoted �·�.

3 Evaluation with Explanations

The semantics of our logic relies on evaluating expressions that contain tests,
pattern matching, and (recursive) functions. Because expressions can contain
unknowns, their reduction is influenced by assignments to these unknowns. We
need an evaluator that keeps track of which choices were used to reduce a term.
In this way, when a goal term reduces to ⊥, we know that this combination of
choices is wrong.

In Fig. 2, we show the evaluation rules for terms, given a substitution ρ

on unknowns. The notation t
ρ−−→e u means that t reduces to u in one step,

with explanations e (a set of boolean literals), under substitution ρ. We denote
t

ρ−−→∗
e u for the transitive reflexive closure of the reduction. We write t ↓ρ

(the normal form of t under ρ) for the unique term u such that t
ρ−−→∗

e u and
no rule applies to u. In a first approximation, ignoring the explanations, the
rules correspond to a normal call-by-need evaluation strategy for the typed λ-
calculus. This matches the definition of values given earlier: a value is a weak
head normal form. It is possible to use environments instead of substitutions,
carrying bindings in every rule, but we chose this presentation for reasons related
to hash-consing, as often used in SMT solvers. The choice of call-by-need rather
than call-by-value is justified by the maximal amount of laziness it provides in
presence of unknowns: instead of waiting for function call arguments, matched
terms, or test conditions to be fully evaluated (and therefore, for their unknowns
to be fully decided in the partial model), we can proceed with only a weak head
normal form.

The rules id and trans specify how explanations are combined in the reflexive
transitive closure; The rule case reduces a pattern matching once the matched
term is a value (i.e. starts with a constructor, by typing). The rule app allows
to reduce the function term in an application (until it becomes a value, that is,
a λ-abstraction); rule β is the regular β-reduction; rule def unfolds definitions
(in particular, recursive definitions are unfolded on demand). The rule decision
replaces an unknown with its value in the current substitution ρ (i.e. the partial
model). The other rules define the semantics of boolean operators and equality.
We forbid checking equality of functions as is it not computable.

Whether to use small-step or big-step semantics (i.e. reducing a term by one
step if a subterm reduces, or waiting for the subterm to become a value) is of
little importance for most cases. The only exception is the rules for conjunction,
in which big-step semantics is required (i.e. a ∧ b does not always reduce when,

118 S. Cruanes

Fig. 2. Evaluation rules under substitution ρ

e.g., a reduces). To see why, assume small-step semantics and consider a
ρ−−→∗

e1

a′ ρ−−→∗
e3

⊥ and b
ρ−−→∗

e2
b′ where a, b : Bool. The following reduction

a ∧ b
ρ−−→∗

e1
a′ ∧ b

ρ−−→∗
e1∪e2

a′ ∧ b′ ρ−−→∗
e1∪e2∪e3

⊥ ∧ b′ ρ−−→∗
e1∪e2∪e3

⊥

is imprecise because e2 is not actually needed for a∧b
ρ−−→∗ ⊥, e1∪e3 is sufficient.

The resulting explanation is not as general as it could be, and a smaller part of
the search space will be pruned as a result.

Satisfiability Modulo Bounded Checking 119

Evaluation of a normal form t that is not a value in a substitution ρ is blocked
by a set of unknowns blockρ(t):

blockρ(λx. t) = ∅
blockρ(c(u1, . . . , un)) = ∅ if c is a constructor

blockρ(f t) = blockρ(f)
blockρ(case t of . . . end) = blockρ(t↓ρ)

blockρ(k) = {k} if k is an unknown
blockρ(a = b) = blockρ(a) ∪ blockρ(b)

blockρ(¬a) = blockρ(a↓ρ)
blockρ(a ∧ b) = blockρ(a↓ρ) ∪ blockρ(b↓ρ)

In some cases, the blocking unknowns are found in the normal form of sub-
terms of t. This corresponds to the evaluation rules that wait for the subterm to
become a value before reducing.

Lemma 1 (Uniqueness of values for
ρ−−→∗

). If t
ρ−−→∗

e1
v1 and t

ρ−−→∗
e2

v2
where v1 and v2 are values, then v1 = v2.

Proof. The rules are deterministic, and values are always normal forms since no
rule applies to them. 	

Lemma 2. If t = t↓ρ is a normal form, then blockρ(t) = ∅ iff t is a value.

Proof. By induction on the shape of t. 	

4 Delegating Choices and Conflict Analysis to SAT

We now have evaluation rules for reducing terms given a substitution on
unknowns but have not yet explained how this substitution is built. As in nar-
rowing [1,14], it is constructed by refining unknowns incrementally, choosing
their head constructor (or boolean value) and applying it to new unknowns that
might need to be refined in turn if they block evaluation.3 However, in our case,
the SAT solver will do the refinement of an unknown k once it has been expanded;
the first time k : τ blocks the evaluation of a goal g (i.e., k ∈ blockρ(g)), some
clauses are added to the SAT solver, forcing it to satisfy exactly one of the literals
�k := ci(ki,1, . . . , ki,ni

)�, where ci is a constructor of τ . Once one of the literals
�k := ti� is true in the SAT solver’s partial model — implying that ρ(k) = ti,
as we will see next — evaluation of the goal g can resume using rule decision
(in Fig. 2) and k is no longer blocking.

The state of the SAT solver is represented below as a pair M ‖ F where
M is the trail (a set of literals not containing both l and ¬l), and F is a set

3 Our framework corresponds to the special case of needed narrowing when the only
rewrite rules are those defining pattern matching.

120 S. Cruanes

of clauses. The operation subst(M) extracts a substitution on unknowns from
positive literals in the trail:

subst(M)(k) = t if �k := t� ∈ M

The interactions between the SAT solver and the evaluation engine are bidi-
rectional. When the SAT solver makes some decisions and propagations, yielding
the new state M ‖ F , the substitution subst(M) is used to evaluate the goals
in G. If all the goals evaluate to �, we can report M as a model. Otherwise,

if there is a goal t ∈ G such that t
subst(M)−−−−−−→

∗
e ⊥, M must be discarded. This

is done by adding to F a conflict clause C
def=

∨
a∈e ¬a that blocks the set of

choices in e. The SAT solver will backjump to explore models not containing e.
Backjumping with clause C and state M ‖ F returns to a state M ′ ‖ F where
M ′ is the longest prefix of M in which C is not absurd.

Lemma 3 (Monotonicity of Models). A model of G, expressed as a trail M ,

satisfies
∧

t∈G t
subst(M)−−−−−−→

∗
e �. No subset of M reduces

∧
t∈G t to ⊥.

5 Enumeration of Inputs and Iterative Deepening

We have not specified precisely how to enumerate possible models. This section
presents a fair enumeration strategy based on Iterative Deepening [13].

A major issue with a straightforward combination of our evaluation function
and SAT solver is that there is a risk of non-termination. Indeed, a wrong branch
might never be totally closed. Consider the goal p(b)∧ a+ b = Z with unknowns
{a, b}, where p(x) def= case x of Z → � | S() → � end is trivial, and + is defined
on Peano numbers by recursion on its left argument. Then making the initial
choice b = S(b2) (to unblock p(b)) and proceeding to refine a in order to unblock
a + b = Z will lead to an infinite number of failures related to a, none of which
will backjump past b = S(b2).

To overcome this issue, we solve a series of problems where the depth of
unknowns is limited to increasingly large values, a process inspired from iterative
deepening. Because the SAT solver controls the shape of unknowns, we use
special boolean literals �depth ≤ n� to forbid any choice that causes an unknown
to be deeper than n; then we solve under assumption �depth ≤ n�. If a model is
found, it is also valid without the assumption and can be returned immediately
to the user. Otherwise, we need the SAT solver to be able to provide unsat cores
— the subset of its clauses responsible for the problem being unsatisfiable —
to make the following distinction: if �depth ≤ n� contributed to the unsat core,
it means that there is no solution within the depth limit, and we start again
with �depth ≤ n + Step� (where Step ≥ 1). The last case occurs when the
conflict does not involve the assumption �depth ≤ n�: then the problem is truly
unsatisfiable (e.g., in Fig. 1).

Satisfiability Modulo Bounded Checking 121

The iterative deepening algorithm is detailed below, in three parts: (i) the
main loop, in Algorithm 1; (ii) solving within a depth limit, in Algorithm 2;
(iii) expanding unknowns, in Algorithm 3. These functions assume that the
SAT solver provides functions for adding clauses dynamically (AddSatClause),
adding a conflict clause (Conflict), performing one round of decision then
boolean propagation (MakeSatDecision and BoolPropagate), and extract-
ing unsat cores (UnsatCore). These functions modify the SAT solver state
M ‖ F . In practice, it is also possible to avoid computing unsat cores at line 7 in
Algorithm 1, by checking for pure boolean satisfiability again, but without the
depth-limit assumption. Most computations (including the current normal form
of

∧
t∈G t) can be done incrementally and are backtracked in case of conflict.

Algorithm 1. Main Loop Using Iterative Deepening
Require: Step ≥ 1: depth increment, G: set of goals
1: function MainLoop(G)
2: d ← Step � initial depth
3: while d ≤ MaxDepth do
4: res ← SolveUpTo(G, d)
5: if res = Sat then return Sat

6: else if �depth ≤ d� �∈ UnsatCore(res) then return Unsat

7: else d ← d + Step

8: return Unknown

Algorithm 2. Solving Within a Depth Limit
Require: G: set of goal terms, d: depth limit
1: function SolveUpTo(G, d)
2: AddAssumption(�depth ≤ d�) � local assumption
3: M ‖ F ← ∅ ‖ G � initial model and clauses
4: while true do
5: M ‖ F ← MakeSatDecision(M ‖ F) � model still partial
6: M ‖ F ← BoolPropagate(M ‖ F)

7: G′ ← {(u, e) | t ∈ G, t
subst(M)−−−−−→

∗
e u} � current normal form of G

8: if (⊥, e) ∈ G′ then
9: M ‖ F ← Conflict(M ‖ F ∪ {∨a∈e ¬a}) � backjump or Unsat

10: else if all terms in G′ are � then return Sat

11: else
12: B ← ⋃

(t,e)∈G′ blocksubst(M)(t) � blocking unknowns
13: for k ∈ B, k not expanded do
14: F ← F ∪ Expand(k, d) � will add new literals and clauses

Theorem 1 (Termination). The function SolveUpTo in Algorithm 2 ter-
minates.

122 S. Cruanes

Algorithm 3. Expansion of Unknowns
Require: k: unknown of type τ , d: depth limit
1: function Expand(k, d)
2: let τ = c1(τ1,1, . . . , τ1,n1) | . . . | ck(τk,1, . . . , τk,nk)
3: l ← {ci(ki,1, . . . , ki,ni) | i ∈ 1, . . . , k} � each ki,j:τi,j is a fresh unknown
4: AddSatClause(

∨
t∈l�k := t�)

5: AddSatClauses({¬�k := t1� ∨ ¬�k := t2� | (t1, t2) ∈ l, t1 �= t2})
6: for t ∈ l where depth(t) > d do
7: AddSatClause(¬�depth ≤ d� ∨ ¬�k := t�) � block this choice at depth d

Theorem 2 (Soundness). The function SolveUpTo in Algorithm 2 returns
either Sat or Unsat. If it returns Sat, then the substitution subst(M) from
the boolean trail is a model. If it returns Unsat, then there are no solutions of
depth smaller than d.

Theorem 3 (Bounded Completeness). If there exists a model of depth
smaller at most Step �MaxDepth/Step�, then Algorithm 1 will return Sat.

Proof. The depth d is always a multiple of Step. Let dmin ≤ MaxDepth be the
smallest multiple of Step such that there is a model of depth ≤ dmin. Iterations of
the loop with d < dmin return Unsat by soundness of SolveUpTo (Theorem 2);
the iteration at depth dmin returns Sat. 	

5.1 Application to the Introductory Example

We illustrate our technique on an example.4 Pick the same definitions as in
Fig. 1, but with the goal set G

def= {rev(l) = l, length(l) = 2, sum(l) = 2} where
the unknown is a list l. Unlike in Fig. 1, this problem is satisfiable. Assuming
Step = 1, we start solving under constraint �depth ≤ 1�. Under the empty
substitution, G reduces to a set of terms all blocked by a pattern matching on
l; expansion of l into {Nil, Cons(x1, l1)} follows, where x1 : Nat and l1 : List are
fresh unknowns. Suppose the SAT solver picks �l := Nil�. G reduces to {�,⊥,⊥}
with explanations {�l := Nil�}, so the conflict clause ¬�l := Nil� is asserted,
added to the partial model with no effect, and the solver backtracks.

The next boolean decision must be �l := Cons(x1, l1)�. Subsequently, G
reduces to

{append(rev(l1),Cons(x1,Nil)) = Cons(x1, l1), length(l1) = 1, x1 + sum(l1) = 2}

(more precisely, to a less readable version of these terms where function defi-
nitions are unfolded into some pattern matching). The resulting set is blocked
both by l1 (in the first two terms) and x1 (in x1 + sum(l1)). Expansion of these

4 The example is provided at https://cedeela.fr/∼simon/files/cade 17.tar.gz along
with other benchmarks.

https://cedeela.fr/~simon/files/cade_17.tar.gz

Satisfiability Modulo Bounded Checking 123

terms yields {Nil, Cons(x2, l2)} and {Z, S(y1)}, but the choice Cons(x2, l2) is
blocked by �depth ≤ 1�. The solver must choose �l1 := Nil�, which entails

length(l) = 2
ρ−−→∗

{�l:=Cons(x1,l1)�} length(l1) = 1
ρ−−→∗

{�l1:=Nil�} 0 = 1
ρ−−→∗

∅ ⊥
The conflict clause ¬�l := Cons(x1, l1)�∨¬�l1 := Nil� triggers an Unsat result,
but only because of the assumption �depth ≤ 1�.

The main loop (Algorithm 1) then proceeds to depth 2, and tries to solve the
problem again under the assumption �depth ≤ 2�. The SAT solver can now pick
�l1 := Cons(x2, l2)�. At some point, it will pick �l2 := Nil� (the other choice
is too deep), �x1 := S(y1)�, �y1 := Z�, �x2 := S(y2)�, and �y2 := Z�. Other
choices would reduce one of the goals to ⊥: once the shape of l1 is fixed by
the length constraint, rev(l) = l reduces to x1 = x2 and sum(l) = 2 becomes
x1 + x2 = 2, and wrong choices quickly reduce those to ⊥. At this point,∧

t∈G t
ρ−−→∗ � and we obtain the model l = Cons(1,Cons(1,Nil)).

6 Extensions of the Language

6.1 Uninterpreted Types

Finding counter-example for programs and formalizations that use only recur-
sive function definitions might still involve uninterpreted types arising from type
Skolemization or abstract types. To handle those in SMBC, e.g. for a type τ ,
which corresponds to a finite set of domain elements denoted elt0(τ), elt1(τ), . . .
(domain elements behave like constructors for evaluation). We also introduce
type slices τ[0...], τ[1...], . . . where τ

def= τ[0...]. Conceptually, a type slice τ[n...] cor-
responds to the subtype of τ that excludes its n first elements: τ[n...]

def= {eltn(τ),
. . . , eltcard(τ)−1(τ)}. Then, we introduce propositional literals �empty(·)� that
will be given a truth value by the SAT solver; if �empty(τ[n...])� is true, it
means τ[n...] ≡ ∅; otherwise, it means τ[n...] ≡ {eltn(τ)} ∪ τ[n+1...]. We assume
¬�empty(τ[0...])�. Expansion of some unknown k : τ[n...] yields the following
boolean constraints:

�empty(τ[n−1...])� ⇒ �empty(τ[n...])�
�depth ≤ n� ⇒ �empty(τ[n...])�

�k = eltn(τ)� ∨ (¬�empty(τ[n+1...])� ∧ �k := k′�
)

where k′ : τ[n+1...] is a fresh unknown belonging in the next slice of τ . To express
constraints on τ , the input language provides finite quantifiers ∀x : τ. F and
∃x : τ. F (which abbreviates ¬(∀x : τ. ¬F)). The quantifier is interpreted with
the following rules:

ρ(�empty(τ[n...])�) = �
forall-empty

∀x : τ[n...]. F
ρ−−→{�empty(τ[n...])�} �

ρ(�empty(τ[n...])�) = ⊥
forall-pair

∀x : τ[n...]. F
ρ−−→{¬�empty(τ[n...])�} F [eltn(τ)/x] ∧ (∀x : τ[n+1...]. F

)

124 S. Cruanes

6.2 Functional Unknowns

With uninterpreted types often come functions taking arguments of uninter-
preted types. We can also wish to synthesize (simple) functions taking booleans
or datatypes as parameters. It is possible to build functions by refinement, using
currying (considering only one argument at a time) depending on its argument’s
type. Expansion of a functional unknown f : a → b depends on a:

– If a = Bool, f ∈ {λx. if x t1 t2} where t1, t2 : b are fresh unknowns of type b
that are deeper than f .

– If a is uninterpreted, f is λx. switch(x,m) where m is a table mapping
(elti(a))i=0... to fresh unknowns of type b (built lazily, in practice) and switch
is otherwise similar to case.

– If a is a datatype, f is either a constant function λx. kf where kf is an
unknown of type b or λx. case x of ci(y) → ki y | · · · end where each ki is a
fresh unknown taking the corresponding constructor’s arguments as parame-
ters. The constant case is used to be able to build functions that only peek
superficially at inputs — otherwise, all function descriptions would be infinite
in the model. The choice between the two forms for f is performed by the
SAT solver; the non-constant case might be blocked by depth constraints. If
a is infinite, bounded completeness is lost immediately, as we cannot generate
all functions a → b.

– Otherwise, a is a function type and we should reject the initial problem.

7 Refinements to the Calculus

7.1 Multiple Conflict Clauses

Sometimes, a partial model causes a failure for several reasons: in the presence of
parallel conjunction, both formulas can reduce to ⊥. It would be wasteful to keep
only one reason, because all of them might be useful to prune other branches.
In this case, instead of just picking one explanation and discard the others, as
suggested in Fig. 2, we add a new explanation constructor, e1 ⊕ e2, that combines
two unrelated explanations, such that ⊕ is associative and commutative and
(e1 ⊕ e2) ∪ e3 ≡ (e1 ∪ e3) ⊕ (e2 ∪ e3). Intuitively, a

ρ−−→e1⊕e2 b means that a
evaluates to b under substitution ρ assuming the choices in e1 or in e2 are made
— those choices are never incompatible, but they might not be the same subset
of subst(M). We add a new rule for ∧:

a
ρ−−→∗

ea
⊥ b

ρ−−→∗
eb

⊥
and-left-right

a ∧ b
ρ−−→ea⊕eb

⊥

In case of conflict
∧

t∈G

ρ−−→∗
⊕

i∈I ei
⊥, we obtain a set of conflict clauses{∨

a∈ei
¬a | i ∈ I

}
that will prune distinct parts of the partial model.

Satisfiability Modulo Bounded Checking 125

7.2 Unification Rules

Equality already has many rules, but we can optimize it further. In our imple-
mentation, relying on hash-consing, we simplify t = t into � in constant time,
even when t contains unassigned unknowns. We can optimize equality further
in the special case where reduction leads to a term c(t1, . . . , tn) = k or k =
c(t1, . . . , tn) where k is an unknown and c a constructor or domain element. This
term reduces with no explanation to if check�k :=c(u1,...,un)� (

∧n
i=1 ti = ui) ⊥,

where check�k :=c(u1,...,un)� : Bool is a new term construct that requires c(u1, . . . ,
un) to be one of the cases resulting from the expansion of k. In the ⊥ case, the
explanation forces the SAT solver to pick c(u1, . . . , un) instead of ruling out the
wrong choice d(u1, . . . , um); if there are more than two constructors, this forces
directly the right choice instead of trying every wrong choice.

c(u1, . . . , un) is a case of k
unify

k = c(t1, . . . , tn)
ρ−−→∅ if check�k :=c(u1,...,un)� (

∧n
i=1 ti = ui) ⊥

ρ(k) = c(u1, . . . , un)
check-true

check�k :=c(u1,...,un)�
ρ−−→{k:=c(u1,...,un)} �

ρ(k) = d(u1, . . . , um) d �= c
check-false

check�k :=c(u1,...,un)�
ρ−−→{¬(k:=c(u1,...,un))} ⊥

8 Implementation

We implemented SMBC in OCaml5 using a modular SAT solver6 that is flexible
enough that we can add clauses dynamically and parameterize it with a theory
solver. It also supports incremental solving under assumptions, which is neces-
sary for the efficiency of the iterative deepening exploration. The core solver is
around 3,200 lines long, including the term data structures, the symbolic evalua-
tion and the main loop. This implementation is a prototype that can be used, but
we believe it could be made much faster with more work and perhaps by using
a lower-level language. The code is free software, under a permissive license.

Our description of evaluation rules in Fig. 2 is quite high-level and can be
implemented in various ways.7 We chose to represent terms as perfectly shared
directed acyclic graphs in which binders and bound variables rely on De Bruijn
indices. The perfect sharing diminishes memory usage and makes let statements
superfluous. We store in every term a pointer to a pair (explanation, term) that

5 https://github.com/c-cube/smbc/.
6 https://github.com/Gbury/mSAT.
7 For example, it might be possible to write an efficient interpreter or compiler for

use-cases where evaluation is the bottleneck, as long as explanations are tracked
accurately and parallel conjunction is accounted for.

https://ocaml.org
https://github.com/c-cube/smbc/
https://github.com/Gbury/mSAT

126 S. Cruanes

stores the current normal form of this term, effectively implementing a crude
form of memoization. Any assignment of this pair must be undone upon back-
tracking — in a similar way as in congruence closure algorithms [3]. Similarly,
unknowns are records with mutable pointers to a list of possible cases (once
they have been expanded) and to their current assignment, which is reverted
during backjumping thanks to a central backtracking stack that is controlled by
the SAT solver. A good representation of explanations is required for efficiency,
because union will be performed very often during the evaluation of terms and
should be as fast as possible.

In addition, the evaluation function performs acyclicity checks to prune
impossible branches early, and aggressively caches the normal forms of terms,
stashing their old value on the central backtracking stack. Since we follow the
architecture proposed by Barrett et al. [3], SMBC can delegate all branching
to the SAT solver. Every time a boolean decision is made by the SAT solver
(followed by propagation), the evaluation engine is called so as to prune bad
models early. It does so by re-evaluating the set of goals G, which must contain
at least one term not reduced yet, and cannot contain ⊥ (see Algorithm 2). This
re-evaluation is made faster by starting from the cached normal forms instead
of the original goals. If all goals in G reduce to �, the model is valid; if one of
them reduces to ⊥, the SAT solver immediately receives a conflict clause that
will make it backtrack.

9 Experiments

We ran a few experiments to compare SMBC with other approaches, namely
LSC, HBMC, CVC4 [17], and Inox, a standalone version of Leon [19]. We do
not compare against QuickCheck, SmallCheck, or Feat, because they are not
designed to solve such tightly constrained problems. All the data and the code of
SMBC can be found at https://cedeela.fr/∼simon/files/cade 17.tar.gz. For this
experiment, we wrote some problems and borrowed some others from HBMC’s
test suite. We tried to pick diversified benchmarks so as to expose the strengths
and weaknesses of each tool. TIP does not come yet with an exhaustive set of
satisfiable benchmarks that would rely primarily on recursive functions. Bench-
marks from our previous work on CVC4 [17] are expressed in SMT-LIB rather
than TIP and use quantified axioms instead of recursive definitions, which makes
them hard to use in our purely computational setting. The same holds of SMT-
LIB and TPTP in general.

The solvers were run on a 4-cores Intel i5 CPU with 60 seconds timeout and
a limit of 8 GB of RAM. Below, we give some numbers in Table 1 and then
analyse the results on some categories of problems. The second column of the
table is the number of satisfiable and unsatisfiable problems. Categories out of
scope are marked with “–”.

https://cedeela.fr/~simon/files/cade_17.tar.gz

Satisfiability Modulo Bounded Checking 127

Table 1. Results of the Experiments

Problems (SAT–UNSAT) SMBC HBMC LSC CVC4 Inox

Expr (3–1) 2–0 3–0 2–0 0–0 3–0

Fold (2–0) 2–0 – – – –

Palindromes (1–2) 1–2 1–1 0–0 0–0 0–1

Pigeon (0–1) 0–1 – – 0–1 0–0

Regex (12–0) 7–0 2–0 11–0 – 0–0

Sorted (2–2) 2–2 2–2 2–0 0–1 2–1

Sudoku (1–0) 1–0 1–0 0–0 0–0 0–0

Type Checking (2–0) 2–0 2–0 0–0 0–0 0–0

Expr. Given arithmetic expressions, an evaluation function and several flawed
simplifications, the goal is to find an expression such that its simplification
does not evaluate to the same term. Here HBMC and Inox shine, but SMBC
and LSC have more trouble due to the large branching factor of the search
tree.

Fold. Those examples are about synthesizing a function that distinguishes
between lists by only looking at one element at a time (plus an accumu-
lator). In other words, we fold a function f on all elements, and the goal is
to pick f such that it can distinguish between close, but distinct, lists. This
problem is outside the scope of all the tools the author knows about, simply
because it combines an uninterpreted type with an unknown of function type,
but SMBC has no problem synthesizing what is in essence a state machine
transition function.

Palindromes. After defining unary natural numbers and lists, we look for lists
that are palindromes (i.e., rev(l) = l) that have some additional constraint on
their sum or length. Some of those problems are more difficult variations of
the problem from Sect. 5.1. Some of the problems are satisfiable and some are
unsatisfiable. For example, the goal in long rev sum2.smt2 is to disprove
the existence of a palindrome of length 200 with sum 1; HBMC times out
because there are too many computations, and LSC cannot detect unsatisfia-
bility. Those problems are easy but the toplevel goal is a parallel conjunction
that needs to be treated properly, which is why LSC fails to solve even the
satisfiable instances.

Pigeon. A computational version of the classical pigeon hole problem, here
with 4 holes for 5 pigeons. This requires handling uninterpreted types and
unsatisfiable problems.

Regex. Basic regular expressions are represented by a datatype featuring con-
stants, star, and disjunction. The goal is generally to find a regular expres-
sion that matches a given string. Here, LSC shines and HBMC is in trouble,
because (comparatively) many computations are required to check each input.
SMBC has a good success rate here, even though its relatively naive inter-
preter is much slower than LSC’s native compiled code.

128 S. Cruanes

Sorted. Some problems about finding sorted lists of natural numbers that have
additional properties (on their length, reverse, sum, etc.). The problems are
fairly easy, but some of them are unsatisfiable.

Sudoku. A sudoku is represented as a list of lists of a datatype with 9 con-
structors. Some functions to check whether the sudoku is valid (no duplicate
in any line, column or block) are defined, an initial state is given, and the
goal is simply to solve the sudoku. This is also a combinatorial problem on
which HBMC takes only 2 s, SMBC takes 12 s, and LSC times out. Here,
it pays to bit-blast because the SAT solver can propagate constraints among
the sudoku cells.

Type Checking. This example comes from the HBMC draft report [7]. Terms
of the simply typed λ-calculus are defined by a datatype (variables being
mapped to De Bruijn indices), along with a type-checking function that takes
a term t, a type τ and an environment Γ (i.e. a list of types), and returns �
iff Γ � t : τ holds. The goal is to find a term that has type (a → b) → (b →
c) → (a → c) in the empty environment: in other words, to synthesize the
composition operator from its type. The task is difficult because of the fast
growth of the search space, in which LSC drowns, but SMBC manages well.

Overall, SMBC appears to be well balanced and to have good results both on
problems that require computations and on problems where pruning of impossi-
ble cases is critical. Given the simplicity of our implementation, we believe these
results are promising, and that SMBC occupies a sweet spot between handling
computations well and traversing the search space in a smart way.

10 Conclusion

After describing a new technique for finding models in a logic of computable
functions and datatypes, we presented ways of extending the language and
described a working implementation. By combining symbolic evaluation with
SAT-based conflict analysis, the approach is aimed at difficult problems where
the search space is large (e.g., because of parallel disjunction and independent
sub-problems) and large amounts of computations must be performed before dis-
covering failure. It can be described as a spiritual heir to evaluation-driven nar-
rowing [14] that replaces traditional exploration of the space of possible inputs
by conflict driven clause learning. We hope that this work will benefit model
finders in proof assistants, in particular Nunchaku [9,17].

Acknowledgments. The author would like to thank Jasmin Blanchette, Martin
Brain, Raphaël Cauderlier, Koen Claessen, Pascal Fontaine, Andrew Reynolds, and
Martin Riener, and the anonymous reviewers, for discussing details of this work and
suggesting textual improvements.

Satisfiability Modulo Bounded Checking 129

References

1. Antoy, S., Echahed, R., Hanus, M.: A needed narrowing strategy. J. ACM (JACM)
47, 776–822 (2000)

2. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard Version 2.6 (2016).
http://www.SMT-LIB.org

3. Barrett, C., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Splitting on demand in SAT
modulo theories. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol.
4246, pp. 512–526. Springer, Heidelberg (2006). doi:10.1007/11916277 35

4. Barrett, C., Shikanian, I., Tinelli, C.: An abstract decision procedure for satisfia-
bility in the theory of recursive data types. Electron. Notes Theor. Comput. Sci.
174(8), 23–37 (2007)

5. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. ACM Sigplan Not. 46(4), 53–64 (2011)

6. Claessen, K., Johansson, M., Rosén, D., Smallbone, N.: TIP: tons of inductive
problems. In: Kerber, M., Carette, J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.)
CICM 2015. LNCS, vol. 9150, pp. 333–337. Springer, Cham (2015). doi:10.1007/
978-3-319-20615-8 23

7. Claessen, K., Rosén, D.: SAT-based bounded model checking for functional pro-
grams (2016) (unpublished). https://github.com/danr/hbmc

8. The Coq Development Team. The Coq Proof Assistant. http://coq.inria.fr/
9. Cruanes, S., Blanchette, J.C.: Extending Nunchaku to dependent type theory. In:

Blanchette, J.C., Kaliszyk, C. (eds.) Proceedings First International Workshop on
Hammers for Type Theories, HaTT@IJCAR 2016. EPTCS, vol. 210, Coimbra,
Portugal, pp. 3–12, 1 July 2016

10. Dureg̊ard, J., Jansson, P., Wang, M.: Feat: functional enumeration of algebraic
types. ACM SIGPLAN Not. 47(12), 61–72 (2013)

11. Hanus, M.: A unified computation model for functional and logic programming.
In: Proceedings of the 24th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. ACM (1997)

12. Kaufmann, M., Moore, S.J.: ACL2: an industrial strength version of Nqthm. In:
Computer Assurance, COMPASS 1996, pp. 23–34. IEEE (1996)

13. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible tree search.
Artif. Intell. 27(1), 97–109 (1985)

14. Lindblad, F.: Property directed generation of first-order test data. In: Trends in
Functional Programming, pp. 105–123. Citeseer (2007)

15. Paulson, L.C.: Isabelle: A Generic Theorem Prover, vol. 828. Springer, Heidelberg
(1994)

16. Reynolds, A., Blanchette, J.C.: A decision procedure for (Co)datatypes in SMT
solvers. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
197–213. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 13

17. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133–151. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 10

18. Runciman, C., Naylor, M., Lindblad, F.: Smallcheck and lazy smallcheck: auto-
matic exhaustive testing for small values. ACM SIGPLAN Not. 44, 37–48 (2008).
ACM

19. Suter, P., Köksal, A.S., Kuncak, V.: Satisfiability modulo recursive programs. In:
Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp. 298–315. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-23702-7 23

http://www.SMT-LIB.org
http://dx.doi.org/10.1007/11916277_35
http://dx.doi.org/10.1007/978-3-319-20615-8_23
http://dx.doi.org/10.1007/978-3-319-20615-8_23
https://github.com/danr/hbmc
http://coq.inria.fr/
http://dx.doi.org/10.1007/978-3-319-21401-6_13
http://dx.doi.org/10.1007/978-3-319-40229-1_10
http://dx.doi.org/10.1007/978-3-642-23702-7_23

Short Proofs Without New Variables

Marijn J.H. Heule1(B), Benjamin Kiesl2, and Armin Biere3

1 Department of Computer Science, The University of Texas at Austin, Austin, USA
marijn@cs.utexas.edu

2 Institute of Information Systems, Vienna University of Technology, Vienna, Austria
3 Institute for Formal Models and Verification, JKU Linz, Linz, Austria

Abstract. Adding and removing redundant clauses is at the core of
state-of-the-art SAT solving. Crucial is the ability to add short clauses
whose redundancy can be determined in polynomial time. We present
a characterization of the strongest notion of clause redundancy (i.e.,
addition of the clause preserves satisfiability) in terms of an implication
relationship. By using a polynomial-time decidable implication relation
based on unit propagation, we thus obtain an efficiently checkable redun-
dancy notion. A proof system based on this notion is surprisingly strong,
even without the introduction of new variables—the key component of
short proofs presented in the proof complexity literature. We demon-
strate this strength on the famous pigeon hole formulas by providing
short clausal proofs without new variables.

1 Introduction

Satisfiability (SAT) solvers are used for determining the correctness of hardware
and software systems [1,2]. It is therefore crucial that these solvers justify their
claims by providing proofs that can be independently verified. This holds also
for various other applications that use SAT solvers. Just recently, long-standing
mathematical problems were solved using SAT, including the Erdős Discrepancy
Problem [3] and the Pythagorean Triples Problem [4]. Especially in such cases,
proofs are at the center of attention, and without them, the result of a solver is
almost worthless. What the mathematical problems and the industrial applica-
tions have in common, is that proofs are often of considerable size—in the case
of the Pythagorean Triples Problem about 200 terabytes. As the size of proofs is
influenced by the strength of the underlying proof system, the search for shorter
proofs goes hand in hand with the search for stronger proof systems.

In this paper, we introduce highly expressive clausal proof systems that are
closely related to state-of-the-art SAT solving. Informally, a clausal proof system
allows the addition of redundant clauses to a formula in conjunctive normal
form (CNF). Here, a clause is considered redundant if its addition preserves
satisfiability. If the repeated addition of clauses allows us finally to add the

This work has been supported by the National Science Foundation under grant
CCF-1526760 and the Austrian Science Fund (FWF) under project W1255-N23.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 130–147, 2017.
DOI: 10.1007/978-3-319-63046-5 9

Short Proofs Without New Variables 131

empty clause—which is, by definition, unsatisfiable—the unsatisfiability of the
original formula has been established.

Since satisfiability equivalence is not efficiently decidable, practical proof sys-
tems only allow the addition of a clause if it fulfills some efficiently decidable
criterion that ensures redundancy. For instance, the popular DRAT proof sys-
tem [5], which is the de-facto standard in practical SAT solving, only allows the
addition of so-called resolution asymmetric tautologies [6]. Given a formula and
a clause, one can decide in polynomial time whether the clause is a resolution
asymmetric tautology with respect to the formula and therefore the soundness
of DRAT proofs can be efficiently checked.

We present new redundancy criteria by introducing a characterization of
clause redundancy based on a simple implication relationship between formu-
las. By replacing the logical implication relation in this characterization with
stronger notions of implication that are computable in polynomial time, we then
obtain powerful redundancy criteria that are still efficiently decidable. We show
that these redundancy criteria not only generalize earlier ones like the above-
mentioned resolution asymmetric tautologies or set-blocked clauses [7], but that
they are also related to other concepts from the literature, namely autarkies [8],
safe assignments [9], variable instantiation [10], and symmetry breaking [11].

Proof systems based on our new redundancy criteria turn out to be highly
expressive, even without the introduction of new variables. This is in contrast
to resolution, which is considered relatively weak as long as one does not allow
the introduction of new variables via definitions as in the stronger proof system
of extended resolution [12,13]. The introduction of new variables, however, has
a major drawback: the search space of variables and clauses one could possibly
add to a proof is infinite, even when bounding the size of clauses. Finding useful
clauses with new variables is therefore hard in practice, although there have been
a few successes in the past [14,15].

We illustrate the strength of our strongest proof system by providing short
clausal proofs for the famous pigeon hole formulas without introducing new
variables. The size of the proofs is linear in the size of the formulas and the
longest clauses in the proofs have length two. In these proofs, we add redundant
clauses that are similar in nature to symmetry-breaking predicates [11,16]. To
verify the correctness of proofs in our new system, we implemented a proof
checker. The checker is built on top of DRAT-trim [5], the checker used to validate
the unsatisfiability results of the recent SAT competitions [17]. We compare our
proofs with existing proofs of the pigeon hole formulas in other proof systems
and show that our new proofs are much smaller and cheaper to validate.

2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF), which
are defined as follows. A literal is either a variable x (a positive literal) or the
negation x of a variable x (a negative literal). The complementary literal l of a
literal l is defined as l = x if l = x and l = x if l = x. Accordingly, for a set L

132 M.J.H. Heule et al.

of literals, we define L = {l | l ∈ L}. A clause is a disjunction of literals. If not
stated otherwise, we assume that clauses do not contain complementary literals.
A formula is a conjunction of clauses. We view clauses as sets of literals and
formulas as sets of clauses. For a set L of literals and a formula F , we define
FL = {C ∈ F | C ∩ L �= ∅}. We sometimes write Fl to denote F{l}.

An assignment is a partial function from a set of variables to the truth values
1 (true) and 0 (false). An assignment is total w.r.t. a formula if it assigns a truth
value to every variable occurring in the formula. A literal l is satisfied (falsified)
by an assignment α if l is positive and α(var(l)) = 1 (α(var(l)) = 0, respectively)
or if it is negative and α(var(l)) = 0 (α(var(l)) = 1, respectively). We often
denote assignments by the sequences of literals they satisfy. For instance, x y
denotes the assignment that assigns x to 1 and y to 0. A clause is satisfied by
an assignment α if it contains a literal that is satisfied by α. Finally, a formula
is satisfied by an assignment α if all its clauses are satisfied by α. A formula is
satisfiable if there exists an assignment that satisfies it. Two formulas are logically
equivalent if they are satisfied by the same assignments. Two formulas F and F ′

are satisfiability equivalent if F is satisfiable if and only if F ′ is satisfiable.
We denote the empty clause by ⊥ and the satisfied clause by �. Given an

assignment α and a clause C, we define C |α = � if α satisfies C, otherwise C |α
denotes the result of removing from C all the literals falsified by α. Moreover,
for a formula F , we define F |α = {C |α | C ∈ F and C |α �= �}. We say that
a clause C blocks an assignment α if C = {x | α(x) = 0} ∪ {x | α(x) = 1}. A
unit clause is a clause that contains only one literal. The result of applying the
unit clause rule to a formula F is the formula F |α with α being the assignment
that satisfies exactly the unit clauses in F . The iterated application of the unit
clause rule to a formula, until no unit clauses are left, is called unit propagation.
If unit propagation yields the empty clause ⊥, we say that it derived a conflict.

By F � F ′, we denote that F implies F ′, i.e., all assignments satisfying F
also satisfy F ′. Furthermore, by F 	1 F ′ we denote that for every clause C ∈ F ′,
unit propagation of the negated literals of C on F derives a conflict (thereby, the
negated literals of C are viewed as unit clauses). For example, x∧y 	1 (x∨z)∧y,
since unit propagation of the unit clauses x and z derives a conflict with x, and
propagation of y derives a conflict with y. Similarly, F 	0 F ′ denotes that every
clause in F ′ is subsumed by (i.e., is a superset of) a clause in F . Observe that
F ⊇ F ′ implies F 	0 F ′, F 	0 F ′ implies F 	1 F ′, and F 	1 F ′ implies F � F ′.

3 Clause Redundancy and Clausal Proofs

In this section, we introduce a formal notion of clause redundancy and demon-
strate how it provides the basis for clausal proof systems. We start by introducing
clause redundancy [7]:

Definition 1. A clause C is redundant w.r.t. a formula F if F and F ∪ {C}
are satisfiability equivalent.

Short Proofs Without New Variables 133

For instance, the clause C = x ∨ y is redundant w.r.t. F = {x ∨ y} since F and
F ∪{C} are satisfiability equivalent (although they are not logically equivalent).
Since this notion of redundancy allows us to add redundant clauses to a formula
without affecting its satisfiability, it gives rise to clausal proof systems.

Definition 2. A proof of a clause Cm from a formula F is a sequence of pairs
(C1, ω1), . . . , (Cm, ωm), where each Ci (1 ≤ i ≤ m) is a clause that is redundant
w.r.t. F ∪ {Cj | 1 ≤ j < i}, and this redundancy can be efficiently checked using
the (arbitrary) witness ωi. If Cm = ⊥, the proof is a refutation of F .

Clearly, since every clause-addition step preserves satisfiability, and since the
empty clause is unsatisfiable, a refutation certifies the unsatisfiability of F due
to transitivity. Note that the ωi can be arbitrary witnesses (they can be assign-
ments, or even left out if no explicit witness is needed) that certify the redun-
dancy of Ci w.r.t. F ∪ {Cj | 1 ≤ j < i}, and by requiring that the redundancy
can be efficiently checked, we mean that it can be checked in polynomial time
w.r.t. the size of F ∪ {Cj | 1 ≤ j < i}.

By specifying in detail what kind of redundant clauses—and corresponding
witnesses—one can add to a proof, we obtain concrete proof systems. This is
usually done by defining an efficiently checkable syntactic criterion that guaran-
tees that clauses fulfilling this criterion are redundant. A popular example for
a clausal proof system is DRAT [5], the de-facto standard for unsatisfiability
proofs in practical SAT solving. DRAT allows the addition of a clause if it is a
so-called resolution asymmetric tautology [6] (RAT, defined in the next section).
As it can be efficiently checked whether a clause is a RAT, and since RATs cover
a large portion of redundant clauses, the DRAT proof system is very powerful.

The strength of a clausal proof system depends on the generality of the
underlying redundancy criterion. We say that a redundancy criterion R1 is more
general than a redundancy criterion R2 if, whenever R2 identifies a clause C as
redundant w.r.t. a formula F , then R1 also identifies C as redundant w.r.t. F .
For instance, whenever a clause is subsumed in some formula, it is a RAT w.r.t.
that formula. Therefore, the RAT redundancy criterion is more general than
the subsumption criterion. In the next section, we develop redundancy criteria
that are even more general than RAT. This gives rise to proof systems that are
stronger than DRAT but still closely related to practical SAT solving.

4 Clause Redundancy via Implication

In the following, we introduce a characterization of clause redundancy that
reduces the question whether a clause is redundant w.r.t. a certain formula to a
simple question of implication. The advantage of this is that we can replace the
logical implication relation by stronger, polynomially decidable implication rela-
tions to derive powerful redundancy criteria that are still efficiently checkable.
These redundancy criteria can then be used to obtain highly expressive clausal
proof systems.

134 M.J.H. Heule et al.

Our characterization is based on the observation that a clause in a CNF
formula can be seen as a constraint that blocks those assignments falsifying
the clause. Therefore, a clause can be safely added to a formula if it does not
constrain the formula too much. What we mean by this, is that after adding the
clause, there should still exist other assignments (i.e., assignments not blocked
by the clause) under which the formula is at least as satisfiable as under the
assignments blocked by the clause. Consider the following example:

Example 1. Let F = {x ∨ y, x ∨ z, x ∨ y ∨ z} and consider the (unit) clause
C = x which blocks all assignments that assign x to 0. The addition of C to F
does not affect satisfiability: Let α = x and ω = x. Then, F |α = {y, z} while
F |ω = {y ∨ z}. Clearly, every satisfying assignment of F |α is also a satisfying
assignment of F |ω (i.e., F |α � F |ω). Thus, F is at least as satisfiable under ω
as it is under α. Moreover, ω satisfies C. The addition of C does therefore not
affect the satisfiability of F . ��
This motivates the characterization of clause redundancy we introduce next.
Note that for a given clause C, “the assignment α blocked by C” can be a partial
assignment, meaning that C actually rules out all assignments that extend α:

Theorem 1. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is redundant w.r.t. F if and only if there exists an assignment ω
such that ω satisfies C and F |α � F |ω.

Proof. For the “only if” direction, assume that F and F ∪ {C} are satisfiability
equivalent. If F |α is unsatisfiable, then F |α � F |ω for every ω, hence the
statement trivially holds. Assume now that F |α is satisfiable, implying that F
is satisfiable. Then, since F and F ∪{C} are satisfiability equivalent, there exists
an assignment ω that satisfies both F and C. Since ω satisfies F , it holds that
F |ω = ∅ and so F |α � F |ω.

For the “if” direction, assume that there exists an assignment ω such that
ω satisfies C and F |α � F |ω. Now, let γ be a (total) assignment that satisfies
F and assume it falsifies C. As γ falsifies C, it coincides with α on var(α).
Therefore, since γ satisfies F , it must satisfy F |α and since F |α � F |ω it must
also satisfy F |ω. Now, consider the following assignment γ′:

γ′(x) =

{
ω(x) if x ∈ var(ω),
γ(x) otherwise.

Clearly, since ω satisfies C, γ′ also satisfies C. Moreover, as γ satisfies F |ω and
var(F |ω) ⊆ var(γ) \ var(ω), γ′ satisfies F . Hence, γ′ satisfies F ∪ {C}. ��
This alternative characterization of redundancy allows us to replace the logical
implication relation by stronger polynomially decidable relations. For instance,
we can replace the condition F |α � F |ω by the stronger condition F |α 	1 F |ω
(likewise, we could also use relations such as “	0” or “⊇” instead of “ 	1”). Now,
if we are given a clause C—which implicitly gives us the blocked assignment α—
and a witnessing assignment ω, then we can check in polynomial time whether

Short Proofs Without New Variables 135

SAT-EQ

PR SPR LPR

RAT [6,5]

RS [6]

BC [20,21]SET [7]

RUP [18,19]

EQ

S

F |α 	0 ⊥

F |α 	1 ⊥

F |α ⊇ F |αL
∗

F |α �1 F |αL F |α �1 F |αl

F |α �0 F |αl

F |α ⊇ F |αl
∗

F |α � F |ω F |α � ⊥

F |α �1 F |ω

new

satisfiability

equivalence

logical

equivalence

Fig. 1. Landscape of redundancy notions. SAT-EQ stands for all redundant clauses and
EQ for implied clauses. A path from X to Y indicates that X is more general than Y .
The asterisk (∗) denotes that the exact characterization implies the shown one, e.g.,
for every set-blocked clause, the property F |α ⊇ F |αL holds, but not vice versa.

F |α 	1 F |ω, implying that C is redundant w.r.t. F . We can therefore use this
implication-based redundancy notion to define proof systems. A proof is then a
sequence (C1, ω1), . . . , (Cm, ωm) where the ωi are the witnessing assignments.

In the following, we use the propagation-implication relation “ 	1” to define
the redundancy criteria of (1) literal-propagation redundancy (LPR), (2) set-
propagation redundancy (SPR), and (3) propagation redundancy (PR). Basically,
the three notions differ in the way we allow the witnessing assignment ω to differ
from the assignment α blocked by a clause. The more freedom we give to ω, the
more general the redundancy notion we obtain. We show that LPR clauses—the
least general of the three—coincide with RAT. For the more general SPR clauses,
we show that they generalize set-blocked clauses (SET) [7], which is not the case
for LPR clauses. Finally, PR clauses are the most general ones. They give rise to
an extremely powerful proof system that is still closely related to CDCL-based
SAT solving. The new landscape of redundancy notions we thereby obtain is
illustrated in Fig. 1. In the figure, RUP stands for the redundancy notion based
on reverse unit propagation [18,19], S stands for subsumed clauses, RS for clauses
with subsumed resolvents [6], and BC for blocked clauses [20,21].

As we will see, when defining proof systems based on LPR (e.g., the DRAT
system) or SPR clauses, we do not need to add the explicit redundancy witnesses
(i.e., the witnessing assignments ω) to a proof. In these two cases, a proof can
thus just be seen as a sequence of clauses. A proof system based on SPR clauses
can therefore have the same syntax as DRAT proofs, which makes it “downwards
compatible”. This is in contrast to a proof system based on PR clauses where, at
least in general, we have to add the witnessing assignments to a proof, otherwise
we cannot check the redundancy of a clause in polynomial time.

136 M.J.H. Heule et al.

We start by introducing LPR clauses. In the following, given a (partial) assign-
ment α and a set L of literals, we denote by αL the assignment obtained from α
by flipping the truth values of the literals in L. If L contains only a single literal
l, then we write αl to denote α{l}.

Definition 3. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is literal-propagation redundant (LPR) w.r.t. F if it contains a
literal l such that F |α 	1 F |αl.

Example 2. Let F = {x ∨ y, x ∨ y ∨ z, x ∨ z} and let C be the unit clause x.
Then, α = x is the assignment blocked by C, and αx = x. Now, consider
F |α = {y, y ∨ z} and F |αx = {z}. Clearly, F |α 	1 F |αx and therefore C is
literal-propagation redundant w.r.t. F . ��
The LPR definition is quite restrictive, as it requires the witnessing assignment
αl to disagree with α on exactly one variable. Nevertheless, this already suffices
for LPR clauses to coincide with RATs [6]:

Definition 4. Let F be a formula and C a clause. Then, C is a resolution
asymmetric tautology (RAT) w.r.t. F if it contains a literal l such that, for
every clause D ∈ Fl, F 	1 C ∪ (D \ {l}).

Theorem 2. A clause C is literal-propagation redundant w.r.t. a formula F if
and only if it is a resolution asymmetric tautology w.r.t. F .

Proof. For the “only if” direction, assume that C is LPR w.r.t. F , i.e., it contains
a literal l such that F |α 	1 F |αl. Now, let D ∈ Fl. We have to show that
F 	1 C ∪ (D \ {l}). First, note that F |α is exactly the result of propagating the
negated literals of C on F (i.e., applying the unit clause rule with the negated
literals of C but not performing further propagations). Moreover, since αl falsifies
l, it follows that D |αl ⊆ (D \ {l}). But then, since F |α 	1 D |αl, it must hold
that F 	1 C ∪ (D \ {l}), hence C is a RAT w.r.t. F .

For the “if” direction, assume that C is a RAT w.r.t. F , i.e., it contains
a literal l such that, for every clause D ∈ Fl, F 	1 C ∪ (D \ {l}). Now, let
D |αl ∈ F |αl for D ∈ F . We have to show that F |α 	1 D |αl. Since αl satisfies
l and α falsifies C, D does neither contain l nor any negations of literals in C
except for possibly l. If D does not contain l, then D |α = D |αl is contained in
F |α and hence the claim immediately follows. Assume therefore that l ∈ D.

As argued in the proof for the other direction, propagating the negated literals
of C (and no other literals) on F yields F |α. Therefore, since F 	1 C ∪ (D \{l})
and D\{l} does not contain any negations of literals in C (which could otherwise
be the reason for a unit propagation conflict that only happens because of C
containing a literal whose negation is contained in D \ {l}), it must be the case
that F |α 	1 D \ {l}. Now, the only literals of D \ {l} that are not contained in
D |αl are the ones falsified by α, but those are anyhow not contained in F |α. It
follows that F |α 	1 D |αl and thus C is LPR w.r.t. F . ��
By allowing the witnessing assignments to disagree with α on more than only one
literal, we obtain the more general notion of set-propagation-redundant clauses:

Short Proofs Without New Variables 137

Definition 5. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is set-propagation redundant (SPR) w.r.t. F if it contains a
non-empty set L of literals such that F |α 	1 F |αL.

Example 3. Let F = {x ∨ y, x ∨ y ∨ z, x ∨ z, x ∨ u, u ∨ x}, C = x ∨ u, and
L = {x, u}. Then, α = x u is the assignment blocked by C, and αL = x u. Now,
consider F |α = {y, y ∨ z} and F |αL = {z}. Clearly, F |α 	1 F |αL and so C is
set-propagation redundant w.r.t. F . Note also that C is not literal-propagation
redundant w.r.t. F . ��
Since L is a subset of C, we do not need to add it (or the assignment αL)
explicitly to an SPR proof. By requiring that L must consist of the first literals
of C when adding C to a proof (viewing a clause as a sequence of literals), we
can ensure that the SPR property is efficiently decidable. For instance, when a
proof contains the clause l1 ∨ · · · ∨ ln, we first check whether the SPR property
holds under the assumption that L = {l1}. If not, we proceed by assuming
that L = {l1, l2}, and so on until L = {l1, . . . , ln}. Thereby, only linearly many
candidates for L need to be checked. In contrast to LPR clauses and RATs, the
notion of SPR clauses generalizes set-blocked clauses [7]:

Definition 6. A clause C is set-blocked (SET) by a non-empty set L ⊆ C in a
formula F if, for every clause D ∈ FL, the clause (C \ L) ∪ L ∪ D contains two
complementary literals.

To show that set-propagation-redundant clauses generalize set-blocked clauses,
we first characterize them as follows:

Lemma 3. Let F be a clause, C a formula, L ⊆ C a non-empty set of literals,
and α the assignment blocked by C. Then, C is set-blocked by L in F if and only
if, for every D ∈ F , D |α = � implies D |αL = �.

Proof. For the “only if” direction, assume that there exists a clause D ∈ F such
that D |α = � but D |αL �= �. Then, since α and αL disagree only on literals
in L, it follows that D contains a literal l ∈ L and therefore D ∈ FL. Now, αL

falsifies exactly the literals in (C \L)∪L and since it does not satisfy any of the
literals in D, it follows that there exists no literal l ∈ D such that its complement
l is contained in (C \ L) ∪ L. Therefore, C is not set-blocked by L in F .

For the “if” direction, assume that C is not set-blocked by L in F , i.e., there
exists a clause D ∈ FL such that (C \L)∪L∪D does not contain complementary
literals. Clearly, D |α = � since α falsifies L and D∩L �= ∅. Now, since D contains
no literal l such that l ∈ (C \ L) ∪ L and since αL falsifies exactly the literals in
(C \ L) ∪ L, it follows that αL does not satisfy D, hence D |αL �= �. ��
Theorem 4. If a clause C is set-blocked by a set L in a formula F , it is set-
propagation redundant w.r.t. F .

Proof. Assume that C is set-blocked by L in F . We show that F |α ⊇ F |αL,
which implies that F |α 	1 F |αL, and therefore that C is set-propagation redun-
dant w.r.t. F . Let D |αL ∈ F |αL. First, note that D cannot be contained in FL,

138 M.J.H. Heule et al.

for otherwise D |αL = � and thus D |αL /∈ F |αL. Second, observe that D can
also not be contained in FL, since that would imply that D |α = � and thus, by
Lemma 3, D |αL = �. Therefore, D /∈ FL ∪ FL and so D |α = D |αL. But then,
D |αL ∈ F |α. It follows that F |α ⊇ F |αL. ��
We thus know that set-propagation-redundant clauses generalize both resolu-
tion asymmetric tautologies and set-blocked clauses. Since there exist resolution
asymmetric tautologies that are not set-blocked (and vice versa) [7], it follows
that set-propagation-redundant clauses are actually a strict generalization of
these two kinds of clauses.

By giving practically full freedom to the witnessing assignments, i.e., by only
requiring them to satisfy C, we finally arrive at propagation-redundant clauses,
the most general of the three redundancy notions:

Definition 7. Let F be a formula, C a clause, and α the assignment blocked
by C. Then, C is propagation redundant (PR) w.r.t. F if there exists an assign-
ment ω such that ω satisfies C and F |α 	1 F |ω.

Example 4. Let F = {x ∨ y, x ∨ y, x ∨ z}, C = x, and let ω = x z be the wit-
nessing assignment. Then, α = x is the assignment blocked by C. Now, consider
F |α = {y} and F |ω = {y}. Clearly, unit propagation with the negated literal
y of the unit clause y ∈ F |ω derives a conflict on F |α. Therefore, F |α 	1 F |ω
and so C is propagation redundant w.r.t. F . Note that C is not set-propagation
redundant because for L = {x}, we have αL = x and so F |αL contains the two
unit clauses y and z, but it does not hold that F |α 	1 z. The fact that ω satisfies
z is crucial for ensuring propagation redundancy. ��
Since the witnessing assignments ω are allowed to assign variables that are not
contained in C, we need—at least in general—to add them to a proof to guaran-
tee that redundancy can be efficiently checked. In the next section, we illustrate
the power of a proof system that is based on the addition of PR clauses.

5 Short Proofs of the Pigeon Hole Principle

In a landmark paper, Haken [13] showed that pigeon hole formulas cannot be
refuted by resolution proofs that are of polynomial size w.r.t. the size of the
formulas. In contrast, by using the stronger proof system of extended resolution,
Cook [22] proved that one can actually refute pigeon hole formulas in polynomial
size. What distinguishes extended resolution from general resolution is that it
allows for the introduction of new variables via definitions. Cook showed how
the introduction of such definitions helps to reduce a pigeon hole formula of size
n to a pigeon hole formula of size n − 1 over new variables. The problem with
the introduction of new variables, however, is that the search space of possible
variables—and therefore clauses—that could be added to a proof is infinite.

In this section, we illustrate how a clausal proof system that allows the addi-
tion of PR clauses can yield short proofs of pigeon hole formulas without the

Short Proofs Without New Variables 139

need for introducing new variables. This shows that a proof system based on PR
clauses is strictly stronger than the resolution calculus, even when we forbid the
introduction of new variables. To recap, a pigeon hole formula PHPn intuitively
encodes that n pigeons have to be assigned to n− 1 holes such that no hole con-
tains more than one pigeon. In the encoding, a variable xi,k intuitively denotes
that pigeon i is assigned to hole k:

PHPn :=
∧

1≤i≤n

(xi,1 ∨ · · · ∨ xi,n−1) ∧
∧

1≤i<j≤n

∧
1≤k≤n−1

(xi,k ∨ xj,k)

Clearly, pigeon hole formulas are unsatisfiable. The main idea behind our app-
roach is similar to that of Cook, namely to reduce a pigeon hole formula PHPn to
the smaller PHPn−1. The difference is, that in our case, PHPn−1 is still defined
on the same variables as PHPn. Therefore, reducing PHPn to PHPn−1 boils
down to deriving the clauses xi,1 ∨ · · · ∨ xi,n−2 for 1 ≤ i ≤ n − 1.

Following Haken [13], we use array notation for clauses: Every clause is rep-
resented by an array of n columns and n − 1 rows. An array contains a “+”
(“−”) in the i-th column and k-th row if and only if the variable xi,k occurs
positively (negatively, respectively) in the corresponding clause. Representing
PHPn in array notation, we have for every clause xi,1 ∨ · · · ∨ xi,n−1, an array in
which the i-th column is filled with “+”. Moreover, for every clause xi,k ∨ xj,k,
we have an array that contains two “−” in row k—one in column i and the other
in column j. For instance, PHP4 is given in array notation as follows:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

. . .

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We illustrate the general idea for reducing a pigeon hole formula PHPn to the
smaller PHPn−1 on the concrete formula PHP4. It should, however, become clear
from our explanation that the procedure works for every n > 1. If we want to
reduce PHP4 to PHP3, we have to obtain the following three clauses:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We can do so, by removing the “+” from the last row of every column full of
“+”, except for the last column, which can be ignored as it is not contained in
PHP3. The key observation is, that a “+” in the last row of the i-th column can
be removed with the help of so-called “diagonal clauses” of the form xi,n−1∨xn,k

(1 ≤ k ≤ n − 2). We are allowed to add these diagonal clauses since they are, as
we will show, propagation redundant w.r.t. PHPn. The arrays below represent

140 M.J.H. Heule et al.

the diagonal clauses to remove the “+” from the last row of the first (left),
second (middle), and third column (right):

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

We next show how exactly these diagonal clauses allow us to remove the bottom
“+” from a column full of “+”, or, in other words, how they help us to remove
the literal xi,n−1 from a clause xi,1 ∨ · · · ∨ xi,n−1 (1 ≤ i ≤ n − 1). Consider, for
instance, the clause x2,1 ∨ x2,2 ∨ x2,3 in PHP4. Our aim is to remove the literal
x2,3 from this clause. Before we explain the procedure, we like to remark that
proof systems based on propagation redundancy can easily simulate resolution:
Since every resolvent of clauses in a formula F is implied by F , the assignment
α blocked by the resolvent must falsify F and thus F |α 	1 ⊥. We explain our
procedure textually before we illustrate it in array notation:

First, we add the diagonal clauses D1 = x2,3 ∨ x4,1 and D2 = x2,3 ∨ x4,2 to
PHP4. After this, we can derive the unit clause x2,3 by resolving the two diagonal
clauses D1 and D2 with the original pigeon hole clauses P1 = x2,3 ∨ x4,3 and
P2 = x4,1∨x4,2∨x4,3 as follows: We resolve D1 with P2 to obtain x2,3∨x4,2∨x4,3.
Then, we resolve this clause with D2 to obtain x2,3 ∨x4,3, which we resolve with
P1 to obtain x2,3. Note that our proof system actually allows us to add x2,3

immediately without carrying out all the resolution steps explicitly. Finally, we
resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain the desired clause x2,1 ∨ x2,2.

We next illustrate this procedure in array notation. We start by visualizing
the clauses D1, D2, P1, and P2 that can be resolved to yield the clause x2,3. The
clauses are given in array notation as follows:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

D1 D2 P1 P2 x2,3

We can then resolve x2,3 with x2,1 ∨ x2,2 ∨ x2,3 to obtain x2,1 ∨ x2,2:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

x2,3 x2,1 ∨ x2,2 ∨ x2,3 x2,1 ∨ x2,2

This should illustrate the general idea of how to reduce a clause of the form
xi,1 ∨ . . . xi,n−1 (1 ≤ i ≤ n − 1) to a clause xi,1 ∨ . . . xi,n−2. By repeating this
procedure for every column i with 1 ≤ i ≤ n − 1, we can thus reduce a pigeon
hole formula PHPn to a pigeon hole formula PHPn−1 without introducing new
variables. Note that the last step, in which we resolve the derived unit clause
x2,3 with the clause x2,1 ∨ x2,2 ∨ x2,3, is actually not necessary for a valid PR
proof of a pigeon hole formula, but we added it to simplify the presentation.

Short Proofs Without New Variables 141

It remains to show that the diagonal clauses are indeed propagation redun-
dant w.r.t. the pigeon hole formula. To do so, we show that for every assignment
α = xi,n−1 xn,k that is blocked by a diagonal clause xi,n−1∨xn,k, it holds that for
the assignment ω = xi,n−1 xn,k xi,k xn,n−1, PHPn |α = PHPn |ω, implying that
PHPn |α 	1 PHPn |ω. We also argue why other diagonal and unit clauses can be
ignored when checking whether a new diagonal clause is propagation redundant.

We again illustrate the idea on PHP4. From now on, we use array notation
also for assignments, i.e., a “+” (“−”) in column i and row k denotes that the
assignment assigns 1 (0, respectively) to variable xi,k. Consider, for instance, the
diagonal clause D2 = x2,3 ∨ x4,2 that blocks α = x2,3 x4,2. The corresponding
witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 can be seen as a “rectangle” with
two “−” in the corners of one diagonal and two “+” in the other corners:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

D2 α ω

To see that PHP4 |α and PHP4 |ω coincide on clauses xi,1 ∨· · ·∨xi,n−1, consider
that whenever α and ω assign a variable of such a clause, they both satisfy
the clause (since they both have a “+” in every column in which they assign a
variable) and so they both remove it from PHP4. For instance, in the following
example, both α and ω satisfy x2,1∨x2,2∨x2,3 while both do not assign a variable
of the clause x3,1 ∨ x3,2 ∨ x3,3:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

x2,1 ∨ x2,2 ∨ x2,3 x3,1 ∨ x3,2 ∨ x3,3 α ω

To see that PHP4 |α and PHP4 |ω coincide on clauses of the form xi,k ∨ xj,k,
consider the following: If α falsifies a literal of xi,k ∨ xj,k, then the resulting
clause is a unit clause for which one of the two literals is not assigned by α
(since α does not assign two variables in the same row). Now, one can show that
the same unit clause is also contained in PHP4 |ω, where it is obtained from
another clause: Consider, for example, again the assignment α = x2,3 x4,2 and
the corresponding witnessing assignment ω = x2,3 x4,2 x2,2 x4,3 from above. The
assignment α turns the clause C = x3,2 ∨ x4,2 into the unit clause C |α = x3,2.
The same clause is contained in PHP4 |ω, as it is obtained from C ′ = x2,2 ∨ x3,2

since C ′ |ω = C |α = x3,2:

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

1 2 3 4
1
2
3

α C C |α = C′ |ω C′ ω

142 M.J.H. Heule et al.

Fig. 2. Left, ten clauses of PHP4 using the notation as elsewhere in this paper and next
to it the equivalent representation of these clauses in the DIMACS format used by SAT
solvers. Right, the full PR refutation consisting of clause-witness pairs. A repetition of
the first literal indicates the start of the optional witness.

Note that diagonal clauses and unit clauses that have been derived earlier can
be ignored when checking whether the current one is propagation redundant.
For instance, assume we are currently reducing PHPn to PHPn−1. Then, the
assignments α and ω under consideration only assign variables in PHPn. In
contrast, the unit and diagonal clauses used for reducing PHPn+1 to PHPn (or
earlier ones) are only defined on variables outside of PHPn. They are therefore
contained in both PHPn |α and PHPn |ω. We can also ignore earlier unit and
diagonal clauses over variables in PHPn, i.e., clauses used for reducing an earlier
column or other diagonal clauses for the current column: Whenever α assigns
one of their variables, then ω satisfies them and so they are not in PHPn |ω.

Finally, we want to mention that one can also construct short SPR proofs
(without new variables) of the pigeon hole formulas by first adding SPR clauses
of the form xi,n−1 ∨ xn,k ∨ xi,k ∨ xn,n−1 and then turning them into diagonal
clauses using resolution. We left these proofs out since they are twice as large as
the PR proofs and their explanation is less intuitive. For DRAT, we consider it
unlikely that such proofs exist.

6 Evaluation

We implemented a PR proof checker1 on top of DRAT-trim [5]. Figure 3 shows
the pseudo code of the checking algorithm. The first “if” statement is not nec-
essary but significantly improves the efficiency of the algorithm. The worst-case
complexity of the algorithm is O(m3), where m is the number of clauses in a

1 The checker, benchmark formulas, and proofs are available at
http://www.cs.utexas.edu/∼marijn/pr/.

http://www.cs.utexas.edu/~marijn/pr/

Short Proofs Without New Variables 143

proof. The reason for this is that there are m iterations of the outer for-loop
and for each of these iterations, the inner for-loop is performed |F | times (i.e.,
once for every clause in F). Given that F contains n clauses at the start of the
algorithm, we know that the size of F is bounded by m+n (the original n clauses
of F plus the m clauses of the proof that are added to F by the algorithm). It
follows that the inner for-loop is performed m(m + n) times. Now, there is a
unit propagation test in the inner if-statement: If k is the maximal clause size
and m + n is an upper bound for the size of the formula, then the complexity of
unit propagation is known to be at most k(m+n). Hence, the overall worst-case
complexity of the algorithm is bounded by m(m + n)k(m + n) = O(m3).

This complexity is the same as for RAT-proof checking. In fact, the pseudo-
code for RAT-proof checking and PR-proof checking is the same apart from the
first if-statement, which is always true in the worst case, both for RAT and
PR. Although the theoretical worst-case complexity makes proof checking seem
very expensive, it can be done quite efficiently in practice: For the RAT proofs
produced by solvers in the SAT competitions, we observed that the runtime of
proof checking is close to linear with respect to the sizes of the proofs.

Moreover, we want to highlight that verifying the PR property of a clause
is relatively easy as long as a witnessing assignment is given. For an arbitrary
clause without a witnessing assignment, however, we conjecture that it is an NP-
complete problem to decide whether the clause is PR. We therefore believe that in
general, the verification of PR proofs is simpler than the actual solving/proving.

The format of PR proofs is an extension of DRAT proofs: the first numbers
of line i denote the literals in Ci. Positive numbers refer to positive literals, and
negative numbers refer to negative literals. In case a witness ωi is provided, the
first literal in the clause is repeated to denote the start of the witness. Recall that
the witness always has to satisfy the clause. It is therefore guaranteed that the
witness and the clause have at least one literal in common. Our format requires
that such a literal occurs at the first position of the clause and of the witness.
Finally, 0 marks the end of a line. Figure 2 shows the formula and the PR proof
of our running example PHP4.

Table 1 compares our PR proofs with existing DRAT proofs of the pigeon
hole formulas and of formulas from another challenging benchmark suite of the
SAT competition that allow two pigeons per hole. For the latter suite, PR proofs

Fig. 3. Pseudo code of the PR-Proof checking algorithm.

144 M.J.H. Heule et al.

Table 1. The sizes (in terms of the number of variables and clauses) of pigeon hole
formulas (top) and two-pigeons-per-hole formulas (bottom) as well as the sizes and
validation times (in seconds) for their PR proofs (as described in Sect. 5) and their
DRAT proofs (based on symmetry breaking [23]).

input PR proofs DRAT proofs
formula #var #cls #var #cls time #var #cls time

hole10.cnf 110 561 110 385 0.17 440 3,685 0.22
hole11.cnf 132 738 132 506 0.18 572 5,236 0.23
hole12.cnf 156 949 156 650 0.19 728 7,228 0.27
hole13.cnf 182 1,197 182 819 0.21 910 9,737 0.34

hole20.cnf 420 4,221 420 2,870 0.40 3,080 49,420 2.90
hole30.cnf 930 13,981 930 9,455 2.57 99,20 234,205 61.83
hole40.cnf 1,640 32,841 1,640 22,140 13.54 22,960 715,040 623.29
hole50.cnf 2,550 63,801 2,550 42,925 71.72 44,200 1,708,925 3,158.17

tph8.cnf 136 5,457 136 680 0.32 3,520 834,963 5.47
tph12.cnf 300 27,625 300 2,300 1.81 11,376 28,183,301 1,396.92
tph16.cnf 528 87,329 528 5,456 11.16 not available, too large
tph20.cnf 820 213,241 820 10,660 61.69 not available, too large

can be constructed in a similar way as those of the classical pigeon hole formulas.
Notice that the PR proofs do not introduce new variables and that they contain
fewer clauses than their corresponding formulas. The DRAT proof of PHPn

contains a copy of the formula PHPk for each k < n. Checking PR proofs is also
more efficient, as they are more compact.

7 Related Work

In this section, we shortly discuss how the concepts in this paper are related
to variable instantiation [10], autarkies [8], safe assignments [9], and symmetry
breaking [11]. If, for some literal l, it is possible to show F |l � F |l, then variable
instantiation, as described by Andersson et al. [10], allows to assign the literal l
in the formula F to 1. Analogously, we identify the unit clause l as redundant.

As presented by Kleine Büning and Kullmann [8], an assignment ω is an
autarky for a formula F if it satisfies all clauses of F that contain a literal to
which ω assigns a truth value. If an assignment ω is an autarky for a formula F ,
then F is satisfiability equivalent to F |ω. Similarly, propagation redundancy PR
allows us to add all the unit clauses falsified by an autarky, with the autarky
serving as a witness: Let ω be an autarky for some formula F , C = l for a literal
l falsified by ω, and α the assignment blocked by C. Notice that F |α ⊇ F |ω
and thus C is propagation redundant w.r.t. F .

According to Weaver and Franco [9], an assignment ω is considered safe
if, for every assignment α with var(α) = var(ω), it holds that F |α � F |ω.
If an assignment ω is safe, then F |ω is satisfiability equivalent to F . In a similar
fashion, our approach allows us to block all the above-mentioned assignments
α �= ω. Through this, we obtain a formula that is logically equivalent to F |ω.

Short Proofs Without New Variables 145

Note that safe assignments generalize autarkies and variable instantiation. More-
over, while safe assignments only allow the application of an assignment ω to a
formula F if F |α � F |ω holds for all assignments α �= ω, our approach enables
us to block an assignment α as soon as F |α � F |ω.

Finally, symmetry breaking [11] can be expressed in the DRAT proof sys-
tem [23] but existing methods introduce many new variables and duplicate the
input formula multiple times. It might be possible to express symmetry breaking
without new variables in the PR proof system. For one important symmetry, row-
interchangeability [16], the symmetry breaking using PR without new variables
appears similar to the method we presented for the pigeon hole formulas.

8 Conclusion

Based on an implication relation between a formula and itself under different
partial assignments, we obtain a clean and simple characterization of the most
general notion of clause redundancy considered in the literature so far. Replac-
ing the implication relation by stronger notions of implication, e.g., the super-
set relation or implication through unit propagation, gives then rise to various
polynomially checkable redundancy criteria. One variant yields a proof system
that turns out to coincide with the well-known DRAT, while we conjecture the
proof systems produced by the other two variants to be much more power-
ful. We showed that these more general variants admit short clausal proofs for
the famous pigeon hole formulas, without the need to introduce new variables.
Experiments show that our proofs are much more compact than existing clausal
proofs and also much faster to check. Our new proof systems simulate many
other concepts from the literature very concisely, including autarkies, variable
instantiation, safe assignments, and certain kinds of symmetry reasoning.

Interesting future work includes the separation of our new proof systems
from the DRAT proof system on the lower end and from extended resolution
on the upper end, under the additional restriction that our proof systems and
DRAT do not introduce new variables. The relation to extended resolution is a
particularly interesting aspect from the proof complexity point of view. Other
open questions are related to the space and width bounds of the smallest PR
proofs, again without new variables, for well-known other hard problems such as
Tseitin formulas [12,24] or pebbling games [25]. On the practical side, we want
to implement a formally verified proof checker for PR proofs. Moreover, we want
to pursue some preliminary ideas for automatically generating short PR proofs
during actual SAT solving: Our initial plan is to enumerate unit and binary
clauses and to add them to a formula if they are propagation redundant. We
already have a prototype implementation which is able to find short proofs of
pigeon hole formulas, but we are still searching for efficient heuristics that help
solvers with finding short PR clauses in general formulas.

146 M.J.H. Heule et al.

References

1. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Meth. Syst. Des. 19(1), 7–34 (2001)

2. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. Theor. Comput. Sci. 404(3),
256–274 (2008)

3. Konev, B., Lisitsa, A.: Computer-aided proof of Erdős discrepancy properties.
Artif. Intell. 224(C), 103–118 (2015)

4. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 15

5. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking
and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/
978-3-319-09284-3 31

6. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 28

7. Kiesl, B., Seidl, M., Tompits, H., Biere, A.: Super-blocked clauses. In: Olivetti,
N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 45–61. Springer,
Cham (2016). doi:10.1007/978-3-319-40229-1 5

8. Kleine Büning, H., Kullmann, O.: Minimal unsatisfiability and autarkies. In: Biere,
A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. IOS
Press, pp. 339–401 (2009)

9. Weaver, S., Franco, J.V., Schlipf, J.S.: Extending existential quantification in con-
junctions of BDDs. JSAT 1(2), 89–110 (2006)

10. Andersson, G., Bjesse, P., Cook, B., Hanna, Z.: A proof engine approach to solving
combinational design automation problems. In: Proceedings of the 39th Annual
Design Automation Conference (DAC 2002). ACM, pp. 725–730 (2002)

11. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for
search problems. In: Proceedings of the 5th International Conference on Principles
of Knowledge Representation and Reasoning (KR 1996). Morgan Kaufmann, pp.
148–159 (1996)

12. Tseitin, G.S.: On the complexity of derivation in propositional calculus. Stud.
Math. Math. Logic 2, 115–125 (1968)

13. Haken, A.: The intractability of resolution. Theor. Comput. Sci. 39, 297–308 (1985)
14. Audemard, G., Katsirelos, G., Simon, L.: A restriction of extended resolution for

clause learning sat solvers. In: Proceedings of the 24th AAAI Conference on Arti-
ficial Intelligence (AAAI 2010). AAAI Press (2010)

15. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39611-3 14

16. Devriendt, J., Bogaerts, B., Bruynooghe, M., Denecker, M.: Improved static sym-
metry breaking for SAT. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS,
vol. 9710, pp. 104–122. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 8

17. Balyo, T., Heule, M.J.H., Järvisalo, M.: SAT competition 2016: recent develop-
ments. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence
(AAAI 2017). AAAI Press (2017, to appear)

http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-319-40229-1_5
http://dx.doi.org/10.1007/978-3-642-39611-3_14
http://dx.doi.org/10.1007/978-3-319-40970-2_8

Short Proofs Without New Variables 147

18. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of the Conference on Design, Automation and Test in Europe
(DATE 2003). IEEE Computer Society, pp. 10886–10891 (2003)

19. Van Gelder, A.: Producing and verifying extremely large propositional refutations.
Ann. Math. Artif. Intell. 65(4), 329–372 (2012)

20. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math.
96–97, 149–176 (1999)

21. Järvisalo, M., Biere, A., Heule, M.J.H.: Simulating circuit-level simplifications on
CNF. J. Autom. Reasoning 49(4), 583–619 (2012)

22. Cook, S.A.: A short proof of the pigeon hole principle using extended resolution.
SIGACT News 8(4), 28–32 (1976)

23. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Expressing symmetry breaking in
DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI),
vol. 9195, pp. 591–606. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 40

24. Urquhart, A.: The complexity of propositional proofs. Bull. Symbolic Logic 1(4),
425–467 (1995)

25. Nordström, J.: A simplified way of proving trade-off results for resolution. Inf.
Process. Lett. 109(18), 1030–1035 (2009)

http://dx.doi.org/10.1007/978-3-319-21401-6_40

Relational Constraint Solving in SMT

Baoluo Meng1, Andrew Reynolds1(B), Cesare Tinelli1, and Clark Barrett2

1 Department of Computer Science, The University of Iowa, Iowa City, USA
andrew.j.reynolds@gmail.com

2 Department of Computer Science, Stanford University, Stanford, USA

Abstract. Relational logic is useful for reasoning about computational
problems with relational structures, including high-level system design,
architectural configurations of network systems, ontologies, and verifi-
cation of programs with linked data structures. We present a modular
extension of an earlier calculus for the theory of finite sets to a theory
of finite relations with such operations as transpose, product, join, and
transitive closure. We implement this extension as a theory solver of the
SMT solver CVC4. Combining this new solver with the finite model find-
ing features of CVC4 enables several compelling use cases. For instance,
native support for relations enables a natural mapping from Alloy, a
declarative modeling language based on first-order relational logic, to
SMT constraints. It also enables a natural encoding of several descrip-
tion logics with concrete domains, allowing the use of an SMT solver to
analyze, for instance, Web Ontology Language (OWL) models. We pro-
vide an initial evaluation of our solver on a number of Alloy and OWL
models which shows promising results.

Keywords: Relational logic · SMT · Alloy · OWL

1 Introduction

Many computational problems require reasoning about relational structures.
Examples include high-level system design, architectural configuration of net-
work systems, reasoning about ontologies, and verification of programs with
linked data structures. Relational logic is an appealing choice for reasoning about
such problems. In this paper, we consider a many-sorted relational logic where
relations of arity n are defined as sets of n-tuples with parametrized sorts for
tuple elements. We define a version of this logic as a first-order theory of finite
relations where relation terms are built from relation constants and variables,
set operators, and relational operators such as join, transpose, product, and
transitive closure.

In previous work [3], Bansal et al. developed a decision procedure for a the-
ory of finite sets with cardinality constraints. The theory of finite relations pre-
sented here is an extension of that theory to relational constraints. We present
a calculus for the satisfiability of quantifier-free formulas in this theory. Our
calculus is in general refutation-sound and model-sound. It is also terminating
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 148–165, 2017.
DOI: 10.1007/978-3-319-63046-5 10

Relational Constraint Solving in SMT 149

and refutation-complete for a restricted class of quantifier-free formulas that has
useful applications.

The calculus is explicitly designed to be implementable as a theory solver in
SMT solvers based on the DPLL(T) architecture [14]. We have implemented a
modular component for it in our SMT solver cvc4 [4], allowing cvc4 to solve
constraints on relations over elements from any of the theories it supports. This
relational extension of cvc4’s native input language enables natural mappings to
SMT formulas from several modeling languages based on relations. This includes
Alloy, a formal language based on first-order relational logic, as well as ontology
languages such as OWL. A significant potential advantage of these mappings is
that they bring to these languages the power of SMT solvers to reason natively
about a variety of interpreted types, something that is challenging for existing
reasoners for these languages.

1.1 Related Work

Alloy is a well-known declarative modeling language based on a relational logic
with transitive closure, set cardinality, and integer arithmetic operators [13].
Alloy specifications, or models, can be analyzed for consistency or other entail-
ment properties with the Alloy Analyzer, a static analyzer based on encoding
models as propositional logic formulas, and passing them to an off-the-shelf
propositional satisfiability (SAT) solver. This approach limits the analysis to
models with explicit and concrete cardinality bounds on the relations involved;
hence it is appropriate only for proving the consistency of a model or for dis-
proving that a given property, encoded as a formula, holds for a model. Despite
these limitations, Alloy and its analyzer have been quite useful for lightweight
modeling and analysis of software systems. An earlier attempt to solve Alloy
constraints without artificial cardinality bounds on relations was made by Ghazi
and Taghdiri [8] using SMT solvers. They developed a translation from a sub-
set of Alloy’s language to the SMT-LIB language [5] and used the SMT solver
Yices [7] to solve the resulting constraints. That approach can prove some prop-
erties of certain Alloy models, but it still requires explicitly finitizing relations
when dealing with transitive closure, limiting the kind of properties that can be
proven in models that contain applications of transitive closure. Later, the same
authors introduced more general methods [9,10], implemented in the AlloyPE
tool, to axiomatize relational operators as SMT formulas without finitization
while covering the entire core language of Alloy. However, since quantified rela-
tional logic is in general undecidable and quantifiers are heavily used in the
translation, the resulting SMT formulas translated from Alloy are often difficult
or even impossible for SMT solvers to solve, especially when transitive closure
is involved.

Description Logics (DLs) [1,2] are decidable fragments of relational logic
explicitly developed for efficient knowledge representation and reasoning. They
consider on purpose only unary and binary relations. The main building blocks
of DLs are individuals, concepts, roles as well as operations over these, where
concepts represent sets of individuals, roles represent binary relations between

150 B. Meng et al.

individuals, and operations include membership, subset, relational composition
(join) and equality. Restricted use of quantifiers is allowed in DLs to encode
more expressive constraints on roles and concepts. OWL [20], a standardized
semantic web ontology language, represents an important application of DLs
to ontological modeling. It consists of entities similar to those in DLs except
for superficial differences in concrete syntax and for the inclusion of additional
features that make reasoning about OWL models undecidable in general. Many
efficient reasoners have been built for reasoning about OWL ontologies written
in restricted fragments of OWL. These include Konclude [16], FaCT++ [18], and
Chainsaw [19].

1.2 Formal Preliminaries

We define our theory of relations and our calculus in the context of many-
sorted first-order logic with equality. We assume the reader is familiar with the
following notions from that logic: signature, term, literal, formula, free variable,
interpretation, and satisfiability of a formula in an interpretation (see, e.g., [6]
for more details). Let Σ be a many-sorted signature. We will use ≈ as the (infix)
logical symbol for equality—which has type σ × σ for all sorts σ in Σ and is
always interpreted as the identity relation. We assume all signatures Σ contain
the Boolean sort Bool, always interpreted as the binary set {true, false}, and a
Boolean constant symbol true for true. Without loss of generality, we assume ≈
is the only predicate symbol in Σ, as all other predicates may be modeled as
functions with return sort Bool. We will commonly write, e.g. P (x), as shorthand
for P (x) ≈ true where P (x) has sort Bool. We write s �≈ t as an abbreviation
of ¬ s ≈ t. If e is a term or a formula, we denote by Vars(e) the set of e’s
free variables, extending the notation to tuples and sets of terms or formulas as
expected. We write ϕ[x] to indicate that all the free variables of a formula ϕ are
from tuple x.

If ϕ is a Σ-formula and I a Σ-interpretation, we write I |= ϕ if I satisfies ϕ.
If t is a term, we denote by tI the value of t in I. A theory is a pair T = (Σ, I),
where Σ is a signature and I is a class of Σ-interpretations that is closed under
variable reassignment (i.e., every Σ-interpretation that differs from one in I only
in how it interprets the variables is also in I). I is also referred to as the models
of T . A Σ-formula ϕ is satisfiable (resp., unsatisfiable) in T if it is satisfied by
some (resp., no) interpretation in I. A set Γ of Σ-formulas entails in T a Σ-
formula ϕ, written Γ |=T ϕ, if every interpretation in I that satisfies all formulas
in Γ satisfies ϕ as well. We write |=T ϕ as an abbreviation for ∅ |=T ϕ. We write
Γ |= ϕ to denote that Γ entails ϕ in the class of all Σ-interpretations. Two
Σ-formulas are equisatisfiable in T if for every model A of T that satisfies one,
there is a model of T that satisfies the other and differs from A at most over the
free variables not shared by the two formulas. When convenient, we will treat a
finite set of formulas as the conjunction of its elements and vice versa.

Relational Constraint Solving in SMT 151

2 A Relational Extension to a Theory of Finite Sets

A many-sorted theory of finite sets with cardinality TS is described in detail
in our previous work [3]. The theory TS includes a set sort constructor Set(α)
parametrized by the sort of the set elements. The theory TS can be combined
with any other theory T Nelson-Oppen-style, by instantiating the parameter α
with any sort in T . The signature of theory TS includes function and predi-
cate symbols for set union (�), intersection (�), difference (\), the empty set
([]), singleton set construction ([]), set inclusion (�), and membership (�−),
all interpreted as expected. A sound, complete and terminating tableaux-style
calculus for the theory TS is implemented in the cvc4 SMT solver [4].

Fig. 1. Signature ΣR of our relational theory TR.

In this section, we describe an extension TR of this theory which, however,
does not include a set cardinality operator or cardinality constraints.1 The new
theory TR extends TS with a parametric tuple sort Tupn(α1, . . . , αn) for every
n > 0 and various relational operators defined over sets of tuples, that is, over
values whose sort is an instance of Set(Tupn(α1, . . . , αn)). We call any sort σ of
the form Set(Tupn(σ1, . . . , σn)) a relational sort (of arity n) and abbreviate it
as Reln(σ1, . . . , σn).

The full signature ΣR of TR is defined in Fig. 1. Note that the function sym-
bols ∗, ��, and −1 are not only parametric but also overloaded, as they apply to
relational sorts Relk(σ) of different arities k. The models of TR are the expan-
sions of the models of TS that interpret 〈 , . . . , 〉 as the n-tuple constructor, ∗
as relational product, �� as relational join, −1 as the transpose operator, and +

as the transitive closure operator. A relation term is a ΣR-term of some rela-
tional sort. A tuple term is a ΣR-term of some tuple sort. A TR-constraint is
a (dis)equality of the form (¬)s ≈ t, where s and t are ΣR-terms. We write
1 A further extension of the theory to cardinality constraints is planned for future

work.

152 B. Meng et al.

s ��− t and [t1, . . . , tn] with n > 1 as an abbreviation of ¬(s �− t ≈ true) and
[t1] � · · · � [tn], respectively.

3 A Calculus for the Relational Extension

In this section, we describe a tableaux-style calculus for determining the satisfi-
ability of finite sets of TR-constraints. The calculus consists of a set of derivation
rules similar to those in the calculus from [3] that deal with set constraints as
well as new rules to process TR-constraints. For simplicity, we will implicitly
assume that the sort of any set or relation term is flat (i.e., set or relation ele-
ments are not themselves sets or relations) and allow only variables as terms of
element sorts. Nested sets and relations and more complex element terms can
be processed in a standard way by using a Nelson-Oppen-style approach which
we will not discuss here.

Fig. 2. Basic rules for set intersection, union, difference, singleton, disequality and
contradiction. In Set Diseq, z is a fresh variable.

The derivation rules modify a state data structure, where a state is either the
distinguished state unsat or a set S of TR-constraints. The rules are provided
in Figs. 2 and 3 in guarded assignment form. In such form, the premises of a
rule refer to the current state S and the conclusion describes how S is changed
by the rule’s application. Rules with two or more conclusions, separated by the
symbol ‖, are non-deterministic branching rules. In the rules, we write S, c as an
abbreviation of S ∪ {c}, and denote by T (S) the set of all terms and subterms

Relational Constraint Solving in SMT 153

occurring in S. We define the following closure operator for S where |=tup denotes
entailment in the ΣR-theory of tuples:2

S∗ = {s ≈ t | s, t ∈ T (S), S |=tup s ≈ t} ∪
{s �≈ t | s, t ∈ T (S), S |=tup s ≈ s′ ∧ t ≈ t′ for some s′ �≈ t′ ∈ S} ∪
{s �− t | s, t ∈ T (S), S |=tup s ≈ s′ ∧ t ≈ t′ for some s′ �− t′ ∈ S}

The set S∗ is computable by extending congruence closure procedures with
a rule for deducing consequences of tuple equalities of the form 〈s1, . . . , sn〉 ≈
〈t1, . . . , tn〉.

A derivation rule applies to a state S if all the conditions in the rule’s premises
hold for S and the rule application is not redundant. An application of a rule to
a state S with a conclusion S ∪ {ϕ1[x1,z], . . . , ϕn[xn,z]}, where z are the fresh
variables introduced by the rule’s application (if any), is redundant if S already
contains ϕ1[x1, t], . . . , ϕn[xn, t] for some terms t.

For simplicity and without loss of generality, we consider only initial states
S0 that contain no variables of tuple sorts Tupn(σ1, . . . , σn), since such variables
can be replaced by a tuple 〈x1, . . . , xn〉 where each xi is a variable of sort σi.
We also assume that S0 contains no atoms of the form s � t, since they can be
replaced by s ≈ s � t, or disequalities 〈s1, . . . , sn〉 �≈ 〈t1, . . . , tn〉 between tuple
terms, since those can be treated by guessing a disequality si �≈ ti between two
of their respective components. All derivation rules preserve these restrictions.

Figure 2 presents the basic rules for the core set constraints in our theory.
For each set operator, Fig. 2 contains a downward rule and an upward rule.
Given a membership constraint x �− s, the downward rules infer either additional
membership constraints over the immediate subterms of s, or an equality in the
case where s is {y}. For example, rule Inter Down, infers the constraints x �− s
and x �− t if S∗ contains the constraint x �− s � t. The upward rules handle the
case where some set s occurs in S, and infer membership constraints of the form
x �− s based on other constraints from S. Rule Set Diseq introduces a witness
for a disequality between two sets s and t by using a fresh variable z to assert
that there is an element that is in s but not t, or in t but not in s. There are two
rules for deriving unsat from trivially unsatisfiable constraints in S: membership
constraints of the form x �− ∅ (Empty Unsat) and disequalities of the form
t �≈ t (Eq Unsat).

We supplement the set-specific rules with an additional set of rules for TR-
constraints, given in Fig. 3. From the membership of a tuple in the transpose
of a relation R, rule Transp Down concludes that the reverse of the tuple
is in R. Conversely, rule Transp Up ensures that the reverse of a tuple is in
the transpose of a relation R if the tuple is in R and R−1 occurs in S. From
the constraint that a tuple t belongs to the join of two relations R1 and R2

with arities m and n respectively, rule Join Down infers that R1 contains a
tuple t1 whose last element (named using a fresh Skolem variable z) is the first

2 Note that this theory has all the function symbols of ΣR, not just the tuple con-
structors 〈 , . . . , 〉. The extra symbols are treated as uninterpreted.

154 B. Meng et al.

Fig. 3. Basic relational derivation rules. Letters z, z1, z2 denote fresh variables.

element of a tuple t2 in R2, where t is the join of t1 and t2. The Join Up rule
computes the join of pairs of tuples explicitly asserted to belong to a relation
R1 and a relation R2, respectively, provided that R1 �� R2 is a term in S.
The Prod Down and Prod Up rules are defined similarly for the product of
relations. The rules TClos Up I and TClos Up II compute members of the
transitive closure of R based on the (currently asserted) members of R. When
it can be inferreed that a tuple 〈x1, x2〉 belongs to the transitive closure of a
binary relation R, TClos Down can produce three alternative conclusions. In
reachability terms, the first conclusion considers the case that x2 is directly
reachable from x1 in the graph induced by R, the second that x2 is reachable
from x1 in two steps, and the third that it is reachable in more steps. Note that
the third case may lead to additional applications of TClos Down, possibly
indefinitely, if the other constraints in S (implicitly) entail that 〈x1, x2〉 does
not in fact belong to R.

Example 1. Let S = {〈x, y〉 �− R−1, R ≈ S, 〈y, x〉 ��− S}. By rule
Transp Down, we can derive a constraint 〈y, x〉 �− R, leading to a new S:

Relational Constraint Solving in SMT 155

{〈x, y〉 �− R−1, R ≈ S, 〈y, x〉 ��− S, 〈y, x〉 �− R}. Then, 〈y, x〉 �− R is both equal
and disequal to true in S∗. Thus, we can derive unsat by Eq Unsat, and conclude
that S is TR-unsatisfiable. ��

Example 2. Let S be {〈x〉 �− R, 〈y〉 �− R, R ∗ R ≈ S � T, 〈y, x〉 ��− T}. By rule
Prod Up, we derive constraints 〈x, y〉 �− R ∗ R, 〈y, x〉 �− R ∗ R, 〈x, x〉 �− R ∗ R
and 〈y, y〉 �− R ∗ R. By set reasoning rule Inter Down, we derive another four
constraints 〈x, y〉 �− S, 〈y, x〉 �− S, 〈x, y〉 �− T , and 〈y, x〉 �− T , leading to a
contradiction with 〈y, x〉 ��− T . Thus, we can derive unsat by rule Eq Unsat. ��

Example 3. Let S be {〈x, y〉 �− R, 〈y, z〉 �− R, 〈x, z〉 ��− R+}. By rule
TClos Up I, we derive two new constraints 〈x, y〉 �− R+ and 〈y, z〉 �− R+.
Then, we can derive another constraint 〈x, z〉 �− R+, by rule TClos Up II, in
contradiction with 〈x, z〉 ��− R+. Thus, we can derive unsat by rule Eq Unsat. ��

Example 4. Let S be {〈x, y〉 �− R+, 〈x, y〉 ��− R}. By rule TClos Down, we
construct a derivation tree with three child branches, which add to S the
sets {〈x, y〉 �− R}, {〈x, z〉 �− R, 〈z, y〉 �− R}, and {〈x, z1〉 �− R, 〈z1, z2〉 �−
R+, 〈z2, y〉 �− R, z1 �≈ z2} respectively, where z1 and z2 are fresh variables. By
rule Eq Unsat, we can derive unsat in the first branch. Since no rules apply to
the second branch, we can conclude, as we will see, that S is TR-satisfiable. ��

4 Calculus Correctness

In this section, we formalize the correctness properties satisfied by our calculus.
These include refutation and model soundness in general and termination over a
fragment of our language of constraints.3 The rules of the calculus define a notion
of derivation trees. These are possibly infinite trees whose nodes are states where
the children of each non-leaf node are the result of applying one of the derivation
rules of the calculus to that node. A finite branch of a derivation tree is closed if
it ends with unsat; it is saturated if no rules apply to its leaf. A derivation tree
is closed if all of its branches are closed.

Proposition 1 (Refutation Soundness). If there is a closed derivation tree
with root node S, then S is TR-unsatisfiable.

Proposition 2 (Model Soundness). Let S be the leaf of a saturated branch
in a derivation tree. There is a model I of TR that satisfies S and is such that
(i) for all S ∈ Vars(S) of set sort, SI =

{
xI ∣

∣ x �− S ∈ S∗}, and (ii) for all
other x, y ∈ Vars(S), xI = yI if and only if x ≈ y ∈ S∗.

Our calculus is terminating for a sublanguage of constraints involving only
unary and binary relations and excluding transitive closure, product, or equality
between relations. While this sublanguage, defined in Fig. 4, is quite restricted,
it is useful in reductions of description logics to relational logic, which we discuss
in Sect. 5.2.
3 All proofs of the propositions below can be found in a longer version of this paper

available at http://cvc4.cs.stanford.edu/papers/CADE2017-relations/.

http://cvc4.cs.stanford.edu/papers/CADE2017-relations/

156 B. Meng et al.

Fig. 4. A restricted fragment of TR-constraints. Letter x denotes variables.

Proposition 3 (Termination). If S is a finite set of constraints generated by
the grammar in Fig. 4, then all derivation trees with root node S are finite.

Proof. Assume that S is a finite set containing only constraints ϕ from the
grammar in Fig. 4. First, we construct the following mapping from relation terms
to tuple terms. Let Du (resp. Db) be a mapping from unary (resp. binary)
relation terms to sets of unary (resp. binary) tuple terms defined as the least
solution to the following set of constraints, where the e’s, the u’s and the b’s are
implicitly universally quantified metavariables ranging over terms respectively
of element, unary relation and binary relation sort:

〈e〉 ∈ Du(u) if 〈e〉 �− u ∈ S
〈e〉 ∈ Du(u1) if 〈e〉 ∈ Du(u2) and u1 ∈ T (u2)

〈ze,b,u〉 ∈ Du(u) if 〈e〉 ∈ Du(b �� u)
〈e1, e2〉 ∈ Db(b) if 〈e1, e2〉 �− b ∈ S

〈e1, e2〉 ∈ Db(b1) if 〈ei, ej〉 ∈ Db(b2) for {i, j} = {1, 2} and b1 ∈ T (b2)
〈e, ze,b,u〉 ∈ Db(b) if 〈e〉 ∈ Du(b �� u)

where ze,b,u denotes a unique fresh variable for each value of e, b, and u. We
require only one such variable for each triple (e, b, u) since our redundancy crite-
ria for rule applications ensures that Join Down cannot be applied more than
once for the same premise 〈e〉 ∈ Du(b �� u). Intuitively, Du maps each relation
term u in S to an overapproximation of the set of unary tuples 〈e〉 for which
our calculus can infer the constraint 〈e〉 �− u using downward rules only, and
similarly for the binary case Db. The domain of Du and that of Db contain
only relation terms occurring in S, and thus are finite. All sets in the ranges
of Du and Db are also finite. To show this, we argue that only a finite num-
ber of fresh variables ze,b,u are introduced by this construction. We define a
measure depth on element terms such that depth(e) = 0 for all e ∈ T (S), and
depth(ze,b,u) = 1 + depth(e). For all variables ze,b,u in the range of Du and Db,
we have that b �� u ∈ T (S), and if e is a variable of the form ze′,b′,u′ , then b �� u
is either a subterm of b′ or u′. Thus, the depth of all element terms in the range
of Du and Db is finite. Since there are finitely many element terms in T (S), and
finitely many terms of the form b �� u in T (S), there are finitely many variables
of the form ze,b,u and thus finitely many element terms occur in tuple terms in
the range of Du and Db. Therefore, there are finitely many tuple terms in sets
in the ranges of Du and Db.

Now, let Uu (resp. Ub) be a mapping from unary (resp. binary) relation terms
to sets of unary (resp. binary) tuple terms, constructed to be the least solution

Relational Constraint Solving in SMT 157

to the following set of constraints (where again the e’s, the u’s and the b’s are
implicitly universally quantified metavariables as above):

〈e〉 ∈ Uu(u) if 〈e〉 ∈ Du(u)
〈e〉 ∈ Uu(u1) if 〈e〉 ∈ Uu(u2), u2 ∈ T (u1) and u1 ∈ T (S)
〈e〉 ∈ Uu(u) if u = [e] and u ∈ T (S)

〈e1〉 ∈ Uu(u1) if u1 = b1 �� u2 and 〈e1, e2〉 ∈ Ub(b1)
〈e1, e2〉 ∈ Ub(b) if 〈e1, e2〉 ∈ Db(b)

〈e1, e2〉 ∈ Ub(b1) if 〈ei, ej〉 ∈ Ub(b2) for {i, j} = {1, 2}, b2 ∈ T (b1), b1 ∈ T (S)
〈e1, e2〉 ∈ Ub(b) if b = [〈e1, e2〉] and b ∈ T (S)

Similar to the previous construction, Uu maps each relation term u in S to an
over-approximation of the set of unary tuples 〈e〉 for which our calculus can infer
the constraint 〈e〉 �− u using both downward and upward rules, and similarly
for the binary case Ub. By construction, since the domains of Du and Db are
subsets of T (S), the domains of Uu and Ub are also subsets of T (S), and thus
are finite, hence their respective ranges Ru and Rb are finite too. Each set in Ru

or Rb is finite as well, since the tuples in these ranges are built from element
terms e that occur in the range of Du and Db or in singleton sets of the form
[〈e〉], [〈e, e′〉] or [〈e′, e〉] in T (S).

Now let Ŝ be the following set of constraints:

Ŝ = {(¬)〈e〉 �− u | 〈e〉 ∈ Uu(u), u ∈ T (S)} ∪
{(¬)〈e1, e2〉 �− b | 〈e1, e2〉 ∈ Ub(b), b ∈ T (S)} ∪
{(¬)e1 ≈ e2 | e1, e2 ∈ T (Ru ∪ Rb)} ∪
{〈e1〉 ≈ 〈e2〉 | e1, e2 ∈ T (Ru ∪ Rb)} ∪
{〈e1, e2〉 ≈ 〈e3, e4〉 | e1, e2, e3, e4 ∈ T (Ru ∪ Rb)}

From the arguments above we can conclude that Ŝ is finite. By construction,
S ⊆ Ŝ. One can show by structural induction on derivation trees that all descen-
dants of S in a derivation tree are also subsets of Ŝ. Since the size of a state
strictly grows with each rule application not deriving unsat, we can conclude
that no derivation tree can be grown indefinitely. Hence all derivation trees with
root S are finite. ��

By Propositions 1, 2 and 3, we have that any rule application strategy for
the calculus is a decision procedure for finite sets of constraints in the language
generated by the grammar from Fig. 4.

5 Applications of TR

Our main motivation for adding native support for relations in an SMT solver
is that it enables more natural mappings from other logical formalisms ulti-
mately based on relations. This opens the possibility of leveraging the power
and flexibility of SMT to reason about problems expressed in those formalisms.
We discuss here two potential applications: reasoning about Alloy specifications

158 B. Meng et al.

and reasoning about OWL ontologies. It should be clear to the knowledgeable
reader though that the set of potential applications is much larger, encompassing
description logics in general as well as various modal logics—via an encoding of
their accessibility relation.

5.1 Alloy Specifications

Alloy is a formal specification language based on relational logic which is widely
used for modeling structurally-rich problems [12]. Alloy specifications, called
models in the Alloy literature, are built from relations and relational algebra
operations in addition to the usual logical connectives and quantifiers. One can
also specify expected properties of a specification as formulas, called assertions
in Alloy, that should be entailed by the specification.

The analysis of Alloy specifications can be performed automatically by a
tool called the Alloy Analyzer which uses as its reasoning engine Kodkod, a
SAT-based finite model finder [17]. This requires the user to impose a (concrete,
artificial) finite upper bound on the size of the domains of each relation, limiting
the analyzer’s ability to determine that a specification is consistent or has a given
property. In the first case, the user has to manually increase the bounds until
the Alloy Analyzer is able to find a satisfying interpretation for the specification;
in the second case, until it can find a counter-example for the property. As a
consequence, the analyzer cannot be used to prove that (i) a specification is
inconsistent or (ii) it does have a certain property.

In contrast, thanks to its new theory solver for relational constraints based on
the calculus described earlier, cvc4 is now able in many cases to do (i) and (ii)
automatically, with no artificial upper bounds on domain sizes. Also, because of
its own finite model finding capabilities [15], it can find minimal satisfying inter-
pretations for consistent specifications or minimal counter-examples for proper-
ties without the need of user-provided artificial upper bounds on domain sizes.
Finally, since its relational theory solver is fully integrated with its theory solvers
for other theories (such as linear arithmetic, strings, arrays, and so on), cvc4

can natively support mixed constraints using relations over its various built-in
types, something that is possible in the Alloy Analyzer only in rather limited
form.4 To evaluate cvc4’s capabilities in solving Alloy problems, we have defined
a translation from Alloy specifications to semantically equivalent SMT formulas
that leverages our theory of relations. The translation focuses on Alloy’s kernel
language since non-kernel features can be rewritten to the kernel language by
the Alloy Analyzer itself. We sketch our translation below.5

In Alloy, a signature is a set of uninterpreted atomic elements, called atoms.
Signatures are defined with a syntax that is reminiscent of classes in object-
oriented languages. A relation (of arity n) is a set of n-tuples of atoms and
4 The Alloy Analyzer currently has built-in support for bounded integers. Any other

data types need to be axiomatized in the specification.
5 The translation is sound only if all Alloy signatures are assumed to be finite. A full

account of the translation and a proof of its soundness are beyond the scope of this
paper.

Relational Constraint Solving in SMT 159

is declared as a field of some signature S, which acts as the domain of the
elements in the first component. Multiplicity constraints on signatures and fields
can be added with keywords such as some, no, lone, and one, which specify
that a signature is non-empty, empty, has cardinality at most one, and is a
singleton, respectively. Other keywords specify that a relation is one-to-one, one-
to-many, and so on. One or more signatures can be declared to be subsets of
another signature with extends or in. With extends, all specified signatures are
additionally assumed to be mutually disjoint.

In the translation, we introduce an uninterpreted sort Atom for Alloy atoms.
An Alloy signature sig S is translated as a constant6 S of sort Rel1(Atom),
that is, a set of unary tuples. A field f:S1 -> · · · -> Sn of a signature S is
translated as a constant f of sort Reln+1(Atom, . . . ,Atom) together with the
additional constraint f � S ∗ S1 ∗ · · · ∗ Sn to ensure that the components of f’s
tuples are from the intended signatures. The signature hierarchy is encoded using
subset constraints. For example, the Alloy constraint sig S1, . . ., Sn extends S

is translated as the set of constraints {S1 � S, . . . ,Sn � S} ∪ {Si � Sj ≈ [] | 1 ≤
i < j ≤ n}. If S above is also declared to be abstract (a notion similar to abstract
classes in object-oriented languages), the additional constraint S1�· · ·�Sn ≈ S is
added to enforce that. Similarly, signature declarations of the form sig S1, · · · ,
Sn in S, are translated just as {S1 � S, . . . ,Sn � S}. Multiplicity constraints
are translated as quantified formulas.

Since our theory supports all constructs and operators in Alloy’s kernel lan-
guage, Alloy expressions and formulas, which can include quantifiers ranging over
atoms, can be more or less directly translated to their counterparts in cvc4’s
language. It is worth mentioning that our translation supports Alloy’s set com-
prehension construct, by introducing a fresh relational constant for the set and
adding definitional axioms for it. In addition, we partially support Alloy cardi-
nality constraints of the form #(r)op n where r is a relation term, op ∈ {<, >, =},
n ∈ N, and # is the cardinality operator, by encoding them as subset constraints.
For example, the Alloy constraint #(S) < 3 on a signature S is translated to
S � [〈k1〉, 〈k2〉] where S is the corresponding unary relation and k1 and k2 are
two fresh constants of sort Atom.

5.2 OWL DL Ontologies

OWL is an ontology language whose current version, OWL 2, was adopted as
a standard Semantic Web language by the W3 consortium. It includes a sub-
language, called OWL DL, that corresponds to the expressive, yet decidable,
description logic SHOIN (D) [2]. We have defined an initial, partial translation
from SHOIN (D) to SMT formulas that again leverages our theory of relations.

A mapping from salient SHOIN (D) constructs to their SMT counterparts
is illustrated in Fig. 5. The figure shows only relations whose elements do not

6 Free constants have the same effect as free variables for satisfiability purposes.

160 B. Meng et al.

Fig. 5. A mapping from DL language to ΣR-constraints.

belong to the so-called concrete domain(s) D of SHOIN (D).7 As with the
Alloy translation, we use the single sort Atom for all elements of non-concrete
domains. The set comprehension notation is used here for brevity: for a set
comprehension term of the form [x | ϕ] where x has n-tuple sort, we introduce
a fresh set constant S accompanied by the defining axiom ∀x :Tupn(Atom) (x �−
S ⇔ ϕ). The constant Univ in the figure denotes the universal unary relation
over Atom. Since this constant is currently not built-in as a symbol of TR, it
is accompanied by the defining axiom ∀a :Atom 〈a〉 �− Univ. The expression
dist(a1, . . . , an) states that a1, . . . , an are pairwise different. We observe how
the translation is immediate for most constructs, with the notable exception of
universal and number restrictions, which require the use of complex quantified
formulas.

6 Evaluation

To evaluate our theory solver for TR in cvc4 we implemented translators from
Alloy and from OWL based on the translations sketched in the previous section.
7 Some of those domains in OWL correspond to built-in sorts in cvc4. A full transla-

tion from OWL concrete domains to cvc4 built-in sorts is beyond the scope of this
work.

Relational Constraint Solving in SMT 161

This section presents an initial evaluation on a selection of Alloy and OWL
benchmarks.8

6.1 Experimental Evaluation on Alloy Models

We considered two sets of Alloy benchmarks; the first consists of 40 examples
from the Alloy distribution and from a formal methods course taught by one
of the authors; the second were used in [10] to evaluate AlloyPE. All bench-
marks consist of an Alloy model together with a single property. We evaluated
two configurations of cvc4. The first, denoted CVC4, enables full native sup-
port for relational operators via the calculus from Sect. 3. The second, denoted
CVC4+AX, instead encodes all relational operators as uninterpreted func-
tions and supplements the translation of benchmarks with additional axioms
that specify their semantics. To compare cvc4 with other tools, we also evalu-
ated the Alloy Analyzer, version 4.2, downloaded from the Alloy website, and El
Ghazi et al.’s AlloyPE tool (kindly provided to us directly by its authors) using
the SMT solver Z3 version 4.5.1 as a backend. All experiments were performed
with a 300 s timeout on a machine with a 2.9 GHz Intel Core i7 CPU with 8 GB
of memory.

Fig. 6. Evaluation on Alloy benchmarks.

8 Detailed results and all benchmarks are available at http://cvc4.cs.stanford.edu/
papers/CADE2017-relations/.

http://cvc4.cs.stanford.edu/papers/CADE2017-relations/
http://cvc4.cs.stanford.edu/papers/CADE2017-relations/

162 B. Meng et al.

Fig. 7. Evaluation on AlloyPE benchmarks

Figures 6 and 7 show the results from running the Alloy Analyzer, cvc4

and AlloyPE on the two sets of Alloy benchmarks. We omit results for 13 of
the benchmarks from the first set that no system solved. The second and third
columns show the results of running the Alloy Analyzer. To evaluate the Alloy
Analyzer on these benchmarks, we considered bounded scopes in an incremental
fashion. Using a script, we set an initial upper bound, or scope, of 1 for the
cardinality of all signatures in the problem, and kept increasing it by 1 if the Alloy
Analyzer found the problem unsatisfiable (b-uns) in the current scope—meaning
that it was not able to disprove the property in the problem. We terminated on
time out (to), or when the analyzer was able to disprove the property (sat) or
ran out of memory for a scope. We report the scope size for benchmarks where
the tool returned an answer. The fourth and fifth columns show the results
from cvc4 when invoked in finite model finding mode on the translated SMT
problem. The last two columns are the results from AlloyPE, where n/a indicates
that AlloyPE failed due either to the presence of unsupported Alloy constructs
in the input problem or to internal errors during solving or translation.

As shown in the table, our approach is overall slower than the Alloy Analyzer
for satisfiable benchmarks. For the unsatisfiable ones, cvc4 returns an answer
within a reasonable time limit for most of the benchmarks and has advantages
over the state of the art. It is important to note, however, that an unsat answer
from cvc4 indicates that the property is valid as opposed to the b-uns answer from
the Alloy Analyzer, which only means the property is valid within the given scope.

Compared to AlloyPE, we successfully solved all of their benchmarks but
four, as indicated in Fig. 7. For these benchmarks, AlloyPE benefits from per-
forming a static analysis of the problem that involves sophisticated heuristics
to discover invariants. For our own set of benchmarks, in Fig. 6, AlloyPE failed
on all sat benchmarks and was unable to solve many unsat ones due to failures

Relational Constraint Solving in SMT 163

during the translation or the solving phase. We observe that AlloyPE gives an
unsound answer for the benchmark javatypes: it returns unsat, whereas both the
Alloy Analyzer and cvc4 return sat.

Our results also indicate that native support for relational reasoning is impor-
tant for reasoning efficiently for these benchmark sets. In fact, CVC4+AX is
unable to report sat for any satisfiable benchmark due to its use of axioms for the
relation operators, which quantify over set variables, where cvc4’s finite model
finding techniques are not applicable. More interestingly, CVC4+AX solves
significantly fewer unsat benchmarks when compared to CVC4, indicating that
using the calculus in Sect. 3 is superior to encoding the semantics of relational
operators via an explicit axiomatization.

6.2 Experimental Evaluation on OWL Models

We built a preliminary translator from OWL to SMT, and we did a consistency
evaluation, which checks whether or not an ontology is contradictory, for a set of
OWL benchmarks in pure description logic from the 4th OWL Reasoner Evalu-
ation competition.9 Of the original 7,704 benchmarks, we considered only those
whose size was under 1 MB, and further excluded benchmarks that involved some
of the more sophisticated features of the OWL language that are currently not
supported by our translator. We ran the experiments with a 30 s time out, on a
machine with a 3.2 GHz Intel(R) Xeon CPU E5-2667 v3 and 20 GB of memory.

Among the selected 3,936 benchmarks, cvc4 found 3,639 consistent, found
7 inconsistent, and timed out on the remaining 290. By comparison, the state-
of-the-art DL reasoner Konclude [16] gave an answer for all 3,936 benchmarks.
However, Konclude and cvc4 disagreed on 9 benchmarks, all of which cvc4

found consistent. We determined that Konclude reports inconsistent for those 9
benchmarks possibly because the benchmarks are not syntactically compliant.
For example, some include Boolean literals without a type declaration. In terms
of performance, cvc4 takes on average 1.7 s per benchmark on the 3,646 it solves.
This is significantly slower than Konclude, which takes on average 0.02 s per
benchmark on the same set. We attribute this to the fact that cvc4 does not
yet support the universal set and set complement natively, and has no specific
quantifier instantiation heuristics for the quantified formulas generated by the
translation of universal and number restrictions. Nevertheless, we find these
results quite encouraging as they show that further investigation into efficient
reasoning for OWL models in SMT solvers is an interesting direction of research.

7 Conclusion and Future Work

We presented a calculus for an extension to the theory of finite sets that includes
support for relations and relational operators. We implemented the calculus as
a modular extension to the set subsolver in our SMT solver cvc4. A prelim-
inary evaluation has shown that our implementation is competitive with the
9 See https://www.w3.org/community/owled/ore-2015-workshop/competition.

https://www.w3.org/community/owled/ore-2015-workshop/competition

164 B. Meng et al.

state of the art when used to prove properties or verify the consistency of Alloy
specifications.

We are investigating more expressive fragments for which our calculus ter-
minates, including those corresponding to fragments of description logic [11]. In
future work, we would like to devise an approach for a theory that includes both
relational constraints and cardinality constraints that is efficient in practice,
together with specialized techniques geared toward reasoning about formulas
resulting from the translation of description logic problems. In particular, we
plan to extend our logic with the set complement operator and a constant for
the universal set, and extend our calculus and its implementation to provide
direct support for them.

Acknowledgements. This work was partially supported by NSF grant no. 1228765
and by a gift from GE Global Research. We are grateful to Jasmin Blanchette and
the anonymous reviewers for their very detailed comments and questions which helped
improve the presentation of the paper.

References

1. Baader, F.: The Description Logic Handbook: Theory, Implementation and Appli-
cations. Cambridge University Press, Cambridge (2003)

2. Baader, F., Horrocks, I., Sattler, U.: Description logics. In: Frank van Harmelen,
V.L., Porter, B. (eds.) Handbook of Knowledge Representation, vol. 3. Foundations
of Artificial Intelligence, pp. 135–179. Elsevier (2008)

3. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 82–98. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 7

4. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

5. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard–version 2.6. In:
Gupta, A., Kroening, D. (eds.) SMT 2010 (2010)

6. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfiability modulo theories.
In: Biere, A., Heule, M.J.H., van Maaren, H., Walsh, T. (eds.) Handbook of Satis-
fiability, vol. 185, chap. 26, pp. 825–885. IOS Press, February 2009

7. Dutertre, B., Moura, L.D.: The YICES SMT solver. Technical report, SRI Inter-
national (2006)

8. Ghazi, A.A.E., Taghdiri, M.: Analyzing alloy constraints using an SMT solver: a
case study. In: 5th International Workshop on Automated Formal Methods (AFM)
(2010)

9. Ghazi, A.A., Taghdiri, M.: Relational reasoning via SMT solving. In: Butler, M.,
Schulte, W. (eds.) FM 2011. LNCS, vol. 6664, pp. 133–148. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-21437-0 12

10. El Ghazi, A.A., Taghdiri, M., Herda, M.: First-order transitive closure axiomati-
zation via iterative invariant injections. In: Havelund, K., Holzmann, G., Joshi, R.
(eds.) NFM 2015. LNCS, vol. 9058, pp. 143–157. Springer, Cham (2015). doi:10.
1007/978-3-319-17524-9 11

http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-21437-0_12
http://dx.doi.org/10.1007/978-3-319-17524-9_11
http://dx.doi.org/10.1007/978-3-319-17524-9_11

Relational Constraint Solving in SMT 165

11. Horrocks, I., Sattler, U.: Decidability of SHIQ with complex role inclusion axioms.
Artif. Intell. 160(1–2), 79–104 (2004)

12. Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans. Softw.
Eng. Methodol. 11(2), 256–290 (2002)

13. Jackson, D.: Software Abstractions - Logic, Language, and Analysis. MIT Press
(2006)

14. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories:
from an abstract Davis-Putnam-Logemann-Loveland Procedure to DPLL(T). J.
ACM 53(6), 937–977 (2006)

15. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 42

16. Steigmiller, A., Liebig, T., Glimm, B.: Konclude: System description. Web Semant.
Sci. Serv. Agents World Wide Web 27(1), 1–86 (2014)

17. Torlak, E., Jackson, D.: Kodkod: a relational model finder. In: Grumberg, O.,
Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 632–647. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-71209-1 49

18. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: system description.
In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp.
292–297. Springer, Heidelberg (2006). doi:10.1007/11814771 26

19. Tsarkov, D., Palmisano, I.: Chainsaw: a metareasoner for large ontologies. In:
Horrocks, I., Yatskevich, M., Jiménez-Ruiz, E. (eds.) ORE (2012)

20. W3C. OWL 2 web ontology language. https://www.w3.org/2007/OWL/wiki/
Syntax

http://dx.doi.org/10.1007/978-3-642-39799-8_42
http://dx.doi.org/10.1007/978-3-540-71209-1_49
http://dx.doi.org/10.1007/11814771_26
https://www.w3.org/2007/OWL/wiki/Syntax
https://www.w3.org/2007/OWL/wiki/Syntax

Decision Procedures for Theories
of Sets with Measures

Markus Bender(B) and Viorica Sofronie-Stokkermans

Universität Koblenz-Landau, Koblenz, Germany
{mbender,sofronie}@uni-koblenz.de

Abstract. In this paper we introduce a decision procedure for checking
satisfiability of quantifier-free formulae in the combined theory of sets,
measures and arithmetic. Such theories are important in mathematics
(e.g. probability theory and measure theory) and in applications. We
indicate how these ideas can be used for obtaining a decision procedure
for a fragment of the duration calculus.

1 Introduction

For the verification of real world systems one often needs decision procedures
for various, complex, data structures. One theory which was thoroughly investi-
gated in the past is the theory of sets with cardinalities. Such data structures are
important in mathematics, knowledge representation and verification, and have
proven to be a useful abstraction in many verification areas. The decidability of
this theory has been extensively studied. In addition to work by Ohlbach ([21]),
by Kuncak and his collaborators ([19,20,24,25,27]) and the extension to the
combined theory of sets, cardinalities, arithmetic and sums of sets ([3]), we men-
tion work by Zarba ([26]), Chocron et al. ([12]), Alberti et al. ([1]) and Bansal
et al. ([2]) in which the theory of sets and cardinalities – or fragments thereof
– is considered and different decision procedures are proposed. However, so far
we have not found any results on the more general case of reasoning with sets
and arbitrary measures. The main idea of the approach proposed in [21] and
later in [19] is to use an atomic decomposition of sets, using Venn diagrams, and
use the additivity axioms for cardinalities for a reduction to checking the valid-
ity/satisfiability of formulae in Presburger arithmetic. This reduction method
relies on the fact that sets with cardinality 0 are empty. This is not the case for
more general theories of additive functions such as measures or probabilities on
infinite sets: there can exist non-empty sets with measure 0.

In this paper we study theories of sets with measures, which are important in
mathematics (e.g. probability theory and measure theory) and in applications,
e.g. for the duration calculus (cf. e.g. [5]). The main contributions of this paper
can be summarized as follows:

– We propose a method for checking satisfiability of quantifier-free formulae
of theories of sets, measures and arithmetic by reduction to checking the

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 166–184, 2017.
DOI: 10.1007/978-3-319-63046-5 11

Decision Procedures for Theories of Sets with Measures 167

satisfiability of a formula in linear real arithmetic, and study its complexity.
Our method relies – similarly to the approaches of Ohlbach [21] and Kuncak
et al. [19] – on an atomic decomposition of sets.

– We prove a locality result for this theory and show that locality considerations
allow us to identify tractable fragments of the theory.

– We indicate how these ideas can be used for obtaining a decision procedure
for a fragment of the duration calculus [5] introduced in [13].

The locality properties we establish allow us to use results on preservation of
locality properties for combinations of theories in [14] for proving – in a uniform
way – locality properties for the combination of the theory of sets with measures
with other local extensions of the theory of sets and provide an alternative to
results obtained before in the context of combining reduction functions in [16],
and for combinations of certain theories with shared set operations in [24].

Structure of the paper: In Sect. 2 we present the problems and the idea of our
solutions on two examples. Section 3 introduces the definitions of the theories we
consider. In Sects. 4 and 5 we present two versions of our approach; in Sect. 6 we
show how it can be used for a fragment of the duration calculus.

2 Examples

We illustrate the idea of our method by two examples:

Example 1 (Probability theory). Consider two events e1 and e2. Assume that:

(i) e1 implies e2,
(ii) e2 does not imply e1 and
(iii) the probability that e2 happens and e1 does not happen is 0. Is it possible

that the probability of e1 and that of e2 are different?

If we identify the events e1, e2 with subsets x1, x2 of a sample space U , we
can formulate the problem as checking the satisfiability of the following formula:

F = (x1 ⊆ x2) ∧ ¬(x2 ⊆ x1) ∧ P(x2 ∩ x1) ≈ 0 ∧ P(x1) �≈ P(x2)

in the combinations of the theory of sets and the theory of a measure function
P, satisfying the following conditions

∀ X (0 ≤ P(X))(P1)

∀ X (X ≈ ∅ → P(X) ≈ 0)(P2)

∀ X, Y (X ∩ Y ≈ ∅ → P(X ∪ Y) ≈ P(X) + P(Y))(P3)

∀ X (P(X) ≤ 1) ∧ P(U) = 1(P4)

We will show that in order to check the satisfiability of formula F we can pro-
ceed as follows: We generate all atomic sets corresponding to the Venn diagram
associated with the sets occurring in the problem, in this case:

168 M. Bender and V. Sofronie-Stokkermans

S11 = x1 ∩ x2, S10 = x1 ∩ x2, S01 = x1 ∩ x2, S00 = x1 ∩ x2,

and replace x1 ⊆ x2 with S10 ≈ ∅, and x2 ⊆ x1 with S01 ≈ ∅.

We then consider the following instances of the probability axioms (P1)–(P4):
in (P4) we replace X with the union of all atomic sets (all other instances are
redundant); in (P3) we instantiate X and Y with all possible disjoint unions of
atomic sets. We use these instances to reduce the initial problem to the problem
of checking the satisfiability of the following formula:

S10 ≈ ∅ ∧ S01 �≈ ∅ ∧ P(S01) ≈ 0 ∧ P(S11) + P(S10) �≈ P(S01) + P(S11)

together with the corresponding instances of the axioms (P1), and (P2) in which
the variable X is instantiated with S00,S01,S10 and S11. After purification by
replacing P(Sij) with mij , and simplification we obtain the following constraints:

Def Set Num Bridge

m11 ≈ P(S11) S10 ≈ ∅ m01 ≈ 0, m11 + m10
≈ m01 + m11 S11 ≈ ∅ → m11 ≈ 0
m10 ≈ P(S10) S01
≈ ∅ 0 ≤ m00, 0 ≤ m10, 0 ≤ m01, 0 ≤ m11 S10 ≈ ∅ → m10 ≈ 0
m01 ≈ P(S01) m11 + m01 + m10 + m11 = 1 S01 ≈ ∅ → m01 ≈ 0
m00 ≈ P(S00) S00 ≈ ∅ → m00 ≈ 0

We can check the satisfiability of the formula above as follows: We notice that
the set constraints entail S10 ≈ ∅. Using S10 ≈ ∅ → m10 ≈ 0, we obtain m10 ≈
0. This leads to a contradiction. In this paper we show that the instantiation
procedure described above is sound, complete and terminating for the theory of
sets with measures, and investigate two possibilities of propagating constraints
of the form Sij ≈ ∅ in order to entail mij ≈ 0. We show that if the problems we
consider do not contain unions or negation then we can replace axiom (P3) with
a monotonicity axiom for the measures and thus obtain a polynomial decision
procedure for satisfiability of formulae in this fragment. �
Example 2 (Duration Calculus). Consider two “states” described by proposi-
tional variables x1 and x2 finitely varying on an interval [b, e], where b < e.
Assume that:

(i) at every moment of time t if a system is in state x1, it is also in state x2,
(ii) there are moments at which the system is in state x2 but not in state x1,
(iii) the “duration” in [b, e] of the system being in state x2 but not in x1 is 0.

Can the durations in [b, e] of x1 and x2 be different?
In the duration calculus, for a state described by a propositional variable x

and an observation interval [b, e], the duration of x in [b, e] is
∫

x =
∫ e

b
x(t)dt.

The problem above is that of checking the satisfiability of the formula:

(x1 ⊆ x2) ∧ ¬(x2 ⊆ x1) ∧
∫

(x2 ∩ x1) ≈ 0 ∧
∫

x1 �≈
∫

x2

in the theory of sets with a measure function
∫

satisfying axioms (
∫
1
)–(

∫
3
) similar

to (P1)–(P3); this is actually the problem in Example 2 without (P4). �

Decision Procedures for Theories of Sets with Measures 169

3 Theories of Sets with Measures

In this section we define the theories considered in this paper.

Syntax. Let S = {num, set} be a set of sorts, consisting of num (the numerical
sort), set (the sort of sets). The following sets of function and predicate symbols:

Ωcnum = {K | K a constant of sort num with fixed semantics}
Ωcset = {∅, U}
Ωnum = Ωcnum ∪ {+,−, ∗}, where a(+) = a(−) = a(∗) = num × num → num
Ωset = Ωcset ∪ {∪,∩, �}, where a(∪) = a(∩) = set × set → set, a(�) = set → set
Πnum = {≈num, <}, where a(≈num) = a(<) = num × num
Πset = {≈set,⊆}, where a(≈set) = a(⊆) = set × set
Ωm consists of unary functions with a(m) = set → num for all m ∈ Ωm

are used to define the following signatures that are used in this paper:

Σarith = ({num},Ωnum,Πnum), Σset = ({set},Ωset,Πset)
Σset,m = ({num, set}, Ωnum ∪ Ωset ∪ Ωm, Πnum ∪ Πset)

For all f ∈ (Ωnum∪Ωset∪Ωm), we refer to a(f) = s1× . . . ×sn → s0 as the sort
of f and n as the arity of f . Function symbols with arity 0 are called constants.
The measure functions are the function symbols in Ωm with sort set → num. For
clarity, functions with arity 2 are written in infix notation.

Let X = (X num,X set) be a countably infinite two-sorted set of variables,
where X num is a set of variables of sort num and X set is a set of variables of sort
set.

Notation. If not stated otherwise, x, xi, y denote variables of sort set, called
set variables, k, ki,m,mi denote variables of sort num, called arithmetical vari-
ables, v, vi denote set and arithmetical variables, and B,Bi denote arbitrary set
expressions, where i is any index. We sometimes use x instead of �x to denote
the complement of a set and if the meaning is unambiguous, ≈ instead of ≈num,
resp. ≈set. We use the symbols ≤,≥, >,⊂,⊇,⊃ and �≈ with the usual definitions.

The language corresponding to Σset,m is described below:

F :: = A | F ∧ F | F ∨ F | ¬F

A:: = B ≈ B | B ⊆ B | T ≈ T | T < T

B:: = x | ∅ | U | B ∪ B | B ∩ B | B where x is a variable of sort set

T :: = k | K | T + T | T − T | K · T | m(B) where k is a variable of sort num

K:: = a number, i.e. a constant of sort num with fixed semantics

170 M. Bender and V. Sofronie-Stokkermans

Semantics. We consider the following theories:

– LI(R), the theory of linear arithmetic over R.
– T S, the theory of sets, having as models Σset-structures of the form A =

(Asets,∪,∩, �, ∅,UA,⊆), where Aset is a family of subsets of a set UA, closed
under ∪, ∩ and complementation w.r.t. UA.

– T S
m, the theory of m-measurable sets, where m is a concrete measure function,

having as models Σset-structures A = (Aset,∪,∩, �, ∅,UA,⊆), where UA is a
measurable set w.r.t. m with finite measure and Aset is a family of measurable
subsets (with finite measure) of UA, closed under ∪, ∩ and complementation
w.r.t. UA.

The properties of the measure functions are described by the set KM consisting
of the following axioms (the universally quantified variables are of sort set):

∀x 0 ≤ m(x)(M1)
∀x x ≈ ∅ → m(x) ≈ 0(M2)

∀x1, . . . , xn

∧

i,j

xi ∩ xj ≈ ∅ ∧ x ≈
n⋃

i=1

xi → m(x) ≈
n∑

i=1

m(xi).(M3)

We consider two theories of sets and measures over R, T u
M and T m

M: In the models
of T u

M the interpretation of m is free and in the models of T m
M the interpretation

of m must follow the specific semantics of a given measure function. T u
M and T m

M

have as models Σset,m-structures A = (Anum,Aset,ΩA,ΠA), where:

(1) For T u
M: (i) Anum=R, A|Σarith

is a model of LI(R); (ii) A|Σset,m
is a model of T S;

(iii) mA : Aset → Anum is an arbitrary function satisfying the axioms KM;
(2) For T m

M, for a given measure function m: (i) Anum=R, A|Σarith
is a model of

LI(R); (ii) A|Σset,m
is a model of T S

m; (iii) mA = m, i.e. for every S ∈ Aset,
mA(S) = m(S). Every measure function satisfies axioms KM. We assume
that m also has the following property:
(Mm) (a) For all finite families of numbers c1, . . . , cn ∈ R;m1, . . . ,mn ∈

R+ with the property that ci ≈ 0 → mi ≈ 0 holds for 1 ≤ i ≤ n
there exists a model A of T S

m and there exist mutually disjoint
sets S1, . . . , Sn ∈ Aset such that mA(Si) = mi and such that
Si = ∅ iff ci = 0.

(b) For all Σset-formulae F1, F2, F1 |=T S
m F2 iff F1 |=T S

F2.
Property (Mm) (a) expresses the fact that we can find disjoint sets with given
cardinalities, and that we can encode Si ≈ ∅ using a constraint ci ≈ 0. Con-
dition (b) guarentees that properties of measures do not induce constraints
on sets. We thus exclude pathologic situations such as “B is measurable iff
B is empty”.

In cases where we talk about a specific measure function, this will be denoted
explicitly, e.g. with mLes for the Lebesgue measure.

Decision Procedures for Theories of Sets with Measures 171

Task: We are interested in checking satisfiability of quantifier-free formulae
w.r.t. T u

M or T m
M. Since free variables can be seen as existentially quantified and

replaced by constants by Skolemization, it does not make a difference if we talk
about free variables or constants, so we treat both terms synonymously.

4 Reasoning About Sets and Measures

In this section we present a sound, complete and terminating method for checking
the satisfiability of quantifier-free formulae in the theories of sets and measures
introduced above. Since the method we propose relies on constructing atomic
decompositions, we start by presenting the main ideas.

4.1 Atomic Decompositions

The concept of atomic sets and atomic decompositions was introduced by
Ohlbach in [21] and used under the name of cubes by Kuncak et al. in [18].
They allow us to represent every set expression as union of disjoint sets. This
representation makes it sufficient to only deal with instances of the bridging
functions whose argument is a single atomic set.

For a formal definition, we refer to [3]; instead we just give a description
with the help of Example 3. For n set variables, there are 2n mutually disjoint
regions in the Venn diagram that can be described as an intersection with n
participating expressions, where each expression is either a set variable or the
complement of a set variable. These regions are called atomic sets. Every set
expression can be described as union of atomic sets (atomic decomposition).
Due to the construction of the atomic sets, all Si are disjoint, i.e.

∀ i, j ∈ {0, . . . , 2n − 1}(i �= j → (Si ∩ Sj) = ∅)
holds. If not stated otherwise, S,Si denote atomic sets, where i is any index.

Example 3. Let x1, x2 be two variables of sort set. The four atomic sets are:
S00 = x1 ∩ x2, S01 = x1 ∩ x2, S10 = x1 ∩ x2, S11 = x1 ∩ x2. The atomic
decompositions for the sets x1 and x2 are: x1 = S10 ∪S11 = (x1 ∩x2)∪ (x1 ∩x2),
and x2 = S01 ∪ S11 = (x1 ∩ x2) ∪ (x1 ∩ x2). �

4.2 Reasoning with Measures

We introduce a decision procedure for checking satisfiability of quantifier-free
Σset,m formulae w.r.t. T u

M and w.r.t. T m
M, where m is a given measure function

satisfying condition (Mm). The method relies on rewriting any ground Σset,m

formula F to an equisatisfiable formula F ′ in linear arithmetic and checking the
satisfiability of F ′ with a decision procedure for LI(R). Before giving a detailed
explanation of the procedure in Algorithm 1, we present the general idea:

(a) We use atomic decompositions followed by simplification to bring set expres-
sions into a canonical form in which all atoms are of the form S ≈ ∅.

172 M. Bender and V. Sofronie-Stokkermans

Algorithm 1. Rewrite a Σset,m formula to an equisatisfiable Σarith formula.
1. Represent all set expressions as atomic decomposition.
2. Simplify set atoms by replacing all atoms of form

⋃

i∈I

Si ∪
⋃

k∈K

Sk ��
⋃

j∈J

Sj ∪
⋃

k∈K

Sk with
⋃

i∈I

Si ��
⋃

j∈J

Sj

where �� ∈ {≈, ⊇, �} and Si
= Sj for all i ∈ I and for all j ∈ J .
3. Reduce set atoms to equalities with empty set by replacing all set atoms of form

⋃

i∈I

Si ��
⋃

j∈J

Sj with

⎧
⎪⎪⎨

⎪⎪⎩

(∧
i∈I Si ≈ ∅) ∧

(∧
j∈J Sj ≈ ∅

)
if ��=≈

(∧
i∈I Si ≈ ∅) if ��=⊆

(∧
i∈I Si ≈ ∅) ∧

(∨
j∈J Sj
≈ ∅

)
if ��=�

4. Replace all instances of m whose arguments are unions of atomic sets with the
sum of the atomic instances by replacing terms of the form m(S1 ∪ . . . ∪ Sn) with
m(S1) + . . . + m(Sn).

5. Add the instances of (M1) and (M2) for all atomic sets S for which m(S) appears
in the problem.

6. Purify by introducing new arithmetical variables for the instances of m.
7. Rewrite equalities of sets to equalities of arithmetic by replacing all atoms of form

S ≈ ∅ with cS ≈ 0.

(b) We then use (M3) and the fact that the arguments of m are atomic decom-
positions to get a form where all arguments of m are atomic sets. Now, all
literals that contain set terms are either of form S ≈ ∅ or of form S �≈ ∅.

(c) We replace all terms m(Si) in these instances of m with new free arithmetical
variables mi. The definitions, i.e. the connection between the instances of m
and the new variables, are stored separately and not part of the formula.

(d) After this purification step, the only part that is not yet pure arithmetic
are the set atoms. As last step of the transformation we replace set atoms
Si ≈ ∅ with arithmetical atoms ci ≈ 0 and thus obtain a pure arithmetical
formula.

Examples 5 and 6 illustrate the approach on specific instances.

Theorem 4. Let F be a Σset,m formula and let F ′ be a formula that is built by
applying the steps of Algorithm 1 to F . F is satisfiable w.r.t. T u

M (resp. T m
M for

a given measure function m satisfying (Mm)) iff F ′ is satisfiable in LI(R).

Proof (Idea). We show that for every step i of Algorithm 1, if Fi−1 is the formula
to which step i is applied and Fi is the formula obtained after that step then
Fi−1 and Fi are equisatisfiable. This is clearly the case for Steps 1, 2 and 3 due
to the structure of the formulae. From (M3) and the fact that the arguments of
m are atomic decompositions, it follows F3 and F4 are equisatisfiable. This is
clearly the case also for F4 and F5 if we consider satisfiability w.r.t. T u

M. For T m
M

Decision Procedures for Theories of Sets with Measures 173

we use the fact that by (Mm), for mi = m(Si) ∈ R+, i = 1, . . . , n we can find
disjoint measurable subsets S′

i ⊆ UA with m(S′
i) = mi and S′

i = ∅ iff Si = ∅.
Step 6 (purification) leads to an equisatisfiable formula as well: F5 is satis-

fiable modulo T u
M iff F6 is satisfiable modulo LI(R) ∪ T S. This follows from the

fact that, if Def = {mi ≈ m(Si) | Si atomic set} and Con0 = {Si ≈ Sj →
mi ≈ mj | mi ≈ m(Si) ∈ Def}, then F5 is satisfiable w.r.t. T u

M (resp. T m
M) iff

F6∪Con0 is satisfiable w.r.t. LI(R)∪T S. Since two different atomic sets are equal
only if they are both empty, the formulae in Con0 are redundant in the presence
of the purified instances of (M1) and (M2). Thus, F6 ∪ Con0 is satisfiable w.r.t.
LI(R) ∪ T S iff F6 is satisfiable w.r.t. LI(R) ∪ T S.

To show that F6 is satisfiable w.r.t. (LI(R) ∪ T S) iff F7 is satisfiable w.r.t.
LI(R) note that (i) if we have a model A, β of F6, we can construct a model for
F7 by setting ci to 0 if β(Si) ≈ ∅, and (ii) if we have a satisfying assignment β
for F7 we can construct a model A, β′ of F6 using condition (Mm). ��

Remark: Theorem 4 can be extended to a theory of measure functions T m
M(D)

having as models only algebras in which the interpretation of UA is fixed to be a
measurable set D or a set with certain properties (for instance an interval [b, e],
where b and e are constants) if we replace condition (Mm) (a) with:

(MD
m) (a) For every finite family of numbers c1, . . . , cn ∈ R;m1, . . . ,mn ∈ R+

with the property that ci ≈ 0 → mi ≈ 0 holds for 1 ≤ i ≤ n there
exists a model A of T S

m with UA = D, and there exist mutually
disjoint sets S1, . . . , Sn ∈ Aset such that

⋃n
i=1 Si = D, mA(Si) = mi

and Si = ∅ iff ci = 0.

Example 5. Let F0 = x1 ⊆ x2 ∧ m(x1) ≈ m(x1 ∩ x2) We show how to check the
satisfiability of F0 w.r.t. T u

M and T m
M with our approach.

1. Represent all set expressions as atomic decomposition:
F1 = S10 ∪ S11 ⊆ S01 ∪ S11 ∧ m(S10 ∪ S11) ≈ m(S10)

2. Simplify set atoms: F2 = S10 ⊆ S01 ∧ m(S10 ∪ S11) ≈ m(S10)
3. Reduce set atoms to equalities with empty set:

F3 = S10 ≈ ∅ ∧ m(S10 ∪ S11) ≈ m(S10)
4. Use additivity of m: F4 = S10 ≈ ∅ ∧ m(S10) + m(S11) ≈ m(S10)
5. Instantiate axioms (M1) and (M2):

F5 = F4 ∧ 0 ≤ m(S01) ∧ (S01 ≈ ∅ → m(S01) ≈ 0) ∧
0 ≤ m(S10) ∧ (S10 ≈ ∅ → m(S10) ≈ 0) ∧
0 ≤ m(S11) ∧ (S11 ≈ ∅ → m(S11) ≈ 0)

6. Purify by introducing new arithmetical variables for the instances of m:

F6 = S10 ≈ ∅ ∧ m10 + m11 ≈ m10 ∧ 0 ≤ m01 ∧ (S01 ≈ ∅ → m01 ≈ 0) ∧
0 ≤ m10 ∧ (S10 ≈ ∅ → m10 ≈ 0) ∧
0 ≤ m11 ∧ (S11 ≈ ∅ → m11 ≈ 0)

The definitions of m01,m10,m11 are kept outside of the formula.

174 M. Bender and V. Sofronie-Stokkermans

7. Rewrite equalities of sets to equalities of arithmetic:

F7 = c10 ≈ 0 ∧ m10 + m11 ≈ m10 ∧ 0 ≤ m01 ∧ (c01 ≈ 0 → m01 ≈ 0) ∧
0 ≤ m10 ∧ (c10 ≈ 0 → m10 ≈ 0) ∧
0 ≤ m11 ∧ (c11 ≈ 0 → m11 ≈ 0)

The definitions of c01, c10, c11 are kept outside of the formula.

We can check the satisfiability of F7 with a prover for linear real arithmetic;
a satisfying assignment is for instance β(c10) = β(m10) = β(m11) = 0, β(c11) =
β(c01) = β(m01) = β(c00) = β(m00) = 1. We construct a satisfying assignment
β′ for F0 as follows:

Satisfiability w.r.t. T u
M: We proceed as follows:

– As β(c10) = 0, β′(S10) = ∅.
– As β(c11) = β(c00) = β(c01) = 1, β′(S11) �≈ ∅, β′(S00) �≈ ∅, β′(S01) �≈ ∅. We

can choose β′(S11) = {a}, β′(S00) = {b}, β′(S01) = {c}.

We obtain a model with Aset = P({a, b, c}), mA(A) = card(A ∩ {b, c}) for every
A⊆{a, b, c}, β′(x1)=β′(S11)∪β′(S10)={a}, β′(x2)=β′(S11)∪β′(S01)={a, c}.

Satisfiability w.r.t. T m
M: Assume that m = mLes, the Lebesgue measure on R.

We construct a model for F0 as follows:

– Since β(m01) = β(m00) = 1 we can choose β′(S01), β′(S00) to be disjoint sub-
sets of R with Lebesgue measure 1, e.g. β′(S01) = [0, 1], β′(S00) = [2, 3].

– Since β(c10) = 0, we choose β′(S10) = ∅.
– Since β(c11) �≈ 0 and β(m11) = 0, we choose β′(S11) to be a non-empty set

(disjoint to the others) of Lebesgue measure 0, e.g. β′(S11) = {4}.

We obtain a model for F0 in which UA = [0, 1] ∪ [2, 3] ∪ {4}, Aset is the set of
all measurable subsets of UA, and β′(x1) = β′(S11) ∪ β′(S10) = {4}, β′(x2) =
β′(S11) ∪ β′(S01) = [0, 1] ∪ {4}.

Satisfiability w.r.t. T m
M(D): Let m = mLes, the Lebesgue measure on R. Assume

that D is the interval [b, e] where b and e are constants. It can be seen that
condition (Mm(D)) holds and that F0 is satisfiable w.r.t. T m

M(D) if and only if
F ′
7 = F7 ∧ m11 + m10 + m01 + m00 ≈ e − b is satisfiable in LI(R). F ′

7 is satisfiable,
a satisfying assignment is β(c10) = β(m10) = β(m11) = 0, β(c11) = β(c01) =
β(m01) = β(c00) = β(m00) = 1, β(e) = 2, β(b) = 0. Using arguments similar to
those used for T m

M we can construct

β′(S10) = ∅, β′(S01) = [0, 1), β′(S00) = (1, 2] and β′(S11) = {1}.

We obtain a model for F0 in which bA = 0, eA = 2, UA = [0, 2], Aset is the set
of all measurable subsets of UA, and β′(x1) = β′(S11) ∪ β′(S10) = {1}, β′(x2) =
β′(S11) ∪ β′(S01) = {1} ∪ [0, 1) = [0, 1]. �

Decision Procedures for Theories of Sets with Measures 175

Example 6. We can use a similar approach for the formula:
F0 = x1 ⊆ x2 ∧ m(x1) ≈ m(x1 ∩ x2) − 1

After Step 7 we obtain, as in Example 5, the formula:

F7 = c10 ≈ 0 ∧ m10 + m11 ≈ m10 − 1 ∧ 0 ≤ m01 ∧ (c01 ≈ 0 → m01 ≈ 0) ∧
0 ≤ m10 ∧ (c10 ≈ 0 → m10 ≈ 0) ∧
0 ≤ m11 ∧ (c11 ≈ 0 → m11 ≈ 0)

which is unsatisfiable in LI(R). Thus, F0 is unsatisfiable w.r.t. T u
M, T m

M and
T m

M(D) for every D. �

Theorem 7 (Complexity). The satisfiability of a quantifier-free Σset,m for-
mula F with n constants can be checked using Algorithm 1 in NPTIME(2n|F |).

Proof (Idea). Let F be a ground Σset,m formula with size |F | containing n set
constants. Atomic decompositions introduce at most 2n atomic sets; the length of
the formula becomes at most 2n|F |. By adding instances of the measure function
axioms (M2) and (M1) in which variables are instantiated with atomic sets, we
add at most 2 · 2n new formulae of constant size. Thus, the size of the formula
F ′ obtained using Algorithm 1 is of order 2n|F |. Satisfiability of conjunction
literals in LI(R) can be checked in PTIME [17], so satisfiability of quantifier-free
formulae in LI(R) is in NP. Therefore, checking satisfiability of the quantifier-free
Σset,m-formula F using Algorithm 1 is in NPTIME(2n|F |). ��

5 Locality of Measure Axioms

We showed that the complexity of checking satisfiability of a quantifier-free for-
mula F with n set variables using Algorithm 1 is in NPTIME(2n|F |). Since Step
3 in Algorithm 1 might introduce disjunctions, this creates the impression that
the method is in NPTIME(2n|F |) even if the input formula F is a conjunction of
literals. We propose an approach which allows us to obtain a better complexity
for input formulae which are conjunctions of ground literals.

The instantiation scheme used in Sect. 4.2 indicates that the theories with
sets and measures considered before satisfy a locality property (as defined in e.g.
in [22] or [14]). Below we explain this in detail.

Let F be a Σset,m formula which is a conjunction of ground literals. Consider
the atomic decomposition associated with the set expressions in F .

Notation: For every set expression B with the property that m(B) occurs in
F let At(B) be the family of all atomic sets in the atomic decomposition of B.
Thus, B =

⋃
S∈At(B) S. We use the following notation:

– est(F) = {m(B) | m(B) occurs in F},
– At(F) = {m(S) | ∃B with m(B) ∈ est(F) s.t. S ∈ At(B)}

176 M. Bender and V. Sofronie-Stokkermans

Let Ψ(F) = est(F) ∪ At(F) be the set of all terms m(B) occurring in F together
with all terms m(S), where S is an atomic set in At(B).
We denote by KM[Ψ(F)] the following set of instances of the axioms in KM:

{0 ≤ m(B) | m(B) ∈ Ψ(F)}(M1)[Ψ(F)]
{B ≈ ∅ → m(B) ≈ 0 | m(B) ∈ Ψ(F)}(M2)[Ψ(F)]

{m(B) ≈
∑

S∈At(B)

m(S) | m(B) ∈ est(F)}(M3)[Ψ(F)]

It can easily be seen that in the presence of (M3)[Ψ(F)] the only non-redundant
instances of (M1) and (M2) are:

{0 ≤ m(S) | S atomic set,m(S) ∈ At(F)}(M1)[At(F)]
{S ≈ ∅ → m(S) ≈ 0 | S atomic set,m(S) ∈ At(F)}(M2)[At(F)]

Also, the instances in (M3)[Ψ(F)] can be used to replace in F every occurrence
of a term m(B) with the sum

∑
S∈At(B) m(S). For any additional axioms, e.g.

boundedness (cf. Axiom (P4) in Sect. 2) we need to keep all instances.

We purify F and the clauses obtained this way by replacing every term of the
form m(Si) with a new constant mi. We keep all equalities m(Si) ≈ mi in a set
Def. If F = Fset ∧ Fnum, where Fset contains all set constraints in F and Fnum all
numerical constraints, including the constraints on measures on sets, then after
purification we obtain a formula of the form:

Fset ∧ F ′
num ∧ (M1)[At(F)]′ ∧ (M2)[At(F)]′ ∧ Def,

where F ′
num is the purified version of Fnum and (M1)[At(F)]′ (resp. (M2)[At(F)]′)

the purified version of (M1)[At(F)] (resp. (M2)[At(F)]).

Theorem 8. Let F be a Σset,m formula which is a conjunction of ground literals.
With the notations introduced above, the following hold:

(A) The following are equivalent:
(1) F is satisfiable w.r.t. T u

M.
(2) F ∧KM[Ψ(F)] is satisfiable w.r.t. the combination of LI(R), T S and UIFm

(the theory of a unary uninterpreted function m).
(3) Fset ∧ F ′

num ∧ (M1)[At(F)]′ ∧ (M2)[At(F)]′ ∧ Def is satisfiable w.r.t. the
combination of LI(R), T S and UIFm.

(4) Fset ∧ F ′
num ∧ (M1)[At(F)]′ ∧ (M2)[At(F)]′ is satisfiable w.r.t. the combi-

nation of LI(R) and T S.
(B) If m is a concrete measure function satisfying property (Mm) then the fol-

lowing are equivalent:
(1) F is satisfiable w.r.t. the theory T m

M.
(2) F ∧ KM[Ψ(F)] is satisfiable w.r.t. the combination of LI(R) and T S

m.
(3) Fset ∧ F ′

num ∧ (M1)[At(F)]′ ∧ (M2)[At(F)]′ ∧ Def is satisfiable w.r.t. the
combination of LI(R) and T S

m.

Decision Procedures for Theories of Sets with Measures 177

(4) Fset ∧ F ′
num ∧ (M1)[At(F)]′ ∧ (M2)[At(F)]′ is satisfiable w.r.t. the combi-

nation of LI(R) and T S
m.

Proof. Analogous to the proof of the similar results in Sect. 4.2, using also results
on hierarchical reasoning in local theory extensions (cf. e.g. [22] or [14]) and the
fact that all instances of the congruence axioms of the form Si ≈ Sj → mi ≈ mj

corresponding to the definitions in Def are redundant (because no two different
atomic sets can be equal). ��
Theorem 9. We can check the satisfiability in the combination of T S and LI(R)
(resp. LI(R) and T S

m) of F ′ = Fset∧F ′
num∧(M1)[At(F)]′∧(M2)[At(F)]′ as follows:

1. If Fset or F ′
num ∧ (M1)[At(F)]′ is unsatisfiable, F ′ is unsatisfiable.

2. If Fset, F
′
num ∧ (M1)[At(F)]′ are satisfiable, propagate to F ′

num all conclusions
mi≈0 of instances in (M2)[At(F)]′ whose premises Si≈∅ are entailed by Fset.

3. If after propagation the new set of numerical constraints is unsatisfiable, then
F ′ is unsatisfiable, otherwise F ′ is satisfiable.

Proof (Idea). In the case of the combination of T S and LI(R) we use the fact
that checking entailment w.r.t. T S can be reduced to checking entailment in the
class of Boolean algebras (and, thus, T S is convex). We show that the entailment
test in Step 2 can be reduced to checking entailment in the two-element Boolean
algebra. For the case of the combination LI(R) and T S

m we use the fact that
Fset |=T S

m Si ≈ ∅ iff Fset |=T S
Si ≈ ∅. ��

Example 10. We explain the ideas on the formula in Example 5:

F0 = x1 ⊆ x2 ∧ m(x1) ≈ m(x1 ∩ x2)

Fset = x1 ⊆ x2 and Fnum = m(x1) ≈ m(x1 ∩ x2); est(F0) = {m(x1),m(x1 ∩ x2)},
At(x1) = {S10,S11}, At(x1 ∩ x2) = {S10}, where S10 = x1 ∩ x2,S11 = x1 ∩ x2.
Thus, At(F0) = {S10,S11}. We instantiate the axioms (M1) and (M2) and obtain:

(M1)[At(F0)] 0 ≤ m(S10) ∧ 0 ≤ m(S11)
(M2)[At(F0)] (S10 ≈ ∅ → m(S10) ≈ 0) ∧ (S11 ≈ ∅ → m(S11) ≈ 0)

The instances in (M3)[Ψ(F0)] are used to replace m(x1) with m(S10) + m(S11).
After purification we obtain the following formulae:

Def Set Num Bridge
m10 ≈ m(S10) x1 ⊆ x2 m11 + m10 ≈ m10 0 ≤ m10 S10 ≈ ∅ → m10 ≈ 0
m11 ≈ m(S11) 0 ≤ m10 S11 ≈ ∅ → m11 ≈ 0

Both the set constraints and the numerical constraints are satisfiable. We test
whether the premises of the Si ≈ ∅ of (M2)[At(F)]′ are entailed by Fset:

We first test whether x1 ⊆ x2 |=T S
S10 ≈ 0. As S10 = x1 ∩ x2, this can be

reduced to testing whether B2 |= x1 ≤ x2 → x1 ∧ x2 ≈ 0, where B2 is the
two-element Boolean algebra. As this is the case, we add the atom m10 ≈ 0 to
the set of numeric constraints.

The set of numerical constraints we obtain is satisfiable, thus F0 is satisfiable
w.r.t. T u

M and also w.r.t. T m
M for every measure function m satisfying (Mm). �

178 M. Bender and V. Sofronie-Stokkermans

Theorem 11 (Complexity). Let F be a Σset,m formula which is a conjunc-
tion of ground literals. The satisfiability of F w.r.t. T u

M or w.r.t. T m
M (where

m is a concrete measure function satisfying property (Mm)) can be checked in
exponential time in the number of set constants in F .

Proof (Idea). Let n be the number of set constants occurring in F = Fset ∧Fnum.
The number of atomic sets which need to be considered is at most 2n, so the
number of instances of KM is at most 2 ·2n. We need to test the entailment from
Fset for at most 2n equations of the form S ≈ ∅; these can be expressed as entail-
ment tests in the Boolean algebra B2 with 2 elements (the problem is in NP).
The complexity of each entailment test is at most 2n|F |, the propagation step
has therefore complexity of order 4n|F |. Checking satisfiability of conjunctions
of literals in LI(R) can be done in polynomial time [17]; the size of the numerical
formula is exponential in n. This shows that the procedure we proposed has
complexity at most 4n|Fset| + p(2n|Fnum|), where p is a polynomial. ��

5.1 A Tractable Fragment of the Theory of Sets with Measures

We now consider the problem of checking satisfiability of Σset,m formulae F
which are conjunctions of ground literals which do not contain complements or
unions and contain only the predicates ≈ and ⊆. We show that in this case the
additivity axiom for measures can be replaced with a monotonicity axiom:

(Mon) ∀x1, x2 (x1 ⊆ x2 → m(x1) ≤ m(x2))

We denote by KM
∩ the set of axioms consisting of (M1), (M2) and (Mon). In [23]

we proved that monotonicity axioms define local theory extensions. Let KM
∩[F]

be the set consisting of the following instances:

{0 ≤ m(B) | m(B) ∈ est(F)}(M1)[F]
{B ≈ ∅ → m(B) ≈ 0 | m(B) ∈ est(F)}(M2)[F]
{B1 ⊆ B2 → m(B1) ≤ m(B2) | m(B1),m(B2) ∈ est(F)}(Mon)[F]

We can purify F and the clauses obtained this way by replacing every term of the
form m(B) with a new constant mB , and keeping the equations m(B) ≈ mB in a
set Def of definitions. We obtain a formula of the form Fset∧F ′

num∧KM
∩[F]′∧Def.

Theorem 12. Assume that the Σset,m formula F does not contain complements
or unions. The following hold:

(1) F is satisfiable w.r.t. T u
M iff F ∧ KM

∩[F] is satisfiable w.r.t. the 2-sorted
combination of the theories LI(R), T S and UIFm.

(2) If m is a measure function then F is satisfiable w.r.t. T m
M iff F ∧ KM

∩[F] is
satisfiable in the 2-sorted combination of LI(R) and T S

m.

Proof. Follows from the locality results for monotone functions in [23] and the
fact that satisfiability of conjunctions of set constraints without complements and
unions can be reduced to checking satisfiability in the theory of semilattices. ��

Decision Procedures for Theories of Sets with Measures 179

Lemma 13. With the notations introduced above, the following are equivalent:

(1) F = Fset ∧ Fnum is satisfiable in T u
M or T m

M;
(2) Fset ∧ F ′

num ∧ KM
∩[F]′ is satisfiable in the combination of T S and LI(R).

Proof. Consequence of results on hierarchical reasoning in local extensions [22].

Theorem 14 (Complexity). Let F be a conjunction of ground literals of the
form F = Fset ∧Fnum which does not contain complements or unions and contain
only the predicates ≈ and ⊆. The procedure for checking the satisfiability of F
we proposed above is polynomial in the size of the formula F .

Proof (Idea). The proof relies on the convexity of the theory of sets and on the
fact that checking entailment between formulae containing only conjunctions
w.r.t. T S can be reduced to checking entailment in the class of semilattices and
ultimately to checking entailment in the semilattice with 2 elements, which can
be done in PTIME. ��

Example 15. Consider the formula: F = x1 ⊆ x2 ∩ x3 ∧ m(x1 ∩ x3) ≈ m(x3) + 1.
We have: Fset = x1 ⊆ x2 ∩ x3; Fnum = m(x1 ∩ x2) ≈ m(x3) + 1 and est(F) =
{m(x1 ∩ x2),m(x3)}. We instantiate (M1) and (M2) and (Mon) and obtain:

(M1)[F] 0 ≤ m(x1 ∩ x2) ∧ 0 ≤ m(x3) (Mon)[F] x1 ∩ x2 ⊆ x3 → m(x1 ∩ x2) ≤ m(x3)
(M2)[F] x1 ∩ x2 ≈ ∅ → m(x1 ∩ x2) ≈ 0 x3 ⊆ x1 ∩ x2 → m(x3) ≤ m(x1 ∩ x2)

x3 ≈ ∅ → m(x3) ≈ 0

After purification we obtain the following formulae:

Def Set Num Bridge
m1 ≈ m(x1 ∩ x2) x1 ⊆ x2 ∩ x3 m1 ≈ m2 + 1 x1 ∩ x2 ≈ ∅ → m1 ≈ 0
m2 ≈ m(x3) 0 ≤ m1 x3 ≈ ∅ → m2 ≈ 0

0 ≤ m2 x1 ∩ x2 ⊆ x3 → m1 ≤ m2

x3 ⊆ x1 ∩ x2 → m2 ≤ m1

Both the set constraints and the numerical constraints are satisfiable. We prove
that Fset |= x1∩x2 ⊆ x3 by showing that this holds in the two-element semilattice
S2. This can be reduced, using a structure-preserving translation to clause form,
to checking the satisfiability of the following set of Horn clauses:

(C1) Px1 → Px2∩x3 (C3) Px2∩x3 → Px3 (C5) ¬Px3 (C7) Px1∩x2 → Px2

(C2) Px2∩x3 → Px2 (C4) Px1∩x2 (C6) Px1∩x2 → Px1

We propagate m1 ≤ m2 to the numerical constraints. It can be seen that
0 ≤ m1 ∧ 0 ≤ m2 ∧ m1 ≈ m2 + 1 ∧ m1 ≤ m2 is unsatisfiable. Thus, F is
unsatisfiable. �

180 M. Bender and V. Sofronie-Stokkermans

6 Prospective Work: Duration Calculus

In this section we briefly indicate how the results established so far can be used
for fragments of the duration calculus (abbreviated DC in the remainder) [7],
a real-time logic developed for reasoning about durational constraints on time-
dependent Boolean-valued states. We here present a fragment introduced in [13].

Syntax: We consider state expressions (described as Boolean combinations of
state variables in a set V) and formulae. The syntax for state expressions and
formulae is defined by:

S = 0 | 1 | P | ¬S | S1 ∨ S2 where P ∈ V
ϕ = l �� k |∑m

i=1 ci
∫

Si �� k | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ � ψ where ��∈ {<, ≤, >, ≥, ≈}

Semantics: The semantics of a state expression S, given an interpretation I,
is a function: IS : R≥0 → {0, 1}, such that for every t ≥ 0, IS(t) is defined
inductively in the usual way, using the semantics of the Boolean connectives.
Satisfaction of formulae φ is defined over pairs (I, [a, b]) (called observations)
consisting of an interpretation I and a time interval [a, b] with b ≥ a ≥ 0. The
satisfaction relation I, [a, b] |= ϕ is defined inductively as follows:

I, [a, b] |= l �� k iff b − a �� k

I, [a, b] |=∑m
i=1 ci

∫
Si �� k iff

∑m
i=1 ci

∫ b

a
ISi(t)dt �� k

I, [a, b] |= ¬ϕ iff I, [a, b]
|= ϕ
I, [a, b] |= ϕ ∧ ψ iff I, [a, b] |= ϕ and I, [a, b] |= ψ
I, [a, b] |= ϕ ∨ ψ iff I, [a, b] |= ϕ or I, [a, b] |= ψ
I, [a, b] |= ϕ � ψ iff I, [a, m] |= ϕ and I, [m, b] |= ψ for some m ∈ [a, b].

If I, [a, b] |= ϕ holds we say that ϕ is true in [a, b] w.r.t. I. A formula φ is
satisfiable if it is true for some observation (I, [a, b]).

Although satisfiability in the duration calculus (DC) is in general undecidable,
various decidable fragments have been identified. As their exact definitions and
the decision procedures are very different, these fragments are hard to compare.
We here consider the language DCpos that is defined in [13]. The syntax is
defined as above, with the additional constraint that the chop operator occurs
only under a positive number of negations. Every such formula is equivalent to
a formula in which the chop operator does not occur below negations. We show
that the decision procedures for sets with measures described in this paper yields
a decision procedure for satisfiability of DC formulae of the form Fstate ∧ FDC ,
where Fstate is a Boolean formula over the set V of state variables expressing
hypotheses about the truth of state formulae, and FDC is a formula in the
duration calculus in which the chop operator does not occur below negations.
Such chop operators can be eliminated at the price of introducing additional
existentially quantified variables.

For a given interpretation I we can regard a state formula S as the set
AS = {t ≥ 0 | IS(t) = 1} of time points at which S is true. For any observation

Decision Procedures for Theories of Sets with Measures 181

(I, [a, b]),
∫

S is the measure of the set AS ∩ [a, b]. We therefore consider con-
junctive formulae of the form F = Fstate ∧ Fnum, which are actually formulae in
the language Σset,m with the only difference that we talk about states instead of
sets and the measure function is

∫
rather than m.

Theorem 16. The satisfiability of formulae of the form F = Fstate ∧ Fnum –
where Fstate is a Boolean formula and Fnum is a conjunction of linear inequalities
involving terms of numeric sort built starting from constants l, ki, ai, bi and from
terms of the form m(Ai ∩ [ai, bi]) – can be decided using a variant of the method
described in this paper in at most k! · 2n steps, where k is the number of bounds
in the integrals – including those introduced by chops – and n is the number of
state expressions.

Proof. We can proceed as follows: We compute the atomic decomposition cor-
responding to the state expressions Bi. For the numeric constants ai, bi used
as limits for the intervals some inequalities are included in Fnum. This defines a
partial ordering on these constants. We “guess” a total ordering extending this
partial ordering, and consider all intervals of the form [ai, ai+1], where ai+1 is
the immediate successor of ai in this total ordering. We now build as atomic sets
the sets Sij = Si ∩ [aj , aj+1] and perform the instantiation of all axioms taking
these atomic sets into account. We can then apply one of the methods proposed
in this paper to check satisfiability of the resulting formula. ��

7 Conclusion and Outlook

In this paper we studied possibilities of checking satisfiability of quantifier-free
formulae in the combined theory of sets, measures and arithmetic. Our approach
relies – similarly to the approach by Ohlbach [21] and that of Kuncak et al. [19]
– on an atomic decomposition of sets. We proposed two solution variants: The
first variant performs a reduction to checking the satisfiability of constraints in
LI(R), the second uses locality properties in the theory of sets and measures and
reduces the problems to entailment checking in the theory of sets followed by
satisfiability checking in LI(R). Both approaches have their own advantages.

– The first method can be used for arbitrary quantifier-free formulae and is
easy to implement. We think that this method can be extended without major
problems to a decision procedure for certain classes of formulae with arbitrary
quantifier prefix. This is work in progress.

– The second method allowed us to recognize a tractable fragment of the the-
ory of sets with measures and to make a finer complexity analysis for the
conjunctive fragment. The locality properties we establish enable us to use
locality properties for combinations of theories established in [14] to prove
locality properties for theories with several measure functions or for the com-
bination of the theory of sets with measures with other local extensions of
real arithmetic or of the theory of sets.

182 M. Bender and V. Sofronie-Stokkermans

Both methods can be improved by instantiation by demand, as in [15] or [2].
We indicated how the method can be adapted to situations in which we are

interested in models in which the universe UA is given or has a given form (for
instance must be an interval in all models). More generally, we might want to
check whether a formula has a model in which the set variables are interpreted as
intervals. Our methods can be used in this context if we introduce an additional
step that checks the consistency of a computed model for the formula F w.r.t.
the intended interpretations1 and use conflict driven learning.

We showed how our method can be used for a fragment of the duration
calculus [13]. While in general the duration calculus is undecidable, decidable
fragments have been identified [4,6,8,10,11,13,28]. We hope that the ideas pre-
sented in this paper might help to obtain a uniform method that would yield
decision procedures for several such fragments (for instance RDC ([5]), the frag-
ments defined in [10] and [11] and the fragment studied in [9]) and would allow
us to identify new decidable fragments.

Acknowledgments. We thank Ernst-Rüdiger Olderog, Martin Fränzle and Calogero
Zarba for helpful discussions on the duration calculus. We also thank the anonymous
reviewers for their constructive comments.

References

1. Alberti, F., Ghilardi, S., Pagani, E.: Counting constraints in flat array fragments.
In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706, pp. 65–81.
Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 6

2. Bansal, K., Reynolds, A., Barrett, C., Tinelli, C.: A new decision procedure for
finite sets and cardinality constraints in SMT. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS, vol. 9706, pp. 82–98. Springer, Cham (2016). doi:10.1007/
978-3-319-40229-1 7

3. Bender, M.: Reasoning with sets and sums of sets. In: King, T., Piskac, R. (eds.)
SMT@IJCAR 2016, Proceedings. CEUR Workshop Proceedings, vol. 1617, pp.
61–70. CEUR-WS.org (2016)

4. Bouajjani, A., Lakhnech, Y., Robbana, R.: From duration calculus to linear hybrid
automata. In: Wolper, P. (ed.) CAV 1995. LNCS, vol. 939, pp. 196–210. Springer,
Heidelberg (1995). doi:10.1007/3-540-60045-0 51

5. Chaochen, Z., Hansen, M.R.: Duration Calculus: A Formal Approach to Real-Time
Systems. Springer, Berlin (2004)

6. Chaochen, Z., Hansen, M.R., Sestoft, P.: Decidability and undecidability results
for duration calculus. In: Enjalbert, P., Finkel, A., Wagner, K.W. (eds.) STACS
1993. LNCS, vol. 665, pp. 58–68. Springer, Heidelberg (1993). doi:10.1007/
3-540-56503-5 8

1 For example, a model in which the set variables x1, x2, x3 are interpreted as intervals
I1, I2, I3 and the atomic sets S001, S010, S100, S111 are assigned non-empty values and
the other atomic intervals are empty, is inconsistent: There can be no section in which
the intervals overlap (S111 not empty) that is joined by three sections where every
set is disjoint from the other two (S001, S010, S100 are not empty).

http://dx.doi.org/10.1007/978-3-319-40229-1_6
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/978-3-319-40229-1_7
http://dx.doi.org/10.1007/3-540-60045-0_51
http://dx.doi.org/10.1007/3-540-56503-5_8
http://dx.doi.org/10.1007/3-540-56503-5_8

Decision Procedures for Theories of Sets with Measures 183

7. Chaochen, Z., Hoare, C.A.R., Ravn, A.P.: A calculus of durations. Inf. Process.
Lett. 40(5), 269–276 (1991)

8. Chaochen, Z., Ravn, A.P., Hansen, M.R.: An extended duration calculus for hybrid
real-time systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.)
HS 1991-1992. LNCS, vol. 736, pp. 36–59. Springer, Heidelberg (1993). doi:10.
1007/3-540-57318-6 23

9. Chetcuti-Sperandio, N.: Tableau-based automated deduction for duration calculus.
In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp. 53–69.
Springer, Heidelberg (2002). doi:10.1007/3-540-45616-3 5

10. Chetcuti-Sperandio, N., del Cerro, L.F.: A decision method for duration calculus.
J. UCS 5(11), 743–764 (1999)

11. Chetcuti-Sperandio, N., del Cerro, L.F.: A mixed decision method for duration
calculus. J. Log. Comput. 10(6), 877–895 (2000)

12. Chocron, P., Fontaine, P., Ringeissen, C.: A gentle non-disjoint combination
of satisfiability procedures. In: Demri, S., Kapur, D., Weidenbach, C. (eds.)
IJCAR 2014. LNCS, vol. 8562, pp. 122–136. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 9

13. Fränzle, M., Hansen, M.R.: Deciding an interval logic with accumulated durations.
In: Grumberg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 201–215.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-71209-1 17

14. Ihlemann, C., Sofronie-Stokkermans, V.: On hierarchical reasoning in combinations
of theories. In: Giesl, J., Hähnle, R. (eds.) IJCAR 2010. LNCS, vol. 6173, pp. 30–45.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-14203-1 4

15. Jacobs, S.: Incremental instance generation in local reasoning. In: Bouajjani, A.,
Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 368–382. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02658-4 29

16. Kapur, D., Zarba, C.G.: A reduction approach to decision procedures (2005).
https://www.cs.unm.edu/∼kapur/mypapers/reduction.pdf,. Unpublished manu-
script

17. Khachiyan, L.: A polynomial algorithm in linear programming. Soviet Math. Dokl.
20(1), 191–194 (1979)

18. Kuncak, V., Nguyen, H.H., Rinard, M.: An algorithm for deciding BAPA: Boolean
algebra with Presburger arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS,
vol. 3632, pp. 260–277. Springer, Heidelberg (2005). doi:10.1007/11532231 20

19. Kuncak, V., Nguyen, H.H., Rinard, M.C.: Deciding Boolean algebra with Pres-
burger arithmetic. J. Autom. Reasoning 36(3), 213–239 (2006)

20. Kuncak, V., Piskac, R., Suter, P.: Ordered sets in the calculus of data structures.
In: Dawar, A., Veith, H. (eds.) CSL 2010. LNCS, vol. 6247, pp. 34–48. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15205-4 5

21. Ohlbach, H.J.: Set description languages and reasoning about numerical features
of sets. In: Lambrix, P., Borgida, A., Lenzerini, M., Möller, R., Patel-Schneider,
P.F. (eds.) International Workshop on Description Logics (DL 1999), Proceedings.
CEUR Workshop Proceedings, vol. 22. CEUR-WS.org (1999)

22. Sofronie-Stokkermans, V.: Hierarchic reasoning in local theory extensions. In:
Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 219–234. Springer, Hei-
delberg (2005). doi:10.1007/11532231 16

23. Sofronie-Stokkermans, V., Ihlemann, C.: Automated reasoning in some local exten-
sions of ordered structures. Multiple-Valued Logic Soft Comput. 13(4–6), 397–414
(2007)

http://dx.doi.org/10.1007/3-540-57318-6_23
http://dx.doi.org/10.1007/3-540-57318-6_23
http://dx.doi.org/10.1007/3-540-45616-3_5
http://dx.doi.org/10.1007/978-3-319-08587-6_9
http://dx.doi.org/10.1007/978-3-319-08587-6_9
http://dx.doi.org/10.1007/978-3-540-71209-1_17
http://dx.doi.org/10.1007/978-3-642-14203-1_4
http://dx.doi.org/10.1007/978-3-642-02658-4_29
https://www.cs.unm.edu/~kapur/mypapers/reduction.pdf,
http://dx.doi.org/10.1007/11532231_20
http://dx.doi.org/10.1007/978-3-642-15205-4_5
http://dx.doi.org/10.1007/11532231_16

184 M. Bender and V. Sofronie-Stokkermans

24. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5 23

25. Yessenov, K., Piskac, R., Kuncak, V.: Collections, cardinalities, and relations. In:
Barthe, G., Hermenegildo, M. (eds.) VMCAI 2010. LNCS, vol. 5944, pp. 380–395.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-11319-2 27

26. Zarba, C.G.: Combining sets with cardinals. J. Autom. Reasoning 34(1), 1–29
(2005)

27. Zee, K., Kuncak, V., Rinard, M.C.: Full functional verification of linked data struc-
tures. In: Gupta, R., Amarasinghe, S.P. (eds.), Proceedings of the ACM SIGPLAN
2008 Conference on Programming Language Design and Implementation, Tucson,
AZ, USA, 7–13 June 2008, pp. 349–361. ACM (2008)

28. Chaochen, Z., Jingzhong, Z., Lu, Y., Xiaoshan, L.: Linear duration invariants. In:
Langmaack, H., Roever, W.-P., Vytopil, J. (eds.) FTRTFT 1994. LNCS, vol. 863,
pp. 86–109. Springer, Heidelberg (1994). doi:10.1007/3-540-58468-4 161

http://dx.doi.org/10.1007/978-3-642-04222-5_23
http://dx.doi.org/10.1007/978-3-642-11319-2_27
http://dx.doi.org/10.1007/3-540-58468-4_161

A Decision Procedure for Restricted
Intensional Sets

Maximiliano Cristiá1(B) and Gianfranco Rossi2

1 Universidad Nacional de Rosario and CIFASIS, Rosario, Argentina
cristia@cifasis-conicet.gov.ar
2 Università di Parma, Parma, Italy

gianfranco.rossi@unipr.it

Abstract. In this paper we present a decision procedure for Restricted
Intensional Sets (RIS), i.e. sets given by a property rather than by enu-
merating their elements, similar to set comprehensions available in speci-
fication languages such as B and Z. The proposed procedure is parametric
with respect to a first-order language and theory X , providing at least
equality and a decision procedure to check for satisfiability of X -formulas.
We show how this framework can be applied when X is the theory of
hereditarily finite sets as is supported by the language CLP(SET). We
also present a working implementation of RIS as part of the {log} tool
and we show how it compares with a mainstream solver and how it helps
in the automatic verification of code fragments.

1 Introduction

Intensional sets, also called set comprehensions, are sets described by a prop-
erty that the elements must satisfy, rather than by explicitly enumerating their
elements. Intensional sets are widely recognized as a key feature to describe
complex problems. Hence, having a decision procedure for an expressive class
of intensional sets should be of interest to different communities, such as SMT
solving, model finding and constraint programming.

In this paper we consider Restricted Intensional Sets (RIS). RIS are a subclass
of the set comprehensions available in the formal specification languages Z [24]
and B [20]. We say that this class of intensional sets is restricted because they
denote finite sets, while in Z and B they can be infinite. In effect, given that
the domain of a RIS fixes the maximum number of elements that the RIS can
have and that the domain is necessarily a finite set, then RIS cannot have an
infinite number of elements. Nonetheless, RIS can be not completely specified.
In particular, as the domain can be a variable, RIS are finite but unbounded.

We define a constraint language, called LRIS , which provides both RIS and
extensional sets, along with basic operations on them, as primitive entities of
the language. LRIS is parametric with respect to an arbitrary theory X , for
which we assume a decision procedure for any admissible X -formula is available.
Elements of LRIS sets are the objects provided by X , which can be manip-
ulated through the primitive operators that X offers (at least, X -equality).
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 185–201, 2017.
DOI: 10.1007/978-3-319-63046-5 12

186 M. Cristiá and G. Rossi

Hence, RIS in LRIS represent untyped unbounded finite hybrid sets, i.e.
unbounded finite sets whose elements are of any sort.

We provide a set of rewrite rules for rewriting RIS-formulas that are proved
to preserve satisfiability of the original formula. These rules are used to define
a decision procedure for LRIS , called SATRIS , which is proved to be correct,
complete and terminating. SATRIS will be able to decide any propositional
combination of the admissible RIS-constraints and X -formulas. Furthermore,
for any satisfiable formula, SATRIS returns a finite representation of all its
possible solutions.

LRIS has been implemented in Prolog, and integrated with {log} (pro-
nounced ‘setlog’), the freely available Prolog implementation of CLP(SET) [9].
This implementation is compared to ProB [16] w.r.t. intensional set manipula-
tion and an example using {log} to verify program correctness is also shown.

Section 2 introduces LRIS . Section 3 describes the solver which is proved to
be a decision procedure for LRIS in Sect. 4. A discussion of our approach is
provided in Sect. 5. A working implementation of this solver is shown in Sect. 6.
Section 7 compares our results with similar approaches.

2 LRIS: Syntax, Semantics and Applicability

LRIS is parametric w.r.t. a first-order theory X which must include: a class of
admissible X -formulas based on a non-empty set of function symbols FX and a
set of predicate symbols ΠX ; an interpretation structure IX with domain DX and
interpretation function (·)IX ; and a decision procedure SATX for X -formulas.
We assume that ΠX contains at least the =X operator, which is interpreted as
the identity in DX.

Definition 1. The signature ΣRIS of LRIS is a triple 〈F ,Π,V〉 where: (i) F
is the set of function symbols, partitioned as F =̂ FS ∪ FX , where FS =̂ {∅,
{· � ·}, {·| · • ·}}; (ii) Π is the set of primitive predicate symbols, partitioned as
Π =̂ ΠS ∪ ΠX where ΠS =̂ {=S ,∈S , set , isX }3; (iii) V is a denumerable set of
variables, partitioned as V =̂ VS ∪ VX .

FS -terms are called set terms. In particular: {t�A} is an extensional set term,
where t (element part) is a X -term and A (set part) is a set term; {e[x] : D |Ψ •
τ [x]} is a RIS term, where e (control term) is a X -term and x =̂ 〈x1, . . . , xn〉,
n > 0, are all the variables occurring in it; D (domain) is a set term; Ψ (filter) is a
X -formula; and τ (pattern) is a X -term containing x 1. When useful, the domain
D can be represented also as an interval [m,n], m and n integer constants, which
is intended as a shorthand for {m,m + 1, . . . , n}. Moreover, when the pattern is
the control term and the filter is true, they can be omitted (as in Z), although one
must be present. Both extensional set and RIS terms can be partially specified
because elements and sets can be variables. A RIS term is a variable-RIS if its

1 The form of RIS terms is borrowed from the form of set comprehension expressions
available in Z.

A Decision Procedure for Restricted Intensional Sets 187

domain is a variable or (recursively) a variable-RIS; otherwise it is a non-variable
RIS. As a notational convenience, we will write {t1�{t2� · · · {tn �A} · · · }} (resp.,
{t1�{t2�· · · {tn�∅} · · · }}) as {t1, t2, . . . , tn�A} (resp., {t1, t2, . . . , tn}). FS -terms
are of sort Set, while FX -terms are of sort X.

Definition 2. A RIS-constraint is any atomic predicate of the form A =S B,
u ∈S A, set(t) or isX (t), where A and B are set terms, u is a X -term, t is
any term. The set ΦRIS of RIS-formulas is given by the following grammar:
ΦRIS ::= true | CRIS | ¬ CRIS |ΦRIS ∧ ΦRIS |ΦRIS ∨ ΦRIS |ΦX , where CRIS
represents any RIS-constraint and ΦX represents any X -formula.

If π is an infix predicate symbol, then ¬π is written as 	π (e.g. · /∈ ·). For the
sake of presentation, in coming examples, we will assume that the language of
X , LX , provides the constant, function and predicate symbols of the theories of
the integer numbers and ordered pairs. Moreover, we will write = (resp. ∈) in
place of =X and =S (resp. ∈X and ∈S) whenever is clear from context.

Example 1. The following are RIS-formulas involving RIS terms.

– {x : [−2, 2] |x mod 2 = 0 • x} = {−2, 0, 2}
– (5, y) ∈ {x : D |x > 0 • (x, x ∗ x)}, where D is a variable
– (5, 0) 	∈ {(x, y) : {z � X} | y 	= 0 • (x, y)}, where z and X are variables. ��

Symbols in ΣRIS are interpreted according to the structure R = 〈D, (·)R〉,
where D is the interpretation domain and (·)R is the corresponding interpretation
function.

Definition 3. The interpretation domain D is partitioned as D =̂ DSet ∪ DX

where: (i) DSet is the collection of all finite sets built from elements in DX; and
(ii) DX is a collection of any other objects (not in DSet).

The interpretation function (·)R for symbols in F is informally defined as
follows (see [4] for details): ∅ is interpreted as the empty set; {t�A} is interpreted
as the set {t}∪A; {e[x] : D |Ψ [x , v]•τ [x , v]}, where v is a vector of free variables,
is interpreted as the set {y : ∃x (e[x] ∈ D∧Ψ [x , v]∧y =X τ [x , v])}. As concerns
predicate symbols in Π, A =S B is interpreted as the identity relation in DSet,
u ∈S A as the set membership relation in DSet, isX (t) (resp. set(t)) as a predicate
testing whether t belongs to the domain DX (resp. DSet) or not. Note that in
RIS terms, x are bound variables whose scope is the RIS itself, while v are free
variables possibly occurring in the formula where the RIS is participating in.

In order to precisely characterize the language for which we provide a deci-
sion procedure, the control term e and the pattern τ of a RIS term are restricted
to be of specific forms. Namely, if x and y are variables ranging on DX, then e
can be either x or (x, y); while τ can be either e or (e, t) or (t, e), where t is any
(uninterpreted/interpreted) X -term, possibly involving the variables in e. As it
will be evident from the various examples in this and in the next sections, in
spite of these restrictions, LRIS is still a very expressive language. In particular,
note that the restriction on patterns allows “plain” sets and partial functions

188 M. Cristiá and G. Rossi

(see examples below) to lay inside the decision procedure. Relaxing this assump-
tion is feasible but it may compromise decidability (see Sect. 5).

One interesting application of RIS is to represent restricted universal quanti-
fiers. That is, the formula ∀x ∈ D : Ψ [x] can be easily represented by the LRIS
equality D = {x : D |Ψ [x]} (see [4]). Then, as LRIS is endowed with a decision
procedure, it can decide a large fragment of quantified formulas.

Example 2. The minimum y of a set of integers S can be stated by means of
the quantified formula y ∈ S ∧ ∀x ∈ S : y ≤ x. This formula is encoded in
LRIS as follows: y ∈ S ∧ S = {x : S | y ≤ x}. Hence, if S = {2, 4, 1, 6}, then
y is bound to 1; and if S is a variable and y = 5, then one of the solutions is
S = {5 � {x : N | 5 ≤ x}}, where N is a new variable. ��

Another important application of RIS is to define (partial) functions. In gen-
eral, a RIS of the form {x : D |Ψ •(x, f(x))}, where f is any LX function symbol,
defines a partial function. Such a RIS contains ordered pairs whose first com-
ponents belong to D, which cannot have duplicates (because it is a set). Given
that RIS are sets, then, in LRIS , functions are sets of ordered pairs. Therefore,
through standard set operators, functions can be evaluated, compared and point-
wise composed; and by means of constraint solving, the inverse of a function can
also be computed. The following examples illustrate these properties.

Example 3. The square of 5 can be calculated by: (5, y) ∈ {x : D • (x, x ∗ x)},
yielding y = 25. The same RIS calculates the square root of a given number:
(x, 36) ∈ {x : D•(x, x∗x)}, returning x = 6 and x = −6. Set membership can also
be used for the point-wise composition of functions. The function f(x) = x2 + 8
can be evaluated on 5 as follows: (5, y) ∈ {x : D • (x, x ∗ x)} ∧ (y, z) ∈ {v :
E • (v, v + 8)} returning y = 25 and z = 33. ��

Finally, note that we allow RIS terms to be the set part of extensional sets,
e.g. {x � {y : A | y 	= z}}, as well as to be the domain of other RIS.

3 A Solver for LRIS

In this section we present a decision procedure for LRIS , called SATRIS . Actu-
ally, SATRIS is a complete constraint solver which is able not only to decide
satisfiability of LRIS formulas, but also to compute a concise representation of
all the concrete (or ground) solutions of the input formula. It is important to
note that decidability of RIS-formulas depends on the existence of a decision
procedure for X -formulas.

3.1 The Solver

SATRIS is a rewriting system whose global organization is shown in Algorithm 1,
where STEP is the core of the algorithm. sort infer is used to automatically add
sort information to the input formula Φ to force arguments of RIS-constraints

A Decision Procedure for Restricted Intensional Sets 189

to be of the proper sort (see Remark 1 below). sort infer is called at the beginning
of the Algorithm and within STEP for the constraints that are generated during
constraint processing. sort check checks sort constraints occurring in Φ: if they
are satisfiable, then Φ is returned unchanged; otherwise, Φ is rewritten to false.

Algorithm 1. The SATRIS solver. Φ is the input formula.
procedure STEP(Φ)

Φ ← rw∈(rw/∈(rw �=(rw=(Φ))))
Φ ← sort check(sort infer(Φ))

return Φ
procedure rwπ(Φ)

if false ∈ Φ then
return false

else
repeat

select any literal t1 π t2 in Φ
apply any applicable rule to t1 π t2

until no rule applies to Φ
return Φ

procedure SATRIS(Φ)
Φ ← sort infer(Φ)
repeat

Φ′ ← Φ
repeat

Φ′′ ← Φ
Φ ← STEP(Φ)

until Φ = Φ′′

Φ ← remove neq(Φ)
until Φ = Φ′

Φ is ΦS ∧ ΦX
Φ ← ΦS ∧ SATX (ΦX)

return Φ

remove neq deals with the elimination of 	=-constraints involving RIS
domains. For example, in D 	= ∅ ∧ {x : D |Ψ • τ} = ∅, remove neq rewrites
D 	= ∅ as y ∈ D, where y is a new fresh variable. In turn, y ∈ D is rewritten as
D = {y � N} for another new variable N . Finally, the whole formula is rewrit-
ten as D = {y � N} ∧ {x : {y � N} |Ψ • τ} = ∅, which fires one of the rules
given in Sect. 3.2. This rewriting chain is fired only because D is the domain of
a RIS; otherwise remove neq does nothing with D 	= ∅. The complete definition
of remove neq is in [4].

STEP applies specialized rewriting procedures to the current formula Φ and
returns the modified formula. Each rewriting procedure applies a few non-deter-
ministic rewrite rules which reduce the syntactic complexity of RIS-constraints
of one kind. Procedure rwπ in Algorithm 1 represents the rewriting procedure
for literals t1 π t2, π in {=, 	=,∈, 	∈}. The execution of STEP is iterated until
a fixpoint is reached—i.e. the formula cannot be simplified any further. STEP
returns false whenever (at least) one of the procedures in it rewrites Φ to false.
Some rewrite rules are described in detail in Sect. 3.2 and the rest in [4].

SATX is the constraint solver for X -formulas. The formula Φ can be written
as ΦS ∧ ΦX , where ΦS (ΦX) is a conjunction of ΠS - (ΠX -)literals. SATX is
applied only to the ΦX conjunct of Φ. Note that, conversely, STEP rewrites
only ΠS -literals, while it leaves all other literals unchanged. Nonetheless, as the
rewrite rules show, SATRIS generates X -formulas that are conjoined to ΦX so
they are later solved by SATX .

Remark 1. LRIS does not provide variable declarations. The sort of a variable
is enforced by adding suitable sort constraints to the formula to be processed.

190 M. Cristiá and G. Rossi

Sort constraints are automatically added by the solver. Specifically, a constraint
set(y) (resp., isX (y)) is added for each variable y which is required to be of
sort Set (resp., X). For example, given X = {y � A}, sort infer conjoins the
sort constraints set(X), isX (y) and set(A). If the set of function and predicate
symbols of LRIS and LX are disjoint, each variable occurring in the formula has
a unique sort constraint. ��

3.2 Rewrite Rules

The rules are given as φ −→ Φ1 ∨ · · · ∨ Φn, where φ is a ΠS -literal and Φi,
i ≥ 1, are RIS-formulas. Each ΠS -literal matching φ is non-deterministically
rewritten to one of the Φi. In all rules, variables appearing in the right-hand side
but not in the left-hand side are assumed to be new, fresh variables, implicitly
existentially quantified over each Φi. Moreover, A, B and D are extensional set
terms, X̄ and D̄ are variables of sort Set, while t, ti, u and d are any X -terms.

Set equality between extensional sets implements set unification [11]. In turn,
membership is strongly based on set equality. Some of the key rewrite rules for
equality, membership and their negations dealing with extensional set terms
(adapted from [9]) are shown in Fig. 1. In particular, rule =3 deals with equality
between two set terms: the second and third disjuncts take care of duplicates in
the right-hand side and the left-hand side term, respectively, while the fourth
disjunct takes care of permutativity of the set constructor {· � ·}.

Basically, LRIS extends the rewrite rules for equality, membership and their
negations to allow them to deal with RIS terms. Figure 2 lists all the rules applied
by STEP to deal with constraints of the form R = U and R 	= U , where either R

X̄ = A −→ substitute X̄ by A in the rest of the formula (=1)

X̄ = {t0, . . . , tn � X̄} −→ X̄ = {t0, . . . , tn � N} (=2)

{t � A} = {u � B} −→
t = u ∧ A = {u � B} ∨ t = u ∧ {u � A} = B

∨ t = u ∧ A = B ∨ A = {u � N} ∧ {t � N} = B

(=3)

{t � A} �= {u � B} −→
(y ∈ {t � A} ∧ y /∈ {u � B}) ∨ (y /∈ {t � A} ∧ y ∈ {u � B})

(=4)

t ∈ {u � A} −→ t = u ∨ t ∈ A (∈1)

t ∈ X̄ −→ X̄ = {t � N} (∈2)

t /∈ {u � A} −→ t �= u ∧ t /∈ A (∈3)

Fig. 1. Rewrite rules dealing with extensional set terms

A Decision Procedure for Restricted Intensional Sets 191

or U are RIS terms. In order to make the presentation more accessible: (a) the
rules are given for RIS whose domain is not another RIS; (b) the control term
of RIS is variable x in all cases and it is omitted to save space. Generalization
to cases in which these restrictions are removed is discussed in [4].

Intuitively, the key idea behind the rules dealing with RIS terms is a sort of
lazy partial evaluation of RIS. That is, a RIS term is treated as a block until
it is necessary to identify one of its elements. When that happens, the RIS is
transformed into an extensional set whose element part is the identified element
and whose set part is the rest of the RIS. More formally, if y is known to be in
{x : D |Ψ•τ} then this RIS is rewritten as the extensional set {y�{x : D′ |Ψ•τ}},
where {x : D′ |Ψ • τ} is semantically equal to {x : D |Ψ • τ} \ {y}.

Equality between a RIS and an extensional set is governed by rules (=5)–
(=8). In particular, rule (=6) deals with the case in which a RIS with a non-
empty domain must be equal to the empty set. It turns out that to force a RIS
{D |Ψ • τ} to be empty it is enough that the filter Ψ is false for all elements in
D, i.e. ∀x ∈ D : ¬Ψ [x]. This (restricted) universal quantification is conveniently
implemented through recursion, by extracting one element d at a time from
the RIS domain. Rule (=8) deals with equality between a variable-RIS and an
extensional set. The intuition behind this rule is as follows. Given that {y � A}
is not empty, then D̄ must be not empty in which case it is equal to {z � E} for
some z and E. Furthermore, z must satisfy Ψ and τ(z) must be equal to y. As
the first element of {y � A} belongs to the RIS, then the rest of the RIS must
be equal to A. It is not necessary to consider the case where ¬Ψ(z), as in rule
(=7), because z is a new fresh variable.

{∅ | Ψ • τ} = ∅ → true (=5)

{{d � D} | Ψ • τ} = ∅ → ¬Ψ(d) ∧ {D | Ψ • τ} = ∅ (=6)

If B is any set term except ∅:

{{d � D} | Ψ • τ} = B →
Ψ(d) ∧ {τ(d) � {D | Ψ • τ}} = B ∨ ¬Ψ(d) ∧ {D | Ψ • τ} = B

(=7)

{D̄ | Ψ • τ} = {y � A} →
D̄ = {z � E} ∧ Ψ(z) ∧ y =X τ(z) ∧ {E | Ψ • τ} = A

(=8)

{D | Ψ • τ} �= A → (y ∈ {D | Ψ • τ} ∧ y /∈ A) ∨ (y /∈ {D | Ψ • τ} ∧ y ∈ A) (=9)

Fig. 2. Rewrite rules for R = U and R �= U ; R or U RIS terms

Rules of Fig. 2 exhaust all, but three, of the possible combinations of equality
between a RIS and other LRIS set terms. The cases not considered (i.e. equality
between a variable and a variable-RIS, between a variable-RIS and the empty
set, and between two variable-RIS) are dealt with as irreducible (Sect. 4.1).

192 M. Cristiá and G. Rossi

t ∈ {∅ | Ψ • τ} −→ false (∈4)

t ∈ {D̄ | Ψ • τ} −→ d ∈ D̄ ∧ Ψ(d) ∧ t =X τ(d () ∈5)

t ∈ {{d � D} | Ψ • τ} −→
Ψ(d) ∧ t ∈ {τ(d) � {D | Ψ • τ}} ∨ ¬Ψ(d) ∧ t ∈ {D | Ψ • τ}

(∈6)

t /∈ {∅ | Ψ • τ} −→ true (∈7)

t /∈ {{d � D} | Ψ • τ} −→
Ψ(d) ∧ t �=X τ(d) ∧ t /∈ {D | Ψ • τ} ∨ ¬Ψ(d) ∧ t /∈ {D | Ψ • τ}

(∈8)

Fig. 3. Rewrite rules for t ∈ R and t /∈ R; R RIS term

Rules dealing with constraints of the form t ∈ R and t /∈ R, where t is a
LX term and R is a RIS term, are listed in Fig. 3. The case t /∈ R where R is a
variable-RIS is dealt with as irreducible (Sect. 4.1), while constraints of the form
t ∈ R are eliminated in all cases.

4 Decidability of LRIS Formulas

Decidability of the set theory fragment considered in this paper can be obtained
by showing a reduction of RIS-formulas to formulas of the ∀π

0,2 language
studied in [2]. ∀π

0,2 is a two-sorted quantified fragment of set theory which
allows restricted quantifiers of the forms (∀x ∈ A), (∃x ∈ A), (∀(x, y) ∈ R),
(∃(x, y) ∈ R) and literals of the forms x ∈ A, (x, y) ∈ R, A = B, R = S,
where A and B are set variables (i.e., variables ranging over sets) and R and
S are relation variables (i.e., variables ranging over binary relations). Semantics
of this language is based on the von Neumann standard cumulative hierarchy of
sets, which is the class containing all the pure sets.

The extensional finite sets and the primitive set-theoretical operators pro-
vided by LRIS are easily mapped to the general sets and operators of ∀π

0,2. The
same mapping can be provided also for RIS as follows (for simplicity the control
term is just a variable and the pattern is the control term itself—so it can be
omitted). First, RIS are expressed in terms of a quantified formula:

S = {x : D |Ψ [x])} ≡
∀x(x ∈ S =⇒ x ∈ D ∧ Ψ [x]) ∧ ∀x(x ∈ D ∧ Ψ [x] =⇒ x ∈ S)

which then can be immediately written as the following ∀π
0,2-formula:

(∀x ∈ S)(x ∈ D ∧ Ψ [x]) ∧ (∀x ∈ D)(Ψ [x] =⇒ x ∈ S)

Note that the fact that the control variable is restricted to range over a set (i.e.
the RIS domain) is crucial to allow both implications to be written as restricted
universal quantifiers, hence as ∀π

0,2-formulas.

A Decision Procedure for Restricted Intensional Sets 193

Since ∀π
0,2 has been shown to be a decidable fragment of set theory, the

availability of a complete mapping of LRIS to ∀π
0,2 proves the decidability of

LRIS as well. However, it is important to note that ∀π
0,2 is mainly intended as a

language to study decidability rather than as an effective tool to solve formulas
of a constraint language, as LRIS is instead designed for.

In the rest of this section we show that SATRIS is indeed a decision procedure
for RIS-formulas. This is obtained by: (i) proving that formulas returned by
SATRIS , other than false, are trivially satisfiable; (ii) proving that SATRIS
always terminates; and (iii) proving that the disjunction of the returned formulas
is equisatisfiable to the input formula. Detailed proofs are given in [4].

4.1 Satisfiability of Solved Form

As stated in Sect. 3.1, the formula Φ handled by SATRIS can be written as
ΦS ∧ ΦX where all ΠS -literals are in ΦS . Right before Algorithm 1 calls SATX ,
ΦS is in a particular form referred to as solved form. This fact can be easily
proved by analyzing the rewrite rules given in Sect. 3.2 and [4].

Definition 4 (Solved form). Let ΦS be a ΠS-formula; let X and x be variables
of sort Set and X, respectively, and t any term of sort X; let S be any set term
but not a RIS; and let D̄ and Ē be either variables of sort Set or variable-RIS.
A literal φ in ΦS is in solved form if it has one of the following forms:

1. true
2. X = S or X = {D̄ |Ψ • τ}, and X does not occur in S nor in ΦS \ {φ}
3. X 	= S, and X does not occur in S nor as the domain of a RIS in ΦS2

4. t /∈ X and X does not occur in t, or t /∈ {D̄ |Ψ • τ}
5. set(X) or isX (x)
6. {D̄ |Ψ • τ} = ∅
7. {D̄ |Ψ1 • τ1} = {Ē |Ψ2 • τ2}.
ΦS is in solved form if all its literals are simultaneously in solved form.

Example 4. The following are LRIS literals in solved form (X, D and Di vari-
ables; X does not occur elsewhere in the given RIS-formula):

– X = {x : D |x 	= 0} (X and D may be the same variable)
– 1 /∈ {x : D |x 	= 0}
– {x : D1 |x mod 2 = 0 • (x, x)} = {x : D2 |x > 0 • (x, x + 2)} ��

Right before Algorithm 1 calls SATX , ΦS is either false or it is in solved
form, but in this case it is satisfiable.

Theorem 1 (Satisfiability of solved form). Any RIS-formula in solved
form is satisfiable w.r.t. the interpretation structure of LRIS .

Therefore, if ΦS is not false, the satisfiability of Φ depends only on ΦX .

Theorem 2 (Satisfiability of ΦS ∧ΦX). Let Φ be ΦS ∧ΦX right before Algo-
rithm 1 calls SATX . Then either ΦS is false or the satisfiability of Φ depends
only on the satisfiability of ΦX .
2 This is guaranteed by procedure remove neq (see Sect. 3).

194 M. Cristiá and G. Rossi

4.2 Termination and Equisatisfiability

Termination of SATRIS is stated by the following theorem.

Theorem 3 (Termination). The SATRIS procedure can be implemented in
such a way it terminates for every input RIS-formula Φ.

The termination of SATRIS and the finiteness of the number of non-determi-
nistic choices generated during its computation guarantee the finiteness of the
number of RIS-formulas non-deterministically returned by SATRIS . Therefore,
SATRIS applied to a RIS-formula Φ always terminates, returning either false
or a finite collection of satisfiable RIS-formulas in solved form.

In order to prove that Algorithm 1 is a decision procedure for RIS-formulas,
we still need to prove that it is correct and complete in the sense that it preserves
the set of solutions of the input formula.

Theorem 4 (Equisatisfiability). Let Φ be a RIS-formula and {φi}n
i=1 be the

collection of RIS-formulas returned by SATRIS(Φ).
∨n

i=1 φi is equisatisfiable
to Φ, that is, every possible solution3 of Φ is a solution of one of {φi}n

i=1 and,
vice versa, every solution of one of these formulas is a solution for Φ.

Thanks to Theorems 1–4 we can conclude that, given a RIS-formula Φ, Φ
is satisfiable with respect to the intended interpretation structure if and only if
there is a non-deterministic choice in SATRIS(Φ) that returns a RIS-formula
in solved form—i.e. different from false. Hence, SATRIS is a decision procedure
for testing satisfiability of RIS-formulas.

It is worth noting that the set of variables ranging on RIS-terms and the
set of variables ranging on X -terms are assumed to be disjoint sets. This fact
prevents us from creating recursively defined RIS, which could compromise the
finiteness property of the sets we are dealing with. In fact, a formula such as
X = {D |Ψ [X] • τ} is not an admissible RIS-constraint, since the outer and
the inner X must be of different sorts according to the definition of RIS (recall
that the filter is a X -formula). Note that, on the contrary, a formula such as
X = {D[X] |Ψ • τ} is an admissible RIS-constraint, and it is suitably handled
by our decision procedure.

5 Discussion

The formula Φ of a (general) intensional set {x : Φ[x]} may depend on existen-
tially quantified variables, declared inside the set. For example, if R is a set of
ordered pairs and D is a set, then the subset of R where all the first components
belong to D can be denoted by {p : ∃x, y(x ∈ D ∧ (x, y) ∈ R ∧ p = (x, y))}. We
will refer to these existentially quantified variables as parameters.

3 More precisely, each solution of Φ expanded to the variables occurring in φi but not
in Φ, so to account for the possible fresh variables introduced into φi.

A Decision Procedure for Restricted Intensional Sets 195

Allowing parameters in RIS rises major problems when RIS have to be manip-
ulated through the rewrite rules considered in the previous section. In fact, if ṗ
is the vector of parameters possibly occurring in a RIS, then literals of the form
¬Ψ(d), occurring in the rules (e.g. (=7)), should be replaced with the more com-
plex universally quantified formula ∀ṗ(¬Ψ [ṗ](d)). This, in turn, would require
that the theory X is equipped with a solver able to deal with such kind of
formulas. To avoid relying on such a solver, RIS cannot depend on parameters.

Nevertheless, it can be observed that many uses of parameters can be avoided
by a proper use of the control term and pattern of a RIS (see [4]). For example,
the intensional set considered above can be expressed with a RIS (hence, without
parameters) as follows: {(x, y) : R |x ∈ D}. Then, for instance, for {(x, y) :
{(a, 1), (b, 2), (a, 2)} |x ∈ D} = {(a, 1), (a, 2)}, LRIS returns D = {a�N}∧b /∈ N
as the only solution; and for {(x, y) : {(a, 1), (b, 2), (a, 2)}|x ∈ D} = {(a, 1)}, it
returns false.

Therefore, it would be interesting to extend RIS to allow more general forms
of control expressions and patterns. Concerning patterns, from the proof of
Theorem 4, it turns out that the necessary and sufficient condition for the equi-
satisfiability result is that patterns adhere to the following definition.

Definition 5 (Bijective pattern). Let {x : D |Ψ [x, v]•τ [x, v]} be a RIS, then
its pattern is bijective if τ : {(x, v) : (x, v) ∈ D ×V∧ Ψ [x, v]} → Y is a bijective
function (where: Y images of τ ; and V domain of variables v).

Note that all the admissible patterns of LRIS are bijective patterns. Besides
these, however, other terms can be bijective patterns. For example, x + n, n
constant, is also a bijective pattern, though it is not allowed in LRIS . Conversely,
x∗x is not bijective as x and −x have x∗x as image (note that, though, (x, x∗x)
is a bijective pattern allowed in LRIS).

The intuitive reason to ask for bijective patterns is that if y belongs to a RIS
whose pattern, τ , is not bijective then there may be two or more elements in
the RIS domain, say x1 and x2, such that τ(x1) = τ(x2) = y. If this is the case,
then eliminating, say, x1 from the domain is not enough to eliminate y from the
RIS. And this makes it difficult, for instance, to prove the equality between a
variable-RIS and a set (extensional or RIS) having at least one element.

Unfortunately, the property for a term to be a bijective pattern cannot be
easily syntactically assessed. Thus we prefer to leave it out of the definition of
LRIS and to adopt a more restrictive definition of admissible pattern. From a
more practical point of view, however, we could admit also more general patterns,
with the assumption that if they are bijective patterns the result is surely safe;
while if they are not, it is not safe.

Finally, observe that if LX provides other function symbols, LRIS could
allow other control terms and patterns which are (syntactically) guaranteed to
be bijective patterns. All the extensions mentioned above for control terms and
patterns are included in the implementation of LRIS within {log} (see Sect. 6).

Complexity. SATRIS strongly relies on set unification. Basically, rewrite rules
dealing with RIS “extract” one element at a time from the domain of a RIS by

196 M. Cristiá and G. Rossi

means of set unification and construct the corresponding extensional set again
through set unification. Hence, complexity of our decision procedure strongly
depends on complexity of set unification. As observed in [11], the decision prob-
lem for set unification is NP-complete. A simple proof of the NP-hardness of this
problem has been given in [8]. The proof is based on a reduction of 3-SAT to a
set unification problem. Concerning NP-completeness, the algorithm presented
here clearly does not belong to NP since it applies syntactic substitutions. Never-
theless, it is possible to encode this algorithm using well-known techniques that
avoid explicit substitutions, maintaining a polynomial time complexity along
each non-deterministic branch of the computation.

Besides, the detection of a solution of a unification problem (i.e. solving the
function problem) clearly implies solving the related decision problem. Thus,
the complexity of the function problem can be no better than the complexity
of the decision problem. Finally, since SATRIS is parametric w.r.t. SATX , its
complexity is at least the maximum between the complexity of both.

6 RIS in Practice

RIS have been implemented in Prolog as an extension of {log} [19], a freely
available implementation of CLP(SET) [6,9]. In this case, the theory X is basi-
cally the theory of CLP(SET), that is the theory of hereditarily finite hybrid
sets. This theory is endowed with a constraint solver which is proved to be a
decision procedure for its formulas, provided each integer variable is associated
to a finite domain. Syntactic differences between the abstract syntax used in this
paper and the concrete syntax used in {log} are made evident by the following
examples.

Example 5. The RIS-formula:

{5} ∈ {x : {y � D}|x 	= ∅ ∧ 5 /∈ x • x}

is written in {log} as:

{5} in ris(X in {Y/D},Xneq {}& 5 ninX,X)

where ris is a function symbol whose arguments are: (i) a constraint of the
form x in A where x is the control term and A the domain of the RIS; (ii)
the filter given as a {log} formula; and (iii) the pattern given as a {log} term.
Filters and patterns can be omitted as in LRIS . Variables must start with an
uppercase letter; the set constructor symbols for both LRIS and {log} sets terms
are written as {·/·}. If this formula is provided to {log} it answers no because
the formula is unsatisfiable. ��

The following are more examples of RIS that can be written in {log}.

A Decision Procedure for Restricted Intensional Sets 197

Example 6.

– The multiples of N : ris(X inD, 0 isX modN), where is is the Prolog predicate
that forces the evaluation of the arithmetic expression in its right-hand side.

– The sets containing a given set A: ris(S in D, subset(A,S)).
– A function that maps integers to their squares: ris([X,Y] in D,Y is X ∗ X),

where ordered pairs are written using [·, ·]. Note that the pattern can be
omitted since it is the same as the control term, that is [X,Y]. ��

RIS patterns in {log} can be any term (including set terms). If they are
bijective patterns, then the solver is guaranteed to be a decision procedure;
otherwise this may be not the case. For example, the formula ris(X in {2, 4/M},
2 ∗ X) = {2, 4, 6, 8} lies inside the decision procedure.

In {log} the language of the RIS and the language of the parameter theory X
are completely amalgamated. Thus, it is possible for example to use predicates
of the latter in formulas of the former, as well as to share variables of both. The
following example uses this feature to prove a general property about sets.

Example 7. In {log} inters(A,B,C) means C = A∩B. Then, if inters(A,B,C)∧
D = ris(X in A,X in B) ∧ C neq D is run on {log}, it (correctly) answers no. ��

The original version of {log} can deal with general intensional sets, which
include our RIS as a special case. However, formulas involving such general
intensional sets fall outside the scope of {log}’s decision procedure. For example,
the same goal of Example 7 but written using general intensional sets is (wrongly)
found to be satisfiable by {log}.

6.1 Using {log} for Program Verification

{log} can be used to automatically prove program properties, such as partial cor-
rectness. As an example consider program map f (Fig. 4), written in an abstract
programming language with an OO-like syntax and semantics. map f applies
function f to every element of (finite) set S outputting the result in set Sf . S is
iterated by means of an iterator (Si) which is emptied as elements are popped
out of it (while S remains unchanged). At the right of Fig. 4 we see the pre-
and post-condition and the loop invariant given as formulas over a suitable set
theory. Sp is the subset of S which has already been processed inside the loop.

Then, to prove the partial correctness of map f in a Hoare-like framework, it
is necessary to prove that (among other conditions): (a) the invariant is preserved
inside the loop while its condition is true; and (b) upon termination of the loop,
the loop invariant implies the post-condition. Formally:

Si = {a � Sr} ∧ S = Si ∪ Sp ∧ Sf = {x : Sp • f(x)}
=⇒ S = Sr ∪ {a � Sp} ∧ {f(a) � Sf} = {x : {a � Sp} • f(x)}

(a)

Si = ∅ ∧ S = Si ∪ Sp ∧ Sf = {x : Sp • f(x)}
=⇒ Sf = {x : S • f(x)}

(b)

198 M. Cristiá and G. Rossi

function Set map f(Set S) � Pre-condition: true
Set Sf = new Set
Iterator Si = S.iterator()
while Si.more() do � Invariant: S = Si ∪ Sp ∧ Sf = {x : Sp • f(x)}

Sf .add(f(Si.next()))
end while
return Sf

end function � Post-condition: Sf = {x : S • f(x)}

Fig. 4. map f applies f to every element of set S and stores the results in set Sf

The negation of these verification conditions can be written in {log} as:

Si = {A/Sr} ∧ un(Si, Sp, S) ∧ Sf = ris(X in Sp, f(X))
∧ (nun(Sr, {A/Sp}, S) ∨ {f(A)/Sf} 	= ris(X in {A/Sp}, f(X)))

(a’)

Si = ∅ ∧ un(Si, Sp, S) ∧ Sf = ris(X in Sp, f(X))
∧ Sf 	= ris(X in S, f(X))

(b’)

where un and nun means, respectively, set union and its negation.
When (a’) and (b’) are run on {log} it answers no (i.e. (a) and (b) hold).
Observe that the set theory-based, human-oriented annotations can be easily

translated into the set language provided by {log} which then is used to discharge
the proof obligations.

6.2 Comparison with ProB

In order to gain further confidence in that {log} may be useful in practice, we
compare it to ProB [16], a mainstream solver for sets supporting a very general
notion of intensional sets. Thus, we defined a small benchmark consisting of
64 formulas involving RIS, and run them on {log} and ProB. The benchmark
covers the four operators supported by the decision procedure (i.e. =, 	=, ∈,
/∈). A summary of the results is presented in Table 1; details are provided in
[4], while the complete benchmark can be found at https://www.dropbox.com/s/

vjsh91nym3g5tk2/experiments.tar.gz?dl=0. As can be seen, {log} is able to solve
RIS formulas that ProB does not solve, and in less time. This is an indication
that SATRIS would also be of practical interest.

Table 1. Summary of the empirical evaluation (timeout 10s; auto = 100 sat+unsat

total
)

tool (version) sat unsat timeout/warning total auto time

{log} (4.9.4) 30 34 0 64 100% 16s

ProB (1.6.0-SR1) 25 11 28 64 56% 103s

https://www.dropbox.com/s/vjsh91nym3g5tk2/experiments.tar.gz?dl=0
https://www.dropbox.com/s/vjsh91nym3g5tk2/experiments.tar.gz?dl=0

A Decision Procedure for Restricted Intensional Sets 199

7 Related Work

Having intensional sets as first-class entities in programming and modeling lan-
guages is widely recognized as a valuable feature that makes programs and
models potentially more readable and compact than those based on other data
structures. Some form of intensional sets are offered for instance by modeling
frameworks, such as Mini-Zinc [17], ProB [16] and Alloy [15]; general-purpose
programming languages, such as SETL [21] and Python; and by (Constraint)
Logic Programming languages, such as Gödel [14] and {log} [8]. However, as far
as we know, none of these proposals implements a decision procedure for inten-
sional sets. For example, Alloy (even when using the Kodkod library) needs to
set in advance the size of sets (or types). Such proposals lack, in general, the
ability to perform high-level reasoning on general formulas involving intensional
sets (e.g. the kind of reasoning shown in Example 7 and Sect. 6.1).

A very general proposal is CLP({D}) [10], a CLP language offering arbitrar-
ily nested extensional and intensional sets of elements over a generic constraint
domain D. However, no working implementation of this proposal has been devel-
oped. As observed in [10], the presence of undecidable constraints such as {x :
p(x)} = {x : q(x)} (where p and q can have an infinite number of solutions) “pre-
vents us from developing a parametric and complete solver”. Conversely, the same
problem written using RIS, {x : D1|p(x)} = {x : D2|q(x)}, D1, D2 variables,
always admits at least one solution, namely D1 = D2 = ∅. Generally speaking,
finding a fragment of intensional sets that is both decidable and expressive is a key
issue for the development of an effective tool for reasoning with intensional sets.
RIS, as presented here, may be a first step toward this goal.

Several logics (e.g. [12,22,23]) provide some forms of intensional sets. How-
ever, in some cases, for the formula to be decidable, the intensional sets must
have a ground domain; in others, set operators do not include set equality; and
in others, they present a semi-decision procedure. Handling intensional sets can
be related also to handling universal quantifiers in a logical setting, since inten-
sional sets “hide” a universal quantifier. Tools such as SMT solvers deal with
this kind of problems (see, e.g., [1,7]), although in general they are complete
only in quite restricted cases [13].

Our decision procedure finds models for formulas with finite but unbounded
domains, i.e. their cardinalities are not constrained by a fixed value. The field of
finite model finding faces a similar problem but usually with bounded domains.
There are two basic styles of model finding: the MACE-style in which the formula
is transformed into a SAT problem [3]; and the SEM-style which uses constraint
solving techniques [25]. Our approach is closer to the SEM-style as it is based on
constraint programming. However, since both styles do not deal with quantified
domains as sets, then they cannot reduce the domain every time an element is
identified, as we do with RIS—for instance, in rule (=6). Instead, they set a size
for the domain and try to find a model at most as large as that.

Ideas from finite model finding were taken as inspiration by Reynolds et al.
[18] for handling universal quantifiers in SMT. These authors propose to find
finite models for infinite universally quantified formulas by considering finite

200 M. Cristiá and G. Rossi

domains. In particular, Reynolds et al. make use of the cardinality operator for
the sorts of quantified variables and propose a solver for a theory based on this
operator. Then, they make a guess of the cardinality for a quantified sort and
use the solver to try to find a model there. In the default strategy, the initial
guess is 1 and it is incremented in 1. Note that our approach does not need a
cardinality operator because it operates directly over a theory of sets.

8 Concluding Remarks

We have shown a decision procedure for an expressive class of intensional sets,
called Restricted Intensional Sets (RIS). Key features of this procedure are: it
returns a finite representation of all possible solutions of the input formula; it
allows set elements to be variables; it is parametric with respect to any first-
order theory endowed with a decision procedure; and it is implemented as part
of the {log} tool. On the other hand, we have shown through a number of simple
examples that, although RIS are a subclass of general intensional sets, they are
still sufficiently expressive as to encode and solve many interesting problems.

Nevertheless, it can be interesting trying to extend the language of RIS, for
example, with rewrite rules for other set operators (e.g. union) because this
would contribute to enlarge the class of problems that the decision procedure
can deal with. Yet another line of investigation is to study the relation between
RIS and the extension to binary relations recently added to {log} [5].

Acknowledgements. Part of the work of M. Cristiá is supported by ANPCyT’s grant
PICT-2014-2200.

References

1. Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn
clauses. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol. 7935, pp. 105–
125. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38856-9 8

2. Cantone, D., Longo, C.: A decidable two-sorted quantified fragment of set theory
with ordered pairs and some undecidable extensions. Theor. Comput. Sci. 560,
307–325 (2014). http://dx.doi.org/10.1016/j.tcs.2014.03.021

3. Claessen, K., Sörensson, N.: New techniques that improve MACE-style finite model
building. In: CADE-19 Workshop: Model Computation - Principles, Algorithms,
Applications, pp. 11–27 (2003)

4. Cristiá, M., Rossi, G.: Restricted insentional sets. http://people.dmi.unipr.it/
gianfranco.rossi/SETLOG/risCADEonline.pdf

5. Cristiá, M., Rossi, G.: A decision procedure for sets, binary relations and partial
functions. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016, Part I. LNCS, vol. 9779,
pp. 179–198. Springer, Cham (2016). doi:10.1007/978-3-319-41528-4 10

6. Dal Palú, A., Dovier, A., Pontelli, E., Rossi, G.: Integrating finite domain con-
straints and CLP with sets. In: Proceedings of the 5th ACM SIGPLAN Interna-
tional Conference on Principles and Practice of Declaritive Programming, PPDP
2003, pp. 219–229. ACM, New York (2003). http://doi.acm.org/10.1145/888251.
888272

http://dx.doi.org/10.1007/978-3-642-38856-9_8
http://dx.doi.org/10.1016/j.tcs.2014.03.021
http://people.dmi.unipr.it/gianfranco.rossi/SETLOG/risCADEonline.pdf
http://people.dmi.unipr.it/gianfranco.rossi/SETLOG/risCADEonline.pdf
http://dx.doi.org/10.1007/978-3-319-41528-4_10
http://doi.acm.org/10.1145/888251.888272
http://doi.acm.org/10.1145/888251.888272

A Decision Procedure for Restricted Intensional Sets 201

7. Deharbe, D., Fontaine, P., Paleo, B.W.: Quantifier inference rules for SMT proofs.
In: Workshop on Proof eXchange for Theorem Proving (2011)

8. Dovier, A., Omodeo, E.G., Pontelli, E., Rossi, G.: A language for programming in
logic with finite sets. J. Log. Program. 28(1), 1–44 (1996). http://dx.doi.org/10.
1016/0743-1066(95)00147-6

9. Dovier, A., Piazza, C., Pontelli, E., Rossi, G.: Sets and constraint logic program-
ming. ACM Trans. Program. Lang. Syst. 22(5), 861–931 (2000)

10. Dovier, A., Pontelli, E., Rossi, G.: Intensional sets in CLP. In: Palamidessi, C. (ed.)
ICLP 2003. LNCS, vol. 2916, pp. 284–299. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-24599-5 20

11. Dovier, A., Pontelli, E., Rossi, G.: Set unification. Theor. Pract. Log. Program.
6(6), 645–701 (2006). http://dx.doi.org/10.1017/S1471068406002730

12. Drăgoi, C., Henzinger, T.A., Veith, H., Widder, J., Zufferey, D.: A logic-based
framework for verifying consensus algorithms. In: McMillan, K.L., Rival, X. (eds.)
VMCAI 2014. LNCS, vol. 8318, pp. 161–181. Springer, Heidelberg (2014). doi:10.
1007/978-3-642-54013-4 10

13. Ge, Y., de Moura, L.: Complete instantiation for quantified formulas in satisfia-
biliby modulo theories. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol.
5643, pp. 306–320. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02658-4 25

14. Hill, P.M., Lloyd, J.W.: The Gödel Programming Language. MIT Press, Cambridge
(1994)

15. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2006)

16. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45236-2 46

17. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.:
MiniZinc: towards a standard CP modelling language. In: Bessière, C. (ed.) CP
2007. LNCS, vol. 4741, pp. 529–543. Springer, Heidelberg (2007). doi:10.1007/
978-3-540-74970-7 38

18. Reynolds, A., Tinelli, C., Goel, A., Krstić, S.: Finite model finding in SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 640–655. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 42

19. Rossi, G.: {log} (2008). http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.
html

20. Schneider, S.: The B-method: An Introduction. Cornerstones of Computing.
Palgrave (2001). http://books.google.com.ar/books?id=Krs0OQAACAAJ

21. Schwartz, J.T., Dewar, R.B.K., Dubinsky, E., Schonberg, E.: Programming with
Sets - An Introduction to SETL. Texts and Monographs in Computer Science.
Springer, New York (1986). http://dx.doi.org/10.1007/978-1-4613-9575-1

22. Veanes, M., Saabas, A.: On bounded reachability of programs with set compre-
hensions. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol.
5330, pp. 305–317. Springer, Heidelberg (2008). doi:10.1007/978-3-540-89439-1 22

23. Wies, T., Piskac, R., Kuncak, V.: Combining theories with shared set operations.
In: Ghilardi, S., Sebastiani, R. (eds.) FroCoS 2009. LNCS, vol. 5749, pp. 366–382.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-04222-5 23

24. Woodcock, J., Davies, J.: Using Z: Specification, Refinement, and Proof. Prentice-
Hall, Inc., Upper Saddle River (1996)

25. Zhang, J., Zhang, H.: System description generating models by SEM. In:
McRobbie, M.A., Slaney, J.K. (eds.) CADE 1996. LNCS, vol. 1104, pp. 308–312.
Springer, Heidelberg (1996). doi:10.1007/3-540-61511-3 96

http://dx.doi.org/10.1016/0743-1066(95)00147-6
http://dx.doi.org/10.1016/0743-1066(95)00147-6
http://dx.doi.org/10.1007/978-3-540-24599-5_20
http://dx.doi.org/10.1007/978-3-540-24599-5_20
http://dx.doi.org/10.1017/S1471068406002730
http://dx.doi.org/10.1007/978-3-642-54013-4_10
http://dx.doi.org/10.1007/978-3-642-54013-4_10
http://dx.doi.org/10.1007/978-3-642-02658-4_25
http://dx.doi.org/10.1007/978-3-540-45236-2_46
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-540-74970-7_38
http://dx.doi.org/10.1007/978-3-642-39799-8_42
http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html
http://people.dmi.unipr.it/gianfranco.rossi/setlog.Home.html
http://books.google.com.ar/books?id=Krs0OQAACAAJ
http://dx.doi.org/10.1007/978-1-4613-9575-1
http://dx.doi.org/10.1007/978-3-540-89439-1_22
http://dx.doi.org/10.1007/978-3-642-04222-5_23
http://dx.doi.org/10.1007/3-540-61511-3_96

Decidability of the Monadic Shallow Linear
First-Order Fragment with Straight

Dismatching Constraints

Andreas Teucke1,2(B) and Christoph Weidenbach1

1 Max-Planck Institut für Informatik, Saarland Informatics Campus,
66123 Saarbrücken, Germany
ateucke@mpi-inf.mpg.de

2 Graduate School of Computer Science, Saarbrücken, Germany

Abstract. The monadic shallow linear Horn fragment is well-known to
be decidable and has many application, e.g., in security protocol analy-
sis, tree automata, or abstraction refinement. It was a long standing
open problem how to extend the fragment to the non-Horn case, pre-
serving decidability, that would, e.g., enable to express non-determinism
in protocols. We prove decidability of the non-Horn monadic shallow lin-
ear fragment via ordered resolution further extended with dismatching
constraints and discuss some applications of the new decidable fragment.

1 Introduction

Motivated by the automatic analysis of security protocols, the monadic shal-
low linear Horn (MSLH) fragment was shown to be decidable in [22]. In addi-
tion to the restriction to monadic Horn clauses, the main restriction of the
fragment is positive literals of the form S(f(x1, . . . , xn)) or S(x) where all
xi are different, i.e., all terms are shallow and linear. The fragment can be
finitely saturated by superposition (ordered resolution) where negative liter-
als with non-variable arguments are always selected. As a result, productive
clauses with respect to the superposition model operator IN have the form
S1(x1), . . . , Sn(xn) → S(f(x1, . . . , xn)). Therefore, the models of saturated
MSLH clause sets can both be represented by tree automata [6] and shallow
linear sort theories [8]. The models are typically infinite. The decidability result
of MSLH clauses was rediscovered in the context of tree automata research [7]
where in addition DEXPTIME-completeness of the MSLH fragment was shown.
The fragment was further extended by disequality constraints [12,13] still moti-
vated by security protocol analysis [14]. Although from a complexity point of
view, the difference between Horn clause fragments and the respective non-Horn
clause fragments is typically reflected by membership in the deterministic vs.
the non-deterministic respective complexity fragment, for monadic shallow lin-
ear clauses so far there was no decidability result for the non-Horn case.

The results of this paper close this gap. We show the monadic shallow linear
non-Horn (MSL) clause fragment to be decidable by superposition (ordered res-
olution). From a security protocol application point of view, non-Horn clauses
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 202–219, 2017.
DOI: 10.1007/978-3-319-63046-5 13

Decidability of the Monadic Shallow Linear First-Order Fragment 203

enable a natural representation of non-determinism. Our second extension to
the fragment are unit clauses with disequations of the form s �≈ t, where s
and t are not unifiable. Due to the employed superposition calculus, such dis-
equations do not influence saturation of an MSL clause set, but have an effect
on potential models. They can rule out identification of syntactically different
ground terms as it is, e.g., desired in the security protocol context for syntac-
tically different messages or nonces. Our third extension to the fragment are
straight dismatching constraints. These constraints are incomparable to the dis-
equality constraints mentioned above [12,13]. They do not strictly increase the
expressiveness of the MSL theory, but enable up to exponentially more compact
saturations. For example, the constrained clause

(S(x), T (y) → S(f(x, y)); y �= f(x′, f(a, y′)))

over constants a, b describes the same set of ground clauses as the six uncon-
strained clauses

S(x), T (a) → S(f(x, a)) S(x), T (b) → S(f(x, b)) . . .

S(x), T (f(b, y′)) → S(f(x, f(b, y′)))

S(x), T (f(f(x′′, y′′), y′)) → S(f(x, f(f(x′′, y′′), y′)).

Furthermore, for a satisfiability equivalent transformation into MSL clauses,
the nested terms in the positive literals would have to be factored out by the
introduction of further predicates and clauses. E.g., the first clause is replaced by
the two MSL clauses S(x), T (a), R(y) → S(f(x, y)) and R(a) where R is a fresh
monadic predicate. The constrained clause belongs to the MSL(SDC) fragment.
Altogether, the resulting MSL(SDC) fragment is shown to be decidable in Sect. 3.

The introduction of straight dismatching constraints (SDCs) enables an
improved refinement step of our approximation refinement calculus [18]. Before,
several clauses were needed to rule out a specific instance of a clause in an
unsatisfiable core. For example, if due to a linearity approximation from clause
S(x), T (x) → S(f(x, x)) to S(x), T (x), S(y), T (y) → S(f(x, y)) an instance {x �→
f(a, x′), y �→ f(b, y′)} is used in the proof, before [18] several clauses were needed
to replace S(x), T (x) → S(f(x, x)) in a refinement step in order to rule out
this instance. With straight dismatching constraints the clause S(x), T (x) →
S(f(x, x)) is replaced by the two clauses S(f(a, x)), T (f(a, x)) → S(f(f(a, x),
f(a, x))) and (S(x), T (x) → S(f(x, x));x �= f(a, y)). For the improved approx-
imation refinement approach (FO-AR) presented in this paper, any refinement
step results in just two clauses, see Sect. 4. The additional expressiveness of con-
straint clauses comes almost for free, because necessary computations, like, e.g.,
checking emptiness of SDCs, can all be done in polynomial time, see Sect. 2.

In addition to the extension of the known MSLH decidability result and
the improved approximation refinement calculus FO-AR, we discuss in Sect. 5
the potential of the MSL(SDC) fragment in the context of FO-AR, Theorem 2,
and its prototypical implementation in SPASS-AR (http://www.mpi-inf.mpg.
de/fileadmin/inf/rg1/spass-ar.tgz). It turns out that for clause sets containing

http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/spass-ar.tgz
http://www.mpi-inf.mpg.de/fileadmin/inf/rg1/spass-ar.tgz

204 A. Teucke and C. Weidenbach

certain structures, FO-AR is superior to ordered resolution/superposition [1] and
instance generating methods [10]. The paper ends with a discussion on challenges
and future research directions, Sect. 6. In favor of many illustrating examples,
most proofs and further technical details can be found in [20].

2 First-Order Clauses with Straight Dismatching
Constraints: MSL(SDC)

We consider a standard first-order language where letters v, w, x, y, z denote
variables, f, g, h functions, a, b, c constants, s, t terms, p, q, r positions and Greek
letters σ, τ, ρ, δ are used for substitutions. S, P,Q,R denote predicates, ≈ denotes
equality, A,B atoms, E,L literals, C,D clauses, N clause sets and V sets of
variables. L is the complement of L. The signature Σ = (F ,P) consists of two
disjoint, non-empty, in general infinite sets of function and predicate symbols F
and P, respectively. The set of all terms over variables V is T (F ,V). If there
are no variables, then terms, literals and clauses are called ground, respectively.
A substitution σ is denoted by pairs {x �→ t} and its update at x by σ[x �→ t].
A substitution σ is a grounding substitution for V if xσ is ground for every
variable x ∈ V.

The set of free variables of an atom A (term t) denoted by vars(A) (vars(t)).
A position is a sequence of positive integers, where ε denotes the empty position.
As usual t|p = s denotes the subterm s of t at position p, which we also write
as t[s]p, and t[p/s′] then denotes the replacement of s with s′ in t at position p.
These notions are extended to literals and multiple positions.

A predicate with exactly one argument is called monadic. A term is complex
if it is not a variable and shallow if it has at most depth one. It is called linear if
there are no duplicate variable occurrences. A literal, where every argument term
is shallow, is also called shallow. A variable and a constant are called straight.
A term f(s1, . . . , sn) is called straight, if s1, . . . , sn are different variables except
for at most one straight term si.

A clause is a multiset of literals which we write as an implication Γ → Δ
where the atoms in the multiset Δ (the succedent) denote the positive literals
and the atoms in the multiset Γ (the antecedent) the negative literals. We write
� for the empty clause. If Γ is empty we omit →, e.g., we can write P (x) as
an alternative of → P (x). We abbreviate disjoint set union with sequencing,
for example, we write Γ, Γ ′ → Δ,L instead of Γ ∪ Γ ′ → Δ ∪ {L}. A clause
E,E, Γ → Δ is equivalent to E,Γ → Δ and we call them equal modulo duplicate
literal elimination. If every term in Δ is shallow, the clause is called positive
shallow. If all atoms in Δ are linear and variable disjoint, the clause is called
positive linear. A clause Γ → Δ is called an MSL clause, if it is (i) positive
shallow and linear, (ii) all occurring predicates are monadic, (iii) no equations
occur in Δ, and (iv) no equations occur in Γ or Γ = {s ≈ t} and Δ is empty
where s and t are not unifiable. MSL is the first-order clause fragment consisting
of MSL clauses. Clauses Γ, s ≈ t → Δ where Γ , Δ are non-empty and s, t are
not unifiable could be added to the MSL fragment without changing any of our

Decidability of the Monadic Shallow Linear First-Order Fragment 205

results. Considering the superposition calculus, it will select s ≈ t. Since the two
terms are not unifiable, no inference will take place on such a clause and the
clause will not contribute to the model operator. In this sense such clauses do
not increase the expressiveness of the fragment.

An atom ordering ≺ is an irreflexive, well-founded, total ordering on ground
atoms. It is lifted to literals by representing A and ¬A as multisets {A} and
{A,A}, respectively. The multiset extension of the literal ordering induces an
ordering on ground clauses. The clause ordering is compatible with the atom
ordering; if the maximal atom in C is greater than the maximal atom in D then
D ≺ C. We use ≺ simultaneously to denote an atom ordering and its multiset,
literal, and clause extensions. For a ground clause set N and clause C, the set
N≺C = {D ∈ N | D ≺ C} denotes the clauses of N smaller than C.

A Herbrand interpretation I is a - possibly infinite - set of ground atoms.
A ground atom A is called true in I if A ∈ I and false, otherwise. I is said to
satisfy a ground clause C = Γ → Δ, denoted by I � C, if Δ∩I �= ∅ or Γ �⊆ I. A
non-ground clause C is satisfied by I if I � Cσ for every grounding substitution
σ. An interpretation I is called a model of N , I � N , if I � C for every C ∈ N .
A model I of N is considered minimal with respect to set inclusion, i.e., if there
is no model I ′ with I ′ ⊂ I and I ′ � N . A set of clauses N is satisfiable, if there
exists a model that satisfies N . Otherwise, the set is unsatisfiable.

A disequation t �= s is an atomic straight dismatching constraint if s and t
are variable disjoint terms and s is straight. A straight dismatching constraint π
is a conjunction of atomic straight dismatching constraints. Given a substitution
σ, πσ =

∧
i∈I tiσ �= si. lvar(π) :=

⋃
i∈I vars(ti) are the left-hand variables of

π and the depth of π is the maximal term depth of the si. A solution of π is a
grounding substitution δ such that for all i ∈ I, tiδ is not an instance of si, i.e.,
there exists no σ such that tiδ = siσ. A dismatching constraint is solvable if it has
a solution and unsolvable, otherwise. Whether a straight dismatching constraint
is solvable, is decidable in linear-logarithmic time [19]. and ⊥ represent the
true and false dismatching constraint, respectively.

We define constraint normalization π↓ as the normal form of the following
rewriting rules over straight dismatching constraints.

π ∧ f(t1, . . . , tn) �= y ⇒ ⊥
π ∧ f(t1, . . . , tn) �= f(y1, . . . , yn) ⇒ ⊥
π ∧ f(t1, . . . , tn) �= f(s1, . . . , sn) ⇒ π ∧ ti �= si if si is complex
π ∧ f(t1, . . . , tn) �= g(s1, . . . , sm) ⇒ π

π ∧ x �= s ∧ x �= sσ ⇒ π ∧ x �= s

Note that f(t1, . . . , tn) �= f(s1, . . . , sn) normalizes to ti �= si for some i, where
si is the one straight complex argument of f(s1, . . . , sn). Furthermore, the depth
of π↓ is less or equal to the depth of π and both have the same solutions.

A pair of a clause and a constraint (C;π) is called a constrained clause. Given
a substitution σ, (C;π)σ = (Cσ;πσ). Cδ is called a ground clause of (C;π) if δ is
a solution of π. G((C;π)) is the set of ground instances of (C;π). If G((C;π)) ⊆
G((C ′;π′)), then (C;π) is an instance of (C ′;π′). If G((C;π)) = G((C ′;π′)),

206 A. Teucke and C. Weidenbach

then (C;π) and (C ′;π′) are called variants. A Herbrand interpretation I satisfies
(C;π), if I � G((C;π)). A constrained clause (C;π) is called redundant in N if for
every D ∈ G((C;π)), there exist D1, . . . , Dn in G(N)≺D such that D1, . . . , Dn �
D. A constrained clause (C ′;π′) is called a condensation of (C;π) if C ′ ⊂ C and
there exists a substitution σ such that, πσ = π′, π′ ⊆ π, and for all L ∈ C there
is an L′ ∈ C ′ with Lσ = L′. A finite unsatisfiable subset of G(N) is called an
unsatisfiable core of N .

An MSL clause with straight dismatching constraints is called an MSL(SDC)
clause with MSL(SDC) being the respective first-order fragment. Note that any
clause set N can be transformed into an equivalent constrained clause set by
changing each C ∈ N to (C;).

3 Decidability of the MSL(SDC) Fragment

In the following we will show that the satisfiability of the MSL(SDC) fragment
is decidable. For this purpose we will define ordered resolution with selection
on constrained clauses [19] and show that with an appropriate ordering and
selection function, saturation of an MSL(SDC) clause set terminates.

For the rest of this section we assume an atom ordering ≺ such that a literal
¬Q(s) is not greater than a literal P (t[s]p), where p �= ε. For example, a KBO
where all symbols have weight one has this property.

Definition 1 (sel). Given an MSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn)
→ P1(s1), . . . , Pm(sm);π). The Superposition Selection function sel is defined by
Si(ti) ∈ sel(C) if (1) ti is not a variable or (2) t1, . . . , tn are variables and ti /∈
vars(s1, . . . , sm) or (3) {t1, . . . , tn} ⊆ vars(s1, . . . , sm) and for some 1 ≤ j ≤ m,
sj = ti.

The selection function sel (Definition 1) ensures that a clause Γ → Δ can
only be resolved on a positive literal if Γ contains only variables, which also
appear in Δ at a non-top position. For example:

sel(P (f(x)), P (x), Q(z) → Q(x), R(f(y))= {P (f(x))}
sel(P (x), Q(z) → Q(x), R(f(y)))= {Q(z)}
sel(P (x), Q(y) → Q(x), R(f(y)))= {P (x)}

sel(P (x), Q(y) → Q(f(x)), R(f(y)))= ∅.

Note that given an MSL(SDC) clause (C;π) = (S1(t1), . . . , Sn(tn) →
P1(s1), . . . Pm(sm);π), if some Si(ti) is maximal in C, then at least one literal is
selected.

Definition 2. A literal A is called [strictly] maximal in a constrained clause
(C ∨ A;π) if and only if there exists a solution δ of π such that for all literals B
in C, Bδ � Aδ [Bδ ≺ Aδ].

Decidability of the Monadic Shallow Linear First-Order Fragment 207

Definition 3 (SDC-Resolution).

(Γ1 → Δ1, A ; π1) (Γ2, B → Δ2 ; π2)
((Γ1, Γ2 → Δ1,Δ2)σ ; (π1 ∧ π2)σ↓)

, if

1. σ = mgu(A,B) 2. (π1 ∧ π2)σ↓ is solvable
3. Aσ is strictly maximal in (Γ1 → Δ1, A;π1)σ and sel(Γ1 → Δ1, A) = ∅
4. B ∈ sel(Γ2, B → Δ2)
5. sel(Γ2, B → Δ2) = ∅ and ¬Bσ maximal in (Γ2, B → Δ2;π2)σ

Definition 4 (SDC-Factoring).

(Γ → Δ,A,B ; π)
((Γ → Δ,A)σ;πσ↓)

, if

1. σ = mgu(A,B) 2. sel(Γ → Δ,A,B) = ∅
3. Aσ is maximal in (Γ → Δ,A,B;π)σ 4. πσ↓ is solvable

Note that while the above rules do not operate on equations, we can actually
allow unit clauses that consist of non-unifiable disequations, i.e., clauses s ≈ t →
where s and t are not unifiable. There are no potential superposition inferences
on such clauses as long as there are no positive equations. So resolution and
factoring suffice for completeness. Nevertheless, clauses such as s ≈ t → affect
the models of satisfiable problems. Constrained Resolution and Factoring are
sound.

Definition 5 (Saturation). A constrained clause set N is called saturated
up to redundancy, if for every inference between clauses in N the result (R;π)
is either redundant in N or G((R;π)) ⊆ G(N).

Note that our redundancy notion includes condensation and the condition
G((R;π)) ⊆ G(N) allows ignoring variants of clauses.

Definition 6 (Partial Minimal Model Construction). Given a constrained
clause set N , an ordering ≺ and the selection function sel, we construct an
interpretation IN for N , called a partial model, inductively as follows:

IC :=
D∈G(N)⋃

D≺C

δD, where C ∈ G(N)

δD :=

⎧
⎨

⎩

{A} if D = Γ → Δ,A
A strictly maximal, sel(D) = ∅ and ID �� D

∅ otherwise

IN :=
⋃

C∈G(N)

δC

Clauses D with δD �= ∅ are called productive.

208 A. Teucke and C. Weidenbach

Lemma 1 (Ordered SDC Resolution Completeness). Let N be a con-
strained clause set saturated up to redundancy by ordered SDC-resolution with
selection. Then N is unsatisfiable, if and only if � ∈ G(N). If � �∈ G(N) then
IN |= N .

Lemma 2. Let N be a set of MSL(SDC) clauses without variants or uncon-
densed clauses over a finite signature Σ. N is finite if there exists an integer d
such that for every (C;π) ∈ N , depth(π)≤ d and

(1) C = S1(x1), . . . , Sn(xn), S′
1(t), . . . , S

′
m(t) → Δ or

(2) C = S1(x1), . . . , Sn(xn), S′
1(t), . . . , S

′
m(t) → S(t),Δ

with t shallow and linear, and vars(t) ∩ vars(Δ) = ∅.

Lemma 3 (Finite Saturation). Let N be an MSL(SDC) clause set. Then
N can be finitely saturated up to redundancy by SDC-resolution with selection
function sel.

Theorem 1 (MSL(SDC) Decidability). Satisfiability of the MSL(SDC)
first-order fragment is decidable.

4 Approximation and Refinement

In the following, we show how decidability of the MSL(SDC) fragment can be
used to improve the approximation refinement calculus presented in [18].

Our approach is based on a counter-example guided abstraction refinement
(CEGAR) idea. The procedure loops trough four steps: approximation, testing
(un)satisfiability, lifting, and refinement. The approximation step transforms
any first-order logic clause set into the decidable MSL(SDC) fragment while
preserving unsatisfiability. The second step employs the decidability result for
MSL(SDC), Sect. 3, to test satisfiability of the approximated clause set. If the
approximation is satisfiable, the original problem is satisfiable as well and we
are done. Otherwise, the third step, lifting, tests whether the proof of unsatis-
fiability found for the approximated clause set can be lifted to a proof of the
original clause set. If so, the original clause set is unsatisfiable and we are again
done. If not, we extract a cause for the lifting failure that always amounts to
two different instantiations of the same variable in a clause from the original
clause set. This is resolved by the fourth step, the refinement. The crucial clause
in the original problem is replaced and instantiated in a satisfiability preserving
way such that the different instantiations do not reoccur anymore in subsequent
iterations of the loop.

As mentioned before, our motivation to use dismatching constraints is that
for an unconstrained clause the refinement adds quadratically many new clauses
to the clause set. In contrast, with constrained clauses the same can be accom-
plished with adding just a single new clause. This extension is rather simple as
constraints are treated the same as the antecedent literals in the clause. Further-
more we present refinement as a separate transformation rule.

Decidability of the Monadic Shallow Linear First-Order Fragment 209

The second change compared to the previous version is the removal of the
Horn approximation rule, where we have now shown in Sect. 3 that a restriction
to Horn clauses is not required for decidability anymore. Instead, the linear and
shallow approximations are extended to apply to non-Horn clauses instead.

The approximation consists of individual transformation rules N ⇒ N ′ that
are non-deterministically applied. They transform a clause that is not in the
MSL(SDC) fragment in finite steps into MSL(SDC) clauses. Each specific prop-
erty of MSL(SDC) clauses, i.e., monadic predicates, shallow and linear pos-
itive literals, is generated by a corresponding rule: the Monadic transforma-
tion encodes non-Monadic predicates as functions, the shallow transformation
extracts non-shallow subterms by introducing fresh predicates and the linear
transformation renames non-linear variable occurrences.

Starting from a constrained clause set N the transformation is parameterized
by a single monadic projection predicate T , fresh to N and for each non-monadic
predicate P a separate projection function fP fresh to N . The clauses in N are
called the original clauses while the clauses in N ′ are the approximated clauses.
We assume all clauses in N to be variable disjoint.

Definition 7. Given a predicate P , projection predicate T , and projec-
tion function fP , define the injective function μT

P (P (�t)) := T (fp(�t)) and
μT

P (Q(�s)) := Q(�s) for P �= Q. The function is extended to [constrained]
clauses, clause sets and interpretations. Given a signature Σ with non-monadic
predicates P1, . . . , Pn, define μT

Σ(N) = μT
P1

(. . . (μT
Pn

(N)) . . .) and μT
Σ(I) =

μT
P1

(. . . (μT
Pn

(I)) . . .).

Monadic N ⇒MO μT
P (N)

provided P is a non-monadic predicate in the signature of N .

Shallow N ∪̇ {(Γ → E[s]p,Δ;π)} ⇒SH

N ∪ {(S(x), Γl → E[p/x],Δl;π); (Γr → S(s),Δr;π)}
provided s is complex, |p| = 2, x and S fresh, Γl{x �→ s} ∪ Γr = Γ , Δl∪Δr = Δ,
{Q(y) ∈ Γ | y ∈ vars(E[p/x],Δl)} ⊆ Γl, {Q(y) ∈ Γ | y ∈ vars(s,Δr)} ⊆ Γr.

Linear 1 N ∪̇ {(Γ → Δ,E′[x]p, E[x]q;π)} ⇒LI

N ∪ {(Γσ, Γ → Δ,E′[x]p, E[q/x′];π ∧ πσ)}
provided x′ is fresh and σ = {x �→ x′}.

Linear 2 N ∪̇ {(Γ → Δ,E[x]p,q;π)} ⇒LI

N ∪ {(Γσ, Γ → Δ,E[q/x′];π ∧ πσ)}
provided x′ is fresh, p �= q and σ = {x �→ x′}.

Refinement N ∪̇ {(C, π)} ⇒Ref N ∪ {(C;π ∧ x �= t), (C;π){x �→ t}}
provided x ∈ vars(C), t straight and vars(t) ∩ vars((C, π)) = ∅.

210 A. Teucke and C. Weidenbach

Note that variables are not renamed unless explicitly stated in the rule. This
means that original clauses and their approximated counterparts share variable
names. We use this to trace the origin of variables in the approximation.

The refinement transformation ⇒Ref is not needed to eventually generate
MSL(SDC) clauses, but can be used to achieve a more fine-grained approxima-
tion of N , see below.

In the shallow transformation, Γ and Δ are separated into Γl, Γr, Δl, and Δr,
respectively. The separation can be almost arbitrarily chosen as long as no atom
from Γ , Δ is skipped. However, the goal is to minimize the set of shared variables,
i.e., the variables of (Γ → E[s]p,Δ;π) that are inherited by both approximation
clauses, vars(Γr, s,Δr)∩vars(Γl, E[p/x],Δl). If there are no shared variables, the
shallow transformation is satisfiability equivalent. The conditions on Γl and Γr

ensure that S(x) atoms are not separated from the respective positive occurrence
of x in subsequent shallow transformation applications.

Consider the clause Q(f(x), y) → P (g(f(x), y)). The simple shallow trans-
formation S(x′), Q(f(x), y) → P (g(x′, y));S(f(x)) is not satisfiability equiva-
lent – nor with any alternative partitioning of Γ . However, by replacing the
occurrence of the extraction term f(x) in Q(f(x), y) with the fresh variable x′,
the approximation S(x′), Q(x′, y) → P (g(x′, y));S(f(x)) is satisfiability equiv-
alent. Therefore, we allow the extraction of s from the terms in Γl and require
Γl{x �→ s} ∪ Γr = Γ .

We consider Linear 1 and Linear 2 as two cases of the same linear transfor-
mation rule. Their only difference is whether the two occurrences of x are in the
same literal or not. The duplication of literals and constraints in Γ and π is not
needed if x does not occur in Γ or π.

Further, consider a linear transformation N ∪ {(C;π)} ⇒LI N ∪ {(Ca;πa)},
where a fresh variable x′ replaces an occurrence of a non-linear variable x in
(C;π). Then, (Ca;πa){x′ �→ x} is equal to (C;π) modulo duplicate literal elim-
ination. A similar property can be observed of a resolvent of (Cl;π) and (Cr;π)
resulting from a shallow transformation N ∪{(C;π)} ⇒SH N ∪{(Cl;π), (Cr;π)}.
Note that by construction, (Cl;π) and (Cr;π) are not necessarily variable dis-
joint. To simulate standard resolution, we need to rename at least the shared
variables in one of them.

Definition 8 (⇒AP). We define ⇒AP as the priority rewrite system [3] con-
sisting of ⇒Ref , ⇒MO, ⇒SH and ⇒LI with priority ⇒Ref >⇒MO >⇒SH >⇒LI,
where ⇒Ref is only applied finitely many times.

Lemma 4 (⇒AP is a Terminating Over-Approximation). (i) ⇒∗
AP termi-

nates, (ii) if N ⇒AP N ′ and N ′ is satisfiable, then N is also satisfiable.

Note that ⇒Ref and ⇒MO are also satisfiability preserving transformations.

Corollary 1. If N ⇒∗
AP N ′ and N ′ is satisfied by a model I, then μ−1

Σ (I) is a
model of N .

On the basis of ⇒AP we can define an ancestor relation ⇒A that relates
clauses, literal occurrences, and variables with respect to approximation.

Decidability of the Monadic Shallow Linear First-Order Fragment 211

This relation is needed in order to figure out the exact clause, literal, variable
for refinement. The definition of ⇒A itself is rather technical [20].

The over-approximation of a clause set N can introduce resolution refutations
that have no corresponding equivalent in N which we consider a lifting failure.
Compared to our previous calculus [18], the lifting process is identical with the
exception that there is no case for the removed Horn transformation. We only
update the definition of conflicting cores to consider constrained clauses.

Definition 9 (Conflicting Core). A finite set of unconstrained clauses N⊥ is
a conflicting core of N if N⊥σ is an unsatisfiable core of N for all grounding
substitutions σ. For a ground clause D ∈ N⊥σ and (C;π) ∈ N such that D ∈
G((C;π)), the clause (C;π) is called the instantiated clause of D. We call N⊥

complete if for every clause C ∈ N⊥ and literal L ∈ C, there exists a clause
D ∈ N⊥ with L ∈ D.

A conflicting core is a generalization of a ground unsatisfiability core that
allows global variables to act as parameters. This enables more efficient lifting
and refinement compared to a simple ground unsatisfiable core. We show some
examples at the end of this section.

We discuss the potential lifting failures and the corresponding refinements
only for the linear and shallow case because lifting the satisfiability equivalent
monadic and refinement transformations always succeeds. To reiterate from our
previous work: in the linear case, there exists a clause in the conflicting core that
is not an instance of the original clauses. In the shallow case, there exists a pair
of clauses whose resolvent is not an instance of the original clauses. We combine
these two cases by introducing the notion of a lift-conflict.

Definition 10 (Conflict). Let N ∪ {(C, π)} ⇒LI N ∪ {(Ca, πa)} and N⊥ be
a complete ground conflicting core of N ∪ {(Ca, πa)}. We call a conflict clause
Cc ∈ N⊥ with the instantiated clause (Ca, πa) a lift-conflict if Cc is not an
instance of (C, π) modulo duplicate literal elimination. Then, Cc is an instance
of (Ca, πa), which we call the conflict clause of Cc.

The goal of refinement is to instantiate the original parent clause in such
a way that is both satisfiability equivalent and prevents the lift-conflict after
approximation. Solving the refined approximation will then either necessarily
produce a complete saturation or a new refutation proof, because its conflicting
core has to be different. For this purpose, we use the refinement transformation
to segment the original parent clause (C;π) into two parts (C;π ∧ x �= t) and
(C;π){x �→ t}.

For example, consider N and its linear transformation N ′.

→ P (x, x) ⇒LI → P (x, x′)
P (a, b)→ ⇒0

AP P (a, b)→

The ground conflicting core of N ′ is

→ P (a, b)
P (a, b)→

212 A. Teucke and C. Weidenbach

Because P (a, b) is not an instance of P (x, x), lifting fails. P (a, b) is the lift-
conflict. Specifically, {x �→ a} and {x �→ b} are conflicting substitutions for the
parent variable x. We pick {x �→ a} to segment P (x, x) into (P (x, x);x �= a) and
P (x, x){x �→ a}. Now, any descendant of (P (x, x);x �= a) cannot have a at the
position of the first x, and any descendant of P (x, x){x �→ a} must have an a
at the position of the second x. Thus, P (a, b) is excluded in both cases and no
longer appears as a lift-conflict.

To show that the lift-conflict will not reappear in the general case, we use
that the conflict clause and its ancestors have strong ties between their term
structures and constraints.

Definition 11 (Constrained Term Skeleton). The constrained term skele-
ton of a term t under constraint π, skt(t, π), is defined as the normal form of
the following transformation:

(t[x]p,q;π) ⇒skt (t[q/x′];π ∧ π{x �→ x′}), where p �= q and x′ is fresh.

The constrained term skeleton of a term t is essentially a linear version of t
where the restrictions on each variable position imposed by π are preserved. For
(t, π) and a solution δ of π, tδ is called a ground instance of (t, π).

Lemma 5. Let N0 ⇒∗
AP Nk, (Ck;πk) in N with the ancestor clause (C0;π0) ∈

N0 and N⊥
k be a complete ground conflicting core of Nk. Let δ be a solution

of πk such that Ckδ is in N⊥
k . If (L′, q′) is a literal position in (Ck;πk) with

the ancestor (L, q) in (C0, π0), then (i) L′δ|q′ is an instance of skt(L|q, π0), (ii)
q = q′ if L and L′ have the same predicate, and (iii) if L′|q′ = x and there exists
an ancestor variable y of x in (C0, π0), then L|q = y.

Proof. Idea. The proof is by induction on the length of the approximation
N0 ⇒∗

AP Nk and a case distinction of the first transformation N0 ⇒AP N1.
Most cases are straightforward except for case (i) of the shallow transformation.
Because N⊥

k is complete, any negative extraction literal S(x)δ matches some pos-
itive literal in N⊥

k which is necessarily an instance of S(s), the extraction term.
Therefore, the original term structure is preserved even after subterm extraction.

Next, we define the notion of descendants and descendant relations to con-
nect lift-conflicts in ground conflicting cores with their corresponding ancestor
clauses. The goal, hereby, is that if a ground clause D is not a descendant of a
clause in N , then it can never appear in a conflicting core of an approximation
of N .

Definition 12 (Descendants). Let N ⇒∗
AP N ′, [(C;π), N] ⇒∗

A [(C ′;π′), N ′]
and D be a ground instance of (C ′;π′). Then, we call D a descendant of (C;π)
and define the [(C;π), N] ⇒∗

A [(C ′;π′), N ′]-descendant relation ⇒D that maps
literals in D to literal positions in (C;π) using the following rule:

L′δ ⇒D (L, r) if L′δ ∈ D and [r, L, (C;π), N] ⇒∗
A [ε, L′, (C ′;π′), N ′]

Decidability of the Monadic Shallow Linear First-Order Fragment 213

For the descendant relations it is of importance to note that while there
are potentially infinite ways that a lift-conflict Cc can be a descendant of an
original clause (C;π), there are only finitely many distinct descendant relations
over Cc and (C;π). This means, if a refinement transformation can prevent one
distinct descendant relation without generating new distinct descendant relations
(Lemma 6), a finite number of refinement steps can remove the lift-conflict Cc

from the descendants of (C;π) (Lemma 7). Thereby, preventing any conflicting
cores containing Cc from being found again.

A clause (C;π) can have two descendants that are the same except for the
names of the S-predicates introduced by shallow transformations. Because the
used approximation N ⇒∗

AP N ′ is arbitrary and therefore also the choice of
fresh S-predicates, if D is a descendant of (C;π), then any clause D′ equal to
D up to a renaming of S-predicates is also a descendant of (C;π). On the other
hand, the actual important information about an S-predicate is which term it
extracts. Two descendants of (C;π) might be identical but their S-predicate
extract different terms in (C;π). For example, P (a) → S(f(a)) is a descen-
dant of P (x), P (y) → Q(f(x), g(f(x))) but might extract either occurrence
of f(x). These cases are distinguished by their respective descendant rela-
tions. In the example, we have either S(f(a)) ⇒D (Q(f(x), g(f(x))), 1) or
S(f(a)) ⇒D (Q(f(x), g(f(x))), 2.1).

Lemma 6. Let N0 = N ∪ {(C;π)} ⇒Ref N ∪ {(C;π ∧ x �= t), (C;π){x �→
t}} = N1 be a refinement transformation and D a ground clause. If there is a
[(C;π ∧ x �= t), N1] ⇒∗

A [(C ′;π′), N2]-or [(C;π){x �→ t}, N1] ⇒∗
A [(C ′;π′), N2]-

descendant relation ⇒1
D, then there is an equal [(C;π), N0] ⇒∗

A [(C ′;π′), N2]-
descendant relation ⇒0

D.

Proof. Let LD be a literal of D and L′ ⇒1
D (L, r). If D is a descendant of

(C;π ∧ x �= t), then [r, L, (C;π ∧ x �= t), N1] ⇒∗
A [ε, L′, (C ′;π′), N2]. Because

[r, L, (C;π), N0] ⇒A [r, L, (C;π ∧ x �= t), N1], L′ ⇒0
D (L, r). If D is a descendant

of (C;π){x �→ t}, the proof is analogous. ��

Lemma 7 (Refinement). Let N ⇒AP N ′ and N⊥ be a complete ground con-
flicting core of N ′. If Cc ∈ N⊥ is a lift-conflict, then there exists a finite refine-
ment N ⇒∗

Ref NR such that for any approximation NR ⇒∗
AP N ′

R and ground
conflicting core N⊥

R of N ′
R, Cc is not a lift-conflict in N⊥

R modulo duplicate
literal elimination.

Theorem 2 (Soundness and Completeness of FO-AR). Let N be an
unsatisfiable clause set and N ′ its MSL(SDC) approximation: (i) if N is unsat-
isfiable then there exists a conflicting core of N ′ that can be lifted to a refutation
in N , (ii) if N ′ is satisfiable, then N is satisfiable too.

Proof. (Idea) By Lemmas 4 and 7, where the latter can be used to show that a
core of N ′ that cannot be lifted also excludes the respective instance for unsat-
isfiability of N .

214 A. Teucke and C. Weidenbach

Actually, Lemma 7 can be used to define a fair strategy on refutations in N ′

in order to receive also a dynamically complete FO-AR calculus, following the
ideas presented in [18].

In Lemma 7, we segment the conflict clause’s immediate parent clause. If
the lifting later successfully passes this point, the refinement is lost and will
be possibly repeated. Instead, we can refine any ancestor of the conflict clause
as long as it contains the ancestor of the variable used in the refinement. By
Lemma 5-(iii), such an ancestor will contain the ancestor variable at the same
positions. If we refine the ancestor in the original clause set, the refinement is
permanent because lifting the refinement steps always succeeds. Only variables
introduced by shallow transformation cannot be traced to the original clause set.
However, these shallow variables are already linear and the partitioning in the
shallow transformation can be chosen such that they are not shared variables.
Assume a shallow, shared variable y, that is used to extract the term t, in
the shallow transformation of Γ → E[s]p,Δ into S(x), Γl → E[p/x],Δl and
Γr → S(s),Δr. Since Δl ∪̇ Δr = Δ is a partitioning, y can only appear in either
E[p/x],Δl or S(s),Δr. If y ∈ vars(E[p/x],Δl) we instantiate Γr with {y �→ t}
and Γl, otherwise. Now, y is no longer a shared variable.

The refinement Lemmas only guarantee a refinement for a given ground con-
flicting core. In practice, however, conflicting cores contain free variables. We can
always generate a ground conflicting core by instantiating the free variables with
ground terms. However, if we only exclude a single ground case via refinement,
next time the new conflicting core will likely have overlaps with the previous
one. Instead, we can often remove all ground instances of a given conflict clause
at once.

The simplest case is when unifying the conflict clause with the original clause
fails because their instantiations differ at some equivalent positions. For example,
consider N = {P (x, x);P (f(x, a), f(y, b)) →}. N is satisfiable but the linear
transformation is unsatisfiable with conflict clause P (f(x, a), f(y, b)) which is not
unifiable with P (x, x), because the two terms f(x, a) and f(y, b) have different
constants at the second argument. A refinement of P (x, x) is

(P (x, x) ; x �= f(v, a))
(P (f(x, a), f(x, a)) ;)

P (f(x, a), f(y, b)) shares no ground instances with the approximations of the
refined clauses.

Next, assume that again unification fails due to structural difference, but
this time the differences lie at different positions. For example, consider N =
{P (x, x);P (f(a, b), f(x, x)) →}. N is satisfiable but the linear transformation of
N is unsatisfiable with conflict clause P (f(a, b), f(x, x)) which is not unifiable
with P (x, x) because in f(a, b) the first an second argument are different but
the same in f(x, x). A refinement of P (x, x) is

Decidability of the Monadic Shallow Linear First-Order Fragment 215

(P (x, x) ; x �= f(a, v))
(P (f(a, x), f(a, x))) ; x �= a)
(P (f(a, a), f(a, a))) ;)

P (f(a, b), f(x, x)) shares no ground instances with the approximations of the
refined clauses.

It is also possible that the conflict clause and original clause are unifiable by
themselves, but the resulting constraint has no solutions. For example, consider
N = {P (x, x); (P (x, y) →;x �= a ∧ x �= b ∧ y �= c ∧ y �= d)} with signature Σ =
{a, b, c, d}. N is satisfiable but the linear transformation of N is unsatisfiable
with conflict clause (→ P (x, y);x �= a ∧ x �= b ∧ y �= c ∧ y �= d). While P (x, x)
and P (x, y) are unifiable, the resulting constraint x �= a ∧ x �= b ∧ x �= c ∧ x �= d
has no solutions. A refinement of P (x, x) is

(P (x, x) ; x �= a ∧ x �= b)
(P (a, a) ;)
(P (b, b) ;)

(P (x, y);x �= a ∧ x �= b ∧ y �= c ∧ y �= d) shares no ground instances with the
approximations of the refined clauses.

Lastly, we should mention that there are cases where the refinement
process does not terminate. For example, consider the clause set N =
{P (x, x);P (y, g(y)) →}. N is satisfiable but the linear transformation of N is
unsatisfiable with conflict clause P (y, g(y)), which is not unifiable with P (x, x).
A refinement of P (x, x) based on the ground instance P (a, g(a)) is

(P (x, x) ; x �= g(v))
(P (g(x), g(x)) ;)

While P (y, g(y)) is not an instance of the refined approximation, it shares ground
instances with P (g(x), g(x′)). The new conflict clause is P (g(y), g(g(y))) and the
refinement will continue to enumerate all P (gi(x), gi(x)) instances of P (x, x)
without ever reaching a satisfiable approximation. Satisfiability of first-order
clause sets is undecidable, so termination cannot be expected by any calculus,
in general.

5 Experiments

In the following we discuss several first-order clause classes for which FO-AR
implemented in SPASS-AR immediately decides satisfiability but superposition
and instantiation-based methods fail. We argue both according to the respective
calculi and state-of-the-art implementations, in particular SPASS 3.9 [23], Vam-
pire 4.1 [11,21], for ordered-resolution/superposition, iProver 2.5 [9] an imple-
mentation of Inst-Gen [10], and Darwin v1.4.5 [4] an implementation of the
model evolution calculus [5]. All experiments were run on a 64-Bit Linux com-
puter (Xeon(R) E5-2680, 2.70GHz, 256GB main memory). For Vampire and

216 A. Teucke and C. Weidenbach

Darwin we chose the CASC-sat and CASC settings, respectively. For iProver we
set the schedule to “sat” and SPASS, SPASS-AR were used in default mode.
Please note that Vampire and iProver are portfolio solvers including implemen-
tations of several different calculi including superposition (ordered resolution),
instance generation, and finite model finding. SPASS, SPASS-AR, and Darwin
only implement superposition, FO-AR, and model evolution, respectively.

For the first example

P (x, y) → P (x, z), P (z, y); P (a, a)

and second example,

Q(x, x); Q(v, w), P (x, y) → P (x, v), P (w, y); P (a, a)

the superposition calculus produces independently of the selection strategy and
ordering an infinite number of clauses of form

→ P (a, z1), P (z1, z2), . . . , P (zn, a).

Using linear approximation, however, FO-AR replaces P (x, y) →
P (x, z), P (z, y) and → Q(x, x) with P (x, y) → P (x, z), P (z′, y) and → Q(x, x′),
respectively. Consequently, ordered resolution derives → P (a, z1), P (z2, a) which
subsumes any further inferences → P (a, z1), P (z2, z3), P (z4, a). Hence, satura-
tion of the approximation terminates immediately. Both examples belong to
the Bernays-Schönfinkel fragment, so model evolution (Darwin) and Inst-Gen
(iProver) can decide them as well. Note that the concrete behavior of superposi-
tion is not limited to the above examples but potentially occurs whenever there
are variable chains in clauses.

On the third problem

P (x, y) → P (g(x), z); P (a, a)

superposition derives all clauses of the form → P (g(. . . g(a) . . .), z). With a
shallow approximation of P (x, y) → P (g(x), z) into S(v) → P (v, z) and
P (x, y) → S(g(x)), FO-AR (SPASS-AR) terminates after deriving → S(g(a))
and S(x) → S(g(x)). Again, model evolution (Darwin) and Inst-Gen (iProver)
can also solve this example.

The next example

P (a); P (f(a)) →; P (f(f(x))) → P (x); P (x) → P (f(f(x)))

is already saturated under superposition. For FO-AR, the clause P (x) →
P (f(f(x))) is replaced by S(x) → P (f(x)) and P (x) → S(f(x)). Then ordered
resolution terminates after inferring S(a) → and S(f(x)) → P (x).

The Inst-Gen and model evolution calculi, however, fail. In either, a satisfying
model is represented by a finite set of literals, i.e., a model of the propositional
approximation for Inst-Gen and the trail of literals in case of model evolution.

Decidability of the Monadic Shallow Linear First-Order Fragment 217

Therefore, there necessarily exists a literal P (fn(x)) or ¬P (fn(x)) with a maxi-
mal n in these models. This contradicts the actual model where either P (fn(a))
or P (fn(f(a))) is true. However, iProver can solve this problem using its built-in
ordered resolution solver whereas Darwin does not terminate on this problem.

Lastly consider an example of the form

f(x) ≈ x →; f(f(x)) ≈ x →; . . . ; fn(x) ≈ x →

which is trivially satisfiable, e.g., saturated by superposition, but any model has
at least n+1 domain elements. Therefore, adding these clauses to any satisfiable
clause set containing f forces calculi that explicitly consider finite models to
consider at least n + 1 elements. The performance of final model finders [15]
typically degrades in the number of different domain elements to be considered.

Combining each of these examples into one problem is then solvable by nei-
ther superposition, Inst-Gen, or model evolution and not practically solvable
with increasing n via testing finite models. For example, we tested

P (x, y) → P (x, z), P (z, y); P (a, a); P (f(a), y) →;
P (f(f(x)), y) → P (x, y); P (x, y) → P (f(f(x)), y);

f(x) ≈ x →; , . . . , fn(x) ≈ x →;

for n = 20 against SPASS, Vampire, iProver, and Darwin for more than one
hour each without success. Only SPASS-AR solved it in less than one second.

For iProver we added an artificial positive equation b ≈ c. For otherwise,
iProver throws away all disequations while preprocessing. This is a satisfiabil-
ity preserving operation, however, the afterwards found (finite) models are not
models of the above clause set due to the collapsing of ground terms.

6 Conclusion

The previous section showed FO-AR is superior to superposition, instantiation-
based methods on certain classes of clause sets. Of course, there are also classes
of clause sets where superposition and instantiation-based methods are superior
to FO-AR, e.g., for unsatisfiable clause sets where the structure of the clause set
forces FO-AR to enumerate failing ground instances due to the approximation
in a bottom-up way.

Our prototypical implementation SPASS-AR cannot compete with systems
such as iProver or Vampire on the respective CASC categories of the TPTP [17].
This is already due to the fact that they are all meanwhile portfolio solvers. For
example, iProver contains an implementation of ordered resolution and Vampire
an implementation of Inst-Gen. Our results, Sect. 5, however, show that these
systems may benefit from FO-AR by adding it to their portfolio.

The DEXPTIME-completeness result for MSLH strongly suggest that both
the MSLH and also our MSL(SDC) fragment have the finite model property.
However, we are not aware of any proof. If MSL(DSC) has the finite model
property, the finite model finding approaches are complete on MSL(SDC).

218 A. Teucke and C. Weidenbach

The models generated by FO-AR and superposition are typically infinite. It
remains an open problem, even for fragments enjoying the finite model prop-
erty, e.g., the first-order monadic fragment, to design a calculus that combines
explicit finite model finding with a structural representation of infinite mod-
els. For classes that have no finite models this problem seems to become even
more difficult. To the best of our knowledge, SPASS is currently the only prover
that can show satisfiability of the clauses R(x, x) →; R(x, y), R(y, z) → R(x, z);
R(x, g(x)) due to an implementation of chaining [2,16]. Apart from the superpo-
sition calculus, it is unknown to us how the specific inferences for transitivity can
be combined with any of the other discussed calculi, including the abstraction
refinement calculus introduced in this paper.

Finally, there are not many results on calculi that operate with respect to
models containing positive equations. Even for fragments that are decidable with
equality, such as the Bernays-Schoenfinkel-Ramsey fragment or the monadic
fragment with equality, there seem currently no convincing suggestions com-
pared to the great amount of techniques for these fragments without equality.
Adding positive equations to MSL(SDC) while keeping decidability is, to the
best of our current knowledge, only possible for at most linear, shallow equations
f(x1, . . . , xn) ≈ h(y1, . . . , yn) [8]. However, approximation into such equations
from an equational theory with nested term occurrences typically results in an
almost trivial equational theory. So this does not seem to be a very promising
research direction.

Acknowledgements. We thank the reviewers as well as Konstantin Korovin and
Giles Reger for a number of important remarks.

References

1. Bachmair, L., Ganzinger, H.: Rewrite-based equational theorem proving with selec-
tion and simplification. J. Logic Comput. 4(3), 217–247 (1994). Revised version of
Max-Planck-Institut für Informatik Technical report, MPI-I-91-208 (1991)

2. Bachmair, L., Ganzinger, H.: Ordered chaining calculi for first-order theories of
transitive relations. J. ACM 45(6), 1007–1049 (1998)

3. Baeten, J.C.M., Bergstra, J.A., Klop, J., Weijland, W.P.: Term-rewriting systems
with rule priorities. Theor. Comput. Sci. 67(2&3), 283–301 (1989)

4. Baumgartner, P., Fuchs, A., Tinelli, C.: Implementing the model evolution calculus.
Int. J. Artif. Intell. Tools 15(1), 21–52 (2006)

5. Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.)
CADE 2003. LNCS (LNAI), vol. 2741, pp. 350–364. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45085-6 32

6. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D.,
Tison, S., Tommasi, M.: Tree automata techniques and applications (2007). http://
www.grappa.univ-lille3.fr/tata. Accessed 12 Oct 2007

7. Goubault-Larrecq, J.: Deciding H1 by resolution. Inf. Process. Lett. 95(3), 401–408
(2005)

8. Jacquemard, F., Meyer, C., Weidenbach, C.: Unification in extensions of shallow
equational theories. In: Nipkow, T. (ed.) RTA 1998. LNCS, vol. 1379, pp. 76–90.
Springer, Heidelberg (1998). doi:10.1007/BFb0052362

http://dx.doi.org/10.1007/978-3-540-45085-6_32
http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata
http://dx.doi.org/10.1007/BFb0052362

Decidability of the Monadic Shallow Linear First-Order Fragment 219

9. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 24

10. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated rea-
soning. In: Voronkov, A., Weidenbach, C. (eds.) Programming Logics. LNCS, vol.
7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1 10

11. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39799-8 1

12. Seidl, H., Reuß, A.: Extending H1-clauses with disequalities. Inf. Process. Lett.
111(20), 1007–1013 (2011)

13. Seidl, H., Reuß, A.: Extending H1-clauses with path disequalities. In: Birkedal, L.
(ed.) FoSSaCS 2012. LNCS, vol. 7213, pp. 165–179. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-28729-9 11

14. Seidl, H., Verma, K.N.: Cryptographic protocol verification using tractable classes
of horn clauses. In: Reps, T., Sagiv, M., Bauer, J. (eds.) Program Analysis and
Compilation, Theory and Practice. LNCS, vol. 4444, pp. 97–119. Springer, Heidel-
berg (2007). doi:10.1007/978-3-540-71322-7 5

15. Slaney, J.K., Surendonk, T.: Combining finite model generation with theorem prov-
ing: problems and prospects. In: Baader, F., Schulz, K.U. (eds.), Frontiers of Com-
bining Systems, First International Workshop FroCoS 1996, Munich, Germany,
March 26-29, 1996, Proceedings, vol. 3. Applied Logic Series, pp. 141–155. Kluwer
Academic Publishers (1996)

16. Suda, M., Weidenbach, C., Wischnewski, P.: On the saturation of YAGO. In: Giesl,
J., Hähnle, R. (eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 441–456. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14203-1 38

17. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF Parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

18. Teucke, A., Weidenbach, C.: First-order logic theorem proving and model build-
ing via approximation and instantiation. In: Lutz, C., Ranise, S. (eds.) FroCoS
2015. LNCS (LNAI), vol. 9322, pp. 85–100. Springer, Cham (2015). doi:10.1007/
978-3-319-24246-0 6

19. Teucke, A., Weidenbach, C.: Ordered resolution with straight dismatching con-
straints. In: Fontaine, P., Schulz, S., Urban, J. (eds.) Proceedings of the 5th
Workshop on Practical Aspects of Automated Reasoning Co-located with Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2016), Coimbra, Por-
tugal, 2 July 2016, vol. 1635. CEUR Workshop Proceedings, pp. 95–109 (2016).
CEUR-WS.org

20. Teucke, A., Weidenbach, C.: Decidability of the monadic shallow linear first-order
fragment with straight dismatching constraints (2017). http://arxiv.org/abs/1703.
02837

21. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9 46

22. Weidenbach, C.: Towards an automatic analysis of security protocols in first-order
logic. CADE 1999. LNCS, vol. 1632, pp. 314–328. Springer, Heidelberg (1999).
doi:10.1007/3-540-48660-7 29

23. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663,
pp. 140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 10

http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-642-37651-1_10
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-28729-9_11
http://dx.doi.org/10.1007/978-3-540-71322-7_5
http://dx.doi.org/10.1007/978-3-642-14203-1_38
http://dx.doi.org/10.1007/978-3-319-24246-0_6
http://dx.doi.org/10.1007/978-3-319-24246-0_6
http://www.CEUR-WS.org
http://arxiv.org/abs/1703.02837
http://arxiv.org/abs/1703.02837
http://dx.doi.org/10.1007/978-3-319-08867-9_46
http://dx.doi.org/10.1007/3-540-48660-7_29
http://dx.doi.org/10.1007/978-3-642-02959-2_10

Efficient Certified RAT Verification

Lúıs Cruz-Filipe1(B), Marijn J.H. Heule2, Warren A. Hunt Jr.2,
Matt Kaufmann2, and Peter Schneider-Kamp1

1 Department of Mathematics and Computer Science,
University of Southern Denmark, Odense, Denmark

{lcf,petersk}@imada.sdu.dk
2 Department of Computer Science, The University of Texas at Austin, Austin, USA

{marijn,hunt,kaufmann}@cs.utexas.edu

Abstract. Clausal proofs have become a popular approach to validate
the results of SAT solvers. However, validating clausal proofs in the most
widely supported format (DRAT) is expensive even in highly optimized
implementations. We present a new format, called LRAT, which extends
the DRAT format with hints that facilitate a simple and fast validation
algorithm. Checking validity of LRAT proofs can be implemented using
trusted systems such as the languages supported by theorem provers. We
demonstrate this by implementing two certified LRAT checkers, one in
Coq and one in ACL2.

1 Introduction

Satisfiability (SAT) solvers are used in many applications in academia and indus-
try, for example to check the correctness of hardware and software [5,8,9]. A bug
in such a SAT solver could result in an invalid claim that some hardware or soft-
ware model is correct. In order to deal with this trust issue, we believe a SAT
solver should produce a proof of unsatisfiability [17]. In turn, this proof can
and should be validated with a trusted checker. In this paper we will present a
method and tools to do this efficiently.

Early work on proofs of unsatisfiability focused on resolution proofs [14,32].
In short, a resolution proof states how every new clause can be constructed
using resolution steps. Resolution proofs are easy to validate, but difficult and
costly to produce from today’s SAT solvers [19]. Moreover, several state-of-the-
art solvers use techniques, such as automated re-encoding [25] and symmetry
breaking [11,20], that go beyond resolution, and therefore cannot be expressed
using resolution proofs.

An alternative method is to produce clausal proofs [15,18,29], that is,
sequences of steps that each modify the current formula by specifying the deletion
of an existing clause or the addition of a new clause. Such proofs are supported
by all state-of-the-art SAT solvers [6]. The most widely supported clausal proof

Supported by the National Science Foundation under grant CCF-1526760 and by the
Danish Council for Independent Research, Natural Sciences, grant DFF-1323-00247.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 220–236, 2017.
DOI: 10.1007/978-3-319-63046-5 14

Efficient Certified RAT Verification 221

format is called DRAT [16], which is the format required by the recent SAT
competitions1. The DRAT proof format was designed to make it as easy as pos-
sible to produce proofs, in order to make it easy for implementations to support
it [31]. DRAT checkers increase the confidence in the correctness of unsatisfia-
bility results, but there is still room for improvement, i.e., by checking the result
using a highly-trusted system [10,22,28]. The only mechanically-verified check-
ers for DRAT [30] or RUP [14] are too slow for practical use. This holds for
certified SAT solving [7,26,27] as well.

Our tool chain works as follows. When a SAT solver produces a clausal proof
of unsatisfiability for a given formula, we validate this proof using a fast non-
certified proof checker, which then produces an optimized proof with hints. Then,
using a certified checker, we validate that the optimized proof is indeed a valid
proof for the original formula. We do not need to trust whether the original proof
is correct. In fact, the non-certified checker might even produce an optimized
proof from an incorrect proof: since our non-certified checker trims the proof
starting from the step that added the empty clause and chaining back through
the steps that are necessary to support that step, if the proof contains incorrect
steps that are not needed to support the addition of the empty clause, these will
be ignored.

Validating clausal proofs is potentially expensive [31]. For each clause addi-
tion step in a proof of unsatisfiability, unit clause propagation (explained below)
should result in a conflict when performed on the current formula, based on an
assignment obtained by negating the clause to be added. Thus, we may need
to propagate thousands of unit clauses to check the validity of a single clause
addition step. Scanning over the formula thousands of times for a single check
would be very expensive. This problem has been mitigated through the use of
watch pointers. However, validating clausal proofs is often costly even with watch
pointers.

In this paper we first present the new expressive proof format LRAT and
afterwards show that this proof format enables the development of efficient cer-
tified proof checkers. This work builds upon previous work of some of the co-
authors [12], as the LRAT format and the certified Coq checker presented here
extend the GRIT format and the certified Coq checker presented there, respec-
tively. Additionally, we implemented an efficient certified checker in the ACL2
theorem proving system, extending [30].

The LRAT format poses several restrictions on the syntax in order to make
validation as fast as possible. Each clause in the proof must be suitably sorted.
This allows a simple check that the clause does not contain duplicate or com-
plementary literals. Hints are also sorted in such a way that they become unit
from left to right. Finally, resolution candidates are sorted by increasing clause
index; this allows scanning the formula once.

This paper is structured as follows. In Sect. 2 we briefly recapitulate the
checking procedure for clausal proofs based on the DRAT format. The novel
LRAT format is introduced in Sect. 3. Section 4 presents an algorithm for

1 see http://satcompetition.org.

http://satcompetition.org

222 L. Cruz-Filipe et al.

verifying LRAT proofs, and discusses its worst-case complexity. We demonstrate
the benefits of LRAT by extracting two certified checkers for the format: one in
Coq (Sect. 5) and one in ACL2 (Sect. 6). We evaluate the checkers and the poten-
tial of LRAT in Sect. 7. Finally, we draw some conclusions in Sect. 8.

Related Work. Independent of our work, Peter Lammich has developed a new
format called GRAT and a certified checker based on Isabelle/HOL [23]. Both
GRAT and LRAT build on the ideas from [12] and enrich DRAT proofs in the
same way. As a consequence, there are now three different certified checkers for
enriched DRAT proofs based on three major theorem provers. While equivalent
from a theoretical standpoint, these checkers differ by tool chains, performance
characteristics, and the extents and contents of the trusted base.

2 Background on Clausal Proof Checking

Consider a formula, or set of clauses implicitly conjoined, where each clause
is a list of literals (Boolean proposition letters or their negations), implicitly
disjoined. Satisfiability (SAT) solvers decide the question of whether a given
formula is satisfiable, that is, true under some assignment of true and false values
to the Boolean proposition letters of the formula. A formula is unsatisfiable if
there is no assignment under which the formula is true.

Example 1. Consider the formula below, which we will use as a running example:

F =(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ ¬x2 ∨ x3) ∧ (x2 ∨ x3 ∨ ¬x4) ∧ (¬x2 ∨ ¬x3 ∨ x4) ∧
(¬x1 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ x4) ∧ (¬x1 ∨ x2 ∨ x4) ∧ (x1 ∨ ¬x2 ∨ ¬x4)

Each step in a clausal proof is either the addition or the deletion of a clause.
Each clause addition step should preserve satisfiability; this should be checkable
in polynomial time. The polynomial time checking procedure is described in
detail below. Clause deletion steps need not be checked, because they trivially
preserve satisfiability. The main reason to include clause deletion steps in proofs
is to reduce the computational and memory costs to validate proofs.

A clause with only one literal is called a unit clause. Unit clauses are used to
simplify CNF formulas via an algorithm called Unit Clause Propagation (UCP).
UCP works as follows: for each unit clause (l), all other clauses containing l
are removed from the formula, and all literal occurrences of l̄ are removed from
all clauses in the formula. Notice that this can result in new unit clauses. UCP
terminates when either no literals can be removed, or when it results in a conflict,
i.e., all literals in a clause have been removed.

If C is a clause, then C denotes its negation, which is a conjunction of all
negated literals in C. A clause C has the property Asymmetric Tautology (AT)
with respect to a CNF formula F iff UCP on F ∧ (C) results in a conflict. This
operational definition is also known as Reverse Unit Propagation (RUP). The
core property used in the DRAT format is Resolution Asymmetric Tautology
(RAT). A clause C has the RAT property with respect to a CNF formula F

Efficient Certified RAT Verification 223

if either it has the AT property, or there exists a literal l ∈ C (the pivot)
such that for all clauses D in F with ¬l ∈ D, the clause C ∨ (D \ {¬l}) has the
property AT with respect to F . In this case, C can be added to F while preserving
satisfiability. The proof of this last property is included in our formalization.

DRAT proof checking works as follows. Let F be the input formula and P
be the clausal proof. At each step i, the formula is modified. The initial state is:
F0 = F . At step i > 0, the ith line of P is read. If the line has the prefix d, then
the clause C described on that line is removed: Fi = Fi−1 \ {C}. Otherwise, if
there is no prefix, then C must have the RAT property with respect to formula
Fi−1. This must be validated. If the RAT property can be validated, then the
clause is added to the formula: Fi = Fi−1 ∧ C. If the validation fails, then the
proof is invalid.

The empty clause, typically at the end of the proof, should have the AT
property, as it does not have a first literal.

3 Introducing the LRAT Format

The Linear RAT (LRAT) proof format is based on the RAT property, and it
is designed to make proof checking as straightforward as possible. The purpose
of LRAT proofs is to facilitate the implementation of proof validation software
using highly trusted systems such as theorem provers. An LRAT proof can be
produced when checking a DRAT proof with a non-certified checker (cf. the end
of this section).2

The most costly operation during clausal proof validation is finding the unit
clauses during unit propagation. The GRIT format [12] removes this problem
by requiring proofs to include hints that list all unit clauses. This makes it
much easier and faster to validate proofs, because the checker no longer needs to
find the unit clauses. However, the GRIT format does not allow checking of all
possible clauses that can be learned by today’s SAT solvers and are expressible
in the DRAT format.

The LRAT format extends the GRIT format to remove this limitation, by
adding support for checking the addition of clauses justified by the non-trivial
case of the RAT property. For efficiency, the LRAT format requires that all
clauses containing the negated pivot be specified. Furthermore, for each resolvent
it has to be specified how to perform UCP, as is done for AT in the GRIT
approach. In addition, the pivot must be the first literal in the clause being
added.

While the LRAT format is semantically an extension of the GRIT format, we
updated two aspects. First, the clauses from the original CNF are not included,
as this required verification that these clauses do indeed occur in the original

2 DRAT proofs and LRAT proofs are syntactic objects that do not necessarily rep-
resent valid proofs. However, they are produced by tools that should only generate
objects that correspond to semantically valid proofs, so we adopt this terminology.
By “validating a DRAT/LRAT proof”, we mean verifying by independent means
that such an object indeed represents a valid proof.

224 L. Cruz-Filipe et al.

Fig. 1. A CNF formula and three similar proofs of unsatisfiability in the DRUP, GRIT
and LRAT format, respectively. Formula clauses are shown in normal font, deletion
information in italic, learned clauses underlined, and unit propagation information
doubly underlined. The proofs do not have clauses based on the RAT property. The
spacing shown aims to improve readability, but extra spacing does not effect the mean-
ing of a LRAT file.

CNF. The advantage of working only with a subset of clauses from the original
CNF can be achieved by starting with a deletion step for clauses not relevant for
the proof. Second, the syntax of the deletion information has been extended to
include a clause identifier. To be recognized, deletion statements are now iden-
tified with lines that start with an index followed by “d”. This change makes
the format stable under permutations of lines. In practice, checkers expect proof
statements in ascending order, which easily can be achieved by sorting the lines
numerically. Stability under permutation is useful, as non-certified checkers per-
forming backward analysis often output the steps in a different order than the
one needed. This property ensures that e.g. deletions are performed at the right
point of time.

To demonstrate these two changes, we first consider an example, which does
not require the RAT property. Figure 1 shows an original CNF, the DRUP proof
obtained by a SAT solver, the GRIT version of that proof, and, finally, the
equivalent LRAT proof.

To specify the addition of a clause justified by the RAT property, we extend
the format used for the AT property in GRIT. The line starts with the clause
identifier of the new clause followed by the 0-terminated new clause. The first
literal of the new clause is required to be the pivot literal. Next, for each clause
with clause identifier i containing the negated pivot, we specify the (negative)

Efficient Certified RAT Verification 225

Fig. 2. The LRAT format with the RAT property (with original clauses in normal font,
deletion information in italic, learned clauses underlined, unit propagation information
doubly underlined, and resolution clauses in bold).

integer −i followed by a (possibly empty) list of (positive) clause identifiers used
in UCP of the new clause with clause i.

For example, consider the first line of the LRAT proof in Fig. 2:

9 1 0 -2 6 8 -5 1 8 -7 6 1 0

The first number, 9 expresses that the new clause will get identifier 9. The
numbers in between the identifier and the first 0 are the literals in the clause.
In clause of clause 9 this is only literal 1. The first 0 is followed by the hints.
All hints are clause identifiers or their negations. Positive hints express that
the clause becomes unit or falsified. Negative hints express that the clause is a
candidate for a RAT check, i.e., it contains the complement of the pivot. In the
example line, there are three such negative hints: –2, –5, and –7. The LRAT
format prescribes that negative literals are listed in increasing order of their
absolute value.

After a negative hint, there may be positive hints that list the identifiers of
clauses that become unit and eventually falsified. For example, assigning false
to the literal in the new clause (1) and to the literals in the second clause apart
from the negated pivot (2 and -3) causes the sixth clause to become unit (4),
which in turn falsifies the eigth clause.

There are two extensions to this kind of simple RAT checking. (1) It is
possible that there are no positive hints following a negative hint. In this case, the
new clause and the candidate for a RAT check have two pairs of complementary
literals. (2) It is also possible that some positive hints are listed before the first
negative hint. In this case, these clauses (i.e., whose identifiers are listed) become
unit after assigning the literals in the new clause to false.

The full syntax of the LRAT format is given by the grammar in Fig. 3,
where, for the sake of sanity, whitespace (tabs and spaces) is ignored. Note that,

226 L. Cruz-Filipe et al.

Fig. 3. EBNF grammar for the LRAT format.

syntactically, AT and RAT lines are both covered by RAT lines. AT is just the
special case where there is a non-empty list of only positive hints.

Producing LRAT proofs directly from SAT solvers would add significant
overhead both in runtime and memory usage, and it might require the addition
of complicated code. Instead, we extended the DRAT-trim proof checker [16]
to emit LRAT proofs. DRAT-trim already supported the emitting of optimized
proofs in the DRAT and TraceCheck+ formats. DRAT-trim emits an LRAT
proof after validation of a proof using the “-L proof.lrat” option.

We implemented an uncertified checker for LRAT in C that achieves runtimes
comparable to the one from [12] on proofs without RAT lines.

4 Verifying LRAT Proofs

We now discuss how to check an LRAT proof. The algorithm we present takes
as input a formula in CNF and an LRAT proof, and returns:

– YES, indicating that the proof has successfully been checked, and a new CNF,
which is satisfiable if the input CNF was satisfiable;

– or NO, indicating that the proof could not be checked.

We are thus able both to check unsatisfiability (if the formula returned in the first
case contains the empty clause) and addition of clauses preserving satisfiability.

The algorithm assumes a CNF to be a finite map from a set of positive
integers to clauses. We write Ci for the clause with index i. The main step is
checking individual RAT steps, which is done by Algorithm check rat. We use
the notation ˜i to denote a list [i1, . . . , in].

Lines 4–10 perform UCP on ϕ∧Cj using the clauses referred to by i01, . . . , i
0
n.

If the empty clause is derived at some stage, then Cj has the AT property w.r.t.
ϕ. Otherwise, we store the extended clause C and let p be its first element
(line 12). We then check that this clause has the RAT property: we go through
all clauses in ϕ; lines 14 and 15 deal with the trivial cases, while lines 18–24 again
perform UCP to show that C ′ has the AT property. If the algorithm terminates

Efficient Certified RAT Verification 227

Algorithm 1. Checking a single RAT step
1: procedure check rat(ϕ, �) � ϕ = {Ci}i∈I is a CNF, � is a RAT step

2: parse � as
[
j, Cj , 0, ĩ0, {−ik, ĩk}n

k=1

]

3: � instantiate all variables as (vectors of) positive integers
4: C ← Cj � recall that clauses are lists of literals

5: for all i ∈ ĩ0 do
6: C′

i ← Ci \ C
7: if C′

i = ∅ then return YES

8: if |C′
i| ≥ 2 then return NO

9: C ← C++C̄′
i � we use ++ for append

10: end for
11: if C = ∅ then return NO

12: p ← (C)1
13: for all i ∈ I do
14: if Ci does not contain p̄ then skip
15: if Ci and C contain dual literals aside from p and p̄ then skip
16: find j such that ij = i (from �)
17: if no such j exists then return NO

18: C′ ← C++(Ci \ {p̄})

19: for all m ∈ ĩj do
20: C′

m ← Cm \ C′

21: if C′
m = ∅ then skip to next iteration of line 14

22: if |C′
m| ≥ 2 then return NO

23: C′ ← C′++C̄′
m

24: end for
25: return NO

26: end for
27: return YES

28: end procedure

Algorithm 2. Checking an LRAT proof
1: procedure check lrat(ϕ, p) � ϕ = {Ci}i∈I is a CNF, p is an LRAT proof
2: for all lines � of p do
3: if � can be parsed as 〈delete〉 then
4: remove all clauses Ci with i ∈ 〈idlist〉 from ϕ
5: end if
6: if � can be parsed as 〈rat〉 then � � is

[
j, Cj , 0, ĩ0, {−ik, ĩk}n

k=1

]

7: call check rat(ϕ,�)
8: if the result is YES, then add Cj to ϕ
9: if the result is NO, then return NO

10: else
11: return NO

12: end if
13: end for
14: return YES and ϕ
15: end procedure

228 L. Cruz-Filipe et al.

and returns YES, we have successfully verified that Cj satisfies the RAT property
with respect to ϕ.

Algorithm check lrat verifies an LRAT proof by giving each line denoting
a RAT step to Algorithm check rat.

Lemma 1 (Termination). Algorithm check lrat always terminates.

Proof. Straightforward, as all cycles in both algorithms are for loops.

Theorem 1 (Soundness). If the result of running check lrat on ϕ and an
LRAT proof is YES and ϕ′, then: (i) all the steps in the LRAT proof are valid,
and (ii) if ϕ is satisfiable, then ϕ′ is also satisfiable.

We skip the proof of this theorem, as this algorithm has been directly translated
to ACL2 and proved sound therein (Sect. 6).

We now discuss the complexity of these algorithms. We assume efficient data
structures, so that e.g. finding an element in a collection can be done in time
logarithmic in the number of elements in the collection. In particular, literals
in clauses are ordered, and we have constant-time access to any position in a
clause. The main challenge is analysing the complexity of a single RAT check.

Lemma 2. Algorithm check rat runs in time

O (|I| · |�| · (log |I| + c · log(max(c, |�|)))) ,

where c is the number of literals in the longest clause in ϕ and |�| is the length
of the input line.

Proof. Lines 4, 11, 12 and 27 can obviously be done in constant time, while line 2
can be done in time linear in |�|. Furthermore, the loop in lines 5–10 is the same
as that in lines 19–24 (starting with |C| ≤ |C ′|), so the worst-case asymptotic
complexity of the whole algorithm is that of the loop in lines 13–26.

When reaching line 13, |C| ≤ |�|: each literal in C comes either from Cj

(which is part of �) or from one iteration of the loop in lines 5–10, whose hint is
obtained from �. Similarly, |C ′| ≤ c + |�| throughout the whole cycle: its literals
come either from Ci ∈ ϕ, from C, or from an iteration of the loop in lines 19–24,
whose hint is in a different part of � than that used to build C.

Line 14 requires looking for a literal in Ci, which can be done in time O(log c).
Line 15 requires looking for |Ci| literals in C, which can be done in time O(c ·
log(|�|)). Line 16 requires finding an index in the data structure generated from
� in line 2, which can be done in time O(log |�|). Lines 17, 18 and 25 can be done
in constant time.

We now analyze the loop in lines 19–24, observing that it is executed at
most |�| times. The loop begins by retrieving Cm from ϕ, which can be done
in time O(log |I|) if we assume CNFs to be stored e.g. in a binary tree. Line
20 then removes all elements of C ′ from Cm, which can be done efficiently by
going through Cm and checking whether each element is in C ′; this has a global
complexity of O(c · log(c + |�|)). (Note that, in the successful case – the one we

Efficient Certified RAT Verification 229

are interested in – the result is always the empty clause or a single literal.) All
the remaining lines can be done in constant time, so the total time required by
the loop in lines 19–24 is O(|�|(log |I| + c · log(c + |�|))).

Since the loop in lines 13–26 is executed |I| times, the total time for the
whole algorithm is thus

O (|I| · (log c + c · log |�| + log |�| + |�|(log |I| + c · log(c + |�|)))) .

Since both log c and log |�| are bounded by log(c + |�|), we can replace log c + c ·
log(c + |�|) + log |�| by (c + 2) log(c + |�|), obtaining

O (|I| · ((c + 2) · log(c + |�|) + |�|(log |I| + c · log(c + |�|))))

which we can simplify to

O (|I| · (|�| log |I| + (|�| + 2) · c · log(c + |�|))))

or, equivalently,
O (|I| · |�| · (log |I| + c · log(c + |�|))))

since |�| and |�| + 2 are asymptotically equivalent. Observing that log(c + |�|) ≤
log(2(max(c, |�|))) = log(2) + log(max(c, |�|)) yields the bound in the lemma.

Theorem 2 (Complexity). The complexity of checking an LRAT proof is

O (n · (|I| + n) · l (log(|I| + n) + k · log k))

where n is the number of lines in the DRAT proof, l is the length of the longest
line in the proof, I and c are as before, and k = max(c, l).

Proof. The bound follows from observing that the loop in Algorithm
check lrat is executed n times (in case of success); in the worst case, all
steps are RAT steps, adding one clause to ϕ (hence the increase in |I| to |I|+n)
and potentially making the size of the longest clause in ϕ increase to l (hence
raising the multiplicative factor from c to k in the rightmost logarithmic term).

We make some observations. If we allow only the lengths of the proof n
to grow while keeping all other parameters fixed, the asymptotic complexity
of check lrat is O(n2 log n). Similarly, if we compare proofs of the same
length but consider variations of the length of the clauses in the original CNF,
the asymptotic complexity is O(c log c). In practice, we observe that algorithm
check rat typically terminates in line 7; in these cases, the bound in Lemma 2
can be improved to O(|�| · (log |I| + c log c)).

5 Checking LRAT Proofs in Coq

Our development of a verifier of LRAT proofs in Coq does not follow Algo-
rithm check lrat directly. This is due to the fact that we had previously

230 L. Cruz-Filipe et al.

developed a certified checker for GRIT proofs [12], by extracting an OCaml pro-
gram from a Coq formalization, and we opted for extending this construction.
In particular, the addition of clauses justified by AT (where check rat returns
YES in line 7) is verified using the original checker.

The complexity of checking the RAT property in our development is better
than the theoretical upper bound, because we preprocess the LRAT proof and
add additional information to bypass line 15 when it fails. (This preprocessing
amounts to checking the proof with an untrusted verifier, so the overall com-
plexity including this line is still that of Theorem 2.) The rationale for this
preprocessing is that there is a big overhead in using extracted data structures
(see [24]), which means that, even if the overall complexity of the extracted
checker is optimal, there are large constants that slow down the checker’s per-
formance in practice. We work with a pure extracted program, where all data
structures are extracted from their Coq formalizations.3 This means, in particu-
lar, that we do not have lists with direct access. Thus, clauses are represented as
binary search trees, which allows most of the operations to have optimal com-
plexity; the exception is the addition in lines 9, 18 and 23, which takes time
logarithmic in the size of the original clause, but which is dominated by other
steps in the corresponding cycles.

Our experiments show that, with the optimizations enabled by preprocessing,
this checker is fast enough to be used in the largest instances available.

The development of the checker in [12] is modular, with different functions
that verify each type of line in a GRIT proof. We thus extended this set of
functions with a function RAT check that verifies RAT lines. This function imple-
ments a modified variant of Algorithm check rat: the enriched proof indicates
whether we should execute line 15 (and if so, it tells us which literal to look
for). Its soundness theorem states that, if the check succeeds, then the clause
given can be added to the CNF preserving satisfiability. The term c is the given
CNF, while the clause Cj is pivot::cl (so the pivot is already singled out), and
L contains the remaining information in the line justifying the RAT step.

Theorem RAT_theorem : ∀ c pivot cl L, RAT_check c pivot cl L = true →
∀ V, satisfies V c →
∃ V, satisfies V (CNF_add (pivot::cl) c).

(For readibility, we omit type injections from the Coq listings.)
We then enrich the overall loop to include the case where the proof includes

RAT lines, and reprove the correctness of the main function refute from [12],
whose task it is to prove unsatisfiability of a given formula. Its arguments are
only the CNF c (given as a list of pairs index/clause) and the preprocessed LRAT
proof (whose type is formalized as Oracle).

Theorem refute_correct : ∀ (c:list (ad ∗ Clause)) (O:Oracle),
refute c O = true → unsat c.

3 With the exception of integers, which are only used as labels and therefore can be
extracted to a native type without compromising soundness of the extracted code.

Efficient Certified RAT Verification 231

By extracting refute, we again obtain a correct-by-construction checker for
proofs of unsatisfiability using the full LRAT format. If this checker returns
true when given a particular CNF and proof, this guarantees that the CNF is
indeed unsatisfiable. The universal quantification over the oracle ensures that
any errors in its implementation (and in particular in the interface connecting
it to the checker) do not affect the correctness of this answer.

Satisfiability-preserving addition of clauses. Algorithm check lrat is formu-
lated not in terms of unsatisfiability, but of preservation of satisfiability – with
unsatisfiability being a particular case where the empty clause is added. In order
to provide this functionality, we tweaked our checker to return a pair consisting
of a boolean value and a CNF. In the base case (when the input proof is empty),
the checker now returns true (instead of false) together with the CNF currently
stored. If the empty clause is derived at some point, the checker still returns true

as before, but now together with a CNF containing only the empty clause. If
any step fails, we return false and also provide the formula currently stored
(which results from applying the longest initial segment of the LRAT proof that
is verifiable); otherwise we proceed as before.

With these changes, we can still verify unsatisfiability as before, but we can
also provide a target CNF and check that the oracle provides a correct reduction
from the initial CNF to the target. Function enrich offers this new functionality.

Theorem enrich_correct : ∀ (c c':list (ad ∗ Clause)) (O:Oracle),
enrich c c' O = true → ICNF_reduces c c'.

(The predicate ICNF reduces states that any valuation satisfying c can be used
to construct a valuation satisfying c’.)

Results. After adapting the interface to be able to transform proofs in the full
LRAT format into the oracle syntax defined above, we tested the extracted
checker on 225 unsatisfiability proofs output by SAT solvers supporting RAT
proofs. See Sect. 7 for further details.

We also used the possibility of adding new clauses to check the transformation
proof from [21], the only SAT-related step in the original proof of the Boolean
Pythagorean Triples problem that we were unable to verify in [12]. The certified
LRAT checker in Coq was able to verify this proof in 8 minutes and 25 s, including
approx. 15 s for checking that the formula generated by the proof coincides with
the formula produced by the original SAT solver.

6 LRAT Checker in ACL2

In this section, in order to demonstrate the general applicability of our approach,
we extended the original ACL2-based DRAT checker [30] to permit the checking
of UNSAT proofs in the LRAT format. We have certified this extension using
the ACL2 theorem-proving system.

232 L. Cruz-Filipe et al.

We outline our formalization below using the Lisp-style ACL2 syntax, with
comments to assist readers unfamiliar with Lisp syntax. Note that embedded
comments begin with a “;” character and continue to the end of a line.

We omit the code here but note that it has been optimized for efficiency.
In particular, applicative hash tables represent formulas, and are heuristically
cleaned on occasion after deletion; and mutable objects [2] are used for assign-
ments. These techniques reduce the complexity substantially. Of course, correct-
ness of such optimizations was necessarily proved as part of the overall correct-
ness proof. The code and top-level theorem are available from the top-level file
top.lisp in the full proof development [4], included in the GitHub repository [3]
that holds ACL2 and its libraries. Also see the README file in that directory. Here
we focus primarily on the statement of correctness.

The top-level correctness theorem is as follows.

(defthm main-theorem

(implies

(and (formula-p formula) ; Valid formula and

(refutation-p proof formula)) ; Valid proof with empty clause

(not (satisfiable formula)))) ; Imply unsatisfiable

The command defthm is an ACL2 system command that demands that the
ACL2 theorem-proving system establish the validity of the claim that follows
the name (in this case main-theorem) of the theorem to be checked.

The theorem above is expressed in terms of the three functions formula-p,
refutation-p, and satisfiable. The first of these recognizes structures that
represent sets of clauses; our particular representation uses applicative hash
tables [1]. The function refutation-p recognizes valid proofs that yield a con-
tradiction; thus, it calls other functions, including one that performs the neces-
sary RAT checks. We verify an alleged proof by checking that each of its steps
preserves satisfiability.

Finally, we define satisfiable to mean that there exists an assignment
satisfying a given formula. The first definition says that the given assignment
satisfies the given formula, while the second uses an existential quantifier to say
that some assignment satisfies the given formula.

(defun solution-p (assignment formula)
(and (clause-or-assignment-p assignment)

(formula-truep formula assignment)))

(defun-sk satisfiable (formula)
(exists assignment (solution-p assignment formula)))

Before our SAT proof checker can be called, an LRAT-style proof is read
from a file, and during the reading process it is converted into an internal Lisp
format that is used by our checker. Using the ACL2 theorem prover, we have
verified the theorem main-theorem above, which states that our code correctly
checks the validity of a proof of the empty clause.

Efficient Certified RAT Verification 233

Results. The ACL2 checker is able to check the validity of adding each of the
68,667 clauses in the transformation proof from [21] in less than 9 s. The cer-
tified checking of this LRAT proof is almost as fast as non-certified checking
and conversion of the DRAT proof into the LRAT proof by DRAT-trim. This
is a testament to the efficiency potential of the LRAT format in particular, and
the approach taken in our work in general. At the moment of writing, the cor-
respondence between the formula generated by the original SAT solver and by
executing the proof has not been ported yet to the ACL2 checker, but this can
easily be added in a similar way as we did for the Coq checker.

7 Experimental Evaluation

In order to evaluate the potential of the LRAT format, we performed extensive
experiments on benchmarks from the 2016 SAT competition and the 2015 SAT
race. The set of instances we considered consists of the 241 instances from the
main and parallel tracks that could be shown to be UNSAT within 5,000 s using
the 2016 competition version of CryptoMiniSat v5 [13]. (CryptoMiniSat was the
only solver from this competition where we were able to obtain a non-trivial
number of RAT lines in most proofs.) All experiments were performed on iden-
tical nodes equipped with dual Intel Xeon E5-2680v3 running at 2.50 GHz with
64 GByte RAM on CentOS with a 3.10.0 Linux kernel.

For each of these instances, the original CNF and proof were first trimmed
and optimized and then output in LRAT using drat-trim in backward check-
ing mode. A total of 225 out the 241 instances could be successfully processed
by drat-trim within 20,000 s. Out of the remaining 16 instances, 12 timed out,
3 resulted in a segmentation fault and 1 proof could not be verified. In total
there were 381,468,814 lines in the 225 proofs totalling 250 GByte, out of which
3,260,037 were non-trivial RAT lines.

The Coq checker verified 161 out of these 225 instances within a maximum
runtime of 24 h. For the remaining 64 instances, it timed out (59), ran out of
memory (1), or determined that the proof was invalid (4). The 161 verified proofs
amount to a total of 88 GByte and were processed in just under 3 weeks of CPU
time, or in other words at an average speed of 3 MByte per minute.

The ACL2 checker verified 212 out of the 225 instances within a maximum
runtime of 6,708 s, typically being at least an order of magnitude faster than
the Coq checker. For the remaining 13 instances, it ran out of memory (1),
terminated unexpectedly4 (1), or determined that the proofs were invalid (11).
The 212 verified proofs amount to a total of 205 GByte and were processed in
just under 17 h of CPU time, or in other words at an average speed of 207 MByte
per minute.

The alleged LRAT proofs for the 11 instances where verification using the
ACL2 checker failed range in size from 50 MByte to 6.4 GByte. The Coq checker

4 Termination seems to occur due to an error condition of the underlying LISP runtime
system (CCL) used, and could not be reproduced using another system (SBCL).

234 L. Cruz-Filipe et al.

either agrees with the result (7) or times out (4). We then inspected the smallest
alleged proofs by hand and found that they indeed are not valid LRAT proofs.

Given the size of the proofs involved, determining the reason for a failed
verification is definitely a challenge. When the non-certified checker claims that
it successfully verified the proof, but outputs an LRAT proof that cannot be
verified by the certified checker, it seems reasonable to assume that at least the
non-certified checker has bugs. This is because the non-certified checker does
not only transform the proof from one format into another, but also checks the
individual steps.

To summarize the experiments, both certified checkers have been found to
be able to verify LRAT proofs of up to several GByte within reasonable com-
putational resources. The input data, the executables, and instructions how to
rerun the experiments are available from: http://imada.sdu.dk/∼petersk/lrat/

8 Conclusions

We have introduced a novel format for clausal proof checking, Linear RAT
(LRAT), which extends the GRIT format [12] to support checking all techniques
used in state-of-the-art SAT solvers. We have shown that it allows for implement-
ing efficient certified proof checkers for UNSAT proofs with the RAT property,
both using Coq and using ACL2. The ACL2 LRAT checker is almost as fast as
— and in some cases even faster than — non-certified checking by DRAT-trim
of the corresponding DRAT proof. This suggests that certified checking can be
achieved with a reasonable overhead.

Furthermore, we have shown that our Coq checker’s ability to check trans-
formation proofs has allowed us to check the transformation proof from [21], the
only SAT-related step in the original proof of the Boolean Pythagorean Triples
problem that we were unable to verify in [12].

References

1. ACL2 Community. ACL2 documentation topic: FAST-ALISTS. http://www.
cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2
FAST-ALISTS

2. ACL2 Community. ACL2 documentation topic: STOBJ. http://www.cs.utexas.
edu/users/moore/acl2/v7-2/manual/?topic=ACL2 STOBJ

3. ACL2 Community. ACL2 system and libraries on GitHub. https://github.com/
acl2/acl2/

4. ACL2 LRAT checker. https://github.com/acl2/acl2/tree/master/books/projects/
sat/lrat/

5. Ivančić, F., Yang, Z., Ganai, M.K., Gupta, A., Ashar, P.: Efficient SAT-based
bounded model checking for software verification. Theoretical Computer Science
404(3), 256–274 (2008)

6. Balyo, T., Heule, M.J.H., Järvisalo, M.: Sat competition 2016: Recent develop-
ments. In: AAAI 2017 (2017)

http://imada.sdu.dk/~petersk/lrat/
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/current/manual/index.html?topic=ACL2____FAST-ALISTS
http://www.cs.utexas.edu/users/moore/acl2/v7-2/manual/?topic=ACL2____STOBJ
http://www.cs.utexas.edu/users/moore/acl2/v7-2/manual/?topic=ACL2____STOBJ
https://github.com/acl2/acl2/
https://github.com/acl2/acl2/
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/
https://github.com/acl2/acl2/tree/master/books/projects/sat/lrat/

Efficient Certified RAT Verification 235

7. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 25–44. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 4

8. Clarke, E.M., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satis-
fiability solving. Formal Methods Syst. Des. 19(1), 7–34 (2001)

9. Copty, F., Fix, L., Fraer, R., Giunchiglia, E., Kamhi, G., Tacchella, A., Vardi,
M.Y.: Benefits of bounded model checking at an industrial setting. In: Berry, G.,
Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, pp. 436–453. Springer,
Heidelberg (2001). doi:10.1007/3-540-44585-4 43

10. The Coq proof assistant. https://coq.inria.fr/
11. Crawford, J., Ginsberg, M., Luks, E., Roy, A.: Symmetry-breaking predicates for

search problems. In: KRÕ 1996, pp. 148–159. Morgan Kaufmann (1996)
12. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution

proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 118–135. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5 7

13. Cryptominisat v5. http://baldur.iti.kit.edu/sat-competition-2016/solvers/main/
cmsat5 main2.zip

14. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solv-
ing through verified SAT proof checking. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14808-8 18

15. Goldberg, E.I., Novikov, Y.: Verification of proofs of unsatisfiability for CNF for-
mulas. In: DATE, pp. 10886–10891 (2003)

16. Heule, M.J.H.: The DRAT format and DRAT-trim checker. CoRR, abs/1610.06229
(2016). Source code, https://github.com/marijnheule/drat-trim

17. Heule, M.J.H., Biere, A.: Proofs for satisfiability problems. In: All about Proofs,
Proofs for All (APPA), July 2014. http://www.easychair.org/smart-program/
VSL2014/APPA-index.html

18. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Trimming while checking clausal
proofs. In: FMCAD, pp. 181–188 (2013)

19. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Bridging the gap between easy
generation and efficient verification of unsatisfiability proofs. Softw. Test., Verif.
Reliab. 24(8), 593–607 (2014)

20. Heule, M.J.H., Hunt Jr., W.A., Wetzler, N.D.: Expressing symmetry breaking in
DRAT proofs. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI),
vol. 9195, pp. 591–606. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 40

21. Heule, M.J.H., Kullmann, O., Marek, V.W.: Solving and verifying the boolean
pythagorean triples problem via cube-and-conquer. In: Creignou, N., Le Berre, D.
(eds.) SAT 2016. LNCS, vol. 9710, pp. 228–245. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 15

22. Kaufmann, M., Moore, J S.: An industrial strength theorem prover for a logic
based on common LISP. IEEE Trans. Softw. Eng. 23(4), 203–213 (1997)

23. Lammich, P.: Efficient verified (UN)SAT certificate checking. In: CADE-26. LNCS.
Springer (to appear, 2017)

24. Letouzey, P.: Extraction in Coq: an overview. In: Beckmann, A., Dimitracopoulos,
C., Löwe, B. (eds.) CiE 2008. LNCS, vol. 5028, pp. 359–369. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-69407-6 39

25. Manthey, N., Heule, M.J.H., Biere, A.: Automated reencoding of boolean formulas.
In: Biere, A., Nahir, A., Vos, T. (eds.) HVC 2012. LNCS, vol. 7857, pp. 102–117.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39611-3 14

http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://dx.doi.org/10.1007/3-540-44585-4_43
https://coq.inria.fr/
http://dx.doi.org/10.1007/978-3-662-54577-5_7
http://baldur.iti.kit.edu/sat-competition-2016/solvers/main/cmsat5_main2.zip
http://baldur.iti.kit.edu/sat-competition-2016/solvers/main/cmsat5_main2.zip
http://dx.doi.org/10.1007/978-3-642-14808-8_18
https://github.com/marijnheule/drat-trim
http://www.easychair.org/smart-program/VSL2014/APPA-index.html
http://www.easychair.org/smart-program/VSL2014/APPA-index.html
http://dx.doi.org/10.1007/978-3-319-21401-6_40
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-319-40970-2_15
http://dx.doi.org/10.1007/978-3-540-69407-6_39
http://dx.doi.org/10.1007/978-3-642-39611-3_14

236 L. Cruz-Filipe et al.

26. Maric, F.: Formal verification of a modern SAT solver by shallow embedding into
Isabelle/HOL. Theor. Comput. Sci. 411(50), 4333–4356 (2010)

27. Maric, F., Janicic, P.: Formalization of abstract state transition systems for SAT.
Logical Methods in Comput. Sci. 7(3) (2011)

28. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

29. Van Gelder, A.: Producing and verifying extremely large propositional refutations
- have your cake and eat it too. Ann. Math. Artif. Intell. 65(4), 329–372 (2012)

30. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: Mechanical verification of SAT
refutations with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39634-2 18

31. Wetzler, N.D., Heule, M.J.H., Hunt Jr., W.A.: DRAT-trim: efficient checking
and trimming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.)
SAT 2014. LNCS, vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/
978-3-319-09284-3 31

32. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based
checker: Practical implementations and other applications. In: DATE, pp. 10880–
10885 (2003)

http://dx.doi.org/10.1007/978-3-642-39634-2_18
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-319-09284-3_31

Efficient Verified (UN)SAT Certificate Checking

Peter Lammich(B)

Technische Universität München, Munich, Germany
lammich@in.tum.de

Abstract. We present an efficient formally verified checker for satisfia-
bility and unsatisfiability certificates for Boolean formulas in conjunctive
normal form. It utilizes a two phase approach: Starting from a DRAT cer-
tificate, the unverified generator computes an enriched certificate, which
is checked against the original formula by the verified checker.

Using the Isabelle/HOL Refinement Framework, we verify the actual
implementation of the checker, specifying the semantics of the formula
down to the integer sequence that represents it.

On a realistic benchmark suite drawn from the 2016 SAT competition,
our approach is more than two times faster than the unverified standard
tool drat-trim. Additionally, we implemented a multi-threaded version
of the generator, which further reduces the runtime.

1 Introduction

Modern SAT solvers are highly optimized and use complex algorithms and
heuristics. This makes them prone to bugs. Given that SAT solvers are used
in software and hardware verification, a single bug in a SAT solver may invali-
date the verification of many systems.

One measure to increase the trust in SAT solvers is to make them output a
certificate, which is used to check the result of the solver by a simpler algorithm.
Most SAT solvers support the output of a satisfying valuation of the variables as
an easily checkable certificate for satisfiability. Certificates for unsatisfiability are
more complicated, and different formats have been proposed (e. g. [39,41,42]).
Since 2013, the SAT competition [35] requires solvers to output unsat certificates.
Since 2014, only certificates in the DRAT format [42] are accepted [36].

The standard tool to check DRAT certificates is drat-trim [10,42]. It is a
highly optimized C program with many features, including forward and back-
ward checking mode, a satisfiability certificate checking mode, and a feature to
output reduced (trimmed) certificates. However, the high degree of optimiza-
tion and the wealth of features come at the price of code complexity, increas-
ing the likelihood of bugs. And indeed, during our formalization of the RAT
property, we realized that drat-trim was missing a crucial check, thus accept-
ing (maliciously engineered) unsat certificates for satisfiable formulas. This bug
has been confirmed by the authors, and is now fixed. Moreover, we discovered
several numeric and buffer overflow issues in the parser [11], which could lead
to misinterpretation of the formula. Thus, although being less complex than
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 237–254, 2017.
DOI: 10.1007/978-3-319-63046-5 15

238 P. Lammich

SAT solvers, efficient DRAT checkers are still complex enough to easily overlook
bugs.1

One method to eliminate bugs from software is to conduct a machine-checked
correctness proof. A common approach is to prove correct a specification in the
logic of an interactive theorem prover, and then generate executable code from
the specification. Here, code generation is merely a syntax transformation from
the executable fragment of the theorem prover’s logic to the target language.
Following the LCF approach [14], modern theorem provers like Isabelle [34] and
Coq [3] are explicitly designed to maximize their trustworthiness. Unfortunately,
the algorithms and low-level optimizations required for efficient unsat certificate
checking are hard to verify and existing approaches (e. g. [8,41]) do not scale to
large problems.

While working on the verification of an efficient DRAT checker, the author
learned about GRIT, proposed by Cruz-Filipe et al. [7]: They use a modified
version of drat-trim to generate an enriched certificate from the original DRAT
certificate. The crucial idea is to record the required unit propagations, such that
the checker of the enriched certificate only needs to implement a check whether
a clause is unit, instead of a fully fledged unit propagation algorithm.

Cruz-Filipe et al. formalize a checker for their enriched certificates in the Coq
theorem prover [3], and generate OCaml code from the formalization. However,
their current approach still has some deficits: GRIT only supports the less pow-
erful DRUP fragment [41] of DRAT, making it unsuitable for recent SAT solvers
that output full DRAT (e. g. CryptoMiniSat, Riss6 [37]). Also, their checker
does not consider the original formula, but assumes that the certificate correctly
mirrors the formula. Moreover, they use unverified code to parse the certificate
into the internal data structures of the checker. Finally, their verified checker
is quite slow: Checking a certificate requires roughly the same time as gener-
ating it, which effectively doubles the verification time. However, an unverified
implementation of their checker in C is two orders of magnitude faster.

In this paper, we present enriched certificates for full DRAT, along with
a checker whose correctness is formally verified down to the integer sequence
representing the formula. The simple unverified parser that reads a formula into
an integer array is written in Standard ML [30], which guarantees that numeric
and buffer overflows will not go unnoticed.

We use stepwise refinement techniques to obtain an efficient verified checker,
and implement aggressive optimizations in the generator. As a result, our tool
chain (generation plus checking) is more than two times faster than drat-trim,
with the additional benefit of providing strong formal correctness guarantees.
Another distinguishing is a multi-threaded mode for the generator, which allows
us to trade hardware resources for additional speedup: With 8 threads, our tool
chain verifies a DRAT-certificate seven times (on average) faster than drat-trim.

1 Unfortunately, the available version history of drat-trim [9] only dates back to
October 2016. We can only speculate whether the discovered bugs were present
in the versions used for the 2014 and 2016 SAT competitions.

Efficient Verified (UN)SAT Certificate Checking 239

Building on the technology of our verified unsat certificate checker, we also
provide a verified sat certificate checker, obtaining a complete, formally veri-
fied, and fast SAT solver certification tool chain. Our tools, formalizations, and
benchmark results are available online [20].

Independently to us, Cruz-Filipe et al. also extended their work to DRAT [6].
Their certificate generator is still based on drat-trim, and first benchmarks indi-
cate that our approach might be significantly faster.2

The rest of this paper is organized as follows: After briefly recalling the the-
ory of DRAT certificates (Sect. 2), we introduce our enriched certificate format
(Sect. 3). We then give a short overview of the Isabelle Refinement Framework
(Sect. 4) and describe its application to verifying our certificate checker (Sect. 5).
The paper ends with a brief description of our certificate generator (Sect. 6) and
a report on the experimental evaluation of our tools (Sect. 7).

2 Unsatisfiability Certificates

We briefly recall the theory of DRAT unsatisfiability certificates. Let V be a
set of variable names. The set of literals is defined as L := V ∪̇{¬v | v ∈ V }.
We identify v and ¬¬v. Let F = C1 ∧ . . . ∧ Cn for Ci ∈ 2L be a formula in
conjunctive normal form (CNF). F is satisfied by an assignment A : V ⇒ bool
iff instantiating the variables in F with A yields a true (ground) formula. We
call F satisfiable iff there exists an assignment that satisfies F .

A clause C is called a tautology iff there is a variable v with {v,¬v} ⊆ C.
Removing a tautology from a formula yields an equivalent formula. In the fol-
lowing we assume that formulas do not contain tautologies. The empty clause is
called a conflict. A formula that contains a conflict is unsatisfiable. A singleton
clause {l} ∈ F is called a unit clause. Removing all clauses that contain l, and all
literals ¬l from F yields an equisatisfiable formula. Repeating this exhaustively
for all unit clauses is called unit propagation. When identifying formulas that
contain a conflict, unit propagation is strongly normalizing. We name the result
of unit propagation F u, defining F u = {∅} if unit propagation yields a conflict.

A DRAT certificate χ = χ1 . . . χn with χi ∈ 2L ∪̇ {dC | C ∈ 2L} is a list of
clause addition and deletion items. The effect of a (prefix of) a DRAT certificate
is to add/delete the specified clauses to/from the original formula F0, and apply
unit propagation:

eff(ε) = (F0)u eff(χC) = (eff(χ) ∧ C)u eff(χdC) = eff(χ) \ C

where F \ C removes one occurrence of clause C from F . We call the clause
addition items of a DRAT certificate lemmas.

A DRAT certificate χ = χ1 . . . χn is valid iff eff(χ) = {∅} and each lemma
has the RAT property wrt. the effect of the previous items:

valid(χ1 . . . χn) := ∀1 ≤ i ≤ n. χi ∈ 2L =⇒ RAT(eff(χ1 . . . χi−1), χi)

2 However, we expect that most of our optimizations can be transferred to their tools.

240 P. Lammich

where a clause C has the RAT (resolution asymmetric tautology) property wrt.
formula F (we write RAT(F,C)) iff either C is empty and F u = {∅}, or if there
is a pivot literal l ∈ C, such that for all RAT candidates D ∈ F with ¬l ∈ D,
we have (F ∧¬(C ∪D \ {¬l}))u = {∅}. Adding a lemma with the RAT property
to a formula preserves satisfiability, and so do unit propagation and deletion of
clauses. Thus, existence of a valid DRAT certificate implies unsatisfiability of
the original formula.

A strictly weaker property than RAT is RUP (reverse unit propagation): A
lemma C has the RUP property wrt. formula F iff (F ∧ ¬C)u = {∅}. Adding a
lemma with the RUP property yields an equivalent formula. The predecessor of
DRAT is DRUP [18], which admits only lemmas with the RUP property.

Checking a lemma for RAT is much more expensive than checking for RUP,
as the clause database must be searched for candidate clauses, performing a
unit propagation for each of them. Thus, practical DRAT certificate checkers
first perform a RUP check on a lemma, and only if this fails they resort to a full
RAT check. Exploiting that (F ∧¬(C ∪D))u is equivalent to ((F ∧¬C)u ∧¬D)u,
the result of the initial unit propagation from the RUP check can even be reused.
Another important optimization is backward checking [13,18]: The lemmas are
processed in reverse order, marking the lemmas that are actually needed in unit
propagations during RUP and RAT checks. Lemmas that remain unmarked need
not be processed at all. To further reduce the number of marked lemmas, core-
first unit propagation [42] prefers marked unit clauses over unmarked ones.

In practice, DRAT certificate checkers spend most time on unit propagation3,
for which highly optimized implementations of rather complex algorithms are
used (e. g. drat-trim uses a two watched literals algorithm [32]). Unfortunately,
verifying such highly optimized code in a proof assistant is a major endeavor.
Thus, a crucial idea is to implement an unverified tool that enriches the certifi-
cate with additional information that can be used for simpler and more efficient
verification. For DRUP, the GRIT format has been proposed recently [7]. It
stores, for each lemma, a list of unit clauses in the order they become unit, fol-
lowed by a conflict clause. Thus, unit propagation is replaced by simply checking
whether a clause is unit or conflict. A modified version of drat-trim is used to
generate a GRIT certificate from the original DRAT certificate.

3 The GRAT Format

The first contribution of this paper is to extend the ideas of GRIT from DRUP
to DRAT. To this end, we define the GRAT format. Like for GRIT, each clause is
identified by a unique positive ID. The clauses of the original formula implicitly
get the IDs 1 . . . N . The lemma IDs explicitly occur in the certificate, and must
be strictly ascending.

3 Our profiling data indicates that, depending on the problem, up to 93% of the time
is spent for unit propagation.

Efficient Verified (UN)SAT Certificate Checking 241

For memory efficiency reasons, we store the certificate in two parts: The
lemma file contains the lemmas, and is stored in DIMACS format. During cer-
tificate checking, this part is entirely loaded into memory. The proof file contains
the hints and instructions for the certificate checker. It is not completely loaded
into memory, but only streamed during checking.

The proof file is a binary file, containing a sequence of 32 bit signed integers
stored in 2’s complement little endian format. The sequence is reversed (or the
file is streamed backwards), and then interpreted according to the following
grammar:

proof ::= rat-counts item* conflict

literal ::= int32 != 0

id ::= int32 > 0

count ::= int32 > 0

rat-counts ::= 6 (literal count)* 0

item ::= unit-prop | deletion | rup-lemma | rat-lemma

unit-prop ::= 1 id* 0

deletion ::= 2 id* 0

rup-lemma ::= 3 id id* 0 id

rat-lemma ::= 4 literal id id* 0 cand-prf* 0

cand-prf ::= id id* 0 id

conflict ::= 5 id

The checker maintains a clause map that maps IDs to clauses, and a partial
assignment that maps variables to true, false, or undecided. Partial assignments
are extended to literals in the natural way. Initially, the clause map contains the
clauses of the original formula, and the partial assignment maps all variables
to undecided. Then, the checker iterates over the items of the proof, processing
each item as follows:

rat-counts. This item contains a list of pairs of literals and the number how
often they are used in RAT proofs. This map allows the checker to maintain
lists of RAT candidates for the relevant literals, instead of gathering the
possible RAT candidates by iterating over the whole clause database for each
RAT proof, which is expensive. Literals that are not used in RAT proofs at
all do not occur in the list. This item is the first item of the proof.

unit-prop. For each listed clause ID, the corresponding clause is checked to be
unit, and the unit literal is assigned to true. Here, a clause is unit if the unit
literal is undecided, and all other literals are assigned to false.

deletion. The specified IDs are removed from the clause map.
rup-lemma. The item specifies the ID for the new lemma, which is the next

unprocessed lemma from the lemma file, a list of unit clause IDs, and a conflict
clause ID. First, the literals of the lemma are assigned to false. The lemma
must not be blocked, i. e. none of its literals may be already assigned to true4.
Note that assigning the literals of a clause C to false is equivalent to adding
the conjunct ¬C to the formula. Second, the unit clauses are checked and the

4 Blocked lemmas are useless for unsat proofs, such that there is no point to include
them into the certificate.

242 P. Lammich

corresponding unit literals are assigned to true. Third, it is checked that the
conflict clause ID actually identifies a conflict clause, i. e. that all its literals
are assigned to false. Finally, the lemma is added to the clause-map and the
assignment is rolled back to the state before checking of the item started.

rat-lemma. The item specifies a pivot literal l, an ID for the lemma, an initial
list of unit clause IDs, and a list of candidate proofs. First, as for rup-lemma,
the literals of the lemma are assigned to false and the initial unit propagations
are performed. Second, it is checked that the provided RAT candidates are
exhaustive, and the corresponding cand-prf items are processed: A cand-prf

item consists of the ID of the candidate clause D, a list of unit clause IDs,
and a conflict clause ID. To check a candidate proof, the literals of D \ {¬l}
are assigned to false, the listed unit propagations are performed, and the con-
flict clause is checked to be actually conflict. Afterwards, the assignment is
rolled back to the state before checking the candidate proof. Third, when all
candidate proofs have been checked, the lemma is added to the clause map
and the assignment is rolled back.
To simplify certificate generation in backward mode, we allow candidate
proofs referring to arbitrary, even invalid, clause IDs. Those proofs must be
ignored by the checker.

conflict. This is the last item of the certificate. It specifies the ID of the root
conflict clause, i. e. the conflict found by unit propagation after adding the
last lemma of the certificate. It is checked that the ID actually refers to a
conflict clause.

4 Program Verification with Isabelle/HOL

Isabelle/HOL [34] is an interactive theorem prover for higher order logic. Its
design features the LCF approach [14], where a small logical inference kernel is
the only code that can produce theorems. Bugs in the non-kernel part may result
in failure to prove a theorem, but never in a false proposition being accepted
as a theorem. Isabelle/HOL includes a code generator [15–17] that translates
the executable fragment of HOL to various functional programming languages,
currently OCaml, Standard ML, Scala, and Haskell. Via Imperative HOL [5],
the code generator also supports imperative code, modeled by a heap monad
inside the logic.

A common problem when verifying efficient implementations of algorithms
is that implementation details tend to obfuscate the proof and increase its com-
plexity. Hence, efficiency of the implementation is often traded for simplicity of
the proof. A well-known approach to this problem is stepwise refinement [1,2,43],
where an abstract version of the algorithm is refined towards an efficient imple-
mentation in multiple correctness preserving steps. The abstract version focuses
on the algorithmic ideas, leaving open the exact implementation, while the refine-
ment steps focus on more and more concrete implementation aspects. This mod-
ularizes the correctness proof, and makes verification of complex algorithms man-
ageable in the first place.

Efficient Verified (UN)SAT Certificate Checking 243

For Isabelle/HOL, the Isabelle Refinement Framework [22,24,25,29] pro-
vides a powerful stepwise refinement tool chain, featuring a nondeterministic
shallowly embedded programming language [29], a library of efficient collection
data structures and generic algorithms [24–26], and convenience tools to simplify
canonical refinement steps [22,24]. It has been used for various software verifi-
cation projects (e. g. [23,27,28]), including a fully fledged verified LTL model
checker [4,12].

5 A Verified GRAT Certificate Checker

We give an overview of our Isabelle/HOL formalization of a GRAT certificate
checker (cf. Sect. 3). We use the stepwise refinement techniques provided by the
Isabelle Refinement Framework to verify an efficient implementation at manage-
able proof complexity.

Note that we display only slightly edited Isabelle source text, and try to
explain its syntax as far as needed to get a basic understanding. Isabelle uses a
mixture of common mathematical notations and Standard ML [30] syntax (e. g.
there are algebraic data types, function application is written as f x, functions
are usually curried, e. g. f x y, and abstraction is written as λx y. t).

5.1 Syntax and Semantics of Formulas

The following Isabelle text specifies the abstract syntax of CNF formulas:

datatype′a literal = Pos′a | Neg′a
type synonym′a clause =′a literal set

type synonym ′a cnf = ′a clause set

We abstract over the type ′a of variables, use an algebraic data type to specify
positive and negative literals, and model clauses as sets of literals, and a CNF
formula as set of clauses.

A partial assignment has type ′a ⇒ bool option, which is abbreviated as
′a ⇀ bool in Isabelle. It maps a variable to None for undecided, or to Some True

or Some False. We specify the semantics of literals and clauses as follows:

primrec sem_lit′ :: ′a literal ⇒ (′a⇀bool) ⇀bool where
sem_lit′ (Pos x) A = A x | sem_lit′ (Neg x) A = map_option Not (A x)

definition sem_clause′ C A ≡
if (∃l∈C. sem_lit′ l A = Some True) then Some True

else if (∀l∈C. sem_lit′ l A = Some False) then Some False

else None

Note that we omitted the type specification for sem_clause′, in which case
Isabelle automatically infers the most general type.

For a fixed formula F , we define the models induced by a partial assignment to
be all total extensions that satisfy the formula. We define two partial assignments
to be equivalent if they induce the same models.

244 P. Lammich

5.2 Unit Propagation and RAT

We define a predicate to state that, wrt. a partial assignment A, a clause C is
unit, with unit literal l:

definition is_unit_lit A C l

≡ l∈C ∧ sem_lit′ l A = None ∧ sem_clause′ (C-{l}) A = Some False

Assigning a unit literal to true yields an equivalent assignment:

lemma unit_propagation:

assumes C∈F and is_unit_lit A C l

shows equiv′ F A (assign_lit A l)

In Isabelle, all variables that occur free in a lemma (here: C,F,A,l) are implicitly
universally quantified.

Having formalized the basic concepts, we can show the essential lemma that
justifies RAT (cf. Sect. 2):

lemma abs_rat_criterion:

assumes l∈C and sem_lit′ l A �= Some False

assumes ∀D∈F. neg_lit l ∈ D =⇒ implied_clause F A (C∪(D-{neg_lit l}))
shows redundant_clause F A C

Where a clause is implied if it can be added to the formula without changing
the models, and it is redundant if adding the clause preserves satisfiability (but
not necessarily the models).

5.3 Abstract Checker Algorithm

Having formalized the basic theory of CNF formulas wrt. partial assignments,
we can specify an abstract version of the certificate checker algorithm. Our spec-
ifications live in an exception monad stacked onto the nondeterminism monad
of the Isabelle Refinement Framework. Exceptions are used to indicate failure
of the checker, and are never caught. We only prove soundness of our checker,
i. e. that it does not accept satisfiable formulas. Our checker actually accepted
all certificates in our benchmark set (cf. Sect. 7), yielding an empirical argument
that it is sufficiently complete.

At the abstract level, we model the proof as a stream of integers. On this,
we define functions parse_id and parse_lit that fetch an element from the
stream, try to interpret it as ID or literal, and fail if this is not possible. The
state of the checker is a tuple (last_id,CM,A). To check that the lemma IDs
are strictly ascending, last_id stores the ID of the last processed lemma. The
clause map CM contains the current formula as a mapping from IDs to clauses,
and also maintains the RAT candidate lists. Finally, A is the current assignment.

As first example, we present the abstract algorithm that is invoked after
reading the item-type of a rup-lemma item (cf. Sect. 3), i. e. we expect a sequence
of the form id id* "0" id.

Efficient Verified (UN)SAT Certificate Checking 245

1 check_rup_proof ≡ λ(last_id,CM,A0) it prf. do {
2 (i,prf) ← parse_id prf;

3 check (i>last_id);
4 (C,A′,it) ← parse_check_blocked A0 it;

5 (A′,prf) ← apply_units CM A′ prf;

6 (confl_id,prf) ← parse_id prf;

7 confl ← resolve_id CM confl_id;

8 check (sem_clause′ confl A′ = Some False);
9 CM ← add_clause i C CM;

10 return ((i,CM,A0),it,prf)
11 }
We use do-notation to conveniently express monad operations. First, the lemma
ID is pulled from the proof stream (line 2) and checked to be greater than
last_id (3). The check function throws an exception unless the first argument
evaluates to true. Next, parse_check_blocked (4) parses the next lemma from
the lemma file, checks that it is not blocked, and assigns its literals to false. Then,
the function apply_units (5) pulls the unit clause IDs from the proof stream,
checks that they are actually unit, and assigns the unit literals to true. Finally,
we pull the ID of the conflict clause (6), obtain the corresponding clause from
the clause map (7), check that it is actually conflict (8), and add the lemma to
the clause map (9). We return (10) the lemma ID as new last ID, the new clause
map, and the old assignment, as the changes to the assignment are local and
must be backtracked before checking the next clause. Additionally, we return
the new position in the lemma file (it) and in the proof stream (prf). Note
that this abstract specification contains non-algorithmic parts: For example, in
line 8, we check for the semantics of the conflict clause to be Some False, with-
out specifying how to implement this check. We prove the following lemma for
check_rup_proof:

lemma check_rup_proof_correct:

assumes invar (last_id,CM,A)
shows check_rup_proof (last_id,CM,A) it prf

≤ spec True (λ((last_id′,CM′,A′), it′, prf′).
invar (last_id′,CM′,A′) ∧ (sat′ (cm_F CM) A =⇒ sat′ (cm_F CM′) A′))

Here, spec Φ Ψ describes the postcondition Φ in case of an exception, and the
postcondition Ψ for a normal result. As we only prove soundness of the checker,
we use True as postcondition for exceptions. For normal results, we show that
an invariant on the state is preserved, and that the resulting formula and partial
assignment is satisfiable if the original formula and partial assignment was.

Finally, we present the specification of the checker’s main function:

1 definition verify_unsat F_begin F_end it prf ≡ do {
2 let A = λ_. None;

3 (CM,prf) ← init_rat_counts prf;

4 (CM,last_id) ← read_cnf F_end F_begin CM;

5 let s = (last_id,CM,A);
6 (so,_) ← while (λ(so,it). so�=None) (λ(so,it).
7 do {

246 P. Lammich

8 let (s,it,prf) = the so;

9 check_item s it

10 }) (Some (s,it,prf));
11 }
The parameters F_begin and F_end indicate the range that hold the represen-
tation of the formula, it points to the first lemma, and prf is the proof stream.
After initializing the assignment (line 2, all variables undecided), the RAT literal
counts are read (3), and the formula is parsed into the clause map (4). Then,
the function iterates over the proof stream and checks each item (6–10), until
the formula has been certified. (or an exception terminates the program) Here,
the checker’s state is wrapped into an option type, where None indicates that
the formula has been certified. Correctness of the abstract checker is expressed
by the following lemma:

lemma verify_unsat_correct:

assumes seg F_begin lst F_end

shows verify_unsat F_begin F_end it prf

≤ spec True (λ_. F_invar lst ∧ ¬sat (F_α lst))

Intuitively, if the range from F_begin to F_end is valid and contains the sequence
lst, and if verify_unsat returns a normal value, then lst represents a valid
CNF formula (F_invar lst) that is unsatisfiable (¬sat (F α lst)). Note that
the correctness statement does not depend on the lemmas (it) or the proof
stream (prf). This will later allow us to use an optimized (unverified) imple-
mentation for streaming the proof, without impairing the formal correctness
statement.

5.4 Refinement Towards an Efficient Implementation

The abstract checker algorithm that we described so far contains non-algorithmic
parts and uses abstract types like sets. Even if we could extract executable code,
its performance would be poor: For example, we model assignments as functions.
Translating this directly to a functional language results in assignments to be
stored as long chains of function updates with worst-case linear time lookup.

We now show how to refine the abstract checker to an efficient algorithm,
replacing the specifications by actual algorithms, and the abstract types by effi-
cient data structures. The refinement is done in multiple steps, where each step
focuses on different aspects of the implementation. Formally, we use a refinement
relation that relates objects of the refined type (e. g. a hash table) to objects
of the abstract type (e. g. a set). In our framework, refinement is expressed by
propositions of the form (c,a)∈R =⇒ g c ≤⇓S (f a) : if the concrete argument
c is related to the abstract argument a by R, then the result of the concrete algo-
rithm g c is related to the result of the abstract algorithm f a by S. Moreover,
if the concrete algorithm throws an exception, the abstract algorithm must also
throw an exception.

In the first refinement step, we record the set of variables assigned during
checking a lemma, and use this set to reconstruct the original assignment from

Efficient Verified (UN)SAT Certificate Checking 247

the current assignment after the check. This saves us from copying the whole
original assignment before each check. Formally, we define an A0-backtrackable
assignment to be an assignment A together with a set of assigned variables T ,
such that unassigning the variables in T yields A0. The relation bt_assign_rel

relates A0-backtrackable assignments to plain assignments:

bt_assign_rel A0 ≡ { ((A,T),A) | A T. T ⊆ dom A ∧ A0 = A�(-T) }
We define apply_units_bt, which operates on A0-backtrackable assignments.
If applied to assignments (A′,T) and A related by bt_assign_rel A0, and to
the same proof stream position prf, then the results of apply_units_bt and
apply_units are related by bt_assign_rel A0 × Id, i. e. the returned assign-
ments are again related by bt_assign_rel A0, and the new proof stream posi-
tions are the same (related by Id):

lemma apply_units_bt_refine: assumes ((A′,T),A)∈bt_assign_rel A0
shows apply_units_bt CM A′ T prf

≤ ⇓(bt_assign_rel A0 × Id) (apply_units CM A prf)

In the next refinement step, we implement clauses by iterators pointing to the
start of a null-terminated sequence of integers. Thus, the clause map will only
store iterators instead of (replicated) clauses. Now, we can specify algorithms
for functions on clauses. For example, we define:

check_conflict_clause1 A cref ≡ iterate_clause cref (λl _. do {
check (sem_lit′ l A = Some False)

}) ()

i. e. we iterate over the clause, checking each literal to be false. We show:

lemma check_conflict_clause1_refine: assumes CR: (cref,C)∈cref_rel
shows check_conflict_clause1 A cref

≤⇓Id (check (sem_clause′ C A = Some False))

where the relation cref_rel relates iterators to clauses.
In the next refinement step, we introduce efficient data structures. For exam-

ple, we implement the iterators by indexes into an array of integers that stores
both the formula and the lemmas. For many of the abstract types, we use gen-
eral purpose data structures from the Isabelle Refinement Framework [24,25].
For example, we refine assignments to arrays, using the array_map_default data
structure, which implements functions of type nat⇒′a option by arrays of type
′b array. It is parameterized by a relation R : (′b×′a) set and a default con-
crete element d that does not correspond to any abstract element (�a. (d,a)∈R).
The implementation uses d to represent the abstract value None. We define:

definition vv_rel ≡ {(1, False), (2, True)}
definition assignment_assn ≡ amd_assn 0 id_assn (pure vv_rel)

i. e. we implement Some False by 1, Some True by 2, and None by 0. Here,
amd_assn is the relation of the array_map_default data structure5. The refined
5 The name suffix _assn instead of _rel indicates that the data structure may be

stored on the heap.

248 P. Lammich

programs and refinement theorems in this step are automatically generated by
the Sepref tool [24]. For example, the command

sepref definition check_rup_proof3 is check_rup_proof2

:: cdb_assnk * state_assnd * it_assnk * prf_assnd

→ error_assn + state_assn × it_assn × prf_assn

takes the definition of check_rup_proof2, generates a refined version, and
proves the corresponding refinement theorem. The first parameter is refined
wrt. cdb_assn (refining the set of clauses into an array), the second parame-
ter is refined wrt. state_assn (refining the clause map and the assignment into
arrays), the third parameter is refined wrt. it_assn (refining the iterator into
an array index), and the fourth parameter is refined wrt. prf_assn (refining the
stream position). Exception results are refined wrt. error_assn (basically the
identity relation), and normal results are refined wrt. state_assn, it_assn, and
prf_assn. The xd and xk annotations indicate whether the generated function
may overwrite a parameter (d like destroy) or not (k like keep).

By combining all the refinement steps and unfolding some definitions, we
prove the following correctness theorem for the implementation of our checker:

theorem verify_unsat_impl_correct:

<DBi �→a DB>

verify_unsat_impl DBi F_end it prf

<λresult. DBi �→a DB * ↑(¬isl result =⇒ formula_unsat_spec DB F_end)>

This Hoare triple states that if DBi points to an array holding the elements DB,
and we run verify_unsat_impl, the array will be unchanged, and if the return
value is no exception, the formula represented by the range 1. . . F_end in the
array is unsatisfiable. We have experimented with many equivalent formulations
of formula_unsat_spec, trying to reduce the trusted base, i. e. the concepts and
definitions the specification depends on. A concise one is:

definition assn_consistent :: (int ⇒ bool) ⇒ bool

where assn_consistent σ = (∀x. x�=0 =⇒ ¬ σ (-x) = σ x)
definition formula_unsat_spec DB F_end ≡ (

let lst = tl (take F_end DB) in

1 < F_end ∧ F_end ≤ length DB ∧ last lst = 0

∧ (�σ. assn_consistent σ ∧ (∀C∈set (tokenize 0 lst). ∃l∈set C. σ l)))

Here, a consistent assignment is a mapping from integers to Booleans, such that
a negative value is mapped to the opposite as its absolute value. The specifica-
tion then defines lst to be the elements 1,. . . ,F_end of the array6, and states
that F_end is in bounds, the last element of lst is a null, and that there is no
assignment such that each clause contains a literal assigned to true. We define
tokenize 0 lst to be the unique list of lists of non-null integers whose concate-
nation as null-terminated lists yields lst. This way, we specify an unsatisfiable
formula down to the list of integers that represents it, only using basic list func-
tions. The last section of the proof outline of our formalization [21] contains a
detailed discussion of the correctness theorem.
6 Element 0 is used as a guard in our implementation.

Efficient Verified (UN)SAT Certificate Checking 249

The final step to a verified efficient unsat checker is to use Isabelle/HOL’s
code generator to extract Standard ML code for verify_unsat_impl and to link
this code with a small (40 LOC) parser to read the formula (and the lemmas)
into an array. Moreover, we implement a buffered reader for the proof file. This,
however, does not affect the correctness statement, which is valid for all proof
stream implementations. The resulting program is compiled with MLton [31].

6 Multithreaded Generation of Enriched Certificates

In order to generate GRAT certificates, we extend a DRAT checker algorithm
to record the unit clauses that lead to a conflict when checking each lemma.

Our certificate generator started as a reimplementation of the backward mode
of drat-trim [10,41] in C++, to which we then added GRAT certificate generation.
As the certificate generator is not part of the trusted code base, we could afford to
add aggressive novel optimizations: We maintain separate watchlists for marked
and unmarked lemmas, which allows a more efficient implementation of core-
first unit propagation. Moreover, we detect runs of lemmas with the same pivot
element, which allows to reuse the results of (expensive) RAT candidate searches
in certain cases. These optimizations alone make our generator more than two
times faster than drat-trim.

Another common optimization is parallelization: If one has more DRAT cer-
tificates to check than processors available (e. g. when evaluating a SAT com-
petition), one can simply run multiple instances of the certificate generator and
checker in parallel. However, if one has only a few certificates to check (e. g. when
using SAT solvers for checking a single model), a more fine grained paralleliza-
tion is required to keep the available processors busy. To this end, our certificate
generator provides a multi-threaded mode, which parallelizes the processing of
lemmas, at the cost of using more memory. It uses all optimizations of the single-
threaded mode, some of them slightly adjusted for multi-threading. For example,
the lemmas of a run with the same pivot element are preferably scheduled to
the same thread.

The basic idea is to let multiple threads run backwards over the certificate,
verifying the lemmas in parallel. A thread tries to acquire a lemma before it starts
verification. If the lemma is already acquired by another thread, this thread
proceeds with the next lemma. This way, each lemma is only proved by one
thread. For the marking of lemmas, the only required synchronization is that
a thread sees its own markings: As every thread runs to the beginning, and on
processing a lemma only earlier lemmas are marked, every thread will try to
acquire at least the lemmas that it marked itself — and process them if no other
thread was faster. However, in order to improve the effectiveness of core-first
unit propagation, the threads periodically synchronize on their marking data.

7 Benchmarks

We present the experimental evaluation of our tools on a realistic set of bench-
marks. We used CryptoMiniSat [37,40] to generate DRAT certificates for the 110

250 P. Lammich

unsatisfiable problems it solved at the 2016 SAT competition [38]. We ran the
benchmarks on a standard server board with a 22 core Intel XEON Broadwell
processor with 2.2 GHz and 128 GiB of RAM. To minimize interferences, we ran
only one benchmark at a time, with no other load on the server. Due to the page
limit of this paper, we only provide a short summary of our benchmark results.
The complete results are available on the tool’s homepage [20].

On each DRAT certificate, we ran drat-trim (version Nov 10 2016)7 and
our tool chain (version 1.2) with 1 and 8 threads. We measured the wall-clock
time and memory consumption. First of all, our tools successfully checked all
certificates, indicating that our approach is sufficiently complete. (Recall that
only soundness is formally proved).

We start with comparing drat-trim to our tool in single-threaded mode: drat-
trim timed out after 20.000 seconds on two certificates, and crashed on a third
one. For checking the remaining 107 certificates, drat-trim required 42.3 hours,
while our tool chain required only 17.3 hours. Out of the 17.3 hours, only 1.1
hours were required to run the verified certificate checker, i. e. its runtime is
almost negligible compared to certificate generation time. Our tool-chain verified
the three certificates for which drat-trim failed in 5.3 hours.

Our certificate generator requires roughly two times more memory than drat-
trim. This is due to the generated certificate being stored in memory. We could
not measure meaningful memory consumption values for our verified checker:
The MLton garbage collector only gets active when memory falls short, resulting
in unrealistic memory consumption values when being the only process running
on a machine with 128 GiB of RAM.

Next, we report on running the certificate generator with 8 threads: The
wall clock times required for generation and checking add up to only 8.3 hours.
Excluding certificates that required less than one minute to check, the average
speed up is 2.6 [min: 1.1, max: 4.9] compared to single-threaded mode, and
7.1 [min: 0.5, max: 36.0] compared to drat-trim. However, certificate generation
requires significantly more memory, as the DRAT certificate is duplicated for
each thread.

To complete the presentation, we briefly report on the results of our formally
verified satisfiability checker: The certificates for the 64 satisfiable problems that
CryptoMiniSat solved at the 2016 SAT competition [38] have a size of 229 MiB
and could be verified in 40 seconds.

8 Conclusions

We have presented a formally verified tool chain to check DRAT unsatisfiabil-
ity certificates. In single-threaded mode, our approach is more than two times
faster than the (unverified) standard tool drat-trim, on a benchmark suite taken
from the 2016 SAT competition. Additionally, we implemented a multi-threaded
mode, which allows us to trade computing resources for significantly smaller

7 The current version at the time of writing this paper.

Efficient Verified (UN)SAT Certificate Checking 251

response times. The formal proof covers the actual implementation of the checker
and the semantics of the formula down to the sequence of integers that repre-
sents it.

Our approach involves two phases: The first phase generates an enriched cer-
tificate, which is then checked against the original formula by the second phase.
While the main computational work is done by the first phase, soundness of
the approach only depends on the second phase, which is also algorithmically
less complex, making it more amenable to formal verification. Using stepwise
refinement techniques, we were able to formally verify a rather efficient imple-
mentation of the second phase.

We conclude with some statistics: The formalization of the certificate checker
is roughly 5k lines of code. In order to realize this formalization, several general
purpose libraries (e. g. the exception monad and some imperative data struc-
tures) had to be developed. These sum up to additional 3.5k lines. The time
spent on the formalization was roughly three man months. The multi-threaded
certificate generator has roughly 3k lines of code, and took two man month to
develop.

8.1 Future Work

Currently, the formal proof of our verified checker goes down to the representa-
tion of the formula as integer array, thus requiring a (small) unverified parser. A
logical next step would be to verify the parser, too. Moreover, verification stops
at the Isabelle code generator, whose correctness is only proved the classical way
on paper [16,17]. There is work aiming at the mechanical verification of code
generators [33], and even the subsequent compilers [19]. Unfortunately, this is
not (yet) available for Isabelle/HOL.

We plan to attack the high memory consumption of our multi-threaded gen-
erator by trying to share more (read-only) data between the threads.

An interesting research topic would be to integrate enriched certificate gen-
eration directly into SAT solvers. The performance decrease in the solver could
be weighed against the cost of generating an enriched certificate. However, such
modifications are probably complex and SAT-solver specific, whereas DRAT cer-
tificates are designed to be easily integrated into virtually any CDCL based SAT
solver.

Finally, we chose a benchmark set which is realistic, but can be run in a few
days on the available hardware. We plan to run our tools on larger benchmark
suites, once we have access to sufficient (supercomputing) hardware.

Acknowledgements. We thank Jasmin Blanchette and Mathias Fleury for very use-
ful comments on the draft version of this paper, and Lars Hupel for instant help on
any problems related to the benchmark server.

252 P. Lammich

References

1. Back, R.-J.: On the correctness of refinement steps in program development. Ph.D.
thesis, Department of Computer Science, University of Helsinki (1978)

2. Back, R.-J., von Wright, J.: Refinement Calculus - A Systematic Introduction.
Springer, New York (1998)

3. Bertot, Y., Castran, P.: Interactive Theorem Proving and Program Development:
Coq’Art the Calculus of Inductive Constructions, 1st edn. Springer, New York
(2010)

4. Brunner, J., Lammich, P.: Formal verification of an executable LTL model
checker with partial order reduction. In: Rayadurgam, S., Tkachuk, O. (eds.)
NFM 2016. LNCS, vol. 9690, pp. 307–321. Springer, Cham (2016). doi:10.1007/
978-3-319-40648-0 23

5. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-71067-7 14

6. Cruz-Filipe, L., Heule, M., Hunt, W., Matt, K., Schneider-Kamp, P.: Efficient
certified RAT verification. In: de Moura, L. (ed.) CADE 2017. LNAI, vol. 10395,
pp. 220–236. Springer, Cham (2017)

7. Cruz-Filipe, L., Marques-Silva, J., Schneider-Kamp, P.: Efficient certified resolution
proof checking. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205,
pp. 118–135. Springer, Heidelberg (2017). doi:10.1007/978-3-662-54577-5 7

8. Darbari, A., Fischer, B., Marques-Silva, J.: Industrial-strength certified SAT solv-
ing through verified SAT proof checking. In: Cavalcanti, A., Deharbe, D., Gaudel,
M.-C., Woodcock, J. (eds.) ICTAC 2010. LNCS, vol. 6255, pp. 260–274. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14808-8 18

9. DRAT-TRIM GitHub repository. https://github.com/marijnheule/drat-trim
10. DRAT-TRIM homepage. https://www.cs.utexas.edu/∼marijn/drat-trim/
11. DRAT-TRIM issue tracker. https://github.com/marijnheule/drat-trim/issues
12. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:

A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). doi:10.
1007/978-3-642-39799-8 31

13. Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formu-
las. In: Proceedings of DATE. IEEE (2003)

14. Gordon, M.: From LCF to HOL: a short history. In: Proof, Language, and Inter-
action, pp. 169–185. MIT Press (2000)

15. Haftmann, F.: Code generation from specifications in higher order logic. Ph.D.
thesis, Technische Universität München (2009)

16. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in
Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) ITP
2013. LNCS, vol. 7998, pp. 100–115. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 10

17. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In:
Blume, M., Kobayashi, N., Vidal, G. (eds.) FLOPS 2010. LNCS, vol. 6009, pp.
103–117. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12251-4 9

18. Heule, M., Hunt, W., Wetzler, N.: Trimming while checking clausal proofs. In:
2013 Formal Methods in Computer-Aided Design, FMCAD 2013, pp. 181–188.
IEEE (2013)

http://dx.doi.org/10.1007/978-3-319-40648-0_23
http://dx.doi.org/10.1007/978-3-319-40648-0_23
http://dx.doi.org/10.1007/978-3-540-71067-7_14
http://dx.doi.org/10.1007/978-3-662-54577-5_7
http://dx.doi.org/10.1007/978-3-642-14808-8_18
https://github.com/marijnheule/drat-trim
https://www.cs.utexas.edu/~marijn/drat-trim/
https://github.com/marijnheule/drat-trim/issues
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-39799-8_31
http://dx.doi.org/10.1007/978-3-642-39634-2_10
http://dx.doi.org/10.1007/978-3-642-39634-2_10
http://dx.doi.org/10.1007/978-3-642-12251-4_9

Efficient Verified (UN)SAT Certificate Checking 253

19. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implemen-
tation of ML. In: Proceedings of POPL, pp. 179–192. ACM (2014)

20. Lammich, P.: Grat tool chain homepage. http://www21.in.tum.de/lammich/grat/
21. Lammich, P.: Gratchk proof outline. http://www21.in.tum.de/lammich/grat/

outline.pdf
22. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,

Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). doi:10.1007/978-3-642-39634-2 9

23. Lammich, P.: Verified efficient implementation of gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 325–340. Springer, Cham (2014). doi:10.1007/978-3-319-08970-6 21

24. Lammich, P.: Refinement to Imperative/HOL. In: Urban, C., Zhang, X. (eds.)
ITP 2015. LNCS, vol. 9236, pp. 253–269. Springer, Cham (2015). doi:10.1007/
978-3-319-22102-1 17

25. Lammich, P.: Refinement based verification of imperative data structures. In: CPP,
pp. 27–36. ACM (2016)

26. Lammich, P., Lochbihler, A.: The isabelle collections framework. In: Kaufmann, M.,
Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14052-5 24

27. Lammich, P., Neumann, R.: A framework for verifying depth-first search algo-
rithms. In: CPP 2015, pp. 137–146. ACM, New York (2015)

28. Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds-Karp algorithm. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 219–234. Springer,
Cham (2016). doi:10.1007/978-3-319-43144-4 14

29. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol. 7406,
pp. 166–182. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32347-8 12

30. Milner, R., Harper, R., MacQueen, D., Tofte, M.: The Definition of Standard ML.
MIT Press, Cambridge (1997)

31. MLton Standard ML compiler. http://mlton.org/
32. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineer-

ing an efficient SAT solver. In: Proceedings of DAC, pp. 530–535. ACM (2001)
33. Myreen, M.O., Owens, S.: Proof-producing translation of higher-order logic into

pure and stateful ML. J. Funct. Program. 24(2–3), 284–315 (2014)
34. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL — A Proof Assistant

for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
35. SAT competition (2013). http://satcompetition.org/2013/
36. SAT competition (2014). http://satcompetition.org/2014/
37. Proceedings of SAT Competition 2016: Solver and Benchmark Descriptions, vol.

B-2016-1. University of Helsinki (2016)
38. SAT competition (2016). http://baldur.iti.kit.edu/sat-competition-2016/
39. Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev,

D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, pp. 600–611.
Springer, Heidelberg (2006). doi:10.1007/11753728 60

40. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic prob-
lems. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 244–257. Springer,
Heidelberg (2009). doi:10.1007/978-3-642-02777-2 24

41. Wetzler, N., Heule, M.J.H., Hunt, W.A.: Mechanical verification of SAT refutations
with extended resolution. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 229–244. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-39634-2 18

http://www21.in.tum.de/lammich/grat/
http://www21.in.tum.de/lammich/grat/outline.pdf
http://www21.in.tum.de/lammich/grat/outline.pdf
http://dx.doi.org/10.1007/978-3-642-39634-2_9
http://dx.doi.org/10.1007/978-3-319-08970-6_21
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-319-22102-1_17
http://dx.doi.org/10.1007/978-3-642-14052-5_24
http://dx.doi.org/10.1007/978-3-319-43144-4_14
http://dx.doi.org/10.1007/978-3-642-32347-8_12
http://mlton.org/
http://satcompetition.org/2013/
http://satcompetition.org/2014/
http://baldur.iti.kit.edu/sat-competition-2016/
http://dx.doi.org/10.1007/11753728_60
http://dx.doi.org/10.1007/978-3-642-02777-2_24
http://dx.doi.org/10.1007/978-3-642-39634-2_18
http://dx.doi.org/10.1007/978-3-642-39634-2_18

254 P. Lammich

42. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3 31

43. Wirth, N.: Program development by stepwise refinement. Commun. ACM 14(4),
221–227 (1971)

http://dx.doi.org/10.1007/978-3-319-09284-3_31

Translating Between Implicit and Explicit
Versions of Proof

Roberto Blanco1(B), Zakaria Chihani2, and Dale Miller1

1 Inria & LIX/École Polytechnique, Palaiseau, France
{roberto.blanco,dale.miller}@inria.fr

2 CEA-List, Gif-sur-Yvette, France
zakaria.chihani@cea.fr

Abstract. The Foundational Proof Certificate (FPC) framework can be
used to define the semantics of a wide range of proof evidence. For exam-
ple, such definitions exist for a number of textbook proof systems as well
as for the proof evidence output from some existing theorem proving sys-
tems. An important decision in designing a proof certificate format is the
choice of how many details are to be placed within certificates. Formats
with fewer details are smaller and easier for theorem provers to output
but they require more sophistication from checkers since checking will
involve some proof reconstruction. Conversely, certificate formats con-
taining many details are larger but are checkable by less sophisticated
checkers. Since the FPC framework is based on well-established proof
theory principles, proof certificates can be manipulated in meaningful
ways. In this paper, we illustrate how it is possible to automate moving
from implicit to explicit (elaboration) and from explicit to implicit (distil-
lation) proof evidence via the proof checking of a pair of proof certificates.
Performing elaboration makes it possible to transform a proof certificate
with details missing into a certificate packed with enough details so that
a simple kernel (without support for proof reconstruction) can check the
elaborated certificate. We illustrate how trust in only a single, simple
checker of explicitly described proofs can be used to provide trust in a
range of theorem provers employing a range of proof structures.

1 Introduction

The study and development of programming languages have been aided by the
use of (at least) two frameworks: context-free grammars (CFG) are used to define
the structure of programs and structural operational semantics (SOS) [44] are
used to define the evaluation and behavior of programming languages. Both
of these frameworks make it possible to define the structure and meaning of a
programming language in a way that is independent of a particular parser and
particular compiler. Specifications in these frameworks are both mathematically
rigorous and easily given prototype implementations using the logic program-
ming paradigm [10,24,34,47].

The study and development of automated and interactive reasoning systems
can similarly benefit from the introduction of frameworks that are capable of
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 255–273, 2017.
DOI: 10.1007/978-3-319-63046-5 16

256 R. Blanco et al.

defining the meaning of proof descriptions that are output by provers. Such for-
mal semantics of proof languages make it possible to separate the production of
proofs (via possibly untrusted and complex theorem provers) from the checking
of proofs (via smaller and trusted checkers). In such a setting, the provenance
of a proof should not be critical for checking a proof.

Separating theorem provers from proof checkers using a simple, declarative
specification of proof certificates is not new: see [27] for a historical account. For
example, the LF dependently typed λ-calculus [25] was originally proposed as a
framework for specifying (natural deduction) proofs and the Elf system [41] pro-
vided both type checking and inference for LF: the proof-carrying code project
of [40] used LF as a target proof language. The LFSC system is an extension of
the dependently typed λ-calculus with side-conditions and an implementation
of it has successfully been used to check proofs coming from the SMT solvers
CLSAT and CVC4 [48]. Deduction modulo [18] is another extension to depen-
dently typed λ-terms in which rewriting is available: the Dedukti checker, based
on that extension, has been successfully used to check proofs from such systems
as Coq [9] and HOL [4]. In the domain of higher-order classical logic, the GAPT
system [22] can check proofs given by sequent calculus, resolution, and expansion
trees and allows for checking and transforming among proofs in those formats.

Foundational Proof Certificates (FPC) is a recently proposed framework for
defining the semantics of a wide range of proof languages for first-order classical
and intuitionistic logic [13,16,17]. Instead of starting with dependently typed
λ-calculus, the FPC framework is based on Gentzen’s more low-level notion
of sequent calculus proof. FPC definitions have been formulated for resolution
refutations [46], expansion trees [38] (a generalization of Herbrand disjunctions),
Frege proof systems, matings [2], simply typed and dependently typed λ-terms,
equality reasoning [15], tableau proofs for some modal logics [30,31,37], and
decision procedures based on conjunctive normal forms, truth table evaluation,
and the G4ip calculus [21,50]. Additionally, FPCs have been used to formalize
proof outlines [8] and have been applied to model checking [28]. As with other
declarative and high-level frameworks, proof checkers for FPC specifications can
be implemented using the logic programming model of computation [14,17,35].

A central issue in designing a proof certificate format involves choosing the
level of proof detail that is stored within a certificate. If a lot of details (e.g.,
complete substitution instances and complete computation traces) are recorded
within certificates, simple programs can be used to check certificates: of course,
such certificates may also be large and impractical to communicate between
prover and checker. On the other hand, if many details are left out, then proof
checking would involve elements of proof reconstruction that can increase the
time to perform proof checking (and reconstruction) as well as increase the
sophistication of the proof checking mechanism.

One approach to this trade-off is to invoke the Poincaré principle [7] which
states that computation traces (such as that for 2 + 2 = 4) should be left out of
a proof and reconstructed by the checker. This principle requires a checker to be
complex enough to contain a (possibly small) programming language interpreter.

Translating Between Implicit and Explicit Versions of Proof 257

In LFSC and the Dedukti checker, such computations are performed using deter-
ministic functional programs. The FPC framework goes a step beyond that by
allowing nondeterministic computation as well. As is familiar from the study
of finite state machines, nondeterministic specifications can be exponentially
smaller than deterministic specifications: such a possibility for shortening speci-
fications is an interesting option to exploit in specifying proof certificates. Of
course, deterministic computations are instances of nondeterministic compu-
tations: similarly, FPCs can be restricted to deterministic computation when
desired.

The following example illustrates a difference between requiring all details
to be present in a certificate and allowing a certificate to drop some details.
A proof checker for first-order classical logic could be asked to establish that a
given disjunctive collection of literals, say, L1 ∨ . . . ∨ Ln is provable. An explicit
certificate of such a proof could be a (unordered) pair {i, j} ⊆ {1, . . . , n} such
that Li and Lj are complementary. If we allow nondeterminism, then the indexes
i, j do not need to be provided: instead, we could simply confirm that there exist
guesses for i and j such that literal Li is the complement of Lj . (Of course, there
may be more than one such pair of guesses.) The use of nondeterminism here
is completely sensible since a systematic and naive procedure for attempting a
proof of such a disjunction can reconstruct the missing details.

Since the sequent calculus can be used as the foundation for both logic pro-
gramming and theorem proving, the nature and structure of nondeterministic
choices in the search for sequent calculus proofs have received a lot of attention.
For example, Gentzen’s original LK and LJ sequent calculus proof systems [23]
contained so many choices that it is hard to imagine performing meaningful proof
search directly in those proof systems. Instead, those original proof systems can
be replaced by focused sequent calculus proof systems in order to help structure
nondeterminism. In particular, the common dichotomy between don’t-care and
don’t-know nondeterminism gives rise to two different phases of focused proof con-
struction. Don’t-know nondeterminism is employed in the positive phase where
significant choices (choices determined by, say, an oracle or a proof certificate) are
chained together. Don’t-care nondeterminism is employed in the negative phase
and it is responsible for performing determinate (functional) computation. As we
shall see, this second phase provides support for the Poincaré principle.

The next two sections describe and illustrate the main ideas behind focused
proof systems and the FPC framework. Following that, we introduce the pairing
FPC and illustrate how we can use it to elaborate proof certificates (introduce
more details) and to distil proof certificates (remove some details). We then
illustrate how such transformations of proof certificates can be used to provide
trust in proof checking.

2 The Foundational Proof Certificates Framework

While we restrict our attention in this paper to first-order classical logic, much
of what we develop here can also be applied to first-order intuitionistic logic and

258 R. Blanco et al.

truec(Ξ)

Ξ � Θ ⇑ t−, Γ

Ξ1 � Θ ⇑ A, Γ Ξ2 � Θ ⇑ B, Γ ∧c(Ξ, Ξ1, Ξ2)

Ξ � Θ ⇑ A ∧− B, Γ

Ξ ′ � Θ ⇑ Γ fc(Ξ, Ξ ′)

Ξ � Θ ⇑ f−, Γ

Ξ ′ � Θ ⇑ A, B, Γ ∨c(Ξ, Ξ ′)

Ξ � Θ ⇑ A ∨− B, Γ

Ξ ′y � Θ ⇑ [y/x]B, Γ ∀c(Ξ, Ξ ′)
Ξ � Θ ⇑ ∀x.B, Γ

Ξ1 � Θ ⇓ A Ξ2 � Θ ⇓ B ∧e(Ξ, Ξ1, Ξ2)

Ξ � Θ ⇓ A ∧+ B

truee(Ξ)

Ξ � Θ ⇓ t+
Ξ ′ � Θ ⇓ Bi i ∈ {1, 2} ∨e(Ξ, Ξ ′, i)

Ξ � Θ ⇓ B1 ∨+ B2

Ξ ′ � Θ ⇓ [t/x]B ∃e(Ξ, Ξ ′, t)
Ξ � Θ ⇓ ∃x.B

Ξ1 � Θ ⇑ B Ξ2 � Θ ⇑ ¬B cute(Ξ, Ξ1, Ξ2, B)

Ξ � Θ ⇑ · cut
inite(Ξ, l) 〈l,¬Pa〉 ∈ Θ

Ξ � Θ ⇓ Pa
init

Ξ ′ � Θ, 〈l,C〉 ⇑ Γ storec(Ξ, Ξ ′, l)
Ξ � Θ ⇑ C, Γ

store
Ξ ′ � Θ ⇑ N releasee(Ξ, Ξ ′)

Ξ � Θ ⇓ N
release

Ξ ′ � Θ ⇓ P decidee(Ξ, Ξ ′, l) 〈l,P 〉 ∈ Θ positive(P)

Ξ � Θ ⇑ · decide

Here, N is a negative formula, P is a positive formula, Pa is a positive literal, and C
is a positive formula or a negative literal. The ∀-introduction rule has the proviso that
the eigenvariable y is not free in the conclusion to that occurrence of the rule.

Fig. 1. The augmented LKF proof system LKF a

to logics with higher-order quantification and fixed points. We assume that the
reader is familiar with the one-sided version of Gentzen’s LK calculus [23]. The
FPC framework is layered on that sequent calculus by taking the following steps.

First, we employ the LKF focused sequent calculus of [29] in which proofs are
divided into two alternating phases of inference rule applications. The negative
phase uses sequents with an ⇑ and organizes the don’t-care nondeterminism
of rule application. Dually, the positive phase uses sequents with a ⇓ and is
organized around don’t-know nondeterminism. This proof system operates on
polarized formulas, which differ from ordinary formulas in that there are positive
and negative variants of the propositional constants t−, ∧−, f−, ∨−, t+, ∧+, f+,
∨+. A non-atomic formula is positive if its top-level connective is t+, ∧+, f+,
∨+, or ∃, while a formula is negative if its top-level connective is t−, ∧−, f−,
∨−, or ∀. (While the two variants of the propositional connectives have the same
truth conditions, they behave differently in LKF proofs.) Literals can be given
polarity arbitrarily: here we choose to fix the polarity of atoms to be positive
and the polarity of negated atoms to be negative. The two kinds of sequents
used in LKF are of the form 	 Θ ⇑ Γ and 	 Θ ⇓ B where Γ is a list of formulas,
B is a formula, and Θ is a multiset of positive formulas or negative literals. We
shall refer to the formulas in the Θ zone as stored formulas.

Second, the LKF proof system is augmented to get the LKF a proof system
displayed in Fig. 1. This augmentation consists of three kinds of items: certifi-
cate terms (the schematic variable Ξ), indexes (the schematic variable l), and
clerk and expert predicates. Certificate terms are threaded through all inference

Translating Between Implicit and Explicit Versions of Proof 259

rules by adding such a term to all LKF a sequents. Every LKF inference rule
is given an additional premise involving either a clerk predicate (identified by
a subscripted c) or an expert predicate (identified by a subscripted e). These
predicates are parameters to LKF a: different ways to define these predicates
will describe different styles of proof certificates that LKF a can check. (In later
sections, we shall present several different sets of definitions for these predicates.)
Indexes are used to help manage the “storage and retrieval” of formulas. In par-
ticular, when in the part of the proof system used for performing all invertible
rules (i.e., the don’t-care nondeterminism phase), any formula whose introduc-
tion rule might not be invertible must be delayed: this is achieved by storing
that formula. In LKF a, when the store rule performs this duty, the formula is
stored along with an index : subsequent references to stored formulas (in the
decide and initial rules) make use of such indexes for accessing formulas. Thus,
in the two kinds of sequents used by LKF a, namely, Ξ 	 Θ ⇑ Γ and Ξ 	 Θ ⇓ B,
Ξ is a certificate term and Θ is a multiset of pairs 〈l, C〉 where l is an index
and C is a positive formula or a negative literal. The clerk and expert premises
are responsible for processing certificate terms and providing the continuation
certificates (for any sequent premises) along with additional information that
can be used to further instantiate the inference rule.

The soundness of LKF a is immediate since an LKF a proof contains a (one-
sided) LK proof (which are known to be sound). More precisely: let B be an
unpolarized formula and let B̂ be some polarization of B (that is, the result of
placing plus and minus signs on the propositional constants). If there is a proof
of Ξ 	 · ⇑ B̂ then B is a first-order theorem since any proof of Ξ 	 · ⇑ B̂ can be
made into an LK proof of B simply by deleting the clerk and expert premises
and changing the up and down arrows into commas (as well as replacing pairs
such as 〈l, C〉 in the storage context with simply C). Thus, soundness holds for
this proof system no matter how the clerks and experts are defined.

The expert predicates used in the ∨+ and ∃ introduction rules can exam-
ine the certificate Ξ and extract information (the value of i or the term t) and
the continuation certificate Ξ ′. There is no assumption that such an extraction
is functional: indeed, the expert for the ∃ introduction might simply (nonde-
terministically) guess at some term. Similarly, we do not assume that there is
a functional dependency between index and formulas: many formulas may be
associated with the same index.

When examining proof construction in LKF a, note that the negative (⇑)
phase is essentially determinate: in other words, clerks do routine computation
and storage operations. On the other hand, experts can be nondeterministic:
in particular, the certificate may lack specific information and the experts may
simply guess at possible details. In this sense, the experts consume resources
by either extracting information contained in a certificate term or by invoking
nondeterminism.

The definition of a particular FPC is given by providing the constructors
of proof certificate terms (Ξ) and of indexes (l) as well as the definition of the
clerk and expert predicates. Figure 3 contains an example of a particular FPC.

260 R. Blanco et al.

While the FPC framework embraces a nondeterministic model of computation
behind proof checking (and, hence, proof reconstruction), that framework obvi-
ously admits deterministic computation as well.

Proof checking a given certificate term will lead to the construction of a
sequent calculus proof (in this case, in LKF): while the construction of such
a proof helps us to trust the checking process, such a proof is performed and
neither stored nor output. The FPC framework, however, is intended to make
it possible to check many other forms of proof evidence: our clients will not
need to understand sequent calculus in order to use our checker. By analogy,
programmers in a high-level language such as, say, OCaml do not need to know
about the many issues involved with compiling their code to bytecode or native
code even though the execution of OCaml programs does generate a sequence of
very low-level instructions.

3 Proof Checking Kernels as Logic Programs

Given that almost everything about the proof theory we described in the pre-
vious section is based on relations, the logic programming paradigm is, in prin-
ciple, well suited to providing implementations of trusted proof checkers, also
called kernels. (For an extended argument supporting this conclusion, see [35].)
Many people may not wish to trust the implementations of such complex opera-
tions as unification and backtracking search, which would be inherent to a logic
programming-based kernel. Also, implementations of logic programming, such
as Prolog, have often supported unsound logical operations (for example, unifi-
cation without the occurs-check). Fortunately, there have been many who have
implemented logic programming languages that not only focus on sound deduc-
tion but also include a great deal more logic than, say, Prolog. Such systems
include the Teyjus [39] and ELPI [20] implementations of λProlog [36] and the
Twelf [42] and Beluga [43] implementations of LF [25].

The proof system in Fig. 1 can easily be seen as a program in λProlog,
a language that supports hypothetical reasoning, variable bindings, (capture-
avoiding) substitution, and unification that treats logic variables and eigenvari-
ables soundly. To illustrate how inference rules can be specified in λProlog, the
following four clauses specify the ∃-introduction rule, the ∀-introduction rule,
the decide rule, and the store rule.
sync Xi (some B) :- someE Xi Xi’ T, sync Xi’ (B T).
async Xi [all B|Rest] :- allC Xi Xi’, pi w\ async (Xi’ w) [B w|Rest].
async Xi nil :- decideE Xi Xi’ I, storage I P, isPos P, sync Xi’ P.
async Xi [C|Rest] :- (isPos C ; isNegAtm C),

storeC Xi Xi’ I, storage I C => async Xi’ Rest.

Here, provability of ⇑ and ⇓ sequents is encoded using the async and sync
predicates, respectively. (Historically, the negative and positive phases have also
been called asynchronous and synchronous, respectively [1].) The syntax pi w\
denotes the universal quantification of the variable w: operationally, a λProlog
interpreter instantiates the bound variable w with an eigenvariable (a new,
scoped constant) when interpreting such a goal. Here, the hypothetical reasoning

Translating Between Implicit and Explicit Versions of Proof 261

mechanism of λProlog (the symbol => denotes implication in a goal) is used to
associate indexes with stored (positive or atomic) formulas (using the storage
predicate): as a result, the Θ zone in Fig. 1 does not need to be an explicit
argument in the specification of the kernel since it is encoded as hypothetical
assumptions within λProlog.

The λProlog specification of LKF a can be viewed as a trustworthy kernel.
(Section 6 describes another trustworthy but more limited kernel written in
OCaml.) Someone interested in having their proofs checked by this kernel must
provide (in λProlog) the definition of certificate and index terms (of type cert
and index respectively) and the definition of the clerk and expert predicates.
The next section provides a few examples of such specifications.

4 Example FPCs

In this section, we provide the FPC definitions of three different proof formats.

4.1 Controlling the Decide Rule

The only place where Gentzen’s structural rule of contraction is used within
LKF a is the decide rule. If contractions can be sufficiently controlled, naive
search algorithms can often become decision procedures. To that end, it is easy
to design a proof certificate that describes any LKF a proof with an upper bound
on its decide depth (that is, the maximum number of decide inference rules along
any path in the proof). To convert this observation into an FPC, we need only
one index, say, indx and we use just one form of certificate, namely, the term
(dd D) where D is a natural number. Below is the specification of the clerk and
expert predicates (here, s is the non-zero natural number constructor).
andNegC (dd D) (dd D) (dd D). orPosE (dd D) (dd D) Choice.
andPosE (dd D) (dd D) (dd D). someE (dd D) (dd D) T.
falseC (dd D) (dd D). storeC (dd D) (dd D) indx.
releaseE (dd D) (dd D). initialE (dd D) indx.
orNegC (dd D) (dd D). trueE (dd D).
allC (dd D) (x\ dd D). decideE (dd (s D)) (dd D) indx.

These clerks and experts leave the bound D untouched except for the decideE
(the decidee predicate in Fig. 1) which decrements that bound. The experts for
the positive disjunction and the existential quantifier are nondeterministic since,
for example, every term T is a possible instantiation allowed by the someE expert
specification. The two predicates that deal with indexes—storeC and decideE—
always make use of the same index. Since the cut expert cutE is not defined,
this FPC will only allow checking cut-free proofs. This FPC provides a high-level
means of describing proofs in the sense that the goal formula (async (dd N)
[B]) is provable from the kernel clauses and the clerk and expert clauses above
if and only if B has an LKF proof of decide depth N or less.

Many other descriptions of proofs via FPCs are possible. For example, it is
easy to design a certificate that is just a tree of nodes labeled with formulas that

262 R. Blanco et al.

are used as cut formulas: all other details of the proof are unspecified. Another
certificate design could be a tree of nodes labeled with indexes that record when
an index is used during the decide inference rule. For now, we consider such cer-
tificates as descriptive and we make no assumption that checking that a given
certificate holds for a given formula is decidable: with many high-level descrip-
tions of proofs, such checking might indeed be undecidable.

4.2 Conjunctive Normal Form: A Decision Procedure as an FPC

Converting a propositional formula to conjunctive normal form provides an
(expensive) decision procedure for determining whether or not a propositional
formula is a tautology. The following FPC encodes this decision procedure. First,
we choose to polarize all propositional connectives negatively. An LKF proof
with only such a polarized formula in its conclusion consists of exactly one large
negative phase that has, as premises, sequents containing only stored literals.
Such a sequent is provable if and only if there is an index, say i, that labels a
positive literal and the complement of that literal exists with the index j. We
need only one certificate constructor, say cnf, and one index, say, lit. The clerk
and expert predicates for this FPC can be defined as follows.
andNegC cnf cnf cnf. initialE cnf lit.
orNegC cnf cnf. decideE cnf cnf lit.
falseC cnf cnf. storeC cnf cnf lit.
releaseE cnf cnf.

In this case, the proof certificate size is constant (just the token cnf) while
checking time can be exponential.

A simple variation of this FPC would be a certificate that stores every literal
with different indexes and then accumulates all pairs 〈i, j〉 such that i and j
are complementary literals within the same premise. Such an FPC essentially
contains a mating [3]. Expansion trees [12,38] can also be accounted for by first
admitting quantificational formulas and then storing in certificates the instanti-
ations for the existential quantifiers.

4.3 Resolution Refutations

An FPC defining binary resolution refutations has been given in [16] and we
describe it briefly here since the experimental results described in Sect. 7 build
on this example. A clause is a formula of the form ∀x1 . . . ∀xp. [L1 ∨ · · · ∨ Lq],
where p, q ≥ 0 and L1, . . . , Lq are all literals (i.e., atoms or negated atoms). As
polarized formulas, disjunctions in clauses are polarized negatively. A resolution
refutation is essentially two lists of clauses C1, . . . , Cn and Cn+1, . . . , Cm where
each element of the second list is also accompanied with a justification which is
a triple of indexes 〈i, j, k〉 that carries the claim that Ck is the result of resolving
Ci and Cj . We also assume that the last clause Cm is the empty clause, written
as f−. The first list of clauses is used to form the theorem to be proved, namely,
	 ¬C1 ∨ · · · ∨ ¬Cm, where by ¬Ci we mean the negation normal form of the
negation of clause Ci.

Translating Between Implicit and Explicit Versions of Proof 263

The main element of a resolution proof is the claim that two clauses, say, Ci

and Cj resolve to yield a third clause Ck: that is, that the triple 〈i, j, k〉 is the
justification associated to Ck. If that claim is correct, then it is the case that
the sequent 	 ¬Ci,¬Cj ⇑ Ck must be provable in LKF with a focused proof of
decide depth three or less. Also, every resolution triple corresponds to a cut, as
illustrated by the inference rule of LKF. In particular, this figure is part of the
translation of the claim that Ci and Cj resolve to yield clause Cn+1 where both
i and j are members of {1, . . . , n}.

	 ¬Ci,¬Cj ⇑ Cn+1

	 ¬C1, . . . ,¬Cn,¬Cn+1 ⇑ ·
	 ¬C1, . . . ,¬Cn ⇑ ¬Cn+1

store

	 ¬C1, . . . ,¬Cn ⇑ · cut

Here, the left premise is a small proof that involves at most three decide rules
(one on both i and j and one on an unspecified literal): a certificate can easily be
written that describes how such a proof might be constructed. The right premise
leads to yet another use of cut in order to check the next claimed resolution triple.
Such proof construction ends when ¬Cm appears in the sequent on the extreme
right branch of the proof: since that formula is t+, that branch is finished.

We shall not present a formal definition of resolution refutations as an FPC
here in order to save space: the interested reader can find such definitions in
[13,16,17]. There are, of course, a lot of choices as to how much information
is placed into a certificate for resolution. For example, the exact instantiations
used to compute resolvents could be explicitly added or not. If the instantia-
tions are not part of the certificate, then checking the certificate would require
the checker to reconstruct those substitution terms: a kernel based on a logic
programming engine (as described in Sect. 3) is capable of applying unification
and backtracking search in order to produce such instantiations. If one is not
willing to trust an implementation of unification and backtracking search, it is
possible (as we describe later) to design a proof certificate format that includes
such substitution information.

Another piece of information that is not explicitly captured in the usual
definition of resolution is the order in which the clauses Ci and Cj are applied
in order to build the subproof justifying the resolution triple 〈Ci, Cj , Cm〉. In
this polarized setting, this order is important and certificates can be designed
to attempt both orders or to use the explicit order given in the certificate. This
difference in design will not affect the size of certificates but can affect the time
required to check certificates (see Sect. 7).

5 Pairing Certificates

Because FPC definitions of proof evidence are declarative (in contrast to pro-
cedural), some formal manipulations of proof certificates are enabled easily. We
illustrate how the formal pairing of two certificates can be used to transform
proof certificates into either more or less explicit certificates.

264 R. Blanco et al.

cutE (A <c> B) (C <c> D) (E <c> F) Cut :- cutE A C E Cut , cutE B D F Cut.
allC (A <c> B) (x\ (C x) <c> (D x)) :- allC A C, allC B D.
andNegC (A <c> B) (C <c> D) (E <c> F) :- andNegC A C E, andNegC B D F.
andPosE (A <c> B) (C <c> D) (E <c> F) :- andPosE A C E, andPosE B D F.
decideE (A <c> B) (C <c> D) (I <i> J) :- decideE A C I, decideE B D J.
falseC (A <c> B) (C <c> D) :- falseC A C, falseC B D.
initialE (C <c> B) (I <i> J) :- initialE C I, initialE B J.
orNegC (A <c> B) (C <c> D) :- orNegC A C, orNegC B D.
orPosE (A <c> B) (C <c> D) E :- orPosE A C E, orPosE B D E.
releaseE (A <c> B) (C <c> D) :- releaseE A C, releaseE B D.
someE (A <c> B) (C <c> D) W :- someE A C W, someE B D W.
storeC (A <c> B) (C <c> D) (I <i> J) :- storeC A C I, storeC B D J.
trueE (A <c> B) :- trueE A, trueE B.

Fig. 2. The pairing FPC

5.1 The Pairing FPC

Consider checking a proof certificate for a resolution refutation that does not con-
tain the substitutions used to compute a resolvent. Since the checking process
computes a detailed focused sequent in the background, that process must com-
pute all the substitution terms required by sequent calculus proofs. If we could
check in parallel a second certificate that allows for storing such substitution
terms, then those instances could be inserted into the second, more explicit cer-
tificate. Fortunately, it is a simple matter to do just such parallel checking of
two proof certificates.

Let <c> be an infix constructor of type cert -> cert -> cert and let <i>
be an infix constructor of type index -> index -> index. The full specification
(using λProlog syntax) of the FPC for pairing is given in Fig. 2. This pairing
operation allows for the parallel checking of two certificates: clearly, both certifi-
cates must eventually expand into the same underlying sequent calculus proof
but those certificates could retain different amounts of detail from each other.
Note that the definition of pairing for the existential expert ensures that both
certificates agree on the same information (here a witness t). Of course, one
(or both) of those certificates do not need to actually contain the witness infor-
mation. While paired certificates must be able to agree on substitution terms,
choices for (positive) disjunctions, and cut formulas, they will not need to agree
on the notion of index. Instead, we use the pairing constructor <i> to form an
index out of two indexes.

While the transformations between proof certificates that can take place
using this pairing FPC are useful (as we argue in the following sections), such
transformations are also limited. For example, pairing cannot be used to trans-
form a proof certificate based on, say conjunctive normal forms, into one based
on resolutions, since the former makes no use of cut and the latter contains cuts.
The pairing of two such certificates will (almost) always fail to succeed. Pairing
is really limited to transforming within the spectrum of “many details, fewer
details” and not between two different styles of proof. Thus, it is possible to
transform a proof certificate encoding resolution that does not contain substi-
tution terms to one that does contain substitution terms. The reverse is also
possible.

Translating Between Implicit and Explicit Versions of Proof 265

kind max type.
type ix nat -> index.
type max nat -> max -> cert.
type max0 max.
type max1 max -> max.
type max2 max -> max -> max.
type maxa index -> max.
type maxi index -> max -> max.
type maxv (tm -> max) -> max.
type maxt tm -> max -> max.
type maxf form -> max -> max -> max.
type maxc choice -> max -> max.

allC (max N (maxv C)) (x\ max N (C x)).
andNegC (max N (max2 A B)) (max N A) (max N B).
andPosE (max N (max2 A B)) (max N A) (max N B).
cutE (max N (maxf F A B)) (max N A) (max N B) F.
decideE (max N (maxi I A)) (max N A) I.
storeC (max N (maxi (ix N) A)) (max (s N) A) (ix N).
falseC (max N (max1 A)) (max N A).
orNegC (max N (max1 A)) (max N A).
releaseE (max N (max1 A)) (max N A).
orPosE (max N (maxc C A)) (max N A) C.
someE (max N (maxt T A)) (max N A) T.
trueE (max N max0).
initialE (max N (maxa I)) I.

Fig. 3. A certificate format including maximal details

5.2 A Maximally Explicit FPC

We can define a maximally explicit FPC that contains all the information that is
explicitly needed to fill in all details in the augmented inference rules in Fig. 1. In
principle, this certificate format records the full trace of the underlying sequent
calculus proof computed during the execution of the kernel. The FPC in Fig. 3
is capable of storing all such details. Note that the natural number argument of
max is used by the store clerk to choose a fresh index for every stored formula.
The constructors of type max are different nodes of a symbolic proof tree, holding
all information needed by the clerks and experts without recording the actual
proof derivation. The constructors are as follows: max0 is a leaf node, max1 is a
unary node, max2 is a binary node, maxv is used to bind an eigenvariable to the
rest of the tree, maxt is annotated with a term, maxf with a cut formula, maxc
with a (disjunctive) choice, and maxi with an index.

Such a proof certificate can be automatically obtained through elaboration of
any other proof certificate and the use of the pairing of certificates. For example,
if the sequent dd (s (s z)) 	 · ⇑ F is provable then calling the checker with
the sequent dd (s (s z)) <c> (max z X) 	 · ⇑ F , where X is a logic variable
of type max, will build a fully explicit proof object.

5.3 Elaboration and Distillation of Certificates

The kernel is building a formal sequent proof which is not explicitly stored
but is, in a sense, performed by the kernel. It is the performance of such a
sequent calculus proof that helps to provide trust in the kernel. If a certificate

266 R. Blanco et al.

is lacking necessary details for building such a sequent calculus proof (such as
substitution instances), a kernel could attempt to reconstruct those details. The
formal pairing of certificates described above links two certificates that lead to
the same performance of a sequent calculus proof: in the logic programming
setting, it is completely possible to see such linking of certificates as a means
to transform one certificate to another certificate. The term elaboration will be
used to refer to the process of transforming an implicit proof certificate to a more
explicit proof certificate. The converse operation, called distillation, can also be
performed: during such distillation, certain proof details can be discarded.

Since a given proof certificate can be elaborated into a number of different
sequent calculus proofs, certificates can be used to provide high-level descrip-
tions of classes of proofs. For example, FPCs have been used to describe proof
outlines [8]: using a logic programming based kernel to check such a proof outline
means that the kernel will attempt to reconstruct a complete proof based on the
information given in the outline. If such a reconstruction is possible, pairing the
proof checking of a proof outline with an explicit form of FPC would mean that
the missing proof details could be recorded. In a similar fashion, Martin Davis’s
notion of “obvious logical inference” [19] can be described easily as an FPC:
here, an inference is “obvious” if all quantifiers are instantiated at most once.
Thus, using a kernel to attempt to check such an FPC against a specific formula
essentially implements the check of whether or not an “obvious inference” can
complete the proof.

Since we shall focus on certificate elaboration in the rest of this paper, we
conclude this section with a few comments about certificate distillation. Con-
sider, for example, a proof certificate that contains substitution instances for all
quantifiers that appear within a proof. In some situations, such terms might be
large and their occurrences within a certificate could make a certificate large. In
the first-order logic setting, however, if a certificate stores instead linkage or mat-
ing information between literals in a proof, then the implied unification problems
can be used to infer the missing substitutions (assuming that the kernel contains
a trusted implementation of unification). The resulting certificate could well be
much smaller: checking them could, however, involve a possibly large unification
problem to be performed. Besides such approaches to proof compression, distill-
ing can provide an elegant way to answer questions such as: What lemmas have
been used in this proof? How deep (counting decide rules) is a proof? What
substitution terms were used in a certain subproof? Certificates that retain only
some coarse information such as this could be used to provide some high-level
insights into the structure of a given proof.

6 The Kernel as a Functional Program

Given that the maximally explicit certificate contains all the information needed
to build a (focused) sequent calculus proof, a proof checker for only that FPC
does not need to perform unification or backtracking search. Such a checker may
be simple and easy to analyze and trust. To demonstrate this possibility, we have
implemented in OCaml a proof checker for the maximal FPC in Fig. 3.

Translating Between Implicit and Explicit Versions of Proof 267

MaxChecker is an OCaml program of about 200 lines of code (available online
at proofcert.github.io). Separate from the kernel is a parser that reads from an
input that contains three items: (i) a collection of non-logical constants and their
(simple) types; (ii) a polarized version of a formula (the proposed theorem); and
(iii) a proof certificate in the maximal FPC format. The kernel is then asked to
check whether or not the given certificate yields a proof of the proposed theorem.
If this check is successful, the kernel prints out the (unpolarized) theorem as a
means to confirm what formula it has actually checked.

As Pollack has argued in [45], the printer and parser of our system must be
trusted to be faithfully representing the formulas that they input and output.
Here, we assume that that concern is addressed in standard ways: in our partic-
ular tool, we have used standard parser generating tools in order to link trust in
our tool with trust in a well engineered and frequently used tool.

It is now an easy matter to describe the architecture of a proof checker that
we can use to check any FPC-defined proof certificate while only needing to trust
MaxChecker. First, use the flexible λProlog based (or equivalent) interpreter to
do the formal checking of any proof certificate accompanied by its FPC defin-
ition. If we do that checking using both the maximal and pairing FPCs then
the maximal certificate (the most explicit form of the input certificate) can be
extracted. Second, run MaxChecker on this final and explicit certificate.

We can push this issue of trust another step. Since the MaxChecker is a simple
terminating functional program, it should be a simple matter to implement it
within, say, the Coq proof assistant, and formally prove in Coq that a successful
check leads to a formal proof in, say, Gentzen’s LK and LJ proof systems. By
reflecting [11,26] these weaker proof systems into Coq (including the axiom of
excluded-middle for classical logic proofs), the chaining of a flexible certificate
elaborator with the Coq based MaxChecker can then be used to get Coq to
accept proofs from a range of other proof systems. The first author plans such
a Coq implementation as part of his Ph.D. dissertation.

It is possible (at least in some logical settings) to leave out some details
from a proof certificate while still providing for determinant proof checking. For
example, consider the variant of the maximal FPC in which no substitution
terms are stored: specifically, redefine the type as well as the clerk and expert
predicates in Fig. 3 for the maxv and maxt constructors as follows.
type maxv max -> max.
type maxt max -> max.

allC (max N (maxv C)) (max N C).
someE (max N (maxt A)) (max N A) T.

Certificates of this modified format will not contain any reference to eigenvari-
ables or to substitution terms (existential witnesses). A proof checker for such
certificates can, however, use so-called logic variables instead of explicit wit-
ness terms and then perform unification during the implementation of the initial
rule. Since the unification of first-order terms (even in the presence of eigen-
variables and their associated constraints) is determinate, such proof checking
will not involve the need to perform backtracking search. The main downside

http://proofcert.github.io

268 R. Blanco et al.

for this variant of the maximally explicit certificate is that checking will involve
the somewhat more complex operation of unification. Of course, such unifica-
tion must deal with either Skolem functions or eigenvariables in order to address
quantifier alternation. (λProlog treats eigenvariables directly since it implements
unification under a mixed quantifier prefix [33].)

7 Some Experiments with Certificate Elaboration

We have experimented with various uses of certificate pairing and we report
briefly on some of those experiments here. The code, data, and results from
these experiments are available at proofcert.github.io.

We have used pairing in our λProlog checker in order to distil and elaborate
a number of matrix-style (cut-free) proofs: for example, we have elaborated the
cnf proof certificates (Sect. 4.2) into matings [3] and elaborated the decide depth
FPC into an FPC based on oracle strings (see [17, Sect. 7]). Furthermore, these
various certificate formats can be elaborated to the maximally explicit certificate.
Since these certificate formats are seldom used in actual theorem provers, we
describe below our more extensive experiments with resolution refutations.

We have defined three variations on the FPC definition of resolution with
factoring that is given in Sect. 4.3. Let us call the FPC given above in Sect. 4.3
unordered-without, meaning that that format does not store substitution infor-
mation and that when the certificate contains the triple 〈i, j, k〉, the order in
which one decides on i and j is unknown. (Existing resolution systems might
not offer to order these indexes.) We also defined the ordered-without format:
in that case, the triple 〈i, j, k〉 means that i must be decided on before j. This
certificate format is a simple modification of the one in Sect. 4.3: just one line
of the decide expert is deleted from the unordered-without FPC definition.
Finally, a third variant ordered-with was also defined: this certificate retains
substitution and eigenvariable information as well.

Our goal is to certify the output of a bona fide, complex proving tool, that is
sufficiently powerful to provide us with reasonably sized and publicly available
proof corpora. To that end, we have selected Prover9 [32], a legacy, automated
theorem prover of modest capabilities: an important feature for our experiment
is that Prover9’s output exposes a relatively simple and well-documented reso-
lution calculus. We have taken the full set of Prover9 refutations in the TPTP
library [49]—a total of 2668 in version 6.4.0—and excluded 52 files with irregular
formatting (the resulting set of examples is precisely that of version 6.3.0). Of
these, 978 fall in the fragment supported by the resolution FPCs; 27 are empty
proofs that refute false. The two largest problems are extreme outliers, also
excluded since they would be of limited utility to establish or confirm trends.
Each problem is expanded into a detailed proof with Prover9’s Prooftrans tool.
This proof is parsed and a proof certificate for the unordered FPC is extracted,
along with type signatures for atoms and terms. The λProlog runtime uses pair-
ing to elaborate and check the more explicit certificates, and it outputs the
formula and the maximally explicit certificate to MaxChecker.

http://proofcert.github.io

Translating Between Implicit and Explicit Versions of Proof 269

0e+00

1e+05

2e+05

3e+05

4e+05

0 20000 40000 60000
Payload size of unordered translation

Pa
yl

oa
d

si
ze

 o
f e

la
bo

ra
tio

ns

0

2

4

6

0 25000 50000 75000 100000
Payload size of problem up to 100000

EL
PI

 c
he

ck
in

g
tim

e
in

 s
ec

on
ds

Data series: unordered-without, ordered-without, ordered-with, maximal.

Fig. 4. Complexity of certificate elaboration

Figure 4 shows a summary of our experiments with this output from Prover9.
The size of a formula or term is simply a count of the number of constructors in
that formula or term. The size of resolution certificates is defined here to be the
sum of the sizes of the initial and derived clauses along with their justifications.
The size of maximally explicit certificates is defined as the size of the actual
certificate term plus the size of the original set of clauses. Certificate sizes grow as
they are made more explicit, but the blowup here is bounded by small constants.
Elaborating from unordered-without to ordered-without causes no change in
size while elaborating further to ordered-with generally grows certificates by
16%. Finally, elaborating to the maximally explicit certificate causes an increase
by an average factor of 2.8 (although that factor ranges from 1.02 to 6.54). Here,
a natural number is counted as one symbol; the unary representation of numbers
causes a blowup in size (the average factor being 5.8 with range from 1.2 to 361).

The second graph in Fig. 4 shows that the more detailed a certificate is, the
faster it is to check. For example, a certificate in the unordered-without format
of 75000 symbols can be checked in 6 or more seconds: a similarly sized certificate
in the maximally explicit format can be checked in less than a second.

The choice of Teyjus [39] or ELPI [20] as λProlog runtime yields qualitatively
similar results, but shows significant performance differences and asymmetries,
especially in the substantial elaboration overhead; in general, ELPI is faster. The
checking times for the MaxChecker on the large, maximally explicit certificates
running in OCaml are negligible compared to elaboration times within λProlog:
in particular, MaxChecker always ran in less than 0.01 seconds on each example
displayed in Fig. 4.

We have successfully checked all resolution refutations produced by Prover9
that involved binary resolution and factoring. In order to capture all of Prover9’s
proofs in the TPTP repository we need to add support for paramodulation: the
FPC for paramodulation given in [14] is a starting point.

270 R. Blanco et al.

8 Conclusions

In this paper, we have analyzed the nature of some simple proof structures whose
definitions are established using the Foundational Proof Certificate (FPC) frame-
work. We have illustrated several versions of such proofs that occupy different
positions on the spectrum between implicit and explicit proof. Both extremes are
possible with the FPC setting. Of course, the nature and effectiveness of proof
checkers can be greatly impacted by how implicit or explicit such proof formats
are. As we illustrated, it is possible for implicit proof structures to be rather small
but expensive to check: for example, constant sized with exponential checking
time (Sect. 4.2). On the other hand, they can also contain more details and be
much easier to check. We have also noted that logic programming provides a
simple, immediate, and sound proof checker for any formal FPC definition.

We then introduced the notion of formally pairing two certificates into one:
when such a paired certificate is checked, it is possible for information to flow
between proof certificates (which may store different aspects of a proof) with
the implementation of the kernel (which must ultimately generate all details of
a proof). In this way, checking an implicit certificate can lead to the construction
of a more explicit certificate. In fact, we illustrated how it was possible to define
a maximally explicit proof certificate in which enough details are present that
a simple functional program (in our case, written in OCaml) is able to check
the proof without needing backtracking search and unification. As such, if one
is not willing to trust a logic programming checker, it is possible to use the logic
programming checker to expand an implicit proof to a maximally explicit proof
certificate and then certify the answer using the simpler (presumably) trusted
functional program.

The pairing of proof certificates can be used with other tasks elaborating
certificates. Distilling of proofs, the converse of elaboration, might also be useful
in the analysis of proofs. For example, pairing can be used to extract from any
certificate the tree of cut formulas used within it or to compute its decide depth.

While the discussion in this paper has been limited to treating classical first-
order logic, focusing proof systems and the FPC framework have also been pro-
posed for first-order intuitionistic logic [17,29] as well as logics extended with
least and greatest fixed points [5,6]. As a result, most of the points described in
this paper can also be applied to those settings as well.

Acknowledgement. We thank the anonymous reviewers for their comments on an
earlier version of this paper. This work was funded, in part, by the ERC Advanced
Grant ProofCert.

References

1. Andreoli, J.-M.: Logic programming with focusing proofs in linear logic. J. Logic
Comput. 2(3), 297–347 (1992)

2. Andrews, P.B.: Refutations by matings. IEEE Trans. Comput. 25(8), 801–807
(1976)

Translating Between Implicit and Explicit Versions of Proof 271

3. Andrews, P.B.: Theorem proving via general matings. J. ACM 28(2), 193–214
(1981)

4. Assaf, A., Burel, G.: Translating HOL to Dedukti. In: Kaliszyk, C., Paskevich,
A. (eds.) Proceedings Fourth Workshop on Proof eXchange for Theorem Proving,
PxTP 2015. EPTCS, vol. 186, Berlin, Germany, pp. 74–88, 2–3 August 2015

5. Baelde, D.: Least and greatest fixed points in linear logic. ACM Trans. Comput.
Logic 13(1), 2:1–2:44 (2012)

6. Baelde, D., Miller, D.: Least and greatest fixed points in linear logic. In: Dershowitz,
N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 92–106. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-75560-9 9

7. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom.
Reasoning 28(3), 321–336 (2002)

8. Blanco, R., Miller, D.: Proof outlines as proof certificates: a system description. In:
Cervesato, I., Schürmann, C. (eds.) Proceedings of the First International Work-
shop on Focusing. Electronic Proceedings in Theoretical Computer Science, vol.
197, pp. 7–14. Open Publishing Association, November 2015

9. Boespflug, M., Carbonneaux, Q., Hermant, O.: The λΠ-calculus modulo as a
universal proof language. In: Pichardie, D., Weber, T. (eds.) Proceedings of PxTP
2012: Proof Exchange for Theorem Proving, pp. 28–43 (2012)

10. Borras, P., Clément, D., Despeyroux, T., Incerpi, J., Kahn, G., Lang, B., Pascual,
V.: Centaur: the system. In: Third Annual Symposium on Software Development
Environments (SDE3), Boston, pp. 14–24 (1988)

11. Boutin, S.: Using reflection to build efficient and certified decision procedures. In:
Abadi, M., Ito, T. (eds.) TACS 1997. LNCS, vol. 1281, pp. 515–529. Springer,
Heidelberg (1997). doi:10.1007/BFb0014565

12. Chaudhuri, K., Hetzl, S., Miller, D.: A multi-focused proof system isomorphic to
expansion proofs. J. Logic Comput. 26(2), 577–603 (2016)

13. Chihani, Z.: Certification of First-order proofs in classical and intuitionistic logics.
Ph.D. thesis, Ecole Polytechnique, August 2015

14. Chihani, Z., Libal, T., Reis, G.: The proof certifier Checkers. In: Nivelle, H. (ed.)
TABLEAUX 2015. LNCS, vol. 9323, pp. 201–210. Springer, Cham (2015). doi:10.
1007/978-3-319-24312-2 14

15. Chihani, Z., Miller, D.: Proof certificates for equality reasoning. In: Benevides, M.,
Thiemann, R. (eds.) Post-proceedings of LSFA 2015: 10th Workshop on Logical and
Semantic Frameworks, with Applications. ENTCS, vol. 323, Natal, Brazil (2016)

16. Chihani, Z., Miller, D., Renaud, F.: Foundational proof certificates in first-order
logic. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp. 162–177. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-38574-2 11

17. Chihani, Z., Miller, D., Renaud, F.: A semantic framework for proof evidence. J.
Autom. Reasoning. doi:10.1007/s10817-016-9380-6

18. Cousineau, D., Dowek, G.: Embedding pure type systems in the Lambda-Pi-
Calculus modulo. In: Rocca, S.R. (ed.) TLCA 2007. LNCS, vol. 4583, pp. 102–117.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-73228-0 9

19. Davis, M.: Obvious logical inferences. In: Drinan, A. (ed.) Proceedings of the 7th
International Joint Conference on Artificial Intelligence (IJCAI 1981), pp. 530–531.
William Kaufmann, Los Altos, August 1991

20. Dunchev, C., Guidi, F., Sacerdoti Coen, C., Tassi, E.: ELPI: fast, embeddable,
λProlog interpreter. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.)
LPAR 2015. LNCS, vol. 9450, pp. 460–468. Springer, Heidelberg (2015). doi:10.
1007/978-3-662-48899-7 32

http://dx.doi.org/10.1007/978-3-540-75560-9_9
http://dx.doi.org/10.1007/BFb0014565
http://dx.doi.org/10.1007/978-3-319-24312-2_14
http://dx.doi.org/10.1007/978-3-319-24312-2_14
http://dx.doi.org/10.1007/978-3-642-38574-2_11
http://dx.doi.org/10.1007/s10817-016-9380-6
http://dx.doi.org/10.1007/978-3-540-73228-0_9
http://dx.doi.org/10.1007/978-3-662-48899-7_32
http://dx.doi.org/10.1007/978-3-662-48899-7_32

272 R. Blanco et al.

21. Dyckhoff, R.: Contraction-free sequent calculi for intuitionistic logic. J. Symbolic
Logic 57(3), 795–807 (1992)

22. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System
description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS,
vol. 9706, pp. 293–301. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 20

23. Gentzen, G.: Investigations into logical deduction. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1935)

24. Hannan, J.: Extended natural semantics. J. Funct. Program. 3(2), 123–152 (1993)
25. Harper, R., Honsell, F., Plotkin, G.: A framework for defining logics. J. ACM

40(1), 143–184 (1993)
26. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique.

Technical report, Citeseer (1995)
27. Harrison, J., Urban, J., Wiedijk, F.: History of interactive theorem proving. In:

Siekmann, J. (ed.) Computational Logic. Handbook of the History of Logic, vol.
9, pp. 135–214. North Holland (2014)

28. Heath, Q., Miller, D.: A framework for proof certificates in finite state exploration.
In: Kaliszyk, C., Paskevich, A. (eds.) Proceedings of the Fourth Workshop on Proof
eXchange for Theorem Proving. Electronic Proceedings in Theoretical Computer
Science, vol. 186, pp. 11–26. Open Publishing Association, August 2015

29. Liang, C., Miller, D.: Focusing and polarization in linear, intuitionistic, and clas-
sical logics. Theor. Comput. Sci. 410(46), 4747–4768 (2009)

30. Libal, T., Volpe, M.: Certification of prefixed tableau proofs for modal logic. In:
The Seventh International Symposium on Games, Automata, Logics and For-
mal Verification (GandALF 2016). EPTCS, vol. 226, Catania, Italy, pp. 257–271,
September 2016

31. Marin, S., Miller, D., Volpe, M.: A focused framework for emulating modal proof
systems. In: Beklemishev, L., Demri, S., Máté, A. (eds.) 11th Conference on
Advances in Modal Logic. Advances in Modal Logic, vol. 11, Budapest, Hungary,
pp. 469–488. College Publications, August 2016

32. McCune, W.: Prover9 and mace4 (2010). http://www.cs.unm.edu/∼mccune/
prover9/

33. Miller, D.: Unification under a mixed prefix. J. Symbolic Comput. 14(4), 321–358
(1992)

34. Miller, D.: Formalizing operational semantic specifications in logic. In: Proceed-
ings of the 17th International Workshop on Functional and (Constraint) Logic
Programming (WFLP 2008), vol. 246, pp. 147–165, August 2009

35. Miller, D.: Proof checking and logic programming. Formal Aspects Comput. 29(3),
383–399 (2017)

36. Miller, D., Nadathur, G.: Programming with Higher-Order Logic. Cambridge
University Press, Cambridge (2012)

37. Miller, D., Volpe, M.: Focused labeled proof systems for modal logic. In: Davis,
M., Fehnker, A., McIver, A., Voronkov, A. (eds.) Logic for Programming, Artificial
Intelligence, and Reasoning (LPAR). LNCS, vol. 9450. Springer, Heidelberg (2015)

38. Miller, D.A.: Expansion tree proofs and their conversion to natural deduction
proofs. In: Shostak, R.E. (ed.) CADE 1984. LNCS, vol. 170, pp. 375–393. Springer,
New York (1984). doi:10.1007/978-0-387-34768-4 22

39. Nadathur, G., Mitchell, D.J.: System description: Teyjus—a compiler and abstract
machine based implementation of λProlog. In: Ganzinger, H. (ed.) CADE
1999. LNCS, vol. 1632, pp. 287–291. Springer, Heidelberg (1999). doi:10.1007/
3-540-48660-7 25

http://dx.doi.org/10.1007/978-3-319-40229-1_20
http://www.cs.unm.edu/~mccune/prover9/
http://www.cs.unm.edu/~mccune/prover9/
http://dx.doi.org/10.1007/978-0-387-34768-4_22
http://dx.doi.org/10.1007/3-540-48660-7_25
http://dx.doi.org/10.1007/3-540-48660-7_25

Translating Between Implicit and Explicit Versions of Proof 273

40. Necula, G.C.: Proof-carrying code. In: Conference Record of the 24th Symposium
on Principles of Programming Languages 1997, Paris, France, pp. 106–119. ACM
Press (1997)

41. Pfenning, F.: Elf: a language for logic definition and verified metaprogramming.
In: 4th International Symposium on Logic in Computer Science, Monterey, CA,
pp. 313–321, June 1989

42. Pfenning, F.: Logic programming in the LF logical framework. In: Huet, G.,
Plotkin, G.D. (eds.) Logical Frameworks, pp. 149–181. Cambridge University Press
(1991)

43. Pientka, B., Dunfield, J.: Beluga: a framework for programming and reason-
ing with deductive systems (system description). In: Giesl, J., Hähnle, R. (eds.)
IJCAR 2010. LNCS, vol. 6173, pp. 15–21. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14203-1 2

44. Plotkin, G.D.: A structural approach to operational semantics. J. Logic Algebraic
Program. 60–61, 17–139 (2004)

45. Pollack, R.: How to believe a machine-checked proof. In: Sambin, G., Smith, J.
(eds.) Twenty Five Years of Constructive Type Theory. Oxford University Press
(1998)

46. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12, 23–41 (1965)

47. Shieber, S.M., Schabes, Y., Pereira, F.C.N.: Principles and implementation of
deductive parsing. J. Logic Program. 24(1–2), 3–36 (1995)

48. Stump, A., Oe, D., Reynolds, A., Hadarean, L., Tinelli, C.: SMT proof checking
using a logical framework. Formal Methods Syst. Des. 42(1), 91–118 (2013)

49. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

50. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd edn. Cambridge
University Press, Cambridge (2000)

http://dx.doi.org/10.1007/978-3-642-14203-1_2
http://dx.doi.org/10.1007/978-3-642-14203-1_2

A Unifying Principle for Clause Elimination
in First-Order Logic

Benjamin Kiesl(B) and Martin Suda(B)

Institute of Information Systems, Vienna University of Technology, Vienna, Austria
kiesl@kr.tuwien.ac.at, msuda@forsyte.at

Abstract. Preprocessing techniques for formulas in conjunctive normal
form play an important role in first-order theorem proving. To speed up
the proving process, these techniques simplify a formula without affect-
ing its satisfiability or unsatisfiability. In this paper, we introduce the
principle of implication modulo resolution, which allows us to lift sev-
eral preprocessing techniques—in particular, several clause-elimination
techniques—from the SAT-solving world to first-order logic. We analyze
confluence properties of these new techniques and show how implication
modulo resolution yields short soundness proofs for the existing first-
order techniques of predicate elimination and blocked-clause elimination.

1 Introduction

Automatic theorem provers often have to deal with formulas that contain a con-
siderable amount of redundant information. To speed up the proving process,
they therefore usually employ dedicated preprocessing methods that aim at sim-
plifying formulas as much as possible [1,2]. Since most provers are based on
proof systems that require formulas to be in conjunctive normal form (CNF),
preprocessing techniques operating on the clause level play a particularly impor-
tant role. Research on SAT and on quantified Boolean formulas has given rise to
a wide variety of CNF preprocessing techniques that significantly improve the
performance of modern solvers [3], but for many of these techniques it was not
clear whether they could be lifted to the level of first-order logic.

In this paper, we address this issue and introduce the principle of implica-
tion modulo resolution—a first-order generalization of quantified implied outer
resolvents as introduced by Heule et al. [4] in the context of quantified Boolean
formulas. Informally, a clause C is implied modulo resolution by a CNF for-
mula F (which can be seen as a set of clauses) if C contains a literal such that
all resolvents upon this literal are implied by F \{C}. Here, by all resolvents we
mean all resolvents with clauses in F \ {C}. In other words, although F \ {C}

This work has been supported by the Austrian Science Fund (FWF) under projects
W1255-N23, S11403-N23, and S11409-N23, by the ERC Starting Grant 2014 SYM-
CAR 639270, and by the National Science Foundation (NSF) under grant number
CCF-1618574.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 274–290, 2017.
DOI: 10.1007/978-3-319-63046-5 17

A Unifying Principle for Clause Elimination in First-Order Logic 275

might not necessarily imply the clause C, it implies all the conclusions that can
be derived with C via resolution upon one of its literals. We show that this suf-
fices to ensure that C can be removed from F without affecting the satisfiability
or unsatisfiability of F .

The importance of implication modulo resolution lies in the fact that it allows
us to construct soundness proofs for numerous preprocessing techniques. We
therefore use the principle of implication modulo resolution to lift several SAT-
preprocessing techniques to first-order logic without equality. These techniques,
which have not been available in first-order logic so far, include clause-elimination
procedures for covered clauses (CC) [5], asymmetric tautologies (AT) [6], resolu-
tion asymmetric tautologies (RAT) [7], and resolution subsumed clauses (RS) [7].
Moreover, we show how the use of implication modulo resolution yields short
soundness proofs for the existing preprocessing techniques of blocked-clause elim-
ination [8,9] and predicate elimination [2], again in the restricted case of first-
order logic without equality.

Covered clauses are a generalization of the above-mentioned blocked clauses
(which we discuss briefly in Sect. 4). To detect whether a clause is covered, one
first adds a number of so-called covered literals to it and then checks whether
the resulting clause is a blocked clause. Covered-clause elimination is more pow-
erful than blocked-clause elimination in the sense that it implicitly removes all
blocked clauses from a formula. As blocked-clause elimination leads to significant
performance improvements of first-order theorem provers [8] and since the elim-
ination of covered clauses has been shown to speed up modern SAT solvers [10],
we expect covered-clause elimination to further boost prover performance.

Asymmetric tautologies and resolution asymmetric tautologies owe their pop-
ularity to the fact that their addition and elimination can simulate most of the
reasoning techniques employed by state-of-the-art SAT solvers [7]. Because of
this, they provide the basis for the well-known DRAT proof system [11], which is
the de-facto standard for unsatisfiability proofs in practical SAT solving. Finally,
the elimination of resolution subsumed clauses is another promising technique
from the SAT world whose soundness on the first-order level can be easily shown
using the principle of implication modulo resolution.

The main contributions of this paper are as follows: (1) We introduce the prin-
ciple of implication modulo resolution. (2) We use implication modulo resolution
to lift several clause-elimination techniques from the SAT world to first-order
logic. (3) We show how implication modulo resolution yields short soundness
proofs for existing preprocessing techniques from the literature. (4) We analyze
confluence properties of the preprocessing techniques.

2 Preliminaries

We assume the reader to be familiar with the basics of first-order logic. As usual,
formulas of a first-order language L are built using predicate symbols, function
symbols, and constants from some given alphabet together with logical connec-
tives, quantifiers, and variables. We use the letters P,Q,R, S, . . . as predicate

276 B. Kiesl and M. Suda

symbols and the letters f, g, h, . . . as non-constant function symbols. Moreover,
we use the letters a, b, c, . . . for constants and the letters x, y, z, u, v, . . . for vari-
ables (possibly with subscripts). An expression (i.e., a term, literal, formula, etc.)
is ground if it contains no variables.

A literal is an atom or the negation of an atom, and a disjunction of literals
is a clause. For a literal L, we define L̄ = ¬P if L = P and L̄ = P if L = ¬P ,
where P is an atom. In the former case, L is of positive polarity ; in the latter
case, it is of negative polarity. If not stated otherwise, formulas are assumed to
be in conjunctive normal form (CNF), i.e., a conjunction of clauses. Without loss
of generality, clauses are assumed to be variable disjoint. Variables occurring in
a CNF formula are implicitly universally quantified. We treat CNF formulas as
sets of clauses and clauses as multisets of literals. A clause is a tautology if it
contains both L and L̄ for some literal L.

Regarding the semantics, we use the standard notions of interpretation,
model, validity, satisfiability, and logical equivalence. We say that two formu-
las are equisatisfiable if they are either both satisfiable or both unsatisfiable.
A propositional assignment is a mapping from ground atoms to the truth val-
ues 1 (true) and 0 (false). Accordingly, a set of ground clauses is propositionally
satisfiable if there exists a propositional assignment that satisfies F under the
usual semantics for the logical connectives. We sometimes write assignments as
sequences of literals where a positive (negative) polarity of a literal indicates
that the truth value 1 (0, respectively) is assigned to the literal’s atom.

A substitution is a mapping from variables to terms that agrees with the
identity function on all but finitely many variables. Let σ be a substitution. The
domain, dom(σ), of σ is the set of variables for which σ(x) �= x. The range,
ran(σ), of σ is the set {σ(x) | x ∈ dom(σ)}. We denote the inverse substitution
of σ, which is just the inverse function of σ, by σ−1. A substitution is ground
if its range consists only of ground terms. As common, Eσ denotes the result
of applying σ to the expression E. If Eσ is ground, it is a ground instance of
E. Juxtaposition of substitutions denotes their composition, i.e., xστ stands
for τ(σ(x)). The substitution σ is a unifier of the expressions E1, . . . , En if
E1σ = · · · = Enσ. For substitutions σ and τ , we say that σ is more general
than τ if there exists a substitution λ such that σλ = τ . Furthermore, σ is a
most general unifier (mgu) of E1, . . . , En if, for every unifier τ of E1, . . . , En, σ
is more general than τ . It is well-known that whenever a set of expressions is
unifiable, there exists an idempotent most general unifier of this set. In the rest
of the paper, we use a popular variant of Herbrand’s Theorem [12]:

Theorem 1. A formula F is satisfiable if and only if every finite set of ground
instances of clauses in F is propositionally satisfiable.

Next, we introduce a formal notion of clause redundancy. Intuitively, a clause
C is redundant w.r.t. a formula F if its removal from F does not affect the
satisfiability or unsatisfiability of F [4]:

Definition 1. A clause C is redundant w.r.t. a formula F if F and F \ {C} are
equisatisfiable.

A Unifying Principle for Clause Elimination in First-Order Logic 277

Note that this notion of redundancy does not require logical equivalence of F and
F \ {C}, and that it differs from other well-known redundancy notions such as
the one of Bachmair and Ganzinger that is usually employed within the context
of ordered resolution [13]. It provides the basis for clause-elimination procedures.
Note also that the redundancy of a clause C w.r.t. a formula F can be shown
by proving that the satisfiability of F \ {C} implies the satisfiability of F .

Finally, given two clauses C = L1 ∨ · · · ∨ Lk ∨ C ′ and D = N1 ∨ · · · ∨ Nl ∨ D′

such that the literals L1, . . . , Lk, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause
C ′σ∨D′σ is said to be a resolvent of C and D. If k = l = 1, it is a binary resolvent
of C and D upon L1.

3 Implication Modulo Resolution

In this section, we introduce the central concept of this paper—the principle
of implication modulo resolution for first-order logic. We use the results of this
section in subsequent sections to prove the soundness of various first-order pre-
processing techniques. The definition of implication modulo resolution relies on
the notion of L-resolvents:

Definition 2. Given two clauses C = L ∨ C ′ and D = N1 ∨ · · · ∨ Nl ∨ D′ such
that the literals L, N̄1, . . . , N̄l are unifiable by an mgu σ, the clause C ′σ ∨ D′σ
is called L-resolvent of C and D.

Example 1. Let C = P (x)∨Q(x), D = ¬P (y)∨¬P (z)∨R(y, z), and L = P (x).
Then, the substitution σ = {y �→ x, z �→ x} is an mgu of P (x), P (y), and P (z).
Therefore, Q(x) ∨ R(x, x) is an L-resolvent of C and D. ��
Before we next define the principle of implication modulo resolution, we want to
highlight that whenever we say that a formula F implies a clause C, we mean
that every model of F is a model of C, that is, F |= C.

Definition 3. A clause C is implied modulo resolution upon L ∈ C by a formula
F if all L-resolvents of C, with clauses in F \ {C}, are implied by F \ {C}.

We say that a clause C is implied modulo resolution by F if F implies C modulo
resolution upon one of its literals. A simple example for clauses that are implied
modulo resolution are clauses with pure literals. A pure literal is a literal whose
predicate symbol occurs in only one polarity in the whole formula. Since there
are no resolvents upon such a literal, the containing clause is trivially implied
modulo resolution. The following example is a little more involved:

Example 2. Let C = P (x) ∨ Q(x) and

F = {P (x) ∨ Q(x), ¬P (y) ∨ R(y), R(z) ∨ S(z), ¬S(u) ∨ Q(u)}.

There is one P (x)-resolvent of C, namely Q(x) ∨ R(x), obtained by resolving C
with ¬P (y) ∨ R(y). Clearly, this resolvent is implied by the clauses R(z) ∨ S(z)
and ¬S(u) ∨ Q(u). Therefore, F implies C modulo resolution upon P (x). ��

278 B. Kiesl and M. Suda

In the following, we prove that implication modulo resolution ensures redun-
dancy, i.e., if a clause C is implied modulo resolution by a formula F , then
C is redundant w.r.t. F . The proof relies on Herbrand’s Theorem (Theorem 1),
which tells us that a formula F is satisfiable if and only if all finite sets of ground
instances of clauses in F are propositionally satisfiable.

To prove that the satisfiability of F \ {C} implies the satisfiability of F , we
proceed as follows: Given a finite set of ground instances of clauses in F , we can
obtain a satisfying propositional assignment of this set from an assignment that
satisfies all the ground instances of clauses in F \ {C}. The latter assignment
is guaranteed to exist because F \ {C} is satisfiable. The key idea behind the
modification of this assignment is to flip (interchange) the truth values of certain
ground literals. We illustrate this on the following example:

Example 3. Consider C and F from Example 2, let C ′ = P (a)∨Q(a) be a ground
instance of C, and F ′ = {P (a)∨Q(a),¬P (a)∨R(a), R(a)∨S(a), ¬S(a)∨Q(a)}
a finite set of ground instances of F (in fact, F ′ is even a ground instance
of F). Clearly, F ′ \ {C ′} is propositionally satisfied by the assignment α =
¬P (a)R(a)¬S(a)¬Q(a), but α falsifies C ′. However, we can turn α into a sat-
isfying assignment of C ′ by flipping the truth value of P (a)—the instance of
the literal upon which C is implied modulo resolution. The resulting assignment
α′ = P (a)R(a)¬S(a)¬Q(a) could possibly falsify the clause ¬P (a) ∨ R(a) since
it contains ¬P (a) which is not satisfied anymore. But, the clause stays true since
R(a) is satisfied by α′. Therefore, α′ satisfies F ′. ��
In the above example, it is not a coincidence that ¬P (a) ∨ R(a) is still satisfied
after flipping the truth value of P (a). The intuitive explanation is as follows:
The clause Q(a) ∨ R(a) is a ground instance of the P (x)-resolvent Q(x) ∨ R(x)
(of C and ¬P (y)∨R(y)) which is implied by F \{C}. Therefore, since α satisfies
all the ground instances of F \{C}, it should also satisfy Q(a)∨R(a). But, since
α does not satisfy Q(a) (because α falsifies C ′ = P (a) ∨ Q(a)), it must satisfy
R(a), and so it satisfies ¬P (a) ∨ R(a). Finally, since α′ disagrees with α only on
P (a), it also satisifies R(a). The following lemma formalizes this observation:

Lemma 2. Let C be a clause that is implied modulo resolution upon L by F . Let
furthermore α be an assignment that propositionally satisfies all ground instances
of clauses in F \ {C} but falsifies a ground instance Cλ of C. Then, the assign-
ment α′, obtained from α by flipping the truth value of Lλ, still satisfies all
ground instances of clauses in F \ {C}.
Proof. Let Dτ be a ground instance of a clause D ∈ F \ {C} and suppose α
satisfies Dτ . If Dτ does not contain L̄λ, it is trivially satisfied by α′. Assume
therefore that L̄λ ∈ Dτ and let N1, . . . , Nl be all the literals in D such that
Niτ = L̄λ for 1 ≤ i ≤ l. Then, the substitution λτ = λ ∪ τ (note that C
and D are variable disjoint by assumption) is a unifier of L, N̄1, . . . , N̄l. Hence,
R = (C \ {L})σ ∨ (D \ {N1, . . . , Nl})σ, with σ being an mgu of L, N̄1, . . . , N̄l, is
an L-resolvent of C and thus implied by F \ {C}.

A Unifying Principle for Clause Elimination in First-Order Logic 279

As σ is most general, it follows that there exists a substitution γ such that
σγ = λτ . Therefore,

(C \ {L})σγ ∨ (D \ {N1, . . . , Nl})σγ
= (C \ {L})λτ ∨ (D \ {N1, . . . , Nl})λτ
= (C \ {L})λ ∨ (D \ {N1, . . . , Nl})τ

is a ground instance of R and so it must be satisfied by α. Thus, since α falsifies
Cλ, it must satisfy a literal L′τ ∈ (D \ {N1, . . . , Nl})τ . But, as all the literals in
(D \ {N1, . . . , Nl})τ are different from L̄λ, flipping the truth value of Lλ does
not affect the truth value of L′τ . It follows that α′ satisfies L′τ and thus it
satisfies Dτ . ��
We can therefore satisfy a ground instance Cλ of C without falsifying ground
instances of clauses in F \ {C}, by flipping the truth value of Lλ—the ground
instance of the literal L upon which C is implied modulo resolution. Still, as
the following example shows, there could be other ground instances of C that
contain the complement L̄λ of Lλ:

Example 4. Suppose some formula F implies the clause C = ¬P (x) ∨ P (f(x))
modulo resolution upon the literal P (f(x)) and consider two possible ground
instances C1 = ¬P (a) ∨ P (f(a)) and C2 = ¬P (f(a)) ∨ P (f(f(a))) of C. The
assignment P (a)¬P (f(a))¬P (f(f(a))) falsifies C1, but we can satisfy C1 by
flipping the truth value of P (f(a))—the ground instance of P (f(x))—to obtain
the assignment P (a)P (f(a))¬P (f(f(a))). However, by flipping the truth value
of P (f(a)), we falsified the other ground instance C2 of C. ��
That this is not a serious problem is shown in the proof of our main result below.
The key idea is to repeatedly satisfy ground instances of the literal upon which
the clause is implied modulo resolution. In the above example, for instance, we
can continue by also flipping the truth value of P (f(f(a)) to obtain a satisfying
assignment of both C1 and C2.

Theorem 3. If a clause C is implied modulo resolution by a formula F , it is
redundant w.r.t. F .

Proof. Assume that F implies C modulo resolution upon L ∈ C and that F \{C}
is satisfiable. We show that F is satisfiable. By Herbrand’s theorem (Theorem 1),
it suffices to show that every finite set of ground instances of clauses in F is propo-
sitionally satisfiable. Let therefore F ′ and FC be finite sets of ground instances of
clauses in F \{C} and {C}, respectively. Since F \{C} is satisfiable, there exists
an assignment α that propositionally satisfies all ground instances of clauses in
F \{C} and thus it clearly satisfies F ′. Assume now that α falsifies some ground
instances of C that are contained in FC .

By Lemma 2, for every falsified ground instance Cλ of C, we can turn α into
a satisfying assignment of Cλ by flipping the truth value of Lλ, and this flipping
does not falsify any ground instances of clauses in F \ {C}. The only clauses
that could possibly be falsified are other ground instances of C that contain the

280 B. Kiesl and M. Suda

literal L̄λ. But, once an instance Lτ of L is true in a ground instance Cτ of C, Lτ
cannot (later) be falsified by making other instances of L true. As there are only
finitely many clauses in FC , we can therefore turn α into a satisfying assignment
of F ′∪FC by repeatedly making ground instances of C true by flipping the truth
values of their instances of L. Hence, all finite sets of ground instances of clauses
in F are propositionally satisfiable and so F is satisfiable. ��
For example, the clause C in Example 2 is redundant w.r.t. F since it is implied
modulo resolution by F . In what follows, we use Theorem 3 to prove soundness of
several first-order preprocessing techniques. We start with blocked-clause elim-
ination, as both resolution asymmetric tautologies and covered clauses (which
we introduce later) can be seen as generalizations of blocked clauses.

4 Blocked Clauses

Blocked clauses have been introduced by Kullmann [14], and their elimination
significantly improves the performance of SAT [9] and QSAT solvers [15,16].
Also the first-order variant of blocked-clause elimination speeds up automatic
theorem provers, especially on satisfiable formulas [8]. In propositional logic, a
clause C is blocked in a formula F if it contains a literal L such that all binary
resolvents of C upon L, with clauses in F \ {C}, are tautologies. In first-order
logic, the notion of binary resolvents is replaced by L-resolvents [8]:

Definition 4. A clause C is blocked by a literal L ∈ C in a formula F if all
L-resolvents of C, with clauses in F \ {C}, are tautologies.

Example 5. Let C = P (x) ∨ ¬Q(x) and F = {P (x) ∨ ¬Q(x), ¬P (y) ∨ Q(y)}.
There is only one P (x)-resolvent of C, namely the tautology ¬Q(x) ∨ Q(x),
obtained by using the mgu σ = {y �→ x}. Therefore, C is blocked in F . ��
Since tautologies are trivially implied by every formula, blocked clauses are
implied modulo resolution. The redundancy of blocked clauses, and therefore
the soundness of blocked-clause elimination, is thus a consequence of the fact
that implication modulo resolution ensures redundancy (Theorem 3):

Theorem 4. If a clause is blocked in a formula F , it is redundant w.r.t. F .

5 Asymmetric Tautologies and RATs

In this section, we first discuss the propositional notions of asymmetric tau-
tologies and resolution asymmetric tautologies before lifting them to first-order
logic. We start with asymmetric tautologies, which we use later to define reso-
lution asymmetric tautologies. An asymmetric tautology is a clause that can be
turned into a tautology by repeatedly adding so-called asymmetric literals to it.
In propositional logic, a literal L is an asymmetric literal w.r.t. a clause C in
a formula F if there exists a clause D ∨ L̄ ∈ F \ {C} such that D subsumes
C, i.e., D ⊆ C. The addition of an asymmetric literal L to a clause C yields a
clause that is logically equivalent in the sense that F \ {C} |= (C ≡ C ∨ L) [6].
Consider, for instance, the following example:

A Unifying Principle for Clause Elimination in First-Order Logic 281

Example 6. Let C = P ∨Q and F = {P ∨Q, Q∨R, ¬R∨S, P ∨¬R∨¬S}. Since
the subclause Q of Q ∨ R subsumes C, the literal ¬R is an asymmetric literal
w.r.t. C. We thus add it to C to obtain C1 = P ∨ Q ∨ ¬R. We then use ¬R ∨ S
to add ¬S to C1 and obtain C2 = P ∨Q∨¬R∨¬S. Finally, we use P ∨¬R∨¬S
to add ¬P to C2, and so we end up with C3 = P ∨ Q ∨ ¬R ∨ ¬S ∨ ¬P , which
is a tautology. It follows that C is an asymmetric tautology in F . Moreover, by
transitivity, F \ {C} |= (C ≡ C3) and thus C is redundant w.r.t. F . ��
In first-order logic, a clause C subsumes a clause D if there exists a substitu-
tion λ such that Cλ ⊆ D. This motivates the following first-order variants of
asymmetric literals and asymmetric tautologies.

Definition 5. A literal L is an asymmetric literal w.r.t. a clause C in a for-
mula F if there exist a clause D ∨ L̄′ ∈ F \ {C} and a substitution λ such that
Dλ ⊆ C and L = L̄′λ.

Example 7. Consider the clause C = P (x) ∨ Q(x) ∨ R(x) and the formula F =
{P (x)∨Q(x)∨R(x), P (y)∨Q(y)∨¬S(y)}. Then, S(x) is an asymmetric literal
w.r.t. C in F since, for λ = {y �→ x}, (P (y) ∨ Q(y))λ ⊆ C and S(x) = S(y)λ. ��
First-order asymmetric-literal addition is harmless, because the original clause
C can be obtained from C ∨ L and D ∨ L̄′ via resolution, as shown in the proof
of the following lemma:

Lemma 5. Let F be a formula, C a clause, and L an asymmetric literal w.r.t.
C in F . Then, F \ {C} |= (C ≡ C ∨ L).

Proof. Clearly, C → C∨L is valid. It therefore suffices to prove that C is implied
by (F \ {C}) ∪ {C ∨ L}. Since L is an asymmetric literal w.r.t. C in F , there
exist a clause D ∨ L′ ∈ F \ {C} and a substitution λ such that Dλ ⊆ C and
L̄′λ = L. But then C is a binary resolvent of C ∨ L and Dλ ∨ L′λ upon L. It
follows that C is implied by (F \ {C}) ∪ {C ∨ L}. ��
An asymmetric tautology is now a clause that can be turned into a tautology
by repeatedly adding asymmetric literals (asymmetric-literal addition, ALA):

Definition 6. A clause C is an asymmetric tautology in a formula F if there
exists a sequence L1, . . . , Ln of literals such that each Li is an asymmetric literal
w.r.t. C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology.

Example 8. Consider the clause C = Q(x) ∨ R(x) and the following formula
F = {Q(x)∨R(x), R(z)∨S(z), ¬S(u)∨Q(u)}. The subclause R(z) of R(z)∨S(z)
subsumes R(x) via {z �→ x} and so ¬S(x) is an asymmetric literal w.r.t. C. We
add it and obtain the clause Q(x) ∨ R(x) ∨ ¬S(x). After this, ¬S(u) subsumes
¬S(x) via {u �→ x} and thus ¬Q(x) can be added to obtain the tautology
Q(x) ∨ R(x) ∨ ¬S(x) ∨ ¬Q(x). Thus, C is an asymmetric tautology in F . ��

282 B. Kiesl and M. Suda

Note that in automatic theorem proving, we prefer short clauses over long
ones, since the short clauses are usually stronger. Therefore, when perform-
ing asymmetric-tautology elimination, the asymmetric-literal additions are not
meant to be permanent: We first add the literals and then test whether the
resulting clause is a tautology. If so, we remove the clause; if not, we undo the
asymmetric-literal additions to shrink the clause back to its original size. We
next show that asymmetric tautologies are implied:

Theorem 6. If C is an asymmetric tautology in F , it is implied by F \ {C}.
Proof. Suppose C is an asymmetric tautology in F , i.e., there exists a sequence
L1, . . . , Ln of literals such that each Li is an asymmetric literal w.r.t. the clause
C ∨ L1 ∨ · · · ∨ Li−1 in F \ {C} and C ∨ L1 ∨ · · · ∨ Ln is a tautology. By the
repeated application of Lemma 5 (an easy induction argument), it follows that
F \{C} |= (C ≡ C∨L1∨· · ·∨Ln). But then, since C∨L1∨· · ·∨Ln is a tautology,
it trivially holds that F \ {C} |= C ∨ L1 ∨ · · · ∨ Ln. Therefore, F \ {C} |= C. ��
Unlike in propositional logic, the first-order variant of asymmetric-literal addi-
tion is not guaranteed to terminate. Consider the following example:

Example 9. Let C = P (a) and F = {P (x) ∨ ¬P (f(x))}. Then, since P (x) sub-
sumes P (a) via λ = {x �→ a}, we can add the asymmetric literal P (f(a)) to
obtain P (a) ∨ P (f(a)). After this, we can add P (f(f(a)) via λ = {x �→ f(a)},
then P (f(f(f(a)))) and so on. This can be repeated infinitely many times. ��
A resolution asymmetric tautology in first-order logic is then a clause C that
contains a literal L such that all L-resolvents of C are asymmetric tautologies:

Definition 7. A clause C is a resolution asymmetric tautology (RAT) on a literal
L ∈ C w.r.t. a formula F if all L-resolvents of C, with clauses in F \ {C}, are
asymmetric tautologies in F \ {C}.

Example 10. Consider the clause C = P (x) ∨ Q(x) and the following formula
F = {P (x) ∨ Q(x), ¬P (y) ∨ R(y), R(z) ∨ S(z), ¬S(u) ∨ Q(u)} (cf. Example 2).
There is one P (x)-resolvent of C, namely Q(x)∨R(x). The formula F ∪{Q(x)∨
R(x)} is a superset of the formula from Example 8 in which Q(x) ∨ R(x) is an
asymmetric tautology. Thus, Q(x) ∨ R(x) is also an asymmetric tautology here:
The literal R(z) subsumes R(x) via {z �→ x} and so ¬S(x) is an asymmetric
literal w.r.t. Q(x) ∨ R(x). We add it to obtain Q(x) ∨ R(x) ∨ ¬S(x). After this,
¬S(u) subsumes ¬S(x) via {u �→ x} and so ¬Q(x) can be added to obtain the
tautology Q(x) ∨ R(x) ∨ ¬S(x) ∨ ¬Q(x). It follows that C is a RAT w.r.t. F . ��
Theorem 7. If a clause C is a RAT w.r.t. a formula F , then it is redundant
w.r.t. F .

Proof. Assume that C is a RAT w.r.t. F . Then, every L-resolvent of C with
clauses in F \ {C} is an asymmetric tautology in F \ {C} and therefore, by
Theorem 6, implied by F \ {C}. It follows that C is implied modulo resolution
upon L by F and thus, by Theorem 3, C is redundant w.r.t. F . ��

A Unifying Principle for Clause Elimination in First-Order Logic 283

6 Covered Clauses

In this section, similar to the preceding one, we first recapitulate the notions of
covered literals and covered clauses from propositional logic and then lift them to
the first-order level. Informally, a clause C is covered in a propositional formula
F , if the addition of so-called covered literals to C turns C into a blocked clause.
A clause C covers a literal L′ in F if C contains a literal L such that all non-
tautological resolvents of C upon L contain L′. The crucial property of covered
literals is, that they can be added to C without affecting satisfiability [5]. More
precisely, given a formula F , a clause C ∈ F , and a literal L′ that is covered by
C in F , it holds that F and the formula F ′, obtained from F by replacing C
with C ∨ L′, are equisatisfiable.

Example 11. Consider the clause C = P and the propositional formula F =
{P, ¬P ∨¬Q∨R, ¬P ∨¬Q∨S}. There are two resolvents of C upon P , namely
¬Q ∨ R and ¬Q ∨ S. As ¬Q is contained in both resolvents, it is covered by C
in F . Therefore, replacing C with C ∨ ¬Q in F does not affect satisfiability. ��
We next introduce a first-order variant of covered literals. Our definition guar-
antees that covered-literal addition (CLA) has no effect on satisfiability:

Definition 8. A clause C covers a literal L′ in a formula F if C contains a
literal L such that all non-tautological L-resolvents of C, with clauses in F ∪{C},
contain L′.

Note that resolvents of C with itself are required to contain the literal L′. More-
over, when talking about resolvents of C with itself, we mean resolvents of C
with an instance Cτ of C, where τ is a renaming that maps the variables in C
to fresh variables that do not occur in F .

Example 12. Consider the clause C = P (f(x)) and the formula

F = {¬P (y) ∨ Q(y) ∨ R(y), ¬P (z) ∨ Q(z) ∨ S(z)}.

There are two P (f(x))-resolvents of C: Q(f(x))∨R(f(x)), obtained by using the
mgu {y �→ f(x)}, and Q(f(x))∨S(f(x)), obtained by using the mgu {z �→ f(x)}.
Since Q(f(x)) is contained in both resolvents, it is covered by C in F . ��
As we will show below, the addition of a covered literal to the clause that covers it
has no effect on satisfiability. The following example illustrates that this would
not be the case if we did not require the covered literal to be contained in
resolvents of the clause with itself:

Example 13. Consider the clause C = ¬P (x) ∨ P (f(x)) and the formula F =
{¬P (x) ∨ P (f(x)), ¬P (y) ∨ Q(y), P (a), ¬Q(f(f(a))}. The literal Q(f(x)) is
contained in the (only) P (f(x))-resolvent ¬P (x) ∨ Q(f(x)) of C with clauses
in F that are different from C itself. However, F is unsatisfiable whereas the
formula F ′, obtained from F by replacing C with C ∨ Q(f(x)), is satisfiable. ��

284 B. Kiesl and M. Suda

Lemma 8. If a clause C covers a literal L′ in a formula F , then F and the
formula F ′, obtained from F by replacing C with C ∨ L′, are equisatisfiable.

Proof. Assume that C covers L′ in F , i.e., L′ is contained in all non-tautological
L-resolvents of C with clauses in F . First, we add Cτ ∨ L′τ to F , with τ being
a renaming that replaces the variables in C ∨L′ by fresh variables not occurring
in F . Since Cτ ∨ L′τ is subsumed by C, the formulas F and F ∪ {Cτ ∨ L′τ}
are equisatisfiable. We next show that C is redundant w.r.t. F ∪{Cτ ∨L′τ} and
that it can therefore by removed. To do so, we show that C is implied modulo
resolution upon L by F ∪ {Cτ ∨ L′τ}. As F ∪ {Cτ ∨ L′τ} and F ∪ {C ∨ L′} are
clearly equivalent, the claim then follows.

We show that all L-resolvents of C with clauses in F are implied by the
formula (F \{C})∪{Cτ ∨L′τ}. Showing that the L-resolvents of C with Cτ ∨L′τ
are also implied is done in a similar way. Since tautological L-resolvents are
trivially implied, we consider only non-tautological ones. Let C ′σ∨D′σ be a non-
tautological L-resolvent of C = C ′ ∨L with a clause D = D′ ∨N1 ∨· · ·∨Nk ∈ F ,
where σ is an (idempotent) mgu of the literals L, N̄1, . . . , N̄k. Since L′ is covered
by C in F , the resolvent C ′σ ∨ D′σ contains L′, and L′ is of the form Pσ for
some literal P ∈ C ′ ∨ D′.

To prove that C ′σ ∨ D′σ is implied by (F \ {C}) ∪ {Cτ ∨ L′τ}, we show
that it can be obtained from clauses in (F \ {C}) ∪ {Cτ ∨ L′τ} via resolution,
instantiation, and factoring: Consider the clauses Cτ ∨ L′τ = C ′τ ∨ Lτ ∨ L′τ
and D = D′ ∨ N1 ∨ · · · ∨ Nk. Since the literals L, N̄1, . . . , N̄k are unified by σ
and since dom(τ−1) ∩ var(D) = ∅, it follows that Lτ and N̄1, . . . , N̄k are unified
by τ−1σ. Therefore, there exists an mgu σ′ of Lτ and N̄1, . . . , N̄k. Hence, the
clause (C ′τ ∨L′τ ∨D′)σ′ is an Lτ -resolvent. Now, since σ′ is most general, there
exists a substitution γ such that σ′γ = τ−1σ. But then,

(C ′τ ∨ L′τ ∨ D′)σ′γ

= (C ′τ ∨ L′τ ∨ D′)τ−1σ

= C ′σ ∨ L′σ ∨ D′σ,

from which we obtain C ′σ ∨ D′σ by factoring, since L′ ∈ C ′σ ∨ D′σ and L′σ =
Pσσ = Pσ = L′. ��
Similar to asymmetric-literal addition, the addition of covered literals in first-
order logic is also not guaranteed to terminate. Consider the following example:

Example 14. Let C = P (a) and F = {P (a),¬P (x) ∨ P (f(x))}. Then, there
exists one P (a)-resolvent of C, namely P (f(a)). Therefore, P (f(a)) is covered
by C and thus it can be added to C to obtain C ′ = P (a) ∨ P (f(a)). Now, there
is one P (f(a))-resolvent of C ′, namely P (f(f(a))), and thus P (f(f(a))) can be
added. This addition of covered literals can be repeated infinitely often. ��
Now, a clause C is covered in a formula F if the repeated addition of covered
literals can turn it into a blocked clause. In the following, we denote by F [C/D]
the formula obtained from F by replacing the clause C with the clause D:

A Unifying Principle for Clause Elimination in First-Order Logic 285

Definition 9. A clause C is covered in a formula F if there exists a sequence
L1, . . . , Ln of literals such that each Li is covered by Ci−1 = C ∨ L1 ∨ · · · ∨ Li−1

in F [C/Ci−1] and Cn is blocked in F [C/Cn].

Example 15. Consider the clause C = P (a) ∨ ¬Q(a) which is contained in the
formula F = {P (a) ∨ ¬Q(a), ¬P (y) ∨ R(y), ¬R(z) ∨ Q(z)}. Although C is
not blocked in F , we can add the literal R(a) since it is contained in its only
P (a)-resolvent, obtained by resolving with ¬P (y) ∨ R(y). The resulting clause
P (a) ∨ ¬Q(a) ∨ R(a) is then blocked by R(a) since there is only the tautological
R(a)-resolvent P (a) ∨ ¬Q(a) ∨ Q(a), obtained by resolving with ¬R(z) ∨ Q(z).
Therefore, C is covered in F . ��
As in the case of asymmetric tautologies, the covered-literal additions used dur-
ing covered-clause elimination are not meant to be permanent: We first add some
covered literals and then test whether the resulting clause is blocked (and there-
fore covered). If so, we remove the clause; if not, we undo the literal additions.

Theorem 9. If a clause C is covered in a formula F , it is redundant w.r.t. F.

Proof. Assume that C is covered in F , i.e., we can add covered literals to C
to obtain a clause C ′ that is blocked in F . Now, let F ′ be obtained from F by
replacing C with C ′. Then, by Lemma 8, F and F ′ are equisatisfiable. Moreover,
since C ′ is blocked in F ′, it follows that F ′ \{C ′} and F ′ are equisatisfiable. But
then, as F \ {C} = F ′ \ {C ′}, it follows that F and F \ {C} are equisatisfiable
and so C is redundant w.r.t. F . ��

7 Resolution Subsumption and More

The redundancy notion of resolution subsumption (RS) from SAT [7] can also
be straightforwardly lifted to first-order logic, where redundancy is again an
immediate consequence of Theorem 3 since subsumption ensures implication:

Definition 10. A clause C is resolution subsumed (RS) on a literal L ∈ C in a
formula F if all non-tautological L-resolvents of C, with clauses in F \ {C}, are
subsumed in F \ {C}.

Theorem 10. If a clause is resolution subsumed in a formula F , then it is
redundant w.r.t. F .

With the methods presented in this paper, we can define even more types of
redundant clauses that have been considered in the SAT literature. We can do
so by combining asymmetric-literal addition or covered-literal addition with tau-
tology or subsumption checks. These checks can be performed either directly on
the clause or for all resolvents of the clause upon one of its literals. The latter can
be seen as some kind of “look-ahead” via resolution. Figure 1 illustrates possible
combinations of techniques. Every path from the left to the right gives rise to a
particular redundancy notion. We remark that ALA stands for asymmetric-literal
addition and CLA stands for covered-literal addition.

286 B. Kiesl and M. Suda

Fig. 1. Combination of techniques to obtain redundancy notions.

For instance, to detect whether a clause is an asymmetric tautology, we first
perform some asymmetric-literal additions and then check whether the resulting
clause is a tautology. Another example are blocked clauses, where we ask whether
all L-resolvents of the clause are tautologies. Similarly, we can obtain covered
clauses, resolution subsumed clauses, and resolution asymmetric tautologies via
such combinations. This gives rise to various other types of clauses like asym-
metric blocked clauses, asymmetric subsumed clauses [7], or asymmetric covered
clauses [3]. The redundancy of these clauses follows from the results in this
paper, most importantly from the principle of implication modulo resolution.

8 Predicate Elimination

In this section, we show how the principle of implication modulo resolution
allows us to construct a short soundness proof for the predicate elimination
technique of Khasidashvili and Korovin [2]. Predicate elimination is a first-order
variant of variable elimination, which is successfully used during preprocessing
and inprocessing in SAT solving [17]. The elimination of a predicate P from a
formula F is computed as follows: First, we add all the non-tautological binary
resolvents upon literals with predicate symbol P to F . After this, all original
clauses containing P are removed. To guarantee that this procedure does not
affect satisfiability, the original definition requires P to be non-recursive, mean-
ing that it must not occur more than once per clause.

Theorem 11. If a formula F ′ is obtained from a formula F by eliminating a
non-recursive predicate P , then F and F ′ are equisatisfiable.

Proof. Let FP be obtained from F by adding all non-tautological resolvents
upon P . Clearly, FP and F are equivalent. Now, let C be a clause that contains
a literal L with predicate symbol P . Since all non-tautological L-resolvents of
C with clauses in FP \ {C} are contained in FP \ {C}, C is implied modulo
resolution by FP and so it is redundant w.r.t. FP . Thus, after removing from
FP all clauses containing P , the resulting formula F ′ and FP are equisatisfiable.
Therefore, F ′ and F are equisatisfiable. ��
We want to highlight that Khasidashvili and Korovin [2] proved soundness of
predicate elimination for first-order logic with equality while we restrict ourselves
to first-order logic without equality.

9 Confluence Properties

In this section, we analyze confluence properties of the clause-elimination and
literal-addition techniques discussed in this paper. Intuitively, confluence of a

A Unifying Principle for Clause Elimination in First-Order Logic 287

technique tells us that the order in which we perform the clause eliminations or
the literal additions is not relevant to the final outcome of the technique.

To analyze confluence formally, we interpret our techniques as abstract reduc-
tion systems [18]. For instance, to analyze the confluence of a clause-elimination
technique CE, we define the (reduction) relation →CE over formulas as follows:
F1 →CE F2 if and only if the technique CE allows us to obtain F2 from F1 by
removing a clause. Likewise, for a literal-addition technique LA, we define the
relation →LA over clauses as C1 →LA C2 if and only if the technique LA allows us
to obtain C2 from C1 by adding a literal. Hence, when we ask whether a certain
preprocessing technique is confluent, what we actually want to know is whether
its corresponding reduction relation is confluent [18]:

Definition 11. Let → be a relation and →∗ its reflexive transitive closure.
Then, → is confluent if, for all x, y1, y2 with x →∗ y1 and x →∗ y2, there exists
an element z such that y1 →∗ z and y2 →∗ z.

In our context, this means that whenever the elimination of certain clauses from
a formula F yields a formula F1, and the elimination of certain other clauses
from F yields another formula F2, then there is still a formula Fz that we can
obtain from both F1 and F2. Likewise for the addition of literals to a clause.
Therefore, we do not need to worry about “missed opportunities” caused by a
bad choice of the elimination order. For some techniques in this paper, we can
show the stronger diamond property which implies confluence [18]:

Definition 12. A relation → has the diamond property if, for all x, y1, y2 with
x → y1 and x → y2, there exists a z such that y1 → z and y2 → z.

Next, we present the confluence results. We start with blocked-clause elimination,
for which confluence is easily shown. Define F1 →BCE F2 iff the formula F2 can
be obtained from the formula F1 by removing a clause that is blocked in F1.

Theorem 12. Blocked-clause elimination is confluent, i.e., →BCE is confluent.

Proof. If a clause C is blocked in a formula F , it is also blocked in every subset
F ′ of F , since the L-resolvents of C with clauses in F ′ \ {C} are a subset of
the L-resolvents with clauses in F \ {C}. Therefore, if all L-resolvents of C with
clauses in F \ {C} are tautologies, so are those with clauses in F ′ \ {C}. Hence,
the relation →BCE has the diamond property and thus it is confluent. ��
As in the propositional case, where covered-clause elimination is confluent [3],
we can prove the confluence of its first-order variant. Define F1 →CCE F2 iff the
formula F2 can be obtained from F1 by removing a clause that is covered in F1.

Theorem 13. Covered-clause elimination is confluent, i.e., →CCE is confluent.

Proof. We show that →CCE has the diamond property. Let F be a formula and let
F \ {C} and F \ {D} be obtained from F by respectively removing the covered
clauses C and D. It suffices to prove that C is covered in F \ {D} and D is

288 B. Kiesl and M. Suda

covered in F \ {C}. We show that C is covered in F \ {D}. The other case is
symmetric. Since C is covered in F , we can perform a sequence of covered-literal
additions to turn C into a clause Cn = C ∨ L1 ∨ · · · ∨ Ln that is blocked in
Fn, where by Fi we denote the formula obtained from F by replacing C with
Ci = C ∨ L1 ∨ · · · ∨ Li (0 ≤ i ≤ n).

Now, if in F \ {D}, the clause Cn can be obtained from C by performing the
same sequence of covered-literal additions, then Cn is also blocked in Fn \ {D}
and thus C is covered in F \{D}. Assume now to the contrary that there exists a
literal Li that is not covered by Ci−1 in Fi−1 \ {D} and suppose w.l.o.g. that Li

is the first such literal. It follows that there exists a non-tautological L-resolvent
of Ci−1 (with a clause in Fi−1 \ {D}) that does not contain Li. But then Li is
not covered by Ci−1 in Fi−1, a contradiction. ��
Covered-literal addition is confluent. Let F be a formula and define C1 →CLA C2

iff C2 can be obtained from C1 by adding a literal L that is covered by C1 in F .

Theorem 14. Covered-literal addition is confluent, i.e., →CLA is confluent.

Proof. We show that the relation →CLA has the diamond property. Let F be
formula and C a clause. Let furthermore C1 = C ∨ L1 and C2 = C ∨ L2 be
obtained from C by respectively adding literals L1 and L2 that are both covered
by C in F . We have to show that C1 covers L2 and, analogously, that C2 cov-
ers L1. Since C covers L2, it follows that C contains a literal L such that L2 is
contained in all non-tautological L-resolvents of C. But, as L ∈ C1, every non-
tautological L-resolvent of C1 must also contain L2. It follows that C1 covers L2.
The argument for L1 being covered by C2 is symmetric. ��
Asymmetric-literal addition is also confluent. Let F be a formula and define
C1 →ALA C2 iff C2 can be obtained from C1 by adding a literal L that is an
asymmetric literal w.r.t. C1 in F .

Theorem 15. Asymmetric-literal addition is confluent, i.e., the relation →ALA

is confluent.

Proof. If L1 is an asymmetric literal w.r.t. a clause C in a formula F , then there
exists a clause D ∨ L̄ ∈ F \ {C} and a substitution λ such that Dλ ⊆ C and
L1 = L̄λ. Thus, Dλ ⊆ C∨L2 for each C∨L2 that was obtained from C by adding
some asymmetric literal L2, and so L1 is an asymmetric literal w.r.t. every such
clause. Hence, →ALA has the diamond property and so it is confluent. ��
For asymmetric-tautology elimination, the non-confluence result from proposi-
tional logic [3] implies non-confluence of the first-order generalization. Finally,
the following example shows that RS and RAT elimination are not confluent:

Example 16. Let F = {¬Q ∨ P, ¬R ∨ Q, ¬P ∨ R, ¬Q ∨ R}. Then, ¬Q ∨ R is
a RAT and RS on the literal R as there is only one R-resolvent, namely the
tautology ¬Q ∨ Q, obtained by resolving with Q ∨ ¬R. If we remove ¬Q ∨ R,
none of the remaining clauses of F is a RAT or RS. In contrast, suppose we start

A Unifying Principle for Clause Elimination in First-Order Logic 289

Table 1. Confluence properties of the first-order preprocessing techniques.

Technique Confluent

Blocked-Clause Elimination Yes

Covered-Clause Elimination Yes

Asymmetric-Tautology Elimination No

Resolution-Asymmetric-Tautology Elimination No

Resolution-Subsumed-Clause Elimination No

Covered-Literal Addition Yes

Asymmetric-Literal Addition Yes

by removing ¬Q∨P , which is a RAT and RS on P , then all the other clauses can
be removed, because they become RAT and RS: The clause ¬R∨Q becomes both
RAT and RS on the literal Q as there is only a tautological resolvent upon Q,
namely ¬R ∨ R. For ¬P ∨ R, there are no resolvents upon ¬P and so it trivially
becomes RAT and RS on ¬P . Finally, ¬Q ∨ R becomes RAT and RS on both R
and ¬Q as there are only tautological resolvents upon these two literals. ��
A summary of the confluence results is given in Table 1. Note that for all the
confluent techniques, we could show that they also have the diamond property.

10 Conclusion

We introduced the principle of implication modulo resolution for first-order logic
and showed that if a clause C is implied modulo resolution by a formula F , then
C is redundant with respect to F . Using implication modulo resolution, we lifted
several SAT-preprocessing techniques to first-order logic, proved their soundness,
and analyzed their confluence properties. We furthermore demonstrated how
implication modulo resolution yields short soundness proofs for the existing first-
order techniques of predicate elimination and blocked-clause elimination.

For now, we have only considered first-order logic without equality. A variant
of implication modulo resolution that guarantees redundancy in first-order logic
with equality requires a refined notion of L-resolvents, possibly based on flat
resolvents [2] as in the definition of equality-blocked clauses [8]. The focus of this
paper is mainly theoretical, laying the groundwork for practical applications of
the new first-order techniques. We plan to implement and empirically evaluate
the preprocessing techniques proposed in this paper within the next year, since
we expect them to improve the performance of first-order theorem provers.

References

1. Hoder, K., Khasidashvili, Z., Korovin, K., Voronkov, A.: Preprocessing techniques
for first-order clausification. In: Proceedings of the 12th Conference on Formal
Methods in Computer-Aided Design (FMCAD 2012). IEEE, pp. 44–51 (2012)

290 B. Kiesl and M. Suda

2. Khasidashvili, Z., Korovin, K.: Predicate elimination for preprocessing in first-
order theorem proving. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol.
9710, pp. 361–372. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 22

3. Heule, M.J.H., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination
for SAT and QSAT. J. Artif. Intell. Res. 53, 127–168 (2015)

4. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF
preprocessing. J. Autom. Reasoning 58, 1–29 (2017)

5. Heule, M.J.H., Järvisalo, M., Biere, A.: Covered clause elimination. In: Short
Papers for the 17th International Conference on Logic for Programming, Artifi-
cial intelligence, and Reasoning (LPAR-17-short), vol. 13. EPiC Series, EasyChair,
pp. 41–46 (2010)

6. Heule, M.J.H., Järvisalo, M., Biere, A.: Clause elimination procedures for CNF
formulas. In: Proceedings of the 17th International Conference on Logic for Pro-
gramming, Artificial Intelligence, and Reasoning (LPAR-17), LNCS, vol. 6397, pp.
357–371. Springer, Heidelberg (2010)

7. Järvisalo, M., Heule, M.J.H., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 355–370. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 28

8. Kiesl, B., Suda, M., Seidl, M., Tompits, H., Biere, A.: Blocked clauses in first-order
logic. In: Proceedings of the 21st International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning (LPAR-21), vol. 46. EPiC Series in
Computing, EasyChair, pp. 31–48 (2017)

9. Järvisalo, M., Biere, A., Heule, M.: Blocked clause elimination. In: Esparza, J.,
Majumdar, R. (eds.) TACAS 2010. LNCS, vol. 6015, pp. 129–144. Springer, Hei-
delberg (2010). doi:10.1007/978-3-642-12002-2 10

10. Biere, A.: Splatz, Lingeling, Plingeling, Treengeling, YalSAT entering the SAT
competition 2016. In: Proceedings of SAT Competition 2016 - Solver and Bench-
mark Descriptions, vol. B-2016-1 of Department of Computer Science Series of
Publications B, University of Helsinki, pp. 44–45 (2016)

11. Wetzler, N., Heule, M.J.H., Hunt, W.A.: DRAT-trim: efficient checking and trim-
ming using expressive clausal proofs. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS,
vol. 8561, pp. 422–429. Springer, Cham (2014). doi:10.1007/978-3-319-09284-3 31

12. Fitting, M.: First-Order Logic and Automated Theorem Proving, 2nd edn.
Springer, New York (1996)

13. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A.,
Voronkov, A. (eds.) Handbook of Automated Reasoning (in 2 volumes). Elsevier
and MIT Press, pp. 19–99 (2001)

14. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math.
96–97, 149–176 (1999)

15. Biere, A., Lonsing, F., Seidl, M.: Blocked clause elimination for QBF. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
101–115. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 10

16. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 29

17. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005). doi:10.1007/11499107 5

18. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

http://dx.doi.org/10.1007/978-3-319-40970-2_22
http://dx.doi.org/10.1007/978-3-642-31365-3_28
http://dx.doi.org/10.1007/978-3-642-12002-2_10
http://dx.doi.org/10.1007/978-3-319-09284-3_31
http://dx.doi.org/10.1007/978-3-642-22438-6_10
http://dx.doi.org/10.1007/978-3-662-48899-7_29
http://dx.doi.org/10.1007/11499107_5

Splitting Proofs for Interpolation

Bernhard Gleiss1, Laura Kovács1,2, and Martin Suda1(B)

1 TU Wien, Vienna, Austria
{bgleiss,lkovacs,msuda}@forsyte.at

2 Chalmers University of Technology, Gothenburg, Sweden

Abstract. We study interpolant extraction from local first-order refuta-
tions. We present a new theoretical perspective on interpolation based on
clearly separating the condition on logical strength of the formula from
the requirement on the common signature. This allows us to highlight
the space of all interpolants that can be extracted from a refutation as
a space of simple choices on how to split the refutation into two parts.
We use this new insight to develop an algorithm for extracting inter-
polants which are linear in the size of the input refutation and can be
further optimized using metrics such as number of non-logical symbols
or quantifiers. We implemented the new algorithm in first-order theorem
prover Vampire and evaluated it on a large number of examples coming
from the first-order proving community. Our experiments give practi-
cal evidence that our work improves the state-of-the-art in first-order
interpolation.

1 Introduction

Starting with the pioneering work of McMillan [15], interpolation became a pow-
erful approach in verification thanks to its use in predicate abstraction and
model checking [1,16,19]. To prove program properties over a combination of
data structures, such as integers, arrays and pointers, several approaches based
on theory-specific reasoning have been proposed, see e.g. [4,5,14]. While power-
ful, these techniques are limited to quantifier-free fragments of first-order logic.
Addressing reasoning in full first-order theories, quantified interpolants are com-
puted in [3,11,17,23] and further optimized with respect to various measures
in [9].

In this paper, we address interpolation in full first-order logic and introduce
a novel approach to generate interpolants, possibly with quantifiers. Our app-
roach improves and simplifies the aforementioned techniques, in particular [9,11].
In [9,11], the size of computed interpolants is in the worst case quadratic in the
size of the proof and the generated interpolants may contain redundant subfor-
mulas. Our work addresses these issues and infers interpolants that are linear in

This work was supported by the ERC Starting Grant 2014 SYMCAR 639270, the
Wallenberg Academy Fellowship 2014 TheProSE, the Swedish VR grant GenPro
D0497701 and the FWF projects S11403-N23 and S11409-N23. We also acknowledge
support from the FWF project W1255-N23.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 291–309, 2017.
DOI: 10.1007/978-3-319-63046-5 18

292 B. Gleiss et al.

the size of the proof and are much simpler than in [9,11]. We proceed as follows.
We separate the requirements on a formula being an interpolant into a part
restricting the logical strength of an interpolant and a part restricting which
symbols are allowed to be used in an interpolant. This way, we first handle for-
mulas, called intermediants, satisfying the requirements on the logical strength
of interpolants, and only then we restrict the generated space of intermediants
to the ones that satisfy the restriction on the interpolants signature.

The work of [11] relies on so-called local proofs (or split proofs) and constructs
interpolants by splitting local proofs into (maximal) subproofs. Splitting proofs
is determined by the signature of formulas used in the proofs. We observed,
however, that there are many ways to split a proof, resulting in interpolants that
are different in size and strength. We therefore propose a general framework for
splitting proofs and using the boundaries of the resulting sub-proofs to construct
the intermediants. The key feature of our work is that the interpolants inferred
from our various proof splits are linear in the size of the proof. When constructing
interpolants from proof splits, we note that local proofs are exactly the ones
that ensure that proof splits yield intermediants that satisfy the requirements
of interpolants. Using local proofs and proof splits, we then describe a powerful
heuristic and an optimality criterion how to choose the “best” proof split, and
hence the resulting interpolant.

Contributions. The main contributions of this paper are as follows.

– We present a new algorithm for first-order-interpolation using local proofs
in arbitrary sound inference systems. That is, our work can be used in any
sound calculus and derives interpolants, possibly with quantifiers, in arbitrary
first-order theories.

– Our interpolation algorithm is the first algorithm ensuring that the size of the
interpolant is linear in the size of the proof while working with an arbitrary
sound logical calculus. This result improves [11] and generalises the work
of [17] to any sound inference system.

– We implemented our work in the Vampire theorem prover [12] and eval-
uated our method on a large number of examples coming from the TPTP
library [22]. Our experimental results confirm that our work improves the
state-of-the-art in first-order interpolation.

The rest of this paper is structured as follows. The background notation on
proofs and interpolation is covered in Sect. 2. We then show how to construct
linear sized interpolants in Sect. 3 and present optimisations to the procedure in
Sect. 4. We compare to related work in Sect. 5, describe our experimental results
in Sect. 6, and conclude in Sect. 7.

2 Preliminaries

This section introduces the relevant theoretical notions to our work.

Formulas. We deal with standard first-order predicate logic with equality.
We allow all standard logical connectives and quantifiers in the language and,

Splitting Proofs for Interpolation 293

in addition, assume that it contains the logical constants �, ⊥ for true and false,
respectively. Without loss of generality, we restrict ourselves to closed formulas,
i.e. we do not allow formulas to contain free variables. The non-logical symbols of
a formula F , denoted by N (F), are all the predicate symbols and function sym-
bols (including constants) occurring in F . Note that this excludes (quantified)
variables and the equality symbol.

An axiomatisable theory, or simply a theory is any set of formulas. For exam-
ple, we can use the theory of linear integer arithmetic or the theory of lists.
We will from now on restrict ourself to a fixed theory T and give all defin-
itions relative to T . This includes that we write F1, . . . , Fn � F (instead of
F1, . . . , Fn �T F) to denote that every model of T which satisfies each F1, . . . , Fn

also satisfies F .

Definition 1. Let F1, . . . , Fn, F be formulas, n ≥ 0. An inference rule R is a
tuple (F1, . . . , Fn, F). An inference system S is a set of inference rules.

An inference rule R = (F1, . . . , Fn, F) is sound, if F1, . . . , Fn � F . An infer-
ence system S is called sound, if it only consists of sound inference rules.

From now on, we further restrict ourselves to a fixed inference system S
which is sound (relative to T) and give all definitions relative to that system.

Derivations and proofs. We model logical proofs as directed hypergraphs in
which vertices are associated with formulas and (hyper-)edges with inferences.
Because an inference always has exactly one conclusion, we only need hyper-
graphs where each edge has exactly one end vertex. Moreover, because the order
of premises of an inference may be important, we use tuples to model the edges.
We will from now on refer to such (hyper-)edges simply as inferences.

Definition 2. Let G be a formula and F a set of formulas. A proof of G from
axioms F is a finite acyclic labeled directed hypergraph P = (V,E,L), where V is
a set of vertices, E a set of inferences, and L is a labelling function mapping each
vertex v ∈ V to a formula L(v). For an inference r ∈ E of the form (v1, . . . , vn, v),
where n ≥ 0, we call v1, . . . , vn the premises of r and v the conclusion of r.

Additionally, we require the following:

1. Each vertex v ∈ V is a conclusion of exactly one inference r ∈ E.
2. There is exactly one vertex v0 ∈ V that is not a premise of any inference

r ∈ E and L(v0) = G.
3. Each r ∈ E is either (a) an inference of the form (v) and L(v) ∈ F , or (b)

an inference of the form (v1, . . . , vn, v) and (L(v1), . . . , L(vn), L(v)) ∈ S. In
the first case, we call r an axiom inference, in the second case, r is called a
proper inference.

A refutation from axioms F is a proof of the formula ⊥ from F .

Note that in order to support multiple occurrences of the same formula in
a proof, one needs to distinguish between vertices and the formulas assigned to
them via the labelling function L. However, because this generality is orthogonal

294 B. Gleiss et al.

to the ideas we want to present, we will from now on identify each node v ∈ V
with its formula L(v) and stop referring to the labelling function explicitly.

In the above definition, condition 1 ensures that any formula of the proof is
justified by exactly one inference. Later on we will look at subgraphs of a proof,
which are not necessarily proofs themselves and in particular do not satisfy
condition 1, since they contain formulas, which are not justified by any inference
of the subgraph. We call such a subgraph a derivation and call the formulas
which are not justified by any inference the premises of the derivation. We can
see a proof as a derivation having no premises.

Definition 3. The definition of a derivation of G from axioms F is the same
as that of a proof P = (V,E,L) of G from F , except that condition 1 is gener-
alised to:

1. Each formula F ∈ V is a conclusion of at most one inference r ∈ E.

The set of premises of a derivation P , denoted by Prem(P), consists of all
formulas F ∈ V , such that there exists no inference r ∈ E with conclusion F .

The definition of a derivation is not natural as it distinguishes between axioms
and premises. This distinction is, however, very important for us, as it enables
a succinct presentation of the results in Sect. 3.

Lemma 4 (Soundness). Let P be a derivation of G from axioms F . Then we
have

F � (
∧

Fk∈Prem(P) Fk) → G.

To formalise the idea of a proof traversal in which the inferences are consid-
ered one by one from axioms to the final formula G, we make use of topological
orderings.

Definition 5. Let P = (V,E,L) be a derivation. A topological ordering <T for
P is a linear ordering <T on E such that for any two inferences r1, r2 ∈ E if the
conclusion of r1 is a premise of r2 then r1 <T r2.

A topological ordering exists for every derivation, because proofs, and thus also
derivations, are required to be acyclic.
Interpolation. We now recall the notion of a logical interpolant.

Definition 6. Let A and B be formulas.

1. A non-logical symbol s ∈ N (A → B) is called A-local, if s ∈ N (A) \ N (B),
B-local, if s ∈ N (B) \ N (A), and global otherwise.

2. An interpolant for A,B is a formula I such that � A → I, � I → B and all
non-logical symbols of I are global.

Craig’s interpolation theorem [6] guarantees the existence of an interpolant for
any pair of formulas A,B for which � A → B. In the sequel, we assume A and
B to be fixed and give all definitions relative to A and B.

Splitting Proofs for Interpolation 295

Refutational theorem proving. To prove a first-order formula F in practice,
a refutational theorem prover proceeds by negating the input formula, applying
a normal form transformation, such as the Conjunctive Normal Form trans-
formation, to the negation, and deriving a contradiction ⊥ from the obtained
set of formulas C¬F = CNF (¬F). More specifically, in the case of proving the
implication A → B, the prover starts with axioms CNF (A ∧ ¬B).

This is relevant for our work, because we rely on refutations as input for our
method. However, a complication arises, because the normal form transforma-
tions CNF typically involves steps like sub-formula naming and Skolemisation
[18,20], which (1) introduce new non-logical symbols, (2) in general do not pre-
serve logical equivalence.

To deal with (1) we impose a restriction on CNF which dictates that the
symbols newly introduced on behalf of A and ¬B do not overlap. Formally, we
require

N (A) ∩ N (¬B) = N (CNF (A)) ∩ N (CNF (¬B)), (1)

which is a very natural condition, because the newly introduced symbols are
invariably required to be fresh.1

To deal with (2), let us first recall that steps like sub-formula naming and
Skolemisation, although they do not preserve logical equivalence, do preserve
satisfiability. While this is sufficient to guarantee soundness of refutational the-
orem proving, it is not enough for the purposes of interpolation. Fortunately,
a stronger property, which is rarely stated explicitly, usually holds for the nor-
mal form transformation, namely the preservation of models over the common
symbols. Formally, we require for every formula F that

– every model M′ of CNF (F) is also a model of F , and
– every model M of F can be extended to M′ which is a model of CNF (F),

where extended means that M′ restricted to N (F) equals M.
Equipped with a transformation CNF satisfying the above requirements, the

general approach to interpolation from refutations consists of the following steps:

1. Given formulas A and B, compute the respective normal forms CA = CNF (A)
and C¬B = CNF (¬B).

2. Find a refutation P from axioms CA ∪ C¬B .
3. Extract from P a formula I such that CA � I, C¬B, I � ⊥, and all non-logical

symbols of I are global.2

Lemma 7. The formula I obtained in the last step is an interpolant for A
and B.

1 This could potentially be violated by an advanced transformation based on formula
sharing. In particular, the case would need to involve a common sub-formula of A
and ¬B.

2 Note that the symbols are global with respect to A and B if and only if they are
global with respect to CA and C¬B thanks to the requirement (1).

296 B. Gleiss et al.

3 Interpolants from Refutations

We can separate the properties of an interpolant into two parts, the logical
part and the restriction to the global symbols. Instead of considering only inter-
polants, we now want to look more generally at the formulas, which satisfy the
logical part of the properties of interpolants, but not necessarily the restriction
to the global symbols. We call such formulas intermediants.3

Definition 8. Let A,B be two formulas. An intermediant for A,B is a formula
I such that we have both � A → I and � I → B.

In the first part of this section, we want to investigate the space of interme-
diants, which is induced by a given refutation. In the second part, we look at the
subspace of those intermediants which also respect the restriction on the global
symbols, i.e. the formulas which are interpolants.

3.1 Splitting Refutations

Let us now show how to use a refutation of A → B to construct intermediants.
Intuitively, we want to split the refutation into two parts and construct a formula
which describes the boundaries between the parts.

In the light of the discussion at the end of the previous section, we assume
the formulas A and ¬B have been transformed to sets of axioms CA and C¬B. It
is also natural to extend the notion of an intermediant to axiom sets:

Definition 9. Let CA and C¬B be two sets of axioms. An intermediant for
CA, C¬B is a formula I such that we have both CA � I and C¬B, I � ⊥.

Splitting a proof into two parts for us means mapping each inference to one
of the two parts. Formally, we introduce a two element set {A,B} to serve as
a co-domain of such mapping, where A denotes the A-part and B the B-part.
It is natural to map the axioms from CA to A and the axioms from C¬B to B,
therefore we only consider mappings of this form. All other inferences can be
mapped to any part.

Definition 10. Let P be a refutation from axioms CA∪C¬B. A splitting function
S is a function assigning each inference of P to either A or B, such that for each
axiom inference r = (F), if S(r) = A then F ∈ CA and r is called an A-axiom,
and if S(r) = B then F ∈ C¬B and r is called a B-axiom.

A given splitting function S splits a proof into several maximal subderiva-
tions. We now want to capture this intuitive notion formally. We start with the
concept of In-formulas (resp. Out-formulas) of P and S. Intuitively, these are
the formulas which occur at the boundary between the subderivations.
3 Bonacina and Johansson [2] introduce the notion of a provisional interpolant with

an analogous definition. However, the intended use of the notion is different. While
provisional interpolants are meant to be modified to yield interpolants in a refinement
stage, we give conditions under which intermediants are, in fact, interpolants.

Splitting Proofs for Interpolation 297

Definition 11. Let P = (V,E,L) be a refutation from axioms CA ∪C¬B and let
S be a splitting function on P . The set of in-formulas, which is denoted In(P,S),
consists of those formulas F ∈ V , which has the following properties:

– There exists an inference r1 ∈ E with conclusion F and S(r1) = B.
– There exists an inference r2 ∈ E with premise F and S(r2) = A.

The set of out-formulas, denoted Out(P,S), consists of formulas F ∈ V , such
that

– There exists an inference r1 ∈ E with conclusion F and S(r1) = A.
– Either there exists an inference r2 ∈ E with premise F and S(r2) = B, or
F = ⊥.

Notice that the notions of in- and out-formulas are not entirely symmetrical.
The reason for this will become clear later.

We are now able to formally introduce the maximal subderivations.

Definition 12. Let P = (V,E,L) be a refutation from axioms CA ∪ C¬B and
let S be a splitting function on P . Let r ∈ E be an inference and let {r1, . . . , rl}
be the set of those inferences which derive a premise of r and are mapped by S
to the same part as r, i.e. S(r) = S(ri) for i = 1, . . . l. Then we define Sub(r)
recursively as

Sub(r) = {r} ∪ Sub(r1) ∪ · · · ∪ Sub(rl).

Now let F ∈ Out(P,S) (resp. F ∈ In(P,S)) be a formula and r be the inference
deriving F . We define the maximal A-subderivation (resp.B-subderivation) of F ,
denoted by Sub(F), as the induced derivation (V ′,Sub(r), L), where V ′ contains
every vertex which is either a premise or a conclusion of an inference in Sub(F).
We call F the conclusion of Sub(F).

The dependencies of F , written Dep(F), are defined as the premises of
Sub(F).

We can observe that the In-formulas (resp. Out-formulas) are the premises (resp.
conclusions) of all maximal A-subderivations. Dually, the In-formulas (resp. Out-
formulas) are the conclusions (resp. premises) of all maximal B-subderivations.
The use of the introduced concepts is demonstrated in Fig. 1.

Note that the A-subderivations contain all A-axioms, but no B-axiom.
Therefore the A-axioms’s contribution to the derivation is captured by the A-
subderivations. The key idea of this subsection is that encoding the contribution
of the A-subderivations as a formula therefore yields the intermediant I we are
looking for. The following lemma tells us how to describe the contribution of an
A-subderivation.

Lemma 13. Let P be a refutation from axioms CA∪C¬B and let S be a splitting
function on P .

1. Let F ∈ Out(P,S). Then we have CA � (
∧

Fk∈Dep(F) Fk) → F .
2. Let F ∈ In(P,S). Then we have C¬B � (

∧
Fk∈Dep(F) Fk) → F .

298 B. Gleiss et al.

F5 F10

F3 F4

F1 F2

F8 F9

F6 F7

Fig. 1. Consider the proof above along with the splitting function which is denoted by
drawing the inferences assigned to A using solid red lines and the inferences assigned
to B using dashed blue lines. The maximal A-subderivation of F5 has premises F1, F2

(and conclusion F5), the maximal A-subderivation of F10 has premise F8. The maximal
B-subderivation of F1 has no premises, the maximal B-subderivation of ⊥ has premises
F5 and F10. The In-formulas are F1, F2 and F8 and the Out-formulas are F5 and F10.
The induced simple splitting formula is ((F1 ∧ F2) → F5) ∧ (F8 → F10).

We therefore arrive at the following definition.

Definition 14. Let P be a refutation from axioms CA ∪ C¬B and let S be a
splitting function on P . The formula

I :=
∧

F∈Out(P,S)

((
∧

Fk∈Dep(F)

Fk) → F)

is called the simple splitting formula of P induced by S.

Theorem 15. Let P be a refutation from axioms CA ∪ C¬B and let S be a
splitting function on P . Then the simple splitting formula I induced by S is an
intermediant.

Proof.

1. For each F ∈ Out(P,S), we can use Lemma 13.1 to get CA �
(
∧

Fk∈Dep(F) Fk) → F . Therefore we have CA �
∧

F∈Out(P,S)((
∧

Fk∈Dep(F)

Fk) → F).
2. Let <T be a topological ordering for P and let F1, . . . , Fn denote the formulas

of In(P) ∪ Out(P) in the order induced by <T . We visit the formulas from
F1 to Fn and prove by complete induction that I, C¬B � F1, . . . , Fi. Since
Fn = ⊥, we afterwards are able to conclude I, C¬B � ⊥.
Inductive step: Let us assume, by the induction hypothesis, that I, C¬B �
F1, . . . , Fi−1. We make a case distinction on S(r), where r is the inference
which derived Fi:

– Case S(r) = A: By the definition of I, we know that I �
(
∧

Fk∈Dep(Fi)
Fk) → Fi. Using both the definition of topological order-

ings and the definition of Dep we know that Dep(Fi) ⊆ {F1, . . . Fi−1}, so
we can combine the previous facts to obtain I, C¬B � F1, . . . , Fi.

– Case S(r) = B: We use Lemma 13.2 to conclude C¬B �
(
∧

Fk∈Dep(Fi)
Fk) → Fi. As in the previous case, we can use Dep(Fi) ⊆

{F1, . . . Fi−1} to conclude I, C¬B � F1, . . . , Fi.

We summarise the ideas of this subsection in Simple-splitting-formula
(Algorithm 1).

Splitting Proofs for Interpolation 299

Algorithm 1. Simple-splitting-formula
choose a splitting function on P .
compute Out(P) and Dep(F) for all F using depth first search
return I as defined in Definition 14

3.2 Intermediants of Linear Size

Simple-splitting-formula yields an intermediant of size which is in the worst case
quadratic in the size of the proof. This may be prohibitively large for large
proofs. In this subsection, we describe an algorithm which yields intermediants
of size which is linear in the size of the proof. Modifying Algorithm1 to generate
such an intermediant is nontrivial: there are examples, where the simple splitting
formula is provably logically stronger than any intermediant which uses every
formula of the refutation only once, cf. Fig. 2. We therefore need to modify the
algorithm such that it produces an intermediant which is logically weaker but
still sufficiently strong to be inconsistent with CB .

The key idea for the new algorithm is contained in the following definition.

F3 F5 F4
r4

F1 F2
r1 r2

Fig. 2. Let r1 = (F1, F3), r2 = (F2, F4), r3 = (F1, F2, F5), and r4 = (F3, F4, F5,⊥). Let
further S(r1) = S(r2) = S(r3) = A and S(r4) = B. Then Algorithm 1 generates the
simple splitting formula I = (F1 → F3) ∧ (F2 → F4) ∧ ((F1 ∧ F2) → F5). There is no
intermediant which is both logically equivalent to I and contains each formula of the
given proof at most once.

Definition 16. Let P be a refutation from axioms CA ∪ C¬B, S a splitting
function on P , and let <T be a topological ordering for P . Furthermore let
F1, . . . , Fn denote the formulas of In(P) ∪ Out(P) ordered by <T . Now let

Ii =

⎧
⎪⎨

⎪⎩

� if i = n + 1
Fi → Ii+1 if Fi ∈ In(P)
Fi ∧ Ii+1 if Fi ∈ Out(P)

Then I1 is called linear splitting formula of P induced by S and <T .

Note that the size of I1 is linear in the size of P in Definition 16.

Theorem 17. Let P be a refutation from axioms CA ∪C¬B, let S be a splitting
function on P and let <T be a topological ordering for P . Then the linear
splitting formula I induced by S and <T is an intermediant.

300 B. Gleiss et al.

Proof. Let
I ′ =

∧

Fi∈Out(P)

((
∧

Fk∈In(P),Fk<TFi

Fk) → Fi).

First note that I ′ is logically equivalent to I: This can be proved by a simple
induction using the two facts that conjunction on the right distributes over
implication and that A → (B → C) is equivalent to (A ∧ B) → C.
Now we complete the proof by showing that I ′ is an intermediant:

1. Using both the definition of topological orderings and the definition of Dep we
know that Dep(Fi) ⊆ {Fk ∈ In(P) | Fk <T Fi}, so I ′ is logically weaker than
the simple splitting formula. Therefore CA � I ′ follows from Theorem 15.1.

2. We can show C¬B, I
′ � ⊥ by re-using the proof of Theorem 15.2 with <T as the

topological ordering and by replacing Dep(P) with {Fk ∈ In(P) | Fk <T Fi}.

We summarise the presented ideas in Linear-splitting-formula (Algorithm2) and
conclude this subsection by pointing out the following basic lemma, which will
become useful later in the paper.

Algorithm 2. Linear-splitting-formula
choose a splitting function and a topological ordering on P .
compute In(P) and Out(P)
return I1 as defined in Definition 16

Lemma 18. Let P = (V,E,L) be a refutation from axioms CA ∪ C¬B and let S
be a splitting function on P . Let further I be the linear splitting formula induced
by S and let F ∈ V be an arbitrary formula different from ⊥. Then F occurs in
I if and only if there are two inferences r1, r2, where r1 derives F , F is a premise
of r2 and S(r1) �= S(r2).

3.3 Interpolants as Special Intermediants

In the previous subsections, we discussed how to construct intermediants given
a splitting function. We now look closer at the question which splitting function
to choose. While studying the intermediants induced by different choices of a
splitting function is an interesting topic in general, we turn our attention to the
problem of choosing a splitting function such that the induced intermediant is
an interpolant, i.e. we have the additional requirement that the intermediant
contains no local symbols.

Let us recall the notion of local proofs—also called split proofs—introduced
by Jhala and McMillan [10]:

Definition 19 (Local Proof). A proof P = (V,E,L) from axioms CA ∪ C¬B

is local if for every inference (F1, . . . , Fn, F) ∈ E we have either:

– N (F1) ∪ . . . ∪ N (Fk) ∪ N (F) ⊆ N (CA) or
– N (F1) ∪ . . . ∪ N (Fk) ∪ N (F) ⊆ N (C¬B).

Splitting Proofs for Interpolation 301

The definition of local proofs ensures that we can define a splitting function S
which maps all inferences with A-local symbols to A and those with B-local
symbols to B.

Definition 20. Let P be a local proof. A local splitting function on P is a
splitting function S on P such that S(r) = A (resp. S(r) = B) for all inferences
r having as premise or conclusion a formula containing an A-local (resp. a B-
local) symbol.

The corollary of the following lemma represents the central observation of
this subsection: local proofs are exactly the proofs on which we can define a
splitting function that induces an intermediant which is an interpolant.

Lemma 21. Let P = (V,E,L) be a refutation from axioms CA ∪ CB , S be
a local splitting function on P , and I the corresponding simple (resp. linear)
splitting formula.

(i) Then any formula F ∈ In(P,S) ∪ Out(P,S) contains neither an A-local nor
a B-local symbol.

(ii) I contains neither A-local nor B-local symbols.

Proof. (i) Consider any formula F ∈ Out(P,S). If F = ⊥ then F trivially
contains neither an A-local nor a B-local symbol. Otherwise, we know that
there exists an inference r1 ∈ E with premise F and S(r1) = B. By the
locality of S we get that F contains no A-local symbol. Furthermore, we
know that there exists an inference r2 ∈ E with conclusion F and S(r2) = A.
By the locality of S we get that F contains no B-local symbol.
Now consider any formula F ∈ In(P,S). We can use a similar argument to
show that F contains neither an A-local nor a B-local symbol.

(ii) Follows immediately from (i) and the definition of the simple (resp. linear)
splitting formula.

Corollary 22. Let P be a local refutation, let S be a local splitting function on
P and let I be either the simple splitting formula or the linear splitting formula.
Then I is an interpolant for A,B.

4 Implementing Local Splitting Functions

By the definition of a local splitting function we know that we need to assign
axioms and inferences with local symbols to the corresponding part. All the other
inferences— the inferences forming the so called grey area [9]— can be assigned
freely to either part. Different choices on how to split the grey area result in
different A-subproofs and therefore in different interpolants, which vary, e.g., in
size, the number of contained quantifiers and in logical strength.

We want to minimize the interpolant with respect to a given weight function
w, which maps each formula F to its weight w(F). The task we want to solve

302 B. Gleiss et al.

in this section is, therefore, to be able to come up with a local splitting function
which minimises the weight of the resulting interpolant.

We present two different solutions, a heuristical greedy approach and one of
expressing the optimal splitting as a minimisation problem. Both solutions are
based on the insight from Lemma 18 of Sect. 3: A conclusion F of an inference
r1 occurs in the linear splitting formula if and only if there is an inference r2
with F as a premise such that the splitting function maps r1 and r2 to different
parts.

4.1 Greedy Weighted Sum Heuristic

Consider an inference r of the grey area with premises C1, . . . Cn,D1, . . . , Dm

and assume that the inferences deriving C1, . . . , Cn are already assigned to A
and that the inferences deriving D1, . . . , Dm are already assigned to B. Using
Lemma 18, we know that if we assign r to A, then D1, . . . , Dm will be added
to the interpolant and if we assign r to B, then C1, . . . , Cn will be added to the
interpolant.

We can therefore use the following greedy strategy to locally minimize the
weight of the interpolant: for any inference r of the grey area, if

∑n
k=1 w(Ck) >∑m

k=1 w(Dk), map r to A, otherwise to B.
This results in Top-down-weighted-sum-heuristic (Algorithm 3):

Algorithm 3. Top-down-weighted-sum-heuristic
for each inference r of P (top-down) do

if r is an A-axiom or r contains an A-local symbol then
set S(r) to A

else if i is a B-axiom or r contains a B-local symbol then
set S(r) to B

else
if
∑n

k=1 w(Ck) >
∑m

k=1 w(Dk) then
set S(r) to A

else
set S(r) to B

return S

The two reasons why a locally optimal choice is not a globally optimal choice
can be seen in Figs. 3 and 4.

4.2 Encoding Optimal Splitting as a Minimisation Problem

Similar to the idea presented in [9], we can alternatively encode the problem of
finding an optimal local splitting function as a minimisation problem and pass
it to a pseudo-boolean constraint solver. This yields an optimal assignment, but
is computationally more expensive.

Splitting Proofs for Interpolation 303

F4 F5
i6

F1 F2
i4

i1 i2
F3

i5

i3

Fig. 3. Let S(i1) = S(i3) = A and S(i2) = B. Let further w(F1) = w(F3) = 2 and
w(F2) = 3. For both inferences i4 and i5, the assignment of the inference to B is locally
optimal, then causes the assignment of i6 to B and finally yields an interpolant of weight
4. Note that F2 is used as a premise of both i4 and i5, so due to the DAG-structure we
would only include it once if we assigned both i4 and i5 to A. This would then cause
the assignment of i6 to A and finally yield a smaller interpolant of weight 3.

F2 F3
i3

i2
F1

i1

Fig. 4. Let S(i1) = A and S(i3) = B. Let further w(F1) < w(F2). Algorithm 3 would
now assign i2 to A and therefore include F2 in the interpolant. It would be better to
assign i2 to B in order to include F1 in the interpolant instead of F2.

The encoding works as follows. We use propositional variables xi to denote
that inference i is assigned to A and use propositional variables Li to denote
that the conclusion of i occurs in the interpolant. We again predict the size of
the resulting interpolant using Lemma 18, but this time use the optimisation
procedure to make globally optimal choices instead of greedily making locally
optimal ones. This leads to algorithm Weighted-sum-optimal (Algorithm4).

Algorithm 4. Weighted-sum-optimal
for each inference r of P do

if r is an A-axiom or r contains an A-local symbol then
assert xr

else if r is a B-axiom or r contains a B-local symbol then
assert ¬xr

for each parent inference r′ of r do
assert (¬(xr ↔ xr′)) → Lr′

compute model M which minimises
∑

r∈P w(concl(r)) · Lr

for each inference r of P do
if xr evaluates to true in M then

set S(r) to A
else

set S(r) to B
return S

304 B. Gleiss et al.

5 Discussion and Related Work

There are two main existing approaches to constructing interpolants from arbi-
trary local proofs in arbitrary sound first-order proof systems with equality.

First, there is the work from Jhala and McMillan (Theorem 3 of [10]). They
present an algorithm which consists of two main phases: A) Extract a proposi-
tionally unsatisfiable set of formulas F , B) obtain a propositional refutation of F
using boolean constraint propagation and apply McMillan’s interpolation algo-
rithm for propositional logic [15] to the result in order to obtain an interpolant
for the original local refutation.

One can easily see that the set F constructed in phase A consists of both the
conjuncts of the splitting formula from Definition 14 and the conjuncts of the sim-
ple splitting formula obtained by swappingA andB in the proof. In contrast, Algo-
rithm1 only needs the former conjuncts. Furthermore we know from Corollary 22
that it is sufficient to conjoin all these conjuncts instead of unnecessarily construct-
ing and interpolating from a propositional refutation. Besides conceptually simpli-
fying the algorithm, this also enables the optimisations presented in Sect. 4.

More importantly, in [17], it is claimed that the complexity of the algorithm
behind Theorem 3 of [10] is linear in the size of the proof. While phase B of the
algorithm is clearly linear, we can see easily from Example 23 below that phase
A is worst case quadratic in the size of the proof, making the whole algorithm
quadratic, which is contrasts to out Algorithm2, that is linear.

Example 23. Consider a split refutation with nodes A1, . . . , An, B1, . . . , Bn,⊥;
edges (Ai, Ai+1), (Ai, Bi+1), (Bi, Ai+1), (Bi, Bi+1), for 1 ≤ i < n and (An,⊥),
(Bn,⊥); and labeling P (Ai) = A, P (Bi) = B, P (⊥) = arbitrary. Phase A) would
construct a graph with edges (Ai, Bj), (Bi, Aj) forall 0 < i < j ≤ n, which is
quadratic in n.

The second main approach to constructing interpolants in first-order logic with
equality using an arbitrary sound inference system was introduced in [11] and
later improved by an optimisation technique in [9]. Let us refer to the interpo-
lation algorithm from [11] as SE . In a nutshell, SE uses two main concepts:

As a first concept, it constructs the largest subderivations containing only
symbols from one of the two partitions (cf. Lemma 8 of [11]). This construction
corresponds to a commitment to a specific choice of local splitting function in
our framework. In contrast, both Algorithms 1 and 2 are parametrized by an
arbitrary local splitting function and different choices yield different interpolants.

As the main contribution of [9], the authors extend algorithm SE such that
it also considers a space of different interpolants and optimise over this space.
We can see that the extension simulates different choices of splitting function by
merging proof steps. Both the algorithm from [9] and our Algorithm4 encode
the space of candidates and the minimisation objective as a pseudo-boolean
constraint problem and then ask an optimising SMT-solver for an optimal solu-
tion. While encoding the space of splitting functions is trivial using Algorithm4,
encoding the space of local proofs, which are results from repeated pairwise
merging of inferences, is much more involved. More critically, while we can make

Splitting Proofs for Interpolation 305

use of Lemma 18 to predict the size of the resulting interpolant, the approach
from [9] uses a notion of so called digest to predict the size of the interpolant
computed from the transformed proof. The authors claim that the interpolant
is a boolean combination of formulas in the digest (Theorem 3.6, [9]). Unfor-
tunately, this claim is wrong, which can be concluded from the counterexample
presented in Fig. 5. Therefore the technique presented in [9] can potentially yield
sub-optimal interpolants.

R4

R3 G6

G3 B1 G2

R1 G1

Fig. 5. Consider the proof above, taken from Example 5.2 in [9]. Let R1, R3 and R4 be
formulas containing A-local symbols, B1 a formula containing B-local symbols and let
G1, G2, G3 and G6 be formulas containing no local symbols. Then the digest contains
only G6, but the algorithm from [11] would construct the interpolant G3 ∧ ¬G6, which
also contains G3.

As the second concept, the algorithm SE from [11] relies on a recursive con-
struction to compute the interpolant: it computes for each largest subderivation
a formula such that the formula of the outermost call yields an interpolant
(cf. Lemma 10 of [11]). We now want to hint at the relation of algorithm SE
and Algorithm 1. Consider a subderivation with premises F1, . . . , Fk and conclu-
sion F . Let further I1, . . . , Ik denote the recursively computed formulas. Algo-
rithm SE now constructs the following formulas:

– Case A: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)) ∧ ¬(F1 ∧ · · · ∧ Fk).
– Case B: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)).

It is not difficult to see that one can reformulate the construction of SE as the
following one, which we will refer to as SE ′:

– Case A: I = ((I1 ∨ F1) ∧ · · · ∧ (Ik ∨ Fk)) ∨ F ∧ ((F1 ∧ · · · ∧ Fk) → F).
– Case B: I = (I1 ∧ · · · ∧ Ik).

Note that although the intermediate formulas of algorithm SE and SE ′ are poten-
tially different, the result of the outermost call is the same for SE and SE ′.

We now state a recursive presentation of our Algorithm 1 in order to compare
it to SE ′. The idea is to replace the global view on the refutation, i.e. the iteration
over all elements of Out(P,S), by a recursive construction which collects all the
formulas describing the boundaries of maximal A-subderivations.

Let P be a local proof of a formula F and let r be the inference which
derives F . Let further S be a local splitting function on P . We compute a formula
using the following recursive construction: Let F1, . . . , Fk denote the elements of
Dep(F) and let Ii denote the formula computed recursively from Fi.

306 B. Gleiss et al.

– Case S(r) = A: I = (I1 ∧ · · · ∧ In) ∧ ((F1 ∧ · · · ∧ Fn) → F).
– Case S(e) = B: I = (I1 ∧ · · · ∧ In).

If we now compare algorithm SE ′ and the recursive presentation of Algo-
rithm1 we see that they are the same with the exception that SE ′ contains
redundant sub-formulas. More critically, since we know that Algorithm1 yields
an interpolant of size which is worst-case quadratic in the size of the proof, we
know that the same holds for SE ′ and therefore for SE , i.e. for the interpolation
algorithm of [11]. This represents the most important downside of the approach
of [11] and makes it inferior to Algorithm2.

Finally, interpolation from first-order refutations is also studied in [2,13]
where the authors present methods for computing interpolants from arbitrary
proofs in first-order logic but either without equality or under the assumption
that colored function symbols are only constants. While our proof splits are
restricted to local proofs, in our approach we handle first-order theories with
equality in full generality.

6 Experimental Results

We implemented Linear-splitting-formula (Algorithm2, Sect. 3) in automated
theorem prover Vampire [12] and combined it with the two approaches
for obtaining a local splitting function: the Top-down-weighted-sum-heuristic
(Algorithm 3) and the Weighted-sum-optimal (Algorithm 4). We will from now
on refer to the combinations as LinHeu and LinOpt, respectively. The aim of the
experiment is to compare the performance of the new algorithms to algorithm
from [11] combined with its optimising improvement from [9], which was already
implemented in a previous version of Vampire. We will from now on refer to
this latter combination as SEOpt.4

To compensate for the lack of a representative set of benchmarks explicitly
focusing on first-order interpolation, we made use of the first-order problems
from the TPTP library [22] (version 6.4.0). We clausified each problem using
Vampire and split the obtained set of clauses into halves, treating the first half
as CA and the the second as C¬B. We attempted to refute each of the obtained
problems using Vampire (which was instructed to generate only local proofs
as described in [11]) and followed up by one of LinHeu, LinOpt, or SEOpt to
compute an interpolant. We imposed a 60 s time limit on the proof search in
Vampire and a total limit of 100 s on each whole run. We ran the experiment
on the StarExec compute cluster [21].

In total, we obtained 7442 local refutations. Out of these SEOpt failed to
construct an interpolant in 723 cases. In contrast, LinOpt failed to construct
an interpolant in only 16 cases and LinHeu always constructed an interpolant
within the time limit. Furthermore, there were 353 cases in which SEOpt returned
only an approximate result and 108 cases where optimisation failed and the
4 The executables and connecting scripts used in the experiment are available at

http://forsyte.at/static/people/suda/vampire new interpolation.zip.

http://forsyte.at/static/people/suda/vampire_new_interpolation.zip

Splitting Proofs for Interpolation 307

Fig. 6. Size comparison of interpolant produced by SEOpt and LinOpt (left), and LinHeu

and LinOpt (right). Each point corresponds to a single refutation and its position to
the sizes of the respective interpolants.

unoptimized version of [11] was used as a fallback instead. The observed higher
computational demands of SEOpt can be mostly ascribed to the reliance on
a different pseudo-boolean solver and different connecting technology.5 These
differences unfortunately exclude the possibility of a meaningful comparison of
more detailed timing results. However, we would like to point out that the opti-
misation problem SEOpt constructs is arguably much more complex than the
one stemming from Weighted-sum-optimal employed by LinOpt.

Figure 6 (left) contains a scatter plot comparison of the sizes of obtained
interpolants for LinOpt and SEOpt. An artificial large value was substituted
whenever a particular algorithm failed to provide an interpolant. This is reflected
by the data points on the right and the upper border, respectively. The plot
further separates the points to categories based on the optimality guarantee
provided by SEOpt. We can see that LinOpt yields consistently better results.
Moreover, the improvement tends to get more pronounced with the growing
size of the instances. Finally, even when just focusing on instances where SEOpt
finished optimising, there are numerous cases where the interpolant from LinOpt
is several times smaller than that of SEOpt. This is because SEOpt cannot avoid
repeating certain formulas from the refutation many times in the interpolant
and corresponds to the worst case quadratic complexity discussed in Sect. 5.6

5 SEOpt uses the SMT solver Yices [8] (version 1.0) and communicates via a file, while
LinOpt one relies on Z3 [7] (version 4.5) and its API.

6 An interesting side-effect is an ability of SEOpt to assign two different colors to a
formula when considered from the perspective of two different sub-derivations. In
rare cases, such formula does not need to appear at all, and the final interpolant
may be smaller than what is achievable by LinOpt. An instance of this phenomenon
occurred in our experiment on benchmark SYN577-1, which appears in Fig. 6 (left)
slightly above the diagonal.

308 B. Gleiss et al.

Figure 6 (right) correspondingly compares LinOpt with LinHeu. Although
the plot highlights many examples where LinHeu yields a larger interpolant
than LinOpt, an optimal interpolant is actually discovered by LinHeu in 79 %
of the cases and its interpolants are only11.6 % larger on average. Moreover, on
the 7429 refutations on which both algorithms finished in time, the accumulated
time spent on interpolant extraction by LinHeu was only 8.17 s compared to a
total of 1901.03 s spent by LinOpt. This shows that LinHeu presents a viable
alternative to LinOpt when trading the quality of interpolant for computational
time becomes desirable.

Given the encouraging results we intend to officially replace SEOpt by LinOpt
and LinHeu in Vampire and make it available with the next release of the prover.

7 Conclusion

We presented a new technique for constructing interpolants from first-order local
refutations. The technique is based on an idea of proof splitting and on a novel
non-inductive construction which arguably gives more insight than previous work
and yields interpolants of linear size. This leads to a new interpolation algorithm
which we implemented in the automated theorem prover Vampire. Finally, we
confirmed in an extensive experiment that the algorithm also improves over the
state-of-the-art in practice.

References

1. Alberti, F., Bruttomesso, R., Ghilardi, S., Ranise, S., Sharygina, N.: Lazy abstrac-
tion with interpolants for arrays. In: Bjørner, N., Voronkov, A. (eds.) LPAR
2012. LNCS, vol. 7180, pp. 46–61. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28717-6 7

2. Bonacina, M.P., Johansson, M.: On interpolation in automated theorem proving.
J. Autom. Reasoning 54(1), 69–97 (2015)

3. Christ, J., Hoenicke, J.: Instantiation-based interpolation for quantified formu-
lae. In: Decision Procedures in Software, Hardware and Bioware, April 18–23
April 2010, vol. 10161. Dagstuhl Seminar Proceedings. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, Germany (2010)

4. Christ, J., Hoenicke, J.: Proof tree preserving tree interpolation. J. Autom. Rea-
soning 57(1), 67–95 (2016)

5. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in sat-
isfiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS
2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-78800-3 30

6. Craig, W.: Linear reasoning. a new form of the herbrand-gentzen theorem. J. Symb.
Log. 22(3), 250–268 (1957)

7. Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof,
J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).
doi:10.1007/978-3-540-78800-3 24

8. Dutertre, B.: Yices 2.2. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559,
pp. 737–744. Springer, Cham (2014). doi:10.1007/978-3-319-08867-9 49

http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://dx.doi.org/10.1007/978-3-642-28717-6_7
http://dx.doi.org/10.1007/978-3-540-78800-3_30
http://dx.doi.org/10.1007/978-3-540-78800-3_30
http://dx.doi.org/10.1007/978-3-540-78800-3_24
http://dx.doi.org/10.1007/978-3-319-08867-9_49

Splitting Proofs for Interpolation 309

9. Hoder, K., Kovács, L., Voronkov, A.: Playing in the grey area of proofs. In: Prin-
ciples of Programming Languages, pp. 259–272. ACM (2012)

10. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Hermanns, H., Palsberg, J. (eds.) TACAS 2006. LNCS, vol. 3920, pp.
459–473. Springer, Heidelberg (2006). doi:10.1007/11691372 33

11. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A.
(ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02959-2 17

12. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 1

13. Kovács, L., Voronkov, A.: First-order interpolation and interpolating proof sys-
tems. In: LPAR-21. 21st International Conference on Logic for Programming, Arti-
ficial Intelligence and Reasoning, vol. 46. EPiC Series in Computing, pp. 49–64.
EasyChair (2017)

14. Lahiri, S.K., Mehra, K.K.: Interpolant based decision procedure for quantifier-free
Presburger arithmetic. Technical Report MSR-TR-2005-121, Microsoft Research
(2005)

15. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A.,
Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg
(2003). doi:10.1007/978-3-540-45069-6 1

16. McMillan, K.L.: Lazy abstraction with interpolants. In: Ball, T., Jones, R.B. (eds.)
CAV 2006. LNCS, vol. 4144, pp. 123–136. Springer, Heidelberg (2006). doi:10.1007/
11817963 14

17. McMillan, K.L.: Quantified invariant generation using an interpolating saturation
prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963,
pp. 413–427. Springer, Heidelberg (2008). doi:10.1007/978-3-540-78800-3 31

18. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Hand-
book of Automated Reasoning, vol. 2s, pp. 335–367. Elsevier and MIT Press (2001)

19. Podelski, A., Schäf, M., Wies, T.: Classifying bugs with interpolants. In: Aichernig,
B.K.K., Furia, C.A.A. (eds.) TAP 2016. LNCS, vol. 9762, pp. 151–168. Springer,
Cham (2016). doi:10.1007/978-3-319-41135-4 9

20. Reger, G., Suda, M., Voronkov, A.: New techniques in clausal form generation. In:
GCAI 2016, 2nd Global Conference on Artificial Intelligence, vol. 41. EPiC Series
in Computing, pp. 11–23. EasyChair (2016)

21. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec, a cross community logic solving
service (2012). https://www.starexec.org

22. Sutcliffe, G.: The TPTP problem library and associated infrastructure. J. Autom.
Reasoning 43(4), 337–362 (2009)

23. Totla, N., Wies, T.: Complete instantiation-based interpolation. In: Principles of
Programming Languages, pp. 537–548. ACM (2013)

http://dx.doi.org/10.1007/11691372_33
http://dx.doi.org/10.1007/978-3-642-02959-2_17
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-540-45069-6_1
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/11817963_14
http://dx.doi.org/10.1007/978-3-540-78800-3_31
http://dx.doi.org/10.1007/978-3-319-41135-4_9
https://www.starexec.org

Detecting Inconsistencies in Large First-Order
Knowledge Bases

Stephan Schulz1(B), Geoff Sutcliffe2(B), Josef Urban3(B), and Adam Pease4(B)

1 DHBW Stuttgart, Stuttgart, Germany
schulz@eprover.org

2 University of Miami, Coral Gables, USA
geoff@cs.miami.edu

3 Czech Technical University in Prague, Prague, Czech Republic
josef.urban@gmail.com

4 Articulate Software, San Francisco, USA
apease@articulatesoftware.com

Abstract. Large formalizations carry the risk of inconsistency, and
hence may lead to instances of spurious reasoning. This paper describes
a new approach and tool that automatically probes large first-order
axiomatizations for inconsistency, by selecting subsets of the axioms cen-
tered on certain function and predicate symbols, and handling the subsets
to a first-order theorem prover to test for unsatisfiability. The tool has
been applied to several large axiomatizations, inconsistencies have been
found, inconsistent cores extracted, and semi-automatic analysis of the
inconsistent cores has helped to pinpoint the axioms that appear to be
the underlying cause of inconsistency.

1 Introduction

Automated Theorem Proving (ATP) is concerned with the development and use
of computer programs that automate sound reasoning: the derivation of conclu-
sions that follow inevitably from facts. The dual discipline, automated model
finding, develops computer programs that establish that a set of statements is
consistent. These capabilities lie at the heart of many important computational
tasks, e.g., formal methods for software and hardware design and verification,
[11,37], reasoning in meta-physics [4,46], solving hard problems in mathematics,
[19,24], and inference for the semantic web [13]. The use of automated reasoning
systems (theorem proving and model finding) requires a user to (rather precisely)
describe the domain of application as a set of axioms. For theorem proving, an
ATP system is then used to prove that a conjecture is a theorem of the axioms,
and hopefully produce a proof. For model finding, a model finding system is used
to demonstrate the consistency of the axioms, and hopefully produce a model
of the axioms. Automated theorem proving in classical logic relies on the axioms
being consistent, for otherwise all conjectures are theorems of the axiomatization.

J. Urban—Supported by the ERC Consolidator grant no. 649043 AI4REASON.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 310–325, 2017.
DOI: 10.1007/978-3-319-63046-5 19

Detecting Inconsistencies in Large First-Order Knowledge Bases 311

The direct method of showing that a set of axioms is consistent is to use a model
finder on the axioms. However, for large axiom sets this approach becomes rather
difficult (or impossible), because most large axiomatizations have large or infinite
models.

In the last 10 to 15 years there has been an increased, and increasingly suc-
cessful, use of automated reasoning in “large theories”, i.e., domain descriptions
that have many symbols, and many axioms of which typically only a few are
required for the proof of a theorem. Examples include commonsense and onto-
logical knowledge bases such as Cyc [23,33] and the SUMO (Suggested Upper
Merged Ontology) family of ontologies [26,29,31], large mathematical formal-
izations such as Mizar [42,44], Flyspeck [17] and Isabelle’s Archive of Formal
Proofs [20], and encodings of biological domains [10]. Such large axiomatiza-
tions always carry the risk of inconsistency - either because of mistakes in the
original formulation, or because of errors encoding the original formulation into
logic. Advances in ATP systems have revealed these inconsistencies while finding
proofs of theorems [38], thus stimulating efforts to check such axiomatizations
for consistency (for which model finding is largely unsuccessful, as noted above),
and to pinpoint and fix inconsistencies.

This paper proposes a new approach and tool for automatically probing
large first-order axiomatizations for inconsistencies. If inconsistencies are found,
a small inconsistent core can typically be presented, which makes it easy to
identify errors and to repair the axiomatization. This paper describes the idea
and implementation of the method, and demonstrates how effective it can be on
some existing large first-order axiomatizations.

2 Automated Reasoning in Large Theories

A common, almost necessary, part of reasoning over large axiomatizations is
focussing on axioms that are likely to be relevant to proving a given conjec-
ture. Typically, only a few axioms are needed for a proof. The irrelevant axioms
increase the search space, often to the extent that it is impossible to find a
proof. Axiom selection techniques address this problem [22,41]. A number of
strong axiom selection methods for assisting formal mathematics [7] are based
on various ways of learning from a large body of previous proofs [1,2,16,45]. In
this work we are however to a large extent interested in common-sense knowledge
bases, which mainly consist just of definitions and axioms. Below we therefore
focus on heuristic rather than learning selection methods.

Relevance pruning tries to identify all formulae that are potentially relevant
to proving a conjecture (or set of conjectures). Two formulae are relevant with
respect to each other if they share a function or predicate symbol. Relevance
pruning selects all formulae in the reflexive transitive closure of the conjecture
with respect to the relevancy relation. Unrestricted relevance pruning maintains
completeness in the non-equational case. A weakness is that the closure is often
still very large.

A symbolic heuristic approach is the MePo families of filters [25] developed in
the context of Sledgehammer [27], Isabelle’s interface to ATP systems. The MePo

312 S. Schulz et al.

filters represent formulae (and formula sets) as vectors of symbol occurrences,
and iteratively select formulae with vectors similar to the vector of the already
selected set. The process is again seeded with the conjecture.

Maybe the currently most widely used family of algorithms is derived from
Hoder’s SInE (SUMO Inference Engine) [15]). SInE can be seen as a heuristic
variant of relevancy pruning. It is based on the idea of a “defines” relation
between symbols and formulae. As for the previous approaches, SInE starts with
a conjecture (and its symbols) and tries to add formulae until a fixpoint is reached
in which all symbols in the set of selected formulae are defined. SInE assumes that
rare symbols are typically defined in terms of more common symbols. Thus the
“defines” relation associates a symbol with the formulae in which the symbol is
the rarest symbol. Various implementations allow for slightly weaker constraints
on this condition, or support early termination after a given number of formulae
has been added or a maximum level of definitions has been followed. Variants of
SInE have been implemented in, e.g., Vampire [21] and E [35,36], and are also
the basis for this work.

3 Automatic Inconsistency Probing

In previous work, we have employed a method where we simply iterate through
the set of axioms in the SUMO theory, testing them one at a time for inconsis-
tency with the growing knowledge base [30]. The method starts from an empty
knowledge base, and iteratively adds each axiom not proven to lead to a con-
tradiction. However, this process can fail to find existing inconsistencies as soon
as the knowledge base becomes complex enough that not every prover run ter-
minates with a satisfiable/unsatisfiable result. Ideally, we would have a method
fast enough to be run every time a new axiom is added to the theory.

The core idea of our new approach is to automatically extract subsets of an
axiomatization, and test each for unsatisfiability. If any subset is unsatisfiable,
so is the full axiomatization. The inconsistent core of such a subset can be
extracted from the proof of unsatisfiability, and analyzed to pinpoint the cause
of the inconsistency.

To extract a potentially unsatisfiable subset of axioms, a symbol is selected
as the seed symbol. The seed symbol is used to select a set of seed formulae
(possibly a single formula). The seed formulae are used as pseudo-goals for a
SInE filter that recursively extracts definitions related to the seed formulae until
the definitional closure is reached or one of the hard bounds (number of formulae
or depth of definition chain) is reached. The resulting set of axioms is handed
to a refutation-based ATP system that tries to show the set to be unsatisfiable.
The overall architecture and data flow of the system is depicted in Fig. 1.

This general approach has a number of choice points: How to select the seed
symbol, how to use the seed symbol to select seed formulae, which SInE filters
to use, and how to parameterize the ATP system with respect to search strategy
and resource limits.

The easiest way to select seed symbols is to try all the symbols in the axiom-
atization. For large axiomatizations with a big signature this leads to very many

Detecting Inconsistencies in Large First-Order Knowledge Bases 313

Fig. 1. Data flow and architecture

subsets to be tested for unsatisfiability, and hence is computationally challeng-
ing, although in many cases not prohibitively so. To limit the number of subsets,
restrictions can be imposed on the type and number of seed symbols. First, the
class of symbols considered as seeds can be restricted to predicate symbols only,
proper function symbols (excluding constants) only, or constants only, or any
combination of the three. At least in commonsense scenarios, a very large pro-
portion of symbols are constants, and our experiments have shown that excluding
constants does not seem to reduce the number of inconsistencies found.

Secondly, a subset of the eligible seed symbols can be selected, according to
a desired number of seed symbols and a selection criterion. We implemented
a variety of relatively simple methods to get an impression of the spectrum of
behaviours. Here, the first approach is to pick rare symbols, i.e. symbols that
do not occur in many axioms, as seed. This is based on the assumption that
more specialized parts of the ontology will typically be less exercised than more
general parts, and are hence more likely to contain hidden bugs. The opposite
approach, picking the most frequent symbols as seeds, is based on the idea that

314 S. Schulz et al.

they tend to bring together different, possibly conflicting parts of the ontology.
The last method, picking random symbols, acts as a control.

Given a set of seed symbols, three different methods have been tested for
selecting seed formulae:

– Use of the most diverse axiom selects a single seed formula with the largest
number of different function and predicate symbols among all that contain
the given seed symbol. Ties are broken by selecting the first candidate formula
with maximal diversity.

– Use of the largest axiom picks the syntactically largest formula that contains
the seed symbol, i.e. the formula with the most nodes in its tree representa-
tion. Ties are again broken in favor of the first formulae found.

– Use of all axioms that contain the seed symbol.

After selection of the seed formulae, a number of different SInE variants are
used as filters. Each of the SInE filters produces one subset to be tested for
unsatisfiability for each input set. The resulting files are handed to the theorem
prover (usually in some batch processing configuration), which tries to prove
them with a short time limit (3 s to 30 s).

3.1 Implementation

The extraction of subsets to test for unsatisfiability has been implemented in
e axfilter, a component of the E system distribution. It implements a version
of SInE that efficiently applies multiple filters to its input, amortizing the cost
of parsing, preprocessing and indexing. Code to select seed symbols and seed
formulae was added, as described in the previous section.

In the experiments, SInE filters that have previously proven their worth with
respect to conventional theorem proving were used. Of these, 9 different SInE
configurations are applicable to this setting (which does not distinguish between
the proper conjecture and additional local hypotheses, as there is no proper
conjecture).

E 2.0pre12 was used as the default ATP system to check the extracted formula
sets for unsatisfiability. The prover was configured to run in automatic mode,
but without engaging its built-in SInE selection. Postprocessing and analysis
of the unsatisfiable cores was done with simple shell scripts and some manual
processing.

A cleaned up distribution of the current state of the system is available at
http://eprover.eu/E-eu/AxProbing.html.

4 Experimental Results

4.1 SUMO Results

We have first applied our system to the TPTP v6.4.0 [39] axiom file
CSR003+2.ax, which contains a first-order translation [28] of the 2010 release

http://eprover.eu/E-eu/AxProbing.html

Detecting Inconsistencies in Large First-Order Knowledge Bases 315

of SUMO, MILO (the MId-Level Ontology) and 30 domain ontologies. The file
contains 55588 formulae, which use 1291 predicates, 291 non-constant function
symbols, and 32838 constants. It was originally believed to be consistent, but
results from the CASC-J6 ATP system competition revealed that the axioms
were inconsistent [38], and further inconsistencies have been found since then.
In each case corrections were made to make the theory consistent again, at least
as far as was known at the time. The experiments for this paper revealed more
inconsistencies. We explored the axiomatization, confirmed the inconsistency,
and identified at least one common root cause.

The seed symbols were selected in each of the three ways . . . randomly, the
most frequently occurring, and the least frequently occurring. For each way, 600
symbols were selected . . . 200 predicate symbols, 200 (non-constant) function
symbols, and 200 constants. We ran E with a time limit of 3 seconds on current-
generation hardware (2.6 GHz Intel Core processors, no memory limit, automatic
mode) to determine the status of each probe.

Table 1 summarizes the properties of the generated files. At this stage, a
number of interesting and maybe unintuitive observations can be made. First,
we were surprised by the fact that less frequent symbols seem to generate larger
probes - the naive assumption being that the larger set of seed axioms in the
“use all applicable formulas” setting would bias the size up. However, the effect
can be explained by looking at SInE’s “defined” relation, which assumes that
rare symbols are defined in terms of more common ones. Very specialized (rare)
symbols have more levels of definitions to traverse until the fix-point is reached.
The second observation is that success of the ATP - both for satisfiable and
unsatisfiable probes - strongly correlates with the average size of the problem,
with most successes for the smaller probes based on more common symbols.

Table 1. Properties of generated SUMO subsets

Seed symbols selection method # formulae ATP status

Min Med Avg Max SAT UNS TMO

Random 1 6855 1001 20001 1577 19 14604

Least frequent symbols 8 7963 3430 20001 965 11 15224

Most frequent symbols 1 5303 501 20001 4024 623 11553

Columns show the minimum number of axioms for probes in the corresponding
category, the median size, the average size, the maximum size, and the number
of probes shown satisfiable, unsatisfiable, or running into the time limit.

Table 2 provides an overview of the results. For each seed symbol selection
method it provides the number of subsets that were found to be unsatisfi-
able, the number of distinct unsatisfiable cores, the number of distinct Pred-
icate/Function/Constant seeds that led to an unsatisfiable subset, and the num-
ber of distinct seed symbols leading to the Diverse/Largest/All seed formula
selection method producing an unsatisfiable probe.

316 S. Schulz et al.

Table 2. SUMO experimental results

Seed symbols selection method # of UNS # distinct # by seed
type

by
axiom
select.

Subsets UNS cores P F C D L A

Random 19 15 6 3 0 1 1 9

Least frequent symbols 11 9 2 4 0 1 1 6

Most frequent symbols 623 43 78 3 0 79 79 81

All together 653 67 86 9 0 81 81 95

The results indicate that (for at least this axiomatization) using the most
frequently occurring predicate symbols as seed symbols is the most effective.
We can also observe that the “Use all formulas with the seed symbol” method
subsumes the other approaches - every symbol that was successful with one of
the other seed axiom selection method also produced at least one unsatisfiable
probe with that method.

Automated analysis of the unsatisfiable cores reveals that the following axiom
is present in all of them:

fof(kb_SUMO_32603,axiom,(
! [V__C2,V__U,V__C1] :

(V__U = s__UnionFn(V__C1,V__C2)
<=> ! [V__I1,V__I2,V__I3] :

((s__instance(V__C1,s__SetOrClass)
& s__instance(V__U,s__SetOrClass)
& s__instance(V__C2,s__SetOrClass))

=> ((s__instance(V__I1,V__C1)
& s__instance(V__I2,V__C2)
& s__instance(V__I3,V__U))

=> (s__instance(V__I1,V__U)
& s__instance(V__I2,V__U)
& (s__instance(V__I3,V__C1)

| s__instance(V__I3,V__C2)))))))).

The axiom (incorrectly) defines the union function s UnionFn, but mistak-
enly uses the s instance predicate instead of the s member predicate in the
consequent of the outer implication on the right-hand side of the equivalence. If
we remove the offending axiom, no more inconsistencies are found and SUMO
is consistent to the best of our knowledge.

With this method for debugging SUMO we now have, for large logical the-
ories, something approaching common practice in software engineering on non-
trivial systems, of adding to a software system and then going through one or
more cycles of validation and correction. Hopefully, further research will con-
tinue to yield methods that improve the completeness of the debugging process,

Detecting Inconsistencies in Large First-Order Knowledge Bases 317

Table 3. Probe status by SInE configuration

SInE configuration Min Med Avg Max SAT UNS TMO

gf120 h gu R02 F100 L20000 1 385 314 928 1109 241 4050

gf120 h gu RUU F100 L00100 1 79 101 101 1258 0 4142

gf120 h gu RUU F100 L00500 1 322 501 501 814 241 4345

gf120 h gu RUU F100 L01000 1 601 978 1001 790 158 4452

gf150 h gu RUU F100 L20000 8 6283 10075 10625 603 0 4797

gf200 h gu R03 F100 L20000 5 1590 1805 4003 833 13 4554

gf200 h gu RUU F100 L20000 8 13211 17703 17966 516 0 4884

gf500 h gu R04 F100 L20000 15 11789 18156 20001 439 0 4961

gf600 h gu R05 F100 L20000 28 13472 20001 20001 204 0 5196

and improve its speed, so that it becomes possible to check every new axiom at
the time it is authored for whether it introduces an inconsistency.

We can also analyze which of the 9 different SInE configurations have con-
tributed most to finding inconsistent probes. Table 3 summarizes the result. We
can see that only 4 of the 9 filter configurations generate at least one probe that
is unsatisfiable. We can again confirm that the overall ATP success rate seems
to strongly correspond to the median (and average) problem size, i.e. the larger
the problems are, the more likely the ATP is to time out. On the other hand,
for finding inconsistencies, we are only interested in UNS (unsatisfiable) results.
There, over-pruning (as likely the case for gf120 h gu RUU F100 L00100, which
has a very small hard size limit and selects at most 100 formulae to complement
the seed formulae) is also a risk.

4.2 OpenCyc Results

Experiments similar to those performed on the SUMO axiom set were performed
on an export of a fragment of the OpenCyc knowledge base [33], in the TPTP
v6.4.0 axiom file CSR002+4.ax. Two inconsistencies were found.

The first unsatisfiable subset was generated by selecting the 200 least fre-
quently occurring predicate symbols as seed symbols, and selecting all axioms
with those seed symbols as seed formulae. The offending unsatisfiable core of seven
axioms contains the following two axioms, which confuse temporal objects with
geographical subregions - clearly a mistake in the underlying Cyc axiomatization.

fof(ax4_357170,axiom,(
! [X] :

(temporalstufftype(X)
=> geographicalsubregiontypes(X,X)))).

fof(ax4_231810,axiom,(
! [ARG1,ARG2] :

318 S. Schulz et al.

(geographicalsubregiontypes(ARG1,ARG2)
=> temporalstufftype(ARG1)))).

The second unsatisfiable subset was generated by selecting 400 random pred-
icate symbols as seed symbols, and selecting all axioms with those seed symbols
as seed formulae. The offending unsatisfiable core of 20 axioms contains two
axioms that mix temporal objects with physical parts, but in this case it is not
obvious that they are the direct cause of the inconsistency.

4.3 Mizar Results

For the Mizar experiments the MPTP translation [42] of the Mizar Mathematical
Library (MML) [12] to TPTP was used. More precisely, version 4.181.11471 of
the MML, which has been used for the so far most extensive ATP and premise-
selection experiments over Mizar [18], was used. These previous experiments
took several weeks of real-time computation on a 64-core AMD server. Several
hundred combinations of premise selection methods and theorem provers were
tried. Neither a contradiction, nor a proof that would be illegal with respect to
the Mizar system was found. This makes it very unlikely to find a contradiction
in our current experiments.

The axiomatization file statements2 that was used for generating sub-
theories contains 146700 top-level Mizar lemmas, definitions, scheme instances,
type-system formulae, and other formulae encoding the Mizar built-in knowl-
edge. The formulae come from 1153 Mizar articles3, containing 17355 function
and constant symbols (including 3428 numbers), and 3689 predicate symbols4.

Mizar Unsampled. Initially, all problems were generated using both predicate
and function symbols and without subsampling. This takes about 15 hours using
a single CPU and produces 286614 files taking up about 700GB. Then we run E in
auto mode for 10 seconds on each problem. This takes 18 hours of real time using
50 CPUs in parallel. As expected, no problems are found to be Unsatisfiable.

Mizar Sampled. In the next version subsampling with m200 (picking the 200
most frequently occurring symbols as seeds) was used, limiting the seed symbols
only to predicates (based on the SUMO experiments) and seed method dl (using
the most diverse formula as a seed formula, and using the syntactically largest
formula as a seed formula). This generates in 23 min 3600 problems taking up
11GB. Since this is much fewer problems, we can run E with higher time limit
(30 seconds). This takes 45 min of real time when using 50 CPUs in parallel.
Even with this higher time limit, no problems are found to be Unsatisfiable.

1 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/.
2 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/MPTP2/statements.
3 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/.
4 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/MPTP2/symbols.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/statements
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/
http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/MPTP2/symbols

Detecting Inconsistencies in Large First-Order Knowledge Bases 319

Mizar Sampled with Some Omitted Type Guards. In the last Mizar
experiment, a frequent error in formal mathematical developments was emu-
lated by omitting an “obvious” assumption from a lemma. In particular, non-
emptiness (and thus also non-zero) assumption was omitted from the toplevel
Mizar statements. There are over 6000 affected statements.

Model finders such as Nitpick [8] and Nunchaku [34] can be tried in proof
assistants to quickly find such errors. Such methods have however limited use
when working over foundations such as set theory, where the underlying models
(if any) are infinitary. Finding a contradiction caused by the too strongly stated
lemma – using the methods developed here – is an interesting alternative.

Another scenario which actually occurred in various moments of the history
of building translations between ITPs and ATPs is that such typing assumptions
are sometimes omitted due to various corner cases in the ITP-ATP translation
modules. The methods developed here can be used as a global debugging tool
when creating such translations. Since it was known beforehand how to correct
all the corrupted statements, it was also possible to fully automate and observe
the process of gradually finding them with our tools, interleaved with (auto-
mated) correction and re-formulation. This provides an empirical evaluation of
the strength of the tools.

To generate the problems, the corrupted statements file was used, and again
subsampling was used to generate 3600 problems. As before, E was run with a
30 s time limit and 50-fold parallelization. E found 2312 of the 3600 problems to
be unsatisfiable. E quickly finds very simple refutations (226 that use just three
formulae), but also more complicated ones: 347 of the refutations use 10 or more
formulae. All these 2312 refutations are due to only 8 corrupted formulae. The
one that occurs most frequently (in 1227 of the refutations) is the corrupted
Mizar typing statement cc1 ami 3:5

fof(cc1_ami_3,axiom,(
! [X1] :

(v7_ordinal1(X1)
=> (~ v1_xboole_0(X1)

& v7_ordinal1(X1)
& ~ v1_setfam_1(X1))))).

This claims that every natural number is non-empty and has an empty element.
This is of course false for zero, which is modelled as the empty set in set theory.

After repairing the eight corrupted formulae that were found automatically
in the 3600 generated problems, E was run again. This time 853 problems are
found to be unsatisfiable, and 18 new corrupted formulae involved in the refu-
tations were found. It is clear that the loop finds the most obvious offending
formulae early, and proceeds to find more and more complicated proofs of the
contradiction. After obtaining a fixpoint, the system becomes “effectively consis-
tent” wrt. to our tool, however it is still possible to see if there are problematic
formulae left.
5 http://grid01.ciirc.cvut.cz/∼mptp/7.13.01 4.181.1147/html/ami 3.html#CC1.

http://grid01.ciirc.cvut.cz/~mptp/7.13.01_4.181.1147/html/ami_3.html#CC1

320 S. Schulz et al.

Table 4. 15 iterations of the contradiction-finding and axiom-correcting loop run on
the 3600 problems constructed from the Mizar data with some type guards omitted.

Loop iteration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Bad formulae found 8 18 10 8 6 1 1 0 0 0 1 0 0 0 0

Unsat. problems found 2312 853 637 238 102 2 2 0 0 0 1 0 0 0 0

Average proof time 10.2 8.5 13.7 21.2 22.7 21.3 27.7 29.5

This automated contradiction-finding and axiom-correcting loop is imple-
mented in about 30 lines of Perl.6 Note however that this can be easily auto-
mated only because the correct versions of all the intentionally modified facts
are known beforehand. In general, the axiom-correcting step is nontrivial. The
loop was run over the 3600 problems for 15 iterations, using a 30 s time limit for
a problem and 50-fold parallelization. The 15 iterations thus took about 8 hours
of real time and 400 hours of CPU time.

It takes 7 iterations to reach a state in which no more contradictions are
found within the time limit. Many problematic formulae are however still left:
3590 of the 3600 problems still contain at least one of them after the 7th iteration.
Letting the loop run further shows that adding more time will very likely discover
further contradictions: in the 11th iteration, one more contradiction is found
taking 29.5 s of CPU time. In total, the loop discovered 53 problematic formulae.
The iterations are shown in Table 4.

A brief experiment was done with a different ATP system, thus offering a
different notion of “effective consistency”. Instead of E, Vampire 4.1 was used,
again with a 30 s time limit on all the problems from the 15th iteration (none
refutable by E). Vampire finds a contradiction in 297 of the problems, detecting
15 more problematic formulae. A fixpoint for Vampire is reached after 5 iterations
and discovering in total 29 more problematic formulae.

The remaining number of problematic formulae in the 3600 repaired problems
is however still high. 3590 of the repaired problems contain at least one of the
formulae, 3188 different problematic formulae occur there, and the total number
of occurrences of the formulae in all the problems is 1228432 (2.85% of all the
43049126 formulae there). For comparison, before starting the repairing loop, this
number was 1378711 (3.2%), i.e., 11% of such occurrences were automatically
removed.

5 Future Work

This paper has laid the groundwork to automatically search for inconsistencies
in large knowledge bases. There is a number of possible extensions.

First, there are many ways to experiment with the filtering. We have so far
only used E’s existing SInE implementation and its existing filter configurations.
One approach would be to try new filter configurations close to the parameter
6 https://github.com/JUrban/MPTP2/blob/master/Ebot/loop.pl.

https://github.com/JUrban/MPTP2/blob/master/Ebot/loop.pl

Detecting Inconsistencies in Large First-Order Knowledge Bases 321

space demarcated by the so far most successful filters, using parameter-searching
systems such as BliStr [43] on a large set of problems. This applies not just to the
SInE filters, but to the whole interplay between seed symbol selection, seed axiom
selection and SInE filtering. Again, we could try to narrow down the probes to a
subset with a higher per-probe success rates, thus identifying a similar number
of inconsistencies with less computational effort. In this context, we can also
explore additional seed selection preferences (i.e. only use symbols with certain
arities, or symbols with certain minimum frequency) and seed axiom selection
methods (use the smallest axiom, use the least diverse axiom, etc.).

Second, we could add more axiom selection methods. For example, a very
different semantic heuristic selection method is available in SRASS [40] and
MaLARea [45]. It interleaves model finding for the axioms selected so far with
adding a (most relevant) axiom that is false in the model found so far. When the
loop stops (typically because no more models can be found), the axiom selection
is given to an ATP. In situations when a large number of proofs is available
(or generated e.g. by theory exploration), the current methods that produce the
seeding formula could also be followed by axiom selection based on some of the
many machine-learning methods developed recently.

Third, it would be instructive to apply our approach to additional large
axiomatizations, both in mathematical domains (e.g. a first-order translation
of the HOL Light Flyspeck corpus [14]), but also in more application-oriented
domains, where an interesting example would be SnowMed CT [3]. There may
be unsound-but-efficient encodings (historically used e.g. for Isabelle’s first-order
translation), that might keep most of their efficiency after automatically remov-
ing the worst sources of unsoundness using a similar process as described for
Mizar in Sect. 4.3. This process – namely removal of type guards – will also
apply to SUMO, since it uses a method for automatically adding explicit types
to axioms that lack such expressions in their originally authored forms.

Finally, we could experiment with different sound encodings. In some early
work, different methods for canonicalization of the knowledge base have lead to
the surfacing of different possible inconsistencies. We expect to integrate these
approaches and see if they yield more and different results. Our approach could
be also extended to work directly with more expressive logics, e.g. the higher
order logics used in systems like Isabelle, or the original higher order formulation
of SUMO in SUO-KIF or its translation to THF [6], either by translation of
higher-order theories to first order, or by direct use of higher-order provers like
Leo-II [5] or Sattalax [9].

6 Conclusion

For any large theory under active development there is a process that combines
the addition of new axioms to extend the coverage of the theory, with the use
of tools that aim to ensure desired properties of the axiomatization. The tool
presented here is one more in that armory, helping to ensure that the axiom-
atization is consistent. Both the SUMO and OpenCyc knowledge bases have,

322 S. Schulz et al.

on-and-off, been considered to be consistent, particularly those parts that lie
at their core. The discovery of inconsistencies might thus come as a surprise
to users, particularly when the axiomatizations have been used productively in
applications without revealing the contradictions. While the use of tools such as
the one described in this paper can be very helpful in finding inconsistencies, it
is important to note that such tools (including this one) are incomplete – they
do not ensure that the axiomatization is consistent.

Therefore it remains important to guard against conclusions that have been
derived because of inconsistency. Simply checking that the conjecture is part of
its proof can guard against this. One can also employ more refined approaches
based on paraconsistent logics [32].

As might be obvious from the differences in the experiments described in
Sects. 4.1 to 4.3, the tool has been used independently, and successfully, in three
quite distinct efforts. This shows the flexibility of the tool, and that different
combinations of choices can be effective in different circumstances.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

2. Alemi, A.A., Chollet, F., Eén, N., Irving, G., Szegedy, C., Urban, J.: DeepMath -
deep sequence models for premise selection. In: Lee, D.D., Sugiyama, M., Luxburg,
U.V., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing Systems 5–
10, 2016, Barcelona, Spain, pp. 2235–2243 (2016). http://papers.nips.cc/paper/
6280-deepmath-deep-sequence-models-for-premise-selection

3. Benson, T.: Principles of Health Interoperability: SNOMED CT, HL7 and FHIR
(Health Information Technology Standards). Springer, London (2016)

4. Benzmüller, C., Woltzenlogel Paleo, B.: Automating gödel’s ontological proof of
god’s existence with higher-order automated theorem provers. In: Schaub, T. (ed.)
Proceedings of the 21st European Conference on Artificial Intelligence, pp. 93–98
(2014)

5. Benzmüller, C., Paulson, L.C., Theiss, F., Fietzke, A.: LEO-II - a cooperative
automatic theorem prover for classical higher-order logic (System Description). In:
Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol.
5195, pp. 162–170. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7 14

6. Benzmller, C., Pease, A.: Higher-order aspects and context in SUMO. In: Jos
Lehmann, I.J.V., Bundy, A. (eds.) Special issue on Reasoning with context in
the Semantic Web, vol. 12–13. Science, Services and Agents on the World Wide
Web (2012)

7. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammer-
ing towards QED. J. Formalized Reasoning 9(1), 101–148 (2016).
http://dx.doi.org/10.6092/issn.1972-5787/4593

8. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
http://papers.nips.cc/paper/6280-deepmath-deep-sequence-models-for-premise-selection
http://dx.doi.org/10.1007/978-3-540-71070-7_14
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11

Detecting Inconsistencies in Large First-Order Knowledge Bases 323

9. Brown, C.E.: Reducing higher-order theorem proving to a sequence of SAT
problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS
(LNAI), vol. 6803, pp. 147–161. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 13

10. Chaudhri, V., Inclezan, D.: Representing states in a biology textbook. In: Leora
Morgenstern, L., Patkos, T., Sloan, R. (eds.) Proceedings of 12th International
Symposium on Logical Formalizations of Commonsense Reasoning. AAAI Press
(2015)

11. Chaudhuri, S., Farzan, A. (eds.): Proceedings of the 28th International Confer-
ence on Computer Aided Verification. LNCS, vol. 9779–9780. Springer, Heidelberg
(2016)

12. Grabowski, A., Korni�lowicz, A., Naumowicz, A.: Mizar in a nutshell. J. Formalized
Reasoning 3(2), 153–245 (2010)

13. Groth, P., Simperi, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F.,
Gil, Y. (eds.): Proceedings of the 15th International Semantic Web Conference.
LNCS, vol. 9981–9982. Springer, Heidelberg (2016)

14. Hales, T., Adams, M., Bauer, G., Dang, D.T., Harrison, J., Hoang, T.L., Kaliszyk,
C., Magron, V., McLaughlin, S., Nguyen, T.T., et al.: A formal proof of the Kepler
conjecture. arXiv preprint (2015). arXiv:1501.02155

15. Hoder, K., Voronkov, A.: Sine qua non for large theory reasoning. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS (LNAI), vol. 6803, pp.
299–314. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 23

16. Kaliszyk, C., Urban, J.: Stronger automation for Flyspeck by feature weighting
and strategy evolution. In: Blanchette, J.C., Urban, J. (eds.) PxTP 2013. EPiC
Series, vol. 14, pp. 87–95. EasyChair (2013)

17. Kaliszyk, C., Urban, J.: Learning-assisted automated reasoning with Flyspeck. J.
Autom. Reasoning 53(2), 173–213 (2014)

18. Kaliszyk, C., Urban, J.: MizAR 40 for Mizar 40. J. Autom. Reasoning 55(3), 245–
256 (2015). http://dx.doi.org/10.1007/s10817-015-9330-8

19. Kinyon, M., Veroff, R., Vojtěchovský, P.: Loops with abelian inner mapping groups:
an application of automated deduction. In: Bonacina, M.P., Stickel, M.E. (eds.)
Automated Reasoning and Mathematics. LNCS, vol. 7788, pp. 151–164. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-36675-8 8

20. Klein, G., Nipkow, T., Paulson, L.: The archive of formal proofs (2010). https://
www.isa-afp.org/

21. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39799-8 1

22. Kühlwein, D., Laarhoven, T., Tsivtsivadze, E., Urban, J., Heskes, T.: Overview
and evaluation of premise selection techniques for large theory mathematics. In:
Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364,
pp. 378–392. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31365-3 30

23. Lenat, D.: CYC: a large-scale investment in knowledge infrastructure. Commun.
ACM 38(11), 35–38 (1995)

24. McCune, W.: Solution of the robbins problem. J. Autom. Reasoning 19(3), 263–276
(1997)

25. Meng, J., Paulson, L.C.: Lightweight relevance filtering for machine-generated res-
olution problems. J. Appl. Logics 7(1), 41–57 (2009)

26. Niles, I., Pease, A.: Toward a standard upper ontology. In: Welty, C., Smith, B.
(eds.) Proceedings of the 2nd International Conference on Formal Ontology in
Information Systems (FOIS-2001) (2001)

http://dx.doi.org/10.1007/978-3-642-22438-6_13
http://dx.doi.org/10.1007/978-3-642-22438-6_13
http://arxiv.org/abs/1501.02155
http://dx.doi.org/10.1007/978-3-642-22438-6_23
http://dx.doi.org/10.1007/s10817-015-9330-8
http://dx.doi.org/10.1007/978-3-642-36675-8_8
https://www.isa-afp.org/
https://www.isa-afp.org/
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-642-31365-3_30

324 S. Schulz et al.

27. Paulsson, L.C., Blanchette, J.C.: Three years of experience with Sledgehammer, a
practical link between automatic and interactive theorem provers. In: Sutcliff, G.,
Ternovska, E., Schulz, S. (eds.) Proceedings of the 8th International Workshop on
the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia. EPiC, vol. 2
(2012)

28. Pease, A., Sutcliffe, G.: First order reasoning on a large ontology. In: Urban, J.,
Sutcliffe, G., Schulz, S. (eds.) Proceedings of the CADE-21 Workshop on Empir-
ically Successful Automated Reasoning in Large Theories, pp. 61–70. No. 257 in
CEUR Workshop Proceedings (2007)

29. Pease, A.: Ontology: A Practical Guide. Articulate Software Press, Angwin (2011)
30. Pease, A., Benzmüller, C.: Sigma: an integrated development environment for log-

ical theories. AI Commun. 26, 9–97 (2013)
31. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: a large ontology

for the semantic web and its applications. In: Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web (2002)

32. Priest, G.: Paraconsistent logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook
of Philosophical Logic, vol. 6, pp. 287–393. Kluwer Academic Publishers (2002)

33. Ramachandran, D., Reagan, P., Goolsbey, K.: First-orderized ResearchCyc: expres-
siveness and efficiency in a common sense knowledge base. In: Shvaiko, P. (ed.)
Proceedings of the AAAI Workshop on Contexts and Ontologies: Theory, Practice
and Applications (C&O-2005) (2005)

34. Reynolds, A., Blanchette, J.C., Cruanes, S., Tinelli, C.: Model finding for recursive
functions in SMT. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS (LNAI),
vol. 9706, pp. 133–151. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 10

35. Schulz, S.: E - A brainiac theorem prover. J. AI Commun. 15(2/3), 111–126 (2002)
36. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45221-5 49

37. Seligman, E., Schubert, T., Achutha Kiran Kumar, M.: Formal Verification: An
Essential Toolkit for Modern VLSI Design. Morgan Kaufmann, San Francisco
(2015)

38. Sutcliffe, G.: The CADE-23 automated theorem proving system competition -
CASC-23. AI Commun. 25(1), 49–63 (2012)

39. Sutcliffe, G.: The TPTP Problem Library and Associated Infrastructure. From
CNF to TH0, TPTP v6.4.0. J. Autom. Reasoning. (2017, to appear)

40. Sutcliffe, G., Puzis, Y.: SRASS - a semantic relevance axiom selection system. In:
Pfenning, F. (ed.) CADE 2007. LNCS (LNAI), vol. 4603, pp. 295–310. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-73595-3 20

41. Sutcliffe, G., Urban, J., Schulz, S. (eds.): Proceedings of the CADE-21 Workshop on
Empirically Successful Automated Reasoning in Large Theories, CEUR Workshop
Proceedings, vol. 257 (2007)

42. Urban, J.: MPTP 0.2: design, implementation, and initial experiments. J. Autom.
Reasoning 37(1), 21–43 (2006)

43. Urban, J.: BliStr: The blind strategymaker. In: Gottlob, G., Sutcliffe, G., Voronkov,
A. (eds.) Proceedings of the Global Conference on Artificial Intelligence, Tibilisi,
Georgia. EPiC, vol. 36, pp. 312–319. EasyChair (2015)

44. Urban, J., Rudnicki, P., Sutcliffe, G.: ATP and presentation service for Mizar
formalizations. J. Autom. Reasoning 50(2), 229–241 (2013)

http://dx.doi.org/10.1007/978-3-319-40229-1_10
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-540-73595-3_20

Detecting Inconsistencies in Large First-Order Knowledge Bases 325

45. Urban, J., Sutcliffe, G., Pudlák, P., Vyskočil, J.: MaLARea SG1 - machine learner
for automated reasoning with semantic guidance. In: Armando, A., Baumgartner,
P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 441–456. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-71070-7 37

46. Zalta, E., Fitelson, B.: Steps toward a computational metaphysics. Australas. J.
Philos. 36(2), 227–247 (2007)

http://dx.doi.org/10.1007/978-3-540-71070-7_37

Theorem Proving for Metric Temporal Logic
over the Naturals

Ullrich Hustadt1(B), Ana Ozaki2(B), and Clare Dixon1

1 Department of Computer Science, University of Liverpool, Liverpool, UK
{uhustadt,cldixon}@liverpool.ac.uk

2 Center for Advancing Electronics Dresden (cfaed), TU Dresden, Dresden, Germany
Ana.Ozaki@tu-dresden.de

Abstract. We study translations from Metric Temporal Logic (MTL)
over the natural numbers to Linear Temporal Logic (LTL). In particular,
we present two approaches for translating from MTL to LTL which pre-
serve the ExpSpace complexity of the satisfiability problem for MTL. In
each of these approaches we consider the case where the mapping between
states and time points is given by (1) a strict monotonic function and by
(2) a non-strict monotonic function (which allows multiple states to be
mapped to the same time point). Our translations allow us to utilise LTL
solvers to solve satisfiability and we empirically compare the translations,
showing in which cases one performs better than the other.

1 Introduction

Linear and branching-time temporal logics have been used for the specification
and verification of reactive systems. In linear-time temporal logic [11,22] we
can, for example, express that a formula ψ holds now or at some point in the
future using the formula ♦ψ (ψ holds eventually). However, some applications
require not just that a formula ψ will hold eventually but that it holds within a
particular time-frame, for example, between 3 and 7 moments from now.

To express such constraints, a range of Metric Temporal Logics (MTL) have
been proposed [3,4], considering different underlying models of time and operators
allowed. MTL has been used to formalise vehicle routing problems [17], monitor-
ing of algorithms [26] and cyber-physical systems [1], among others [15]. A survey
about MTL and its fragments can be found in [20]. It is known that MTL over the
reals is undecidable, though, decidable fragments have been investigated [2,5,6].

Here we consider MTL with pointwise semantics over the natural numbers,
following [3], where each state in the sequence is mapped to a time point on a
time line isomorphic to the natural numbers. In this instance of MTL, tempo-
ral operators are annotated with intervals, which can be finite or infinite. For
example, ♦[3,7] means that p should hold in a state that occurs in the interval
[3, 7] of time, while �[2,∞)p means that p should hold in all states that occur at
least 2 moments from now. In contrast to LTL, where the time difference from
one state to the next is always 1, in MTL, time is allowed to irregularly ‘jump’

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 326–343, 2017.
DOI: 10.1007/978-3-319-63046-5 20

Theorem Proving for Metric Temporal Logic over the Naturals 327

from one state to the next. For example, using �[2,2]p we can state that the time
difference from the current state to the next state is 2.

Furthermore, following Alur and Henzinger [3], the mapping between states
and time points is given by a (weakly) monotonic function, which allows mul-
tiple states to be mapped to the same time point. Underlying this semantics is
the so-called digital-clock assumption: Different states that are associated with
the same discrete clock record events happening between successive clock ticks.
Similarly, if no events occur over one or more successive clock ticks, no state will
be associated with those clock ticks. In this work, we also consider the seman-
tics where the mapping between states and time points is given by a strictly
monotonic function, which forces time to progress from one state to another.

We provide two approaches for translating from MTL to LTL: in the first
approach we introduce a fresh propositional variable that we call ‘gap’, which
is used to encode the ‘jumps’ between states, as mentioned above; the second
approach is inspired by [3], where fresh propositional variables encode time differ-
ences between states. In each approach we consider the case where the mapping
between states and time points is given by

1. a strict monotonic function and by
2. a non-strict monotonic function (which allows multiple states to be mapped

to the same time point).

All translations are polynomial w.r.t. the largest constant occurring in an
interval (although exponential in the size of the MTL formula due to the binary
encoding of the constants). Since the satisfiability problem for LTL is PSpace-
complete [24], our translations preserve the ExpSpace complexity of the MTL
satisfiability problem over the natural numbers [3].

Using these translations from MTL to LTL, we apply four temporal solvers,
one resolution based [16], one tableau based [13], one based on model checking [7],
and the other based on labelled superposition with partial model guidance [18];
to investigate the properties of the resulting formulae experimentally. To the
best of our knowledge, there are no implementations of solvers for MTL with
pointwise discrete semantics. In particular, our contributions are:

– translations from MTL to LTL which preserve the ExpSpace complexity of
the MTL satisfiability problem;

– an experimental analysis of the behaviour of LTL solvers on the resulting
formulae;

– to exemplify which kind of problems can be solved using MTL we also provide
encodings of the classical Multiprocessor Job-Shop Scheduling problem [8,14]
into MTL.

In the following we provide the syntax and semantics of LTL and MTL
(Sect. 2), show our translations from MTL to LTL (Sects. 3 and 4) and experi-
mental results (Sect. 5). We then show how one can encode the Multiprocessor
Job-Shop Scheduling problem into MTL with strict and non-strict semantics
(Sect. 6) and present experimental results (Sect. 7).

328 U. Hustadt et al.

2 Preliminaries

We briefly state the syntax and semantics of LTL and MTL. Let P be a (count-
ably infinite) set of propositional variables. Well formed formulae in LTL are
formed according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | �ϕ | (ϕUψ)

where p ∈ P. We often omit parentheses if there is no ambiguity. We denote by�c a sequence of c next operators, i.e., �0ϕ = ϕ and �n+1ϕ = ��nϕ, for every
n ∈ N.

An LTL model or state sequence σ over (N, <) is an infinite sequence of states
σi ⊆ P, i ∈ N. The semantics of LTL is defined as follows.

(σ, i) |= p iff p ∈ σi

(σ, i) |= (ϕ ∧ ψ) iff (σ, i) |= ϕ and (σ, i) |= ψ
(σ, i) |= ¬ϕ iff (σ, i) �|= ϕ
(σ, i) |= �ϕ iff (σ, i + 1) |= ϕ
(σ, i) |= (ϕUψ) iff ∃k ≥ i : (σ, k) |= ψ and ∀j, i ≤ j < k : (σ, j) |= ϕ

Further connectives can be defined as usual: true ≡ p ∨ ¬p, false ≡ ¬(true),
♦ϕ ≡ trueUϕ and �ϕ ≡ ¬♦¬ϕ. MTL formulae are constructed in a way similar
to LTL, with the difference that temporal operators are now bounded by an
interval I with natural numbers as end-points or ∞ on the right side. Note that
since we work with natural numbers as end-points we can assume w.l.o.g that
all our intervals are of the form [c1, c2] or [c1,∞), where c1, c2 ∈ N. Well formed
formulae in MTL are formed according to the rule:

ϕ,ψ := p | ¬ϕ | (ϕ ∧ ψ) | �Iϕ | (ϕUIψ)

where p ∈ P. A timed state sequence ρ = (σ, τ) over (N, <) is a pair consisting
of an infinite sequence σ of states σi ⊆ P, i ∈ N, and a function τ : N → N

that maps every i corresponding to the i-th state to a time point τ(i) such that
τ(i) < τ(i + 1). A non-strict timed state sequence ρ = (σ, τ) over (N, <) is a
pair consisting of an infinite sequence σ of states σi ⊆ P, i ∈ N, and a function
τ : N → N that maps every i corresponding to the i-th state to a time point τ(i)
such that τ(i) ≤ τ(i + 1). We assume w.l.o.g. that τ(0) = 0. The semantics of
MTL is defined as follows (we omit propositional cases, which are as in LTL).

(ρ, i) |= p iff p ∈ σi

(ρ, i) |= (ϕ ∧ ψ) iff (ρ, i) |= ϕ and (ρ, i) |= ψ
(ρ, i) |= ¬ϕ iff (ρ, i) �|= ϕ
(ρ, i) |= �Iϕ iff (ρ, i + 1) |= ϕ and τ(i + 1) − τ(i) ∈ I
(ρ, i) |= (ϕUIψ) iff ∃k ≥ i : τ(k) − τ(i) ∈ I and (ρ, k) |= ψ

and ∀j, i ≤ j < k : (ρ, j) |= ϕ

Further connectives can be defined as usual: ♦Iϕ ≡ trueUIϕ and �Iϕ ≡ ¬♦I¬ϕ.
To transform an MTL formula into Negation Normal Form, one uses the con-
strained dual until ŨI operator [20], defined as (ϕŨIψ) ≡ ¬(¬ϕUI¬ψ).

Theorem Proving for Metric Temporal Logic over the Naturals 329

.

p
gap p

0 1 2 3

Fig. 1. Example illustrating Definition 1

An MTL formula ϕ is in Negation Normal Form (NNF) iff the negation
operator (¬) occurs only in front of propositional variables. One of the differences
between MTL and LTL is that in LTL we have the equivalence ¬(�p) ≡ �¬p,
whereas in MTL ¬(�[2,2]p) �≡ �[2,2]¬p. If ¬(�[2,2]p) then either p does not occur
in the next state or the next state does not occur with time difference 2. We can
express this as follows: ¬(�[2,2]p) ≡ �[2,2]¬p ∨ �[0,1]true ∨ �[3,∞)true.

An MTL formula ϕ is in Flat Normal Form (FNF) iff it is of the form
p0 ∧ ∧

i �[0,∞)(pi → ψi) where p0, pi are propositional variables or true and ψi

is either a formula of propositional logic or it is of the form �Iψ1, ψ1UIψ2 or
ψ1ŨIψ2 where ψ1, ψ2 are formulae of propositional logic.

One can transform an MTL formula into FNF by renaming subformulae with
nested operators, as in [10,28]. For example, assume that we are given the fol-
lowing MTL formula: �[2,3](¬�[1,2]q). We first transform our formula into NNF
and obtain: �[2,3](♦[1,2]¬q). We then transform it into FNF: p0 ∧ �[0,∞)(p0 →�[2,3]p1)∧ �[0,∞)(p1 → ♦[1,2]¬q). The transformations into NNF and FNF are
satisfiability preserving and can be performed in polynomial time.

3 From MTL to LTL: Encoding ‘gaps’

Assume that our MTL formulae are in NNF and FNF. The main idea for our
proof is to map each timed state sequence ρ = (σ, τ) to a state sequence σ′ such
that ρ = (σ, τ) is a model of an MTL formula if, and only if, σ′ is a model of our
LTL translation. We first present our translation using the strict semantics and
then show how to adapt it for the non-strict semantics, where multiple states
are allowed to be mapped to the same time point.

Strict Semantics. We translate MTL formulae for discrete time models into
LTL using a new propositional variable gap. ¬gap is true in those states σ′

j of
σ′ such that there is i ∈ N with τ(i) = j and gap is true in all other states of σ′.
We now define our mappings between MTL and LTL models.

Definition 1. Given a timed state sequence ρ = (σ, τ), we define σ′ = σ′
0σ

′
1 . . .,

where σ′
j is as follows:

σ′
j =

{
σi if there is i ∈ N such that τ(i) = j;
{gap} otherwise.

Figure 1 illustrates the mapping given by Definition 1. For instance, if ρ =
(σ, τ) is the timed state sequence on the left side of Fig. 1 then (ρ, 0) |= �[2,3]p. As
shown in Table 1, we translate �[2,3]p into:

∨
2≤l≤3(�l(¬gap∧p)∧∧

1≤k<l �kgap).

330 U. Hustadt et al.

Table 1. Strict gap translation from MTL to LTL, where α, β are propositional for-
mulae and c1, c2 > 0.

MTL Strict Gap Translation

([0,∞)α)� ([1,∞)α)�

([c1,∞)α)� (
∧

1≤k<c1

kgap) ∧ c1(gapU(α ∧ ¬gap))

([c1,c2]α)� ∨
c1≤l≤c2

(l(¬gap ∧ α) ∧ ∧
1≤k<l

kgap)

([0,0]α)� false

([0,c2]α)� ([1,c2]α)�

(αU[0,∞)β)� (gap ∨ α)U(¬gap ∧ β)

(αU[c1,∞)β)� (
∧

0≤k<c1

k(gap ∨ α)) ∧ c1((gap ∨ α)U(¬gap ∧ β))

(αU[c1,c2]β)� ∨
c1≤l≤c2

(l(¬gap ∧ β) ∧ ∧
0≤k<l

k(gap ∨ α))

(αU[0,0]β)� ¬gap ∧ β

(αU[0,c2]β)� (¬gap ∧ β) ∨ (αU[1,c2]β)�

Note that the state sequence in Fig. 1 is a model of the translation. Since gap
is a propositional variable not occurring in σ, the time points mapped by the
image of τ do not contain gap.

Definition 2. Given a state sequence σ′ such that (σ′, 0) |= ¬gap ∧ �(♦¬gap),
we inductively define ρ = (σ0, τ(0))(σ1, τ(1)) . . ., where (σ0, τ(0)) = (σ′

0, 0) and,
for i, j, k ∈ N and i > 0, (σi, τ(i)) is as follows:

σi = σ′
j and τ(i) = j if j > τ(i − 1), gap �∈ σ′

j and for all k,
τ(i − 1) < k < j, gap ∈ σ′

k.

As σ′ is such that (σ′, 0) |= ¬gap ∧ �(♦¬gap), for each i ∈ N we have τ(i) ∈ N.
Also, for i > 0, τ(i) > τ(i − 1) and, so, τ : N → N is well defined.

Example. Assume that we are given the following MTL formula in NNF and
FNF: ϕ = p0 ∧ �[0,∞)(p0 → �[2,3]p1)∧ �[0,∞)(p1 → ♦[1,2]¬q). Using Table 1, we
translate ϕ into LTL as follows (recall that ♦Iψ ≡ trueUIψ):

ϕ� = p0 ∧ �[0,∞)(p0 → (¬gap ∧ (
∨

2≤l≤3(�l(¬gap ∧ p1) ∧ ∧
1≤k<l �kgap))

∧ �[0,∞)(p1 → (¬gap ∧ (
∨

1≤l≤2(�l(¬gap ∧ ¬q))))

We are ready for Theorem 1, which states the correctness of our translation
from MTL to LTL using ‘gap’s.

Theorem 1. Let ϕ = p0 ∧ ∧
i �[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ� = p0 ∧ ∧
i �(pi → (¬gap ∧ ψ�

i)) be the result of replacing each ψi in
ϕ by ψ�

i as in Table 1. Then, ϕ is satisfiable if, and only if, ϕ� ∧¬gap∧�(♦¬gap)
is satisfiable.

Theorem Proving for Metric Temporal Logic over the Naturals 331

0

q, same

2

. . .

q

. . .

1

gap

3

Fig. 2. Example illustrating Definition 3

Proof (Sketch). Assume ϕ is satisfied by a timed state sequence ρ = (σ, τ). We
then use Definition 1 to define a state sequence σ′ and show with a structural
inductive argument that σ′ is a model of ϕ� ∧ ¬gap ∧ �(♦¬gap). For the other
direction, we assume that ϕ�∧¬gap∧�(♦¬gap) is satisfied by a state sequence σ′

and use Definition 2 to define a timed state sequence ρ. We again use a structural
inductive argument to show that ρ is a model of ϕ. ��

Non-strict Semantics. We now show how we modify the Gap translation for
non-strict timed state sequences. We introduce a fresh propositional variable
called ‘same’. same is true exactly in those states σ′

j of σ′ such that there is
i ∈ N with τ(i) = j and, for i > 0, τ(i) = τ(i − 1). Note that same and gap
cannot both be true in any state. We say that a state s is a gap state if gap ∈ s.
We now define our mappings between MTL and LTL models.

Definition 3. Let ρ = (σ, τ) be a non-strict timed state sequence. We define
σ′ = σ′

0σ
′
1 . . . by initially setting σ′ = σ and then modifying σ′ with the two

following steps:

1. For i > 0, if τ(i) − τ(i − 1) = 0 then set σ′
i := σi ∪ {same};

2. For i, j ≥ 0, if σ′
j is the i-th non-gap state in σ′, σ′

j+1 is a non-gap state and
τ(i + 1) − τ(i) = k > 1 then add k − 1 states of the form {gap} between σ′

j

and σ′
j+1.

Figure 2 illustrates the mapping given by Definition 3. For instance, if ρ =
(σ, τ) is the non-strict timed state sequence in Fig. 2 then (ρ, 0) |= ♦[2,2]q. As
shown in Table 2, we translate ♦[2,2]q into: sameU(¬same ∧ �(sameU(¬same ∧�((q∧¬gap)∨�(sameU(q∧same)))))). The main distinction from the translation
presented in Table 1 is that here we use nested until operators to make progress
in our encoding of the time line whenever we find a state with ¬same. Note
that the state sequence represented on the right side of Fig. 1 is a model of the
translation (recall that ♦[2,2]q ≡ trueU[2,2]q).

Definition 4. Let σ′ be a state sequence such that (σ′, 0) |= ¬gap ∧ ¬same ∧�(♦¬gap) ∧ �(¬same ∨ ¬gap) ∧ �(gap → �¬same). We first define τ : N → N

by setting τ(0) = 0 and, for i > 0, τ(i) is as follows:

τ(i) =
{

τ(i−1) if σ′
j is the i+1-th non-gap state and same ∈ σ′

j

τ(i−1)+k+1 otherwise,

where k ≥ 0 is the number of gap states between the i-th and i + 1-th non-gap
states. We now define σ as follows:

332 U. Hustadt et al.

Table 2. Non-strict gap translation from MTL to LTL, using gap and same, where
α, β are propositional logic formulae, c1, c2 > 0 and (�[c1,∞)α)� and (�[c1,c2]α)� are as
in Table 1.

MTL Non-Strict Gap Translation

([0,∞)α)� ([0,0]α)� ∨ ([1,∞)α)�

([0,c2]α)� ([0,0]α)� ∨ ([1,c2]α)�

([0,0]α)� (α ∧ same)

(αU[c1,∞)β)� α ∧ ((α ∧ same)U(¬same ∧ (αU[c1−1,∞)β)�))

(αU[0,∞)β)� (gap ∨ α)U(¬gap ∧ β)

(αU[c1,c2]β)� α ∧ ((α ∧ same)U(¬same ∧ (αU[c1−1,c2−1]β)�))

(αU[0,0]β)� (β ∧ ¬gap) ∨ (α ∧ ((α ∧ same)U(β ∧ same)))

(αU[0,c2]β)� (αU[0,0]β)� ∨ (αU[1,c2]β)�

σi = σ′
j \ {same}, where σ′

j is the i + 1-th non-gap state.

We are ready for Theorem 2, which states the correctness of our translation
from MTL to LTL using the variables ‘gap’ and ‘same’.

Theorem 2. Let ϕ = p0 ∧ ∧
i �[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ� = p0 ∧ ∧
i �(pi → (¬gap ∧ ψ�

i)) be the result of replacing each ψi in
ϕ by ψ�

i as in Table 2. Then, ϕ is satisfiable if, and only if, ϕ� ∧¬gap∧¬same∧�(♦¬gap) ∧ �(¬same ∨ ¬gap) ∧ �(gap → �¬same) is satisfiable.

Proof (Sketch). We use Definitions 3 and 4 to map models of ϕ into models of
ϕ� ∧¬gap∧�(♦¬gap) and vice versa. The correctness of our translation is again
given by a structural inductive argument. As mentioned, the main difference
w.r.t. to Theorem 1 is that here we use the propositional variable same to encode
multiple states mapped to the same time point. ��

4 From MTL to LTL: Encoding Time Differences

Assume that our MTL formulae are in NNF and FNF. Similar to the previous
section our proof strategy relies on mapping each timed state sequence ρ = (σ, τ)
to a state sequence σ′ such that ρ = (σ, τ) is a model of an MTL formula if,
and only if, σ′ is a model of our LTL translation. We first show a translation
under the strict semantics and then we show how to adapt it for the non-strict
semantics.

Strict Semantics. Let C − 1 be the greatest number occurring in an interval
in an MTL formula ϕ or 1, if none occur. We say that a timed state sequence
ρ = (σ, τ) is C-bounded, for a constant C ∈ N, if τ(0) ≤ C and, for all i ∈ N,
τ(i+1)−τ(i) ≤ C. To map a timed state sequence ρ = (σ, τ) to a state sequence
σ′ we employ the following result adapted from [4].

Theorem Proving for Metric Temporal Logic over the Naturals 333

Theorem 3. Let ϕ be an MTL formula. If there is a timed state sequence ρ =
(σ, τ) such that (ρ, 0) |= ϕ then there is a C-bounded timed state sequence ρC

such that (ρC , 0) |= ϕ.

By Theorem 3, w.l.o.g., we can consider only timed state sequences where
the time difference from a state to its previous state is bounded by C. Then, we
can encode time differences with a set Πδ = {δ−

i | 1 ≤ i ≤ C} of propositional
variables where each δ−

i represents a time difference of i w.r.t. the previous
state (one could also encode the time difference to the next state instead of the
difference from the previous state). We also use propositional variables of the
form sn

m with the meaning that ‘the sum of the time differences from the last
n states to the current state is m’. For our translation, we only need to define
these variables up to sums bounded by 2 · C. We can now define our mapping
from an MTL model to an LTL model1.

Definition 5. Given a C-bounded timed state sequence ρ = (σ, τ), we define
σ′ = σ′

0σ
′
1 . . . by setting σ′

0 = σ0 and, for i > 0:

σ′
i = σi ∪ {δ−

k , s1k | τ(i) − τ(i − 1) = k, 1 ≤ k ≤ C}
∪ {sj+1

min(l+k,2·C) | s1k ∈ σ′
i and sj

l ∈ σ′
i−1}

where 1 ≤ j < 2 · C, 1 ≤ l ≤ 2 · C and 1 ≤ k ≤ C (assume variables of the form
sn

m and δ−
n do not occur in σ).

In Definition 5, if, for example, τ(2) − τ(0) = 4 then (σ′, 2) |= s24. Intuitively,
the variable s24 allow us to group together all the cases where the sum of the time
differences from the last 2 states to the current state is 4. This happens when:
τ(2) − τ(1) = 3 and τ(1) − τ(0) = 1; or τ(2) − τ(1) = 1 and τ(1) − τ(0) = 3; or
τ(2) − τ(1) = 2 and τ(1) − τ(0) = 2.

The next lemma gives the main properties of σ′. First, we need some notation.
We use two additional n-ary boolean operators ⊕=1 and ⊕≤1. If S = {ϕ1, . . . , ϕn}
is a finite set of LTL formulae, then ⊕=1(ϕ1, . . . , ϕn), also written ⊕=1S, is an LTL
formula. Let σ′ be a state sequence and i ∈ N. Then (σ′, i) |= ⊕=1S iff (σ′, i) |= ϕj

for exactly one ϕj ∈ S, 1 ≤ j ≤ n. Similarly, (σ′, i) |= ⊕≤1S iff (σ′, i) |= ϕj for at
most one ϕj ∈ S, 1 ≤ j ≤ n. By definition of σ′ the following lemma is immediate.

Lemma 1. Let SC be the conjunction of the following:

1. �� ⊕=1 Πδ, for Πδ = {δ−
k | 1 ≤ k ≤ C};

2. �(δ−
k ↔ s1k), for 1 ≤ k ≤ C;

3. � ⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {si
j | i ≤ j ≤ 2 · C};

4. �((�s1k ∧ sj
l) → �sj+1

min(l+k,2·C)), for {s1k, sj
l , s

j+1
min(l+k,2·C)} ⊆ ⋃

1≤i≤2·C Πi.

Given a C-bounded timed state sequence ρ = (σ, τ), let σ′ = σ′
0σ

′
1 . . . be as in

Definition 5. Then, (σ′, 0) |= SC .
1 We write min(l + k, 2 · C) for the minimum between l + k and 2 · C. If the minimum

is 2 · C then sj+1
2·C means that the sum of the last j + 1 variables is greater or equal

to 2 · C.

334 U. Hustadt et al.

Table 3. Strict time difference translation from MTL to LTL where α, β are proposi-
tional logic formulae and c1, c2 > 0.

MTL Strict Time Difference Translation

([c1,∞)α)� ((
∨

c1≤i≤C δ−
i) ∧ α)

([0,∞)α)� α

([c1,c2]α)� ((
∨

c1≤i≤c2
δ−

i) ∧ α)

([0,c2]α)� ([1,c2]α)�

([0,0]α)� false

(αU[c1,∞)β)� ∨
1≤i≤c1

(i((
∨

c1≤j≤c1+C si
j) ∧ αUβ) ∧ (

∧
0≤k<i

kα))

(αU[0,∞)β)� αUβ

(αU[c1,c2]β)� ∨
1≤i≤c2

(i((
∨

c1≤j≤c2
si

j) ∧ β) ∧ (
∧

0≤k<i
kα))

(αU[0,c2]β)� β ∨ (αU[1,c2]β)�

(αU[0,0]β)� β

Point 1 ensures that at all times, the time difference k from the current state
to the previous (if it exists) is uniquely encoded by the variable δ−

k . In Point 2
we have that the sum of the difference of the last state to the current, encoded
by s1k, is exactly δ−

k . Point 3 ensures that at all times we cannot have more than
one value for the sum of the time differences of the last i states. Finally, Point 4
has the propagation of sum variables: if the sum of the last j states is l and the
time difference to the next is k then the next state should have that the sum of
the last j + 1 states is l + k. We now define our mapping from an LTL model of
SC to an MTL model (for this mapping, we actually only need Point 1).

Definition 6. Given a state sequence σ′ = σ′
0σ

′
1 . . . such that (σ′, 0) |= SC , we

define a C-bounded timed state sequence ρ = (σ, τ) by setting σi = σ′
i \ (Πδ ∪⋃

1≤j≤2C Πj), for i ∈ N, and:

τ(i) =
{

0 if i = 0
τ(i − 1) + k if i > 0, δ−

k ∈ σ′
i

Note that ρ, in particular, τ , in Definition 6 is well-defined because for every
i ∈ N there is exactly one k such that δ−

k ∈ σ′
i. As shown in Table 3, we translate,

for example, �[2,3]p into �((δ−
2 ∨ δ−

3) ∧ p). We are ready for Theorem 4, which
states the correctness of our translation using time differences.

Theorem 4. Let ϕ = p0 ∧ ∧
i �[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ� = p0 ∧ ∧
i �(pi → ψ�

i) be the result of replacing each ψi in ϕ by ψ�
i

as in Table 3. Then, ϕ is satisfiable if, and only if, ϕ� ∧ SC is satisfiable.

Proof (Sketch). Assume ϕ is satisfied by a timed state sequence ρ = (σ, τ). We
then use Definition 5 to define a state sequence σ′ and show with a structural

Theorem Proving for Metric Temporal Logic over the Naturals 335

Table 4. Non-strict time difference translation from MTL to LTL where α, β are
propositional logic formulae, k1, k2 ≥ 0 and c1, c2 > 0.

inductive argument that σ′ is a model of ϕ� ∧ SC . For the other direction, we
assume that ϕ� ∧ SC is satisfied by a state sequence σ′ and use Definition 6 to
define a timed state sequence ρ. We again use a structural inductive argument
to show that ρ is a model of ϕ. ��

Example. Assume that we are given the following MTL formula in NNF and
FNF: ϕ = p0 ∧ �[0,∞)(p0 → �[2,3]p1) ∧ �[0,∞)(p1 → ♦[1,2]¬q). Using Table 3, we
translate ϕ into LTL as follows:

ϕ� = p0 ∧ �[0,∞)(p0 → (¬gap ∧ (�[2,3]p1)�))
∧ �[0,∞)(p1 → (¬gap ∧ (♦[1,2]¬q)�)),

where

(�[2,3]p1)� = �((
∨

2≤i≤3 δ−
i) ∧ p1)

(♦[1,2]¬q)� =
∨

1≤i≤2(�i((
∨

1≤j≤2 si
j) ∧ ¬q))

(recall that ♦Iψ ≡ trueUIψ). By Theorem 4, ϕ is satisfiable iff ϕ� ∧ S4 is satis-
fiable, where S4 is the conjunction of the following:

1. �� ⊕=1 Πδ, for Πδ = {δ−
k | 1 ≤ k ≤ 4};

2. �(δ−
k ↔ s1k), for 1 ≤ k ≤ 4;

3. � ⊕≤1 Πi, for 1 ≤ i ≤ 8 and Πi = {si
j | i ≤ j ≤ 8};

4. �(�s1k ∧ sj
l → �sj+1

min(l+k,8)), for {s1k, sj
l , s

j+1
min(l+k,8)} ⊆ ⋃

1≤i≤8 Πi.

Non-strict Semantics. We now show how we modify the Time Difference
translation for non-strict timed state sequences. We extend the set Πδ = {δ−

i |
1 ≤ i ≤ C} of propositional variables representing time differences with δ−

0 ,
which holds whenever the time difference to the previous state is 0. We say
that a state is non-zero if the time difference to the previous state is non-zero.
The meaning of the variables of the form sn

m also needs to change, it now indicates

336 U. Hustadt et al.

that ‘the sum of the time differences from the last n non-zero states to the current
state is m’. As before, for our translation, we only need to define these variables
up to sums bounded by 2 · C. We can now define our mapping from an MTL
model to an LTL model.

Given a C-bounded non-strict timed state sequence (σ, τ), we define a state
sequence σ′ as in Definition 5, with the difference that, whenever τ(i) = τ(i−1),
we now make δ−

0 true in σ′
i and copy all variables of the form sn

m in σ′
i−1 to σ′

i.
Let S′

C be the conjunction of the following:

1. �� ⊕=1 Πδ, for Πδ = {δ−
k | 0 ≤ k ≤ C};

2. �(δ−
k ↔ s1k), for 1 ≤ k ≤ C;

3. � ⊕≤1 Πi, for 1 ≤ i ≤ 2 · C and Πi = {si
j | i ≤ j ≤ 2 · C};

4. �((�s1k ∧ sj
l) → �sj+1

min(l+k,2·C)), for {s1k, sj
l , s

j+1
min(l+k,2·C)} ⊆ ⋃

1≤i≤2·C Πi;

5. �((�δ−
0 ∧ sj

l) → �sj
l), for sj

l ∈ ⋃
1≤i≤2·C Πi.

It is easy to see that (σ′, 0) |= S′
C . Note that the only difference from S′

C to
SC , defined in Lemma1, is Point 5 which propagates the variables of the form sn

m

to the next state if the time difference is zero. The mapping from an LTL model
of S′

C to an MTL model is defined in the same way as in Definition 6 (but now
k in δ−

k can be zero). To simplify the notation, in Table 4 we write φUnγ, χ as a
shorthand for φU(γ ∧ �(φUn−1γ, χ)), where φU1γ, χ = φUχ. Theorem 5 states
the correctness of our translation (Table 4) using non-strict time differences. It
can be proved with ideas similar to those used in the proof of Theorem4. The
main distinction appears in the translation of the ‘until’ formulas, where we nest
until operators so that we can count n non-zero states and then check whether
a variable of the form sn

m holds (in the strict case all states are non-zero, so in
Table 3 we can count these states with next operators).

Theorem 5. Let ϕ = p0 ∧ ∧
i �[0,∞)(pi → ψi) be an MTL formula in NNF and

FNF. Let ϕ� = p0 ∧ ∧
i �(pi → ψ�

i) be the result of replacing each ψi in ϕ by ψ�
i

as in Table 4. Then, ϕ is satisfiable if, and only if, ϕ� ∧ S′
C is satisfiable.

Proof (Sketch). We use our modified versions of Definitions 5 and 6 for the non-
strict semantics to map models of ϕ into models of ϕ� ∧ S′

C and vice versa. The
correctness of our translation is again given by a structural inductive argument. As
mentioned, the main difference w.r.t. to Theorem 4 is that here we use the propo-
sitional variable δ−

0 to encode multiple states mapped to the same time point. ��

5 Empirical Evaluation of the Translations

In order to empirically evaluate the translations, we have used them together with
four LTL satisfiability solvers, LS4, NuSMV, pltl and TRP++. The last three per-
formed well in the LTL solver comparison by Schuppan and Darmawan [23] while
LS4 has been included because of its excellent performance in our experiments.

NuSMV 2.6.0 [19] uses a reduction of the LTL satisfiability problem to the LTL
model checking problem [7]. It is then possible to decide the latter problem either

Theorem Proving for Metric Temporal Logic over the Naturals 337

(a) Performance on

[0,b1]p [0,∞)¬p
(b) Performance on

[10,∞)p [b2,∞)¬p

Strict
Semantics

Non-Strict
Semantics

Strict
Semantics

Non-Strict
Semantics

TD + LS4
Gap + LS4
TD + NuSMV
Gap + NuSMV
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec Timeout exceeded

Fig. 3. Heat map for the performance of LTL provers on θ1
b1 and θ2

b2 . Each rectangle
represents the runtime of a prover on an encoding of a formula, with runtimes given in
colours as indicated above.

using a BDD-based algorithm or a SAT-based algorithm. Here, we use the latter
with completeness check enabled which turns NuSMV into a decision procedure
for the LTL satisfiability problem. With the pltl [21] system we have used the
graph method which is based on a one-pass and-or tree tableau calculus [13]
and is time complexity optimal for LTL. TRP++ 2.2 [27] is based on an ordered
resolution calculus that operates on LTL formulae in a clausal normal form [16].
LS4 [18] is an LTL prover based on labelled superposition with partial model
guidance developed by Suda and Weidenbach [25]. It operates on LTL formulae
in the same clausal normal form as TRP++.

We focus on formulae where differences between the two translations could
lead to differences in the behaviour of solvers on these formulae. In particular,
for (αU[c1,c2]β) the Strict and Non-Strict Time Difference Translations contain
disjunctive subformulae of the form

∨
c1≤j≤c2

si
j that have no equivalence in the

Strict and Non-Strict Gap Translations of that formula. Each sum variable si
j

is also subject to the constraints expressed by SC . It is a reasonable hypothesis
that this will have a detrimental effect on the performance of a solver. On the
other hand, for �[c1,∞)α both Gap Translations contain an eventuality formula
gapU(α ∧ ¬gap) that is not present in the Time Difference Translations of this
formula. Here, the hypothesis is that the Time Difference Translations lead to
better behaviour of solvers.

To test our two hypotheses, we consider the unsatisfiable parameterised
formulae θ1b1 := ♦[0,b1]p ∧ �[0,∞)¬p for values of b1 between 0 and 10, and
θ2b2 := �[10,∞)p ∧ �[b2,∞)¬p for values of b2 between 10 and 110 in steps of
10. After transformation to Flat Normal Form, we apply one of the four transla-
tions, and run a solver five times on the resulting LTL formula (with a timeout
of 1000 CPU seconds), and then determine the median CPU time over those five
runs. We refer to that median CPU time as the runtime. The repeated runs are

338 U. Hustadt et al.

necessary to moderate the fluctuations shown by all provers in the CPU time
used to solve a particular formula. The experiments were conducted on a PC
with Intel i7-2600 CPU @ 3.40GHz and 16GB main memory.

Figure 3 shows the runtimes in the form of a heat map. Figure 3(a) confirms
our hypothesis that for (αU[c1,c2]β) the Gap Translations, independent of the
semantics, lead to better performance than the Time Difference Translations.
Figure 3(b) confirms that the Time Difference Translations lead to better per-
formance on �[c1,∞)α for LS4 and TRP++, but not for NuSMV and pltl. The reason
are the background theories SC and S′

C that form part of the Time Difference
Translations, most of which turn out not to be relevant to the (un)satisfiability
of (θ2b2)

�. LS4 and TRP++ appear to be able to derive a contradiction without
too many inferences involving SC or S′

C , while NuSMV and pltl do not. If one
restricts SC and S′

C by hand to smaller sets strictly necessary to establish the
(un)satisfiability of (θ2b2)

�, then NuSMV and pltl also perform better with the
Time Difference Translations than with the Gap Translations.

6 An Example: Multiprocessor Job-Shop Scheduling

We consider a generalisation of the classic job-shop scheduling problem, called
the Multiprocessor Job-shop Scheduling (MJS) problem [8,14]. The representa-
tion provided is based on that in [9]. Here a set of jobs have to be processed on a
set of machines running in parallel. Each job requires a number of processor steps
to complete (this number may also depend on the machine, i.e., job i may run
faster in machine j than in machine l). The question is whether there is a schedul-
ing such that after t time units all jobs will have been processed by the machines.

We first show how one can encode the problem in MTL with the strict seman-
tics and then we show the encoding with the non-strict semantics. Our encodings
have the property that: there is a scheduling if and only if there is a model for
the resulting MTL formulae. One can use any model of the MTL formulae to
create a scheduling satisfying the constraints of the problem.

Strict Semantics. Assume we have n jobs j1, j2, . . . , jn and k machines m1,
m2, . . . , mk. Let

– start runji , runji and has runji denote the start, the execution and the end
of the execution of job ji on some machine, respectively;

– start runjiml
and runjiml

denote the start and the execution of job ji on
machine ml, respectively; and

– tjiml
to denote the time taken to run job ji on machine ml.

The following equations state that (1) once a job starts running it must start
running on one of the machines and that (2) once a job starts running on a
machine it must run on that machine (where

∧
1≤i≤n and

∧
1≤i≤n,1≤l≤k in front

of the formulas is omitted for brevity)

�(start runji → ∨k
l=1 start runjiml

) (1)
�(start runjiml

→ runjiml
) (2)

Theorem Proving for Metric Temporal Logic over the Naturals 339

Equation (3) states that: if a job is running on one machine then it cannot
be running on another (integrity of jobs); and another job cannot be running on
the same machine (integrity of machines). By Eq. (4), once a job has started it
cannot be started again.

�(runjiml
→ (

∧k
p=1,p�=l ¬runjimp

∧ ∧n
q=1,q �=i ¬runjqml

)) (3)

�(start runji → ��¬start runji) (4)

We write ¬runji as a short hand for
∧k

l=1 ¬runjiml
. We can use (5) to denote

that once job ji is started to run on machine ml it takes time tjiml
and (6) to

denote that once job ji has finished running on machine ml it will not run again.
Further, Eq. (7) denotes that job ji cannot be run until it has started.

�(start runjiml
→ �[0,tjiml

−1]runjiml
∧ ¬has runji) (5)

�(start runjiml
→ �[tjiml

,∞)(¬runji ∧ has runji)) (6)

�(¬runjiUstart runji) (7)

We assume initially that no jobs have run, i.e.,
∧n

i=1 ¬has runji ; and that (8)
if a job has not run and is currently not running then it has not run in the next
moment. �((¬has runji ∧ ¬runji) → �¬has runji) (8)

We can now check whether we can achieve a schedule after at most t time points
by adding ♦[0,t]

∧n
i=1 has runji . We can also specify constraints on jobs such as

– �(runji ↔ runji,ml
): job ji must run on machine ml;

– ♦(start runji → ♦[1,∞)start runjm): job ji must start before job jm;
– ♦[c,d]start runji : job ji must start at a point within the interval [c, d].

Non-strict Semantics. We again assume we have n jobs j1, j2, . . . , jn and k
machines m1,m2, . . . , mk. Let

– start runji and has runji denote the start and the end of job ji on some
machine, respectively;

– ml denote a state of machine ml;
– runji denote that job ji is running on some machine; and
– tjiml

denote the time taken to run job ji on machine ml.

In each state exactly one of the variables of the form ml is true. Also, in
each state at most one job is running, but now we may have multiple states
at the same time. Let Πm = {m1, . . . , mk} and Πj = {runj1 , . . . , runjn}. The
following states the constraints mentioned above (the meaning of ⊕=1 and ⊕≤1

is as described in Sect. 3):

�(⊕=1Πm ∧ ⊕≤1Πj) (9)

340 U. Hustadt et al.

Equation (10) specifies that if a job is running on one machine then it cannot
be running on another. Equation (11) states that once a job is started it cannot
be started again (where

∧
1≤i≤n,1≤l≤k and

∧
1≤i≤n is again omitted).

�((ml ∧ runji) → ∧
l′ �=l �¬(ml′ ∧ runji)) (10)

�(start runji → ��¬start runji) (11)

We use the following

�((start runji ∧ ml) → (�[0,tjiml
−1](¬has runji ∧ (ml → runji))

∧ ♦[0,tjiml
]has runji))

(12)

to denote that once job ji started to run on machine ml it takes time tjiml

and (13) to denote that once job ji has finished running on machine ml it will
not run again. Further, we use �(¬runjiUstart runji) to state a job ji cannot be
run until it is started and �(¬has runjiUstart runji) to state that a job cannot
have run before it starts (another rule above will make sure that has runji will
hold after the run has finished).

�((start runji ∧ ml) → �[tjiml
+1,∞)(¬runji ∧ has runji)) (13)

We assume initially that no jobs have run, i.e.,
∧n

i=1 ¬has runji . We can now
check whether we can achieve a schedule after at most t time points by adding
♦[0,t]

∧n
i=1 has runji .

7 Experiments with MJS Problems

We have performed an experimental evaluation of the combination of our trans-
lations with LS4, NuSMV, pltl and TRP++. Regarding the MJS problems used
in the evaluation we made the simplifying assumption that a job ji, for each i,
1 ≤ i ≤ n, takes the same amount of time ti on whichever machine it is processed
on. We can then characterise a MJS problem by stating (i) a job list J consist-
ing of a list of durations (t′1, . . . , t

′
n), (ii) the number k of machines available,

and (iii) the time bound t. In Eqs. 5, 6, 12 and 13, for every i, 1 ≤ i ≤ n, and
every l, 1 ≤ l ≤ k, tjiml

will be given by t′ji . The time bound t is used in the
formula ♦[0,t]

∧n
i=1 has runji that expresses the requirement for a schedule that

completes all n jobs on k machines in at most t time points.
For our experiments we created 35 MJS problems with number n of jobs

between 1 and 4, a duration t′i of a job between 1 and 4, a number k of machines
between 1 and 3 and finally a time bound t between 0 and 4. We then constructed
corresponding MTL formulae for both the strict and the non-strict semantics.
Each formula was transformed to FNF, translated to LTL using one of the
encodings, and each solver run five times on the resulting LTL formula (with a
timeout of 1000 CPU seconds), and the median CPU time over those five runs
determined. We refer to that median CPU time as the runtime. Figure 4 shows
the runtimes in the form of a heat map.

Regarding the formalisation of MJS problems in the strict semantics, we see
in Fig. 4 that for every prover the Gap Translation results in equal or better

Theorem Proving for Metric Temporal Logic over the Naturals 341

Strict Semantics Non-Strict Semantics

TD + LS4
Gap + LS4
TD + NuSMV
Gap + NuSMV
TD + pltl
Gap + pltl
TD + TRP++

Gap + TRP++

< 0.01 sec > 0.01 sec, ≤ 0.25 sec > 0.25 sec, ≤ 0.50 sec > 0.50 sec, ≤ 1 sec
> 1 sec, ≤ 2 sec > 2 sec, ≤ 4 sec > 4 sec, ≤ 8 sec > 8 sec, ≤ 16 sec
> 16 sec, ≤ 32 sec > 32 sec, ≤ 64 sec > 64 sec, ≤ 125 sec > 125 sec, ≤ 250 sec
> 250 sec, ≤ 500 sec > 500 sec, ≤ 1000 sec Timout exceeded

Fig. 4. Heat map for the performance of LTL provers on MJS problems. Each rectangle
represents the runtime of a prover on an encoding of the MJS problem, with runtimes
given in colours as indicated above.

performance than the Time Difference Translation on every single problem. The
Gap Translation together with LS4 offers the best performance for every instance
but does not provide models for satisfiable problems. NuSMV is the only prover
that returns models of satisfiable problems and its combination with the Gap
Translation provides the second best performance overall.

Regarding the formalisation of MJS problems in the non-strict semantics, the
most striking observation we can make from Fig. 4 is how much more challenging
the corresponding LTL satisfiability problems are for all the provers, as indicated
by the very high number of timeouts. Overall, the Non-Strict Gap Translation
still results in better performance than the Non-Strict Time Difference Trans-
lation. The combination of the Non-Strict Gap Translation and LS4 is again
the best performing single approach, but exceeds the timeout for most of the
unsatisfiable MJS problems. NuSMV is again the second best prover. It is able to
solve and return a model for all satisfiable problems. With the Non-Strict Gap
Translation it typically does so an order of magnitude faster than with the Non-
Strict Time Difference Translation. On unsatisfiable problems, NuSMV with the
Non-Strict Time Difference Translation exceeds the timeout on all unsatisfiable
problems and with the Non-Strict Gap Translation it does so on 18 out of 20
unsatisfiable problems. In summary, the experimental results presented in this
section provide further evidence of the significant performance improvements
that can be gained from the use of the Gap over Time Difference Translations.

8 Conclusion

We presented and evaluated experimentally four translations from MTL to LTL.
The translations using time difference are based on the MTL decision procedure
presented in [3] and use the bounded model property. Note that the translations
using ‘gap’ are proved independently of this property. Our translations provide
a route to practical reasoning about MTL over the naturals via LTL solvers.
As future work, we intend to investigate whether we can translate PDDL3.0
statements [12] into MTL and apply our translations to the planning domain.

342 U. Hustadt et al.

References

1. Abbas, H., Fainekos, G., Sankaranarayanan, S., Ivančić, F., Gupta, A.: Proba-
bilistic temporal logic falsification of cyber-physical systems. ACM Trans. Embed.
Comput. Syst. (TECS) 12(2s), 95: 1–95: 30 (2013)

2. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. J. ACM
43(1), 116–146 (1996)

3. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

4. Alur, R., Henzinger, T.A.: A really temporal logic. J. ACM 41(1), 181–204 (1994)
5. Bersani, M.M., Rossi, M., Pietro, P.S.: A tool for deciding the satisfiability of

continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)
6. Bouyer, P., Markey, N., Ouaknine, J., Worrell, J.: The cost of punctuality. In:

Proceedings of LICS 2007, pp. 109–120. IEEE (2007)
7. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore, M., Roveri, M.,

Sebastiani, R., Tacchella, A.: NuSMV 2: an opensource tool for symbolic model
checking. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp.
359–364. Springer, Heidelberg (2002). doi:10.1007/3-540-45657-0 29

8. Dauzère-Pérès, S., Paulli, J.: An integrated approach for modeling and solving the
general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper.
Res. 70, 281–306 (1997)

9. Dixon, C., Fisher, M., Konev, B.: Temporal logic with capacity constraints. In:
Konev, B., Wolter, F. (eds.) FroCoS 2007. LNCS, vol. 4720, pp. 163–177. Springer,
Heidelberg (2007). doi:10.1007/978-3-540-74621-8 11

10. Fisher, M.: A normal form for temporal logics and its applications in theorem-
proving and execution. J. Logic Comput. 7(4), 429–456 (1997)

11. Gabbay, D., Pnueli, A., Shelah, S., Stavi, J.: On the temporal analysis of fairness.
In: Proceedings of POPL 1980, pp. 163–173. ACM (1980)

12. Gerevini, A., Haslum, P., Long, D., Saetti, A., Dimopoulos, Y.: Deterministic plan-
ning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners. Artif. Intell. 173(5—-6), 619–668 (2009)

13. Goré, R.: And-or tableaux for fixpoint logics with converse: LTL, CTL, PDL and
CPDL. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 26–45. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 3

14. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell Labs Tech. J.
45(9), 1563–1581 (1966)

15. Gunadi, H., Tiu, A.: Efficient runtime monitoring with metric temporal logic: a
case study in the android operating system. In: Jones, C., Pihlajasaari, P., Sun,
J. (eds.) FM 2014. LNCS, vol. 8442, pp. 296–311. Springer, Cham (2014). doi:10.
1007/978-3-319-06410-9 21

16. Hustadt, U., Konev, B.: TRP++ 2.0: a temporal resolution prover. In: Baader,
F. (ed.) CADE 2003. LNCS, vol. 2741, pp. 274–278. Springer, Heidelberg (2003).
doi:10.1007/978-3-540-45085-6 21

17. Karaman, S., Frazzoli, E.: Vehicle routing problem with metric temporal logic
specifications. In: Proceedings of CDC 2008, pp. 3953–3958. IEEE (2008)

18. LS4. https://github.com/quickbeam123/ls4
19. NuSMV. http://nusmv.fbk.eu/
20. Ouaknine, J., Worrell, J.: Some recent results in metric temporal logic. In:

Cassez, F., Jard, C. (eds.) FORMATS 2008. LNCS, vol. 5215, pp. 1–13. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-85778-5 1

http://dx.doi.org/10.1007/3-540-45657-0_29
http://dx.doi.org/10.1007/978-3-540-74621-8_11
http://dx.doi.org/10.1007/978-3-319-08587-6_3
http://dx.doi.org/10.1007/978-3-319-06410-9_21
http://dx.doi.org/10.1007/978-3-319-06410-9_21
http://dx.doi.org/10.1007/978-3-540-45085-6_21
https://github.com/quickbeam123/ls4
http://nusmv.fbk.eu/
http://dx.doi.org/10.1007/978-3-540-85778-5_1

Theorem Proving for Metric Temporal Logic over the Naturals 343

21. pltl. http://users.cecs.anu.edu.au/rpg/PLTLProvers/
22. Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS 1977, pp.

46–57. IEEE (1977)
23. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Bultan,

T., Hsiung, P.-A. (eds.) ATVA 2011. LNCS, vol. 6996, pp. 397–413. Springer,
Heidelberg (2011). doi:10.1007/978-3-642-24372-1 28

24. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics.
J. ACM 32(3), 733–749 (1985)

25. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with
partial model guidance. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR
2012. LNCS, vol. 7364, pp. 537–543. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31365-3 42

26. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electronic Notes Theoret. Comput. Sci. 113, 145–162 (2005)

27. TRP++. http://cgi.csc.liv.ac.uk/konev/software/trp++/
28. Tseitin, G.S.: On the complexity of derivation in propositional calculus. In:

Siekmann, J.H., et al. (eds.) Automation of Reasoning, pp. 466–483. Springer,
Heidelberg (1983)

http://users.cecs.anu.edu.au/rpg/PLTLProvers/
http://dx.doi.org/10.1007/978-3-642-24372-1_28
http://dx.doi.org/10.1007/978-3-642-31365-3_42
http://dx.doi.org/10.1007/978-3-642-31365-3_42
http://cgi.csc.liv.ac.uk/konev/software/trp++/

Scavenger 0.1: A Theorem Prover Based
on Conflict Resolution

Daniyar Itegulov1, John Slaney2, and Bruno Woltzenlogel Paleo2(B)

1 ITMO University, St. Petersburg, Russia
ditegulov@gmail.com, bruno.wp@gmail.com

2 Australian National University, Canberra, Australia
john.slaney@anu.edu.au

Abstract. This paper introduces Scavenger, the first theorem prover for
pure first-order logic without equality based on the new conflict resolu-
tion calculus. Conflict resolution has a restricted resolution inference rule
that resembles (a first-order generalization of) unit propagation as well
as a rule for assuming decision literals and a rule for deriving new clauses
by (a first-order generalization of) conflict-driven clause learning.

1 Introduction

The outstanding efficiency of current propositional Sat-solvers naturally raises
the question of whether it would be possible to employ similar ideas for
automating first-order logical reasoning. The recent Conflict Resolution calculus1

(CR) [25] can be regarded as a crucial initial step to answer this question. From
a proof-theoretical perspective, CR generalizes (to first-order logic) the two
main mechanisms on which modern Sat-solvers are based: unit propagation and
conflict-driven clause learning. The calculus is sound and refutationally com-
plete, and CR derivations are isomorphic to implication graphs.

This paper goes one step further by defining proof search algorithms for CR.
Familiarity with the propositional CDCL procedure [18] is assumed, even though
it is briefly sketched in Sect. 2. The main challenge in lifting this procedure to
first-order logic is that, unlike in propositional logic, first-order unit propagation
does not always terminate and true clauses do not necessarily have uniformly true
literals (cf. Sect. 4). Our solutions to these challenges are discussed in Sects. 5
and 6, and experimental results are presented in Sect. 7.

Related Work: CR’s unit-propagating resolution rule can be traced back to
unit-resulting resolution [20]. Other attempts to lift DPLL [13,19] or CDCL [18]
to first-order logic include Model Evolution [2–5], Geometric Resolution [24],
Non-Redundant Clause Learning [1] and the Semantically-Guided Goal Sensi-
tive procedure [6–9]. A brief summary of these approaches and a comparison with
CR can be found in [25]. Furthermore, many architectures [11,12,15,16,29] for

Author order is alphabetical by surname.
1 Not to be confused with the homonymous calculus for linear rational inequalities [17].

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 344–356, 2017.
DOI: 10.1007/978-3-319-63046-5 21

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 345

first-order and higher-order theorem proving use a Sat-solver as a black box
for propositional reasoning, without attempting to lift it; and Semantic Resolu-
tion [14,26] is yet another related approach that uses externally built first-order
models to guide resolution.

2 Propositional CDCL

During search in the propositional case, a Sat-solver keeps a model (a.k.a. trail)
consisting of a (conjunctive) list of decision literals and propagated literals. Lit-
erals of unit clauses are automatically added to the trail, and whenever a clause
has only one literal that is not falsified by the current model, this literal is
added to the model (thereby satisfying that clause). This process is known as
unit-propagation. If unit propagation reaches a conflict (i.e. a situation where the
dual of a literal already contained in the model would have to be added to it),
the Sat-solver backtracks, removing from the model decision literals responsible
for the conflict (as well as propagated literals entailed by the removed decision
literals) and deriving, or learning, a conflict-driven clause consisting2 of duals of
the decision literals responsible for the conflict (or the empty clause, if there were
no decision literals). If unit propagation terminates without reaching a conflict
and all clauses are satisfied by the model, then the input clause set is satisfiable.
If some clauses are still not satisfied, the Sat-solver chooses and assigns another
decision literal, adding it to the trail, and satisfying the clauses that contain it.

3 Conflict Resolution

The inference rules of the conflict resolution calculus CR are shown in Fig. 1.
The unit propagating resolution rule is a chain of restricted resolutions with unit
clauses as left premises and a unit clause as final conclusion. Decision literals are
denoted by square brackets, and the conflict-driven clause learning rule infers a
new clause consisting of negations of instances of decision literals used to reach
a conflict (a.k.a. the empty clause ⊥). A clause learning inference is said to
discharge the decision literals that it uses. As in the resolution calculus, CR
derivations are directed acyclic graphs that are not necessarily tree-like. A CR
refutation is a CR derivation of ⊥ with no undischarged decision literals.

From a natural deduction point of view, a unit propagating resolution rule can
be regarded as a chain of implication eliminations taking unification into account,
whereas decision literals and conflict driven clause learning are reminiscent of,
respectively, assumptions and chains of negation introductions, also generalized
to first-order through unification. Therefore, CR can be considered a first-order
hybrid of resolution and natural deduction.

2 In practice, optimizations (e.g. 1UIP) are used, and more sophisticated clauses, which
are not just disjunctions of duals of the decision literals involved in the conflict, can
be derived. But these optimizations are inessential to the focus of this paper.

346 D. Itegulov et al.

Unit-Propagating Resolution:

�1 . . . �n �′
1 ∨ . . . ∨ �′

n ∨ �

� σ
u(σ)

where σ is a unifier of �k and �′
k, for all k ∈ {1, . . . , n}.

Conflict:

� �′

⊥ c(σ)

where σ is a unifier of � and �′.

Conflict-Driven Clause Learning:

[�1]
i
1

.... (σ1
1 , . . . , σ

1
m1)

[�n]
i
n

.... (σn
1 , . . . , σn

mn
)

....
⊥

(�1σ
1
1 ∨ . . . ∨ �1σ

1
m1) ∨ . . . ∨ (�nσn

1 ∨ . . . ∨ �nσn
mn

)
cli

where σk
j (for 1 ≤ k ≤ n and 1 ≤ j ≤ mk) is the

composition of all substitutions used on the j-th patha from �k to ⊥.

a Since a proof DAG is not necessarily tree-like, there may be more than one path
connecting �k to ⊥ in the DAG-like proof.

Fig. 1. The conflict resolution calculus CR

4 Lifting Challenges

First-order logic presents many new challenges for methods based on propagation
and decisions, of which the following can be singled out:

(1) non-termination of unit-propagation: In first-order logic, unit propagation
may never terminate. For example, the clause set {p(a),¬p(X)∨p(f(X)), q∨
r,¬q ∨ r, q ∨ ¬r,¬q ∨ ¬r} is clearly unsatisfiable, because there is no assign-
ment of p and q to true or false that would satisfy all the last four clauses.
However, unit propagation would derive the following infinite sequence of
units, by successively resolving ¬p(X) ∨ p(f(X)) with previously derived
units, starting with p(a): {p(f(a)), p(f(f(a))), . . . , p(f(. . . (f(a)) . . .)), . . .}.
Consequently, a proof search strategy that would wait for unit propagation
to terminate before making decisions would never be able to conclude that
the given clause set is unsatisfiable.

(2) absence of uniformly true literals in satisfied clauses: While in the proposi-
tional case, a clause that is true in a model always has at least one literal

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 347

that is true in that model, this is not so in first-order logic, because shared
variables create dependencies between literals. For instance, the clause set
{p(X) ∨ q(X),¬p(a), p(b), q(a),¬q(b)} is satisfiable, but there is no model
where p(X) is uniformly true (i.e. true for all instances of X) or q(X) is
uniformly true.

(3) propagation without satisfaction: In the propositional case, when only one
literal of a clause is not false in the model, this literal is propagated and
added to the model, and the clause necessarily becomes true in the model
and does not need to be considered in propagation anymore, at least until
backtracking. In the first-order case, on the other hand, a clause such as
p(X) ∨ q(X) would propagate the literal q(a) in a model containing ¬p(a),
but p(X)∨q(X) does not become true in a model where q(a) is true. It must
remain available for further propagations. If, for instance, the literal ¬p(b)
is added to the model, the clause will be used again to propagate q(b).

(4) quasi-falsification without propagation: A clause is quasi-falsified by a model
iff all but one of its literals are false in the model. In first-order logic, in
contrast to propositional logic, it is not even the case that a clause will
necessarily propagate a literal when only one of its literals is not false in
the model. For instance, the clause p(X) ∨ q(X) ∨ r(X) is quasi-falsified
in a model containing ¬p(a) and ¬q(b), but no instance of r(X) can be
propagated.
The first two challenges affect search in a conceptual level, and solutions are
discussed in Sect. 5. The last two prevent a direct first-order generalization
of the data structures (e.g. watched literals) that make unit propagation so
efficient in the propositional case. Partial solutions are discussed in Sect. 6.

5 First-Order Model Construction and Proof Search

Despite the fundamental differences between propositional and first-order logic
described in the previous section, the first-order algorithms presented aim to
adhere as much as possible to the propositional procedure sketched in the Sect. 2.
As in the propositional case, the model under construction is a (conjunctive) list
of literals, but literals may now contain (universal) variables. If a literal �[X] is
in a model M , then any instance �[t] is said to be true in M . Note that checking
that a literal � is true in a model M is more expensive in first-order logic than
in propositional logic: whereas in the latter it suffices to check that � is in M ,
in the former it is necessary to find a literal �′ in M and a substitution σ such
that � = �′σ. A literal � is said to be strongly true in a model M iff � is in M .

There is a straightforward solution for the second challenge (i.e. the absence
of uniformly true literals in satisfied clauses): a clause is satisfied by a model
M iff all its relevant instances have a literal that is true in M , where an
instance is said to be relevant if it substitutes the clause’s variables by terms
that occur in M . Thus, for instance, the clause p(X) ∨ q(X) is satisfied by
the model [¬p(a), p(b), q(a),¬q(b)], because both relevant instances p(a) ∨ q(a)
and p(b) ∨ q(b) have literals that are true in the model. However, this solution

348 D. Itegulov et al.

is costly, because it requires the generation of many instances. Fortunately, in
many (though not all) cases, a satisfied clause will have a literal that is true
in M , in which case the clause is said to be uniformly satisfied. Uniform satis-
faction is cheaper to check than satisfaction. However, a drawback of uniform
satisfaction is that the model construction algorithm may repeatedly attempt to
satisfy a clause that is not uniformly satisfied, by choosing one of its literals as a
decision literal. For example, the clause p(X)∨q(X) is not uniformly satisfied by
the model [¬p(a), p(b), q(a),¬q(b)]. Without knowing that this clause is already
satisfied by the model, the procedure would try to choose either p(X) or q(X) as
decision literal. But both choices are useless decisions, because they would lead
to conflicts with conflict-driven clauses equal to a previously derived clause or
to a unit clause containing a literal that is part of the current model. A clause is
said to be weakly satisfied by a model M if and only if all its literals are useless
decisions.

Because of the first challenge (i.e. the non-termination of unit-propagation
in the general first-order case), it is crucial to make decisions during unit propa-
gation. In the example given in item 1 of Sect. 4, for instance, deciding q at any
moment would allow the propagation of r and ¬r (respectively due to the 4th and
6th clauses), triggering a conflict. The learned clause would be ¬q and it would
again trigger a conflict by the propagation of r and ¬r (this time due to the 3rd
and 5th clauses). As this last conflict does not depend on any decision literal, the
empty clause is derived and thus the clause set is refuted. The question is how to
interleave decisions and propagations. One straightforward approach is to keep
track of the propagation depth3 in the implication graph: any decision literal or
literal propagated by a unit clause has propagation depth 0; any other literal has
propagation depth k + 1, where k is the maximum propagation depth of its pre-
decessors. Then propagation is performed exhaustively only up to a propagation
depth threshold h. A decision literal is then chosen and the threshold is incre-
mented. Such eager decisions guarantee that a decision will eventually be made,
even if there is an infinite propagation path. However, eager decisions may also
lead to spurious conflicts generating useless conflict-driven clauses. For instance,
the clause set {1 : p(a), 2 : ¬p(X) ∨ p(f(X)), 3 : ¬p(f(f(f(f(f(f(a))))))), 4 :
¬r(X) ∨ q(X), 5 : ¬q(g(X)) ∨ ¬p(X), 6 : z(X) ∨ r(X)} (where clauses have
been numbered for easier reference) is unsatisfiable, because a conflict with
no decisions can be obtained by propagating p(a) (by 1), and then p(f(a)),
p(f(f(a))), . . . , p(f(f(f(f(f(f(a))))))), (by 2, repeatedly), which conflicts with
¬p(f(f(f(f(f(f(a))))))) (by 3). But the former propagation has depth 6. If the
propagation depth threshold is lower than 6, a decision literal is chosen before
that conflict is reached. If r(X) is chosen, for example, in an attempt to satisfy
the sixth clause, there are propagations (using r(X) and clauses 1, 4, 5 and 6)

3 Because of the isomorphism between implication graphs and subderivations in Con-
flict Resolution [25], the propagation depth is equal to the corresponding subderiva-
tion’s height, where initial axiom clauses and learned clauses have height 0 and the
height of the conclusion of a unit-propagating resolution inference is k + 1 where k
is the maximum height of its unit premises.

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 349

with depth lower than the threshold and reaching a conflict that generates the
clause ¬r(g(a)), which is useless for showing unsatisfiability of the whole clause
set. This is not a serious issue, because useless clauses are often generated in
conflicts with non-eager decisions as well. Nevertheless, this example suggests
that the starting threshold and the strategy for increasing the threshold have to
be chosen wisely, since the performance may be sensitive to this choice.

Interestingly, the problem of non-terminating propagation does not manifest
in fragments of first-order logic where infinite unit propagation paths are impos-
sible. A well-known and large fragment is the effectively propositional (a.k.a.
Bernays-Schönfinkel) class, consisting of sentences with prenex forms that have
an ∃∗∀∗ quantifier prefix and no function symbols. For this fragment, a simpler
proof search strategy that only makes decisions when unit propagation termi-
nates, as in the propositional case, suffices. Infinite unit propagation paths do
not occur in the effectively propositional fragment because there are no function
symbols and hence the term depth4 does not increase arbitrarily. Whenever the
term depth is bounded, infinite unit propagation paths cannot occur, because
there are only finitely many literals with bounded term depth (given the finite
set of constant, function and predicate symbols with finite arity occurring in the
clause set).

The insight that term depth is important naturally suggests a different app-
roach for the general first-order case: instead of limiting the propagation depth,
limit the term depth instead, allowing arbitrarily long propagations as long as
the term depth of the propagated literals are smaller than the current term
depth threshold. A literal is propagated only if its term depth is smaller than
the threshold. New decisions are chosen when the term-depth-bounded propa-
gation terminates and there are still clauses that are not uniformly satisfied. As
before, eager decisions may lead to spurious conflicts, but bounding propagation
by term depth seems intuitively more sensible than bounding it by propagation
depth.

6 Implementation Details

Scavenger is implemented in Scala and its source code and usage instructions are
available in https://gitlab.com/aossie/Scavenger. Its packrat combinator parsers
are able to parse TPTP CNF files [28]. Although Scavenger is a first-order prover,
every logical expression is converted to a simply typed lambda expression, imple-
mented by the abstract class E with concrete subclasses Sym, App and Abs for,
respectively, symbols, applications and abstractions. A trait Var is used to dis-
tinguish variables from other symbols. Scala’s case classes are used to make E
behave like an algebraic datatype with (pattern-matchable) constructors. The
choice of simply typed lambda expressions is motivated by the intention to gen-
eralize Scavenger to multi-sorted first-order logic and higher-order logic and sup-
port TPTP TFF and THF in the future. Every clause is internally represented as
4 The depth of constants and variables is zero and the depth of a complex term is
k + 1 when k is the maximum depth of its proper subterms.

https://gitlab.com/aossie/Scavenger

350 D. Itegulov et al.

an immutable two-sided sequent consisting of a set of positive literals (succedent)
and a set of negative literals (antecedent).

When a problem is unsatisfiable, Scavenger can output a CR refutation inter-
nally represented as a collection of ProofNode objects, which can be instances
of the following immutable classes: UnitPropagatingResolution, Conflict,
ConflictDrivenClauseLearning, Axiom, Decision. The first three classes cor-
respond directly to the rules shown in Fig. 1. Axiom is used for leaf nodes contain-
ing input clauses, and Decision represents a fictive rule holding decision literals.
Each class is responsible for checking, typically through require statements, the
soundness conditions of its corresponding inference rule. The Axiom, Decision
and ConflictDrivenClauseLearning classes are less than 5 lines of code each.
Conflict and UnitPropagatingResolution are respectively 15 and 35 lines of
code. The code for analyzing conflicts, traversing the subderivations (conflict
graphs) and finding decisions that contributed to the conflict, is implemented in
a superclass, and is 17 lines long.
The following three variants of Scavenger were implemented:

– EP-Scavenger: aiming at the effectively propositional fragment, propagation
is not bounded, and decisions are made only when propagation terminates.

– PD-Scavenger: Propagation is bounded by a propagation depth threshold
starting at 0. Input clauses are assigned depth 0. Derived clauses and prop-
agated literals obtained while the depth threshold is k are assigned depth
k + 1. The threshold is incremented whenever every input clause that is nei-
ther uniformly satisfied nor weakly satisfied is used to derive a new clause or
to propagate a new literal. If this is not the case, a decision literal is chosen
(and assigned depth k + 1) to uniformly satisfy one of the clauses that is
neither uniformly satisfied nor weakly satisfied.

– TD-Scavenger: Propagation is bounded by a term depth threshold starting at
0. When propagation terminates, a stochastic choice between either selecting
a decision literal or incrementing the threshold is made with probability of
50% for each option. Only uniform satisfaction of clauses is checked.

The third and fourth challenges discussed in Sect. 4 are critical for perfor-
mance, because they prevent a direct first-order generalization of data structures
such as watched literals, which enables efficient detection of clauses that are ready
to propagate literals. Without knowing exactly which clauses are ready to prop-
agate, Scavenger (in its three variants) loops through all clauses with the goal of
using them for propagation. However, actually trying to use a given clause for
propagation is costly. In order to avoid this cost, Scavenger performs two quicker
tests. Firstly, it checks whether the clause is uniformly satisfied (by checking
whether one of its literals belongs to the model). If it is, then the clause is dis-
missed. This is an imperfect test, however. Occasionally, some satisfied clauses
will not be dismissed, because (in first-order logic) not all satisfied clauses are
uniformly satisfied. Secondly, for every literal � of every clause, Scavenger keeps a
set of decision literals and propagated literals that are unifiable with �. A clause
c is quasi-falsified when at most one literal of c has an empty set associated
with it. This is a rough analogue of watched literals for detecting quasi-falsified

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 351

clauses. Again, this is an imperfect test, because (in first-order logic) not all
quasi-falsified clauses are ready to propagate. Despite the imperfections of these
tests, they do reduce the number of clauses that need to be considered for prop-
agation, and they are quick and simple to implement.

Overall, the three variants of Scavenger listed above have been implemented
concisely. Their main classes are only 168, 342 and 176 lines long, respectively,
and no attempt has been made to increase efficiency at the expense of the code’s
readability and pedagogical value. Premature optimization would be inappropri-
ate for a first proof-of-concept.

Scavenger still has no sophisticated backtracking and restarting mechanism,
as propositional Sat-solvers do. When Scavenger reaches a conflict, it restarts
almost completely: all derived conflict-driven clauses are kept, but the model
under construction is reset to the empty model.

7 Experiments

Experiments were conducted5 in the StarExec cluster [27] to evaluate Scavenger’s
performance on TPTP v6.4.0 benchmarks in CNF form and without equality.
For comparison, all other 21 provers available in StarExec’s TPTP community
and suitable for CNF problems without equality were evaluated as well. For each
job pair, the timeouts were 300 CPU seconds and 600 Wallclock seconds.

Table 1. Number of problems solved by each prove.

Table 1 shows how many of the 1606 unsatisfiable CNF problems and 572
effectively propositional (EPR) unsatisfiable CNF problems each theorem prover
solved; and Figs. 2 and 3 shows the performance in more detail. For a first
implementation, the best variants of Scavenger show an acceptable performance.
5 Raw experimental data are available at https://doi.org/10.5281/zenodo.293187.

https://doi.org/10.5281/zenodo.293187

352 D. Itegulov et al.

All variants of Scavenger outperformed PEPR, GrAnDe, DarwinFM, Paradox
and ZenonModulo; and EP-Scavenger additionally outperformed Geo-III. On the
effectively propositional propblems, TD-Scavenger outperformed LEO-II, Zenon-
Modulo and Geo-III, and solved only 1 problem less than SOS-2.0 and 12 less
than Otter-3.3. Although Otter-3.3 has long ceased to be a state-of-the-art prover
and has been replaced by Prover9, the fact that Scavenger solves almost as many
problems as Otter-3.3 is encouraging, because Otter-3.3 is a mature prover with
15 years of development, implementing (in the C language) several refinements
of proof search for resolution and paramodulation (e.g. orderings, set of sup-
port, splitting, demodulation, subsumption) [21,22], whereas Scavenger is a yet
unrefined and concise implementation (in Scala) of a comparatively straightfor-
ward search strategy for proofs in the Conflict Resolution calculus, completed in
slightly more than 3 months. Conceptually, Geo-III (based on Geometric Resolu-
tion) and Darwin (based on Model Evolution) are the most similar to Scavenger.
While Scavenger already outperforms Geo-III, it is still far from Darwin. This is
most probably due to Scavenger’s current eagerness to restart after every con-
flict, whereas Darwin backtracks more carefully (cf. Sects. 6 and 8). Scavenger
and Darwin also treat variables in decision literals differently. Consequently,
Scavenger detects more (and non-ground) conflicts, but learning conflict-driven
clauses can be more expensive, because unifiers must be collected from the con-
flict graph and composed.

Fig. 2. Performance on all benchmarks (provers ordered by performance)

EP-Scavenger solved 28.2% more problems than TD-Scavenger and 13.9%
more than PD-Scavenger. This suggests that non-termination of unit-

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 353

Fig. 3. Performance on EPR benchmarks only (provers ordered by performance)

propagation is an uncommon issue in practice: EP-Scavenger is still able to solve
many problems, even though it does not care to bound propagation, whereas
the other two variants solve fewer problems because of the overhead of bounding
propagation even when it is not necessary. Nevertheless, there were 28 problems
solved only by PD-Scavenger and 26 problems solved only by TD-Scavenger
(among Scavenger’s variants). EP-Scavenger and PD-Scavenger can solve 9 prob-
lems with TPTP difficulty rating 0.5, all from the SYN and FLD domains. 3 of
the 9 problems were solved in less than 10 s.

8 Conclusions and Future Work

Scavenger is the first theorem prover based on the new Conflict Resolution calcu-
lus. The experiments show a promising, albeit not yet competitive, performance.

A comparison of the performance of the three variants of Scavenger shows
that it is non-trivial to interleave decisions within possibly non-terminating unit-
propagations, and further research is needed to determine (possibly in a problem
dependent way) optimal initial depth thresholds and threshold incrementation
strategies. Alternatively, entirely different criteria could be explored for deciding
to make an eager decision before propagation is over. For instance, decisions
could be made if a fixed or dynamically adjusted amount of time elapses.

The performance bottleneck that needs to be most urgently addressed in
future work is backtracking and restarting. Currently, all variants of Scavenger
restart after every conflict, keeping derived conflict-driven clauses but throwing
away the model construct so far. They must reconstruct models from scratch

354 D. Itegulov et al.

after every conflict. This requires a lot of repeated re-computation, and there-
fore a significant performance boost could be expected through a more sensible
backtracking strategy. Scavenger’s current naive unification algorithm could be
improved with term indexing [23], and there might also be room to improve Scav-
enger’s rough first-order analogue for the watched literals data structure, even
though the first-order challenges make it unlikely that something as good as the
propositional watched literals data structure could ever be developed. Further
experimentation is also needed to find optimal values for the parameters used in
Scavenger for governing the initial thresholds and their incrementation policies.

Scavenger’s already acceptable performance despite the implementation
improvement possibilities just discussed above indicates that automated the-
orem proving based on the Conflict Resolution calculus is feasible. However,
much work remains to be done to determine whether this approach will eventu-
ally become competitive with today’s fastest provers.

Acknowledgments. We thank Ezequiel Postan for his implementation of TPTP
parsers for Skeptik [10], which we have reused in Scavenger. We are grateful to Albert
A.V. Giegerich, Aaron Stump and Geoff Sutcliffe for all their help in setting up our
experiments in StarExec. This research was partially funded by the Australian Gov-
ernment through the Australian Research Council and by the Google Summer of Code
2016 program. Daniyar Itegulov was financially supported by the Russian Scientific
Foundation (grant 15-14-00066).

References

1. Alagi, G., Weidenbach, C.: NRCL - a model building approach to the Bernays-
Schönfinkel fragment. In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS, vol.
9322, pp. 69–84. Springer, Cham (2015). doi:10.1007/978-3-319-24246-0 5

2. Baumgartner, P.: A first order Davis-Putnam-Longeman-Loveland procedure.
In: Proceedings of the 17th International Conference on Automated Deduction
(CADE), pp. 200–219 (2000)

3. Baumgartner, P.: Model evolution-based theorem proving. IEEE Intell. Syst. 29(1),
4–10 (2014). http://dx.doi.org/10.1109/MIS.2013.124

4. Baumgartner, P., Fuchs, A., Tinelli, C.: Lemma learning in the model evolution
calculus. In: Hermann, M., Voronkov, A. (eds.) LPAR 2006. LNCS, vol. 4246, pp.
572–586. Springer, Heidelberg (2006). doi:10.1007/11916277 39

5. Baumgartner, P., Tinelli, C.: The model evolution calculus. In: Baader, F. (ed.)
CADE 2003. LNCS, vol. 2741, pp. 350–364. Springer, Heidelberg (2003). doi:10.
1007/978-3-540-45085-6 32

6. Bonacina, M.P., Plaisted, D.A.: Constraint manipulation in SGGS. In: Kutsia,
T., Ringeissen, C. (eds.) Proceedings of the Twenty-Eighth Workshop on Uni-
fication (UNIF), Seventh International Joint Conference on Automated Reason-
ing (IJCAR) and Sixth Federated Logic Conference (FLoC), pp. 47–54, Technical
reports of the Research Institute for Symbolic Computation, Johannes Kepler Uni-
versität Linz (2014). http://vsl2014.at/meetings/UNIF-index.html

http://dx.doi.org/10.1007/978-3-319-24246-0_5
http://dx.doi.org/10.1109/MIS.2013.124
http://dx.doi.org/10.1007/11916277_39
http://dx.doi.org/10.1007/978-3-540-45085-6_32
http://dx.doi.org/10.1007/978-3-540-45085-6_32
http://vsl2014.at/meetings/UNIF-index.html

Scavenger 0.1: A Theorem Prover Based on Conflict Resolution 355

7. Bonacina, M.P., Plaisted, D.A.: SGGS theorem proving: an exposition. In: Schulz,
S., Moura, L.D., Konev, B. (eds.) Proceedings of the Fourth Workshop on Practical
Aspects in Automated Reasoning (PAAR), Seventh International Joint Conference
on Automated Reasoning (IJCAR) and Sixth Federated Logic Conference (FLoC),
July 2014. EasyChair Proceedings in Computing (EPiC), vol. 31, pp. 25–38, July
2015

8. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning:
model representation. J. Autom. Reasoning 56(2), 113–141 (2016). http://dx.
doi.org/10.1007/s10817-015-9334-4

9. Bonacina, M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning:
Inference system and completeness. J. Autom. Reasoning, 1–54 (2017). http://
dx.doi.org/10.1007/s10817-016-9384-2

10. Boudou, J., Fellner, A., Woltzenlogel Paleo, B.: Skeptik: a proof compression sys-
tem. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS, vol.
8562, pp. 374–380. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 29

11. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS, vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 11

12. Claessen, K.: The anatomy of Equinox - an extensible automated reasoning tool
for first-order logic and beyond (talk abstract). In: Proceedings of the 23rd Inter-
national Conference on Automated Deduction (CADE-23), pp. 1–3 (2011)

13. Davis, M., Putnam, H.: A computing procedure for quantification theory. J. ACM
7, 201–215 (1960)

14. Hodgson, K., Slaney, J.K.: System description: SCOTT-5. In: Automated Rea-
soning, First International Joint Conference, IJCAR 2001, Siena, Italy, June
18–23, 2001, Proceedings, pp. 443–447 (2001). http://dx.doi.org/10.1007/3-540-
45744-5 36

15. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS, vol. 5195, pp. 292–298. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-71070-7 24

16. Korovin, K.: Inst-Gen - a modular approach to instantiation-based automated
reasoning. In: Programming Logics, pp. 239–270 (2013)

17. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: Gent, I.P. (ed.)
CP 2009. LNCS, vol. 5732, pp. 509–523. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04244-7 41

18. João Marques-Silva, I.L., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, pp. 127–149 (2008)

19. Martin Davis, G.L., Loveland, D.: A machine program for theorem proving. Com-
mun. ACM 57, 394–397 (1962)

20. McCharen, J., Overbeek, R., Wos, L.: Complexity and related enhancements for
automated theorem-proving programs. Comput. Math. Appl. 2, 1–16 (1976)

21. McCune, W.: Otter 2.0. In: Stickel, M.E. (ed.) CADE 1990. LNCS, vol. 449, pp.
663–664. Springer, Heidelberg (1990). doi:10.1007/3-540-52885-7 131

22. McCune, W.: OTTER 3.3 reference manual. CoRR cs.SC/0310056 (2003),. http://
arxiv.org/abs/cs.SC/0310056

23. Nieuwenhuis, R., Hillenbrand, T., Riazanov, A., Voronkov, A.: On the evaluation of
indexing techniques for theorem proving. In: Automated Reasoning, First Interna-
tional Joint Conference, IJCAR 2001, Siena, Italy, June 18–23, 2001, Proceedings,
pp. 257–271 (2001). doi:http://dx.doi.org/10.1007/3-540-45744-5 19

http://dx.doi.org/10.1007/s10817-015-9334-4
http://dx.doi.org/10.1007/s10817-015-9334-4
http://dx.doi.org/10.1007/s10817-016-9384-2
http://dx.doi.org/10.1007/s10817-016-9384-2
http://dx.doi.org/10.1007/978-3-319-08587-6_29
http://dx.doi.org/10.1007/978-3-642-31365-3_11
http://dx.doi.org/10.1007/3-540-45744-5_36
http://dx.doi.org/10.1007/3-540-45744-5_36
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-540-71070-7_24
http://dx.doi.org/10.1007/978-3-642-04244-7_41
http://dx.doi.org/10.1007/978-3-642-04244-7_41
http://dx.doi.org/10.1007/3-540-52885-7_131
http://arxiv.org/abs/cs.SC/0310056
http://arxiv.org/abs/cs.SC/0310056
http://dx.doi.org/http://dx.doi.org/10.1007/3-540-45744-5_19

356 D. Itegulov et al.

24. Nivelle, H., Meng, J.: Geometric resolution: a proof procedure based on finite
model search. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS, vol. 4130,
pp. 303–317. Springer, Heidelberg (2006). doi:10.1007/11814771 28

25. Slaney, J., Woltzenlogel Paleo, B.: Conflict resolution: a first-order resolution calcu-
lus with decision literals and conflict-driven clause learning. J. Autom. Reasoning,
1–24 (2017). http://dx.doi.org/10.1007/s10817-017-9408-6

26. Slaney, J.K.: SCOTT: a model-guided theorem prover. In: Bajcsy, R. (ed.) Proceed-
ings of the 13th International Joint Conference on Artificial Intelligence. Chambéry,
France, August 28 - September 3, 1993, pp. 109–115. Morgan Kaufmann (1993).
http://ijcai.org/Proceedings/93-1/Papers/016.pdf

27. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastructure for
logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR 2014. LNCS,
vol. 8562, pp. 367–373. Springer, Cham (2014). doi:10.1007/978-3-319-08587-6 28

28. Sutcliffe, G.: The TPTP problem library and associated infrastructure: the FOF
and CNF parts, v3.5.0. J. Autom. Reasoning 43(4), 337–362 (2009)

29. Voronkov, A.: AVATAR: the architecture for first-order theorem provers. In: Biere,
A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 696–710. Springer, Cham
(2014). doi:10.1007/978-3-319-08867-9 46

http://dx.doi.org/10.1007/11814771_28
http://dx.doi.org/10.1007/s10817-017-9408-6
http://ijcai.org/Proceedings/93-1/Papers/016.pdf
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08867-9_46

WorkflowFM: A Logic-Based Framework
for Formal Process Specification

and Composition

Petros Papapanagiotou(B) and Jacques Fleuriot

School of Informatics, University of Edinburgh, 10 Crichton Street,
Edinburgh EH8 9AB, UK

{ppapapan,jdf}@inf.ed.ac.uk

Abstract. We present a logic-based system for process specification and
composition named WorkflowFM. It relies on an embedding of Classical
Linear Logic and the so-called proofs-as-processes paradigm within the
proof assistant HOL Light. This enables the specification of abstract
processes as logical sequents and their composition via formal proof.
The result is systematically translated to an executable workflow with
formally verified consistency, rigorous resource accounting, and deadlock
freedom. The 3-tiered server/client architecture of WorkflowFM allows
multiple concurrent users to interact with the system through a purely
diagrammatic interface, while the proof is performed automatically on
the server.

Keywords: Process modelling · Workflows · Theorem proving · Classi-
cal linear logic

1 Introduction

Flowcharts, UML [19], and BPMN [16] are among the most commonly used lan-
guages to describe process workflows. These focus more on providing an expres-
sive and intuitive representation for the user as opposed to an executable and
verifiable output. In contrast, process calculi such as the π-calculus [15] have
fully formal semantics, allowing an array of possibilities for further analysis and
reasoning of the constructed models, but making it harder for non-expert users
to model complex real-world systems effectively.

In this work, we introduce WorkflowFM as a tool for formal process mod-
elling and composition. In this, processes are specified using Classical Linear
Logic (CLL) [9], composed via formal proof, and then rigorously translated to
executable process calculus terms. This is performed within the verified environ-
ment of the proof assistant HOL Light [11], thus enabling the development of
correct-by-construction workflow models. In addition, WorkflowFM employs a
client-server architecture, which enables remote access, and incorporates a fully
diagrammatic user interface at the client side. These allow users to harness the
reasoning power of WorkflowFM and its systematic approach to formal process
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 357–370, 2017.
DOI: 10.1007/978-3-319-63046-5 22

358 P. Papapanagiotou and J. Fleuriot

modelling in an inuitive way and without the need for expertise in logic or theo-
rem proving. WorkflowFM is actively being used to model healthcare processes
and patient pathways in collaboration with a number of clinical teams [2,17,18].

2 Logic-Based Process Modelling

We begin the description of WorkflowFM by breaking it down to its theoreti-
cal foundations, including the proofs-as-processes paradigm, CLL as a process
specification language, logical inference for rigorous process composition, the
automation required to facilitate workflow development, and the employed dia-
grammatic visualisation.

2.1 The Proofs-as-processes Paradigm

The proofs-as-processes paradigm [1,3] involves a mapping between CLL proofs
and process calculus terms, similar to the Curry-Howard correspondence [12]
between intuitionistic logic proofs and the λ-calculus. Bellin and Scott analyse
this mapping by giving a corresponding π-calculus term for the conclusion of
each of the CLL inference rules. As the inference rules are used in a CLL proof,
a π-calculus term corresponding to that proof is built based on these mappings.
At the end of the proof, it is guaranteed that applying the possible reductions in
the resulting π-calculus term corresponds to the process of cut-elimination in the
proof. This means that the cut-free version of the proof corresponds to an equiva-
lent π-calculus term that cannot be reduced further. As a result, since π-calculus
reductions correspond to process communications, any π-calculus process that
corresponds to a CLL proof is inherently free of livelocks and deadlocks.

In this paper, we focus on the logical specification of processes and their com-
positions and do not examine the theory and mechanics of proofs-as-processes
so that we can demonstrate the reasoning capabilities of WorkflowFM in a
more easily understandable and succinct way. However, it is worth noting that
the proofs-as-processes paradigm unlocks the potential for both rigorous and
pragmatic process modelling. On the one hand, π-calculus workflows generated
via CLL proofs are correct-by-construction with respect to type correctness,
resource accounting, and deadlock freedom (see Sect. 2.3). On the other hand,
the extracted π-calculus workflow is executable, which offers an array of possi-
bilities for further qualitative and quantitative analysis, e.g. through simulation
and model checking, and actual deployment. For example, we are developing a
simulation engine for parallel π-calculus workflows, focusing on the management
of persistent resources, such as measuring clinician and nurse workload, delays
due to staff and equipment availability, among other metrics.

2.2 Process Specification Using Linear Logic

In Linear Logic, as proposed by Girard [9], the emphasis is not only on the truth
of a statement, but also on formulas that represent resources. For example,

WorkflowFM: A Logic-Based Framework for Formal Process Specification 359

in order to achieve a proof, formulas cannot be copied or deleted (no weakening
or contraction), but rather must be consumed as resources.

The current work uses the multiplicative additive fragment of propositional
CLL without units (MALL), which allows enough expressiveness for simple
processes while keeping the reasoning complexity at a manageable level. More
specifically, we use a one-sided sequent calculus version of MALL [21]. This sim-
plifies the process specifications and reduces the number of inference rules, which
can make automated proof search more efficient.

In this particular version of MALL, linear negation (·⊥) is defined as a syn-
tactic operator, so that, for example, both A and A⊥ are considered atomic
formulas. In addition, de Morgan style equations (e.g. (A ⊗ B)⊥ ≡ A⊥ &

B⊥

and (A ⊕ B)⊥ ≡ A⊥&B⊥) are defined for linear negation (rather than inference
rules). These equivalence equations demonstrate a symmetry in CLL where each
operator has a dual. This duality can be exploited in order to represent the
information flow of the corresponding resources [3]. We choose to treat negated
literals, multiplicative disjunction (

&

), and additive conjunction (&) as inputs,
and positive literals, multiplicative conjunction (⊗), and additive disjunction
(⊕) as outputs.

Based on this distinction, the semantics of the CLL operators can be given
an intuitive interpretation where propositions correspond to resources:

– Multiplicative conjunction or the tensor operator (A ⊗ B) indicates a simul-
taneous or parallel output of A and B.

– Additive disjunction or the plus operator (A ⊕ B) indicates that either of
A or B are produced but not both. When representing processes, additive
disjunction can be used to indicate alternative outputs, including exceptions.

– Multiplicative disjunction or the par operator (A

&

B) is the dual of multi-
plicative conjunction and represents simultaneous or parallel input.

– Additive conjunction or the with operator (A&B), can similarly be inter-
preted as the dual of additive disjunction, i.e. the representation of optional
input.

As an example, based on this interpretation, a process with inputs A and B and
outputs C and D can be specified by the CLL sequent � A⊥, B⊥, C ⊗ D.

In order for CLL sequents to represent meaningful specifications of processes,
we impose some restrictions in their form. More specifically, each formula in the
sequent can only consist of inputs (negative literals,

&

, and &) or outputs (posi-
tive literals, ⊗, and ⊕). Moreover, we only allow a single (potentially composite)
output formula1. We also remark that each CLL specification has a correspond-
ing process-calculus specification based on the proofs-as-processes paradigm.

1 The subtle reason for this restriction is that the cut rule (corresponding to a sequen-
tial composition of processes) allows only a single formula to be cut (connected)
between 2 processes.

360 P. Papapanagiotou and J. Fleuriot

2.3 Composition via Proof

So far, we have described how CLL sequents (under some well-formedness limi-
tations) correspond to specifications of processes. Naturally, the CLL inference
rules can be applied to sequents in ways that correspond to rigorous transfor-
mation and composition of processes.

The inference rules of our selected version of CLL are presented in Fig. 1.

Fig. 1. The one-sided sequent calculus versions of the CLL inference rules.

Each rule has an intuitive correspondence to a process transformation (unary
rules) or composition (binary rules) that we describe next.

– Id (Identity): This axiom introduces a process that receives some resource and
immediately sends it forward. Such a process is known as an axiom-buffer.

– ⊗: This composes two processes in parallel (to yield a single composite, par-
allel output).

–

&

: This rule combines two inputs of a process into a single, parallel input.
– ⊕: This transforms the output of a process by adding an alternative output

(which is never produced in practice).
– &: This rule composes two processes conditionally. One input from each

process becomes an option in a new, composite input. Either of the two
original processes will be executed depending on which option is provided at
runtime.

– Cut: The Cut rule composes two processes sequentially. The output of one
process is connected to the matching input of another.

We can create complex process compositions in a rigorous way by applying
combinations of these primitive rules. The properties of CLL and the proofs-as-
processes paradigm provide the following key guarantees of correctness for any
composite process we construct in this way:

1. Resources are consistently matched together. Processes that do not match
are never connected.

2. Resources are always accounted for systematically, since no contraction or
weakening is allowed.

3. The underlying process-calculus specification corresponding to the construc-
tion is free of deadlocks and livelocks.

WorkflowFM: A Logic-Based Framework for Formal Process Specification 361

2.4 Automation

Constructing meaningful process compositions usually requires the application
of a large number of primitive steps using the CLL inference rules. This can
be impractical, especially for a system that aspires to have users who may not
be familiar with CLL or theorem proving more generally. For this reason, we
developed 3 high-level automated procedures that perform the necessary proof
steps to achieve basic compositions between 2 processes in an intuitive way. We
call these procedures composition actions, and they are introduced as follows:

– The TENSOR action performs a parallel composition. Given 2 processes, it
uses the ⊗ rule to compose them so that they are executed and provide their
outputs in parallel.

– The WITH action performs a conditional composition. Given 2 processes P and
Q, it requires a selected input A⊥ from P and a selected input B⊥ of Q. It
then makes use of the & rule to construct a composite process with input
(A ⊕ B)⊥. In this, if A is provided at runtime then P is executed, otherwise
if B is provided then Q is executed.

– The JOIN action composes 2 given processes P and Q sequentially. It requires a
selected subterm of the output of P and a matching subterm of an input of Q.
For example, if P has output A⊗B and Q has an input (C⊕A)⊥ then the user
can select the left branch A of the output and the matching right branch A of
the input. It then makes use of the Cut rule to construct a composite process
where P is executed first, its output A is fed to Q and then Q is executed.

These implemented actions go well-beyond the limited capabilities of their
respective main inference rules (⊗ rule, & rule, and Cut rule). In non-trivial
cases, a number of inference rules is applied to first transform the processes
into a form that is appropriate for use with the main composition rule. It is
often the case, particularly in the JOIN action, that resources that cannot be
handled directly by the involved processes (e.g. by the receiving process in a
sequential composition) are automatically buffered with the use of axiom-buffers
(introduced in Sect. 2.3).

In addition, we have implemented and integrated an automated CLL prover,
based on proof strategies developed by Tammet [20], so that the system can
handle cases where complex formulae need to be rearranged in particular ways.
For example, the formula A ⊗ B can be rearranged to B ⊗ A by automatically
proving the lemma �(A⊗B)⊥, B ⊗A. Note that, from the process specification
perspective, A ⊗ B and B ⊗ A have the equivalent intuitive interpretation of
2 parallel outputs A and B. However, at the rigorous level of the embedded
logic, this reasoning needs to be performed explicitly (yet remain hidden from
the user).

The resulting composite processes from each of the 3 actions have their own
CLL and process calculus (corresponding to the CLL proof) specifications. These
can be used as building blocks for further complex, action-based compositions.

362 P. Papapanagiotou and J. Fleuriot

2.5 Visualisation

Although the CLL and process specifications of a constructed composite process
describe its structure in a complete and verified way, they may be difficult to
grasp by the uninitiated. Their syntax can be difficult to follow, especially for
large compositions, even for experts in logic and process algebras.

For this reason, we developed a visual representation and construction that
aims to capture the intuitive interpretation of the logical specification and infer-
ence steps. The user can then develop correct-by-construction workflows by inter-
acting with the system visually (see Sect. 4.3) without the need for expertise in
CLL or theorem proving.

The representation involves a simple left-to-right, labelled box notation to
represent processes. Dangling edges stand for the inputs and outputs of a process,
with solid lines representing parallel resources (i.e.types connected by ⊗,

&

,
or separate inputs) while dashed lines represent optional resources (i.e.types
connected by ⊕ or &) as shown in the examples of Fig. 2.

Fig. 2. Examples of specifications of atomic processes in CLL and their corresponding
visualisations.

It is worth noting the special round node used for the representation of the
so-called copy nodes (see Fig. 2d). These are processes that explicitly replicate
a resource (assuming this is possible) since this is not allowed to happen within
CLL but may be desirable in some scenarios (e.g.creating a copy of an electronic
document).

As processes are composed by clicking on edges and boxes to form com-
plex workflows, we adopt a couple of additional visual constructs. Firstly, some
resources that are not explicitly handled by a particular process, but rather
buffered through an axiom-buffer, are represented using grey edges. Secondly,
the output of a composition, as constructed through rigorous CLL reasoning,
may be a complex combination of the resources (inputs and outputs) of the
component processes. In order to represent these combinations visually, we use
triangular nodes that are similar to the decision/merge ones of UML and the
gateways of BPMN (see Fig. 3 of Sect. 3 for an example).

Mapping logical composition steps to such a diagrammatic representation is
non-trivial because of the complexity and size of the generated proofs and the

WorkflowFM: A Logic-Based Framework for Formal Process Specification 363

particularities of CLL. In order to accurately represent the constructed work-
flow, the logical engine records important meta-data during each proof step (see
Sect. 4.4 for more details).

3 Example

In order to demonstrate the capabilities of our system and the challenges faced,
let us consider a hypothetical example from the healthcare domain. Assume a
process DeliverDrug with 3 inputs: Patient (a resource containing the patient
information), Dosage (a resource containing information about the drug dosage),
and NurseT ime (a number of allocated hours for a nurse to deliver the drug).
Also assume this process can have 2 alternative outcomes: Treated in the case
where the treatment was successful or Failed in the case where the drug deliv-
ery had no effect. Let us also introduce the process Reassess, during which a
clinician reassesses the patient if the drug delivery failed. Its inputs are Failed
and ClinT ime (corresponding to the reserved clinical time for this task) and the
output is Reassessed. In CLL, the 2 processes have the following specifications:

�Patient⊥, Dosage⊥, NurseT ime⊥, T reated ⊕ Failed

�Failed⊥, ClinT ime⊥, Reassessed

We now want to compose the 2 processes into a composite one where the
drug failure is handled by Reassess. We can use the JOIN action, selecting the
optional output Failed of DeliverDrug and the matching input Failed⊥ of
Reassess. The reasoner will automatically connect the 2 processes in sequence
by generating the following proof:

� Treated⊥, T reated
Id � ClinT ime⊥, ClinT ime

Id

� Treated⊥, ClinT ime⊥, T reated ⊗ ClinT ime
⊗

� Treated⊥, ClinT ime⊥, (Treated ⊗ ClinT ime) ⊕ Reassessed
⊕L

(1)

(1)
� Failed⊥, ClinT ime⊥, Reassessed

Reassess

� Failed⊥, ClinT ime⊥, (Treated ⊗ ClinT ime) ⊕ Reassessed
⊕R

�(Treated ⊕ Failed)⊥, ClinT ime⊥, (Treated ⊗ ClinT ime) ⊕ Reassessed
&

(2)

�Patient⊥, Dosage⊥, NurseT ime⊥, Treated ⊕ Failed
DeliverDrug

(2)

�Patient⊥, Dosage⊥, NurseT ime⊥, ClinTime⊥, (Treated ⊗ ClinTime) ⊕ Reassessed
Cut

(3)

The result of this composition proof demonstrates the systematic resource
tracking accomplished through the CLL rules. A human relying on the tex-
tual description of the processes might intuitively think that the composition of

364 P. Papapanagiotou and J. Fleuriot

DeliverDrug and Reassess can have 2 possible outcomes: either the patient was
treated by the drug (Treated) or they were reassessed (Reassessed). However,
the outcome of the formal composition tells a slightly different story. The output
(Treated⊗ClinT ime)⊕Reassessed indicates that, in the case where the patient
was treated (Treated) there was also some unused clinical time (ClinT ime) left
over (which would have been used for reassessment in the case of failure).

Systematically accounting for such unused resources is non-trivial, especially
considering larger workflows with tens or hundreds of processes and many dif-
ferent outcomes. The CLL inference rules enforce this by default and the proof
reflects the level of reasoning required to achieve this. Part (1) in the proof
is essentially dedicated to constructing a buffer for Treated and ClinT ime as
they remain unused in one of the 2 optional cases. The reasoner is capable of
constructing such buffers automatically and infer which resources can be used
directly or need to be buffered.

The effort to visualise such compositions adds another layer of complexity
to the system. The visualisation of this particular example is shown in Fig. 3. In
this case, the resources found in the output (Treated⊗ClinT ime)⊕Reassessed
come from 2 different sources: Treated is an output of DeliverDrug, whereas
ClinT ime and Reassessed are associated with Reassess. These resources are
combined in the final output in a seemingly arbitrary way. Therefore, we are
unable to directly connect each output edge to its original source, which is usually
the case in other workflow languages. This is the reason behind the introduction
of the triangle node as a “terminator” node that performs this combination of
resources.

Fig. 3. The visualisation of the DeliverDrug and Reassess processes (top) and their
sequential composition using JOIN (bottom).

In addition, ClinT ime is not an output of Reassess, but an unused input
that is buffered in one of the two cases. This makes it hard to track where
ClinT ime came from in the final output. One would be inclined to draw a grey
ClinT ime edge from Reassess to the triangle node, but this might give an
erroneous impression that ClinT ime is an output of Reassess (which could be
the case in a different situation). For this reason, we have chosen not to display
such an edge.

Our design decisions about the visualisation are still evolving as we carry
out more case-studies and endeavour to make the interface as intuitive and

WorkflowFM: A Logic-Based Framework for Formal Process Specification 365

straightforward as possible without compromising the correspondence with the
logical underpinnings.

4 Architecture

WorkflowFM adopts a server-client architecture consisting of 3 tiers: the rea-
soner, the server, and the client. Each of the 3 components can be deployed
separately and can be connected to each other remotely. More specifically, the
reasoner connects to the server through a (local or remote) data pipe (e.g. via
an SSH tunnel). A client can then connect to the server via a raw socket. The
server effectively screens and relays JSON commands from the client to the rea-
soner and returns the response from the reasoner in the same way. Moreover,
the server may connect with multiple, independent reasoners and distribute the
commands between them. Multiple clients can also connect to the server and
issue commands concurrently.

This architecture has several advantages over what would otherwise be a
single user, stand-alone system (which is the case for most interactive theorem
proving systems currently in existence), such as:

– It allows access through a lightweight, platform independent Java client. HOL
Light has multiple system dependencies and can be difficult to install, setup,
and run for a non-expert user. In contrast, WorkflowFM’s HOL Light based
reasoner can be installed and maintained by experts and can remain live and
always online.

– Allowing multiple concurrent users on the server makes WorkflowFM poten-
tially more scalable and accessible by a larger array of users.

– Having multiple connected reasoners allows us to process multiple tasks in
parallel, thus improving responsiveness and efficiency.

– The reasoner can be upgraded without requiring a re-install at the client
end. In this way, we can add new and improved functionality to the active
reasoners incrementally, while the system remains online.

The overall system architecture coupled with the stacked architecture of the
reasoner and the client are visualised in Fig. 4. We explain the structure and
functionality of each component next.

4.1 The Reasoner

The reasoner is implemented on top of the interactive proof assistant HOL Light
[11], which operates at the OCaml toplevel and provides a flexible, trustwor-
thy environment that conveniently marries theorem proving and programming.
Note that, although theorem proving systems for linear logic already exist (e.g.
Forum [14] and LINK [10]), we aimed to implement WorkflowFM in a fully for-
mal, trustworthy environment, with an expressive enough meta-logic to support
the proofs-as-processes paradigm. HOL Light is a prime example of such an
environment.

366 P. Papapanagiotou and J. Fleuriot

Fig. 4. The 3-tiered server-client architecture of WorkflowFM.

More specifically we have deeply embedded [5] the following within the Higher
Order Logic setting of HOL Light:

1. The syntax (including primitive name binding and substitution) of the π-
calculus.

2. The syntax of CLL formulae.
3. The CLL inference rules including their process calculus correspondences.

Given these embeddings, we developed the necessary proof infrastructure to
apply the CLL inference rules for both forward and backward inference and the
automated actions mentioned in Sect. 2.4.

The reasoner can be used at two levels. On the one hand, it is integrated in
the HOL Light proof engine so that each composition action can be applied as a
proof tactic. On the other hand, it has its own independent interface that relies
on JSON data structures (see Sect. 4.4).

4.2 The Server

The server, currently written in Java, acts as an intermediate level between the
reasoner and the client. Its primary function is to enable the management of
multiple clients and multiple reasoners.

Firstly, it is able to connect to multiple instances of the reasoner, both locally
and remotely. Thus, in cases where multiple users submit multiple commands at
the same time, it can distribute the load among all connected reasoners. This is
particularly important when considering that some reasoning tasks, especially for
large or complex compositions, may take significant time (up to a few minutes).
Moreover, this is facilitated by the fact that the reasoner is stateless, in the

WorkflowFM: A Logic-Based Framework for Formal Process Specification 367

sense that it does not maintain any information about the state or context of
the clients. In addition, it caches the results returned by the connected reasoners
for each issued command.

Secondly, it manages multiple connections from clients. It exposes an open
public socket that can receive connections and manages them, e.g. by mapping
reasoner responses to the appropriate connection, handling timeouts and recon-
nections, and logging traffic and miscellaneous statistics.

4.3 The Client

The client is a Java-based graphical user interface, developed using the JGraph
library [13], that renders the process specifications in the diagrammatic way
described in Sect. 2.5.

Additionally, the client allows the construction of such process specifications
and compositions via interactive gestures. Atomic process specifications are con-
structed in a visual way, starting from a process with one input and one output.
The user augments this basic process specification e.g. by adding new resources,
creating new types of branches (start an ⊕ branch in a ⊗ node and vice-versa),
renaming resources and so on, via mouse-driven clicks.

Once the user is happy with the visual representation of the process they wish
to construct, the specification is sent to the reasoner for verification. All such
validated specifications (which include both the CLL and the process-calculus
components) are stored in a list in the interface. From there they can be picked
and composed in the current visual workspace using mouse gestures that imple-
ment the TENSOR, WITH and JOIN actions.

The composition results returned by the reasoner are stored as intermediate
processes in their corresponding workspace. We note here that the WorkflowFM
interface provides a multi-tabbed workspace environment that enables the user to
develop different composition scenarios simultaneously without their respective
intermediate steps interfering. Also note that in order to draw accurate and
unambiguous representations of the composed workflow, the client expects some
meta-data from the reasoner, as explained in more detail in Sect. 4.4.

Overall, the user-interface is driven by mouse gestures performed by the
user and captured by handlers based on the principles of event-driven program-
ming [8]. Through these, each gesture initiates a proof task in the reasoner
resulting in a verified response. This can be thought of as event-driven theorem
proving.

As previously mentioned, the reasoner itself is stateless and therefore the
client is fully responsible for storing its state. More specifically, the client stores
the atomic processes, stored composite processes and the composition actions
required to construct them, and the workspaces with the intermediate composi-
tions performed in each one.

Since the state is stored locally, it can potentially be modified to enable
the maintenance of the constructed models. For example, the user can rename
processes or resources, modify atomic process specifications, or reload the com-
position steps for a composite process in order to make alterations. However, such

368 P. Papapanagiotou and J. Fleuriot

modifications may break the correctness of the corresponding process specifica-
tion, as well as the specifications of all composite processes that use this process
as a component. Thus, the client flags all possibly affected processes and forces the
user to verify them again through the reasoner in order to maintain the various
guarantees of correctness.

Finally, the client provides additional functionality, such as the creation of
screenshots and the visual simulation of process calculus terms (as returned by
the reasoner) using the PiVizTool [4] and GraphViz [7].

4.4 Data Structures

The 3 components of WorkflowFM communicate using JSON messages sharing
a common schema. This allows them to be decoupled and thus developed and
maintained independently. In a nutshell, the JSON data schema describes the
following structures:

– Resources;
– Channels and process-calculus specifications;
– Composition actions with the process names and selected resources as argu-

ments;
– Processes, each described as a record with fields describing (among other

things) its name, input resources (paired with its process calculus channel),
CLL specification, and so on;

– A composition state that records buffered resources, input and output prove-
nance entries, etc. to ensure the appropriate visualisation of the connections
between the processes;

– Commands that were issued to the reasoner along with their arguments;
– Responses from the reasoner to be interpreted by the client.

It is worth noting that the JSON data structures already provide a significant
level of abstraction from the mechanics of the theorem proving backend. Our aim
was to construct an API that incorporates all the necessary data (for both the
reasoner and the client), but requires limited to no experience with logic or
theorem proving.

5 Conclusion

In summary, WorkflowFM is a logic-based framework for workflow modelling.
It employs an event-driven theorem proving approach where mouse gestures on
graphs in the GUI trigger custom-built, automated proof procedures. This aims
to alleviate much of the complexity inherent to interactive theorem proving in
this domain. Its architecture consists of 3 distinct components. The reasoner,
implemented within the proof assistant HOL Light, relies on the proofs-as-
processes paradigm to allow formal process specification in CLL and correct-
by-construction process composition through logical inference. The Java client

WorkflowFM: A Logic-Based Framework for Formal Process Specification 369

visualises the CLL workflows and enables an intuitive user interaction. The server
acts as a relay between multiple reasoners and multiple clients.

It is worth remarking that some of the other salient aspects of the system have
not been covered in the current paper due to space limitations. These include
the generation of executable code for the composed workflows and the ability
to accommodate more advanced process calculus translations of CLL (e.g. with
session types [6] or with the process calculus CP [22]).

Our plans for future work include efficiency optimisations for the reasoner,
such as lemma caching for commonly proven lemmas, improved authentication,
user identification, access control, and security for the server, and alternative
implementations of the client, such as web or mobile applications. We are also
planning to perform a more systematic evaluation of the usability and scalability
of the system using both qualitative (such as demos and surveys involving real
users) and quantitative (simulation and analysis of usage data) methods.

We believe WorkflowFM is a flexible system that successfully hides the com-
plexity and formality of its theorem proving foundations. In so doing, it makes
an inherently complicated process lightweight and approachable by non-expert
users. As a result, WorkflowFM is proving to be an effective tool for general
purpose process modelling, with guaranteed levels of consistency and resource
accounting not currently achievable in other workflow tools.

Acknowledgements. This research is supported by the following EPSRC grants:
The Integration and Interaction of Multiple Mathematical Reasoning Processes
EP/N014758/1, SOCIAM: The Theory and Practice of Social Machines EP/J017728/1,
and ProofPeer: Collaborative Theorem Proving EP/L011794/1.

References

1. Abramsky, S.: Proofs as processes. Theoret. Comput. Sci. 135(1), 5–9 (1994)
2. Alexandru, C., Clutterbuck, D., Papapanagiotou, P., Fleuriot, J., Manataki, A.: A

Step Towards the Standardisation of HIV Care Practices, November 2016
3. Bellin, G., Scott, P.: On the π-calculus and linear logic. TCS 135(1), 11–65 (1994)
4. Bog, A., Puhlmann, F.: A tool for the simulation of π-calculus systems. Tech.

rep., Open.BPM, Geschäftsprozessmanagement mit Open Source-Technologien,
Hamburg, Germany (2006)

5. Boulton, R.J., Gordon, A.D., Gordon, M.J.C., Harrison, J., Herbert, J., Tassel,
J.V.: Experience with embedding hardware description languages in HOL. In:
Stavridou, V., Melham, T.F., Boute, R.T. (eds.) TPCD. IFIP Transactions, vol.
A-10, pp. 129–156. North-Holland (1992)

6. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In:
Gastin, P., Laroussinie, F. (eds.) CONCUR 2010. LNCS, vol. 6269, pp. 222–236.
Springer, Heidelberg (2010). doi:10.1007/978-3-642-15375-4 16

7. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz—
open source graph drawing tools. In: Mutzel, P., Jünger, M., Leipert, S. (eds.)
GD 2001. LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). doi:10.1007/
3-540-45848-4 57

8. Ferg, S.: Event-Driven Programming: Introduction, Tutorial, History (2016).
http://eventdrivenpgm.sourceforge.net/

http://dx.doi.org/10.1007/978-3-642-15375-4_16
http://dx.doi.org/10.1007/3-540-45848-4_57
http://dx.doi.org/10.1007/3-540-45848-4_57
http://eventdrivenpgm.sourceforge.net/

370 P. Papapanagiotou and J. Fleuriot

9. Girard, J.Y.: Linear logic: its syntax and semantics. In: Girard, J.Y., Lafont, Y.,
Regnier, L. (eds.) Advances in Linear Logic, vol. 222. London Mathematical Society
Lecture Notes Series. Cambridge University Press (1995), http://iml.univ-mrs.fr/
∼girard/Synsem.pdf.gz

10. Habert, L., Notin, J.-M., Galmiche, D.: LINK: a proof environment based on proof
nets. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381, pp.
330–334. Springer, Heidelberg (2002). doi:10.1007/3-540-45616-3 23

11. Harrison, J.: HOL light: a tutorial introduction. In: Srivas, M., Camilleri, A. (eds.)
FMCAD 1996. LNCS, vol. 1166, pp. 265–269. Springer, Heidelberg (1996). doi:10.
1007/BFb0031814

12. Howard, W.A.: The formulas-as-types notion of construction. In: Seldin, J.P., Hind-
ley, J.R. (eds.) To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus,
and Formalism, pp. 479–490. Academic Press (1980)

13. JGraph Ltd: The JGraph homepage (2013). http://www.jgraph.com/
14. Miller, D.: Forum: a multiple-conclusion specification logic. TCS 165(1), 201–232

(1996)
15. Milner, R.: Communicating and Mobile Systems: The π-Calculus. Cambridge Uni-

versity Press, Cambridge (1999)
16. Object Management Group: Business Process Model and Notation (BPMN), ver-

sion 2.0 (2011). http://www.omg.org/spec/BPMN/2.0/PDF
17. Papapanagiotou, P., Fleuriot, J.: Formal verification of collaboration patterns in

healthcare. Behav. Inf. Technol. 33(12), 1278–1293 (2014)
18. Papapanagiotou, P., Fleuriot, J.: Modelling and implementation of correct

by construction healthcare workflows. In: Fournier, F., Mendling, J. (eds.)
BPM 2014. LNBIP, vol. 202, pp. 28–39. Springer, Cham (2015). doi:10.1007/
978-3-319-15895-2 3

19. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modelling Language User
Guide. Addison-Wesley (1999)

20. Tammet, T.: Proof strategies in linear logic. J. Autom. Reasoning 12(3), 273–304
(1994)

21. Troelstra, A.S.: Lectures on Linear Logic. CSLI Lecture Notes, vol. 29, Stanford
(1992)

22. Wadler, P.: Propositions as sessions. In: Proceedings of the 17th ACM SIGPLAN
International Conference on Functional Programming, pp. 273–286. ACM (2012)

http://iml.univ-mrs.fr/~girard/Synsem.pdf.gz
http://iml.univ-mrs.fr/~girard/Synsem.pdf.gz
http://dx.doi.org/10.1007/3-540-45616-3_23
http://dx.doi.org/10.1007/BFb0031814
http://dx.doi.org/10.1007/BFb0031814
http://www.jgraph.com/
http://www.omg.org/spec/BPMN/2.0/PDF
http://dx.doi.org/10.1007/978-3-319-15895-2_3
http://dx.doi.org/10.1007/978-3-319-15895-2_3

DepQBF 6.0: A Search-Based QBF Solver
Beyond Traditional QCDCL

Florian Lonsing(B) and Uwe Egly

Knowledge-Based Systems Group, Vienna University of Technology, Vienna, Austria
{florian.lonsing,uwe.egly}@tuwien.ac.at

Abstract. We present the latest major release version 6.0 of the quanti-
fied Boolean formula (QBF) solver DepQBF, which is based on QCDCL.
QCDCL is an extension of the conflict-driven clause learning (CDCL)
paradigm implemented in state of the art propositional satisfiability
(SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof sys-
tem which underlies QCDCL. QCDCL solvers can produce QRES proofs
of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of
the solving process. In contrast to traditional QCDCL based on QRES,
DepQBF 6.0 implements a variant of QCDCL which is based on a gen-
eralization of QRES. This generalization is due to a set of additional
axioms and leaves the original Q-resolution rules unchanged. The gener-
alization of QRES enables QCDCL to potentially produce exponentially
shorter proofs than the traditional variant. We present an overview of
the features implemented in DepQBF and report on experimental results
which demonstrate the effectiveness of generalized QRES in QCDCL.

1 Introduction

Propositional satisfiability (SAT) solvers based on conflict-driven clause learning
(CDCL) [44] implement a combination of the DPLL algorithm [11] and propo-
sitional resolution [41] to derive learned clauses from a CNF to be solved.

CDCL has been extended to solve quantified Boolean formulas (QBFs) [20],
resulting in the QCDCL approach [14,24,49]. The logic of QBFs allows for
explicit universal and existential quantification of propositional variables. As
a consequence, the satisfiability problem of QBFs is PSPACE-complete.

In contrast to SAT solving, where CDCL is the dominant solving paradigm
in practice, QCDCL is complemented by variable expansion [1,6]. This approach
successively eliminates variables from a QBF until it reduces to either true or
false. Many modern solvers (e.g. [17,19,40]) implement expansion by counter-
example guided abstraction refinement (CEGAR) [10].

The Q-resolution calculus (QRES) [14,21,24,49] is a QBF proof system that
underlies QCDCL in a way that is analogous to propositional resolution in
CDCL. The empty clause is derivable from a PCNF ψ by QRES iff ψ is unsat-
isfiable. According to QBF proof complexity, there is an exponential separation

Supported by the Austrian Science Fund (FWF) under grant S11409-N23.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 371–384, 2017.
DOI: 10.1007/978-3-319-63046-5 23

372 F. Lonsing and U. Egly

between the sizes of proofs that variable expansion and Q-resolution can pro-
duce for certain QBFs [5,18]. This theoretical result suggests to combine such
orthogonal proof systems in QBF solvers to leverage their individual strengths.

As a first step towards a solver framework that allows for the combination
of QBF proof systems in a systematic way, we present the latest major release
version 6.0 of the QCDCL solver DepQBF.1 In contrast to traditional QCDCL
based on QRES [14,21,24,49], DepQBF 6.0 implements a variant of QCDCL that
relies on a generalization of QRES. This generalization is due to a set of new
axioms added to QRES [32]. In practice, derivations made by the added axioms
in QCDCL are based on arbitrary QBF proof systems. As a consequence, when
applying proof systems that are orthogonal to Q-resolution, the generalization
of QRES via the new axioms enables QCDCL as implemented in DepQBF 6.0
to potentially produce exponentially shorter proofs than traditional QCDCL.

We report on experiments where we compare DepQBF 6.0 to state of the
art QBF solvers. Experimental results demonstrate the effectiveness of gener-
alized QRES in QCDCL. Additionally, we briefly summarize the evolution of
DepQBF since the first version 0.1 [26]. We relate the features that were added
to the different versions of DepQBF over time to the enhanced variant of QCDCL
implemented in DepQBF 6.0.

2 Preliminaries

A QBF ψ := Π.φ in prenex conjunctive normal form (PCNF) consists of a quanti-
fier prefix Π := Q1X1 . . . QnXn and a CNF φ not containing tautological clauses.
The CNF φ is defined over the propositional variables X1∪ . . .∪Xn that appear in
Π. The variable sets Xi are pairwise disjoint and Qi �= Qi+1 for Qi ∈ {∀,∃}. QBFs
ψ := Π.φ in prenex disjunctive normal form (PDNF) are defined analogously to
PCNFs, where φ is a DNF consisting of cubes. A cube is a conjunction of literals.
The quantifier Q(Π, l) of a literal l is Qi if the variable var(l) of l appears in Xi.
If Q(Π, l) = Qi and Q(Π, k) = Qj , then l ≤Π k iff i ≤ j.

An assignment A maps variables of a QBF Π.φ to truth values true (�) and
false (⊥). We represent A = {l1, . . . , ln} as a set of literals such that if a variable
x is assigned true (false) then li ∈ A with li = x (li = x̄), where x̄ is the negation
of x. Further, var(li) �= var(lj) for any li, lj ∈ A with i �= j.

The PCNF ψ under assignment A, written as ψ[A], is the PCNF obtained
from ψ in which for all l ∈ A, all clauses containing l are removed, all occurrences
of l̄ are deleted, and var(l) is removed from the prefix. If the CNF of ψ[A] is empty
(respectively, contains the empty clause ∅), then it is satisfied (falsified) by A
and A is a satisfying (falsifying) assignment, written as ψ[A] = � (ψ[A] = ⊥). A
PDNF ψ under an assignment A and an empty cube are defined in a way dual
to PCNFs and empty clauses. A QBF Π.φ with Q1 = ∃ (Q1 = ∀) is satisfiable
iff, for x ∈ X1, Π.φ[{x}] or (and) Π.φ[{x̄}] is satisfiable. Two QBFs ψ and ψ′ are
satisfiability-equivalent (ψ ≡sat ψ′), iff ψ is satisfiable whenever ψ′ is satisfiable.

1 DepQBF is licensed under GPLv3: http://lonsing.github.io/depqbf/.

http://lonsing.github.io/depqbf/

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 373

Propagation

Conflict/Solution
Detection:

ψθ unsatisfiable or
ψγ satisfiable?

Decision
Making

Backtracking
Clause/Cube

Learning
UNSAT/

SAT

PCNF ψ

A = ∅

CL = ∅ CL = ∅

A ⊂ A, A := A

A := A ∪ {l}

YES

NOψθ, ψγ

Fig. 1. Workflow of the variant of QCDCL implemented in DepQBF 6.0 that relies on
a generalization of the Q-resolution calculus (QRES) (figure adapted from [32]).

3 QCDCL and the Generalized Q-Resolution Calculus

In the following, we present the variant of QCDCL implemented in DepQBF 6.0
that relies on a generalization of the Q-resolution calculus (QRES). We illustrate
the workflow of that variant in Fig. 1.

In general, QCDCL is based on the successive generation of assignments that
guide the application of the inference rules of QRES to derive learned clauses
and cubes from a given input PCNF ψ = Π.φ. Learned cubes are dual to clauses.
While learned clauses represent assignments that falsify the CNF φ of ψ, learned
cubes represent assignments that satisfy φ. The empty cube is derivable from a
PCNF ψ by QRES iff ψ is satisfiable. Based on our presentation of the rules of
QRES we illustrate the differences between traditional QCDCL and the variant
implemented in DepQBF 6.0.

A QCDCL solver maintains a PCNF θ = Π.θ′ (PDNF γ = Π.γ′) consisting
of a CNF θ′ (DNF γ′) of learned clauses (cubes). The clauses in θ are added
conjunctively to ψ to obtain ψθ = Π.(φ ∧ (

∧
C∈θ′ C)), and the cubes in γ are

added disjunctively to ψ to obtain ψγ = Π.(φ∨ (
∨

C∈γ′ C)). It holds that ψ ≡sat

ψθ and ψ ≡sat ψγ . Initially the current assignment A, the PCNF θ, and PDNF
γ are empty. We use the notation C, C ′, and CL for both clauses and cubes.

During propagation, the formulas ψθ and ψγ are first simplified under the cur-
rent assignment A by computing ψθ[A] and ψγ [A]. Then universal and existential
reduction is applied to ψθ[A] and to ψγ [A] based on the following inference rule.

Definition 1 (Reduction [14,21,24,49]). Let ψ = Π.φ be a PCNF.

C ∪ {l}
C

(1) C is a clause, Q(Π, l) = ∀,
l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∃ or

(2) C is a cube, Q(Π, l) = ∃,
l′ <Π l for all l′ ∈ C with Q(Π, l′) = ∀

(red)

374 F. Lonsing and U. Egly

Universal (existential) reduction of clauses (cubes) by rule red eliminates
trailing universal (existential) literals from a clause (cube) with respect to the
linear quantifier ordering in the prefix of the PCNF ψ. We write UR(C) = C ′

(ER(C) = C ′) to denote the clause (cube) C ′ resulting from clause (cube) C by
fully reducing universal (existential) literals.

Let ψ′
θ and ψ′

γ denote the formulas obtained by applying universal (existen-
tial) reduction to all the clauses (cubes) in ψθ[A] (ψγ [A]) until saturation. New
assignments are generated by unit literal detection with respect to ψ′

θ and ψ′
γ .

If a PCNF (PDNF) ψ contains a unit clause (cube) C = (l), where Q(Π, l) = ∃
(Q(Π, l) = ∀), then literal l is unit and ψ ≡sat ψ[A′] where A′ = {l} (A′ = {l̄}).
Assignment A is extended by assignments A′ derived from unit clauses (cubes)
in ψ′

θ (ψ′
γ). For every unit clause (cube) C ′ ∈ ψ′

θ (C ′ ∈ ψ′
γ) with C ′ = (l), the

corresponding assignment A′ := {l} (A′ := {l̄}) is recorded.
After propagation, in conflict/solution detection it is checked whether ψ′

θ is
unsatisfiable or whether ψ′

γ is satisfiable (only one of the two cases can occur). To
this end, incomplete methods are applied. In traditional QCDCL, for example, it
is syntactically checked if the current assignment A is falsifying or satisfying, i.e.,
whether ψ′

θ contains the empty clause (i.e., ψ′
θ = ⊥) or whether ψ′

γ contains the
empty cube (i.e., ψ′

γ = �). In DepQBF 6.0, we extend these incomplete syntactic
checks to incomplete semantic checks based on arbitrary QBF decision procedures
(proof systems) that are applied to ψ′

θ and ψ′
γ in a resource bounded way.

If neither ψ′
θ is found unsatisfiable nor ψ′

γ is found satisfiable by the incom-
plete satisfiability checks, then in decision making A is extended by heuristically
assigning some decision variable x from the leftmost quantifier block of ψ[A]
(A := A ∪ {l} where var(l) = x), and propagation continues. Assignments by
decision making must follow the prefix ordering of ψ, in contrast to assignments
by propagation (unit literals), which results in assignments of the following kind.

Definition 2 (QCDCL assignment [25]). Assignments generated by decision
making and propagation in QCDCL are called QCDCL assignments.

If ψ′
θ (ψ′

γ) is found unsatisfiable (satisfiable) in conflict/solution detection then
a learned clause (cube) is derived using QRES depending on the incomplete satis-
fiability checks. In traditional QCDCL, conflict/solution detection relies only on
falsifying or satisfying assignments. If ψ′

θ = ⊥ then ψ′
θ contains an empty clause

C ′ = ∅ such that there is a clause C ∈ ψθ with C ′ = UR(C[A]). Clause C is the
falsified clause with respect to assignment A. If C appears in the given PCNF ψ
then in traditional QRES it is derived trivially by the following axiom.

Definition 3 (Clause Axiom [14,21,24,49]). Let ψ = Π.φ be a PCNF.

C C is a clause and C ∈ φ (cl-init)

If ψ′
θ �= ⊥ but ψ′

γ = � then either (1) ψ′
γ contains an empty learned cube

C ′ = ∅ such that there is a cube C ∈ ψγ with C ′ = ER(C[A]), or (2) A is a
satisfying assignment that satisfies all clauses in ψ′

γ . For case (2), a cube C is

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 375

derived by the following axiom of traditional QRES (in either case (1) or (2)
cube C is the satisfied cube with respect to A).

Definition 4 (Cube Axiom [14,21,24,49]). Let ψ = Π.φ be a PCNF.

C
A is an assignment, ψ[A] = �, and C = (

∧
l∈A l) is a cube (cu-init)

DepQBF 6.0 supports the application of arbitrary (incomplete) QBF decision
procedures (proof systems) in conflict/solution detection and thus generalizes the
syntactic checks for falsifying and satisfying assignments in traditional QCDCL.

To check the satisfiability of ψ′
γ , in DepQBF 6.0 we apply a dynamic variant

of blocked clause elimination (QBCE) [25]. This approach was introduced in
version 5.0 of DepQBF. QBCE has been presented as a preprocessing technique to
eliminate redundant blocked clauses [15,23] from a PCNF. If all clauses in ψ′

γ are
satisfied under A or identified as blocked, then ψ′

γ is determined satisfiable. In our
implementation applications of QBCE are tightly integrated in the propagation
phase via efficient data structures. Clauses that are blocked are temporarily
considered as removed from the formula. Hence such clauses cannot be used to
detect unit clauses or empty clauses during propagation.

In addition to dynamic QBCE, we implemented incomplete QBF satisfiabil-
ity checks based on propositional abstractions of ψ′

θ and ψ′
γ [32], which are solved

using an integrated SAT solver. These abstractions are constructed by treating
universally quantified literals in the given PCNF ψ in a special way. Proposi-
tional abstractions and SAT solving leverage the benefits of techniques like trivial
truth and trivial falsity presented already in early search-based QBF solvers [9].
Additionally, the power of QU-resolution [48], which is exponentially stronger
than Q-resolution [21] but has not been applied systematically in QCDCL, is
harnessed to a certain extent (cf. Example 3 in [32]).

As a simple way of applying a QBF decision procedure that is incomplete
by its nature we integrated the preprocessor Bloqqer [15] in DepQBF 6.0. Pre-
processing aims at simplifying a formula within a restricted amount of time but
might already solve certain formulas (cf. [34]). Among several techniques, Blo-
qqer applies bounded expansion of universally quantified variables [6,8]. Hence
by integrating Bloqqer in QCDCL we in fact integrate expansion, a QBF proof
system that is orthogonal to Q-resolution [5,18]. Due to usability issues, in the
follow-up release version 6.02 of DepQBF we replaced Bloqqer by the expansion
based QBF solver Nenofex,2 which is applied in a resource bounded way.

If ψ′
θ (ψ′

γ) is found unsatisfiable (satisfiable) by an incomplete decision proce-
dure but, unlike above, A is neither falsifying nor satisfying, then a clause (cube)
is derived by the following generalized axioms of QRES. These axioms are added
to QRES and applied in addition to the traditional axioms cl-init and cu-init.

Definition 5 (Generalized Axioms [32]). Let ψ = Π.φ be a PCNF.

C
A is a QCDCL assignment, ψ[A] is unsatisfiable,
and C = (

∨
l∈A l̄) is a clause (gen-cl-init)

2 https://github.com/lonsing/nenofex.

https://github.com/lonsing/nenofex

376 F. Lonsing and U. Egly

C
A is a QCDCL assignment, ψ[A] is satisfiable,
and C = (

∧
l∈A l) is a cube (gen-cu-init)

Note that the generalized axioms allow to derive clauses and cubes that can-
not be derived by the traditional axioms cl-init and cu-init in general. This is
due to the application of arbitrary QBF decision procedures (proof systems) for
satisfiability checking in conflict/solution detection or in the side conditions of
the axioms, respectively. In the side conditions the satisfiability of the PCNF
ψ[A] is checked, in contrast to formulas ψ′

θ and ψ′
γ as in conflict/solution detec-

tion. This is possible since ψ′
θ ≡sat ψ[A] and ψ′

γ ≡sat ψ[A]. The clause (cube) C
derived by applying the generalized clause axiom gen-cl-init (gen-cu-init) is the
falsified clause (satisfied cube) with respect to A.

During clause (cube) learning, a new learned clause (cube) CL is derived
by QRES. The falsified clause (satisfied cube) C is the start clause (cube) of a
derivation of CL. Given A, clauses (cubes) which became unit during propagation
are systematically resolved based on the following Q-resolution rule.

Definition 6 (Q-Resolution [21]). Let ψ = Π.φ be a PCNF.

C1 ∪ {p} C2 ∪ {p̄}
C1 ∪ C2

For all x ∈ Π : {x, x̄} �⊆ (C1 ∪ C2),
p̄ �∈ C1, p �∈ C2, and either

(1) C1, C2 are clauses and Q(Π, p) = ∃ or
(2) C1, C2 are cubes and Q(Π, p) = ∀

(res)

Rule res does not allow the resolvent (C1 ∪ C2) to be a tautological clause
(contradictory cube) and requires existential (universal) variables as pivots p. In
general, learning produces a nonempty clause (cube) CL �= ∅, which is added to
the PCNF θ (PDNF γ) of learned clauses (cubes), and hence also to ψθ (ψγ).

In backtracking, a certain subassignment A′ ⊂ A is retracted such that CL

becomes unit in propagation. CL is called an asserting clause (cube) [14]. Clauses
(cubes) derived by rules cl-init and gen-cl-init (cu-init and gen-cu-init) are used
in exactly the same way in learning to produce asserting clauses (cubes).

QCDCL terminates (“UNSAT” or “SAT” in Fig. 1) by deriving the empty
learned clause (cube) CL = ∅. A clause (cube) resolution proof of the unsatisfi-
ability (satisfiability) of ψ can be obtained from the derivations of the learned
clauses (cubes) up to the empty clause (cube).

By applying the generalized axioms using a complete QBF decision pro-
cedure, the empty assignment A, and an unlimited amount of time, the empty
clause (cube) can be derived right away from any given unsatisfiable (satisfiable)
PCNF ψ. In practice it is crucial to apply incomplete polynomial time proce-
dures to limit the time spent on the satisfiability checks. However, the costs of
frequent checks may outweigh the benefits. Hence in DepQBF 6.0, satisfiability
checks for applications of the generalized axioms are dynamically disabled if they
turn out to be too costly, and the traditional axioms are used instead. We refer
to related work for implementation details [25,32].

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 377

4 Features of DepQBF

We briefly summarize the general features of DepQBF that have been incorpo-
rated since its initial version 0.1 [26,27]. Most features were described in related
publications. Additionally, we comment on the compatibility of the features with
the implementation of QRES with generalized axioms (Fig. 1) in DepQBF 6.0.

Dependency Schemes. Since the initial version 0.1, DepQBF has been
equipped with the standard dependency scheme [42] to relax the linear quan-
tifier ordering in the prefix of a given PCNF ψ. In general, dependency schemes
are used to compute dependency relations D, which are binary relations over the
set of variables in ψ. If (x, y) �∈ D for two variables x and y then the ordering of
x and y in ψ can safely be swapped. Otherwise, if (x, y) ∈ D then y is considered
to depend on x. The integration of dependency schemes in QCDCL results in the
following reduction rule, which is added to QRES and implemented in DepQBF.

Definition 7 (Dependency-Aware Reduction [27]). Let ψ = Π.φ be a
PCNF and D be a dependency relation computed using a dependency scheme.

C ∪ {l}
C

(1) C is a clause, Q(Π, l) = ∀,
(l, l′) �∈ D for all l′ ∈ C with Q(Π, l′) = ∃ or

(2) C is a cube, Q(Π, l) = ∃,
(l, l′) �∈ D for all l′ ∈ C with Q(Π, l′) = ∀

(dep-red)

Rule dep-red generalizes the traditional reduction rule red by the use of depen-
dency relation instead of the linear ordering of variables (≤Π) in the prefix
of PCNF ψ. This way, it might be possible to reduce literals by rule dep-red
which cannot be reduced by rule red. The soundness of QRES with rule dep-red
has been proved for a dependency relation that is even more general (and thus
allows for additional reductions) than the one implemented in DepQBF [45–47].
The generalized axioms gen-cl-init and gen-cu-init of QRES implemented in
DepQBF 6.0 are naturally compatible with rule dep-red. Additionally, depen-
dency schemes enable a relaxed variant of QCDCL assignments (Definition 2)
based on the respective dependency relation rather than the prefix ordering of
a PCNF ψ.

Long-Distance Resolution. The Q-resolution rule res [21] explicitly disallows
to generate clauses (cubes) that are tautological (contradictory). This restriction
is relaxed under certain side conditions in long-distance (LD) Q-resolution [2,49,
50]. LDQ-resolution was first implemented in the QCDCL solver Quaffle [49] and
was incorporated in version 3.0 of DepQBF. Compared to QRES with traditional
Q-resolution res [21], QRES with LDQ-resolution is exponentially more powerful
in terms of proof sizes [13]. The generalized axioms gen-cl-init and gen-cu-init
implemented in DepQBF 6.0 are not only compatible with the LDQ-resolution
rule, but with any variants of Q-resolution (cf. [3]). Recently, the soundness
of the combination of LDQ-resolution of clauses and dependency schemes in
QRES has been proved [4,38], leaving the soundness of cube resolutions as an
open problem. Therefore, the combination of LDQ-resolution and dependency
schemes is not supported in DepQBF 6.0.

378 F. Lonsing and U. Egly

Incremental Solving. Since version 3.0, DepQBF has been equipped with an
API in C and Java for incremental solving of sequences S := 〈ψ0, . . . , ψn〉 of
syntactically related PCNFs ψi [28,35]. Incremental solving aims at reusing the
clauses and cubes that were learned when solving PCNF ψi when it comes to
solve the PCNFs ψj with i < j. The API of DepQBF allows to modify the
PCNFs in S by manipulating the quantifier prefix and adding or removing sets
of clauses in a stack-based way. Since version 4.0, it is possible to add or remove
sets of clauses arbitrarily [29] and to extract unsatisfiable cores, i.e., unsatisfiable
subformulas of the PCNF ψi. At any time when solving ψi ∈ S, the soundness
property of QCDCL (Sect. 3) that ψ ≡sat ψθ and ψ ≡sat ψγ , where ψ = ψi,
must hold. To guarantee that property when using the generalized axioms for
incremental solving, DepQBF 6.0 currently only applies the generalized cube
axiom gen-cu-init with dynamic QBCE used to check satisfiability of ψ′

γ in con-
flict/solution detection (Fig. 1). Although this configuration restricts the power
of the generalized axioms, it has improved incremental solving in the context
of QBF-based conformant planning [12]. As it is unclear how to use depen-
dency schemes effectively in incremental solving, their application is disabled in
DepQBF 6.0.

Generation of Proofs and Certificates. QCDCL solvers can produce clause
(cube) resolution proofs of the unsatisfiability (satisfiability) of PCNFs as a
byproduct of clause (cube) learning. Since version 1.0 [37], DepQBF is capa-
ble of producing proofs without employing dependency schemes by rule dep-red.
Given a proof P of a PCNF ψ, a certificate of ψ can be extracted from P by
inspecting the reduction steps by rule red in P [2]. A certificate of an unsat-
isfiable (satisfiable) PCNF ψ is given by a set of Herbrand (Skolem) functions
which represent the universal (existential) variables in ψ. Applications of the
generalized axioms in QCDCL in general impose considerable restrictions on the
certificate extraction process. The workflow [2] to extract a certificate from P
was originally presented for traditional QRES proofs. If proof P contains clauses
(cubes) derived by rule gen-cl-init (rule gen-cu-init), then P may lack informa-
tion needed to extract correct certificates. As a result, DepQBF 6.0 does not
support cube resolution proof generation combined with the generalized cube
axiom gen-cu-init. However, it supports clause resolution proof generation with
the generalized clause axiom gen-cl-init provided that only propositional abstrac-
tions and SAT solving are used for satisfiability checking in the side condition
of this axiom.

Advanced Generation of Learned Clauses and Cubes. The derivation of
a single asserting clause (cube) starting from a falsified clause (satisfied cube) as
implemented in traditional QCDCL [14,24,49] has an exponential worst case [48].
Since version 2.0 DepQBF comes with an approach that avoids this exponential
case [33] by a revised selection of clauses (cubes) to be resolved in learning. This
advanced approach is compatible with all the techniques presented above.

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 379

5 Experiments

We compare variants of DepQBF 6.02, which is the latest follow-up release of
DepQBF 6.0, to top performing solvers of QBFEVAL’16 [39]. As benchmarks we
consider all 825 instances from the PCNF track, both in original form (Table 1a)
and preprocessed by Bloqqer version 37 (Table 1b). We take preprocessing into
account as it might have a positive impact on certain solvers while a negative on
others (cf. [34,36]). Experiments were run on an AMD Opteron 6238 processor
(2.6 GHz) under 64-bit Ubuntu Linux 12.04 with time and memory limits of 1800
seconds and seven GB. Exceeding the memory limit is counted as a time out.3

Table 1. Solved instances (S), solved unsatisfiable (⊥) and satisfiable ones (�),
uniquely solved ones among all solvers (U), and total wall clock time including time
outs on 825 PCNFs from QBFEVAL’16 without (1a) and with preprocessing by Bloqqer
(1b).

(a) Original instances.

Solver S ⊥ � U Time

AIGSolve 603 301 302 34 440K
GhostQ 593 292 301 7 457K
QSTS 578 294 284 3 469K
DQ 458 255 203 0 682K
DQ-linldq 458 257 201 2 686K
DQ-lin 456 255 201 0 686K
DQ-ncl 448 246 202 0 703K
DQ-nq 397 228 169 0 788K
DQ-ncu 393 229 164 0 796K
DQ-n 383 221 162 0 814K
CAQE 378 202 176 9 831K
QESTO 369 210 159 0 864K
RAReQS 341 211 130 2 891K

(b) Preprocessed by Bloqqer.

Solver S ⊥ � U Time

QSTS 633 330 303 11 365K
RAReQS 633 334 299 8 375K
QESTO 620 321 299 0 395K
DQ-ncl 601 303 298 0 428K
DQ 601 301 300 0 429K
DQ-linldq 598 300 298 2 437K
DQ-lin 597 299 298 0 436K
CAQE 596 301 295 4 451K
DQ-n 593 296 297 0 444K
DQ-ncu 591 297 294 0 455K
DQ-nq 587 293 294 0 455K
GhostQ 570 282 288 0 485K
AIGSolve 567 286 281 14 481K

To assess the impact of the generalized axioms gen-cl-init and gen-cu-init on
the performance, we consider DepQBF 6.02 using both gen-cl-init and gen-cu-
init (variant DQ in the tables), without gen-cl-init (DQ-ncl), without gen-cu-init
(DQ-ncu), and using no generalized axioms at all (DQ-n).

On original instances (Table 1a), DQ outperforms variants DQ-ncl, DQ-ncu,
and DQ-n with restricted or without generalized axioms, respectively. Variant DQ-
ncl without axiom gen-cl-init outperforms variant DQ-ncu without gen-cu-init.
We attribute this effect to the use of dynamic QBCE (among other techniques) for
applications of the cube axiom gen-cu-init in DQ-ncl. Compared to DQ, disabling
only dynamic QBCE in variant DQ-nq severely impacts performance.

On preprocessed instances (Table 1b), we make similar observations regarding
the impact of the generalized axioms like in Table 1a. However, variant DQ-ncl

3 We refer to an appendix of this paper with additional experimental results [30].

380 F. Lonsing and U. Egly

Table 2. Related to Table 1a: solver performance on 402 filtered original (not pre-
processed) instances partitioned into 261 instances with at most two (2a) and 141 with
three or more quantifier alternations (2b).

(a) At most two quantifier alternations.

Solver S ⊥ � U Time

GhostQ 176 75 101 5 171K
AIGSolve 138 66 72 14 250K
QSTS 136 58 78 0 232K
RAReQS 76 43 33 1 340K
DQ-lin 69 35 34 0 351K
DQ 69 35 34 0 351K
DQ-ncl 68 35 33 0 354K
DQ-linldq 67 34 33 0 354K
QESTO 66 37 29 0 359K
DQ-ncu 53 24 29 0 378K
DQ-n 52 24 28 0 378K
DQ-nq 52 23 29 0 379K
CAQE 43 17 26 3 397K

(b) Three or more quantifier alternations.

Solver S ⊥ � U Time

DQ-linldq 81 50 31 2 120K
DQ 79 47 32 0 119K
DQ-ncl 79 47 32 0 120K
DQ-lin 78 47 31 0 123K
QSTS 72 44 28 3 132K
DQ-nq 56 37 19 0 159K
GhostQ 56 31 25 2 160K
DQ-n 55 36 19 0 159K
DQ-ncu 55 36 19 0 159K
AIGSolve 54 25 29 9 161K
QESTO 49 33 16 0 179K
CAQE 46 29 17 2 182K
RAReQS 43 33 10 0 180K

Table 3. Related to Table 1b: solver performance on 402 filtered and preprocessed
instances partitioned into 270 instances with at most two (3a) and 132 with three or
more quantifier alternations (3b).

(a) At most two quantifier alternations.

Solver S ⊥ � U Time

RAReQS 157 79 78 8 227K
QESTO 138 66 72 0 255K
QSTS 136 62 74 2 255K
CAQE 118 49 69 2 298K
GhostQ 111 46 65 1 304K
DQ 107 43 64 1 311K
DQ-lin 106 42 64 0 311K
DQ-ncl 105 43 62 0 312K
DQ-n 105 41 64 0 313K
DQ-linldq 104 40 64 0 315K
AIGSolve 102 49 53 7 313K
DQ-nq 102 39 63 0 322K
DQ-ncu 102 40 62 0 323K

(b) Three or more quantifier alternations.

Solver S ⊥ � U Time

DQ-ncl 83 51 32 0 96K
DQ 81 49 32 0 98K
DQ-linldq 81 51 30 2 102K
DQ-lin 78 48 30 0 105K
DQ-ncu 76 48 28 0 112K
QSTS 75 50 25 1 107K
DQ-n 75 46 29 0 112K
DQ-nq 72 45 27 0 113K
QESTO 69 45 24 0 120K
CAQE 64 42 22 0 136K
RAReQS 62 45 17 1 131K
AIGSolve 51 27 24 6 151K
GhostQ 46 26 20 0 162K

without the clause axiom gen-cl-init is on par with DQ. Preprocessing may
blur the structure of an instance. We conjecture that this blurring hinders the
success of the QBF decision procedures in DepQBF, on which applications of the
generalized axioms are based. In general the performance difference between the
variants of DepQBF is smaller than on original instances. The rankings of the

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 381

solvers RAReQS [17], QESTO [19], and CAQE [40] are improved substantially by
preprocessing, whereas those of AIGSolve [43] and GhostQ [17,22] become worse.
The best variant DQ-ncl in Table 1b ranks fourth behind QSTS [7], RAReQS, and
QESTO. However, the lag to the solver ranked third is 19 instances compared to
120 instances for the best variant DQ in Table 1a that also ranks fourth.

To analyze the effects of preprocessing in more detail, we filtered the 825
PCNFs from QBFEVAL’16 by discarding 354 PCNFs that are already solved by
Bloqqer and 69 PCNFs where Bloqqer eliminated all universally quantified vari-
ables, resulting in a set of 402 PCNFs. Further, we considered the 402 PCNFs
in their original form and preprocessed by Bloqqer and partitioned them into
subsets containing PCNFs with at most two and with three or more quantifier
alternations. Such partitioning is motivated by a related experimental study [31]
where a large diversity of solver performance was observed on instance classes
defined by alternations. Tables 2 and 3 show solver performance on these subsets
without and with preprocessing, respectively. Notably, variants of DepQBF out-
perform the other solvers on the subsets with three or more alternations, both
without and with preprocessing (Tables 2b and 3b).

All variants of DepQBF reported above apply dependency-aware reduction
by rule dep-red. Variant DQ-lin is the same as DQ (including generalized axioms)
but uses the traditional reduction rule red based on the linear quantifier ordering
of PCNFs. Variant DQ outperforms DQ-lin in all tables except Table 2a, where
DQ-lin is on par, which illustrates the benefits of dependency schemes in QCDCL.
Variant DQ-linldq differs from DQ-lin in the use of LDQ-resolution in learning
instead of traditional Q-resolution by rule res. The results with LDQ-resolution
are mixed, despite being a stronger proof system than Q-resolution. Variant DQ-
linldq outperforms DQ-lin in all tables except Tables 2a and 3a, i.e., on instances
with at most two quantifier alternations.

6 Conclusion

We presented the latest major release version 6.0 of the QCDCL solver DepQBF.
DepQBF 6.0 implements a variant of QCDCL that is based on a generalization
of the Q-resolution calculus (QRES). The generalization is achieved by equip-
ping QRES with generalized clause and cube axioms to be used in clause and
cube learning [32]. The generalized axioms provide an extensible framework of
interfaces for the integration of arbitrary QBF proof systems in QRES, and
hence in QCDCL. The integration of proof systems orthogonal to Q-resolution,
such as variable expansion, enables QCDCL to potentially produce proofs that
are exponentially shorter than proofs produced by traditional QCDCL. This
way, the state of the art of QCDCL solving can be further advanced. A related
open problem is the inability of plain QCDCL to exploit the full power of Q-
resolution [16].

The workflow of QCDCL with generalized axioms is not tailored towards
DepQBF 6.0 but can be implemented in any QCDCL solver. Furthermore, it is
compatible with dependency schemes [42,46] and any Q-resolution variant [3],
which offers potential for further improvements.

382 F. Lonsing and U. Egly

Experiments with variants of DepQBF 6.0 showed considerable performance
gains due to the application of generalized axioms. However, frequent applica-
tions are hindered by computationally expensive QBF satisfiability checks in the
side conditions of the axioms. To limit the checking overhead, axiom applications
must be carefully scheduled. In this respect, there is room for improvements in
fine tuning DepQBF 6.0. Further, it may be beneficial to integrate the QBF
decision procedures that are applied to satisfiability checking more tightly in the
QCDCL workflow, like with dynamic blocked clause elimination (QBCE) [25].

References

1. Ayari, A., Basin, D.: Qubos: Deciding quantified boolean logic using propositional
satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS,
vol. 2517, pp. 187–201. Springer, Heidelberg (2002). doi:10.1007/3-540-36126-X 12

2. Balabanov, V., Jiang, J.R.: Unified QBF certification and its applications. Formal
Methods Syst. Des. 41(1), 45–65 (2012)

3. Balabanov, V., Widl, M., Jiang, J.-H.R.: QBF resolution systems and their proof
complexities. In: Sinz, C., Egly, U. (eds.) SAT 2014. LNCS, vol. 8561, pp. 154–169.
Springer, Cham (2014). doi:10.1007/978-3-319-09284-3 12

4. Beyersdorff, O., Blinkhorn, J.: Dependency schemes in QBF calculi: semantics and
soundness. In: Rueher, M. (ed.) CP 2016. LNCS, vol. 9892, pp. 96–112. Springer,
Cham (2016). doi:10.1007/978-3-319-44953-1 7

5. Beyersdorff, O., Chew, L., Janota, M.: Proof complexity of resolution-based QBF
calculi. In: STACS. LIPIcs, vol. 30, pp. 76–89. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik (2015)

6. Biere, A.: Resolve and expand. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004.
LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005). doi:10.1007/11527695 5

7. Bogaerts, B., Janhunen, T., Tasharrofi, S.: SAT-to-SAT in QBFEval 2016. In: QBF
Workshop. CEUR Workshop Proceedings, vol. 1719, pp. 63–70. CEUR-WS.org
(2016)

8. Bubeck, U., Kleine Büning, H.: Bounded universal expansion for preprocessing
QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp.
244–257. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72788-0 24

9. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified
boolean formulae. In: AAAI, pp. 262–267. AAAI Press/The MIT Press (1998)

10. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM 50(5), 752–794 (2003)

11. Davis, M., Logemann, G., Loveland, D.W.: A machine program for theorem-
proving. Commun. ACM 5(7), 394–397 (1962)

12. Egly, U., Kronegger, M., Lonsing, F., Pfandler, A.: Conformant planning as a case
study of incremental QBF solving. Ann. Math. Artif. Intell. 80(1), 21–45 (2017)

13. Egly, U., Lonsing, F., Widl, M.: Long-distance resolution: proof generation and
strategy extraction in search-based QBF solving. In: McMillan, K., Middeldorp,
A., Voronkov, A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 291–308. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-45221-5 21

14. Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/Term resolution and learning
in the evaluation of quantified boolean formulas. JAIR 26, 371–416 (2006)

15. Heule, M., Järvisalo, M., Lonsing, F., Seidl, M., Biere, A.: Clause elimination for
SAT and QSAT. JAIR 53, 127–168 (2015)

http://dx.doi.org/10.1007/3-540-36126-X_12
http://dx.doi.org/10.1007/978-3-319-09284-3_12
http://dx.doi.org/10.1007/978-3-319-44953-1_7
http://dx.doi.org/10.1007/11527695_5
http://dx.doi.org/10.1007/978-3-540-72788-0_24
http://dx.doi.org/10.1007/978-3-642-45221-5_21

DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL 383

16. Janota, M.: On Q-resolution and CDCL QBF solving. In: Creignou, N., Le Berre,
D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 402–418. Springer, Cham (2016). doi:10.
1007/978-3-319-40970-2 25

17. Janota, M., Klieber, W., Marques-Silva, J., Clarke, E.: Solving QBF with coun-
terexample guided refinement. Artif. Intell. 234, 1–25 (2016)

18. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution.
Theor. Comput. Sci. 577, 25–42 (2015)

19. Janota, M., Marques-Silva, J.: Solving QBF by clause selection. In: IJCAI, pp.
325–331. AAAI Press (2015)

20. Kleine Büning, H., Bubeck, U.: Theory of quantified boolean formulas. In: Hand-
book of Satisfiability, FAIA, vol. 185, pp. 735–760. IOS Press (2009)

21. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified boolean
formulas. Inf. Comput. 117(1), 12–18 (1995)

22. Klieber, W., Sapra, S., Gao, S., Clarke, E.: A non-prenex, non-clausal QBF
solver with game-state learning. In: Strichman, O., Szeider, S. (eds.) SAT
2010. LNCS, vol. 6175, pp. 128–142. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14186-7 12

23. Kullmann, O.: On a generalization of extended resolution. Discrete Appl. Math.
96–97, 149–176 (1999)

24. Letz, R.: Lemma and model caching in decision procedures for quantified boolean
formulas. In: Egly, U., Fermüller, C.G. (eds.) TABLEAUX 2002. LNCS, vol. 2381,
pp. 160–175. Springer, Heidelberg (2002). doi:10.1007/3-540-45616-3 12

25. Lonsing, F., Bacchus, F., Biere, A., Egly, U., Seidl, M.: Enhancing search-based
QBF solving by dynamic blocked clause elimination. In: Davis, M., Fehnker,
A., McIver, A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 418–433.
Springer, Heidelberg (2015). doi:10.1007/978-3-662-48899-7 29

26. Lonsing, F., Biere, A.: DepQBF: a dependency-aware QBF solver. JSAT 7(2–3),
71–76 (2010)

27. Lonsing, F., Biere, A.: Integrating dependency schemes in search-based QBF
solvers. In: Strichman, O., Szeider, S. (eds.) SAT 2010. LNCS, vol. 6175, pp. 158–
171. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14186-7 14

28. Lonsing, F., Egly, U.: Incremental QBF solving. In: O’Sullivan, B. (ed.) CP
2014. LNCS, vol. 8656, pp. 514–530. Springer, Cham (2014). doi:10.1007/
978-3-319-10428-7 38

29. Lonsing, F., Egly, U.: Incrementally computing minimal unsatisfiable cores of QBFs
via a clause group solver API. In: Heule, M., Weaver, S. (eds.) SAT 2015. LNCS,
vol. 9340, pp. 191–198. Springer, Cham (2015). doi:10.1007/978-3-319-24318-4 14

30. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional
QCDCL. CoRR abs/1702.08256 (2017). http://arxiv.org/abs/1702.08256, CADE
2017 proceedings version with appendix

31. Lonsing, F., Egly, U.: Evaluating QBF solvers: quantifier alternations matter.
CoRR abs/1701.06612 (2017). http://arxiv.org/abs/1701.06612, technical report

32. Lonsing, F., Egly, U., Seidl, M.: Q-resolution with generalized axioms. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 435–452. Springer, Cham
(2016). doi:10.1007/978-3-319-40970-2 27

33. Lonsing, F., Egly, U., Van Gelder, A.: Efficient clause learning for quantified
boolean formulas via QBF pseudo unit propagation. In: Järvisalo, M., Van Gelder,
A. (eds.) SAT 2013. LNCS, vol. 7962, pp. 100–115. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-39071-5 9

34. Lonsing, F., Seidl, M., Van Gelder, A.: The QBF gallery: behind the scenes. Artif.
Intell. 237, 92–114 (2016)

http://dx.doi.org/10.1007/978-3-319-40970-2_25
http://dx.doi.org/10.1007/978-3-319-40970-2_25
http://dx.doi.org/10.1007/978-3-642-14186-7_12
http://dx.doi.org/10.1007/978-3-642-14186-7_12
http://dx.doi.org/10.1007/3-540-45616-3_12
http://dx.doi.org/10.1007/978-3-662-48899-7_29
http://dx.doi.org/10.1007/978-3-642-14186-7_14
http://dx.doi.org/10.1007/978-3-319-10428-7_38
http://dx.doi.org/10.1007/978-3-319-10428-7_38
http://dx.doi.org/10.1007/978-3-319-24318-4_14
http://arxiv.org/abs/1702.08256
http://arxiv.org/abs/1701.06612
http://dx.doi.org/10.1007/978-3-319-40970-2_27
http://dx.doi.org/10.1007/978-3-642-39071-5_9

384 F. Lonsing and U. Egly

35. Marin, P., Miller, C., Lewis, M.D.T., Becker, B.: Verification of partial designs
using incremental QBF solving. In: DATE, pp. 623–628. IEEE (2012)

36. Marin, P., Narizzano, M., Pulina, L., Tacchella, A., Giunchiglia, E.: Twelve years
of QBF evaluations: QSAT is PSPACE-hard and it shows. Fundam. Inform. 149
(1–2), 133–158 (2016)

37. Niemetz, A., Preiner, M., Lonsing, F., Seidl, M., Biere, A.: Resolution-based
certificate extraction for QBF. In: Cimatti, A., Sebastiani, R. (eds.) SAT
2012. LNCS, vol. 7317, pp. 430–435. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-31612-8 33

38. Peitl, T., Slivovsky, F., Szeider, S.: Long distance Q-resolution with dependency
schemes. In: Creignou, N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp.
500–518. Springer, Cham (2016). doi:10.1007/978-3-319-40970-2 31

39. Pulina, L.: The ninth QBF solvers evaluation - preliminary report. In: Proceedings
of the 4th International Workshop on Quantified Boolean Formulas QBF 2016.
CEUR Workshop Proceedings, vol. 1719, pp. 1–13. CEUR-WS.org (2016)

40. Rabe, M.N., Tentrup, L.: CAQE: a certifying QBF solver. In: FMCAD,
pp. 136–143. IEEE (2015)

41. Robinson, J.A.: A machine-oriented logic based on the resolution principle. J. ACM
12(1), 23–41 (1965)

42. Samer, M., Szeider, S.: Backdoor sets of quantified boolean formulas. JAR 42(1),
77–97 (2009)

43. Scholl, C., Pigorsch, F.: The QBF solver AIGSolve. In: QBF Workshop. CEUR
Workshop Proceedings, vol. 1719, pp. 55–62. CEUR-WS.org (2016)

44. Marques-Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers.
In: Handbook of Satisfiability, FAIA, vol. 185, pp. 131–153. IOS Press (2009)

45. Slivovsky, F., Szeider, S.: Computing resolution-path dependencies in linear time.
In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 58–71.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-31612-8 6

46. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes.
Theor. Comput. Sci. 612, 83–101 (2016)

47. Van Gelder, A.: Variable independence and resolution paths for quantified boolean
formulas. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 789–803. Springer, Hei-
delberg (2011). doi:10.1007/978-3-642-23786-7 59

48. Van Gelder, A.: Contributions to the theory of practical quantified boolean formula
solving. In: Milano, M. (ed.) CP 2012. LNCS, pp. 647–663. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-33558-7 47

49. Zhang, L., Malik, S.: Conflict driven learning in a quantified boolean satisfiability
solver. In: ICCAD, pp. 442–449. ACM/IEEE Computer Society (2002)

50. Zhang, L., Malik, S.: Towards a symmetric treatment of satisfaction and conflicts
in quantified boolean formula evaluation. In: Hentenryck, P. (ed.) CP 2002. LNCS,
vol. 2470, pp. 200–215. Springer, Heidelberg (2002). doi:10.1007/3-540-46135-3 14

http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-642-31612-8_33
http://dx.doi.org/10.1007/978-3-319-40970-2_31
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/978-3-642-31612-8_6
http://dx.doi.org/10.1007/978-3-642-23786-7_59
http://dx.doi.org/10.1007/978-3-642-33558-7_47
http://dx.doi.org/10.1007/3-540-46135-3_14

CSI: New Evidence – A Progress Report

Julian Nagele(B), Bertram Felgenhauer, and Aart Middeldorp

Department of Computer Science, University of Innsbruck, Innsbruck, Austria
{julian.nagele,bertram.felgenhauer,aart.middeldorp}@uibk.ac.at

Abstract. CSI is a strong automated confluence prover for rewrite sys-
tems which has been in development since 2010. In this paper we report
on recent extensions that make CSI more powerful, secure, and useful.
These extensions include improved confluence criteria but also support
for uniqueness of normal forms. Most of the implemented techniques pro-
duce machine-readable proof output that can be independently verified
by an external tool, thus increasing the trust in CSI. We also report on
CSÎ oho, a tool built on the same framework and similar ideas as CSI
that automatically checks confluence of higher-order rewrite systems.

1 Introduction

CSI [44] is an automatic confluence prover for rewrite systems, which participates
in the annual confluence competition (CoCo) [1].

In this paper we report on recent additions to CSI, in particular support for
higher-order rewrite systems, efficient decision procedures for the unique normal
form properties for ground rewrite systems, support for first-order systems with
associative and commutative symbols, and more refined non-confluence tech-
niques. Several techniques have been formalized to enable certification of the
output of CSI, making it the most trustworthy confluence tool.

We assume familiarity with rewriting [7]. Here we only recall notions that
will be used in Sect. 2. We consider terms built from a signature F and a disjoint
set of variables V. Given a subset FAC ⊆ F of binary function symbols, the term
rewrite system (TRS for short) AC consists of the AC rules f(x, y) → f(y, x) and
f(f(x, y), z) → f(x, f(y, z)) for every f ∈ FAC. We write ∼AC for the congruence
induced by AC. Given a TRS R over the signature F , we write Re for the union
of R and the extended rules f(�, x) → f(r, x) for all � → r ∈ R such that
root(�) = f ∈ FAC. We write →R/AC for the relation ∼AC · →R · ∼AC. The
relation →R,AC is defined as follows: s →R,AC t if there exists a position p in
s, a rewrite rule � → r in R, and a substitution σ such that s|p ∼AC �σ and
t = s[rσ]p. The relations →R/AC and →Re,AC · ∼AC coincide.

Consider two rewrite rules �1 → r1 and �2 → r2 without common variables
and a function position p in �2 such that �l and �2|p are unifiable modulo AC.
Given a complete set S of AC unifiers of �l and �2|p, the pair �2[r1]pσ ≈ r2σ
with σ ∈ S is called an AC critical pair. The set of all AC critical pairs between
rules of a TRS R and a TRS S is denoted by CPAC(R,S).

This research is supported by FWF (Austrian Science Fund) project P27528.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 385–397, 2017.
DOI: 10.1007/978-3-319-63046-5 24

386 J. Nagele et al.

The remainder of the paper is organized as follows. In the next section we
report on the main extensions to CSI for (non-)confluence proving of TRSs.
Section 3 is devoted to the support of CSI for the unique normal form properties.
The extension to higher-order systems is covered in Sect. 4. An overview of the
certified techniques in CSI is presented in Sect. 5. Some implementation details
are given in Sect. 6 before we conclude in Sect. 7 with experimental data.

2 Extensions

In this section we describe the two features for (non-)confluence proving of TRSs
that were added to CSI after CoCo 2016. Other extensions are briefly described
in the one-page tool descriptions accompanying CoCo.1

TRSs that contain AC rules pose a challenge for confluence provers. The
confluence problems database (Cops)2 contains several such systems whose sta-
tus is open. Aoto and Toyama [2] developed a special confluence technique for
rewrite systems with AC rules and more general non-terminating rewrite sys-
tems, which is incorporated in the confluence prover ACP [5]. A key idea in [2] is
that AC rules are reversible. This idea was combined with the extended critical
pair lemma of Jouannaud and Kirchner [13] in Saigawa [15] and more recently
in CoLL [38], where the technique is extended to handle associative rules in the
absence of commutation rules.

Theorem 1 (JouannaudandKirchner [13], Shintani andHirokawa [38]).
If R = S � AC such that s →∗

S,AC · ∼AC · ∗
S,AC← t for all s ≈ t ∈ CPAC(S,S ∪

AC ∪ AC−1) and S/AC is terminating then R is confluent.

In CSI we incorporated the version of the AC critical pair lemma based on
extended rules [32], which is used in the modern completion tool mkbtt.3

Theorem 2. If R = S � AC such that s →∗
S/AC · ∼AC · ∗

S/AC← t for all s ≈ t ∈
CPAC(Se,Se) and S/AC is terminating then R is confluent.

We illustrate the use of Theorem2 on two examples.

Example 3. The rewrite system (Cops 183)

+(0, x) → x +(x, 0) → x −(+(x, y)) → +(−(x),−(y))
+(1,−(1)) → 0 +(−(1), 1) → 0 +(x, y) → +(y, x)

−(0) → 0 −(−(x)) → x +(+(x, y), z) → +(x,+(y, z))

cannot be handled by the recent ground confluence prover AGCP [3, Example 25].
After removing the AC rules +(+(x, y), z) → +(x,+(y, z)) and +(x, y) →

1 Available from http://coco.nue.riec.tohoku.ac.jp/2013, http://coco.nue.riec.
tohoku.ac.jp/2014, http://coco.nue.riec.tohoku.ac.jp/2015, http://coco.nue.riec.
tohoku.ac.jp/2016, under Entrants.
2 http://cops.uibk.ac.at.
3 http://cl-informatik.uibk.ac.at/software/mkbtt.

http://cops.uibk.ac.at/
http://coco.nue.riec.tohoku.ac.jp/2013
http://coco.nue.riec.tohoku.ac.jp/2014
http://coco.nue.riec.tohoku.ac.jp/2014
http://coco.nue.riec.tohoku.ac.jp/2015
http://coco.nue.riec.tohoku.ac.jp/2016
http://coco.nue.riec.tohoku.ac.jp/2016
http://cops.uibk.ac.at
http://cl-informatik.uibk.ac.at/software/mkbtt

CSI: New Evidence – A Progress Report 387

+(y, x) we obtain a rewrite system S such that the 18 AC critical pairs of Se

are joinable modulo AC4 (arising from 27 AC critical peaks). Since S is easily
shown to be AC terminating (e.g. ACRPO [36] applies), we conclude by The-
orem 2 that the original rewrite system is confluent. In particular, it is ground
confluent, answering the open problem in [3].

Interestingly, the CoCo 2015 version of CoLL-Saigawa, using Theorem 1, could
already show confluence of the TRS of Example 3. In light of the next example,
it remains to be seen whether this answer can be trusted.

Example 4. Consider the rewrite system

a + b → b c + a → a x + y → y + x (x + y) + z → x + (y + z)

consisting of S = {a + b → b, c + a → a} and the AC rules for +. The two
extended rules

(a + b) + z → b + z (c + a) + z → a + z

admit the AC critical peak

c + b ← (c + a) + b → a + b

where c+b is in normal form and a+b rewrites in one step to the normal form b.
These normal forms are obviously not AC equivalent. Hence Theorem2 does not
apply and CSI correctly reports that the system is not confluent. Surprisingly,
CoLL-Saigawa wrongly reports the opposite. The reason could be that the peak

b + z S← (a + b) + z →AC a + (b + z)

is joinable modulo AC (as a + (b + z) →S/AC b + z) but a + (b + z) is a normal
form with respect to →S,AC and hence Theorem 1 does not apply.

The second extension we describe is a non-confluence technique, or more
precisely, a technique for finding non-joinable conversions. Let us first consider
an example.

Example 5. Consider the TRS R due to Klop [16] consisting of the three rules

f(x, x) → a g(x) → f(x, g(x)) c → g(c)

Because of the rewrite sequence c → g(c) → f(c, g(c)) → f(g(c), g(c)) → a we
also have c → g(c) →∗ g(a) and since a and g(a) are not joinable,5 R is not
confluent.

4 In fact, CSI uses a modified definition of Se that avoids adding extended rules
for rules where the same linear variable appears as an argument of the two top-
flattenings of the left-hand and right-hand sides of the rule, using the same AC
symbol. In the example, this applies to the first two rules. We still have →S/AC =
→Se,AC· ∼AC.
5 This can be shown using tree automata techniques [11].

388 J. Nagele et al.

However, finding the above conversion is non-trivial and indeed none of the
participants of CoCo 2016 can show non-confluence of this system. The tech-
nique of redundant rules [22] can be used to strengthen other criteria in such
situations. The basic idea is to add or remove rules that can be simulated by the
other rules, thus reflecting (non-)confluence. A systematic method for finding
redundant rules is presented below.

Definition 6. Given two variable disjoint rewrite rules �1 → r1 and �2 → r2
of a TRS R, a function position p in r1, and an mgu σ of r1|p and �2, the
rewrite rule �1σ → r1σ[r2σ]p is a forward closure of R. We write FC(R) for the
extension of R with all its forward closures.

Since the rules in FC(R) \ R are redundant (as they can be simulated using
the rules of the original TRS R), the following result is obvious.

Lemma 7. A TRS R is confluent if and only if the TRS FC(R) ∪ FC(R−1)−1

is confluent
�
The reason for including FC(R−1)−1 will become clear in the next section.

Returning to Example 5 we find

c → f(c, g(c)) ∈ FC(R) c → a ∈ FC3(R)

c → f(g(c), g(c)) ∈ FC2(R) c → g(a) ∈ FC4(R)

and hence we obtain the non-joinable critical pair a ≈ g(a) ∈ CP(FC4(R)). By
Lemma 7 this implies non-confluence of R.

3 Unique Normal Forms

In addition to confluence, CSI includes preliminary support for two unique nor-
mal form properties, namely UNC (any two convertible normal forms are equal;
two terms s and t are convertible if s ↔∗ t) and UNR (any term reaches at
most one normal form). Note that in contrast to CSÎ ho (described in the next
section), which has to deal with a whole new rewriting mechanism, adding sup-
port for UNR and UNC is similar to adding a new confluence criterion, which is
why there is no separate CSÎ un tool. Furthermore, the implications

CR =⇒ UNC =⇒ UNR (1)

mean that any confluence criterion can also serve as a criterion for UNC and
UNR, which is another reason for using a confluence tool as the basis of a tool for
unique normal forms. (The reverse implications do not hold, as witnessed by the
well-known TRSs R1 = {b → a, b → c, c → c} and R2 = R1 ∪ {d → c, d → e}.
The first one is UNC but not CR because a and c do not have a common reduct;
the second one is UNR but not UNC because the normal forms a and e are
convertible.)

CSI: New Evidence – A Progress Report 389

CSI incorporates efficient decision procedures for both UNC and UNR for
ground term rewrite systems, which are TRSs without variables. The former
property can be decided in O(n log n) time, where n is the size of the input TRS,
based on currying, the congruence closure algorithm by Nelson and Oppen [26],
and an ad hoc enumeration of runs of a tree automaton that accepts convertible
normal forms. The latter property is decided in O(n3) time, using currying and
ground tree transducers that accept normal forms which are related by a peak.
For details of these two algorithms, see [9]. Furthermore, CSI implements the
following criterion for UNC for non-ground systems.

Theorem 8 (Kahrs and Smith [14]). Every non-ω-overlapping TRS has
unique normal forms with respect to conversions (UNC).

A TRS is ω-overlapping if it has overlaps that may be infinite terms. In
order to check for ω-overlaps, CSI implements a unification algorithm without
occurs-check.

Example 9. The TRS consisting of the rules

f(x, x) → a f(x, g(x)) → b c → g(c)

of [12] is not UNR because a ← f(c, c) → f(c, g(c)) → b is a peak connect-
ing two distinct normal forms. This TRS is non-overlapping but ω-overlapping
because f(gω, gω) is an instance of both f(x, x) and f(y, g(y)) by substituting
{x �→ gω, y �→ gω}. The TRS from Example 5 on the other hand is non-ω-
overlapping and hence UNC by Theorem 8.

Finally, there is a simple check for non-UNR, where CSI attempts to find two
distinct normal forms reachable from the same term by starting from critical
peaks and overlaps at variables. Including variable overlaps enables CSI to find
the peak in Example 9. Note that Lemma 7 also holds for UNR. This enables
an alternative approach to finding a suitable peak for Example 9: There is an
overlap between f(c, c) → b ∈ FC(R−1)−1 and f(x, x) → a ∈ R, resulting in
the critical pair a ≈ b. Note that considering FC(R) alone does not yield any
progress in this example.

We aim for having a single tool that simultaneously attempts to prove and
disprove all three properties UNR, UNC and CR, fully exploiting the chain of
implications (1) for optimization. For example, if UNC has been established, any
effort spent on proving UNR would be wasted, but the current implementation
cannot use this information. For the time being, however, there are separate tool
invocations for each of these properties.

4 Higher-Order Confluence

CSÎ ho is an extension of CSI for proving confluence of higher-order rewrite sys-
tems. Higher-order rewriting combines first-order rewriting with notions and
concepts from (typed) λ-calculus, resulting in rewriting systems with higher-
order functions and bound variables. More precisely we consider pattern rewrite

390 J. Nagele et al.

systems (PRSs) as introduced by Nipkow [20,27], i.e., terms are simply typed
lambda terms with constants modulo λβη and rewriting uses higher-order match-
ing. Additionally left-hand sides of rewrite rules are required to be patterns [21].6

This restriction is essential for obtaining decidability of unification and thus
makes it possible to compute critical pairs. To this end CSÎ ho implements a
version of Nipkow’s algorithm for higher-order pattern unification [28].

Example 10. The untyped lambda calculus with β and η-reduction can be
encoded as a PRS as follows:

abs : (term → term) → term app : term → term → term

app(abs(λx. M(x)), N) → M(N) abs(λx. app(M,x)) → M

Next we briefly explain the confluence criteria supported by CSÎ ho. The first
criterion is based on a higher-order version of the critical pair lemma.

Lemma 11 (Nipkow [27]). A PRS R is locally confluent if and only if s ↓ t
for all critical pairs s ≈ t of R.

The definition of critical pairs is essentially the same as in the first-order
setting, with some additional technicalities to account for the presence of bound
variables, see e.g. [20] for a formal definition. Together with Newman’s Lemma
this yields a confluence criterion for PRSs.

Corollary 12. A terminating PRS R is confluent if and only if s ↓ t for all
critical pairs s ≈ t of R.

For showing termination CSÎ ho uses a basic higher-order recursive path
ordering [33] and static dependency pairs with dependency graph decomposi-
tion and the subterm criterion [19]. Alternatively, one can also use an external
termination tool like WANDA [18] as an oracle.

For potentially non-terminating systems CSÎ ho supports two more classical
criteria based on critical pairs. The first states that weakly orthogonal systems
are confluent.

Theorem 13 (van Oostrom and van Raamsdonk [30]). A left-linear PRS
R is confluent if s = t for all critical pairs s ≈ t of R.

The PRS from Example 10 has two trivial critical pairs and hence is confluent.
This result was extended by van Oostrom to allow for non-trivial critical pairs
that are connected by a development step.7

Theorem 14 (van Oostrom [29]). A left-linear PRS R is confluent if s −→○ t
for all critical pairs s ≈ t of R.

6 A term is a pattern if free variables only have distinct bound variables as argu-
ments.
7 A development step −→○ contracts multiple, non-overlapping but possibly nested
redexes at once.

CSI: New Evidence – A Progress Report 391

As a divide-and-conquer technique CSÎ ho implements modularity, i.e.,
decomposing a PRS into parts with disjoint signatures, for left-linear PRSs [6].
Note that the restriction to left-linear systems is essential—unlike for the first-
order setting confluence is not modular in general. The following example illus-
trates the problem.

Example 15. Consider the PRS R from [6] consisting of the three rules

f(x, x) → a f(x, g(x)) → b μ(λx. Z(x)) → Z(μ(λx. Z(x)))

The first two rules and the third rule on their own are confluent, e.g. by Corol-
lary 12 and Theorem 13 respectively. However, because of the peak

a ← f(μ(λx. g(x)), μ(λx. g(x))) → f(μ(λx. g(x)), g(μ(λx. g(x)))) → b

R is not confluent. Note that R does not have critical pairs, making it non-trivial
to find this peak.

As described in Sect. 2 redundant rules can used to find such peaks. Imple-
menting transformations based on redundant rules for PRSs is straightforward,
one just has to take care to only add rules that do not violate the pattern
restriction.

Example 16. Consider the PRS from Example 15. After adding the redundant
rule f(μ(λx. g(x)), μ(λx. g(x))) → b there is a critical pair a ≈ b and non-
confluence is obvious.

To find new rules like the one above we again use narrowing, applying rules in
both directions. In Example 16 unifying Z(μ(λx. Z(x))) with g(x) and applying
the reversed third rule to the left-hand side of the second rule yields the desired
new rule. The following example illustrates removal of redundant rules.

Example 17. Consider the following encoding of lambda-calculus with Regnier’s
σ-reduction [34]:

app(abs(λx. T (x)), S) → T (S)
app(abs(λy. abs(λx. M(y, x))), S) → abs(λx. app(abs(λy. M(y, x)), S))

app(app(abs(λx. T (x)), S), U) → app(abs(λx. app(T (x), U)), S)

Since the left- and right-hand side of the second and third rule are convertible
using the first rule, they can be removed and confluence of the first rule alone
can be established by Theorem 13.

5 Certification

Due to the increasing interest in automatic analysis of rewrite systems in recent
years, it is of great importance whether a proof, generated by an automatic tool,
is indeed correct (cf. Example 4). Since the proofs produced by such tools are

392 J. Nagele et al.

often complex and large, checking correctness is impractical for humans. Hence
there is strong interest in verifying them using an independent certifier. A cer-
tifier is a tool that reads proof certificates, and either accepts them as correct
or rejects them as erroneous. To ensure correctness of the certifier, the predom-
inant solution is to use proof assistants like Coq or Isabelle to first formalize the
underlying theory in the proof assistant and then use the formalization to obtain
verified functions for inspecting the certificates.

As certifier we use CeTA [41], which reads certificates in CPF (certification
problem format) [40]. Given a certificate CeTA will either answer CERTIFIED, or
return a detailed error message why the proof was REJECTED. Its correctness
is formally proved as part of IsaFoR, the Isabelle Formalization of Rewriting.
IsaFoR contains executable check-functions for each formalized proof technique
together with formal proofs that whenever such a check succeeds, the technique
was indeed applied correctly. Isabelle’s code-generation facility is used to obtain
a trusted Haskell program from these check functions: the certifier CeTA.8 Since
2012 CeTA supports checking (non-)confluence certificates. CSI supports certi-
fiable output for the following criteria checkable by CeTA: Knuth and Bendix’
criterion [17,39], (weak) orthogonality [25,35], Huet’s results on strongly closed
and parallel closed critical pairs and Toyama’s extenson of the latter [12,24,42],
the rule labeling heuristic for decreasing diagrams [23,45], and transformations
based on redundant rules [22]. For non-confluence CeTA can check that, given
derivations s →∗ t1 and s →∗ t2, t1 and t2 cannot be joined. Here the justifica-
tions used by CSI are: using tcap [44] (i.e., test that tcap(t1σ) and tcap(t2σ) are
not unifiable), and reachability analysis using tree automata [11]. Experimental
results for certified confluence analysis are presented in Sect. 7.

6 Implementation Details

CSI is open source and available as pre-compiled binary or via the web-interface
shown in Fig. 1 from http://cl-informatik.uibk.ac.at/software/csi, CSÎ ho can
be obtained from http://cl-informatik.uibk.ac.at/software/csi/ho. Since its first
release one of CSI’s defining features has been its strategy language, which enables
the combination techniques in a flexible manner and facilitates integration of new
criteria. Some of the combinators provided to combine methods that we will
use below are: sequential composition of strategies ;, alternative composition |
(which executes its second argument if the first fails), parallel execution ||, and
iteration *. A postfix n* executes a strategy at most n times while [n] executes
its argument for at most n seconds. Finally ? applies a strategy optionally (i.e.,
only if it makes progress), and ! ensures that its argument only succeeds if con-
fluence could be (dis)proved. For a full grammar of the strategy language pass
the option -h to CSI. To illustrate its power we briefly compare the strategy used
in CSI 0.1 with the one from CSI 1.0. The original strategy was

8 IsaFoR/CeTA and CPF are available at http://cl-informatik.uibk.ac.at/software/
ceta.

http://cl-informatik.uibk.ac.at/software/csi
http://cl-informatik.uibk.ac.at/software/csi/ho
http://cl-informatik.uibk.ac.at/software/ceta
http://cl-informatik.uibk.ac.at/software/ceta

CSI: New Evidence – A Progress Report 393

Fig. 1. The new web-interface of CSI.

(KB || NOTCR || (((CLOSED || DD) | add)2*)! || sorted -order)*

where sorted -order applies order-sorted decomposition and methods writ-
ten in capitals are abbreviations for sub-strategies: KB applies Knuth-Bendix’
criterion, CLOSED tests whether the critical pairs of a TRS are strongly or devel-
opment closed, DD implements decreasing diagrams, and NOTCR tries to establish
non-confluence. The current strategy is

(if trs then (sorted -order*;

(((GROUND || KB || AC || KH || AT || SIMPLE || CPCS2 ||

(REDUNDANT DEL?; (CLOSED || DD || SIMPLE || KB || AC ||

GROUND))3*! || ((CLOSED || DD) | REDUNDANT RHS)3*! ||

((CLOSED || DD) | REDUNDANT JS)3*! || fail)[30] | CPCS[5]2*)2* ||

(NOTCR | REDUNDANT FC)3*!)

) else fail)

which illustrates how to integrate new techniques independently or in combi-
nation with others, for instance the REDUNDANT X strategies, which are differ-
ent heuristics for finding redundant rules. The features described in Sect. 2 are
reflected in AC and REDUNDANT FC. The AC substrategy is simply tried in parallel
to the existing methods for confluence and non-confluence. For the REDUNDANT FC
method, which modifies a problem, a different approach is used: first, a non-
confluence proof (NOTCR) is attempted. If that fails, then rules from the forward
closure are added, and the process is repeated, starting with another attempt at

394 J. Nagele et al.

proving non-confluence. After 3 iterations, CSI gives up on the non-confluence
check. Other additions are a decision procedure for ground systems [8] (GROUND),
criteria by Klein and Hirokawa [15] (KH) and by Aoto and Toyama [2] (AT), sim-
ple to test syntactic criteria by Sakai, Oyamaguchi, and Ogawa [37], and Toyama
and Oyamaguchi [43] (SIMPLE), and techniques based on critical pair closing sys-
tems [31] (CPCS). The full strategy configuration file (which consists of definitions
of abbreviations like AC) grew from 76 to 233 lines since the initial release.

7 Experimental Results

For experiments9 we considered all 291 TRSs in the Cops database. Table 1
compares the power of the current version of CSI (1.0) to its initial release
(CSI 0.1 [44]) and to the version used in CoCo 2016 (0.6). For each problem,
a tool may establish confluence (yes), non-confluence (no), or fail to give a
conclusive answer (maybe), corresponding to the rows of the table. The progress
achieved in the past few months is obvious. Of the 24 systems which CSI cannot
handle, its main weakness is lack of special support for non-left-linear rules.
Here for instance criteria based on quasi-linearity [4] and implemented in ACP
are missing in CSI’s repertoire. Some of the 24 systems are (currently) out of
reach for all automatic confluence tools, like extensions of combinatory logic or
self-distributivity.

The fourth column shows the results when using CSI’s certifiable strategy,
i.e., only criteria that can be checked by CeTA. Note that the maybe answers, in
principle, include proofs produced by CSI that are not accepted by CeTA. However,
because we also use Cops for testing the tools, this case does not occur for this
set of problems. While all non-confluence proofs produced by CSI are certifiable
there is still a gap in confluence analysis. The main missing techniques are a
criterion to deal with AC rules, e.g. the ones from Sect. 2 or the one by Aoto
and Toyama [2], advanced decomposition techniques based on layer systems [10],
and techniques for dealing with non-left-linear systems, in particular the criteria
by Klein and Hirokawa [15] and by Sakai, Oyamaguchi, and Ogawa [37]. The
formalization and subsequent certification of most of these techniques requires
serious effort, which we leave as future work.

Table 2 summarizes the results for UNR and UNC. We include CR in the
table because proving confluence is a common way of establishing UNR or UNC.

Table 1. Confluence results.

9 Full details are available from CSI’s website.

http://cl-informatik.uibk.ac.at/software/csi/

CSI: New Evidence – A Progress Report 395

Table 2. Unique normal form results.

� UNR UNC CR

� 120 43 37 17

¬CR 81 20 14 –

¬UNC 33 6 – –

¬UNR 27 – – –

The � row (where � stands for true) represents the positive (yes) results for
the corresponding properties, whereas the � column represents the negative
results. For these experiments we used 120 TRSs which are comprised of the
100 Cops that at most one of the tools ACP, CoLL-Saigawa, or CSI could show
confluent in the respective version used in CoCo 2016, and an additional 20
TRSs that were used in the UNR demonstration category in CoCo 2016. Note
that the table entries overlap. For example, there are 20 problems for which CR
has been disproved and UNR has been established; these 20 problems include
the 14 problems which have been shown to satisfy UNC but not CR. The number
of problems for which none of the properties UNR, UNC, or CR was proved or
disproved is 120 + 20 − 81 − 43 = 16.

For experiments in the higher-order setting we again used Cops, which con-
tains 69 PRSs. CSÎ ho can show confluence of 50 and non-confluence of 10 of
these. Solving the remaining 9 systems will require serious effort—they contain
e.g. lambda calculus with surjective pairing and self-distributivity of explicit
substitution.

Acknowledgments. We thank Sarah Winkler for contributing code and expertise
related to AC termination and AC critical pairs.

References

1. Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition
2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS, vol. 9195, pp.
101–104. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 5

2. Aoto, T., Toyama, Y.: A reduction-preserving completion for proving confluence
of non-terminating term rewriting systems. LMCS 8(1: 31), 1–29 (2012). doi:10.
2168/LMCS-8(1:31)2012

3. Aoto, T., Toyama, Y.: Ground confluence prover based on rewriting induction. In:
Proceedings of 1st FSCD. LIPIcs, vol. 52, pp. 33: 1–33: 12 (2016). doi:10.4230/
LIPIcs.FSCD.2016.33

4. Aoto, T., Toyama, Y., Uchida, K.: Proving confluence of term rewriting systems
via persistency and decreasing diagrams. In: Dowek, G. (ed.) RTA 2014. LNCS,
vol. 8560, pp. 46–60. Springer, Cham (2014). doi:10.1007/978-3-319-08918-8 4

5. Aoto, T., Yoshida, J., Toyama, Y.: Proving confluence of term rewriting sys-
tems automatically. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 93–102.
Springer, Heidelberg (2009). doi:10.1007/978-3-642-02348-4 7

http://dx.doi.org/10.1007/978-3-319-21401-6_5
http://dx.doi.org/10.2168/LMCS-8(1:31)2012
http://dx.doi.org/10.2168/LMCS-8(1:31)2012
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.33
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.33
http://dx.doi.org/10.1007/978-3-319-08918-8_4
http://dx.doi.org/10.1007/978-3-642-02348-4_7

396 J. Nagele et al.

6. Appel, C., van Oostrom, V., Simonsen, J.G.: Higher-order (non-)modularity. In:
Proceedings of 21st RTA. LIPIcs, vol. 6, pp. 17–32 (2010). doi:10.4230/LIPIcs.
RTA.2010.17

7. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
New York (1998)

8. Felgenhauer, B.: Deciding confluence of ground term rewrite systems in cubic time.
In: Proceedings of 23rd RTA. LIPIcs, vol. 15, pp. 165–175 (2012). doi:10.4230/
LIPIcs.RTA.2012.165

9. Felgenhauer, B.: Efficiently deciding uniqueness of normal forms and unique nor-
malization for ground TRSs. In: Proceedings of 5th IWC, pp. 16–20 (2016)

10. Felgenhauer, B., Middeldorp, A., Zankl, H., Oostrom, V.O.: Layer systems for
proving confluence. ACM TOCL 16(2: 14), 1–32 (2015). doi:10.1145/2710017

11. Felgenhauer, B., Thiemann, R.: Reachability analysis with state-compatible
automata. In: Dediu, A.-H., Mart́ın-Vide, C., Sierra-Rodŕıguez, J.-L., Truthe, B.
(eds.) LATA 2014. LNCS, vol. 8370, pp. 347–359. Springer, Cham (2014). doi:10.
1007/978-3-319-04921-2 28

12. Huet, G.: Confluent reductions: Abstract properties and applications to term
rewriting systems. JACM 27(4), 797–821 (1980). doi:10.23638/LMCS-13(2:4)2017

13. Jouannaud, J.P., Kirchner, H.: Completion of a set of rules modulo a set of equa-
tions. SIAM J. Comput. 15(4), 1155–1194 (1986). doi:10.1137/0215084

14. Kahrs, S., Smith, C.: Non-ω-overlapping TRSs are UN. In: Proceedings of 1st
FSCD. LIPIcs, vol. 52, pp. 22: 1–22: 17 (2016). doi:10.4230/LIPIcs.FSCD.2016.22

15. Klein, D., Hirokawa, N.: Confluence of non-left-linear TRSs via relative termi-
nation. In: Bjørner, N., Voronkov, A. (eds.) LPAR 2012. LNCS, vol. 7180, pp.
258–273. Springer, Heidelberg (2012). doi:10.1007/978-3-642-28717-6 21

16. Klop, J.: Combinatory reduction systems. Ph.D. thesis, Utrecht University (1980)
17. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.

(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press,
Oxford (1970)

18. Kop, C.: Higher order termination. Ph.D. thesis, Vrije Universiteit, Amsterdam
(2012)

19. Kusakari, K., Isogai, Y., Sakai, M., Blanqui, F.: Static dependency pair method
based on strong computability for higher-order rewrite systems. IEICE TIS 92–
D(10), 2007–2015 (2009)

20. Mayr, R., Nipkow, T.: Higher-order rewrite systems and their confluence. TCS
192(1), 3–29 (1998). doi:10.1016/S0304-3975(97)00143--6

21. Miller, D.: A logic programming language with lambda-abstraction, function vari-
ables, and simple unification. JLP 1(4), 497–536 (1991). doi:10.1093/logcom/1.4.
497

22. Nagele, J., Felgenhauer, B., Middeldorp, A.: Improving automatic confluence
analysis of rewrite systems by redundant rules. In: Proceedings of 26th RTA.
LIPIcs, vol. 36, pp. 257–268 (2015). doi:10.4230/LIPIcs.RTA.2015.257

23. Nagele, J., Felgenhauer, B., Zankl, H.: Certifying confluence proofs via relative
termination and rule labeling. LMCS (to appear) (2017)

24. Nagele, J., Middeldorp, A.: Certification of classical confluence results for left-linear
term rewrite systems. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol.
9807, pp. 290–306. Springer, Cham (2016). doi:10.1007/978-3-319-43144-4 18

25. Nagele, J., Thiemann, R.: Certification of confluence proofs using CeTA. In: Pro-
ceedings of 3rd IWC, pp. 19–23 (2014)

26. Nelson, G., Oppen, D.: Fast decision procedures based on congruence closure.
JACM 27(2), 356–364 (1980). doi:10.1145/322186.322198

http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://dx.doi.org/10.4230/LIPIcs.RTA.2010.17
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://dx.doi.org/10.4230/LIPIcs.RTA.2012.165
http://dx.doi.org/10.1145/2710017
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.1007/978-3-319-04921-2_28
http://dx.doi.org/10.23638/LMCS-13(2:4)2017
http://dx.doi.org/10.1137/0215084
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.22
http://dx.doi.org/10.1007/978-3-642-28717-6_21
http://dx.doi.org/10.1016/S0304-3975(97)00143--6
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.1093/logcom/1.4.497
http://dx.doi.org/10.4230/LIPIcs.RTA.2015.257
http://dx.doi.org/10.1007/978-3-319-43144-4_18
http://dx.doi.org/10.1145/322186.322198

CSI: New Evidence – A Progress Report 397

27. Nipkow, T.: Higher-order critical pairs. In: Proceedings of 6th LICS, pp. 342–349
(1991). doi:10.1109/LICS.1991.151658

28. Nipkow, T.: Functional unification of higher-order patterns. In: Proceedings of 8th
LICS, pp. 64–74 (1993). doi:10.1109/LICS.1993.287599

29. van Oostrom, V.: Developing developments. TCS 175(1), 159–181 (1997). doi:10.
1016/S0304-3975(96)00173-9

30. van Oostrom, V., Raamsdonk, F.: Weak orthogonality implies confluence: the
higher-order case. In: Nerode, A., Matiyasevich, Y.V. (eds.) LFCS 1994. LNCS,
vol. 813, pp. 379–392. Springer, Heidelberg (1994). doi:10.1007/3-540-58140-5 35

31. Oyamaguchi, M., Hirokawa, N.: Confluence and critical-pair-closing systems. In:
Proceedings of 3rd IWC, pp. 29–33 (2014)

32. Peterson, G.E., Stickel, M.E.: Complete sets of reductions for some equational
theories. JACM 28(2), 233–264 (1981). doi:10.1145/322248.322251

33. van Raamsdonk, F.: On termination of higher-order rewriting. In: Middeldorp, A.
(ed.) RTA 2001. LNCS, vol. 2051, pp. 261–275. Springer, Heidelberg (2001). doi:10.
1007/3-540-45127-7 20

34. Regnier, L.: Une équivalence sur les lambda-termes. TCS 126(2), 281–292 (1994).
doi:10.1016/0304-3975(94)90012--4

35. Rosen, B.: Tree-manipulating systems and Church-Rosser theorems. JACM 20(1),
160–187 (1973). doi:10.1145/321738.321750

36. Rubio, A.: A fully syntactic AC-RPO. I&C 178(2), 515–533 (2002). doi:10.1006/
inco.2002.3158

37. Sakai, M., Oyamaguchi, M., Ogawa, M.: Non-E -overlapping, weakly shallow, and
non-collapsing TRSs are confluent. In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 111–126. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 7

38. Shintani, K., Hirokawa, N.: CoLL: A confluence tool for left-linear term rewrite
systems. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol.
9195, pp. 127–136. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 8

39. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-
Bendix completion. In: Proceedings of 24th RTA. LIPIcs, vol. 21, pp. 287–302
(2013).doi:10.4230/LIPIcs.RTA.2013.287

40. Sternagel, C., Thiemann, R.: The certification problem format. In: Proceedings of
11th UITP. EPTCS, vol. 167, pp. 61–72 (2014). doi:10.4204/EPTCS.167.8

41. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

42. Toyama, Y.: Commutativity of term rewriting systems. In: Fuchi, K., Kott, L. (eds.)
Programming of Future Generation Computers II, pp. 393–407. North-Holland
Publishing, North Holland (1988)

43. Toyama, Y., Oyamaguchi, M.: Church-Rosser property and unique normal form
property of non-duplicating term rewriting systems. In: Proceedings of the 4th
CTRS withDershowitz N., Lindenstrauss N. (eds.) CTRS 1994. LNCS, vol. 968
(1995). doi:10.1007/3-540-60381-6 19

44. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 38

45. Zankl, H., Felgenhauer, B., Middeldorp, A.: Labelings for decreasing diagrams.
JAR 54(2), 101–133 (2015). doi:10.1007/s10817-014-9316-y

http://dx.doi.org/10.1109/LICS.1991.151658
http://dx.doi.org/10.1109/LICS.1993.287599
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1016/S0304-3975(96)00173-9
http://dx.doi.org/10.1007/3-540-58140-5_35
http://dx.doi.org/10.1145/322248.322251
http://dx.doi.org/10.1007/3-540-45127-7_20
http://dx.doi.org/10.1007/3-540-45127-7_20
http://dx.doi.org/10.1016/0304-3975(94)90012--4
http://dx.doi.org/10.1145/321738.321750
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1006/inco.2002.3158
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_7
http://dx.doi.org/10.1007/978-3-319-21401-6_8
http://dx.doi.org/10.4230/LIPIcs.RTA.2013.287
http://dx.doi.org/10.4204/EPTCS.167.8
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/3-540-60381-6_19
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://dx.doi.org/10.1007/s10817-014-9316-y

Scalable Fine-Grained Proofs
for Formula Processing

Haniel Barbosa1,2(B), Jasmin Christian Blanchette1,3,4, and Pascal Fontaine1

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
{haniel.barbosa,jasmin.blanchette,pascal.fontaine}@loria.fr

2 Universidade Federal do Rio Grande do Norte, Natal, Brazil
3 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
4 Max-Planck-Institut für Informatik, Saarbrücken, Germany

Abstract. We present a framework for processing formulas in auto-
matic theorem provers, with generation of detailed proofs. The main
components are a generic contextual recursion algorithm and an exten-
sible set of inference rules. Clausification, skolemization, theory-specific
simplifications, and expansion of ‘let’ expressions are instances of this
framework. With suitable data structures, proof generation adds only
a linear-time overhead, and proofs can be checked in linear time. We
implemented the approach in the SMT solver veriT. This allowed us to
dramatically simplify the code base while increasing the number of prob-
lems for which detailed proofs can be produced, which is important for
independent checking and reconstruction in proof assistants.

1 Introduction

An increasing number of automatic theorem provers can generate certificates,
or proofs, that justify the formulas they derive. These proofs can be checked by
other programs and shared across reasoning systems. Some users will also want
to inspect this output to understand why a formula holds. Proof production is
generally well understood for the core proving methods and for many theories
commonly used in satisfiability modulo theories (SMT). But most automatic
provers also perform some formula processing or preprocessing—such as clausifi-
cation and rewriting with theory-specific lemmas—and proof production for this
aspect is less mature.

For most provers, the code for processing formulas is lengthy and deals with
a multitude of cases, some of which are rarely executed. Although it is crucial for
efficiency, this code tends to be given much less attention than other aspects of
provers. Developers are reluctant to invest effort in producing detailed proofs for
such processing, since this requires adapting a lot of code. As a result, the granu-
larity of inferences for formula processing is often coarse. Sometimes, processing
features are even disabled to avoid gaps in proofs, at a high cost in proof search
performance.

Fine-grained proofs are important for a variety of applications. We propose
a framework to generate such proofs without slowing down proof search. Proofs
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 398–412, 2017.
DOI: 10.1007/978-3-319-63046-5 25

Scalable Fine-Grained Proofs for Formula Processing 399

are expressed using an extensible set of inference rules (Sect. 2). The succe-
dent of a rule is an equality between the original term and the translated term.
(It is convenient to consider formulas a special case of terms.) The rules have a
fine granularity, making it possible to cleanly separate theories. Clausification,
theory-specific simplifications, and expansion of ‘let’ expressions are instances
of this framework. Skolemization may seem problematic, but with the help of
Hilbert’s choice operator, it can also be integrated into the framework. Some
provers provide very detailed proofs for parts of the solving, but we are not aware
of any publications about practical attempts to provide easily reconstructible
proofs for processing formulas containing quantifiers and ‘let’ expressions.

At the heart of the framework lies a generic contextual recursion algorithm
that traverses the terms to translate (Sect. 3). The context fixes some vari-
ables, maintains a substitution, and keeps track of polarities or other data. The
transformation-specific work, including the generation of proofs, is performed by
plugin functions that are given as parameters to the framework. The recursion
algorithm, which is critical for the performance and correctness of the gener-
ated proofs, needs to be implemented only once. Another benefit of the modular
architecture is that we can easily combine several transformations in a single
pass, without complicating the code unduly or compromising the level of detail
of the proof output. For very large inputs, this can improve performance.

The inference rules and the contextual recursion algorithm enjoy many desir-
able properties (Sect. 4). The rules are sound, and the treatment of binders is
correct even in the presence of name clashes. Moreover, with suitable data struc-
tures, proof generation adds an overhead that is proportional to the time spent
processing the terms. Checking proofs represented as directed acyclic graphs
(DAGs) can be performed with a time complexity that is linear in their size.
Detailed proofs of the metatheory are included in a technical report [2], together
with more explanations and examples.

We implemented the approach in veriT (Sect. 5), an SMT solver that is com-
petitive on problems combining equality, linear arithmetic, and quantifiers [3].
Compared with other SMT solvers, veriT is known for its very detailed proofs
[5], which are reconstructed in the proof assistants Coq [1] and Isabelle/HOL
[6] and in the GAPT system [10]. As a proof of concept, we implemented a
prototype checker in Isabelle/HOL.

By adopting the new framework, we were able to remove large amounts of
complicated code in the solver, while enabling detailed proofs for more transfor-
mations than before. The contextual recursion algorithm had to be implemented
only once and is more thoroughly tested than any of the monolithic transfor-
mations it subsumes. Our empirical evaluation reveals that veriT is as fast as
before even though it now generates finer-grained proofs.

1.1 Conventions

Our setting is a many-sorted classical first-order logic as defined by the SMT-
LIB standard [4]. A signature Σ = (S ,F) consists of a set S of sorts and
a set F of function symbols. Nullary function symbols are called constants.

400 H. Barbosa et al.

We assume that the signature contains a Bool sort and constants true, false :
Bool, a family (� : σ × σ → Bool)σ∈S of function symbols interpreted as equal-
ity, and the connectives ¬, ∧, ∨, and −�→. Formulas are terms of type Bool, and
equivalence is equality (�) on Bool. Terms are built over symbols from F and
variables from a fixed family of infinite sets (Vσ)σ∈S . In addition to ∀ and ∃, we
rely on two more binders: Hilbert’s choice operator εx.ϕ and a ‘let’ construct,
let x̄n � s̄n in t, which simultaneously assigns n variables.

We use the symbol = for syntactic equality on terms. We reserve the names
a, f, p, q for function symbols; x, y for variables; r, s, t, u for terms (which may
be formulas); ϕ,ψ for formulas; and Q for quantifiers (∀ and ∃). We use the
notations ān and (ai)n

i=1 to denote the tuple, or vector, (a1, . . . , an). We write
[n] for {1, . . . , n}.

Given a term t, the set of its free variables is written FV (t). The notation
t[x̄n] stands for a term that may depend on x̄n; t[s̄n] is the corresponding term
where the terms s̄n are substituted for x̄n. Bound variables in t are renamed to
avoid capture. Following these conventions, Hilbert choice and ‘let’ are charac-
terized by

|= ∃x. ϕ[x] −�→ ϕ[εx.ϕ] (ε1)
|= (∀x. ϕ � ψ) −�→ (εx.ϕ) � (εx.ψ) (ε2)

|= (let x̄n � s̄n in t[x̄n]) � t[s̄n] (let)

Substitutions ρ are functions from variables to terms such that ρ(xi) �= xi for at
most finitely many variables xi. We write them as {x̄n 	→ s̄n}. The substitution
ρ[x̄n 	→ s̄n] maps each variable xi to the term si and otherwise coincides with ρ.
The application of a substitution ρ to a term t is denoted by ρ(t). It is capture-
avoiding; bound variables in t are renamed as necessary. Composition ρ′ ◦ ρ is
defined as for functions (i.e., ρ is applied first).

2 Inference System

The inference rules used by our framework depend on a notion of context defined
by the grammar Γ ::= ∅ | Γ, x | Γ, x̄n 	→ s̄n. Each context entry either fixes
a variable x or defines a substitution {x̄n 	→ s̄n}. If a context introduces the
same variable several times, the rightmost entry shadows the others. Abstractly,
a context Γ fixes a set of variables and specifies a substitution subst(Γ) defined
by subst(∅) = {}, subst(Γ, x) = subst(Γ)[x 	→ x], and subst(Γ, x̄n 	→ t̄n) =
subst(Γ) ◦ {x̄n 	→ t̄n}. In the second equation, the [x 	→ x] update shadows any
replacement of x induced by Γ. We write Γ(t) to abbreviate the capture-avoiding
substitution subst(Γ)(t).

Transformations of terms (and formulas) are justified by judgments of the
form Γ � t � u, where Γ is a context, t is an unprocessed term, and u is the
corresponding processed term. The free variables in t and u must appear in the
context Γ. Semantically, the judgment expresses the equality of the terms Γ(t)
and u for all variables fixed by Γ. Crucially, the substitution applies only on the
left-hand side of the equality.

Scalable Fine-Grained Proofs for Formula Processing 401

The inference rules for the transformations covered in this paper are pre-
sented below.

TautT if |=T Γ(t) � u
Γ � t � u

Γ � s � t Γ � t � u
Trans if Γ(t) = t

Γ � s � u
(
Γ � ti � ui

)
n
i=1

Cong

Γ � f(t̄n) � f(ūn)

Γ, y, x 	→ y � ϕ � ψ
Bind if y /∈ FV (Qx. ϕ)

Γ � (Qx. ϕ) � (Qy. ψ)

Γ, x 	→ (εx.ϕ) � ϕ � ψ
Sko∃

Γ � (∃x. ϕ) � ψ

Γ, x 	→ (εx.¬ϕ) � ϕ � ψ
Sko∀

Γ � (∀x. ϕ) � ψ
(
Γ � ri � si

)
n
i=1 Γ, x̄n 	→ s̄n � t � u

Let if Γ(si) = si for all i ∈ [n]
Γ � (let x̄n � r̄n in t) � u

• T relies on an oracle T to derive arbitrary lemmas in a theory T . In practice,
the oracle will produce some kind of certificate to justify the inference. An
important special case, for which we use the name Refl, is syntactic equality.

• Trans needs the side condition because the term t appears both on the
left-hand side of � (where it is subject to Γ’s substitution) and on the right-
hand side.

• Cong can be used for any function symbol f, including the logical connectives.
• Bind is a congruence rule for quantifiers. The rule also justifies the renaming

of the bound variable. The side condition prevents an unwarranted variable
capture. In the antecedent, the renaming is expressed by a substitution in the
context.

• Sko ∃ and Sko ∀ exploit (ε1) to replace a quantified variable with a suitable
witness, simulating skolemization. We can think of the ε expression in each
rule abstractly as a fresh function symbol that takes any fixed variables it
depends on as arguments.

• Let exploits (let) to expand a ‘let’ expression. The terms r̄n assigned to the
variables x̄n can be transformed into terms s̄n.

The antecedents of all the rules inspect subterms structurally, without modifying
them. Modifications to the term on the left-hand side are delayed; the substi-
tution is applied only in Taut. This is crucial to obtain compact proofs that
can be checked efficiently. By systematically renaming variables in Bind, we can
satisfy most side conditions trivially.

Judgments can be encoded into a well-understood theory of binders: the
simply typed λ-calculus. This provides a solid basis to reason about them, and

402 H. Barbosa et al.

to reconstruct proofs expressed in the inference system. We refer to our technical
report [2] for details.

The set of rules can be extended to cater for arbitrary transformations that
can be expressed as equalities, using Hilbert choice to represent fresh symbols if
necessary. The usefulness of Hilbert choice for proof reconstruction is well known
[7,19,21], but we push the idea further and use it to simplify the inference system
and make it more uniform.

Example 1. The following derivation tree justifies the expansion of a ‘let’
expression:

Cong

� a � a

Refl

x 	→ a � x � a
Refl

x 	→ a � x � a
Cong

x 	→ a � p(x, x) � p(a, a)
Let

� (let x � a in p(x, x)) � p(a, a)

Skolemization can be applied regardless of polarity. Normally, we skolemize
only positive existential quantifiers and negative universal quantifiers. However,
skolemizing other quantifiers is sound in the context of proving. The trouble is
that it is generally incomplete, if we introduce Skolem symbols and forget their
definitions in terms of Hilbert choice. To paraphrase Orwell, all quantifiers are
skolemizable, but some quantifiers are more skolemizable than others.

3 Contextual Recursion

We propose a generic algorithm for term transformations, based on structural
recursion. The algorithm is parameterized by a few simple plugin functions
embodying the essence of the transformation. By combining compatible plugin
functions, we can perform several transformations in one traversal. Transforma-
tions can depend on some context that encapsulates relevant information, such
as bound variables, variable substitutions, and polarity. Each transformation can
define its own notion of context.

The output is generated by a proof module that maintains a stack of deriva-
tion trees. The procedure apply(R, n, Γ, t, u) pops n derivation trees D̄n from
the stack and pushes the tree of Γ � t � u obtained by applying rule R to D̄n.
The plugin functions are responsible for invoking apply as appropriate.

3.1 The Generic Algorithm

The algorithm performs a depth-first postorder contextual recursion on the term
to process. Subterms are processed first; then an intermediate term is built from
the resulting subterms and is processed in turn. The context Δ is updated in
a transformation-specific way with each recursive call. It is abstract from the
point of view of the algorithm. The plugin functions are divided into two groups:

Scalable Fine-Grained Proofs for Formula Processing 403

ctx let, ctx quant, and ctx app update the context when entering the body of a
binder or when moving from a function symbol to one of its arguments; build let,
build app, build app, and build var return the processed term and produce the
corresponding proof as a side effect.

function process(Δ, t)
match t
case x:
return build var(Δ, x)

case f(t̄n):
Δ̄′

n ← (ctx app(Δ, f, t̄n, i))n
i=1

return build app
(
Δ, Δ̄′

n, f, t̄n, (process(Δ′
i, ti))n

i=1

)

case Qx. ϕ:
Δ′ ← ctx quant(Δ, Q, x, ϕ)
return build quant(Δ, Δ′, Q, x, ϕ, process(Δ′, ϕ))

case let x̄n � r̄n in t′:
Δ′ ← ctx let(Δ, x̄n, r̄n, t′)
return build let(Δ, Δ′, x̄n, r̄n, t′, process(Δ′, t′))

3.2 ‘Let’ Expansion

The first instance of the contextual recursion algorithm expands ‘let’ expressions
and renames bound variables systematically to avoid capture. Skolemization
and theory simplification, presented below, assume that this transformation has
been performed. The context consists of a list of fixed variables and variable
substitutions, as in Sect. 2. The plugin functions are as follows:

function ctx let(Γ, x̄n, r̄n, t)
return Γ, x̄n 	→ (process(Γ, ri))n

i=1

function ctx app(Γ, f, t̄n, i)
return Γ

function build let(Γ, Γ′, x̄n, r̄n, t, u)
apply(Let, n+1, Γ, let x̄n � r̄n in t, u)
return u

function build app(Γ, Γ̄′
n, f, t̄n, ūn)

apply(Cong, n, Γ, f(t̄n), f(ūn))
return f(ūn)

function ctx quant(Γ, Q, x, ϕ)
y ← fresh variable
return Γ, y, x 	→ y

function build quant(Γ, Γ′, Q, x, ϕ, ψ)
y ← Γ′(x)
apply(Bind, 1, Γ, Qx. ϕ, Qy. ψ)
return Qy. ψ

function build var(Γ, x)
apply(Refl, 0, Γ, x, Γ(x))
return Γ(x)

The ctx let and build let functions process ‘let’ expressions. In ctx let, the
substituted terms are processed further before they are added to a substitution
entry in the context. In build let, the Let rule is applied and the transformed
term is returned. Analogously, the ctx quant and build quant functions rename
quantified variables systematically. This ensures that any variables that arise in

404 H. Barbosa et al.

the range of the substitution specified by ctx let will resist capture when the
substitution is applied. Finally, the ctx app, build app, and build var functions
simply reproduce the term traversal in the generated proof; they perform no
transformation-specific work.

Example 2. Following up on Example 1, assume ϕ = let x � a in p(x, x). Given
the above plugin functions, process(∅, ϕ) returns p(a, a). It is instructive to study
the evolution of the stack during the execution of process. First, in ctx let, the
term a is processed recursively; the call to build app pushes a nullary Cong step
with succedent � a � a onto the stack. Then the term p(x, x) is processed. For
each of the two occurrences of x, build var pushes a Refl step onto the stack.
Next, build app applies a Cong step to justify rewriting under p: The two Refl

steps are popped, and a binary Cong is pushed. Finally, build let performs a
Let inference with succedent � ϕ � p(a, a) to complete the proof: The two
Cong steps on the stack are replaced by the Let step. The stack now consists
of a single item: the derivation tree of Example 1.

3.3 Skolemization

Our second transformation, skolemization, assumes that ‘let’ expressions have
been expanded and bound variables have been renamed apart. The context is
a pair Δ = (Γ, p), where Γ is as defined in Sect. 2 and p is the polarity (+,
−, or ?) of the term being processed. The main plugin functions are those that
manipulate quantifiers:

function ctx quant((Γ, p), Q, x, ϕ)
if (Q, p) ∈ {(∃,+), (∀,−)} then

Γ′ ← Γ, x 	→ sko term(Γ, Q, x, ϕ)
else

Γ′ ← Γ, x

return (Γ′, p)

The polarity is updated by ctx app, which is not shown. For example,
ctx app((Γ, −), ¬, ϕ, 1) returns (Γ, +), because if ¬ϕ occurs negatively in a
larger formula, then ϕ occurs positively. The plugin functions build app and
build var are as for ‘let’ expansion.

Positive occurrences of ∃ and negative occurrences of ∀ are skolemized. All
other quantifiers are kept as they are. The sko term function returns an applied
Skolem function symbol following some reasonable scheme; for example, outer
skolemization [20] creates an application of a fresh function symbol to all vari-
ables fixed in the context. To comply with the inference system, the application of
Sko ∃ or Sko ∀ in build app instructs the proof module to systematically replace
the Skolem term with the corresponding ε term when outputting the proof.

Scalable Fine-Grained Proofs for Formula Processing 405

3.4 Theory Simplification

All kinds of theory simplification can be performed on formulas. We restrict our
focus to a simple yet quite characteristic instance: the simplification of u+0 and
0 + u to u. We assume that ‘let’ expressions have been expanded. The context
is a list of fixed variables. The plugin functions ctx app and build var are as for
‘let’ expansion; the remaining ones are presented below.

function ctx quant(Γ, Q, x, ϕ)
return Γ, x

function build quant(Γ, Γ′, Q, x, ϕ, ψ)
apply(Bind, 1, Γ, Qx. ϕ, Qx. ψ)
return Qx. ψ

function build app(Γ, Γ̄′
n, f, t̄n, ūn)

apply(Cong, n, Γ, f(t̄n), f(ūn))
if f(ūn) has form u + 0 or 0 + u

then
apply(Taut+, 0, Γ, f(ūn), u)
apply(Trans, 2, Γ, f(t̄n), u)
return u

else
return f(ūn)

The quantifier manipulation code, in ctx quant and build app, is straight-
forward. The interesting function is build app. It first applies the Cong rule
to justify rewriting the arguments. Then, if the resulting term f(ūn) can be
simplified further into a term u, it performs a transitive chain of reasoning:
f(t̄n) � f(ūn) � u.

3.5 Combinations of Transformations

Theory simplification can be implemented as a family of transformations, each
member of which embodies its own set of theory-specific rewrite rules. If the
union of the rewrite rule sets is confluent and terminating, a unifying implemen-
tation of build app can apply the rules in any order until a fixpoint is reached.
Moreover, since theory simplification modifies terms independently of the con-
text, it is compatible with ‘let’ expansion and skolemization. This allows us to
perform arithmetic simplification in the substituted terms of a ‘let’ expression
in a single pass.

The combination of ‘let’ expansion and skolemization is less straightforward.
Consider the formula ϕ = let y � ∃x. p(x) in y → y. When processing the subfor-
mula ∃x.p(x), we cannot (or at least should not) skolemize the quantifier, because
it has no unambiguous polarity; indeed, the variable y occurs both positively and
negatively in the ‘let’ expression’s body. We can of course give up and perform
two passes: The first pass expands ‘let’ expressions, and the second pass skolem-
izes and simplifies terms. There is also a way to perform all the transformations
in a single instance of the framework, described in our report [2].

3.6 Scope and Limitations

Other possible instances of contextual recursion are the clause normal form
(CNF) transformation and the elimination of quantifiers using one-point rules.

406 H. Barbosa et al.

CNF transformation is an instance of rewriting of Boolean formulas and can
be justified by a TautBool rule. Tseytin transformation can be supported by
representing the introduced constants by the formulas they represent, similarly
to our treatment of Skolem terms. One-point rules—e.g., the transformation of
∀x. x � a −�→ p(x) into p(a)—are similar to ‘let’ expansion and can be repre-
sented in much the same way in our framework.

Some transformations, such as symmetry breaking [9] and rewriting based
on global assumptions, require a global analysis of the problem that cannot be
captured by local substitution of equals for equals. They are beyond the scope of
the framework. Other transformations, such as simplification based on associa-
tivity and commutativity of function symbols, require traversing the terms to be
simplified when applying the rewriting. Since process visits terms in postorder,
the complexity of the simplifications would be quadratic, while a processing that
applies depth-first preorder traversal can perform the simplifications with a lin-
ear complexity. Hence, applying such transformations optimally is also outside
the scope of the framework.

4 Theoretical Properties

The first two metatheoretical results below concern the soundness of the infer-
ence rules and the correctness of the recursion algorithm that generates proofs
in that system. The other results have to do with the cost of proof generation
and checking.

Theorem 1 (Soundness of Inferences). If judgment Γ � t � u is derivable
using the inference system with theories T1, . . . ,Tn, then |=T1 ∪ ··· ∪Tn ∪ � ∪ ε ∪ let

Γ(t) � u.

Theorem 2 (Total Correctness of Recursion). For the instances presented
in Sect. 3, the contextual recursion algorithm always produces correct proofs.

Observation 3 (Complexity of Recursion). For the instances presented in
Sect. 3, the ‘process’ function is called at most once on every subterm of the
input.

As a corollary, if all the operations performed in process excluding the recur-
sive calls can be accomplished in constant time, the algorithm has linear-time
complexity with respect to the input. There exist data structures for which the
following operations take constant time: extending the context with a fixed vari-
able or a substitution, accessing direct subterms of a term, building a term from
its direct subterms, choosing a fresh variable, applying a context to a variable,
checking if a term matches a simple template, and associating the parameters of
the template with the subterms. Thus, it is possible to have a linear-time algo-
rithm for ‘let’ expansion and simplification. On the other hand, skolemization is
at best quadratic in the worst case.

Scalable Fine-Grained Proofs for Formula Processing 407

Observation 4 (Overhead of Proof Generation). For the instances pre-
sented in Sect.3, the number of ‘apply’ calls is proportional to the number of
subterms in the input.

Notice that all arguments to apply must be computed regardless of the apply
calls. If an apply call takes constant time, the proof generation overhead is linear
in the size of the input. To achieve this performance, it is necessary to use sharing
to represent contexts and terms in the output.

Observation 5 (Cost of Proof Checking). Checking an inference step can
be performed in constant time if checking the side condition takes constant time.

The above statement may appear weak, since checking the side conditions
might itself be linear, leading to a cost of proof checking that can be at least
quadratic in the size of the proof. Fortunately, most of the side conditions can be
checked efficiently. For example, simplification proofs can be checked in linear
time because subst(Γ) is always the identity. Moreover, certifying a proof by
checking each step locally is not the only possibility. An alternative is to use an
algorithm similar to the process function to check a proof in the same way as it
has been produced, exploiting sophisticated invariants.

5 Implementation

The ideas presented in this paper have been implemented in two tools. We imple-
mented the contextual recursion algorithm and the transformations described in
Sect. 3 in the SMT solver veriT [8], showing that replacing the previous ad hoc
code with the generic proof-producing framework had no significant detrimen-
tal impact on the solving times. In addition, we developed a prototypical proof
checker for the inference system described in Sect. 2 using Isabelle/HOL [18], to
convince ourselves that veriT’s output can easily be reconstructed.

5.1 Isabelle

The Isabelle/HOL proof assistant is based on classical higher-order logic (HOL),
a variant of the simply typed λ-calculus. The proof checker is included in the
development version of Isabelle.1

Derivations are represented by a recursive datatype in Standard ML,
Isabelle’s primary implementation language. A derivation is a tree whose nodes
are labeled by rule names. Rule TautT also carries a theorem that represents
the oracle |=T , and rules Trans and Let are labeled with the terms that occur
only in the antecedent (t and s̄n). Judgments Γ � t � u are translated to HOL
equalities t′ � u′, where t′ and u′ are HOL terms in which the context Γ is
encoded using λ-abstractions and (for substitutions) applications. For example,

1 http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/
veriT Preprocessing.thy.

http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy
http://isabelle.in.tum.de/repos/isabelle/file/00731700e54f/src/HOL/ex/veriT_Preprocessing.thy

408 H. Barbosa et al.

the judgment x, y 	→ g(x) � f(y) � f(g(x)) is represented by the HOL equality
(λx. (λy. f y) (g x)) � (λx. f (g x)).

Because reconstruction is not verified, there are no guarantees that it will
always succeed, but when it does, the result is certified by Isabelle’s LCF-style
inference kernel [11]. We hard-coded a few dozen examples to test different cases,
such as this one: Given the HOL terms

t = ¬ ∀x. p ∧ ∃x. ∀x. q x x u = ¬ ∀x. p ∧ ∃x. q (εx.¬ q x x) (εx.¬ q x x)

and the ML tree

N (Cong, [N (Bind, [N (Cong, [N (Refl, []),N (Bind, [N (Sko All, [N (Refl, [])])])])])]))

the reconstruction function returns the HOL theorem t � u.

5.2 veriT

We implemented the contextual recursion framework in the SMT solver veriT,2

replacing large parts of the previous non-proof-producing, hard-to-maintain
code. Even though it offers more functionality (proof generation), the preprocess-
ing module is about 20% smaller than before and consists of about 3000 lines of
code. There are now only two traversal functions instead of 10. This is, for us, a
huge gain in maintainability.

We were able to reuse its existing proof module and proof format [5]. A proof
is a list of inferences, each of which consists of an identifier, the name of the rule,
the identifiers of the dependencies, and the derived clause. The use of identifiers
makes it possible to represent proofs as DAGs. We extended the format with the
inference rules of Sect. 2. The rules that augment the context take a sequence of
inferences—a subproof —as a justification. The subproof occurs within the scope
of the extended context.

In contrast with the abstract proof module described in Sect. 3, veriT leaves
Refl steps implicit for judgments of the form Γ � t � t. The other infer-
ence rules are generalized to cope with missing Refl judgments. In addition,
when printing proofs, the proof module can automatically replace terms in the
inferences with some other terms. This is necessary for transformations such as
skolemization and ‘if–then–else’ elimination. We must apply a substitution in
the replaced term if the original term contains variables. In veriT, efficient data
structures are available to perform this.

The implementation of contextual recursion uses a single global context, aug-
mented before processing a subterm and restored afterwards. The context con-
sists of a set of fixed variables, a substitution, and a polarity. In our setting, the
substitution satisfies the side conditions by construction. If the context is empty,
the result of processing a subterm is cached. For skolemization, a separate cache
is used for each polarity. No caching is attempted under binders.

2 http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz.

http://matryoshka.gforge.inria.fr/pubs/processing/veriT.tar.gz

Scalable Fine-Grained Proofs for Formula Processing 409

Invoking process on a term returns the identifier of the inference at the root
of its transformation proof in addition to the processed term. These identifiers
are threaded through the recursion to connect the proof. The proofs produced
by instances of contextual recursion are inserted into the larger resolution proof
produced by veriT.

Transformations performing theory simplification were straightforward to
port to the new framework: Their build app functions simply apply rewrite rules
until a fixpoint is reached. Porting transformations that interact with binders
required special attention in handling the context and producing proofs. For-
tunately, most of these aspects are captured by the inference system and the
abstract contextual recursion framework, where they can be studied indepen-
dently of the implementation.

Some transformations are performed outside of the framework. Proofs of
CNF transformation are expressed using the inference rules of veriT’s under-
lying SAT solver, so that any tool that can reconstruct SAT proofs can also
reconstruct these proofs. Simplification based on associativity and commutativ-
ity of function symbols is implemented as a dedicated procedure, for efficiency
reasons. It currently produces coarse-grained proofs.

To evaluate the impact of the new contextual recursion algorithm and of pro-
ducing detailed proofs, we compare the performance of different configurations
of veriT. Our experimental data is available online.3 We distinguish three con-
figurations. Basic only applies transformations for which the old code provided
some (coarse-grained) proofs. Extended also applies transformations for which
the old code did not provide any proofs, whereas the new code provides detailed
proofs. Complete applies all transformations available, regardless of whether
they produce proofs.

More specifically, Basic applies the transformations for ‘let’ expansion,
skolemization, elimination of quantifiers based on one-point rules, elimination
of ‘if–then–else’, theory simplification for rewriting n-ary symbols as binary, and
elimination of equivalences and exclusive disjunctions with quantifiers in sub-
terms. Extended adds Boolean and arithmetic simplifications to the transfor-
mations performed by Basic. Complete performs global rewriting simplifica-
tions and symmetry breaking in addition to the transformations in Extended.

The evaluation relies on two main sets of benchmarks from SMT-LIB [4]
without bit vectors and nonlinear arithmetic (currently not supported by veriT):
the 20 916 benchmarks in the quantifier-free (QF) categories, and the 30 250
benchmarks labeled as unsatisfiable in the non-QF categories. Our experiments
were conducted on servers equipped with two Intel Xeon E5-2630 v3 processors,
with eight cores per processor, and 126 GB of memory. Each run of the solver
uses a single core. The time limit was set to 30 s, a reasonable value for interactive
use within a proof assistant.

3 http://matryoshka.gforge.inria.fr/pubs/processing/.

http://matryoshka.gforge.inria.fr/pubs/processing/

410 H. Barbosa et al.

The table below shows the number of problems solved in total by each con-
figuration.

Without proofs With proofs

Old code New code Old code New code

Basic 42 235 42 258 42 104 42 118

Extended 42 324 42 389 N/A 42 271

Complete 42 585 42 613 N/A N/A

These results indicate that the new generic contextual recursion algorithm
and the production of detailed proofs do not impact performance negatively com-
pared with the old code and coarse-grained proofs. Moreover, allowing Boolean
and arithmetic simplifications leads to some improvements. We expect that gen-
erating proofs for the global transformations would lead to substantial improve-
ments on quantifier-free problems.

6 Related Work

Most automatic provers that support the TPTP syntax for problems generate
proofs in TSTP format [24]. Like a veriT proof, a TSTP proof consists of a
list of inferences. TSTP does not mandate any inference system; the meaning
of the rules and the granularity of inferences vary across systems. For example,
the E prover [22] combines clausification, skolemization, and variable renaming
into a single inference, whereas Vampire [15] appears to cleanly separate pre-
processing transformations. SPASS’s [25] custom proof format does not record
preprocessing steps; reverse engineering is necessary to make sense of its output,
and optimizations ought to be disabled [6, Sect. 7.3].

Most SMT solvers can parse the SMT-LIB [4] format, but each solver has
its own output syntax. Z3’s proofs can be quite detailed [17], but rewriting
steps often combine many rewrites rules. CVC4’s format is an instance of LF
[13] with Side Conditions (LFSC) [23]; despite recent progress [12,14], neither
skolemization nor quantifier instantiation are currently recorded in the proofs.
Proof production in Fx7 [16] is based on an inference system whose formula
processing fragment is subsumed by ours; for example, skolemization is more ad
hoc, and there is no explicit support for rewriting.

7 Conclusion

We presented a framework to represent and generate proofs of formula processing
and its implementation in veriT and Isabelle/HOL. The framework centralizes
the delicate issue of manipulating bound variables and substitutions soundly and
efficiently, and it is flexible enough to accommodate many interesting transfor-
mations. Although it was implemented in an SMT solver, there appears to be
no intrinsic limitation that would prevent its use in other kinds of first-order, or

Scalable Fine-Grained Proofs for Formula Processing 411

even higher-order, automatic provers. The framework covers many preprocessing
techniques and can be part of a larger toolbox.

Detailed proofs have been a defining feature of veriT for many years now.
It now produces more detailed justifications than ever, but there are still some
global transformations for which the proofs are nonexistent or leave much to be
desired. In particular, supporting rewriting based on global assumptions would
be essential for proof-producing inprocessing, and symmetry breaking would be
interesting in its own right.

Acknowledgment. We thank Simon Cruanes for discussing many aspects of the frame-
work with us as it was emerging, and we thank Robert Lewis, Stephan Merz, Lawrence
Paulson, Anders Schlichtkrull, Mark Summerfield, Sophie Tourret, and the anonymous
reviewers for suggesting many textual improvements. This research has been partially
supported by the Agence nationale de la recherche/Deutsche Forschungsgemeinschaft
project SMArT (ANR-13-IS02-0001, STU 483/2-1) and by the European Union project
SC2 (grant agreementNo. 712689).Thework has also received funding from theEuropean
Research Council under the European Union’s Horizon 2020 research and innovation pro-
gram (grant agreement No. 713999, Matryoshka). Experiments presented in this paper
were carried out using the Grid’5000 testbed (https://www.grid5000.fr/), supported by
a scientific interest group hosted by Inria and including CNRS, RENATER, and several
universities as well as other organizations. A mirror of all the software and evaluation data
described in this paper is hosted by Zenodo (https://doi.org/10.5281/zenodo.582482).

References

1. Armand, M., Faure, G., Grégoire, B., Keller, C., Théry, L., Werner, B.: A modular
integration of SAT/SMT solvers to COQ through proof witnesses. In: Jouannaud,
J.-P., Shao, Z. (eds.) CPP 2011. LNCS, vol. 7086, pp. 135–150. Springer, Heidelberg
(2011). doi:10.1007/978-3-642-25379-9 12

2. Barbosa, H., Blanchette, J.C., Fontaine, P.: Technical report associated with this
paper (2017). https://hal.inria.fr/hal-01526841

3. Barbosa, H., Fontaine, P., Reynolds, A.: Congruence closure with free variables.
In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 214–230.
Springer, Heidelberg (2017). doi:10.1007/978-3-662-54580-5 13

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB standard: Version 2.5. Tech-
nical report, University of Iowa (2015). http://smt-lib.org/

5. Besson, F., Fontaine, P., Théry, L.: A flexible proof format for SMT: a proposal.
In: Fontaine, P., Stump, A. (eds.) PxTP 2011, pp. 15–26 (2011)

6. Blanchette, J.C., Böhme, S., Fleury, M., Smolka, S.J., Steckermeier, A.: Semi-
intelligible Isar proofs from machine-generated proofs. J. Autom. Reasoning 56(2),
155–200 (2016). doi:10.1007/s10817-015-9335-3

7. Böhme, S., Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kauf-
mann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 179–194. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-14052-5 14

8. Bouton, T., de Oliveira, D.C.B., Déharbe, D., Fontaine, P.: veriT: an open,
trustable and efficient SMT-solver. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol.
5663, pp. 151–156. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 12

https://www.grid5000.fr/
https://doi.org/10.5281/zenodo.582482
http://dx.doi.org/10.1007/978-3-642-25379-9_12
https://hal.inria.fr/hal-01526841
http://dx.doi.org/10.1007/978-3-662-54580-5_13
http://smt-lib.org/
http://dx.doi.org/10.1007/s10817-015-9335-3
http://dx.doi.org/10.1007/978-3-642-14052-5_14
http://dx.doi.org/10.1007/978-3-642-02959-2_12

412 H. Barbosa et al.

9. Déharbe, D., Fontaine, P., Merz, S., Woltzenlogel Paleo, B.: Exploiting symme-
try in SMT problems. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE
2011. LNCS, vol. 6803, pp. 222–236. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 18

10. Ebner, G., Hetzl, S., Reis, G., Riener, M., Wolfsteiner, S., Zivota, S.: System
description: GAPT 2.0. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS,
vol. 9706, pp. 293–301. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 20

11. Gordon, M.J.C., Milner, R., Wadsworth, C.P.: CADE-23. LNCS, vol. 78. Springer,
Heidelberg (1979). doi:10.1007/3-540-09724-4

12. Hadarean, L., Barrett, C., Reynolds, A., Tinelli, C., Deters, M.: Fine grained SMT
proofs for the theory of fixed-width bit-vectors. In: Davis, M., Fehnker, A., McIver,
A., Voronkov, A. (eds.) LPAR 2015. LNCS, vol. 9450, pp. 340–355. Springer,
Heidelberg (2015). doi:10.1007/978-3-662-48899-7 24

13. Harper, R., Honsell, F., Plotkin, G.D.: A framework for defining logics. In: LICS
1987, pp. 194–204. IEEE Computer Society (1987)

14. Katz, G., Barrett, C.W., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for
DPLL(T)-based SMT solvers. In: Piskac, R., Talupur, M. (eds.) FMCAD 2016, pp.
93–100. IEEE Computer Society (2016). doi:10.1109/FMCAD.2016.7886666

15. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 1

16. Moskal, M.: Rocket-fast proof checking for SMT solvers. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 486–500. Springer, Heidelberg
(2008). doi:10.1007/978-3-540-78800-3 38

17. de Moura, L.M., Bjørner, N.: Proofs and refutations, and Z3. In: Rudnicki, P.,
Sutcliffe, G., Konev, B., Schmidt, R.A., Schulz, S. (eds.) LPAR 2008 Workshops.
CEUR Workshop Proceedings, vol. 418 (2008). CEUR-WS.org

18. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/
3-540-45949-9

19. de Nivelle, H.: Translation of resolution proofs into short first-order proofs without
choice axioms. Inf. Comput. 199(1–2), 24–54 (2005). doi:10.1016/j.ic.2004.10.011

20. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In:
Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1,
pp. 335–367. Elsevier and MIT Press (2001)

21. Paulson, L.C., Susanto, K.W.: Source-level proof reconstruction for interactive
theorem proving. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol.
4732, pp. 232–245. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74591-4 18

22. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45221-5 49

23. Stump, A.: Proof checking technology for satisfiability modulo theories. Electr.
Notes Theor. Comput. Sci. 228, 121–133 (2009). doi:10.1016/j.entcs.2008.12.121

24. Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP data-exchange formats for automated
theorem proving tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint
Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial
Intelligence and Applications, vol. 112, pp. 201–215. IOS Press (2004)

25. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE-22. LNCS, vol. 5663, pp. 140–
145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 10

http://dx.doi.org/10.1007/978-3-642-22438-6_18
http://dx.doi.org/10.1007/978-3-642-22438-6_18
http://dx.doi.org/10.1007/978-3-319-40229-1_20
http://dx.doi.org/10.1007/3-540-09724-4
http://dx.doi.org/10.1007/978-3-662-48899-7_24
http://dx.doi.org/10.1109/FMCAD.2016.7886666
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/978-3-540-78800-3_38
http://www.CEUR-WS.org
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1016/j.ic.2004.10.011
http://dx.doi.org/10.1007/978-3-540-74591-4_18
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1016/j.entcs.2008.12.121
http://dx.doi.org/10.1007/978-3-642-02959-2_10

Certifying Confluence of Quasi-Decreasing
Strongly Deterministic Conditional Term

Rewrite Systems

Christian Sternagel(B) and Thomas Sternagel(B)

University of Innsbruck, Innsbruck, Austria
{christian.sternagel,thomas.sternagel}@uibk.ac.at

Abstract. We formalize a confluence criterion for the class of quasi-
decreasing strongly deterministic conditional term rewrite systems in
Isabelle/HOL: confluence follows if all conditional critical pairs are join-
able. However, quasi-decreasingness, strong determinism, and joinability
of conditional critical pairs are all undecidable in general. Therefore,
we also formalize sufficient criteria for those properties, which we incor-
porate into the general purpose certifier CeTA as well as the confluence
checker ConCon for conditional term rewrite systems.

1 Introduction

In the area of equational reasoning canonicity—that is, termination together
with confluence—plays an important role towards deciding equations with
respect to equational theories and for avoiding redundant computations and
nondeterminism. In the presence of powerful methods and tools for prov-
ing termination [1,11,17,18,31,33], the remaining issue is to also establish
confluence.

For plain term rewrite systems (TRSs), this issue was settled early on by
Newman’s Lemma [22], stating that any terminating relation is confluent iff
it is locally confluent. Then, by the Critical Pair Lemma [15,16], local conflu-
ence reduces to joinability of all critical pairs, which in turn, can be decided by
exhaustive rewriting, due to termination.

However, for many applications plain TRSs are either inconvenient or not
expressible enough, leading to several extensions of the base formalism. The one
we are interested in here is conditional term rewriting. Two prominent areas
where conditional rewriting is employed are the rewriting engines of modern
proof assistants (like Isabelle’s simplifier [23]) and functional(-logic) program-
ming with where-clauses (like Haskell [21] and Curry [2]).

This work is supported by FWF (Austrian Science Fund) project P27502.

c© The Author(s) 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 413–431, 2017.
DOI: 10.1007/978-3-319-63046-5 26

414 C. Sternagel and T. Sternagel

Example 1. As a first example, consider the following Haskell program, which
computes the minimum of a given list
of natural numbers. Below, we give a
straightforward translation into a con-
ditional term rewrite system Rmin with
six rules that serves as our running
example.

min (x:[]) = x
min (x:xs) | x < y = x

| otherwise = y
where y = min xs

min(cons(x, nil)) → x (1)
min(cons(x, xs)) → x ⇐ min(xs) ≈ y, x < y ≈ true (2)
min(cons(x, xs)) → y ⇐ min(xs) ≈ y, x < y ≈ false (3)

x < 0 → false (4)
0 < s(y) → true (5)

s(x) < s(y) → x< y (6)

Issue. Alas, even in the presence of termination, confluence is in general still
undecidable for conditional term rewrite systems (CTRSs). While Avenhaus
and Loŕıa-Sáenz [4] gave a critical pair criterion for quasi-reductive and strongly
deterministic CTRSs: joinability of all conditional critical pairs (CCPs) implies
confluence; joinability of CCPs is undecidable in general, due to the inherent
complexities of conditional rewriting. This lead to the development of sufficient
criteria that are implemented in confluence tools for CTRSs like ConCon [27].

Such tools ultimately aim at automatic (program) verification. But they are
programs themselves, and rather complex ones at that. So why should we trust
them? This consideration lead to the introduction of certification in the area of
term rewriting [8,9,30]. Here, the output of an automated tool—the certificate—
is checked by a formally verified certifier that is code generated from a formal-
ization inside a proof assistant. This approach was already quite successful for
termination and confluence of TRSs, where state-of-the-art certifiers cover more
than 80% of all generated certificates in the respective tool competitions [3,13].

For confluence of CTRSs, not so many techniques are known and even less
are formalized and certifiable.

Contribution and Summary. In Sect. 3, we formalize the CCP criterion of Aven-
haus and Loŕıa-Sáenz [4, Theorem 4.2] (AL for short) and, based on our earlier
work [28], strengthen it from quasi-reductivity to quasi-decreasingness.

Moreover, to certify confluence of quasi-decreasing and strongly deterministic
CTRSs, we formalize the variant of AL replacing joinability of all CCPs by the
requirement that every CCP is either unfeasible1 or context-joinable (Sect. 4).
Both unfeasibility and context-joinability rely on the notion of contextual rewrit-
ing, which we formalize together with the crucial lemma that contextual rewriting
implies conditional rewriting for satisfying substitutions, a result that was stated
without proof by Avenhaus and Loŕıa-Sáenz [4, Lemma 4.2]. Unfeasibility further
employs strong irreducibility, which like strong determinism is an undecidable
property. Thus, we formalize these two properties together with the two sufficient
and decidable criteria of absolute irreducibility and absolute determinism.

1 This is a technical term (see Definition 3) introduced by Avenhaus and Loŕıa-
Sáenz [4] and should not be confused with infeasibility.

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 415

Along the way, we identify and fix some problems in proofs and definitions
(of absolute irreducibility, contextual rewriting, and unfeasibility) and provide
a (not entirely obvious) proof for [4, Lemma 4.2]. We further adapt the original
proof of AL to the new definitions and extend it by infeasibility.

In Sect. 5, we point out some challenges concerning certification. Then, in
Sect. 6, we give an overview of all the check functions that are new in CeTA.
In Sect. 7, we evaluate our contribution through experiments on the confluence
problems database (Cops) [10]. Finally, we conclude in Sect. 8.

This work substantially contributes to the greater effort of making ConCon
100% certifiable by formalizing all of its methods. Our formalization is part of
the formal IsaFoR library and supported by version 2.29 of its accompanying
certifier CeTA [30]. Both IsaFoR and CeTA are freely available online at

http://cl-informatik.uibk.ac.at/isafor/

2 Preliminaries

We assume familiarity with the basic notions of (conditional) term rewrit-
ing [5,24], but shortly recapitulate terminology and notation that we use in the
remainder. Given an arbitrary binary relation α→, we write α←, α+

→, and α∗
→ for

its inverse, its transitive closure, and its reflexive transitive closure, respectively.
We use V(·) to denote the set of variables occurring in a given list of syntactic
objects, like terms, rules, etc. Given a term t, we write Pos(t) for the set of posi-
tions in t and t|p with p ∈ Pos(t) for the subterm of t at position p. We write s[t]p
for the result of replacing s|p by t in s. We say that terms s and t unify, written
s ∼ t, if sσ = tσ for some substitution σ. A substitution σ is R-normalized if
σ(x) is an R-normal form for all variables x. We call a bijective variable sub-
stitution π a renaming or permutation, and denote its inverse by π−. For two
substitutions σ, τ and a set of variables V we write σ = τ [V] if σ(x) = τ(x) for
all x ∈ V . We write στ for the composition of σ and τ where (στ)(x) = σ(x)τ .
A term t is strongly R-irreducible if tσ is an R-normal form for all R-normalized
substitutions σ. A strongly deterministic oriented 3-CTRS (SDTRS) R is a set
of conditional rewrite rules of the shape � → r ⇐ c where � and r are
terms and c is a possibly empty sequence of pairs of terms (called conditions)
s1 ≈ t1, . . . , sn ≈ tn, satisfying: � is not a variable (CTRS), V(r) ⊆ V(�, c)
(3-CTRS), V(si) ⊆ V(�, t1, . . . , ti−1) for all 1 � i � n (DTRS), and ti is
strongly R-irreducible for all 1 � i � n (SDTRS). We sometimes label rules
like ρ : � → r ⇐ c. For a rule ρ : � → r ⇐ c of an SDTRS R the set of extra
variables is defined as EV(ρ) = V(c)−V(�). Given an SDTRS R, extended TRSs
Rn are inductively defined for each level n � 0

R0 = ∅

Rn+1 = {�σ → rσ | � → r ⇐ c ∈ R and sσ →∗
Rn

tσ for all s ≈ t ∈ c}
where →Rn

denotes the rewrite relation of the (unconditional) TRS Rn, that is,
the smallest relation → satisfying t[�σ]p → t[rσ]p whenever � → r is a rule in Rn.

http://cl-informatik.uibk.ac.at/isafor/

416 C. Sternagel and T. Sternagel

We write s →R,n t if we have s →Rn
t and s →R t whenever s →Rn

t for some
n � 0. We say that a substitution σ satisfies a sequence of conditions c if for all
s ≈ t ∈ c we have sσ →∗

R tσ. Two variable-disjoint variants of rules �1 → r1 ⇐ c1
and �2 → r2 ⇐ c2 in R such that �1|p is not a variable and �1|pμ = �2μ with most
general unifier (mgu) μ, constitute a conditional overlap. A conditional overlap
that does not result from overlapping two variants of the same rule at the root
gives rise to a conditional critical pair (CCP) r1μ ≈ �1[r2]pμ ⇐ c1μ, c2μ.

Example 2. The CTRS Rmin from Example 1 has 6 CCPs, 3 modulo symmetry:

x ≈ x ⇐ min(nil) ≈ y, x < y ≈ true (1,2)

x ≈ y ⇐ min(nil) ≈ y, x < y ≈ false (1,3)

x ≈ y ⇐ min(xs) ≈ z, x < z ≈ true, min(xs) ≈ y, x < y ≈ false (2,3)

A CCP u ≈ v ⇐ c is said to be infeasible if its conditions are not satisfied by
any substitution. Moreover, a CCP is joinable if uσ ↓R vσ for all substitutions σ
that satisfy c. The topmost part of a term that does not change under rewriting
(sometimes called its “cap”) can be approximated for example by the tcap func-
tion [12]. Informally, tcap(x) for a variable x results in a fresh variable, while
tcap(t) for a non-variable term t = f(t1, . . . , tn) is obtained by recursively com-
puting u = f(tcap(t1), . . . , tcap(tn)) and then asserting tcap(t) = u in case u does
not unify with any left-hand side of rules in R, and a fresh variable, otherwise.
It is well known that tcap(s) 	∼ t implies non-reachability of t from s. We denote
the proper superterm relation by � and define
st = (
 ∪ �)+ for any order
.
If
 is a reduction order, then an SDTRS R is quasi-reductive with respect to

 if for every substitution σ and every rule � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in
R we have that sjσ � tjσ for 1 � j < i implies �σ
st siσ for all 1 � i � n,
and sjσ � tjσ for 1 � j � n implies �σ
 rσ. An SDTRS R is quasi-decreasing
if there exists a well-founded order
 such that
 =
st, →R ⊆
, and for all
rules � → r ⇐ s1 ≈ t1, . . . , sn ≈ tn in R, all substitutions σ, and 1 � i � n, if
sjσ →∗

R tjσ for all 1 � j < i then �σ
 siσ. Quasi-reductivity implies quasi-
decreasingness—a fact that is available in IsaFoR.

3 Confluence of Quasi-Decreasing SDTRSs

The main result of Avenhaus and Loŕıa-Sáenz is the following theorem:

Theorem 1 ([4, Theorem 4.1]). Let the SDTRS R be quasi-reductive with
respect to
. Then R is confluent iff all CCPs are joinable.

That all CCPs of a CTRS R (no need for strong determinism or quasi-
reductivity) are joinable if R is confluent is straightforward. Thus, we concen-
trate on the other direction. Our formalization is quite close to the original proof.
The good news is: we could not find any errors (besides typos) in the original
proof but as is often the case with formalizations there are places where the paper

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 417

s

t′ u′

·t u

·

·

IH

IH

st
≺ �

st

∗ ∗

∗

∗

∗

∗ ∗

∗

(a)

ti+1σ
′
1

si+1π
−σ1

si+1σ
′
1

si+1σ2

ti+1σ
′
2

·

·

IH

IH

∗ ∗ ∗ ∗

∗ ∗

∗
∗

(b)

Fig. 1. Applying the induction hypothesis.

proof is vague or does not spell out the technical details in favor of readability.
For example, we heavily rely on an earlier formalization of permutations [14] in
order to formalize variants of rules up to renaming. In contrast, the change from
quasi-reductivity to quasi-decreasingness was rather smooth.

Below, we give our main theorem and walk through the formalized proof.

Theorem 2. Let the SDTRS R be quasi-decreasing with respect to
. Then R
is confluent if all CCPs are joinable.

Proof. Assume that all critical pairs are joinable. We consider an arbitrary peak
t ∗

R← s →∗
R u and prove t ↓R u by well-founded induction with respect to
st.

By induction hypothesis (IH) we have that for all terms t0, t1, t2 such that
s
st t0 and t1

∗
R← t0 →∗

R t2 there exists a join t1 →∗
R · ∗

R← t2.
If s = t or s = u then t and u are trivially joinable and we are done.

So we may assume that the peak contains at least one step in each direction:
t ∗

R← t′ R← s →R u′ →∗
R u.

Let us show that t′ ↓R u′ holds. Then t ↓R u follows by two applications
of the IH, as shown in Fig. 1a. Assume that s = C[�1σ1]p →R C[r1σ1]p = t′

and s = D[�2σ2]q →R D[r2σ2]q = u′ for rules ρ1 : �1 → r1 ⇐ c1 and ρ2 :
�2 → r2 ⇐ c2 in R, contexts C and D, positions p and q, and substitutions
σ1 and σ2 such that uσ1 →∗

R vσ1 for all u ≈ v ∈ c1 and uσ2 →∗
R vσ2 for

all u ≈ v ∈ c2. There are three possibilities: either the positions are parallel
(p ‖ q), or p is above q (p � q), or q is above p (q � p). In the first case
t′ ↓R u′ holds because the two redexes do not interfere. The other two cases are
symmetric and we only consider p � q here. If s � s|p = �1σ1 then s
st �1σ1

(by definition of
st) and there exists a position r such that q = pr and so we
have the peak r1σ1

∗
R← �1σ1 →∗

R �1σ1[r2σ2]r which is joinable by the IH. But
then the peak t′ = s[r1σ1]p ∗

R← s[�1σ1]p →∗
R s[�1σ1[r2σ2]r]q = u′ is also joinable

(by closure under contexts) and we are done. So we may assume that p = ε and
thus s = �1σ1. Now, either q is a function position in �1 or there exists a variable
position q′ in �1 such that q′ � q. In the first case we either have

418 C. Sternagel and T. Sternagel

1. a CCP which is joinable by assumption or we have
2. a root-overlap of variants of the same rule. Unlike in the unconditional case

this could lead to non-joinability of the ensuing critical pair because of the
extra-variables in the right-hand sides of conditional rules. We have ρ1π = ρ2
for some permutation π. Moreover, s = �1σ1 = �2σ2 and we have

π−σ1 = σ2 [V(�2)] (7)

We will prove xπ−σ1 ↓R xσ2 for all x in V(ρ2). Since t′ = r1σ1 = r2π
−σ1

and u′ = r2σ2 this shows t′ ↓R u′. Because R is terminating (by quasi-
decreasingness) we may define two normalized substitutions σ′

i such that

xπ−σ1
∗−→
R

xσ′
1 and xσ2

∗−→
R

xσ′
2 for all variables x. (8)

We prove xσ′
1 = xσ′

2 for x ∈ EV(ρ2) by an inner induction on the length
of c2 = s1 ≈ t1, . . . , sn ≈ tn. If ρ2 has no conditions this holds vacuously
because there are no extra variables. In the step case the inner induction
hypothesis (IHi) is that xσ′

1 = xσ′
2 for x ∈ V(s1, t1, . . . , si, ti) − V(�2) and

we have to show that xσ′
1 = xσ′

2 for x ∈ V(s1, t1, . . . , si+1, ti+1) − V(�2). If
x ∈ V(s1, t1, . . . , si, ti, si+1) we are done by the IHi and strong determinism
of R. So assume x ∈ V(ti+1). From strong determinism of R, (7) and (8), and
the IHi we have that yσ′

1 = yσ′
2 for all y ∈ V(si+1) and thus si+1σ

′
1 = si+1σ

′
2.

With this we can find a join between ti+1σ
′
1 and ti+1σ

′
2 by applying the IH

twice as shown in Fig. 1b. Since ti+1 is strongly irreducible and σ′
1 and σ′

2 are
normalized, this yields ti+1σ

′
1 = ti+1σ

′
2 and thus xσ′

1 = xσ′
2.

3. We are left with the case that there is a variable position q′ in �1 such that
q = q′r′ for some position r′. Let x be the variable �1|q′ . Then xσ1|r′ = �2σ2,
which implies xσ1 →∗

R xσ1[r2σ2]r′ . Now let τ be the substitution such that
τ(x) = xσ1[r2σ2]r′ and τ(y) = σ1(y) for all y 	= x, and τ ′ some normalization,
that is, yτ →∗

R yτ ′ for all y. Moreover, note that

yσ1
∗−→
R

yτ for all y. (9)

We have u′ = �1σ1[r2σ2]q = �1σ1[xτ]q′ →∗
R �1τ , and thus u′ →∗

R �1τ
′. From

(9) we have r1σ1 →∗
R r1τ and thus t′ = r1σ1 →∗

R r1τ
′. Finally, we will

show that �1τ
′ →R r1τ

′, concluding the proof of t′ ↓R u′. To this end, let
si ≈ ti ∈ c1. By (9) and the definition of τ ′ we obtain siσ1 →∗

R tiσ1 →∗
R tiτ

′

and siσ1 →∗
R siτ

′. Then siτ
′ ↓R tiτ

′ by IH and also siτ
′ →∗

R tiτ
′, since ti is

strongly irreducible. ��

4 Certification

There are some complications for employing Theorem 2 in practice. Quasi-
decreasingness, strong irreducibility, and joinability of CCPs are all undecidable
in general. For quasi-decreasingness we fall back to the sufficient criterion that a
deterministic 3-CTRS is quasi-decreasing if its unraveling (a transformation to

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 419

an unconditional term rewrite system) is terminating. This result was formalized
by Winkler and Thiemann [32] and is already available in IsaFoR. A sufficient
condition for strong irreducibility is absolute irreducibility :

Definition 1. A term t is absolutely R-irreducible if none of its non-variable
subterms unify with any variable-disjoint variant of left-hand sides of rules in
the CTRS R. A DTRS is called absolutely deterministic (or ADTRS for short)
if for each rule all right-hand sides of conditions are absolutely R-irreducible.

The proof of the following lemma [4, Lemma 4.1(a,b)] is immediate.

Lemma 1. For a term t and a CTRS R:

– If t is absolutely R-irreducible, then t is also strongly R-irreducible.
– If R is absolutely deterministic, then R is also strongly deterministic. ��

We replace joinability of CCPs by infeasibility [26] (already part of IsaFoR)
together with two further criteria which rely on contextual rewriting.

Definition 2. Consider a set C of equations between terms which we will call
a context. First we define a function · on terms such that t is the term t where
each variable x ∈ V(C) is replaced by a fresh constant x. Moreover, let C denote
the set C where all variables have been replaced by fresh constants x. For a CTRS
R we can make a contextual rewrite step, denoted by s →R,C t, if we can make
a conditional rewrite step with respect to the CTRS R ∪ C from s to t.

We formalized soundness of contextual rewriting [4, Lemma 4.2] as follows:

Lemma 2. If s →∗
R,C t then sσ →∗

R tσ for all substitutions σ satisfying C.

This lemma is stated as obvious without proof by Avenhaus and Loŕıa-Sáenz.
However, we deem the strengthened statement () below intricate enough to
warrant a full proof (since without this strengthening, as far as we can tell, the
outermost induction fails).

Proof. Consider the auxiliary function [t]σ, which substitutes each Skolem con-
stant x in t by σ(x), that is, it works like applying a substitution to a term,
but to Skolem constants instead of variables. Note that [t]σ = tσ whenever
V(t) ⊆ V(C). Now we show by induction on n that

s →R∪C,n t implies [s]σ →∗
R,n [t]σ ()

for any σ satisfying C. The base case is trivial. In the inductive step we have a
rule � → r ⇐ c ∈ R ∪ C, a position p, and a substitution τ such that s|p = �τ ,
t = s[rτ]p, and uτ →∗

R∪C,n
vτ for all u ≈ v ∈ c. If � → r ⇐ c ∈ R, then we

obtain [uτ]σ →∗
R∪C,n

[vτ]σ for all u ≈ v ∈ c by IH. Then s →∗
R∪C,n+1

t can be

shown by induction on the context s[·]p. Otherwise, � → r ⇐ c ∈ C and thus c is

420 C. Sternagel and T. Sternagel

empty, �τ = �, and rτ = r, since C is an unconditional ground TRS. Moreover,
there is a rule �′ → r′ ∈ C (thus also V(�′, r′) ⊆ V(C)) such that �′ = � and
r′ = r. Again, the final result follows by induction on s[·]p.

Assume s →R,C t. Then s →R∪C,n t for some level n. Let ˜t denote the
extension of t where all variables x in t (that is, not just those in V(C)) are
replaced by fresh constants x. Note that ˜t = (t)(λx. x) for every term t. But
then also s̃ →R∪C,n

˜t since conditional rewriting is closed under substitutions.
Further note that [˜t]σ = tσ for all t. Thus taking s̃ and ˜t for s and t in ()
we obtain sσ →∗

R,n tσ. Since we just established the desired property for single
contextual rewrite steps it is straightforward to extend it to rewrite sequences. ��

The above lemma is the key to overcome the undecidability issues of condi-
tional rewriting. For example, for joinability of CCPs the problem is that a single
joining sequence (as is usual in certificates for TRSs) does not prove joinability
for all satisfying substitutions. However, contextual rewriting has this property.

Now we are able to define the two promised criteria for CCPs that employ
contextual rewriting: context-joinability and unfeasibility.

Definition 3. Let s ≈ t ⇐ c be a CCP induced by an overlap between variable-
disjoint variants �1 → r1 ⇐ c1 and �2 → r2 ⇐ c2 of rules in R with mgu μ. We
say that the CCP is unfeasible if we can find terms u, v, and w such that (1)
for all σ that satisfy c we have �1μσ
 uσ, (2) u →∗

R,c v, (3) u →∗
R,c w, and

(4) v and w are both strongly irreducible and v 	∼ w. Moreover, we call the CCP
context-joinable if there exists some term u such that s →∗

R,c u and t →∗
R,c u.

Example 3. Consider the CTRS Rlast consisting of the two rules

last(cons(x, y)) → x ⇐ y ≈ nil last(cons(x, y)) → last(y) ⇐ y ≈ cons(z, v)

having the CCP x ≈ last(y) ⇐ c with c = {y ≈ nil, y ≈ cons(z, v)}. This CCP is
unfeasible because for all satisfying substitutions σ we have last(cons(x, y))σ

yσ, y →∗

Rlast,c
cons(z, v), y →∗

Rlast,c
nil, and both cons(z, v) and nil are strongly

irreducible and not unifiable. Now, look at the arbitrary CCP x ≈ min(nil) ⇐ c
with c = {min(nil) ≈ x}. Since x →∗

R,c x and min(nil) →∗
R,c x it is context-

joinable (regardless of the actual CTRS R).

Due to Lemma 2 above, context-joinability implies joinability of a CCP for
arbitrary satisfying substitutions. The rationale for the definition of unfeasibility
is a little bit more technical, since it only makes sense inside the proof (by
induction) of the theorem below. Basically, unfeasibility is defined in such a way
that unfeasible CCPs contradict the confluence of all
-smaller terms, which we
obtain as induction hypothesis.

In the original paper the definition of quasi-reductivity requires its order to be
closed under substitutions. This property is used in the proof of [4, Theorem 4.2].
By a small change to the definition of unfeasibility we avoid this requirement for
our extension to quasi-decreasingness.

We are finally ready to state a concrete version of Theorem 2:

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 421

Theorem 3. Let the ADTRS R be quasi-decreasing with respect to
. Then R
is confluent if all CCPs are context-joinable, unfeasible, or infeasible.

Proof. Unfortunately, we cannot directly reuse Theorem 2 and its proof, since
we need our sufficient criteria in the induction hypothesis. However, the new
proof is quite similar. It only differs in case (1), where we consider a CCP:

1. If the CCP is context-joinable, we obtain a join with respect to contextual
rewriting which we can easily transform into a join with respect to R by
an application of Lemma 2 because we have a substitution satisfying the
conditions of the CCP.

2. If the CCP is unfeasible, we obtain two diverging contextual rewrite
sequences. Again since there is a substitution satisfying the conditions of the
CCP we may employ Lemma 2 to get two diverging conditional R-rewrite
sequences. Because �1σ
st t0 we can use the induction hypothesis to get
a join between the two end terms. But from the definition of unfeasibility
we also know that the end points are not unifiable (and hence are not the
same) and cannot be rewritten (because of strong irreducibility), leading to
a contradiction.

3. Finally, if the CCP is infeasible, then there is no substitution that satisfies its
conditions, contradicting the fact that we already have such a substitution. ��

Example 4. The CTRS Rmin from Example 1 is actually an ADTRS and also
quasi-decreasing. To conclude confluence of the system it remains to check its
CCPs which are listed in Example 2. The first one, (1,2), is trivially context-
joinable because the left- and right-hand sides coincide. Unfortunately, the meth-
ods used in ConCon are not able to handle either of the CCPs (1,3) and (2,3).
So we are not able to conclude confluence of Rmin at this point.

We give a transformation on CTRSs which is often helpful in practice:

Definition 4 (Inlining of Conditions). Given a conditional rewrite rule ρ :
� → r ⇐ s1 ≈ t1, . . . , sn ≈ tn and an index 1 � i � n such that ti = x for some
variable x, let inli(ρ) denote the rule resulting from inlining the ith condition of
ρ, that is, � → rσ ⇐ s1σ ≈ t1, . . . , si−1σ ≈ ti−1, si+1σ ≈ ti+1, . . . , snσ ≈ tn with
σ = {x �→ si}.
Lemma 3. Let ρ ∈ R and s ≈ x be the ith condition of ρ. Whenever we have
x 	∈ V(�, s, t1, . . . , ti−1, ti+1, . . . , tn), then the relations →∗

R and →∗
R′ , where R′ =

(R \ {ρ}) ∪ {inli(ρ)}, coincide.

Proof. We show →R,n⊆→∗
R′,n and →R′,n⊆→R,n by induction on the level n.

For n = 0 the result is immediate. Consider a step s = C[�σ] →R,n+1 C[rσ] = t
employing rule ρ (for the other rules of R the result is trivial). Thus, uσ →∗

R,n vσ
for all u ≈ v ∈ c. In particular sσ →∗

R,n xσ. Thus, using the IH, for each
condition u ≈ v of inli(ρ) we have 1 � j � n such that uσ = sj{x �→ s}σ →∗

R′,n
sjσ →∗

R′,n tjσ = vσ. Hence, �σ →R′,n+1 r{x �→ s}σ →∗
R′,n+1 rσ and thus

s →∗
R′,n+1 t.

422 C. Sternagel and T. Sternagel

Now, consider a step s = C[�σ] →R′,n+1 C[r{x �→ s}σ] employing rule inli(ρ).
Together with the IH this implies that uσ →∗

R,n vσ for all conditions u ≈ v in
inli(ρ). Let τ be a substitution such that τ(x) = sσ and τ(y) = σ(y) for all
y 	= x. We have siτ = sτ = xτ = tiτ and sjτ = sj{x �→ s}σ →∗

R,n tjσ = tjτ
for all 1 � j � n with i 	= j, since x neither occurs in s nor the right-hand sides
of conditions in inli(ρ). Therefore, u →∗

R,n v for all u ≈ v ∈ c. In total, we have
s = C[�σ] = C[�τ] →R,n+1 C[rτ] = C[r{x �→ s}σ], concluding the proof. ��
We are not aware of any mention of this simple method in the literature, but
found that in practice, exhaustive application of inlining increases the applica-
bility of other methods like infeasibility via tcap and non-confluence via plain
rewriting: for the former inlining yields more term structure, which may prevent
tcap from replacing a subterm by a fresh variable and thus makes non-unifiability
more likely; while for the latter inlining may yield CCPs without conditions and
thereby make them amenable to non-joinability techniques for plain term rewrit-
ing [34].

Example 5. Rules (2) and (3) of Rmin from Example 1 are both susceptible to
inlining of conditions. For each of them, we may remove the first condition and
replace y by min(xs) resulting in

min(cons(x, xs)) → x ⇐ x < min(xs) ≈ true (2′)

min(cons(x, xs)) → min(xs) ⇐ x < min(xs) ≈ false (3′)

Now, instead of the CCPs from Example 2 we have the following CCPs
(modulo symmetry as before):

x ≈ x ⇐ x < min(nil) ≈ true (1,2′)

x ≈ min(nil) ⇐ x < min(nil) ≈ false (1,3′)

x ≈ min(xs) ⇐ x < min(xs) ≈ true, x < min(xs) ≈ false (2,3′)

Again, the first CCP (1,2′) is trivially context-joinable, (1,3′) is infeasible
since tcap(x < min(nil)) = x < min(nil) and false are not unifiable, and (2′,3′) is
unfeasible because with contextual rewriting we can reach the two non-unifiable
normal forms true and false starting from x < min(xs). Hence, we conclude
confluence of the quasi-decreasing ADTRS Rmin by Theorem 3.

Inlining of conditions is implemented in ConCon 1.4.0 as a first preprocessing
step and is certifiable by CeTA.

5 Certification Challenges

One of the main challenges towards actual certification is typically disregarded
on paper: the definition of critical pairs may yield an infinite set of CCPs even
for finite CTRSs. This is because we have to consider arbitrary variable-disjoint

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 423

variants of rules. However, a hypothetical certificate would only contain those
CCPs that were obtained from some specific variable-disjoint variants of rules.
Now the argument typically goes as follows: modulo variable renaming there are
only finitely many CCPs. Done.

However, this reasoning is valid only for properties that are either closed
under substitution or at least invariant under renaming of variables. For join-
ability of plain critical pairs—arguably the most investigated case—this is indeed
easy. But when it comes to contextual rewriting we spent a considerable amount
of work on some results about permutations that were not available in IsaFoR.

To illustrate the issue, consider the abstract specification of the check func-
tion check-CCPs, such that isOK (check-CCPs R) implies that each of the CCPs
of R is either unfeasible, context-joinable, or infeasible. To this end we work
modulo the assumption that we already have sound check functions for the lat-
ter three properties, which is nicely supported by Isabelle’s locale mechanism:2

locale al94-spec =
fixes vx and vy

and check-context-joinable
and check-infeasible
and check-unfeasible

assumes vx and vy are injective
and ran(vx) ∩ ran(vy) = ∅

and isOK (check-context-joinable R s t C) =⇒ ∃u. s →∗
R,C u ∧ t →∗

R,C u)
. . .

We just list the required properties of the renaming functions vx and vy and the
soundness assumption for check-context-joinable.

Now what would a certificate contain and how would we have to check it?
Amongst other things, the certificate would contain a finite set of CCPs C′ that
were computed by some automated tool. Internally, our certifier computes its
own finite set of CCPs C where variable-disjoint variants of rules are created by
fixed injective variable renaming functions vx and vy, whose ranges are guar-
anteed to be disjoint. The former prefixes the character “x” and the latter the
character “y” to all variable names, hence the names. At this point we have to
check that for each CCP in C there is one in C′ that is its variant, which is not
too difficult. More importantly, we have to prove that whenever some desired
property P , say context-joinability, holds for any CCP, then P also holds for all
of its variants (including the one that is part of C).

To this end, assume that we have a CCP resulting from a critical overlap of
the two rules �1 → r1 ⇐ c1 and �2 → r2 ⇐ c2 at position p with mgu μ. This
means that there exist permutations π1 and π2 such that (�1 → r1 ⇐ c1)π1 and
(�2 → r2 ⇐ c2)π2 are both in R. In our certifier, mgus are computed by the func-
tion mgu(s, t) which either results in None, if s 	∼ t, or in Some μ such that μ is
an mgu of s and t, otherwise. Moreover, variable-disjointness of rules is ensured

2 For technical reasons, our formalization uses two locales (al94-ops, al94-spec) here.

424 C. Sternagel and T. Sternagel

by vx and vy, so that we actually call mgu(�1|pπ1vx, �2π2vx) for computing a con-
crete CCP corresponding to the one we assumed above. Thus, we need to show
that mgu(�1|p, �2) = Some μ also implies that mgu(�1|pπ1vx, �2π2yv) = Some μ′

for some mgu μ′. Moreover, we are interested in the relationship between μ and
μ′ with respect to the variables in both rules. Previously—for an earlier for-
malization of infeasibility [25]—IsaFoR only contained a result that related both
unifiers modulo some arbitrary substitution (that is, not necessarily a renaming).

Unfortunately, contextual rewriting is not closed under arbitrary substitu-
tions. Nevertheless, contextual rewriting is closed under permutations, provided
the permutation is also applied to C.

Lemma 4. For every permutation π we have that sπ →∗
R,Cπ tπ iff s →∗

R,C t. ��
It remains to show that μ and μ′ differ basically only by a renaming (at least

on the variables of our two rules), which is covered by the following lemma.

Lemma 5. Let mgu(s, t) = Some μ and V(s, t) ⊆ S ∪ T for two finite sets of
variables S and T with S ∩ T = ∅. Then, there exist a substitution μ′ and a per-
mutation π such that for arbitrary permutations π1 and π2: mgu(sπ1vx, tπ2vy) =
Some μ′, μ = π1μ

′vxπ [S], and μ = π2μ
′vyπ [T].

Proof. Let h(x) = xvxπ1 if x ∈ S and h(x) = xvyπ2, otherwise. Then, since h is
bijective between S ∪ T and h(S ∪ T) we can obtain a permutation π for which
π = h [S ∪ T]. We define μ′ =− πμ and abbreviate sπ1vx and tπ2vy to s′ and t′,
respectively. Note that s′ = sπ and t′ = tπ. Since μ is an mgu of s and t we have
sμ = tμ, which further implies s′μ′ = t′μ′. But then μ′ is a unifier of s′ and t′

and thus there exists some μ′′ for which mgu(s′, t′) = Some μ′′ and s′μ′′ = t′μ′′.
We now show that μ′ is also most general. Assume s′τ = t′τ for some τ .

Then sπτ = tπτ and thus there exists some δ such that πτ = μδ (since μ is most
general). But then π−πτ = π−μδ and thus τ = μ′δ. Hence, μ′ is most general.

Since μ′′ is most general too, it only differs by a renaming, say π′, from μ′,
that is, μ′′ = π′μ′. This yields μ = π1μ

′′vxπ′− [S] and μ = π2μ
′′vyπ′−[T], and

thus concludes the proof. ��

6 Available Check Functions

Before we can actually certify the output of CTRS confluence tools with CeTA, we
have to provide an executable check function for each property that is required
to apply Theorem 3 and prove its soundness. It is worth mentioning that the
return type of these check functions is only “morally” bool. In order to have nice
error messages we actually employ a monad. So whenever we need to handle
the result of a check function as bool we encapsulate it in a call to isOK which
results in False if there was an error and True, otherwise.

As mentioned earlier, the check functions for quasi-decreasingness and
infeasibility are already in place. It remains to provide new check functions
for absolute irreducibility, absolute determinism, contextual rewrite sequences,

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 425

context-joinability, and unfeasibility together with their corresponding sound-
ness proofs. For absolute irreducibility we provide the check function check-airr,
employing existing machinery from IsaFoR for renaming and unification, and
prove:

Lemma 6. isOK (check-airr R t) iff the term t is absolutely R-irreducible. ��
This, in turn, is used to define the check function check-adtrs and the accompa-
nying lemma for ADTRSs.

Lemma 7. isOK (check-adtrs R) iff R is an ADTRS. ��
Concerning contextual rewriting, we provide the check function check-csteps for
conditional rewrite sequences together with the following lemma:

Lemma 8. Given a CTRS R, a set of conditions C, two terms s and t, and a list
of conditional rewrite proofs ps, we have that isOK (check-csteps (R∪C) s t ps)
implies s →∗

R,C t. ��
Although conditional rewriting is decidable in our setting (strong determinism
and quasi-decreasingness), we require a conditional rewrite proof to provide all
the necessary information for checking a single conditional rewrite step (the
employed rule, position, and substitution; source and target terms; and recur-
sively, a list of rewrite proofs for each condition of the applied rule). That way, we
avoid having to formalize a rewriting engine for conditional rewriting in IsaFoR.
With a check function for contextual rewrite sequences in place, we can easily
give the check function check-context-joinable with the corresponding lemma:

Lemma 9. Given a CTRS R, three terms s, t, and u, a set of condi-
tions C, and two lists of conditional rewrite proofs ps and qs, we have that
isOK (check-context-joinable u ps qs R s t C) implies that there exists some
term u′ such that s →∗

R,C u′ ∗
R,C← t. ��

Here check-context-joinable is a concrete implementation of the homony-
mous function from the al94-spec locale. We further give the check func-
tion check-unfeasible and the accompanying soundness lemma:

Lemma 10. Given a quasi-decreasing CTRS R, two variable-disjoint variants
of rules ρ1 : �1 → r1 ⇐ c1 and ρ2 : �2 → r2 ⇐ c2 in R, an mgu μ of �1|p and �2
for some position p, a set of conditions C such that C = c1μ, c2μ, three terms t,
u, and v, and two lists of conditional rewrite proofs ps and qs, we have that
isOK (check-unfeasible t u v ps qs ρ1 ρ2 R �1 μ C) implies that there exist three
terms t′, u′, and v′ such that for all σ we have �1μσ
 t′σ, whenever σ satisfies
C, u′ ∗

R,C← t′ →∗
R,C v′, u′ and v′ are both strongly irreducible, and u′ 	∼ v′. ��

Again, check-unfeasible is a concrete implementation of the function of the same
name from the al94-spec locale and it additionally performs various sanity checks.

At this point, interpreting the al94-spec locale using the three check functions
check-context-joinable, check-infeasible, and check-unfeasible from above yields
the concrete function check-CCPs, which is used in the final check check-al94.

426 C. Sternagel and T. Sternagel

Lemma 11. Given a quasi-decreasing CTRS R, a list of context-joinability cer-
tificates c, a list of infeasibility certificates i, and a list of unfeasibility certifi-
cates u. Then, isOK (check-al94 c i u R) implies confluence of R. ��

7 Experiments

The largest available collection of CTRSs we are aware of is the confluence
problems database (Cops) [10]. At the time of writing it contains a total of 152
CTRSs. Among these, there are 119 oriented 3-CTRSs from which exactly 100
are also ADTRSs. We compare ConCon 1.3.2, which participated in last years
confluence competition (CoCo 2016) [3], to ConCon 1.4.0, the current version
which implements the results of the paper at hand. Our experiments ran on
the StarExec [29] platform with a timeout of 60 seconds per problem. The out-
come is summarized in Table 1,3 where columns labeled A, N, and T contain
the results of applying Theorem 3, using non-confluence methods, and trying all
methods implemented in ConCon concurrently, respectively. A suffix ‘+ i’ indi-
cates preprocessing by exhaustive inlining of conditions (Lemma 3). Results in
parentheses are not just proved by ConCon but also certified by CeTA. For the
two A-columns the numbers following the ‘/’ indicate how many systems could
only be solved by Theorem 3 but not by any other method.

In total, ConCon 1.3.2 can decide confluence of 82 systems. Of those, 56 are
confluent and 26 are non-confluent. Using only Theorem 3, 42 systems can be
shown confluent. For 7 of these, none of the other methods are successful. Neither
Theorem 3 nor the non-confluence methods are certifiable in ConCon 1.3.2. How-
ever, in 38 cases (using other methods) the output of ConCon 1.3.2 is certifiable
by CeTA. Also inlining of conditions is absent in ConCon 1.3.2.

The new version of ConCon can decide confluence of 86 systems. Of those, 57
are confluent and 29 are non-confluent. Seven of the generated confluence proofs
cannot be certified by CeTA. This is due to an infeasibility method (using equa-
tional reasoning) that is not yet formalized. In contrast, all of the non-confluence
proofs can be certified by CeTA. When we subtract the certifiably non-confluent
systems we are left with 72 potentially confluent ADTRSs. From those 52 are
certifiably quasi-decreasing. Theorem 3 succeeds on 46 of these quasi-decreasing
ADTRSs (and can be certified for 43 of them). For three of these systems (288,
292, 326) testing for infeasibility is essential. When using inlining of conditions

Table 1. Comparison on 119 oriented 3-CTRSs from Cops.

ConCon A A + i N N + i T T + i

1.3.2 42 (0) / 7 (0) - 26 (0) - 82 (38) -

1.4.0 46 (43) / 8 (11) 47(44) / 8 (11) 27 (27) 29 (29) 84 (77) 86 (79)

3 Detailed results are available at http://cl-informatik.uibk.ac.at/experiments/2017/
cade/.

http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cl-informatik.uibk.ac.at/experiments/2017/cade/
http://cl-informatik.uibk.ac.at/experiments/2017/cade/

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 427

we gain another (certifiably) confluent system (493). Finally, independent of
inlining of conditions, there are 8 systems where only Theorem 3 is successful.
In the certifiable case this number increases to 11 systems (because for 3 systems
the other methods are not certifiable). The most important message of Table 1
is that with the new versions of ConCon and CeTA the number of certifiably (non-
)confluent systems has more than doubled from 38 to 79, which means that more
than 90% of the (non-)confluence proofs for CTRSs are certifiable.

8 Conclusion and Future Work

Even in the presence of a suitable notion of termination (like quasi-
decreasingness), proving confluence of conditional term rewrite systems is still
hard (unlike in the unconditional case, where confluence is decidable.)

We formalized a characterization of confluence of quasi-decreasing strongly
deterministic CTRSs in Isabelle/HOL. It requires joinability of all conditional
critical pairs, which is undecidable in general. Moreover, we formalized a more
practical variant of the previous characterization for which each conditional crit-
ical pair must be either context-joinable, unfeasible, or infeasible. These prop-
erties, in turn, rely on strong irreducibility, which like strong determinism is
undecidable in general. Thus, we further formalized decidable sufficient criteria.

In total, this paper constitutes the necessary work for the actual certifica-
tion of confluence of quasi-decreasing SDTRSs, which complements our existing
check functions for certifying confluence of CTRSs [26,32]. We have extended
our confluence tool ConCon and the certifier CeTA accordingly.

Here is a rough impression of the involved effort: our formalization comprises
28 definitions, 14 recursive functions, and 83 lemmas with proofs, on approxi-
mately 2500 lines of Isabelle code (in addition to everything that we could reuse
from the IsaFoR library). The whole development took about 6 person-months.

Future Work. Concerning certification, our extension from quasi-reductive to
quasi-decreasing CTRSs is at the moment only of theoretical relevance, since the
only way of certifying quasi-decreasingness with CeTA is via quasi-reductivity.

In principle it may be useful to use methods for proving operational ter-
mination [20]—a notation equivalent to quasi-decreasingness [19]—in order to
increase the applicability of Theorem 3. However, IsaFoR is currently lacking the
proof that operational termination and quasi-decreasingness coincide. Also, none
of the methods for proving operational termination have been formalized so far.
Moreover, when running AProVE [11] and MU-TERM [1] on the 72 ADTRSs
of Cops which have not already been shown to be non-confluent, the former
can show operational termination of the same 52 systems for which ConCon
could show quasi-reductivity, and the latter can show two additional systems
(266, 278), while losing another one (362). Of course, this insignificant difference
could be due to our example database.

http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1
http://cops.uibk.ac.at/?q=#1

428 C. Sternagel and T. Sternagel

Open Problem. After having finished our formalization, we realized that it is
not known whether quasi-decreasingness differs from quasi-reductivity at all,
that is, the question whether there exists a quasi-decreasing CTRS that is not
quasi-reductive, is still open. Regardless, we agree with Ohlebusch [24] that
quasi-decreasingness has two advantages: (1) it does not depend on signature
extensions and (2) �σ
st siσ is only required if sjσ →∗

R tjσ instead of sjσ � tjσ.
Point (1) is illustrated by the quasi-decreasing CTRS Rqd = {f(b) → f(a), b →
c, a → c ⇐ b ≈ c}. Assume that Rqd is quasi-reductive with respect to
. Then,
f(b)
 f(a) and a (
 ∪ �)+ b. If we are not allowed to introduce fresh function
symbols, the latter implies a
 b, for otherwise, we would have a
 fk(b) � b
for some k � 0, which together with closure under contexts and transitivity of

 contradicts the well-foundedness of
. But a
 b also contradicts the well-
foundedness of
.

Proof Assistant. We found Sledgehammer [6,7] to be an indispensable tool for
our development. On the one hand, to quickly discharge subgoals that seemed
intuitively obvious but turned out tedious to prove, and on the other, as fast
“fact finder” for the huge IsaFoR library (especially for the second author, who
has not been involved in IsaFoR from the start).

Acknowledgments. We thank Bertram Felgenhauer and Julian Nagele for fruitful
discussions on the subject matter. Moreover, we would like to thank the anonymous
reviewers for their constructive and helpful comments.

A Browsing Isabelle/HOL Theory Files

We provide the Isabelle/HOL theory files for the presented formalization (AL94.
thy, AL94 Impl.thy, Inline Conditions.thy, and Inline Conditions Impl.
thy all in the subdirectory thys/Conditional Rewriting/) as part of the formal
IsaFoR library which depends on the Archive of Formal Proofs (AFP). First, get
the AFP via

wget https://www.isa-afp.org/release/afp-current.tar.gz

and extract the archive. Then get IsaFoR via

hg clone \
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

and from inside the IsaFoR directory update to tag v2.29:

hg update -r v2.29

For the remainder, you will need to have Isabelle2016-1 installed. Add the fol-
lowing lines to your $HOME/.isabelle/Isabelle2016-1/etc/settings

init component "/path/to/afp/directory/"
init component "/path/to/isafor/directory"

https://www.isa-afp.org/release/afp-current.tar.gz
http://cl2-informatik.uibk.ac.at/rewriting/mercurial.cgi/IsaFoR

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 429

Finally—again from the IsaFoR directory—start Isabelle/jEdit in order to
browse our formal development:

isabelle jedit -l TA thys/Conditional Rewriting/AL94 Impl.thy

This will take some time, even on a (more than) decent machine, the first time
around, but will be much faster thereafter.

References

1. Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termina-
tion properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST
2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-17796-5 12

2. Antoy, S., Hanus, M.: Functional logic programming. Commun. ACM 53(4), 74–85
(2010). doi:10.1145/1721654.1721675

3. Aoto, T., Hirokawa, N., Nagele, J., Nishida, N., Zankl, H.: Confluence competition
2015. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195,
pp. 101–104. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 5

4. Avenhaus, J., Loŕıa-Sáenz, C.: On conditional rewrite systems with extra variables
and deterministic logic programs. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol.
822, pp. 215–229. Springer, Heidelberg (1994). doi:10.1007/3-540-58216-9 40

5. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

6. Blanchette, J., Paulson, L.: Hammering away - a user’s guide to sledgehammer for
Isabelle/HOL (2010). https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf

7. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016). doi:10.6092/issn.1972-5787/4593

8. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827–859 (2011). doi:10.1017/S0960129511000120

9. Contejean, É., Courtieu, P., Forest, J., Pons, O., Urbain, X.: Automated certi-
fied proofs with CiME 3 In: Proceedings of the 22nd International Conference on
Rewriting Techniques and Applications (RTA). LIPIcs, vol. 10, pp. 21–30. Schloss
Dagstuhl (2011), doi:10.4230/LIPIcs.RTA.2011.21

10. Cops: The confluence problems database. http://cops.uibk.ac.at/?q=ctrs
11. Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination

proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.)
IJCAR 2006. LNCS, vol. 4130, pp. 281–286. Springer, Heidelberg (2006). doi:10.
1007/11814771 24

12. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol.
3717, pp. 216–231. Springer, Heidelberg (2005). doi:10.1007/11559306 12

13. Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination
competition (termCOMP 2015). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2015. LNCS (LNAI), vol. 9195, pp. 105–108. Springer, Cham (2015). doi:10.1007/
978-3-319-21401-6 6

14. Hirokawa, N., Middeldorp, A., Sternagel, C.: A new and formalized proof of
abstract completion. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558,
pp. 292–307. Springer, Cham (2014). doi:10.1007/978-3-319-08970-6 19

http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1007/978-3-642-17796-5_12
http://dx.doi.org/10.1145/1721654.1721675
http://dx.doi.org/10.1007/978-3-319-21401-6_5
http://dx.doi.org/10.1007/3-540-58216-9_40
https://isabelle.in.tum.de/dist/doc/sledgehammer.pdf
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1017/S0960129511000120
http://dx.doi.org/10.4230/LIPIcs.RTA.2011.21
http://cops.uibk.ac.at/?q=ctrs
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/11814771_24
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-21401-6_6
http://dx.doi.org/10.1007/978-3-319-08970-6_19

430 C. Sternagel and T. Sternagel

15. Huet, G.: Confluent reductions: abstract properties and applications to term rewrit-
ing systems. J. ACM 27(4), 797–821 (1980)

16. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J.
(ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon Press
(1970)

17. Kop, C.: Higher-order termination: automatable techniques for proving termination
of higher-order term rewriting systems. Ph.D. thesis, VU University Amsterdam
(2012). http://hdl.handle.net/1871/39346

18. Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean Termination Tool 2.
In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg
(2009). doi:10.1007/978-3-642-02348-4 21

19. Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term
rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). doi:10.1016/j.ipl.2005.
05.002

20. Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of
conditional term rewriting systems. J. Logical Algebraic Methods Program. 86(1),
236–268 (2017). doi:10.1016/j.jlamp.2016.03.003

21. Marlow, S.: Haskell 2010 language report. https://www.haskell.org/definition/
haskell2010.pdf

22. Newman, M.: On theories with a combinatorial definition of equivalence. Ann.
Math. 43(2), 223–243 (1942)

23. Nipkow, T.: Equational reasoning in Isabelle. Sci. Comput. Program. 12(2), 123–
149 (1989). doi:10.1016/0167-6423(89)90038-5

24. Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)
25. Sternagel, C., Sternagel, T.: Level-confluence of 3-CTRSs in Isabelle/HOL.

In: Proceedings of the 4th International Workshop on Confluence (IWC),
arXiv:1602.07115 (2015)

26. Sternagel, C., Sternagel, T.: Certifying confluence of almost orthogonal CTRSs via
exact tree automata completion. In: Proceedings of the 1st International Confer-
ence on Formal Structures for Computation and Deduction (FSCD). LIPIcs, vol.
51, pp. 29:1–29:16 (2016). doi:10.4230/LIPIcs.FSCD.2016.29

27. Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In:
Dowek, G. (ed.) RTA 2014. LNCS, vol. 8560, pp. 456–465. Springer, Cham (2014).
doi:10.1007/978-3-319-08918-8 31

28. Sternagel, T., Sternagel, C.: Formalized confluence of quasi-decreasing, strongly
deterministic conditional TRSs. In: Proceedings of the 5th International Workshop
on Confluence (IWC), arXiv:1609.03341 (2016)

29. Stump, A., Sutcliffe, G., Tinelli, C.: StarExec: a cross-community infrastruc-
ture for logic solving. In: Demri, S., Kapur, D., Weidenbach, C. (eds.) IJCAR
2014. LNCS (LNAI), vol. 8562, pp. 367–373. Springer, Cham (2014). doi:10.1007/
978-3-319-08587-6 28

30. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol.
5674, pp. 452–468. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03359-9 31

31. Waldmann, J.: Matchbox: a tool for match-bounded string rewriting. In: Oostrom,
V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-25979-4 6

32. Winkler, S., Thiemann, R.: Formalizing soundness and completeness of unravelings.
In: Lutz, C., Ranise, S. (eds.) FroCoS 2015. LNCS (LNAI), vol. 9322, pp. 239–255.
Springer, Cham (2015). doi:10.1007/978-3-319-24246-0 15

http://hdl.handle.net/1871/39346
http://dx.doi.org/10.1007/978-3-642-02348-4_21
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1016/j.ipl.2005.05.002
http://dx.doi.org/10.1016/j.jlamp.2016.03.003
https://www.haskell.org/definition/haskell2010.pdf
https://www.haskell.org/definition/haskell2010.pdf
http://dx.doi.org/10.1016/0167-6423(89)90038-5
http://arxiv.org/abs/1602.07115
http://dx.doi.org/10.4230/LIPIcs.FSCD.2016.29
http://dx.doi.org/10.1007/978-3-319-08918-8_31
http://arxiv.org/abs/1609.03341
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-319-08587-6_28
http://dx.doi.org/10.1007/978-3-642-03359-9_31
http://dx.doi.org/10.1007/978-3-540-25979-4_6
http://dx.doi.org/10.1007/978-3-540-25979-4_6
http://dx.doi.org/10.1007/978-3-319-24246-0_15

Certifying Confluence of Quasi-Decreasing Strongly Deterministic 431

33. Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G.
(ed.) RTA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Cham (2014). doi:10.
1007/978-3-319-08918-8 32

34. Zankl, H., Felgenhauer, B., Middeldorp, A.: CSI – a confluence tool. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp. 499–505.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 38

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the chapter’s
Creative Commons license, unless indicated otherwise in a credit line to the material. If
material is not included in the chapter’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder.

http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.1007/978-3-319-08918-8_32
http://dx.doi.org/10.1007/978-3-642-22438-6_38
http://creativecommons.org/licenses/by/4.0/

A Transfinite Knuth–Bendix Order
for Lambda-Free Higher-Order Terms

Heiko Becker1, Jasmin Christian Blanchette2,3,4(B), Uwe Waldmann4,
and Daniel Wand4,5

1 Max-Planck-Institut für Softwaresysteme, Saarbrücken, Germany
hbecker@mpi-sws.org

2 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
j.c.blanchette@vu.nl

3 Inria Nancy – Grand Est, Villers-lès-Nancy, France
jasmin.blanchette@inria.fr

4 Max-Planck-Institut für Informatik, Saarbrücken, Germany
{jasmin.blanchette,uwe.waldmann,daniel.wand}@mpi-inf.mpg.de

5 Technische Universität München, Munich, Germany
daniel.wand@in.tum.de

Abstract. We generalize the Knuth–Bendix order (KBO) to higher-
order terms without λ-abstraction. The restriction of this new order to
first-order terms coincides with the traditional KBO. The order has many
useful properties, including transitivity, the subterm property, compat-
ibility with contexts (monotonicity), stability under substitution, and
well-foundedness. Transfinite weights and argument coefficients can also
be supported. The order appears promising as the basis of a higher-order
superposition calculus.

1 Introduction

Superposition [39] is one of the most successful proof calculi for first-order logic
today, but in contrast to resolution [9,26], tableaux [4], and connections [1], it has
not yet been generalized to higher-order logic (also called simple type theory).
Yet, most proof assistants and many specification languages are based on some
variant of higher-order logic. Tools such as HOLyHammer and Sledgehammer
[13] encode higher-order constructs to bridge the gap, but their performance on
higher-order problems is disappointing [45].

This motivates us to design a graceful generalization of superposition: a proof
calculus that behaves like standard superposition on first-order problems and
that smoothly scales up to arbitrary higher-order problems. The calculus should
additionally be complete with respect to Henkin semantics [10,23]. A challenge
is that superposition relies on a simplification order, which is fixed in advance
of the proof attempt, to prune the search space. However, no simplification
order > exists on higher-order terms viewed modulo β-equivalence; the cycle
a =β (λx. a) (f a) > f a > a is a counterexample. (The two > steps follow from
the subterm property—requirement that proper subterms of a term are smaller
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 432–453, 2017.
DOI: 10.1007/978-3-319-63046-5 27

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 433

than the term itself.) A solution is to give up interchangeability of β-equivalent
terms, or even inclusion of β-reduction (i.e., (λx . s[x]) t > s[t]).

We start our investigations by focusing on a fragment devoid of λ-abstrac-
tions. A λ-free higher-order term is either a variable x , a symbol f, or an applica-
tion s t. Application associates to the left. Functions take their arguments one at
a time, in a curried style (e.g., f a b). Compared with first-order terms, the main
differences are that variables may be applied (e.g., x a) and that functions may
be supplied fewer arguments than they can take. Although λ-abstractions are
widely perceived as the higher-order feature par excellence, they can be avoided
by letting the proof calculus, and provers based on it, synthesize fresh symbols f
and definitions f x1 . . . xm = t as needed, giving arbitrary names to otherwise
nameless functions.

In recent work, we introduced a “graceful” λ-free higher-order recursive path
order (RPO) [16]. We now contribute a corresponding Knuth–Bendix order
(KBO) [30]. Leading superposition provers such as E [41], SPASS [48], and
Vampire [34] implement both KBO and variants of RPO. To keep the pre-
sentation manageable, we introduce three KBO variants of increasing strength
(Sect. 4): a basic KBO (>hb); a KBO with support for function symbols of
weight 0 (>hz); and a KBO extended with coefficients for the arguments (>hc).
They all coincide with their first-order counterparts on terms that contain only
fully applied function symbols and no applied variables. For all three variants,
we allow different comparison methods for comparing the arguments of different
symbols (Sect. 2). In addition, we allow ordinals for the weights and argument
coefficients (Sect. 3), as in the transfinite first-order KBO [37].

Our KBO variants enjoy many useful properties, including transitivity, the
subterm property, stability under substitution, well-foundedness, and totality
on ground terms (Sect. 5). The orders with no argument coefficients also enjoy
compatibility with contexts (sometimes called monotonicity), thereby qualifying
as simplification orders. Even without this property, we expect the orders to
be usable in a λ-free higher-order generalization of superposition, possibly at
the cost of some complications [19]. Ground totality is used in the completeness
proof of superposition. The proofs of the properties were formalized using the
Isabelle/HOL proof assistant (Sect. 6). Proof sketches are included here; more
complete justifications are included in a technical report [7].

Although this is not our primary focus, the new KBO can be used to estab-
lish termination of higher-order term rewriting systems (Sect. 7). However, more
research will be necessary to combine the order with the dependency pair frame-
work, implement them in a termination prover, and evaluate them on standard
term-rewriting benchmarks.

To our knowledge, KBO has not been studied before in a higher-order set-
ting. There are, however, a considerable number of higher-order variants of RPO
[17,18,28,31,32,35] and many encodings of higher-order term rewriting systems
into first-order systems [2,22,24,24,46]. The encoding approaches are more suit-
able to term rewriting systems than to superposition and similar proof calculi.
We refer to our paper on the λ-free higher-order RPO for a discussion of such
related work [16].

434 H. Becker et al.

Conventions. We fix a set V of variables with typical elements x , y . A higher-
order signature consists of a nonempty set Σ of (function) symbols a, b, c, f, g,
h, Untyped λ-free higher-order (Σ-)terms s, t, u ∈ TΣ (= T) are defined
inductively by the grammar s ::= x | f | t u. These terms are isomorphic to
applicative terms [29], but we prefer the “higher-order” terminology. Symbols
and variables are assigned an arity, arity : Σ � V → N ∪ {∞}, specifying
their maximum number of arguments. Infinite arities are allowed for the sake of
generality. Nullary symbols are called constants. A term of the form t u is called
an application. Non-application terms ζ, ξ, χ ∈ Σ � V are called heads. A term
s can be decomposed uniquely as a head with m arguments: s = ζ s1 . . . sm. We
define hd (s) = ζ, args(s) = (s1, . . . , sm), and arity(s) = arity(ζ) − m.

The size |s| of a term is the number of grammar rule applications needed to
construct it. The set of subterms of a term consists of the term itself and, for
applications t u, of the subterms of t and u. The multiset of variables occurring
in a term s is written vars#(s)—e.g., vars#(f x y x) = {x , x , y}. We denote by
M(a) the multiplicity of an element a in a multiset M and write M ⊆ N to mean
∀a. M(a) ≤ N(a).

We assume throughout that the arities of all symbols and variables occurring
in terms are respected—in other words, all subterms of a term have nonnegative
arities. A first-order signature is a higher-order signature with an arity function
arity : Σ → N. A first-order term is a term in which variables are nullary and
heads are applied to the number of arguments specified by their respective arities.
Following the view that first-order logic is a fragment of higher-order logic, we
will use a curried syntax for first-order terms. Accordingly, if arity(a) = 0 and
arity(f) = 2, then f a a is first-order, whereas f, f a, and f f f are only higher-order.

Our focus on untyped terms is justified by a desire to keep the definitions
simple and widely applicable to a variety of type systems (monomorphic, rank-1
polymorphic, dependent types, etc.). There are straightforward ways to extend
the results presented in this paper to a typed setting: Types can be simply
erased, they can be encoded in the terms, or they can be used to break ties
when two terms are identical except for their types. Even in an untyped setting,
the arity function makes some of the typing information visible. In Sect. 4.3, we
will introduce a mapping, called ghd , that can be used to reveal more information
about the typing discipline if desired.

2 Extension Orders

KBO relies on an extension operator to recurse through tuples of arguments—
typically, the lexicographic order [3,51]. We prefer an abstract treatment, in a
style reminiscent of Ferreira and Zantema [21], which besides its generality has
the advantage that it emphasizes the peculiarities of our higher-order setting.

Let A∗ =
⋃∞

i=0 A
i be the set of tuples (or finite lists) of arbitrary length whose

components are drawn from a set A.We write its elements as (a1, . . . , am), where
m ≥ 0, or simply ā. The number of components of a tuple ā is written |ā|. Given
an m-tuple ā and an n-tuple b̄, we denote by ā · b̄ the (m+ n)-tuple consisting of

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 435

the concatenation of ā and b̄. Given a function h : A → A, we let h(ā) stand for
the componentwise application of h to ā. Abusing notation, we sometimes use a
tuple where a set is expected. Moreover, since all our functions are curried, we
write ζ s̄ for a curried application ζ s1 . . . sm.

Given a relation >, we write < for its inverse and ≥ for its reflexive closure,
unless ≥ is defined otherwise. A (strict) partial order is a relation that is irreflex-
ive and transitive. A (strict) total order is a partial order that satisfies totality
(i.e., b ≥ a ∨ a > b). A relation > is well founded if and only if there exists no
infinite chain of the form a0 > a1 > · · · .

For any relation > ⊆ A2, let >> ⊆ (A∗)2 be a relation on tuples over A. For
example, >> could be the lexicographic or multiset extension of >. We assume
throughout that if B ⊆ A, then the extension >>B of the restriction >B of > to
elements from B coincides with >> on (B∗)2. Moreover, the following properties
are essential for all the orders defined later, whether first- or higher-order:

X1. Monotonicity : b̄ >>1 ā implies b̄ >>2 ā if b >1 a implies b >2 a for all a, b;
X2. Preservation of stability : b̄ >> ā implies h(b̄) >> h(ā) if

(1) b > a implies h(b) > h(a) for all a, b, and
(2) > is a partial order on the range of h;

X3. Preservation of irreflexivity : >> is irreflexive if > is irreflexive;
X4. Preservation of transitivity : >> is transitive if > is irreflexive and transitive;
X5. Modularity (“head or tail”):

if > is transitive and total, |ā| = |b̄|, and b · b̄ >> a · ā, then b > a or b̄ >> ā;
X6. Compatibility with tuple contexts: a �= b and b > a implies c̄ · b · d̄ >> c̄ · a · d̄.

Some of the conditions in X2, X4, X5, and X6 may seem gratuitous, but
they are necessary for some extension operators if the relation > is arbitrary. For
KBO, > will always be a partial order, but we cannot assume this until we have
proved it.

It may seem as though X2 is a consequence of X1, by letting >1 be > and
b >2 a ⇐⇒ h(b) > h(a). However, b̄ >>2 ā does not generally coincide with
h(b̄) >> h(ā), even if > satisfies X1. A counterexample follows: Let >> be the
Huet–Oppen multiset extension as introduced below (Definition 6), and let ā = d,
b̄ = (c, c), h(c) = h(d) = c, and d > c. Then b̄ >>2 ā (i.e., (c, c) >>2 d) is false,
whereas h(b̄) >> h(ā) (i.e., (c, c) >> c) is true.

The remaining properties of >> will be required only by some of the orders
or for some optional properties of >:

X7. Preservation of totality : >> is total if > is total;
X8. Compatibility with prepending : b̄ >> ā implies a · b̄ >> a · ā;
X9. Compatibility with appending : b̄ >> ā implies b̄ · a >> ā · a;

X10. Minimality of empty tuple: a >> ().

Property X5, modularity, is useful to establish well-foundedness of >> from
the well-foundedness of >. The argument is captured by Lemma 3.

Lemma 1. For any well-founded total order > ⊆ A2, let >> ⊆ (A∗)2 be a partial
order that satisfies property X5. The restriction of >> to n-tuples is well founded.

436 H. Becker et al.

Proof. By induction on n. For the induction step, we assume that there exists
an infinite descending chain of n-tuples x̄0 >> x̄1 >> · · · and show that this leads
to a contradiction. Let x̄i = xi · ȳi. For each link x̄i >> x̄i+1 in the chain, property
X5 guarantees that (1) xi > xi+1 or (2) ȳi >> ȳi+1. Since > is well founded, there
can be at most finitely many consecutive links of the first kind. Exploiting the
transitivity of >>, we can eliminate all such links, resulting in an infinite chain
made up of links of the second kind. The existence of such a chain contradicts
the induction hypothesis. ��
Lemma 2. For any well-founded total order > ⊆ A2, let >> ⊆ (A∗)2 be a partial
order that satisfies property X5. The restriction of >> to tuples with at most
n components is well founded.

Lemma 3 (Bounded Preservation of Well-Foundedness). For any well-
founded partial order > ⊆ A2, let >> ⊆ (A∗)2 be a partial order that satisfies
properties X1 and X5. The restriction of >> to tuples with at most n components
is well founded.

Proof. By Zorn’s lemma, let >′ be a well-founded total order that extends >.
By property X1, >> ⊆ >>′. By Lemma 2, >>′ is well founded; hence, >> is well
founded. ��
Definition 4. The lexicographic extension >>lex of the relation > is defined recur-
sively by () �>>lex ā, b · b̄ >>lex (), and b · b̄ >>lex a · ā ⇐⇒ b > a ∨ b = a ∧ b̄ >>lex ā.

The reverse, or right-to-left, lexicographic extension is defined analogously. The
left-to-right operator lacks property X9; a counterexample is b̄ = c, ā = (), and
a = d, with d > c—we then have c >>lex () and (c, d) �>>lex d. Correspondingly,
the right-to-left operator lacks X8. The other properties are straightforward to
prove.

Definition 5. The length-lexicographic extension >>llex of the relation > is
defined by b̄ >>llex ā ⇐⇒ ∣

∣b̄
∣
∣ > |ā| ∨ ∣

∣b̄
∣
∣ = |ā| ∧ b̄ >>lex ā.

The length-lexicographic extension and its right-to-left counterpart satisfy
all of the properties listed above, making them more interesting than the plain
lexicographic extensions. We can also apply arbitrary permutations on same-
length tuples before comparing them; however, the resulting operators fail to
satisfy properties X8 and X9.

Definition 6. The multiset extension >>ms of the relation > is defined by b̄ >>ms

ā ⇐⇒ A �= B ∧ ∀x. A(x) > B(x) =�⇒ ∃y > x. B(y) > A(y), where A and B are the
multisets corresponding to ā and b̄, respectively.

The above multiset extension, due to Huet and Oppen [25], satisfies all prop-
erties except X7. Dershowitz and Manna [20] give an alternative formulation
that is equivalent for partial orders > but exhibits subtle differences if > is an
arbitrary relation. In particular, the Dershowitz–Manna order does not satisfy

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 437

property X3, making it unsuitable for establishing that KBO variants are par-
tial orders. This, in conjunction with our desire to track requirements precisely,
explains the many subtle differences between this section and the corresponding
section of our paper about RPO [16]. One of the main differences is that instead
of property X5, the definition of RPO requires preservation of well-foundedness,
which unlike X5 is not satisfied by the lexicographic extension.

Finally, we consider the componentwise extension of relations to pairs of
tuples of the same length. For partial orders >, this order underapproximates
any extension that satisfies properties X4 and X6. It also satisfies all properties
except X7.

Definition 7. The componentwise extension >>cw of the relation > is defined so
that (b1, . . . , bn) >>cw (a1, . . . , am) if and only if m = n, b1 ≥ a1, . . . , bm ≥ am, and
bi > ai for some i ∈ {1, . . . ,m}.

3 Ordinals

The transfinite KBO [37] allows weights and argument coefficients to be ordinals
instead of natural numbers. We restrict our attention to the ordinals below ε0.
We call these the syntactic ordinals O. They are precisely the ordinals that
can be expressed in Cantor normal form, corresponding to the grammar α ::=∑m

i=1 ω
αi ki, where α1 > · · · > αm and ki ∈ N>0 for i ∈ {1, . . . ,m}. We refer to the

literature for the precise definition [33,37].
The traditional sum and product operations are not commutative—e.g.,

1 + ω = ω �= ω + 1. For the transfinite KBO, the Hessenberg (or natural)
sum and product are used instead. These operations are commutative and coin-
cide with the sum and product operations on polynomials over ω. Somewhat
nonstandardly, we let + and · (or juxtaposition) denote these operators. It is
sometimes convenient to use subtraction on ordinals and to allow polynomials
over ω in which some of the coefficients may be negative (but all of the ω expo-
nents are always plain ordinals). We call such polynomials signed (syntactic)
ordinals ZO. One way to define α > β on signed ordinals is to look at the sign of
the leading coefficient of α− β. Which coefficient is leading depends recursively
on >. The relation > is total for signed ordinals. Its restriction to plain ordinals
is well founded.

4 Term Orders

This section presents five orders: the standard first-order KBO (Sect. 4.1), the
applicative KBO (Sect. 4.2), and our three λ-free higher-order KBO variants
(Sects. 4.3, 4.4, and 4.5). The orders are stated with ordinal weights for general-
ity. The occurrences of O and O>0 below can be consistently replaced by N and
N>0 if desired.

For finite signatures, we can restrict the weights to be ordinals below ωω
ω

without loss of generality [33]. Indeed, for proving termination of term rewriting

438 H. Becker et al.

systems that are finite and known in advance, transfinite weights are not neces-
sary at all [50]. In the context of superposition, though, the order must be chosen
in advance, before the saturation process generates the terms to be compared,
and moreover their number can be unbounded; therefore, the latter result does
not apply.

4.1 The Standard First-Order KBO

What we call the “standard first-order KBO” is more precisely a transfinite KBO
on first-order terms with different argument comparison methods (or “statuses”)
but without argument coefficients. Despite the generalizations, our formulation
is similar to Zantema’s [51] and Baader and Nipkow’s [3].

Definition 8. Let � be a well-founded total order, or precedence, on Σ, let
ε ∈ N>0, let w : Σ → O, and for any > ⊆ T 2 and any f ∈ Σ, let >>f ⊆ (T ∗)2

be a relation that satisfies properties X1–X6. For each constant c ∈ Σ, assume
w(c) ≥ ε. If w(ι) = 0 for some unary ι ∈ Σ, assume ι � f for all f ∈ Σ. Let
W : T → O>0 be defined recursively by

W (f(s1, . . . , sm)) = w(f) +
∑m

i=1
W (si) W (x) = ε

The induced (standard) Knuth–Bendix order >fo on first-order Σ-terms is defined
inductively so that t >fo s if vars#(t) ⊇ vars#(s) and any of these conditions is
met:

F1. W (t) >W (s);
F2. W (t) =W (s), t �= x , and s = x ;
F3. W (t) =W (s), t = g t̄ , s = f s̄, and g � f;
F4. W (t) =W (s), t = f t̄ , s = f s̄, and t̄ >>f

fo s̄.

The inductive definition is legitimate by the Knaster–Tarski theorem owing to
the monotonicity of >>f (property X1).

Because the true weight of variables is not known until instantiation, KBO
assigns them the minimum ε and ensures that there are at least as many occur-
rences of each variable on the greater side as on the smaller side. Constants must
have a weight of at least ε. One special unary symbol, ι, is allowed to have a
weight of 0 if it has the maximum precedence. Rule F2 can be used to compare
variables x with terms ιm x .

The more recent literature defines KBO as a mutually recursive pair consist-
ing of a strict order >fo and a quasiorder �fo [44]. This approach yields a slight
increase in precision, but that comes at the cost of substantial duplication in
the proof development and appears to be largely orthogonal to the issues that
interest us.

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 439

4.2 The Applicative KBO

One way to use standard first-order term orders on λ-free higher-order terms
is to encode the latter using the applicative encoding : Make all symbols nullary
and represent application by a distinguished binary symbol @. Because @ is
the only symbol that is ever applied, >>@ is the only relevant member of the >>
family. This means that it is impossible to use the lexicographic extension for
some symbols and the multiset extension for others. Moreover, the applicative
encoding is incompatible with refinements such as symbols of weight 0 (Sect. 4.4)
and argument coefficients (Sect. 4.5).

Definition 9. Let Σ be a higher-order signature, and let Σ′ = Σ � {@} be a
first-order signature in which all symbols belonging to Σ are assigned arity 0
and @ is assigned arity 2. The applicative encoding [[]] : TΣ → TΣ′ is defined
recursively by the equations [[ζ]] = ζ and [[s t]] = @ [[s]] [[t]]. The applicative Knuth–
Bendix order >ap on higher-order Σ-terms is defined as the composition of the
first-order KBO with the encoding [[]], where @ is given the lowest precedence
and weight 0.

The applicative KBO works quite differently from the standard KBO, even
on first-order terms. Given t = g t1 t2 and s = f s1 s2, the order >fo first compares
the weights, then g and f, then t1 and s1, and finally t2 and s2; by contrast, >ap

compares the weights, then g t1 and f s1 (recursively starting with their weights),
and finally t2 and s2.

Hybrid schemes have been proposed to strengthen the encoding: If a func-
tion f always occurs with at least k arguments, these can be passed directly
in an uncurried style—e.g., @ (f a b) x . However, this relies on a closed-world
assumption—namely, that all terms that will ever be compared arise in the
input problem. This is at odds with the need for complete higher-order proof
calculi to synthesize arbitrary terms during proof search [10], in which a symbol
f may be applied to fewer arguments than anywhere in the problem. A scheme
by Hirokawa et al. [24] circumvents this issue but requires additional symbols
and rewrite rules.

4.3 The Graceful Higher-Order Basic KBO

Our “graceful” higher-order basic KBO exhibits strong similarities with the first-
order KBO. It reintroduces the symbol-indexed family of extension operators.
The adjective “basic” indicates that it does not allow symbols of weight 0, which
complicate the picture because functions can occur unapplied in our setting. In
Sect. 4.4, we will see how to support such symbols, and in Sect. 4.5, we will extend
the order further with argument coefficients.

The basic KBO is parameterized by a mapping ghd from variables to non-
empty sets of possible ground heads that may arise when instantiating the vari-
ables. This mapping is extended to symbols f by taking ghd (f) = {f}. The mapping
is said to respect arities if, for all variables x , f ∈ ghd (x) implies arity(f) ≥ arity(x).
In particular, if ι ∈ ghd (ζ), then arity(ζ) ≤ 1. A substitution σ : V → T

440 H. Becker et al.

respects the ghd mapping if for all variables x , we have arity(xσ) ≥ arity(x)
and ghd (hd (xσ)) ⊆ ghd (x). This mapping allows us to restrict instantiations,
typically based on a typing discipline.

Convention 10. Precedences � are extended to arbitrary heads by taking ξ �
ζ ⇐⇒ ∀g ∈ ghd (ξ), f ∈ ghd (ζ). g � f.

Definition 11. Let � be a precedence following Convention 10, let ε ∈ N>0,
let w : Σ → O≥ε, let ghd : V → P (Σ) − {∅} be an arity-respecting mapping
extended to symbols f by taking ghd (f) = f, and for any > ⊆ T 2 and any f ∈ Σ,
let >>f ⊆ (T ∗)2 be a relation that satisfies properties X1–X6 and X8. Let W :
T → O>0 be defined by

W (f) = w(f) W (x) = ε W (s t) =W (s) +W (t)

The induced graceful basic Knuth–Bendix order >hb on higher-order Σ-terms
is defined inductively so that t >hb s if vars#(t) ⊇ vars#(s) and any of these
conditions is met, where t = ξ t̄ and s = ζ s̄:

B1. W (t) >W (s);
B2. W (t) =W (s) and ξ � ζ;
B3. W (t) =W (s), ξ = ζ, and t̄ >>f

hb s̄ for all symbols f ∈ ghd (ζ).

The main differences with the first-order KBO >fo is that rules B2 and B3 also
apply to terms with variable heads and that symbols with weight 0 are not
allowed. Property X8, compatibility with prepending, is necessary to ensure
stability under substitution: If x b >hb x a and xσ = f s̄, we also want f s̄ b >hb

f s̄ a to hold. Property X9, compatibility with appending, is not required by the
definition, but it is necessary to ensure compatibility with a specific kind of
higher-order context: If f b >hb f a, we often want f b c >hb f a c to hold as well.

Example 12. It is instructive to contrast our new KBO with the applicative
order on some examples. Let h � g � f, let w(f) = w(g) = ε = 1 and w(h) = 2,
let >> be the length-lexicographic extension (which degenerates to plain lexico-
graphic for >ap), and let ghd (x) = Σ for all variables x . In all of the following
cases, >hb disagrees with >ap:

f f f (f f) >hb f (f f f) f g (f g) >hb f g f g (f (f f)) >hb f (f f) f
h h >hb f h f h (f f) >hb f (f f) f g (f x) >hb f x g

Rules B2 and B3 apply in a straightforward, “first-order” fashion, whereas >ap

analyses the terms one binary application at a time. For the first pair of terms,
we have f f f (f f) <ap f (f f f) f because (f f f, f f) <<lex

ap (f (f f f), f). In the presence of
variables, some terms are comparable only with >hb or only with >ap:

g (g x) >hb f g g g (f x) >hb f x f h (x y) >hb f y (x f)
f f x >ap g (f f) x x g >ap g (g g) g x g >ap x (g g)

The applicative order tends to be stronger when either side is an applied variable.

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 441

The quantification over f ∈ ghd (ζ) in rule B3 can be inefficient in an imple-
mentation, when the symbols in ghd (ζ) disagree on which >> to use. We could
generalize the definition of >hb further to allow underapproximation, but some
care would be needed to ensure transitivity. As a simple alternative, we propose
instead to enrich all sets ghd (ζ) that disagree with a distinguished symbol for
which the componentwise extension (>>cw

hb) is used. Since this extension operator
is more restrictive than any others, whenever it is present in a set ghd (ζ), there
is no need to compute the others.

4.4 The Graceful Higher-Order KBO

The standard first-order KBO, as introduced by Knuth and Bendix, allows sym-
bols of arity 2 or more to have weight 0. It also allows for a special unary symbol
ι of weight 0. Rule F2 makes comparisons ιm x >fo x possible, for m > 0.

In a higher-order setting, symbols of weight 0 require special care. Functions
can occur unapplied, which could give rise to terms of weight 0, violating the
basic KBO assumption that all terms have at least weight ε > 0. Our solution is
to add a penalty of δ for each missing argument to a function. Thus, even though
a symbol f may be assigned a weight of 0, the term f ends up with a weight of at
least arity(f) · δ. These two notions of weight are distinguished formally as w and
W . For the arithmetic to work out, the δ penalty must be added for all missing
arguments to all symbols and variables. Symbols and variables must then have
a finite arity. For the sake of generality, we allow δ to take any value between 0
and ε, but the special symbol ι is allowed only if δ = ε, so thatW (ι s) =W (s).
The δ = 0 case coincides with the basic KBO.

Let mghd (ζ) denote a symbol f ∈ ghd (ζ) such that w(f)+δ · arity(f)—its weight
as a term—is minimal. Clearly, mghd (f) = f for all f ∈ Σ, and arity(mghd (ζ)) ≥
arity(ζ) if ghd respects arities. The intuition is that any instance of the term ζ
will have at least weight w(f)+δ ·arity(f). This property is important for stability
under substitution.

Definition 13. Let � be a precedence following Convention 10, let ε ∈ N>0, let
δ ∈ {0, . . . , ε}, let w : Σ → O, let ghd : V → P (Σ) − {∅} be an arity-respecting
mapping extended to symbols f by taking ghd (f) = f, and for any > ⊆ T 2 and
any f ∈ Σ, let >>f ⊆ (T ∗)2 be a relation that satisfies properties X1–X6, X8, and,
if δ = ε, X10. For each symbol f ∈ Σ, assume w(f) ≥ ε − δ · arity(f). If w(ι) = 0
for some unary ι ∈ Σ, assume ι � f for all f ∈ Σ and δ = ε. LetW : T → O>0 be
defined byW : T → O>0:

W (ζ) = w(mghd (ζ)) + δ · arity(mghd (ζ)) W (s t) =W (s) +W (t) − δ

If δ > 0, assume arity(ζ) �= ∞ for all heads ζ ∈ Σ � V . The induced graceful
(standard) Knuth–Bendix order >hz on higher-order Σ-terms is defined induc-
tively so that t >hz s if vars#(t) ⊇ vars#(s) and any of these conditions is met,
where t = ξ t̄ and s = ζ s̄:

442 H. Becker et al.

Z1. W (t) >W (s);
Z2. W (t) =W (s), t̄ = t′ ≥hz s, ξ �� ζ, ξ �� ζ, and ι ∈ ghd (ξ);
Z3. W (t) =W (s) and ξ � ζ;
Z4. W (t) =W (s), ξ = ζ, and t̄ >>f

hz s̄ for all symbols f ∈ ghd (ζ).

The >hz order requires minimality of the empty tuple (property X10) if δ = ε.
This ensures that ι s >hz ι, which is desirable to honor the subterm property. Even
thoughW (s) is defined using subtraction, given an arity-respecting ghd mapping,
the result is always a plain (unsigned) ordinal: Each penalty δ that is subtracted
is accounted for in the weight of the head, since δ · arity(mghd (ζ)) ≥ δ · arity(ζ).

Rule Z2 is more complicated than its first-order counterpart F2, because it
must cope with cases that cannot arise with first-order terms. The last three
conditions of rule Z2 are redundant but make the calculus deterministic.

Example 14. The following examples illustrate how ι and variables that can
be instantiated by ι behave with respect to >hz. Let arity(a) = arity(b) = 0,
arity(f) = arity(ι) = arity(x) = arity(y) = 1, δ = ε, w(a) = w(b) = w(f) = ε,
w(ι) = 0, ι � f � b � a, and ghd (x) = ghd (y) = Σ. The following comparisons
hold, where m > 0:

ιm f >hz f ιm x >hz x ym f >hz f ym x >hz x
ιm (f a) >hz f a ιm (x a) >hz x a ym (f a) >hz f a ym (x a) >hz x a

ιm (f b) >hz f a ιm (x b) >hz x a ym (f b) >hz f a ym (x b) >hz x a

The first column is justified by rule Z3. The remaining columns are justified by
rule Z2.

4.5 The Graceful Higher-Order KBO with Argument Coefficients

The requirement that variables must occur at least as often in the greater term
t than in the smaller term s—vars#(t) ⊇ vars#(s)—drastically restrains KBO.
For example, there is no way to compare the terms f x y y and g x x y , no matter
which weights and precedences we assign to f and g.

The literature on transfinite KBO proposes argument (or subterm) coef-
ficients to relax this limitation [33,37], but the idea is independent of the
use of ordinals for weights; it has its origin in Otter’s ad hoc term order
[37,38]. With each m-ary symbol f ∈ Σ, we associate m positive coefficients:
coef f : {1, . . . , arity(f)} → O>0. We write coef (f, i) for coef f(i). When computing the
weight of f s1 . . . sm, the weights of the arguments s1, . . . , sm are multiplied with
coef (f, 1), . . . , coef (f,m), respectively. The coefficients also affect variable counts;
for example, by taking 2 as the coefficient attached to g’s third argument, we
can make g x x y larger than f x y y .

Argument coefficients are problematic for applied variables: When computing
the weight of x a, what coefficient should be applied to a’s weight? Our solution
is to delay the decision by representing the coefficient as a fixed unknown. Sim-
ilarly, we represent the weight of a term variable x by an unknown. Thus, given

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 443

arity(x) = 1, the weight of the term x a is a polynomial wx + kxW (a) over
the unknowns wx and kx . In general, with each variable x ∈ V , we associate
the unknown wx ∈ O>0 and the family of unknowns kx ,i ∈ O>0 for i ∈ N>0,
i ≤ arity(x), corresponding to x ’s weight and argument coefficients, respectively.
We let P denote the polynomials over these unknowns.

We extend w to variable heads, w : Σ � V → P, by letting w(x) = wx , and
we extend coef to arbitrary terms s ∈ T , coef s : {1, . . . , arity(s)} → P, by having

coef (x , i) = kx ,i coef (s t, i) = coef (s, i + 1)

The second equation is justified by the observation that the ith argument of
the term s t is the (i + 1)st argument of s. Thus, the coefficient that applies
to b in f a b (i.e., the first argument to f a, or the second argument to f) is
coef (f a, 1) = coef (f, 2) = kf,2.

An assignment A is a mapping from the unknowns to the signed ordinals.
(If δ = 0, we can restrict the codomain to the plain ordinals.) The opera-
tor p|A evaluates a polynomial p under an assignment A. An assignment A is
admissible if wx |A ≥ w(mghd (x)) and kx ,i|A ≥ 1 for all variables x and indices
i ∈ {1, . . . , arity(x)}. If there exists an upper bound M on the coefficients coef (s, i),
we may also require kx ,i|A ≤ M. The M = 1 case coincides with the standard
KBO without argument coefficients.

Given two polynomials p, q, we have q > p if and only if q|A > p|A for
all admissible assignments A. Similarly, q ≥ p if and only if q|A ≥ p|A for all
admissible A.

Definition 15. Let � be a precedence following Convention 10, let ε ∈ N>0, let
δ ∈ {0, . . . , ε}, let w : Σ → O, let coef : Σ×N>0 → O>0, let ghd : V → P (Σ)−{∅}
be an arity-respecting mapping extended to symbols f by taking ghd (f) = f, and
for any > ⊆ T 2 and any f ∈ Σ, let >>f ⊆ (T ∗)2 be a relation that satisfies
properties X1–X6, X8, and, if δ = ε, X10. For each symbol f ∈ Σ, assume
w(f) ≥ ε− δ · arity(f). If w(ι) = 0 for some unary ι ∈ Σ, assume ι � f for all f ∈ Σ
and δ = ε. LetW : T → P be defined by

W (ζ s1 . . . sm) = w(ζ) + δ · (arity(mghd (ζ)) − m) +
∑m

i=1
coef (ζ, i) ·W (si)

If δ > 0, assume arity(ζ) �= ∞ for all heads ζ ∈ Σ � V . The induced graceful
(standard) Knuth–Bendix order >hc with argument coefficients on higher-order
Σ-terms is defined inductively so that t >hc s if any of these conditions is met,
where t = ξ t̄ and s = ζ s̄:

C1. W (t) >W (s);
C2. W (t) ≥W (s), t̄ = t′ ≥hc s, ξ �� ζ, ξ �� ζ, and ι ∈ ghd (ξ);
C3. W (t) ≥W (s) and ξ � ζ;
C4. W (t) ≥W (s), ξ = ζ, and t̄ >>f

hc s̄ for all symbols f ∈ ghd (ζ).

The weight comparisons amount to nonlinear polynomial constraints over
the unknowns, which are interpreted universally. Rules C2–C4 use ≥ instead

444 H. Becker et al.

of = becauseW (s) andW (t) cannot always be compared precisely. For example,
ifW (s) = ε andW (t) = wy , we might haveW (t) ≥W (s) but neitherW (t) >W (s)
norW (t) =W (s).

Example 16. Let ghd (x) = Σ for all variables x . Argument coefficients allow
us to perform these comparisons: g x >hc f x x and g x >hc f x g. By taking δ = 0,
coef (f, i) = 1 for i ∈ {1, 2}, coef (g, 1) = 3, and w(f) = w(g) = ε, we have the
constraints ε + 3wx > ε + 2wx and ε + 3wx > 2ε + wx . Since wx ≥ ε, we can
apply rule C1 in both cases.

The constraints are in general undecidable, but they can be underapproxi-
mated in various ways. A simple approach is to associate a fresh unknown with
each monomial and systematically replace the monomials by their unknowns.

Example 17. We want to derive z (y (f x)) >hc z (y x) using rule C1. For δ = 0,
the constraint is w(f) · kz ,1ky ,1 + coef (f, 1) ·w(f) · kz ,1ky ,1wz > kz ,1ky ,1wz . It can
be underapproximated by the linear constraint w(f) · a + coef (f, 1) · w(f) · b > b,
which is true given the ranges of the coefficients and unknowns involved.

5 Properties

We now state and prove the main properties of our KBO with argument coeffi-
cients, >hc. The proofs carry over easily to the two simpler orders, >hb and >hz.
Many of the proofs are inspired by Baader and Nipkow [3] and Zantema [51].

Theorem 18 (Irreflexivity). s �>hc s.

Proof. By strong induction on |s|. Assume s >hc s and let s = ζ s̄. Clearly, due to
the irreflexivity of �, the only rule that could possibly derive s >hc s is C4. Hence,
s̄ >>f

hc s̄ for some f ∈ ghd (ζ). On the other hand, by the induction hypothesis >hc

is irreflexive on the arguments s̄ of f. Since >>f preserves irreflexivity (property
X3), we must have s̄ �>>f

hc s̄, a contradiction. ��
Lemma 19. If t >hc s, thenW (t) ≥W (s).

Theorem 20. (Transitivity). If u >hc t and t >hc s, then u >hc s.

Proof. By well-founded induction on the multiset {|s| , |t| , |u|} with respect to
the multiset extension of > on N. Let u = χ ū, t = ξ t̄, and s = ζ s̄. By Lemma 19,
we haveW (u) ≥W (t) ≥W (s). If either u >hc t or t >hc s was derived by rule C1,
we get u >hc s by rule C1. The remaining nine cases are quite tedious to prove,
especially the case where both u >hc t and t >hc s are derived by rule C2. We
refer to our report [7] and to the Isabelle formalization [6] for the full proof. ��

By Theorems 18 and 20, >hc is a partial order. In the remaining proofs, we
will often leave applications of these theorems (and of antisymmetry) implicit.

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 445

Lemma 21. s t >hc t.

Proof. By strong induction on |t|. First, we have W (s t) ≥W (t), as required to
apply rule C2 or C3. IfW (s t) >W (t), we derive s t >hc t by rule C1. Otherwise,
there must exist an assignment A such that W (s t)|A =W (t)|A. This can happen
only if W (s)|A = δ = ε, which in turns means that ι ∈ ghd (hd (s)). Since ι is the
maximal symbol for �, either hd (s) = hd (t), hd (s) � hd (t), or the two heads
are incomparable. The last two possibilities are easily handled by appealing to
rule C2 or C3. If hd (s) = hd (t) = ζ, then t must be of the form ζ or ζ t′, with
ι ∈ ghd (ζ). In the t = ζ case, we have ζ >>f

hc () for all f ∈ Σ by minimality of
the empty tuple (property X10). In the t = ζ t′ case, we have t >hc t′ by the
induction hypothesis and hence t >>f

hc t′ for any f ∈ Σ by compatibility with
tuple contexts (property X6) together with irreflexibility (Theorem 18). In both
cases, ζ t >hc ζ t′ by rule C4. ��
Lemma 22. s t >hc s.

Proof. IfW (s t) >W (s), the desired result can be derived using C1. Otherwise,
we have W (s t) ≥ W (s) and δ = ε. The desired result follows from rule C4,
compatibility with prepending (property X8), and minimality of the empty tuple
(property X10). ��
Theorem 23 (Subterm Property). If s is a proper subterm of t, then t >hc s.

Proof. By structural induction on t, exploiting Lemmas 21 and 22 and
transitivity. ��

The first-order KBO satisfies compatibility with Σ-operations. A slightly
more general property holds for >hc:

Theorem 24 (Compatibility with Functions). If t′ >hc t, then s t′ ū >hc s t ū.

Proof. By induction on the length of ū. The base case, ū = (), follows from
rule C4, Lemma 19, compatibility of >>f with tuple contexts (property X6), and
irreflexivity of >hc. In the step case, ū = ū′ ·u, we haveW (s t′ ū′) ≥W (s t ū′) from
the induction hypothesis together with Lemma 19. HenceW (s t′ ū) ≥W (s t ū) by
the definition ofW . Thus, we can apply rule C4, again exploiting compatibility
of >>f with contexts. ��

To build arbitrary higher-order contexts, we also need compatibility with
arguments. This property can be used to rewrite subterms such as f a in f a b
using a rewrite rule f x → tx . The property holds unconditionally for >hb and >hz

but not for >hc: s′ >hc s does not imply s′ t >hc s t, because the occurrence of t
may weigh more as an argument to s than to s′. By restricting the coefficients
of s and s′, we get a weaker property:

Theorem 25. (Compatibility with Arguments). Assume that >>f is com-
patible with appending (property X9) for every symbol f ∈ Σ. If s′ >hc s and
coef (s′,1) ≥ coef (s, 1), then s′ t >hc s t.

446 H. Becker et al.

Proof. If s′ >hc s was derived by rule C1, by exploiting coef (s′, 1) ≥ coef (s, 1) and
the definition ofW , we can apply rule C1 to get the desired result. Otherwise,
we have W (s′) ≥ W (s) by Lemma 19 and hence W (s′ t) ≥ W (s t). Due to the
assumption that coef (s′, 1) is defined, s′ >hc s cannot have been derived by rule
C2. If s′ >hc s was derived by rule C3, we get the desired result by rule C3.
If s′ >hc s was derived by rule C4, we get the result by rule C4 together with
property X9. ��

The next theorem, stability under substitution, depends on a substitution
lemma connecting term substitutions and polynomial unknown assignments.

Definition 26. The composition A ◦ σ of a substitution σ and an assignment
A is defined by (A ◦ σ)(wx) = W (xσ)|A − δ · arity(mghd (x)) and (A ◦ σ)(kx ,i) =
coef (xσ, i)

∣
∣
A
.

Lemma 27 (Substitution). Let σ be a substitution that respects the mapping
ghd. Then W (sσ)|A =W (s)|A◦σ.

Theorem 28 (Stability under Substitution). If t >hc s, then tσ >hc sσ for
any substitution σ that respects the mapping ghd.

Proof. By well-founded induction on the multiset {|s| , |t|} with respect to the
multiset extension of > on N. We present only two of the four cases.

If t >hc s was derived by rule C1,W (t) >W (s). Hence, W (t)|A◦σ >W (s)|A◦σ,
and by the substitution lemma (Lemma 27), we getW (tσ) >W (sσ). The desired
result, tσ >hc sσ, follows by rule C1.

If t >hc s was derived by rule C4, we haveW (t) ≥W (s), hd (t) = hd (s) = ζ, and
args(t) >>f

hc args(s) for all f ∈ ghd (ζ). Since σ respects ghd, we have the inclusion
ghd (hd (sσ)) ⊆ ghd (ζ). We apply preservation of stability of >>f

hc (property X2) to
derive args(t)σ >>f

hc args(s)σ for all f ∈ ghd (hd (sσ)) ⊆ ghd (ζ). This step requires
that t′ > s′ implies t′σ > s′σ for all s′, t′ ∈ args(s) ∪ args(t), which follows from
the induction hypothesis. From args(t)σ >>f

hc args(s)σ, we get args(tσ) = args(ζ)σ ·
args(t)σ >>f

hc args(ζ)σ · args(s)σ = args(sσ) by compatibility with prepending
(property X8). Finally, we apply rule C4. ��

The use of signed ordinals is crucial for Definition 26 and Lemma 27. Consider
the signature Σ = {f, g} where arity(f) = 3, arity(g) = 0, w(f) = 1, and w(g) = ω.
Assume δ = ε = 1. Let x ∈ V be an arbitrary variable such that ghd (x) = Σ;
clearly, mghd (x) = f. Let A be an assignment such that A(x) = w(mghd (x)) =
w(f) = 1, and let σ be a substitution that maps x to g. A negative coefficient
arises when we compose σ with A: (A ◦ σ)(x) = W (g) − δ · arity(f) = w(g) + δ ·
arity(g) − δ · arity(f) = ω− 3. However, if we fix δ = 0, we can use plain ordinals
throughout.

Theorem 29 (Ground Totality). Assume >>f preserves totality (property
X7) for every symbol f ∈ Σ, and let s, t be ground terms. Then either t ≥hc s or
t <hc s.

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 447

Proof. By strong induction on |s| + |t| . Let t = g t̄ and s = f s̄. IfW (s) �=W (t),
then either W (t) > W (s) or W (t) < W (s), since the weights of ground terms
contain no polynomial unknowns. Hence, we have t >hc s or t <hc s by rule C1.
Otherwise,W (s) =W (t). If f �= g, then either g � f or g ≺ f, and we have t >hc s
or t <hc s by rule C3. Otherwise, g = f. By preservation of totality (property X7),
we have either t̄ >>f

hc s̄, t̄ <<
f
hc s̄, or s̄ = t̄. In the first two cases, we have t >hc s or

t <hc s by rule C4. In the third case, we have s = t. ��
Theorem 30 (Well-foundedness). There exists no infinite chain s0 >hc

s1 >hc · · · .
Proof. The proof largely follows Zantema [51]. We assume that there exists a
chain s0 >hc s1 >hc · · · and show that this leads to a contradiction. Without loss
of generality, we can assume that the chain has the form f ū0 >hc f ū1 >hc · · · ,
where elements of the chain all have the same weight and the arguments in ūi are
not part of any infinite descending chains of their own. From the weight, we derive
an upper bound on the numbers of arguments |ūi|. By bounded preservation of
well-foundedness (Lemma 3), >>f

hc is well founded. ��

6 Formalization

The definitions and the proofs presented in this paper have been fully formalized
in Isabelle/HOL [40] and are part of the Archive of Formal Proofs [6]. The
formal development relies on no custom axioms; at most local assumptions such
as “� is a well-founded total order on Σ” are made. The development focuses
on two KBO variants: the transfinite >hc with argument coefficients and the
restriction of >hz to natural number weights. The use of Isabelle, including its
model finder Nitpick [14] and a portfolio of automatic theorem provers [13], was
invaluable for designing the orders, proving their properties, and carrying out
various experiments.

The basic infrastructure for λ-free higher-order terms and extension orders is
shared with our formalization of the λ-free higher-order RPO [15]. Beyond stan-
dard Isabelle libraries, the formal proof development also required polynomials
and ordinals. For the polynomials, we used Sternagel and Thiemann’s Archive
of Formal Proofs entry [42]. For the ordinals, we developed our own library,
with help from Mathias Fleury and Dmitriy Traytel [11]. Syntactic ordinals are
isomorphic to the hereditarily finite multisets, which can be defined easily using
Isabelle’s (co)datatype definitional package [12]:

datatype hmultiset = HMSet (hmultiset multiset)

The above command introduces a type hmultiset generated freely by
the constructor HMSet : hmultiset multiset → hmultiset, where multiset is
Isabelle’s unary (postfix) type constructor of finite multisets. A syntactic ordi-
nal

∑m
i=1 ω

αi ki is represented by the multiset consisting of k1 copies of α1, k2
copies of α2, . . . , km copies of αm. Accordingly, 0 = HMSet {}, 1 = HMSet {0},
5 = HMSet {0, 0, 0, 0, 0}, and 2ω = HMSet {1, 1}. Signed syntactic ordinals are
defined as finite signed multisets of hmultiset values. Signed (or hybrid) multisets
generalize standard multisets by allowing negative multiplicities [5].

448 H. Becker et al.

7 Examples

Notwithstanding our focus on superposition, we can use >hc or its special
cases >hb and >hz to show the termination of λ-free higher-order term rewriting
systems or, equivalently, applicative term rewriting systems [29]. To establish
termination of a term rewriting system, it suffices to show that all of its rewrite
rules t → s can be oriented as t > s by a single reduction order : a well-founded
partial order that is compatible with contexts and stable under substitutions. If
the order additionally enjoys the subterm property, it is called a simplification
order. Under the proviso that ghd honestly captures the set of ground heads
that may arise when instantiating the variables, the order >hz is a simplification
order. By contrast, >hc is not even a reduction order since it lacks compatibil-
ity with arguments. Nonetheless, the conditional Theorem 25 is sufficient if the
outermost heads are fully applied or if their pending argument coefficients are
known and suitable [16, Sect. 5].

In the examples below, unless specified otherwise, δ = 0, ε = 1, w(f) = 1,
and >>f is the length-lexicographic order, for all symbols f.

Example 31. Consider the following system [16, Example 23], where f is a
variable:

insert (f n) (image f A) 1→ image f (insert n A) square n 2→ times n n

Rule 1 captures a set-theoretic property: { f (n)} ∪ f [A] = f [{n} ∪ A], where
f [A] denotes the image of set A under function f . We can prove this system
terminating using >hc: By letting w(square) = 2 and coef (square, 1) = 2, both
rules can be oriented by C1. Rule 2 is beyond the reach of the orders >ap, >hb,
and >hz, because there are too many occurrences of n on the right-hand side.
The system is also beyond the scope of the uncurrying approach of Hirokawa
et al. [24], because of the applied variable f on the left-hand side of rule 1.

Example 32. The following system specifies map functions on ML-style option
and list types, each equipped with two constructors:

omap f None
1→ None omap f (Some n) 2→ Some (f n)

map f Nil
3→ Nil map f (Cons m ms) 4→ Cons (f m) (map f ms)

Rules 1–3 are easy to orient using C1, but rule 4 is beyond the reach of all KBO
variants. To compensate for the two occurrences of the variable f on the right-
hand side, we would need a coefficient of at least 2 on map’s first argument, but
the coefficient would also make the recursive call map f heavier on the right-hand
side.

The limitation affecting the map function in Example 32 prevents us from
using KBO to prove termination of most of the term rewriting systems we used
to demonstrate our RPO [16]. Moreover, the above examples are easy for modern
first-order termination provers, which use uncurrying techniques [24,43] to trans-
form applicative rewrite systems into functional systems that can be analyzed

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 449

by standard techniques. This is somewhat to be expected: Even with transfinite
weights and argument coefficients, KBO tends to consider syntactically smaller
terms smaller. However, for superposition, this limitation might be a strength.
The calculus’s inferences and simplifications rely on the term order to produce
smaller and smaller terms (and literals and clauses). Using KBO, the terms
will typically be syntactically smaller as well. This is desirable, because many
algorithms and data structures do not scale well in term size.

Moreover, for superposition, the goal is not to orient a given set of equations
in a particular way, but rather to obtain either t > s or t < s for a high percentage
of terms s, t arising during proof search, quickly. The first-order KBO can be
implemented so that it takes linear time to compute in the size of the terms [36].
The same techniques are easy to generalize to our KBO variants, if we use the
approach discussed at the end of Sect. 4.3 to compare the arguments of variable
heads.

8 Conclusion

When designing the KBO variants >hb, >hz, and >hc and the RPO variants that
preceded them [16], we aimed at full coincidence with the first-order case. Our
goal is to gradually transform existing first-order automatic provers into higher-
order provers. By carefully generalizing the proof calculi and data structures,
we aim at designing provers that behave exactly like first-order provers on first-
order problems, perform mostly like first-order provers on higher-order problems
that are mostly first-order, and scale up to arbitrary higher-order problems.

An open question is, What is the best way to cope with λ-abstraction in a
superposition prover? The Leo-III prover [49] relies on the computability path
order [17] to reduce the search space; however, the order lacks many of the
properties needed for completeness. With its stratified architecture, Otter-λ [8]
is closer to what we are aiming at, but it is limited to second-order logic and
offers no completeness guarantees.

A simple approach to λ-abstractions is to encode them using SK combinators
[47]. This puts a heavy burden on the superposition machinery (and is a reason
why HOLyHammer and Sledgehammer are so weak on higher-order problems).
We could alleviate some of this burden by making the prover aware of the com-
binators, implementing higher-order unification and other algorithms specialized
for higher-order reasoning in terms of them. A more appealing approach may be
to employ a lazy variant of λ-lifting [27], whereby fresh symbols f and definitions
f x̄ = t are introduced during proof search. Argument coefficients could be used
to orient the definition as desired. For example, λx. x + x + x could be mapped
to a symbol g with an argument coefficient of 3 and a sufficiently large weight to
ensure that g x ≈ x+ x+ x is oriented from left to right. However, it is not even
clear that a left-to-right orientation is suitable here. Since superposition provers
generally work better on syntactically small terms, it might be preferable to fold
the definition of g whenever possible rather than unfold it.

450 H. Becker et al.

Acknowledgment. We are grateful to Stephan Merz, Tobias Nipkow, and Christoph
Weidenbach for making this research possible; to Mathias Fleury and Dmitriy Traytel
for helping us formalize the syntactic ordinals; to Andrei Popescu and Christian Ster-
nagel for advice with extending a partial well-founded order to a total one in the
mechanized proof of Lemma 3; to Andrei Voronkov for the enlightening discussion
about KBO at the IJCAR 2016 banquet; and to Carsten Fuhs, Mark Summerfield, and
the anonymous reviewers for suggesting many textual improvements.

Blanchette has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement
No. 713999, Matryoshka). Wand is supported by the Deutsche Forschungsgemeinschaft
(DFG) grant Hardening the Hammer (NI 491/14-1).

References

1. Andrews, P.B., Cohen, E.L.: Theorem proving in type theory. In: Reddy, R. (ed.)
IJCAI 1977, p. 566. William Kaufmann (1977)

2. Aoto, T., Yamada, T.: Termination of simply typed term rewriting by translation
and labelling. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 380–394.
Springer, Heidelberg (2003). doi:10.1007/3-540-44881-0 27

3. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press,
Cambridge (1998)

4. Backes, J., Brown, C.E.: Analytic tableaux for higher-order logic with choice. J.
Autom. Reasoning 47(4), 451–479 (2011)

5. Banâtre, J.-P., Fradet, P., Radenac, Y.: Generalised multisets for chemical pro-
gramming. Math. Struct. Comput. Sci. 16(4), 557–580 (2006)

6. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of Knuth-
Bendix orders for lambda-free higher-order terms. Archive of Formal Proofs (2016).
Formal proof development, https://isa-afp.org/entries/Lambda Free KBOs.shtml

7. Becker, H., Blanchette, J.C., Waldmann, U., Wand, D.: Transfinite Knuth-Bendix
orders for lambda-free higher-order terms. Tech. report (2017), http://cs.vu.nl/
∼jbe248/lambda free kbo rep.pdf

8. Beeson, M.: Lambda logic. In: Basin, D., Rusinowitch, M. (eds.) IJCAR
2004. LNCS, vol. 3097, pp. 460–474. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-25984-8 34

9. Benzmüller, C., Kohlhase, M.: Extensional higher-order resolution. In: Kirchner,
C., Kirchner, H. (eds.) CADE 1998. LNCS, vol. 1421, pp. 56–71. Springer, Heidel-
berg (1998). doi:10.1007/BFb0054248

10. Benzmüller, C., Miller, D.: Automation of higher-order logic. In: Siekmann, J.H.
(ed.) Computational Logic. Handbook of the History of Logic, vol. 9, pp. 215–254.
Elsevier (2014)

11. Blanchette, J.C., Fleury, M., Traytel, D.: Formalization of nested multisets, hered-
itary multisets, and syntactic ordinals. Archive of Formal Proofs (2016). Formal
proof development, https://isa-afp.org/entries/Nested Multisets Ordinals.shtml

12. Blanchette, J.C., Hölzl, J., Lochbihler, A., Panny, L., Popescu, A., Traytel, D.:
Truly modular (Co)datatypes for Isabelle/HOL. In: Klein, G., Gamboa, R. (eds.)
ITP 2014. LNCS, vol. 8558, pp. 93–110. Springer, Cham (2014). doi:10.1007/
978-3-319-08970-6 7

13. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formalized Reasoning 9(1), 101–148 (2016)

http://dx.doi.org/10.1007/3-540-44881-0_27
https://isa-afp.org/entries/Lambda_Free_KBOs.shtml
http://cs.vu.nl/~jbe248/lambda_free_kbo_rep.pdf
http://cs.vu.nl/~jbe248/lambda_free_kbo_rep.pdf
http://dx.doi.org/10.1007/978-3-540-25984-8_34
http://dx.doi.org/10.1007/978-3-540-25984-8_34
http://dx.doi.org/10.1007/BFb0054248
https://isa-afp.org/entries/Nested_Multisets_Ordinals.shtml
http://dx.doi.org/10.1007/978-3-319-08970-6_7
http://dx.doi.org/10.1007/978-3-319-08970-6_7

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 451

14. Blanchette, J.C., Nipkow, T.: Nitpick: a counterexample generator for higher-order
logic based on a relational model finder. In: Kaufmann, M., Paulson, L.C. (eds.)
ITP 2010. LNCS, vol. 6172, pp. 131–146. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-14052-5 11

15. Blanchette, J.C., Waldmann, U., Wand, D.: Formalization of recursive path orders
for lambda-free higher-order terms. Archive of Formal Proofs (2016). Formal proof
development, https://isa-afp.org/entries/Lambda Free RPOs.shtml

16. Blanchette, J.C., Waldmann, U., Wand, D.: A lambda-free higher-order recur-
sive path order. In: Esparza, J., Murawski, A.S. (eds.) FoSSaCS 2017.
LNCS, vol. 10203, pp. 461–479. Springer, Heidelberg (2017). doi:10.1007/
978-3-662-54458-7 27

17. Blanqui, F., Jouannaud, J.-P., Rubio, A.: The computability path ordering. Log.
Meth. Comput. Sci. 11(4) (2015)

18. Bofill, M., Borralleras, C., Rodŕıguez-Carbonell, E., Rubio, A.: The recursive path
and polynomial ordering for first-order and higher-order terms. J. Log. Comput.
23(1), 263–305 (2013)

19. Bofill, M., Rubio, A.: Paramodulation with non-monotonic orderings and simplifi-
cation. J. Autom. Reasoning 50(1), 51–98 (2013)

20. Dershowitz, N., Manna, Z.: Proving termination with multiset orderings. Commun.
ACM 22(8), 465–476 (1979)

21. Ferreira, M.C.F., Zantema, H.: Well-foundedness of term orderings. In: Dershowitz,
N., Lindenstrauss, N. (eds.) CTRS 1994. LNCS, vol. 968, pp. 106–123. Springer,
Heidelberg (1995). doi:10.1007/3-540-60381-6 7

22. Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination
of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS, vol. 3717,
pp. 216–231. Springer, Heidelberg (2005). doi:10.1007/11559306 12

23. Henkin, L.: Completeness in the theory of types. J. Symb. Log. 15(2), 81–91 (1950)
24. Hirokawa, N., Middeldorp, A., Zankl, H.: Uncurrying for termination and complex-

ity. J. Autom. Reasoning 50(3), 279–315 (2013)
25. Huet, G., Oppen, D.C.: Equations and rewrite rules: a survey. In: Book, R.V.

(ed.) Formal Language Theory: Perspectives and Open Problems, pp. 349–405.
Academic Press (1980)

26. Huet, G.P.: A mechanization of type theory. In: Nilsson, N.J. (ed.) International
Joint Conference on Artificial Intelligence (IJCAI 1973), pp. 139–146. William
Kaufmann (1973)

27. Hughes, R.J.M.: Super-combinators: a new implementation method for applicative
languages. In: LFP 1982, pp. 1–10. ACM Press (1982)

28. Jouannaud, J.-P., Rubio, A.: Polymorphic higher-order recursive path orderings.
J. ACM 54(1), 2:1–2:48 (2007)

29. Kennaway, R., Klop, J.W., Sleep, M.R., de Vries, F.: Comparing curried and uncur-
ried rewriting. J. Symbolic Comput. 21(1), 15–39 (1996)

30. Knuth, D.E., Bendix, P.B.: Simple word problems in universal algebras. In: Leech,
J. (ed.) Computational Problems in Abstract Algebra, pp. 263–297. Pergamon
Press (1970)

31. Kop, C.: Higher Order Termination. Ph.D. thesis, Vrije Universiteit Amsterdam
(2012)

32. Kop, C., Raamsdonk, F.: A higher-order iterative path ordering. In: Cervesato, I.,
Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS, vol. 5330, pp. 697–711. Springer,
Heidelberg (2008). doi:10.1007/978-3-540-89439-1 48

http://dx.doi.org/10.1007/978-3-642-14052-5_11
http://dx.doi.org/10.1007/978-3-642-14052-5_11
https://isa-afp.org/entries/Lambda_Free_RPOs.shtml
http://dx.doi.org/10.1007/978-3-662-54458-7_27
http://dx.doi.org/10.1007/978-3-662-54458-7_27
http://dx.doi.org/10.1007/3-540-60381-6_7
http://dx.doi.org/10.1007/11559306_12
http://dx.doi.org/10.1007/978-3-540-89439-1_48

452 H. Becker et al.

33. Kovács, L., Moser, G., Voronkov, A.: On transfinite Knuth-Bendix orders. In:
Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE 2011. LNCS, vol. 6803, pp.
384–399. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22438-6 29

34. Kovács, L., Voronkov, A.: First-order theorem proving and Vampire. In: Shary-
gina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 1–35. Springer, Heidel-
berg (2013). doi:10.1007/978-3-642-39799-8 1

35. Lifantsev, M., Bachmair, L.: An LPO-based termination ordering for higher-
order terms without λ-abstraction. In: Grundy, J., Newey, M. (eds.) TPHOLs
1998. LNCS, vol. 1479, pp. 277–293. Springer, Heidelberg (1998). doi:10.1007/
BFb0055142

36. Löchner, B.: Things to know when implementing KBO. J. Autom. Reasoning 36(4),
289–310 (2006)

37. Ludwig, M., Waldmann, U.: An extension of the Knuth-Bendix ordering with LPO-
like properties. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol.
4790, pp. 348–362. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75560-9 26

38. McCune, W.: Otter 3.3 reference manual. Technical. Report 263 (2003)
39. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson,

J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, pp. 371–443.
Elsevier and MIT Press (2001)

40. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002). doi:10.1007/
3-540-45949-9

41. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,
A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45221-5 49

42. Sternagel, C., Thiemann, R.: Executable multivariate polynomials. Archive of
Formal Proofs (2010). Formal proof development, https://isa-afp.org/entries/
Polynomials.shtml

43. Sternagel, C., Thiemann, R.: Generalized and formalized uncurrying. In: Tinelli,
C., Sofronie-Stokkermans, V. (eds.) FroCoS 2011. LNCS, vol. 6989, pp. 243–258.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-24364-6 17

44. Sternagel, C., Thiemann, R.: Formalizing Knuth-Bendix orders and Knuth-Bendix
completion. In: van Raamsdonk, F. (ed.) RTA 2013, vol. 21. LIPIcs, pp. 287–302.
Schloss Dagstuhl (2013)

45. Sultana, N., Blanchette, J.C., Paulson, L.C.: LEO-II and Satallax on the Sledge-
hammer test bench. J. Applied Logic 11(1), 91–102 (2013)

46. Toyama, Y.: Termination of S-expression rewriting systems: lexicographic path
ordering for higher-order terms. In: Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091,
pp. 40–54. Springer, Heidelberg (2004). doi:10.1007/978-3-540-25979-4 3

47. Turner, D.A.: A new implementation technique for applicative languages. Softw.
Pract. Experience 9(1), 31–49 (1979)

48. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.:
SPASS version 3.5. In: Schmidt, R.A. (ed.) CADE 2009. LNCS, vol. 5663, pp.
140–145. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02959-2 10

49. Wisniewski, M., Steen, A., Kern, K., Benzmüller, C.: Effective normalization tech-
niques for HOL. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS, vol. 9706,
pp. 362–370. Springer, Cham (2016). doi:10.1007/978-3-319-40229-1 25

http://dx.doi.org/10.1007/978-3-642-22438-6_29
http://dx.doi.org/10.1007/978-3-642-39799-8_1
http://dx.doi.org/10.1007/BFb0055142
http://dx.doi.org/10.1007/BFb0055142
http://dx.doi.org/10.1007/978-3-540-75560-9_26
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/3-540-45949-9
http://dx.doi.org/10.1007/978-3-642-45221-5_49
https://isa-afp.org/entries/Polynomials.shtml
https://isa-afp.org/entries/Polynomials.shtml
http://dx.doi.org/10.1007/978-3-642-24364-6_17
http://dx.doi.org/10.1007/978-3-540-25979-4_3
http://dx.doi.org/10.1007/978-3-642-02959-2_10
http://dx.doi.org/10.1007/978-3-319-40229-1_25

A Transfinite Knuth–Bendix Order for Lambda-Free Higher-Order Terms 453

50. Zankl, H., Winkler, S., Middeldorp, A.: Beyond polynomials and Peano arithmetic–
automation of elementary and ordinal interpretations. J. Symb. Comput. 69, 129–
158 (2015)

51. Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term
Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55,
pp. 181–259. Cambridge University Press, Cambridge (2003)

Certifying Safety and Termination Proofs
for Integer Transition Systems

Marc Brockschmidt1, Sebastiaan J.C. Joosten2, René Thiemann2,
and Akihisa Yamada2(B)

1 Microsoft Research Cambridge, Cambridge, UK
2 University of Innsbruck, Innsbruck, Austria

akihisa.yamada@uibk.ac.at

Abstract. Modern program analyzers translate imperative programs to
an intermediate formal language like integer transition systems (ITSs),
and then analyze properties of ITSs. Because of the high complexity of
the task, a number of incorrect proofs are revealed annually in the Soft-
ware Verification Competitions.

In this paper, we establish the trustworthiness of termination and
safety proofs for ITSs. To this end we extend our Isabelle/HOL formaliza-
tion IsaFoR by formalizing several verification techniques for ITSs, such as
invariant checking, ranking functions, etc. Consequently the extracted cer-
tifier CeTA can now (in)validate safety and termination proofs for ITSs. We
also adapted the program analyzers T2 and AProVE to produce machine-
readable proof certificates, and as a result, most termination proofs gen-
erated by these tools on a standard benchmark set are now certified.

1 Introduction

A number of recently introduced techniques for proving safety or termination of
imperative programs, such as Java [1,29,32] and C [6,16,34], rely on a two-step
process: the input program is abstracted into an intermediate formal language,
and then properties of the intermediate program are analyzed. These intermedi-
ate languages are usually variations of integer transition systems (ITSs), reflect-
ing the pervasive use of built-in integer data types in programming languages,
as well as common abstractions like modeling algebraic datatypes by their size.
For example, the C program in Fig. 1 can be abstracted to the ITS in Fig. 2.

To establish the trustworthiness of such program analyzers, two problems
need to be tackled. First, the soundness of the translation from the source pro-
gramming language to ITSs needs to be proven, requiring elaborate models that
capture the semantics of advanced programming languages [21,24,39]. Then, the
soundness of safety and termination proofs on ITSs needs to be validated.

This work was partially supported by FWF project Y757. The authors are listed in
alphabetical order regardless of individual contributions or seniority. We thank the
anonymous reviewers for their helpful comments.

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 454–471, 2017.
DOI: 10.1007/978-3-319-63046-5 28

Certifying Safety and Termination Proofs for Integer Transition Systems 455

int x, y, z;

z = -1;

while (x >= -5) {
x = x + z;

y = 0;

z = z - 1;

while (y < x)

y = y + 1;

}

Fig. 1. Input C program

�0

�1 �2

τ1 : x′ = x ∧
y′ = y ∧
z′ = −1

τ2 : x ≥ −5 ∧ x′ = x + z ∧
y′ = 0 ∧ z′ = z − 1

τ4 :
y ≥ x ∧ x′ = x ∧
y′ = y ∧ z′ = z

τ3 : y < x ∧
x′ = x ∧
y′ = y + 1 ∧
z′ = z

Fig. 2. ITS P corresponding to Fig. 1

In this work, we tackle the second problem by extending IsaFoR [35], the
Isabelle Formalization (originally) of Rewriting, by termination and safety prov-
ing techniques for ITSs. We then export verified code for the certifier CeTA,
which validates proof certificates generated by untrusted program analyzers. In
order for CeTA to read proofs for ITSs, we extend an XML certificate format [33]
with syntax for ITS inputs and various proof techniques. Moreover, we adapt
the program analyzers AProVE [18] and T2 [9] to produce certificates following
the XML format.

The rest of the paper is organized as follows. In Sect. 2, we formalize logic tran-
sition systems (LTSs), a generalization of ITSs. The termination and safety proofs
are developed on LTSs, so that we can easily extend our results to bit vectors,
arrays, etc. A number of approaches reduce the termination analysis problem to
a sequence of program safety problems that derive suitable invariants [6,8,14,37].
Thus in Sect. 3, we formalize program invariant proofs as generated by the Impact
algorithm [26], yielding a certifier for safety proofs. In Sect. 4 we consider certify-
ing termination proofs. We recapitulate and formalize the concept of cooperation
programs [8] and then present how to certify termination proofs. To instantiate
the general results to ITSs, in Sect. 5 we discuss how to reason about linear inte-
ger arithmetic. In Sect. 6 we report on an experimental evaluation , showing that
a large number of termination proofs can now be certified.

This paper describes what program analyzers need to provide in a proof cer-
tificate, and what CeTA has to check to certify them. As all proofs are checked
by Isabelle [27], we have omitted them from this paper. The full formalization,
consisting of around 10 000 lines of Isabelle code and an overview that links the-
orems as stated in this paper to the actual formalization is available at http://
cl-informatik.uibk.ac.at/ceta/experiments/lts. The website further contains cer-
tificates for the two termination proofs of the ITS P in Fig. 2 that are developed
in this paper.

Related Work: A range of methods has been explored to improve the trust-
worthiness of program analyzers. Most related to this work is the certifica-
tion of termination and complexity proofs of term rewrite systems [5,12,35].

http://cl-informatik.uibk.ac.at/ceta/experiments/lts
http://cl-informatik.uibk.ac.at/ceta/experiments/lts

456 M. Brockschmidt et al.

Here certification means to validate output of untrusted tools using a trustable
certifier whose soundness is formally verified. Although our work is built upon
one of them [35], the techniques for ITSs required a substantial addition to
the library. SparrowBerry [11] follows a similar approach to validate numerical
program invariants obtained by abstract interpretation [15] of C programs.

A less formal approach, taken in the context of complexity [2] and safety [3]
proofs, is to cross-check a tool output using another (unverified) tool. A weakness
of this approach is that, even if a “cross-checker” accepts a proof, it does not
mean the proof is fully trustable. The cross-checker may have a bug, and both
tools may be based on wrong (interpretations of) paper proofs. In contrast, we
aim at termination, and we have formally proven in Isabelle that if our certifier
accepts a proof, then the proof is indeed correct.

Another approach is to develop fully verified program analyzers, in which
all intermediate steps in the proof search are formalized and verified, and not
only the final proof as in our case. Examples of this approach have been used
to develop a static analyzer for numerical domains [20] and to validate a Java
Bytecode-like intermediate language in JINJA [21]. Compared to this approach,
our certification approach demands much less work on the tool developers: they
only have to output proofs that comply with the certificate format.

2 Logic Transition Systems

While our goal is specific to linear integer arithmetic, the used techniques apply
to other logics as well. We separate the generic parts from the logic-specific
parts. This clarifies the explanation of the generic parts, and makes it easier to
extend our development to other logics in the future. We assume a sound validity
checker for clauses (disjunctions of atoms) of the underlying logic. Linear inte-
ger arithmetic (i.e., Presburger arithmetic) can be considered as the canonical
instance, but one may consider bit vectors, arrays, etc.

A logic describes how to interpret formulas of a certain shape. We first for-
malize the notion of many-sorted algebras [10,38] and formulas over them. We
base our development on the (untyped) term datatype in IsaFoR.

Definition 1. A many-sorted signature Σ consists of a set S of sorts and
a disjoint family that assigns a set Σσ1···σnσ of function symbols to each list
σ1, . . . , σn, σ ∈ S of sorts. A sorted variable is a pair of a variable symbol v and
a sort σ (written v : σ, or just v when the sort is clear from the context). Given
a set V of sorted variables, the set Tσ(V) of expressions of sort σ is defined
inductively as follows: v : σ ∈ Tσ(V), and f(e1, . . . , en) ∈ Tσ(V) if f ∈ Σσ1···σnσ

and ei ∈ Tσi
(V) for each i = 1, . . . , n.

Definition 2. A many-sorted Σ-algebra A specifies the domain Aσ of each sort
σ ∈ S and an interpretation [[f]] : Aσ1 × · · · × Aσn

→ Aσ of each f ∈ Σσ1···σnσ.
An assignment α on a set V of sorted variables assigns each variable v : σ a

value α(v) ∈ Aσ. We define the interpretation [[e]]α of an expression e under α
as usual: [[v]]α = α(v) and [[f(e1, . . . , en)]]α = [[f]]([[e1]]α, . . . , [[en]]α).

Certifying Safety and Termination Proofs for Integer Transition Systems 457

Definition 3. We define a many-sorted logic Λ as a tuple consisting of a set of
sorts S, a many-sorted signature Σ on S, and a Σ-algebra A such that bool ∈ S
and true, false ∈ Abool. Formulas Λ(V) over typed variables from V are defined
by the grammar φ:: = a | φ ∧ φ | φ ∨ φ | ¬φ,1 where an atom a ∈ Tbool(V) is an
expression of sort bool.

We say an assignment α satisfies a formula φ, written α |= φ, if φ evaluates
to true when every atom a in the formula is replaced by [[a]]α. We write φ |= ψ
iff α |= φ implies α |= ψ for every assignment α.

We define the notion of logic transition systems (LTSs) over a logic Λ. Note
that an LTS can be seen as a labeled transition system, which also is commonly
abbreviated to LTS.

In the following, we fix a set L of locations in a program and a set V of
variables that may occur in the program.

Definition 4. A state is a pair of � ∈ L and an assignment α on V.

To define state transitions, we introduce a fresh variable v′ for each variable
v ∈ V. We write V ′ for the set {v′ | v ∈ V}, α′ for the assignment on V ′ defined
as α′(v′) = α(v), and e′ (resp. φ′) for the expression e (resp. formula φ) where
all variables v are replaced by v′.

Definition 5. A transition rule is a triple of �, r ∈ L and a transition formula
φ ∈ Λ(V �V ′),2 written �

φ−−→ r. A logic transition system (LTS) P is a set of
transition rules, coupled with a special location �0 ∈ L called the initial locations.

In the rest of the paper, we always use �0 as the initial location. Hence we
identify an LTS and the set of its transition rules.

For our formalization, we extend LTSs with assertions, i.e., a mapping Φ
that assigns a formula describing all valid states to each location. We assume no
assertions for an input LTS, i.e., Φ(�) = true for every � ∈ L.

Definition 6. The transition step →τ w.r.t. a transition rule τ : �
φ−−→ r and

an assertion Φ is defined by (�, α) →τ (r, β) iff α � β′ |= φ, where α |= Φ(�) and
β |= Φ(r). For an LTS P, we write →P =

⋃
τ∈P →τ .

Throughout the paper we establish methods that reduce a desired property
of an LTS to zero or more subproblems of proving properties of refined LTSs.
Hence the certificate forms a proof tree, where the root concludes the desired
property of the input LTS, and all leafs are concluded by methods that yield no
more subproblems.

In the formalization, corresponding theorems assume that LTSs are well-
typed, i.e., atoms in transition formulas and assertions are of type bool. Well-
typedness is checked only when an input LTS is given, and is statically proven
for LTSs which are introduced as subproblems.
1 In the Isabelle formalization and the certificate XML, formulas are represented in

negation normal form and conjunction and disjunction are not necessarily binary.
2 In the Isabelle formalization we admit auxiliary variables to appear in the transition

formula. To ease readability we omit this ability in the paper.

458 M. Brockschmidt et al.

3 Certifying Invariants and Safety Proofs

The safety of a program means that certain “bad” states cannot be reached, and
is usually modeled by a set of error locations L� ⊆ L that are reached from such
bad states. Safety then reduces to the unreachability of error locations.

Definition 7. We say a state (�n, αn) is reachable if there is a sequence of
transition steps starting from the initial location: (�0, α0) →P · · · →P (�n, αn).
A location �n is reachable if there is a reachable state (�n, αn).

A program invariant maps every � ∈ L to a formula φ such that α |= φ for all
reachable states (�, α). Program safety can thus be proven by finding a program
invariant that maps every error location to an unsatisfiable formula (e.g., false).

Definition 8. We say a mapping I : L → Λ(V) is an invariant of an LTS P
iff α |= I(�) whenever (�, α) is reachable in P.

One way to prove that a mapping is an invariant is to find an unwinding [26]
of a program. We integrate support for invariant checking and safety proofs into
CeTA by formalizing unwindings in Isabelle.

Definition 9. An unwinding of LTS P under assertion Φ is a graph G = (Nt ∪
Nc,−→∪ ���) with Nt ∪Nc ⊆ L ×Λ(V), where nodes in Nt are called transition
nodes, those in Nc are covered nodes, edges in −→ are transition edges, those
in ��� are cover edges, and the following conditions are satisfied:

1. (�0, true) ∈ Nt ∪ Nc;
2. for every transition node (�, φ) ∈ Nt, either φ is unsatisfiable or for every

transition rule �
χ−−→ r ∈ P there is a transition edge (�, φ) −→ (r, ψ) such

that Φ(�) ∧ φ ∧ χ |= ψ′;
3. for every covered node (�, φ) ∈ Nc, there exists exactly one outgoing edge,

which is a cover edge (�, φ) ��� (�, ψ) with (�, ψ) ∈ Nt and φ |= ψ.

Each node (�, φ) in an unwinding represents the set of states {(�, α) | α |= φ}.
If φ is unsatisfiable then the node represents no state, and thus no successor
of that node needs to be explored in condition 2. A location � in the original
program is represented by multiple transition nodes (�, φ1), . . . , (�, φn), meaning
that φ1 ∨ . . . ∨ φn is a disjunctive invariant in �.

Example 1. Consider the LTS P in Fig. 2 again. In order to prove the termination
of the outer while loop, the invariant z < 0 in location �1 is essential. To prove
this invariant, we use the graph G in Fig. 3, a simplified version of the unwinding
constructed by the Impact algorithm [26].

Our definition of unwindings only roughly follows the original definition [26],
in which nodes and transition edges are specified as a tree and cover edges are
given as a separate set. This turned out to be unwieldy in the formalization;
our definition is not restricted to trees, since being a tree or not is irrelevant

Certifying Safety and Termination Proofs for Integer Transition Systems 459

Fig. 3. An unwinding G of P

for soundness. This flexibility gives some benefits. For instance, instead of intro-
ducing an additional node in Fig. 3 as the target of τ4, the corresponding tran-
sition edge could just point back to the node (�1, z < 0). More significantly,
we are able to certify invariants obtained by other means (e.g., abstract inter-
pretation [15]). For this, an inductive invariant I : L → Λ(V) can be cast as
an unwinding with transition nodes {(�, I(�)) | � ∈ L} and transition edges
{(�, I(�)) −→ (r, I(r)) | �

φ−−→ r ∈ P}, with no covered nodes.

Theorem 1 (Invariants via Unwindings). Let G be an unwinding for an
LTS P. Then a mapping I : L → Λ(V) is an invariant of P if for every l ∈ L,

(∨
(�,φ)∈Nt

φ
)

|= I(�) (1)

To verify that Theorem 1 is applied correctly, CeTA needs the invariant I
and the unwinding G to be specified in the certificate. It checks conditions
1–3 of Definition 9, and then the entailment (1) for each location. For efficiency
we further assume that each transition edge is annotated by the corresponding
transition rule.

To use invariants in proofs for the desired properties (safety or termination),
we turn invariants into assertions. As we have proven that the invariant formula
is satisfied whenever a location is visited, “asserting” the formula merely makes
implicit global information available at each location. This approach has the
advantage that invariants become a part of input for the later proofs, and thus
we do not have to prove that they are invariant repeatedly when we transform
programs as required in Sect. 4.

Theorem 2 (Invariant Assertion for Safety Proofs). Let P be an LTS, Φ
an assertion on P, and Ψ an invariant of P. Then P under assertion Φ is safe
if P under assertion Ψ is safe.

Theorem 2 requires nothing to be checked, besides that the invariant is certi-
fied via Theorem 1. A typical application of Theorem2 refines the current asser-
tion Φ by a stronger one Ψ . When sufficiently strong assertions are made, one
can conclude safety as follows.

Theorem 3 (Safety by Assertions). Let P be an LTS, Φ an assertion on
P, and L� a set of error locations. If Φ(�) is unsatisfiable for every � ∈ L�, then
P under assertion Φ is safe.

460 M. Brockschmidt et al.

4 Certifying Termination Proofs

Now we present our formalization of techniques for proving termination of LTSs.

Definition 10. An LTS P is terminating iff there exists no infinite transition
sequence starting from the initial location: (�0, α0) →P (�1, α1) →P · · · .

We formalize a collection of transformation techniques for LTSs such that
every transformation preserves nontermination, i.e., the termination of all result-
ing LTSs implies the termination of the original LTS. The cooperation graph
method [8], the foundation of the termination tool T2, will be modeled by a com-
bination of such transformations. The split into smaller techniques not only sim-
plifies and modularizes the formalization task, but also provides a way to certify
termination proofs of tools which use related methods. They can choose a subset
of supported termination techniques that is sufficient to model their internally
constructed termination proofs. For instance, we also integrate certificate export
for LTSs in AProVE, which internally does not utilize cooperation graphs.

4.1 Initial Transformation

The key component of cooperation graphs is the use of two copies of the program:
the original part is used to describe reachable program states, and a termination
part is progressively modified during the termination proof. This approach makes
it possible to apply transformations which would be unsound when performed on
the original program; e.g., one can remove transitions from the termination part
if they are proven to be usable only a finite number of times. This is unsound
if it is performed on the original program; consider, e.g., a non-terminating LTS
consisting of only the two transition rules �0

true−−→ �1 and �1
true−−→ �1. Clearly, the

first transition rule can be applied only once. Nevertheless, if it is removed, �1
becomes unreachable, and the resulting LTS is terminating.

To describe the copies of programs, we introduce a fresh location �� for each
location � ∈ L. We write L� for the set {�� | � ∈ L}.

Definition 11. A cooperation program Q is an LTS on locations L∪L� which
is split into three parts: Q = Q	 ∪ Q� ∪ Q��, where Q	, Q�, Q�� consist of tran-
sitions of form �

φ−−→ r, �
φ−−→ r�, �� φ−−→ r�, respectively, where �, r ∈ L.

We say Q is CP-terminating if there exists no infinite sequence of form

(�0, α0) →Q� · · · →Q� (�n, αn) →Q� (��
n, αn) →Q�� (��

n+1, αn+1) →Q�� · · ·

where each transition rule used after the n-th step must be used infinitely often.

We call Q	 the original part and Q�� the termination part. The termination
of an LTS can be reduced to the CP-termination of a cooperation program which
has the input LTS as the original part and its copy (where every location � is
renamed to ��) as the termination part, and additionally includes ε-transitions
that allow to jump from locations � to ��.

Certifying Safety and Termination Proofs for Integer Transition Systems 461

�0

�1 �2

τ1
τ2

τ4

τ3

��
0

��
1��

2

ε

τ �
1τ �

2

τ �
4

τ �
3

Fig. 4. Cooperation program Q con-
structed from P

�0

�1 �2

τ1
τ2

τ4

τ3

��
1��

2

ε

τ �
2

τ �
4

τ �
3

Fig. 5. Cooperation program Q1 result-
ing from SCC decomposition of Q

Definition 12. We say a transition rule τ : �
φ−−→ r is an ε-transition iff

(�, α) →τ (r, α) for any assignment α, i.e., α � α′ |= φ. We write �
ε−−→ r

to denote an ε-transition.

Canonically, one can consider �
ε−−→ �� for every location �, but we can also

do a little better by employing the notion of cutpoints. For this, we view an LTS
P as a program graph with nodes L and edges {(�, r) | �

φ−−→ r ∈ P}.

Definition 13. A set C ⊆ L of locations is a cutpoint set of an LTS P if the
program graph of P \C is acyclic.

Intuitively, if C is a cutpoint set of P, then any infinite execution of P must
visit some cutpoint � ∈ C infinitely often.

Theorem 4 (Initial Cooperation Program). Let P be a finite LTS over L,
Q a cooperation program, and C ⊆ L such that

1. for each �
φ−−→ r ∈ P, there exist �

φ−−→ r ∈ Q and �� φ−−→ r� ∈ Q;
2. for each � ∈ C, there exists �

ε−−→ �� ∈ Q; and
3. C is a cutpoint set for P.

Then P is terminating if Q is CP-terminating.

Example 2. In order to construct an initial cooperation program for P in Fig. 2,
termination provers need to choose a cutpoint set. Let us consider a minimal one:
C = {�2}. We obtain the cooperation program Q in Fig. 4, where each transition
τ �
i has the same transition formula as τi for i = 1, . . . , 4 and ε has transition

formula x′ = x ∧ y′ = y ∧ z′ = z.

To check that Theorem 4 is applied correctly, we only require the added ε-
transitions to be specified in the certificate. The other parts, e.g., the cutpoint
set C, are automatically inferred by CeTA.

Condition 1 of Theorem 4 is always fulfilled, since these transitions are auto-
matically generated by CeTA, and statically proven correct.

For condition 2, CeTA checks if the transition formula is of form
∧

v∈W v′ = v
for some set of variables W ⊆ V. Allowing W ⊂ V can be useful: Consider a C

462 M. Brockschmidt et al.

fragment x = x + 1; x = 2 * x. This might be encoded into a single transition
formula using an auxiliary variable, e.g., as aux = x + 1 ∧ x′ = 2 ∗ aux . It would
make sense not to mention the auxiliary variables in epsilon transitions.

For condition 3, i.e., to check that C is indeed a cutpoint set, we must check
acyclicity of graphs as required in Definition 13. Luckily we could reuse the certified
implementation of Gabow’s strongly connected component (SCC) decomposition
algorithm [23] and check that after removing C from P, it has only trivial SCCs.

To reason about the termination of LTSs, we often require program invari-
ants to allow us to reason about reachable program states. Thus, analogous to
Theorem 2 for safety proofs, we provide a way to introduce program invariants
in termination proofs. The following result is formalized both for normal LTSs
w.r.t. Definition 10 as well for cooperation programs w.r.t. Definition 11.

Theorem 5 (Invariant Assertion for Termination). Let P be an LTS,
Φ an assertion on P, and Ψ an invariant of P. Then P under assertion Φ is
(CP-)terminating if P under assertion Ψ is (CP-)terminating.

4.2 SCC and Cutpoint Decompositions

In the setting of cooperation programs, it is sound to decompose the termination
part into SCCs.

Theorem 6 (SCC Decomposition). Given a cooperation program Q, if the
cooperation program Q	∪Q�∪{�� φ−−→ r� ∈ Q�� | ��, r� ∈ S} is CP-terminating for
every non-trivial SCC S of the program graph of Q��, then Q is CP-terminating.

To certify an application of Theorem6, the certificate has to list the subproofs
for each SCC. CeTA invokes the same certified SCC algorithm as in the cutpoint
validation to check applications of the SCC decomposition.

Example 3. Using SCC decomposition, Q in Fig. 4 can be transformed into the
new problem Q1 in Fig. 5, where location ��

0 and transition τ �
1 are removed.

We can also decompose a cooperation program by case distinction depending
on which ε-transition for a cutpoint is taken. This can also be used to delete ε-
transitions leading to locations whose outgoing transitions have already been
removed by other means.

Theorem 7 (Cutpoint Decomposition). Let P be a cooperation program
with P� = Q�

0∪Q�
1∪. . .∪Q�

n, where for every �
ψ−−→ �� ∈ Q�

0 there is no transition
rule of form �� φ−−→ r� in P��. Then P is CP-terminating if P	 ∪Q�

i ∪ P�� is CP-
terminating for every i = 1, . . . , n.

A certificate for Theorem 7 needs to provide the considered partition Q�
1∪ . . .∪

Q�
n and a corresponding subproof for each of the newly created cooperation pro-

grams. CeTA determines Q�
0 and checks that it has no succeeding transitions in P��.

Certifying Safety and Termination Proofs for Integer Transition Systems 463

4.3 Transition Removal

A cooperation program is trivially CP-terminating if its termination part is
empty. Hence we now formalize a way to remove transitions via rank functions,
the core termination proving procedure for cooperation programs, and also for
other termination methods as implemented by, e.g., AProVE or VeryMax [6].

Roughly speaking, a rank function is a mapping from program states to
a mathematical domain on which a well-founded order exist (e.g., the natural
numbers). We formalize such domains reusing a notion from term rewriting.

Definition 14. We call a pair (≥, >) of relations a (quasi-)order pair if ≥ is
reflexive, both are transitive, and they are “compatible”, i.e., (≥ ◦ > ◦ ≥) ⊆ >.
We say that the order pair is well-founded if > is well-founded.

We model a rank function as a mapping that assigns an expression f(��) ∈
Tσ(V) of sort σ to each location ��. Here we assume that the domain Aσ of σ
has a well-founded order pair (≥, >). If some transitions in Q�� strictly decrease
a rank function and all other transitions “do not increase” this rank function,
then the decreasing transitions can be used only finitely often, and thus can be
removed from the termination part.

Theorem 8 (Transition Removal). Let Q be a cooperation program with
assertion Φ, (≥, >) a well-founded order pair3 on Aσ, f : L� → Tσ(V), and
D�� ⊆ Q�� a set of transition rules such that for every �� φ−−→ r� ∈ Q��,

– Φ(��) ∧ Φ(r�)′ ∧ φ |= f(��) > f(r�)′ if �� φ−−→ r� ∈ D��; and
– Φ(��) ∧ Φ(r�)′ ∧ φ |= f(��) ≥ f(r�)′ otherwise.

Then Q is CP-terminating if Q \ D�� is CP-terminating.

To certify the correct application of Theorem8, naturally the rank function
and deleted transitions have to be specified in the certificate. For integer arith-
metic σ is fixed to int, but one also needs to choose the well-founded order. Note
that > on integers is not well-founded, but its bounded variant >b is, where
s >b t iff s > t and s ≥ b. Note also that (≥, >b) forms an order pair.

Example 4. The program P from Fig. 2 can be shown terminating by repeat-
edly applying Theorem8. Assume that we have applied Theorem 5 on P and
established the assertion z < −1 on �2, based on the unwinding from Example 1,
before transforming P into Q1 of Fig. 5. We then apply Theorem 8 with rank
function x and bound −5 for all locations in Q��

1 . With the assertion z < −1,
this allows us to remove τ �

2 . Then, using the constant rank functions 1 for ��
1

and 0 for ��
2, we can remove the transition τ �

4 (alternatively, we could use SCC
decomposition here). Finally, the rank function x − y and bound 0 can be used
to remove the last remaining transition τ �

3 .

3 In the paper we use symbols ≥ and > also for formulas. In the formalization we
encode, e.g., by a formula e1 ≥f e2 such that α |= e1 ≥f e2 iff [[e1]]α ≥ [[e2]]α.

464 M. Brockschmidt et al.

Simple rank functions on integers are sometimes too weak, so we also inte-
grate lexicographic orderings.

Definition 15. Given order pairs (�1,1), . . . , (�n,n) on A, their lexico-
graphic composition is the order pair (�lex

1,...,n,lex
1,...,n) on length-n lists of A

defined as follows: 〈x1, . . . , xn〉 lex
1,...,n 〈y1, . . . , yn〉 iff

∃i ≤ n. x1 �1 y1 ∧ · · · ∧ xi−1 �i−1 yi−1 ∧ xi i yi (2)

and 〈x1, . . . , xn〉 �lex
1,...,n 〈y1, . . . , yn〉 iff (2) holds or x1 �1 y1 ∧ · · · ∧ xn �n yn.

The lexicographic composition of well-founded order pairs forms again a well-
founded order pair. Hence, to conclude the correct application of Theorem8, CeTA
demands a list of bounds b1, . . . , bn to be given in the certificate, and then uses the
lexicographic composition induced by bounded order pairs (≥, >b1), . . . , (≥, >bn

).
An application is illustrated at the end of the next subsection in Example 6.

4.4 Variable and Location Additions

Transition removal is an efficient termination proving method, but relies on local
syntactic structure of the program. Most significantly, it cannot find termination
arguments that depend on interactions between succeeding transitions on a cycle.
Safety-based termination proofs thus instead consider evaluations that represent
a full cycle through a program SCC, from a cutpoint back to itself, and show that
every such evaluation decreases some well-founded measure. In order to do this, a
snapshot variable vs is introduced for each program variable v and the program is
extended to set vs to the value of v on every transition leaving a cutpoint. Then,
a rank function for the SCC satisfies f(v1s, . . . , vns) > f(v1, . . . , vn) whenever
an evaluation reaches the cutpoint again. In our modified version of T2, we
implement the setting of snapshot variables and checking of rank functions by
adding dedicated fresh locations after and before a cutpoint.

Theorem 9 (Location Addition). Let P be a cooperation program and Q�� a
set of transitions such that for every transition �� φ−−→ r� ∈ P�� \Q�� there exists
a location f such that �� φ−−→ f, f

ε−−→ r� ∈ Q�� or �� ε−−→ f, f
φ−−→ r� ∈ Q��.

Then P is CP-terminating if P	 ∪P� ∪Q�� is CP-terminating.

In certificates the new component Q�� does not have to be provided. Instead
it suffices to provide the new ε-transition f

ε−−→ r� (resp. �� ε−−→ f) with fresh
location f . Then Q�� is computed from P�� by redirecting every transition with
target r� (resp. source ��) towards f .

Example 5. Here and in Example 6, we provide an alternative termination proof
for the cooperation program Q1 of Fig. 5. We use the global reasoning that every
cycle from ��

2 back to itself decreases the measure 〈x, x − y〉, bounded by −5 and
0 respectively. Note that x decreases in every iteration of the outer loop, and
x − y decreases in every iteration of the inner loop.

Certifying Safety and Termination Proofs for Integer Transition Systems 465

�0

�1 �2

τ1
τ2

τ4

τ3

��
2

�a2 ��
1

�b2
ε

ε τ �
2

τ �
4

τ �
3

ε

Fig. 6. Cooperation program Q2

resulting from Q1 by adding a location
�a2 after ��

2 and a location �b2 before ��
2

�0

�1 �2

τ1
τ2

τ4

τ3

��
2

�a2 ��
1

�b2
ε

τ5 τ̃ �
2

τ̃ �
4

τ̃ �
3

τ6

Fig. 7. Cooperation program Q3 result-
ing from Q2 by adding snapshot variables

As a first step, we transform Q1 into Q2 of Fig. 6 by applying Theorem9
twice, providing the transitions �b2

ε−−→ ��
2 and ��

2
ε−−→ �a2 to introduce fresh

locations before and after the cutpoint ��
2.

The addition of snapshot variables is not trivially sound, as the operation
involves strengthening transition formulas, e.g., from φ to φ ∧ x′

s = x. Thus to
ensure soundness, CeTA demands the new variable xs and the formula added
to each transition, and checks that no existing transition formula mentions x′

s,
and the added formulas do nothing more than giving a value to x′

s. The latter
condition is more precisely formulated as follows.

Definition 16. We say a variable x of sort σ is definable in a formula ψ iff for
any assignment α, there exists v ∈ Aσ such that α[x �→ v] |= ψ, where α[x �→ v]
maps x to v and y �= x to α(y).

Theorem 10 (Variable Addition). Let P and Q be cooperation programs,
x a variable, and Ψ a mapping from transitions to formulas, such that for every
transition τ : �

φ−−→ r ∈ P, x does not occur in φ and there exists �
φ∧Ψ(τ)−−−−−→ r ∈ Q

where x is definable in Ψ(τ). Then P is CP-terminating if Q is CP-terminating.

Example 6. We can transform Q2 to Q3 in Fig. 7. Here, each τ̃ �
i extends τ �

i

to keep the values of xs, ys, zs unchanged; i.e., x′
s = xs ∧ y′

s = ys ∧ z′
s = zs is

added to the transition formulas. The transition τ6 keeps all variables unchanged,
and τ5 initializes the snapshot variables: . . . ∧ x′

s = x ∧ y′
s = y ∧ z′

s = z. This
transformation is achieved by repeatedly adding snapshot variables xs, ys, and
zs. To add xs, for instance, we apply Theorem10 on Q2 with Ψ(��

2
ε−−→ �a2) =

(
x′
s = x

)
and Ψ(τ) =

(
x′
s = xs

)
for all other transitions τ ∈ Q��

2 .
Every cycle from ��

2 back to itself decreases the bounded measure 〈x, x − y〉,
so we are able to remove the transition τ6 by Theorem 8, using the rank func-
tion f with f(��

2) = 〈x, x − y〉 and f(��) = 〈xs, xs − ys〉 for all other locations
�� �= ��

2. To this end we need to be able to show 〈xs, xs − ys〉 >lex
−5,0 〈x, x − y〉 for

τ6. Weak decreases required for other transitions are immediate from the tran-
sition formulas. So we need an invariant on �b2 that is strong enough to prove

466 M. Brockschmidt et al.

��
2, 0 ≤ y

�a2,
0 ≤ y ∧ x ≤ xs

∧ ys + x ≤ xs + y

��
1, x ≤ xs�b2, 0 ≤ y ∧ −5 ≤ xs ∧ x < xs��

2, 0 ≤ y ∧ −5 ≤ xs ∧ x < xs

�b2,
0 ≤ y ∧ ys + x < xs + y

∧ −5 ≤ xs ∧ ys < xs ∧ x ≤ xs

��
2,

0 ≤ y ∧ ys + x < xs + y
∧ −5 ≤ xs ∧ ys < xs ∧ x ≤ xs

. . . ε

τ5

τ̃ �
4

τ̃ �
2

τ6

τ̃ �
3

τ6

Fig. 8. Partial unwinding of Q2 from Fig. 6

〈xs, xs − ys〉 >lex
−5,0 〈x, x − y〉. To this end the following invariant works, and can

be proven using the unwinding (partially) shown in Fig. 8.

(0 ≤ y ∧ ys + x < xs + y ∧ −5 ≤ xs ∧ ys < xs ∧ x ≤ xs)
∨ (0 ≤ y ∧ −5 ≤ xs ∧ x < xs)

Having τ6 removed, Q��
3 contains no SCC anymore, and thus SCC decompo-

sition (requiring no further subproofs) finishes the proof.

5 Linear Integer Arithmetic

In the preceding sections we have assumed that we can certify entailments ψ |= χ,
i.e., the validity of formulas ¬ψ ∨ χ. In this section, we provide such a validity
checker when the underlying logic is linear integer arithmetic. Note that although
Isabelle has already builtin support for reasoning about linear arithmetic, we
cannot use these results: Isabelle tactics like linarith and presburger are not
accessible to CeTA, since CeTA is a stand-alone Haskell program that has been
constructed via code generation from Isabelle, and it has no access to Isabelle
tactics at all.

5.1 Reduction to Linear Programming

As the initial step, CeTA converts the input formula (whose validity has to be
verified) into conjunctive normal form (CNF). Note that here we cannot use the
Tseitin transformation [36] since we are interested in checking validity, not sat-
isfiability. By default, CeTA completely distributes disjunctions to obtain CNFs,
but we also provide a “hint” format to indicate that some part of the formula
should be erased or to explicitly apply distributivity rules at some position.

Next, we ensure the validity of a CNF by equivalently checking the validity
of every clause. Hence, the underlying logic should provide at least a validity

Certifying Safety and Termination Proofs for Integer Transition Systems 467

checker for disjunctions of literals, or equivalently an unsatisfiability checker for
conjunctions of literals.

For linear integer arithmetic, all literals can be translated into inequalities of
the form e ≥ 0 by using straightforward rules such as ¬(e1 ≤ e2) ↪→ e1 − e2 −
1 ≥ 0. Thus, we only need to prove unsatisfiability of a conjunction of linear
inequalities, a question in the domain of integer linear programming (ILP).

Since the unsatisfiability of ILP instances is a coNP-complete problem [30,
Chap. 18], there is little hope in getting small certificates which are easy to
check. We provide two alternatives. Both interpret ILPs as linear programming
problems (LPs) over Q, not Z, and thus are incomplete but sound, in the sense
that the resulting LP might be satisfiable although the input ILP is unsatisfiable,
but not vise versa. In our experiments the incompleteness was never encountered
when certifying proofs generated by AProVE and T2.

Simplex Algorithm: The first alternative employs the existing Isabelle formaliza-
tion of the simplex algorithm by Spasić and Marić [31]. We only had to manually
rebase the formalization from Isabelle 2012 to Isabelle 2016-1, and then establish
a connection between the linear rational inequalities as formalized by Spasić and
Marić and our linear integer inequalities.

Farkas’ Lemma: The second alternative demands the certificate to provide the
coefficients as used in Farkas’ Lemma [17]: Given an LP constraint e1 ≥ 0∧ . . .∧
en ≥ 0 and a list of non-negative coefficients λ1, . . . , λn, we conclude

∑n
i=1 λiei ≥

0 and then check that this inequality is trivially unsatisfiable, i.e., that
∑n

i=1 λiei

is a negative constant. It is well known that this criterion is of the same power
as the first alternative. The advantage of this alternative is that it is faster to
validate—at the cost of more demanding certificates.

5.2 Executable Certifier for ITSs

To summarize, we developed a validity checker for formulas in linear integer
arithmetic, whose correctness is formally proven. Hence we derive an executable
checker for the correct application of Theorems 1–10 on linear ITSs. Thus CeTA
is now able to certify safety and termination proofs for linear ITSs.

Corollary 1 (Safety and Termination Checker). Let P be a linear ITS.
If CeTA accepts a safety proof certificate (resp. termination proof certificate) for
P, then P is safe (resp. terminating).

Our validity checker has exponential worst-case complexity and is incomplete,
but the experimental results show that the current implementation of CeTA is
good enough to validate all the proofs generated by AProVE and T2. A reason for
this is that the transition formulas in the example ITSs are all conjunctions of
atoms, and thus disjunctions are only due to invariants from the Impact algorithm
and encoded lexicographic orderings. As a consequence, the CNF of formulas that
have to be validated is at most quadratically larger than the original formula.

468 M. Brockschmidt et al.

Table 1. Experimental results with AProVE, T2 and CeTA

Tool # Yes # No # Certified # Rejected Average
time tool

Average time
CeTA

Certifiable T2 562 – 560 2 7.98 s 1.24 s

Certifiable T2 (w. hints) 540 – 539 1 8.35 s 0.54 s

Full T2 615 420 – – 8.60 s –

Certifiable AProVE 543 – 535 8 14.52 s 1.39 s

Full AProVE 512 369 – – 21.19 s –

6 Experiments

For our experiments, we used full (unmodified) versions of AProVE and T2 as well
as certifiable versions, where the latter have to produce termination certificates in
XML using only the techniques described in this work. Additionally, we also con-
sider a version of T2 that provides “hints” to prove entailments of linear arithmetic
formulas. These certificates will then be checked by CeTA version 2.30.

The modification to obtain the certifiable version of T2 consists of about 1 500
lines of additional code, mostly to produce the machine-readable certificates and
to keep the required information about all proof steps. The certifiable version
uses precisely the techniques presented without formalization in [8], and all of
these techniques can be modeled by the formalized theorems of this paper. The
difference between the certifiable and the full version of T2 is that the latter uses
Spacer [22] instead of Impact, supports additional termination techniques [13],
and searches for nontermination proofs, but does not produce certifiable output.

Although AProVE does not explicitly work on cooperation programs, its cer-
tifiable version inserts an application of Theorem4 at the beginning of each
certificate. Afterwards, SCC decompositions and ranking functions that AProVE
internally computes are reformatted into the applications of Theorems 6 and 8,
respectively. Ranking functions over rational numbers are converted into ones
over the integers by multiplication with the common denominator. The differ-
ence between the certifiable and the full version of AProVE is that the latter
tries more termination techniques like non-linear ranking functions and searches
for nontermination proofs, but does not produce certifiable output.

We performed experiments of our implementation on an Intel Xeon E5-1620
(clocked at 3.6 GHz) with 16 GB RAM on the 1222 examples from the “Inte-
ger Transition System” category from the Termination Competition 2016. The
source code of CeTA is exported in Haskell using Isabelle’s code export function,
and compiled by ghc. All tools were run with a timeout of 60 s.

Table 1 summarizes our experiments. The table contains five rows, one for
each configuration. The column “# Yes” indicates the number of successful ter-
mination proofs, “# No” the number of successful nontermination proofs, “#
Certified” the number of proofs that were validated by CeTA, and “# Rejected”
the number of certificates that were not validated by CeTA. We note that for
termination, the certifiable version of T2 already has 91 % of the power of the

Certifying Safety and Termination Proofs for Integer Transition Systems 469

full version, even though many advanced techniques (e.g., polyranking rank func-
tions [7]) are disabled. The certifiable version of AProVE was even more powerful
than the full version w.r.t. termination proving, most likely since the full ver-
sion also spends a significant amount of time to detect nontermination. Nearly
all of the certificates were successfully validated by CeTA, except for two from
AProVE where non-linear arithmetic reasoning is essential, and six which could
not be certified in the given time. Currently, CeTA ignores all non-linear con-
straints when invoking the simplex algorithm. For T2, three certificates lead to
CeTA parsing errors, caused by bugs in the certificate export.

Certification for T2 took in average about a sixth of the time T2 required to
find a termination proof—the average time for successful runs of T2 (certifiable)
is 7.98 s. Generating and exporting hints for entailments in T2 more than halves
the time CeTA needs to check certificates.

All experimental details including links to AProVE, T2 and CeTA can be found
on http://cl-informatik.uibk.ac.at/ceta/experiments/lts.

7 Conclusion and Future Work

We have presented a formalization of safety and termination proofs using the
unwinding and cooperation graph techniques. Furthermore, we have imple-
mented the certification of proof certificates in CeTA, and have extended T2
to produce such certificates. While we have focused on two specific techniques
in this paper, our formalization is general enough to accommodate proofs pro-
duced by other safety and termination provers, witnessed by AProVE. It remains
as future work to extend other tools to export proof certificates and support
additional techniques they require.

Our experiments show that extending our formalization to also support non-
termination proof certificates would be valuable. We are also interested in sup-
porting other related program analyzes, such as inferring runtime complexity
bounds or proving properties in temporal logics.

As the most part of our formalization is independent of the chosen logic,
formalized decision procedures for other logics than linear integer arithmetic,
such as non-linear arithmetic, bit-vectors, arrays, etc. will immediately extend
our results to systems which cannot be expressed as linear ITSs. For example,
the two rejected certificates from AProVE can be certified if non-linear arith-
metic reasoning is supported. Incorporating the certified quantifier elimination
algorithms by Nipkow [28] would not only lead to another alternative validity
checker but also allow for quantified formulas appear in transition formulas and
invariants.

Finally, we note that CeTA is usually an order of magnitude faster than the
termination tools on term rewriting, a statement that is not yet true for ITSs.
Here, profiling reveals that the validity checker for formulas over linear integer
arithmetic is the bottleneck. Consequently, it seems to be fruitful to develop a
formalized SMT solver by extending work on SAT solving [4,19,25].

http://cl-informatik.uibk.ac.at/ceta/experiments/lts

470 M. Brockschmidt et al.

References

1. Albert, E., Arenas, P., Codish, M., Genaim, S., Puebla, G., Zanardini, D.: Termi-
nation analysis of Java Bytecode. In: FMOODS 2008, pp. 2–18

2. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-Dı́ez, G.: A
formal verification framework for static analysis. Softw. Syst. Model. 15(4), 987–
1012 (2016)

3. Beyer, D., Dangl, M., Dietsch, D., Heizmann, M.: Correctness witnesses: exchang-
ing verification results between verifiers. In: FSE 2016, pp. 326–337. ACM (2016)

4. Blanchette, J.C., Fleury, M., Weidenbach, C.: A verified SAT solver framework
with learn, forget, restart, and incrementality. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS (LNAI), vol. 9706, pp. 25–44. Springer, Cham (2016). doi:10.
1007/978-3-319-40229-1 4

5. Blanqui, F., Koprowski, A.: CoLoR: a Coq library on well-founded rewrite relations
and its application to the automated verification of termination certificates. Math.
Struct. Comput. Sci. 21(4), 827–859 (2011)

6. Borralleras, C., Brockschmidt, M., Larraz, D., Oliveras, A., Rodŕıguez-Carbonell,
E., Rubio, A.: Proving termination through conditional termination. In: TACAS
2017 (to appear)

7. Bradley, A.R., Manna, Z., Sipma, H.B.: The polyranking principle. In: ICALP
2005, pp. 1349–1361

8. Brockschmidt, M., Cook, B., Fuhs, C.: Better termination proving through coop-
eration. In: CAV 2013, pp. 413–429

9. Brockschmidt, M., Cook, B., Ishtiaq, S., Khlaaf, H., Piterman, N.: T2: temporal
property verification. In: TACAS 2016, pp. 387–393

10. Caleiro, C., Gonçalves, R.: On the algebraization of many-sorted logics. In: WADT
2006, pp. 21–36

11. Cho, S., Kang, J., Choi, J., Yi, K.: SparrowBerry: a verified validator for an
industrial-strength static analyzer. http://ropas.snu.ac.kr/sparrowberry/

12. Contejean, E., Paskevich, A., Urbain, X., Courtieu, P., Pons, O., Forest, J.: A3PAT,
an approach for certified automated termination proofs. In: PEPM 2010, pp. 63–72

13. Cook, B., See, A., Zuleger, F.: Ramsey vs. lexicographic termination proving. In:
TACAS 2013, pp. 47–61

14. Cook, B., Podelski, A., Rybalchenko, A.: Termination proofs for systems code. In:
PLDI 2006, pp. 415–426

15. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In: POPL 1977,
pp. 238–252 (1977)

16. Falke, S., Kapur, D., Sinz, C.: Termination analysis of C programs using compiler
intermediate languages. In: RTA 2011, pp. 41–50

17. Farkas, J.: Theorie der einfachen Ungleichungen. J. für die reine Angew. Math.
124, 1–27 (1902)

18. Giesl, J., Aschermann, C., Brockschmidt, M., Emmes, F., Frohn, F., Fuhs, C.,
Hensel, J., Otto, C., Plücker, M., Schneider-Kamp, P., Ströder, T., Swiderski, S.,
Thiemann, R.: Analyzing program termination and complexity automatically with
AProVE. J. Autom. Reason. 58, 3–31 (2017)

19. Heule, M.J., Hunt, W.A., Wetzler, N.: Trimming while checking clausal proofs. In:
FMCAD 2013, pp. 181–188. IEEE

20. Jourdan, J., Laporte, V., Blazy, S., Leroy, X., Pichardie, D.: A formally-verified C
static analyzer. In: POPL 2015, pp. 247–259

http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://dx.doi.org/10.1007/978-3-319-40229-1_4
http://ropas.snu.ac.kr/sparrowberry/

Certifying Safety and Termination Proofs for Integer Transition Systems 471

21. Klein, G., Nipkow, T.: A machine-checked model for a java-like language, virtual
machine and compiler. ACM Trans. Progr. Lang. Syst. 28(4), 619–695 (2006)

22. Komuravelli, A., Gurfinkel, A., Chaki, S.: SMT-based model checking for recursive
programs. In: CAV 2014, pp. 17–34

23. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected com-
ponent algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014, pp. 325–340

24. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–
115 (2009)

25. Marić, F., Janičić, P.: Formal correctness proof for DPLL procedure. Informatica
21(1), 57–78 (2010)

26. McMillan, K.: Lazy abstraction with interpolants. In: CAV 2006, pp. 123–136
27. Nipkow, T., Wenzel, M., Paulson, L.C. (eds.): Isabelle/HOL - A Proof Assistant

for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002)
28. Nipkow, T.: Linear quantifier elimination. J. Autom. Reason. 45(2), 189–212 (2010)
29. Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analy-

sis of Java Bytecode by term rewriting. In: RTA 2010, pp. 259–276
30. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Hoboken (1999)
31. Spasić, M., Marić, F.: Formalization of incremental simplex algorithm by stepwise

refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012, pp. 434–449
32. Spoto, F., Mesnard, F., Payet, É.: A termination analyser for Java Bytecode based

on path-length. ACM Trans. Progr. Lang. Syst. 32(3), 8: 1–8: 70 (2010)
33. Sternagel, C., Thiemann, R.: The certification problem format. In: UITP 2014,

EPTCS, vol. 167, pp. 61–72 (2014)
34. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-

Kamp, P., Aschermann, C.: Automatically proving termination and memory safety
for programs with pointer arithmetic. J. Autom. Reason. 58, 33–65 (2017)

35. Thiemann, R., Sternagel, C.: Certification of termination proofs using CeTA. In:
TPHOLs 2009, pp. 452–468

36. Tseitin, G.S.: On the complexity of proof in prepositional calculus. Stud. Constr.
Math. Math. Logic Part II 8, 234–259 (1968)

37. Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and
pieces. In: TACAS 2016, pp. 54–70

38. Wang, H.: Logic of many-sorted theories. J. Symb. Logic 17(2), 105–116 (1952)
39. Zhao, J., Nagarakatte, S., Martin, M.M., Zdancewic, S.: Formalizing the LLVM

intermediate representation for verified program transformations. In: POPL 2012,
pp. 427–440

Biabduction (and Related Problems)
in Array Separation Logic

James Brotherston1(B), Nikos Gorogiannis2, and Max Kanovich1,3

1 University College London, London, UK
J.Brotherston@ucl.ac.uk

2 Middlesex University, London, UK
3 National Research University Higher School of Economics,

Moscow, Russian Federation

Abstract. We investigate array separation logic (ASL), a variant of
symbolic-heap separation logic in which the data structures are either
pointers or arrays, i.e., contiguous blocks of memory. This logic provides
a language for compositional memory safety proofs of array programs.
We focus on the biabduction problem for this logic, which has been estab-
lished as the key to automatic specification inference at the industrial
scale. We present an NP decision procedure for biabduction in ASL, and
we also show that the problem of finding a consistent solution is NP-
hard. Along the way, we study satisfiability and entailment in ASL, giving
decision procedures and complexity bounds for both problems. We show
satisfiability to be NP-complete, and entailment to be decidable with
high complexity. The surprising fact that biabduction is simpler than
entailment is due to the fact that, as we show, the element of choice over
biabduction solutions enables us to dramatically reduce the search space.

Keywords: Separation logic · Arrays · Biabduction · Entailment ·
Complexity

1 Introduction

In the last 15 years, separation logic [34] has evolved from a novel way to rea-
son about pointers to a mainstream technique for scalable program verification.
Facebook’s Infer [13] is perhaps the best known tool based on separation logic;
other examples include SLAyer [5], VeriFast [28] and HiP [15].

Separation logic is based upon Hoare triples of the form {A}C {B}, where
C is a program and A,B are formulas in a logical language. Its compositional
nature has two main pillars. The first pillar is the soundness of the frame rule:

{A}C {B}
(Frame)

{A ∗ F}C {B ∗ F}

where the separating conjunction ∗ is read as “and separately in memory”, and
subject to the restriction that C does not modify any free variables in F [39].
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 472–490, 2017.
DOI: 10.1007/978-3-319-63046-5 29

Biabduction (and Related Problems) in Array Separation Logic 473

The second pillar is a tractable algorithm for biabduction [14]: given formu-
las A and B, find formulas X, Y such that A ∗ X |= B ∗ Y , usually subject
to the proviso that A ∗ X should be satisfiable. Solving this problem enables
us to infer specifications for whole programs given specifications for their indi-
vidual components [14]. E.g., if C1 and C2 have specifications {A′}C1 {A} and
{B}C2 {B′}, we can use a solution X,Y to the above biabduction problem to
construct a specification for C1;C2 as follows, using the frame rule and the usual
Hoare logic rules for consequence (|=) and sequencing (;):

{A′} C1 {A}
(Frame)

{A′ ∗ X} C1 {A ∗ X}
(|=)

{A′ ∗ X} C1 {B ∗ Y }
{B} C2 {B′}

(Frame)
{B ∗ Y } C2 {B′ ∗ Y }

(;)
{A′ ∗ X} C1; C2 {B′ ∗ Y }

Bottom-up interprocedural analyses based on separation logic, such as Facebook
Infer, employ biabduction to infer program specifications from unannotated
code. Typically, the underlying assertion language is the “symbolic heap” frag-
ment of separation logic over linked lists [4], which is known to be tractable [16].

Here, we focus on a different, but ubiquitous data structure, namely arrays,
which we view as contiguous blocks of memory. We propose an array separation
logic (ASL) in which we replace the usual “list segment” predicate ls by an
“array” predicate array(a, b), which denotes a contiguous block of allocated heap
memory from address a to address b (inclusive), as was first proposed in [32].
In addition, since we wish to reason about array bounds, we allow assertions to
contain linear arithmetic. Thus, for example, a pointer x to a memory block of
length n > 1 starting at a can be represented in ASL by the assertion

n > 1 : x �→ a ∗ array(a, a + n − 1) .

The array predicate only records the bounds of memory blocks, not their contents;
this is analogous to the abstraction from pointers to lists in standard separation
logic. Similar to the situation for lists, memory safety of array-manipulating
programs typically depends only on the memory footprint of the arrays.

Our focus is on the biabduction problem for ASL, the most critical step in
building a bottom-up memory safety analysis à la Infer for array-manipulating
programs. Our first main contribution is a decision procedure for the (quantifier-
free) biabduction problem in ASL (Sect. 5). It relies on the idea that, given A and
B, we can look for some consistent total ordering of all the array endpoints and
pointers in both A and B, and impose this ordering, which we call a solution seed,
as the arithmetical part of the solution X. Having done this, the computation
of the “missing” arrays and pointers in X,Y is a polynomial-time process, and
thus the entire algorithm runs in NP-time. We demonstrate that this algorithm
is sound and complete, and that the biabduction problem itself is NP-hard, with
further bounds for cases involving quantifiers.

We also study the satisfiability and entailment problems in ASL, and, as
our second main contribution, we provide decision procedures and upper/lower

474 J. Brotherston et al.

complexity bounds for both problems. We find that satisfiability is NP-complete,
while entailment is decidable with very high complexity: it can be encoded in Π0

2

Presburger arithmetic, and is ΠP
2 -hard. It may at first sight appear surprising

that entailment is harder than biabduction, as biabduction also seems to involve
solving an entailment problem. However, in biabduction, there is an element of
choice over X,Y , and we exploit this to dramatically reduce the cost of checking
these conditions. Namely, committing to a specific solution seed (see above)
reduces biabduction to a simple computation rather than a search problem.

The remainder of this paper is structured as follows. Section 2 gives an exam-
ple motivating the ASL biabduction problem in practice. The syntax and seman-
tics of ASL is given formally in Sect. 3. We present algorithms and complexity
bounds for satisfiability, biabduction and entailment for ASL in Sects. 4, 5 and 6
respectively. Section 7 surveys related work, and Sect. 8 concludes.

Due to space limitations, the proofs of the results in this paper are omitted or
only sketched. They are, however, available in the long version of this article [11].

2 Motivating Example

Here, we give a simple example illustrating how the biabduction problem arises
when verifying array programs, using ASL as our assertion language. Our exam-
ple is deliberately high-level, in order to illustrate some key features of the general
problem. However, more concrete examples, involving concrete array programs,
can be found in Sect. 2 of [11].

Suppose we have a procedure foo that manipulates an array somehow, with
specification {array(c, d)} foo(c, d) {Q} (supplied in advance, or computed at
an earlier stage of the analysis). Now, consider a procedure including a call to
foo, say C; foo(c, d); . . ., and suppose that we have computed the specification
{emp}C {array(a, b)}, say, for the code C prior to this call. As in the Introduc-
tion, this gives rise to the biabduction problem

array(a, b) ∗ X |= array(c, d) ∗ Y

with the effect that {X}C; foo(c, d) {Q ∗ Y } then becomes a valid specification
for the initial code including the call to foo.

Solving this problem depends crucially on the position in memory of c and
d relative to a and b; depending on whether and how the arrays array(a, b) and
array(c, d) overlap, we have to add different arrays to X and Y so that the
memory footprint of the two sides becomes the same. Such ordering information
might be available as part of the postcondition computed for C; if not, then we
have to guess it, as part of the “antiframe” X. The solutions include:

X := a = c ∧ b = d : emp and Y := emp
X := d < a : array(c, d) and Y := array(a, b)
X := a < c ∧ d < b : emp and Y := array(a, c − 1) ∗ array(b + 1, d)
X := a < c < b < d : array(b + 1, d) and Y := array(a, c − 1)

Biabduction (and Related Problems) in Array Separation Logic 475

et cetera. Note that these solutions are all (a) spatially minimal, relative to
the ordering constraints in X (i.e. the arrays are as small as possible), and
(b) logically incomparable to one another. Thus, when dealing with arrays in
separation logic, any complete biabduction algorithm must take into account
the possible ways in which the arrays might be positioned relative to each other.

3 Array Separation Logic, ASL

Here, we present separation logic for arrays, ASL, which employs a similar sym-
bolic heap formula structure to that in [4], but which treats contiguous arrays in
memory rather than linked list segments; we additionally allow linear arithmetic.

Definition 3.1 (Symbolic heap). Terms t, pure formulas Π, spatial formulas
F and symbolic heaps SH are given by the following grammar:

t:: = x | n | t + t | nt

Π:: = t = t | t �= t | t ≤ t | t < t | Π ∧ Π

F :: = emp | t �→ t | array(t, t) | F ∗ F

SH:: = ∃z. Π : F

where x ranges over an infinite set Var of variables, z over sets of variables, and
n over N. Whenever one of Π,F is empty in a symbolic heap, we omit the colon.
We write FV (A) for the set of free variables occurring in A. If A = ∃z. Π : F
then we write qf(A) for Π : F , the quantifier-free part of A.

We interpret this language in a stack-and-heap model, where both locations
and values are natural numbers. A stack is a function s : Var → N. We extend
stacks over terms as usual: s(n) = n, s(t1 + t2) = s(t1)+s(t2) and s(nt) = ns(t).
If s is a stack, z ∈ Var and m ∈ N, we write s[z �→ v] for the stack defined as s
except that s[z �→ v](z) = v. We extend stacks pointwise over term tuples.

A heap is a finite partial function h : N ⇀fin N mapping finitely many loca-
tions to values; we write dom (h) for the domain of h, and e for the empty heap
that is undefined on all locations. We write ◦ for composition of domain-disjoint
heaps: if h1 and h2 are heaps, then h1 ◦ h2 is the union of h1 and h2 when
dom (h1) and dom (h2) are disjoint, and undefined otherwise.

Definition 3.2. The satisfaction relation s, h |= A, where s is a stack, h a
heap and A a symbolic heap, is defined by structural induction on A.

s, h |= t1 ∼ t2 ⇔ s(t1) ∼ s(t2)where ∼ is =, �=, < or ≤
s, h |= Π1 ∧ Π2 ⇔ s, h |= Π1ands, h |= Π2

s, h |= emp ⇔ h = e
s, h |= t1 �→ t2 ⇔ dom (h) = {s(t1)} and h(s(t1)) = s(t2)
s, h |= array(t1, t2) ⇔ s(t1) ≤ s(t2) and dom (h) = {s(t1), . . . , s(t2)}
s, h |= F1 ∗ F2 ⇔ ∃h1, h2. h = h1 ◦ h2 and s, h1 |= F1 and s, h2 |= F2

s, h |= ∃z. Π : F ⇔ ∃m ∈ N
|z|. s[z �→ m], h |= Π and s[z �→ m], h |= F

476 J. Brotherston et al.

Satisfaction of pure formulas Π does not depend on the heap; we write s |= Π
to mean that s, h |= Π (for any heap h). We write A |= B to mean that A
entails B, i.e. that s, h |= A implies s, h |= B for all stacks s and heaps h.

Remark 3.3. Our array predicate employs absolute addressing: array(k, �) denotes
an array from k to �. In practice, one often reasons about arrays using base-
offset addressing, where array(b, i, j) denotes an array from b + i to b + j. We
can define such a ternary version of our array predicate, overloading notation, by
array(b, i, j) =def array(b+i, b+j). Conversely, any array(k, �) can be represented
in base-offset style as array(0, k, �). Thus, we may freely switch between absolute
and base-offset addressing.

Satisfiability in the unrestricted pure part of our language is already NP-hard.
Thus, in order to obtain sharper complexity results, we will sometimes confine
our attention to symbolic heaps in the following special two-variable form.

Definition 3.4. A symbolic heap ∃z. Π : F is said to be in two-variable form if

(a) its pure part Π is a conjunction of ‘difference constraints’ of the form x = k,
x = y + k, x ≤ y + k, x ≥ y + k, x < y + k, and x > y + k, where x and y
are variables, and k ∈ N; (notice that x �= y is not here);

(b) its spatial part F contains only formulas of the form k �→ v, array(a, 0, j),
array(a, 1, j), and array(k, j, j), where v, a, and j are variables, and k ∈ N.

When pure formulas are conjunctions of ‘difference constraints’ as in Defini-
tion 3.4, their satisfiability becomes polynomial [17].

4 Satisfiability in ASL

Here, we show that satisfiability in ASL is NP-complete. This stands in contrast
to the situation for symbolic-heaps over list segments, where satisfiability is poly-
nomial [16], and over general inductive predicates, where it is EXP-complete [10].

Satisfiability Problem for ASL. Given symbolic heap A, decide if there is a
stack s and heap h with s,h |= A.

First, we show that satisfiability of a symbolic heap can be encoded as a Σ0
1

formula of Presburger arithmetic and can therefore be decided in NP time.

Definition 4.1. Presburger arithmetic (PbA) is defined as the first-order theory
(with equality) of the natural numbers N over the signature 〈0, s,+〉, where s
is the successor function, and 0 and + have their usual interpretations. It is
immediate that the relations �=, ≤ and < can be encoded (possibly introducing
an existential quantifier), as can the operation of multiplication by a constant.

Note that a stack is just a standard first-order valuation, and that a pure
formula in ASL is also a formula of PbA. Moreover, the satisfaction relations for

Biabduction (and Related Problems) in Array Separation Logic 477

ASL and PbA coincide on such formulas. Thus, we overload |= to include the
standard first-order satisfaction relation of PbA.

The intuition behind our encoding of satisfiability is that a symbolic heap is
satisfiable exactly when the pure part is satisfiable, each array is well-defined, and
all pointers and arrays are non-overlapping with all of the others. For simplicity
of exposition, we do this by abstracting away pointers with single-cell arrays.

Definition 4.2. Let A be a quantifier-free symbolic heap, written (without loss
of generality) in the form: A = Π :∗n

i=1
array(ai, bi)∗∗m

i=1
ci �→ di. We define

its array abstraction as

�A� =def Π :∗n

i=1
array(ai, bi) ∗∗m

i=1
array(ci, ci).

Lemma 4.3. Let A be a quantifier-free symbolic heap and s a stack. Then,
∃h. s, h |= A iff ∃h′. s, h′ |= �A�.

Definition 4.4. Let A be a quantifier-free symbolic heap, and let �A� be of the
form Π :∗n

i=1
array(ai, bi). We define a corresponding formula γ(A) of PbA as

γ(A) =def Π ∧
∧

1≤i≤n ai ≤ bi ∧
∧

1≤i<j≤n(bi < aj) ∨ (bj < ai) .

Note that γ(A) is defined in terms of the abstraction �A�.

Lemma 4.5. For any stack s and any quantifier-free symbolic heap A, we have
s |= γ(A) iff ∃h. s, h |= A.

Proposition 4.6. Satisfiability for ASL is in NP.

Proof. Follows from Lemma 4.5 and the fact that satisfiability for Σ0
1 Presburger

arithmetic is in NP [35].

Proposition 4.6 may also be obtained by viewing ASL as a sub-fragment of
the array property fragment [8]. However, we put forward Definition 4.4 and
Lemma 4.5 as we make heavy use of them in Sect. 5.

Satisfiability is shown NP-hard by reduction from the 3-partition problem [21].

3-Partition Problem. Given B ∈ N and a sequence of natural numbers S =
(k1, k2, . . . , k3m) such that

∑3m
j=1 kj = mB, and B/4 < kj < B/2 for all j ∈

[1, 3m], decide whether there is a partition of S into m groups of three, say
{(kji,1 , kji,2 , kji,3) | i ∈ [1,m]}, such that kji,1 +kji,2 +kji,3 = B for all i ∈ [1,m].

Definition 4.7. Given an instance (B,S) of the 3-partition problem, we define
a symbolic heap AB,S as follows. First we introduce m + 1 numbers di acting
as single-cell “delimiters” between chunks of memory of length B, (therefore,
di+1 = di + B + 1), and aj to allocate arrays of length kj in the space between
some pair of delimiters di and di+1. Visually, the arrangement is as follows:

. . .
di

•
B

︷ ︸︸ ︷
· · · · ·

︸ ︷︷ ︸
kji,1

· · · ·
︸ ︷︷ ︸

kji,2

· · ·
︸ ︷︷ ︸

kji,3

di+1

• . . .

478 J. Brotherston et al.

Concretely, AB,S is the following symbolic heap:

3m∧

j=1

(d1 ≤ aj) ∧ (aj + kj < dm+1) :
m+1∗
i=1

array(di, 0, 0) ∗
3m∗
j=1

array(aj , 1, kj) .

Lemma 4.8. Given a 3-partition problem (B,S), and letting AB,S be given by
Definition 4.7, we have that AB,S is satisfiable iff there is a 3-partition of S
(w.r.t. B).

Theorem 4.9. The satisfiability problem for ASL is NP-complete, even when
symbolic heaps are restricted to be quantifier-free, and in two-variable form.

Proof. Proposition 4.6 provides the upper bound. For the lower bound, Defini-
tion 4.7 and Lemma 4.8 establish a polynomial reduction from the 3-partition
problem. ��

5 Biabduction

Here, we turn to the central focus of this paper, biabduction for ASL. In stating
this problem, it is convenient to first lift the connective ∗ to symbolic heaps:

(∃x. Π : F) ∗ (∃y. Π ′ : F ′) = ∃x ∪ y. Π ∧ Π ′ : F ∗ F ′ ,

where the existentially quantified variables x and y are assumed disjoint, and
no free variable capture occurs (this can always be avoided by α-renaming).

Biabduction Problem for ASL. Given satisfiable symbolic heaps A, B, find
symbolic heaps X, Y such that A * X is satisfiable and A * X |= B ∗ Y .

We first consider quantifier-free biabduction (Sect. 5.1), and investigate its
complexity in Sect. 5.2. We then show that when quantifiers appear in B, Y
which are appropriately restricted, existence of solutions can be decided using
the machinery for the quantifier-free case (Sect. 5.3). In the same section we also
characterise the complexity of biabduction in the presence of quantifiers.

5.1 An Algorithm for Quantifier-Free Biabduction

We give an algorithm for quantifier-free biabduction. Let (A,B) be a biabduction
problem and (X,Y) a solution. The intuition is that a model s, h of both A and
B induces a total order over the terms of A,B, dictating the form of X,Y .

Consider Fig. 1, which depicts a biabduction instance (A,B) and a solution
(X,Y), where all array endpoints in A,B are totally ordered. Using this order,
we can compute X,Y by covering parts that B requires but A does not provide
(X) and by covering parts that A requires but B does not provide (Y).

We capture this intuition by introducing a formula Δ, called a solution seed,
capturing the total order over the terms of A,B. We show that the existence of

Biabduction (and Related Problems) in Array Separation Logic 479

a solution seed Δ implies the existence of a solution (X,Y) for the biabduction
problem (A,B), and is in turn implied by the satisfiability of a certain PbA
formula β(A,B). To complete the circle, we show that β(A,B) is satisfiable
whenever there is a biabduction solution for (A,B):

solution (X, Y)
for (A, B) exists

β(A, B)
satisfiable

solution seed Δ
for (A, B) exists

Proposition 5.2 Theorem 5.5

Theorem 5.11

Finally, we show that the problem of finding a solution to a biabduction
problem is in NP and that our algorithm is complexity-optimal (Proposition
5.13).

Definition 5.1 (The formula β). Let (A,B) be an biabduction instance,
where

A = Π :
n∗

i=1

array(ai, bi) ∗
k∗

i=1

ti �→ ui B = Π ′ :
m∗

i=1

array(ci, di) ∗
�∗

i=1

vi �→ wi

We define a formula β(A,B) of PbA as follows:

β(A,B) =def γ(A)∧γ(B)∧
�∧

j=1

n∧

i=1

(vj < ai ∨vj > bi)∧
�∧

i=1

k∧

j=1

(ti �= vj ∨ui = wj)

Proposition 5.2. If (A,B) has a solution, then β(A,B) is satisfiable.

Proof (Sketch). Letting X,Y be a solution for (A,B), there is a model s, h of
A ∗ X. We show that s |= β(A,B), using Lemma 4.5 for the first conjunct of β,
and the fact that A ∗ X |= B ∗ Y for the other conjuncts. ��

Given an instance of the form in Definition 5.1, we define a set TA,B of terms by:

TA,B =def T (A) ∪ T (B) ∪
n⋃

i=1

{bi + 1} ∪
m⋃

i=1

{di + 1} ∪
k⋃

i=1

{ti + 1} ∪
�⋃

i=1

{vi + 1}

where T (−) denotes the set of all terms in a symbolic heap.

Definition 5.3 (Solution seed). A solution seed for a biabduction problem
(A,B) in the form of Definition 5.1 is a pure formula Δ =

∧
i∈I δi such that:

1. Δ is satisfiable, and Δ |= β(A,B);
2. δi is of the form (t < u) or (t = u), where t, u ∈ TA,B, for any i ∈ I;
3. for all t, u ∈ TA,B, there is i ∈ I such that δi is (t < u) or (u < t) or (t = u).

Lemma 5.4. Let Δ be a solution seed for the problem (A,B). Δ induces a total
order on TA,B: for any e, f ∈ TA,B, Δ |= e < f or Δ |= e = f or Δ |= f < e.

480 J. Brotherston et al.

A ∗ X

B ∗ Y

c1 a1 − 1

a1 b1

b1 + 1 d2 c3 a2 − 1

a2 b2

b2 + 1 d3

c1 d1

d1 + 1 c2 − 1

c2 d2 c3 d3

Fig. 1. Example showing solutions in Definition 5.6. Arrays of A, B are displayed as
boxes and arrays in X, Y as hatched rectangles.

This lemma justifies abbreviating Δ |= e < f by e <Δ f ; Δ |= e ≤ f by
e ≤Δ f ; and, Δ |= e = f by e =Δ f .

Theorem 5.5. If β(A,B) is satisfiable, then there exists a solution seed Δ for
the biabduction problem (A,B).

Proof (Sketch). Given a stack s such that s |= β(A,B), we define the formula

Δ =
∧

e,f∈TA,B , s(e)<s(f) e < f ∧
∧

e,f∈TA,B , s(e)=s(f) e = f

and show that it satisfies Definition 5.3. ��

We now present a way to compute a solution (X,Y) given a solution seed Δ.
They key ingredient is the arrcov algorithm (Fig. 2). Intuitively, arrcov takes a
solution seed Δ and the endpoints of an array(cj , dj) in B, and constructs arrays
for X so that every model of A∗X includes a submodel that satisfies array(cj , dj).
Arrays in A contribute to the coverage of array(cj , dj) and, in addition, the newly
created arrays do not overlap with those of A (or themselves) for consistency.

Note that in arrcov we sometimes need to generate terms denoting the pre-
decessor of the start of an array, even though there is no predecessor function
in PbA. We do this by using primed terms a′

i, and add constraints that induce
this meaning (ai + 1 = a′

1). This is done on demand in order to avoid the risk of
trying to decrement a zero-valued term, thus obtaining an inconsistent formula.

Definition 5.6 (The formulas X,Y). Let Δ be a solution seed for an instance
(A,B) in the form given in Definition 5.1. The formulas X,Y are defined as
follows:

ΘX : FX =def ∗m

j=1
arrcovA,Δ(cj , dj) ∗∗�

j=1
ptocovA,Δ(vj , wj)

ΘY : FY =def ∗n

i=1
arrcovB,Δ(ai, bi) ∗∗k

i=1
ptocovB,Δ(ti, ui)

Δ̂ =def Δ ∧ ΘX ∧ ΘY X =def Δ̂ : FX Y =def Δ̂ : FY

Every quantifier-free formula A of ASL is precise [33] (by structural induc-
tion): for any model s, h there exists at most one subheap h′ of h such that
s, h′ |= A. This motivates the following notation: we will write �A�s,h to denote
the unique subheap h′ ⊆ h such that s, h′ |= A, when it exists.

Proposition 5.7. Let (A,B) be a biabduction problem of the form shown in
Definition 5.1. Let Δ be a solution seed and let e, f be terms in TA,B. Then, the
call arrcovA,Δ(e, f):

Biabduction (and Related Problems) in Array Separation Logic 481

1 Function arrcovA,Δ(e, f)
Data: a quantifier-free symbolic heap A;

solution seed Δ; terms e, f in TA,B

Result: quantifier-free symbolic heap

// work with �→-abstraction of A

2 let

(
Π :∗n+k

i=1
array(âi, b̂i)

)
= �A	;

3 if f <Δ e then
// nothing to cover

4 return emp;

5 end

6 if ∃i ∈ [1, n + k]. âi ≤Δ e ≤Δ b̂i then

// endpoint e covered by array(âi, b̂i)

7 return arrcovA,Δ(b̂i + 1, f);

8 end

// left endpoint e not covered

9 E :=

{
âj

∣∣∣∣ e <Δ âj ≤Δ f
for j ∈ [1, n + k]

}
;

10 if E = ∅ then
// no part of array(e, f) covered

11 return array(e, f);

12 end

// middle covered by array(âi, b̂i)
13 âi := minΔ(E);

14 return (â′
i + 1 = âi :

array(e, â′
i)) ∗ arrcovA,Δ(b̂i + 1, f);

1 Function ptocovA,Δ(e, f)
2 let⎛

⎝Π :

n∗
i=1

array(ai, bi) ∗
k∗

i=1

ti �→ ui

⎞
⎠ = A;

3 if ∃i ∈ [1, k]. ti =Δ e then
4 return emp;
5 end
6 if ∃i ∈ [1, n]. ai ≤Δ e ≤Δ bi then
7 return emp;
8 end
9 return e �→ f ;

– Arrays of A / B appear as boxes with indicated
bounds.

– Arrays of X appear in a hatched pattern.
– Recursive calls appear as dashed boxes with

parameters.
– Terms a′

i are shown as ai − 1 for readability.

A ∗ X

B

Line 7:
ai bi arrcovσ(bi + 1, u)

t u

A ∗ X

B

Line 11:

t u

t u

A ∗ X

B

Line 14:

t ai − 1

ai bi arrcovσ(bi + 1, u)

t u

Fig. 2. Left: the function arrcovA,Δ(e, f). Top right: the function ptocovA,Δ(e, f). Bot-
tom right: arrays of A, B, X relevant to each return statement in the arrcov function.

1. always terminates, issuing up to n + k recursive calls;
2. returns a formula

∧
i∈I(ai = a′

i + 1) ∧
∧

i∈J(ti = t′i + 1) : ∗q

i=1
array(li, ri)

for some q ∈ N and sets I, J ⊆ N, where for all i ∈ [1, q], li ∈ TA,B;
3. for every i ∈ [1, q], Δ̂ |= e ≤ li ≤ ri ≤ f ;
4. for every i ∈ [1, q − 1], Δ̂ |= ri < li+1.

Lemma 5.8. Let (A,B) be a biabduction instance, Δ a solution seed and X as
in Definition 5.6. Then, A ∗ X is satisfiable.

Definition 5.9 (Barr,Bpto,Yarr,Ypto). Let (A,B) be a biabduction problem, Δ a
solution seed, X,Y as in Definition 5.6 and s, h a model such that s, h |= A∗X.
Then we define the following sequences Barr,Bpto,Yarr,Ypto of subheaps of h, such
that:

Barr
i = �array(ci, di)�s,h i ∈ [1,m] Yarr

i = �arrcovB,Δ(ai, bi)�s,h i ∈ [1, n]
Bpto

i = �vi �→ wi�
s,h i ∈ [1, �] Ypto

i = �ptocovB,Δ(ti, ui)�s,h i ∈ [1, k]

Lemma 5.10. All heaps in Barr,Bpto,Yarr,Ypto are well-defined. Also,

1. For any S of Barr,Bpto,Yarr,Ypto, and any distinct i, j ∈ [1, |S|], Si # Sj.
2. For any two distinct S, T of Barr, Bpto, Yarr, Ypto, and any i, j, Si # Tj.

482 J. Brotherston et al.

3. dom (h) ⊆
⋃m

i=1 Barr
i ∪

⋃�
i=1 Bpto

i ∪
⋃n

i=1 Yarr
i ∪

⋃k
i=1 Ypto

i .

Theorem 5.11. Given a solution seed Δ for the biabduction problem (A,B),
the formulas X and Y , as computed by Definition 5.6, form a solution for that
instance.

Proof. That (X,Y) is a solution means that A∗X is satisfiable and that A∗X |=
B∗Y . The first requirement is fulfilled by Lemma 5.8. Here, we show the second.

Let s, h be a model of A ∗ X. We need to show that s, h |= B ∗ Y . Using
Definition 5.6, we have A ∗ X = Π ∧ Δ̂ : FA∗X and B ∗ Y = Π ′ ∧ Δ̂ : FB∗Y .
It is easy to see that s |= Π ′ ∧ Δ̂: by assumption, s |= Δ̂, and as Δ̂ |= Δ
(Definition 5.6) and Δ |= γ(B) (Definition 5.3), it follows that s |= Π ′ as well
(Definition 4.4).

It remains to show that s, h |= FB∗Y . We will do this by (a) defining a
subheap h′ ⊆ h for each atomic formula σ in FB∗Y , such that s, h′ |= σ. Having
done this we will need (b) to show that all such subheaps are disjoint, and that
(c) their disjoint union equals h.

The sequences Barr,Bpto,Yarr,Ypto from Definition 5.9, by construction, fulfil
requirement (a) above, given they are well-defined as guaranteed by Lemma 5.10
(main statement). Requirement (b) is covered by items 1 and 2 of Lemma 5.10.
Finally, requirement (c) is covered by item 3 of Lemma 5.10.

The solutions obtained via Definition 5.6 are constructed from terms in TA,B ,
so X,Y are as ‘symbolic’ as A,B are. However, our solutions are potentially
stronger than required; our algorithm here always imposes a total order over
all array endpoints in the antiframe X, even if only a part of this information
is actually required in order to compute the spatial formulas in X and Y . We
believe that our algorithm can be refined so as to avoid “over-committing”.

Our method is, also, complete in the following sense. Suppose (X,Y) is a
solution that does not impose a total order over TA,B . Then, there exists a
solution (X ′, Y ′) computable by our method, such that X ′ |= X and Y ′ |= Y .

5.2 Complexity of Quantifier-Free Biabduction in ASL

Lemma 5.12. Let (A,B) be a biabduction instance and Δ a formula satisfying
Conditions 2 and 3 of Definition 5.3. Let Γ =

∧ ∨
π be a formula where π is of

the form t < u or t = u and t, u ∈ TA,B. Then, checking Δ |= Γ is in PTIME.

Proposition 5.13. Deciding if there is a solution for a biabduction problem
(A,B), and constructing it if it exists, can be done in NP.

Proof (Sketch). We guess a total order over TA,B and a polynomially-sized
assignment of values s ([35, Theorem 6]) to all terms in TA,B . We convert this
order to a formula Δ and check if s |= Δ (thus showing the satisfiability of Δ)
and whether Δ |= β(A,B). If all these conditions hold, we use Definition 5.6
and obtain formulas X,Y . By Proposition 5.7 and Lemma 5.12 this process runs
in PTIME.

Biabduction (and Related Problems) in Array Separation Logic 483

We establish NP-hardness of quantifier-free biabduction by reduction from
the 3-partition problem, similarly to satisfiability in Sect. 4.

Definition 5.14. Let (B,S) be an instance of the 3-partition problem. We
define corresponding symbolic heaps ÃB,S and B̃B,S . First, we define a satis-
fiable ÃB,S as:

∧m
i=1(di+1 = di + B + 1): ∗m+1

i=1
array(di, 0, 0). The formula

B̃B,S , a relaxed but satisfiable version of AB,S from Definition 4.7, is given by:

m∧

i=1

di+1 > di ∧
3m∧

j=1

(d1 ≤ aj ∧ aj + kj < dm+1) :

m+1∗
i=1

array(di, 0, 0) ∗
3m∗
j=1

array(aj , 1, kj)

Lemma 5.15. Let AB,S be the symbolic heap given by Definition 4.7. Then we
have the Presburger equivalence β(ÃB,S , B̃B,S) ≡ γ(AB,S).

Proof (Sketch). Follows from Definitions 4.4, 5.1 and 5.14.

Theorem 5.16. The biabduction problem for ASL is NP-hard, even for (A, B)
such that A,B are satisfiable, quantifier-free, and in two-variable form.

Proof (Sketch). By reduction from the 3-partition problem (see Sect. 4). By Lem-
mas 4.5, 4.8 and 5.15, there is a complete 3-partition on S w.r.t. bound B iff
β(ÃB,S , B̃B,S) is satisfiable. Using (Proposition 5.2/Theorem 5.5/Theorem 5.11),
this is equivalent to the existence of a biabduction solution for (ÃB,S , B̃B,S).

5.3 Biabduction for ASL with Quantifiers

Here we show two complementary results about biabduction when B contains
existential quantifiers. First, if the quantifiers are appropriately restricted, then
the biabduction problem is equivalent to the quantifier-free case (thus in NP). If
quantifiers are not restricted, then the problem becomes ΠP

2 -hard [36].

Proposition 5.17. Let A be quantifier-free, and let B be such that no variable
appearing in the RHS of a �→ formula is existentially bound. Then, a biabduction
instance (A,B) has a solution if and only if (A, qf(B)) has a solution.

The construction of a suitable heap h in the proof of the nontrivial (⇒)
direction of Proposition 5.17 explains the reasons for our restrictions on quan-
tifiers: the contents of the arrays in h must be chosen different to the data
values occurring in the �→-formulas in B. If any such values are quantified, this
may be impossible. Indeed, X = Y = emp is a trivial biabduction solution for
array(x, x) ∗ X |= (∃y. x �→ y) ∗ Y , but no solution exists if we remove the
quantifier.

In order to obtain the ΠP
2 lower bound for biabduction with unrestricted

quantifiers, we reduce from the following colourability problem, from [1].

484 J. Brotherston et al.

2-Round 3-Colourability Problem. Let G = (V, E) be an undirected graph
with n vertices v1, . . . , vk, vk+1, . . . vn, and let v1, v2, . . . , vk be its leaves. The
problem is to decide if every 3-colouring of the leaves can be extended to a 3-
colouring of the graph, such that no two adjacent vertices share the same colour.

Let ci,1 denote the colour, 1, 2, or 3, the vertex vi is marked by. We mark
also each edge (vi, vj) by c̃ij , the colour “complementary” to ci,1 and cj,1.

As for the leaves vi, we introduce k distinct locations d1, . . . , dk so that the
value ci stored in di can be used subsequently to identify the colour ci,1 marking
vi, e.g., with the help of (ci,1 − 1 ≡ ci (mod3)) .

We encode the fact that ci,1, cj,1, and c̃ij are distinct by taking ci,1, cj,1, and
c̃ij as the addresses, adjusted with a base-offset eij , for three consecutive cells
within a memory chunk of length 3 given by array(eij , 1, 3), which forces these
colours to form a permutation of (1, 2, 3).

Definition 5.18. An arbitrary 3-colouring of the leaves is encoded with a sat-
isfiable AG taken as

AG =def (b = 3):
k∗

i=1

array(di, 1, 1) ∗ ∗
(vi,vj)∈E

array(eij , 1, 3) .

For a fixed b, a perfect b-colouring of the whole G is encoded with BG taken as

∃z.
(n∧

i=1

(1 ≤ ci,1 ≤ b) ∧
∧

(vi,vj)∈E

(1 ≤ c̃ij ≤ b) ∧
k∧

i=1

(ci,1 − 1 ≡ ci (mod3)) :

k∗
i=1

di �→ ci ∗ ∗
(vi,vj)∈E

array(eij , ci,1, ci,1) ∗ array(eij , cj,1, cj,1) ∗ array(eij , c̃ij , c̃ij)
)
.

where the existentially quantified variables z are all variables occurring in BG

that are not mentioned explicitly in AG.

B is satisfiable, e.g., for a large b, each vertex vi can be marked by its own colour.

Lemma 5.19. Let G be a 2-round 3-colouring instance. The biabduction prob-
lem (AG, BG) has a solution iff there is a winning strategy for the perfect 3-
colouring G, where AG and BG are the symbolic heaps given by Definition 5.18.

Theorem 5.20. The biabduction problem (A,B) for ASL is ΠP
2 -hard, even if

A is quantifier-free and both A and B are satisfiable.

Proof. Follows from Lemma 5.19.

6 Entailment

We now focus on entailment for ASL. We establish an upper bound of ΠEXP
1 in

the weak EXP hierarchy [26] via an encoding into Π0
2 PbA, and a lower bound

of ΠP
2 [36]. Moreover, quantifier-free entailment is coNP-complete.

Biabduction (and Related Problems) in Array Separation Logic 485

Entailment for ASL. Given symbolic heaps A, B, decide if A |= B. A may be
considered quantifier-free; similar to Proposition 5.17, the existential quantifiers
in B may not mention variables appearing in the RHS of a �→-formula.

The intuition underlying our encoding of entailment: There exists a counter-
model for A |= B iff there exists a stack s that induces a model for A (captured
by γ(A) from Sect. 4) and, for every instantiation of the existentially quantified
variables in B (say z), one of the following holds under s:

1. the quantifier-free body qf(B) of B becomes unsatisfiable; or
2. some heap location is covered by an array or pointer in A, but not by any

array or pointer in B, or vice versa; or
3. the LHS of some pointer in B is covered by an array in A (thus we can choose

the contents of the array different to the contents of the pointer); or
4. a pointer in B is covered by a pointer in A, but their data contents disagree.

Similar to Proposition 5.17, this intuition explains our restriction on quantifi-
cation in the entailment problem: if we allow quantifiers over the RHS of �→ for-
mulas, then item 3 above might or might not be sufficient to construct a counter-
model. For example, there is a countermodel for array(x, x) |= ∃y. y ≤ 3 : x �→ y,
and for array(x, x) |= x �→ y, but not for array(x, x) |= ∃y. x �→ y.

Definition 6.1. Let A and B be two �→-free symbolic heaps such that

A = array(a1, b1) ∗ . . . ∗ array(an, bn)
B = array(c1, d1) ∗ . . . ∗ array(cm, dm)

Then we define the formula φ(A,B) of PbA to be

φ(A,B) =def ∃x.
∨n

i=1 ai ≤ x ≤ bi ∧
∧m

j=1(x < cj) ∨ (x > dj),

where x is fresh. We lift φ to arbitrary symbolic heaps by ignoring quantifiers and
abstracting pointers to arrays using �−�, i.e., φ(A,B) = φ(�qf(A)�, �qf(B)�).

Lemma 6.2. We can rewrite φ(A,B) as a quantifier-free formula in polytime.

Definition 6.3. Let A and B be symbolic heaps with A quantifier-free:

A = Π :∗n

i=1
array(ai, bi) ∗∗k

i=1
ti �→ ui

B = ∃z. Π ′ :∗m

j=1
array(cj , dj) ∗∗�

j=1
vj �→ wj

where the existentially quantified variables z are disjoint from all variables in
A. We define formulas ψ1(A,B), ψ2(A,B) and χ(A,B) of PbA as follows:

ψ1(A,B) =
∨n

i=1

∨�
j=1 ai ≤ vj ≤ bi ,

ψ2(A,B) =
∨k

i=1

∨�
j=1(ti = vj) ∧ (ui �= wj) , and

χ(A,B) = γ(A) ∧ ∀z.
(
¬γ(qf(B)) ∨ φ(A,B) ∨ φ(B,A) ∨ ψ1(A,B) ∨ ψ2(A,B)

)

where γ(−) is given by Definition 4.4, and φ(−,−) by Definition 6.1.

486 J. Brotherston et al.

Lemma 6.4. For any instance (A,B) of the ASL entailment problem above, and
for any stack s, we have s |= χ(A,B) iff ∃h. s, h |= A and s, h �|= B.

Theorem 6.5. Entailment is in ΠEXP
1 . If the no. of variables in A,B is fixed,

the problem is in ΠP
2 , and if B is quantifier-free then the problem is in coNP.

Proof. Follows from Lemmas 6.2 and 6.4, plus relevant complexity results for
Presburger arithmetic [23,25,36].

In order to obtain the ΠP
2 lower bound for entailment, we exhibit a reduction

from the same colourability problem as in Sect. 5.3. See [11] for details.

Theorem 6.6. The entailment problem A |= B is ΠP
2 -hard, even when A is

quantifier-free, and A,B are satisfiable symbolic heaps in two-variable form.
Moreover, the entailment problem is coNP-hard even for quantifier-free symbolic
heaps in two-variable form.

Proof. For the general case, we reduce from the 2-round 3-colourability problem,
which is ΠP

2 -hard [1]. For the quantifier-free case, the upper bound is immediate
by Theorem 6.5. For the lower bound, consider the entailment AB,S |= x <
x : emp where (B,S) is a 3-partition instance (see Sect. 4) and AB,S is the
symbolic heap in two-variable form given by Definition 4.7. Using Lemma 4.8,
this entailment is valid iff there is no complete 3-partition on S w.r.t. B, a
coNP-hard problem.

In the general case, there is a gap between our upper and lower bounds for
entailment: ΠEXP

1 = coNEXP versus ΠP
2 = coNPNP, respectively. It is plausible

that the lower bound is at least EXP: however, an encoding of, e.g., Π2
0 PbA in

ASL is not straightforward, because our pure formulas are conjunctions rather
than arbitrary Boolean combinations of atomic Presburger formulas.

Nevertheless, we note the essential difference between the biabduction and
entailment problems for ASL: by Theorem 6.6, entailment is still ΠP

2 -hard
whereas, by Propositions 5.13 and 5.17, biabduction is in NP.

7 Related Work

Here we briefly survey the literature most closely related to the present paper.
A fuller discussion appears in [11].

First, symbolic-heap separation logic over linked lists [4], underpinning the
Infer tool [13], has been extensively studied; its satisfiability and entailment
problems have been shown to be in PTIME [16], and its abduction problem
(where only an “antiframe” X is computed) is known NP-complete [22]. The
biabduction problem is studied in [14]. However, this fragment and our ASL
are largely disjoint: our arrays cannot be defined in terms of list segments
or vice versa, while ASL also employs linear arithmetic rather than simple
(dis)equalities. This is also reflected in the differences in their respective com-
plexity bounds.

Biabduction (and Related Problems) in Array Separation Logic 487

Moreover, even when arbitrary inductive definitions over symbolic heaps
are permitted [9], an area that has received significant recent interest (see
e.g. [3,10,12,27,38]) our ASL cannot be encoded in the absence of arithmetic.
Very recently, in [24], decidability of satisfiability and entailment was obtained
for a fragment of symbolic-heap separation logic with (“linearly compositional”)
inductive predicates and arithmetic. However, ASL cannot be encoded in this
fragment, because pointers and data variables belong to disjoint sorts, effec-
tively disallowing pointer arithmetic. A semidecision procedure for satisfiabil-
ity in symbolic-heap separation logic with inductive definitions and Presburger
arithmetic appears in [30]. ASL can be encoded in their logic, but, as far as we
can tell, not into the subfragment for which they show satisfiability decidable.

The iterated separating conjunction (ISC) [34], a binding operator for express-
ing various unbounded data structures, was recognised early on as a way of
reasoning about arrays. E.g., [31] uses the ISC to reasoning about memory
permissions, with the aim of enabling symbolic execution of concurrent array-
manipulating program. However, although our array predicate can be expressed
using the ISC, we do not know of any existing decision procedures for biab-
duction, entailment or even satisfiability in such a logic, which may be of high
complexity or become undecidable. We note for example that the analysis in [31]
requires programs to be fully annotated.

Finally, a significant amount of research effort has previously focused on the
verification of array-manipulating programs either via invariant inference and
theorem proving, or via abstract interpretation (for instance [2,7,19,20,29,37]).
These approaches differ from ours technically, but also in intention. First, the
emphasis in these investigations is on data constraints and, thus, tends towards
proving general safety properties of programs. Here, we intentionally restrict the
language so that we can obtain sound and complete algorithms which can be
used for establishing memory safety of programs but not for proving arbitrary
safety properties. Second, such approaches are typically whole-program analyses
that cannot be used bottom-up (with the possible exception of the non-SL-based
[6,18]). In contrast, our focus is on biabduction, one of the key ingredients that
makes such a compositional approach possible.

8 Conclusions and Future Work

In this paper, we investigate ASL, a separation logic aimed at compositional
memory safety proofs for array-manipulating programs. We give a sound and
complete NP algorithm for the crucial biabduction problem in this logic, and we
show that the problem is NP-hard in the quantifier-free case. In addition, we
show that the satisfiability problem for ASL is NP-complete, and entailment is
decidable, being coNP-complete for quantifier-free formulas, and at least ΠP

2 -
hard (perhaps much harder) in general.

An obvious direction for future work is to build an abductive program analy-
sis à la Infer [13] for array programs, using ASL as the assertion language. An
outstanding issue is finding biabduction solutions that are as logically weak as

488 J. Brotherston et al.

possible; our algorithm currently commits to a total ordering of all arrays even if
a partial ordering would be sufficient. We believe that, in practice, this could be
resolved by refining the notion of a solution seed so that it carries just enough
information for computing the spatial formulas. A more conceptually interesting
problem is how we might assess the quality of logically incomparable solutions.

In addition, a program analysis for ASL will rely not just on biabduction but
also on suitable abstraction heuristics for discovering loop invariants; this seems
an interesting and non-trivial problem for the near future.

Another possible direction for future work is on combining ASL with other
fragments of separation logic, such as the linked list fragment, for increased
expressivity. We are uncertain whether our techniques would extend naturally
to such logics, but we consider this a very interesting area for future study.

References

1. Ajtai, M., Fagin, R., Stockmeyer, L.J.: The closure of monadic NP. J. Comput.
Syst. Sci. 60(3), 660–716 (2000)

2. Alberti, F., Ghilardi, S., Sharygina, N.: Decision procedures for flat array prop-
erties. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp.
15–30. Springer, Heidelberg (2014). doi:10.1007/978-3-642-54862-8 2

3. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: Muscholl, A. (ed.) FoSSaCS 2014. LNCS, vol. 8412, pp. 411–425. Springer,
Heidelberg (2014). doi:10.1007/978-3-642-54830-7 27

4. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

5. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: memory safety for systems-level code.
In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 178–183.
Springer, Heidelberg (2011). doi:10.1007/978-3-642-22110-1 15

6. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: A logic-based framework for
reasoning about composite data structures. In: Bravetti, M., Zavattaro, G. (eds.)
CONCUR 2009. LNCS, vol. 5710, pp. 178–195. Springer, Heidelberg (2009). doi:10.
1007/978-3-642-04081-8 13

7. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 14

8. Bradley, A.R., Manna, Z., Sipma, H.B.: What’s decidable about arrays? In:
Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 427–
442. Springer, Heidelberg (2005). doi:10.1007/11609773 28

9. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 6

10. Brotherston, J., Fuhs, C., Gorogiannis, N., Navarro Pérez, J.: A decision procedure
for satisfiability in separation logic with inductive predicates. In: Proceedings of
CSL-LICS, pp. 25:1–25:10. ACM (2014)

http://dx.doi.org/10.1007/978-3-642-54862-8_2
http://dx.doi.org/10.1007/978-3-642-54830-7_27
http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/978-3-642-22110-1_15
http://dx.doi.org/10.1007/978-3-642-04081-8_13
http://dx.doi.org/10.1007/978-3-642-04081-8_13
http://dx.doi.org/10.1007/978-3-642-33386-6_14
http://dx.doi.org/10.1007/11609773_28
http://dx.doi.org/10.1007/978-3-540-74061-2_6

Biabduction (and Related Problems) in Array Separation Logic 489

11. Brotherston, J., Gorogiannis, N., Kanovich, M.: Biabduction (and related prob-
lems) in array separation logic. CoRR abs/1607.01993 (2016). http://arxiv.org/
abs/1607.01993

12. Brotherston, J., Gorogiannis, N., Kanovich, M., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: Proceedings of POPL-
43, pp. 84–96. ACM (2016)

13. Calcagno, C., Distefano, D., Dubreil, J., Gabi, D., Hooimeijer, P., Luca, M.,
O’Hearn, P., Papakonstantinou, I., Purbrick, J., Rodriguez, D.: Moving fast
with software verification. In: Havelund, K., Holzmann, G., Joshi, R. (eds.)
NFM 2015. LNCS, vol. 9058, pp. 3–11. Springer, Cham (2015). doi:10.1007/
978-3-319-17524-9 1

14. Calcagno, C., Distefano, D., O’Hearn, P.W., Yang, H.: Compositional shape analy-
sis by means of bi-abduction. J. ACM 58(6) (2011)

15. Chin, W.N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comp.
Prog. 77(9), 1006–1036 (2012)

16. Cook, B., Haase, C., Ouaknine, J., Parkinson, M., Worrell, J.: Tractable reasoning
in a fragment of separation logic. In: Katoen, J.-P., König, B. (eds.) CONCUR
2011. LNCS, vol. 6901, pp. 235–249. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-23217-6 16

17. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. MIT Press, Cambridge (2009)

18. Cousot, P., Cousot, R., Fähndrich, M., Logozzo, F.: Automatic inference of nec-
essary preconditions. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI
2013. LNCS, vol. 7737, pp. 128–148. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35873-9 10

19. Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully
automatic and scalable array content analysis. In: Proceedings of POPL-38, pp.
105–118. ACM (2011)

20. Dillig, I., Dillig, T., Aiken, A.: Fluid updates: beyond strong vs. weak updates. In:
Gordon, A.D. (ed.) ESOP 2010. LNCS, vol. 6012, pp. 246–266. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-11957-6 14

21. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

22. Gorogiannis, N., Kanovich, M., O’Hearn, P.W.: The complexity of abduction for
separated heap abstractions. In: Yahav, E. (ed.) SAS 2011. LNCS, vol. 6887, pp.
25–42. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23702-7 7

23. Grädel, E.: Subclasses of Presburger arithmetic and the polynomial-time hierarchy.
Theor. Comput. Sci. 56, 289–301 (1988)

24. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly composi-
tional separation logic with data constraints. In: Olivetti, N., Tiwari, A. (eds.)
IJCAR 2016. LNCS, vol. 9706, pp. 532–549. Springer, Cham (2016). doi:10.1007/
978-3-319-40229-1 36

25. Haase, C.: Subclasses of Presburger arithmetic and the weak EXP hierarchy. In:
Proceedings of CSL-LICS, pp. 47:1–47:10. ACM (2014)

26. Hartmanis, J., Immerman, N., Sewelson, V.: Sparse sets in NP-P: EXPTIME versus
NEXPTIME. Inform. Control 65(2), 158–181 (1985)

27. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

http://arxiv.org/abs/1607.01993
http://arxiv.org/abs/1607.01993
http://dx.doi.org/10.1007/978-3-319-17524-9_1
http://dx.doi.org/10.1007/978-3-319-17524-9_1
http://dx.doi.org/10.1007/978-3-642-23217-6_16
http://dx.doi.org/10.1007/978-3-642-23217-6_16
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-35873-9_10
http://dx.doi.org/10.1007/978-3-642-11957-6_14
http://dx.doi.org/10.1007/978-3-642-23702-7_7
http://dx.doi.org/10.1007/978-3-319-40229-1_36
http://dx.doi.org/10.1007/978-3-319-40229-1_36
http://dx.doi.org/10.1007/978-3-642-38574-2_2

490 J. Brotherston et al.

28. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. In: Bobaru,
M., Havelund, K., Holzmann, G.J., Joshi, R. (eds.) NFM 2011. LNCS, vol. 6617,
pp. 41–55. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20398-5 4

29. Kovács, L., Voronkov, A.: Finding loop invariants for programs over arrays using a
theorem prover. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol. 5503,
pp. 470–485. Springer, Heidelberg (2009). doi:10.1007/978-3-642-00593-0 33

30. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). doi:10.1007/978-3-319-41528-4 21

31. Müller, P., Schwerhoff, M., Summers., A.J.: Automatic verification of iterated sep-
arating conjunctions using symbolic execution. In: Proceedings of CAV-28 (2016,
to appear)

32. O’Hearn, P.W.: Resources, concurrency and local reasoning. Theor. Comput. Sci.
375(1–3), 271–307 (2007)

33. O’Hearn, P.W., Yang, H., Reynolds, J.C.: Separation and information hiding. In:
Proceedings of POPL-31, pp. 268–280. ACM (2004)

34. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of LICS-17, pp. 55–74. IEEE (2002)

35. Scarpellini, B.: Complexity of subcases of Presburger arithmetic. Trans. Am. Math.
Soc. 284(1), 203–218 (1984)

36. Stockmeyer, L.J.: The polynomial-time hierarchy. Theor. Comput. Sci. 3, 1–22
(1977)

37. Ströder, T., Giesl, J., Brockschmidt, M., Frohn, F., Fuhs, C., Hensel, J., Schneider-
Kamp, P., Aschermann, C.: Automatically proving termination and memory safety
for programs with pointer arithmetic. J. Autom. Reasoning 58(1), 33–65 (2017)

38. Tatsuta, M., Kimura, D.: Separation logic with monadic inductive definitions and
implicit existentials. In: Feng, X., Park, S. (eds.) APLAS 2015. LNCS, vol. 9458,
pp. 69–89. Springer, Cham (2015). doi:10.1007/978-3-319-26529-2 5

39. Yang, H., O’Hearn, P.W.: A semantic basis for local reasoning. In: Nielsen,
M., Engberg, U. (eds.) FoSSaCS 2002. LNCS, vol. 2303, pp. 402–416. Springer,
Heidelberg (2002). doi:10.1007/3-540-45931-6 28

http://dx.doi.org/10.1007/978-3-642-20398-5_4
http://dx.doi.org/10.1007/978-3-642-00593-0_33
http://dx.doi.org/10.1007/978-3-319-41528-4_21
http://dx.doi.org/10.1007/978-3-319-26529-2_5
http://dx.doi.org/10.1007/3-540-45931-6_28

Automatically Verifying Temporal Properties
of Pointer Programs with Cyclic Proof

Gadi Tellez(B) and James Brotherston

Department of Computer Science, University College London, London, UK
gadi.tellez.13@ucl.ac.uk

Abstract. We propose a deductive reasoning approach to the automatic
verification of temporal properties of pointer programs, based on cyclic
proof. We present a proof system whose judgements express that a pro-
gram has a certain temporal property over memory state assertions in
separation logic, and whose rules operate directly on the temporal modal-
ities as well as symbolically executing programs. Cyclic proofs in our
system are, as usual, finite proof graphs subject to a natural, decidable
soundness condition, encoding a form of proof by infinite descent.

We present a proof system tailored to proving CTL properties of non-
deterministic pointer programs, and then adapt this system to handle
fair execution conditions. We show both systems to be sound, and pro-
vide an implementation of each in the Cyclist theorem prover, yielding
an automated tool that is capable of automatically discovering proofs of
(fair) temporal properties of heap-aware programs. Experimental eval-
uation of our tool indicates that our approach is viable, and offers an
interesting alternative to traditional model checking techniques.

1 Introduction

Program verification can be described as the problem of deciding whether a given
program exhibits a desired behaviour, often called its specification. Temporal
logic, in its various flavours [24] is a very popular and widely studied specification
formalism due to its relative simplicity and expressive power: a wide variety of
safety (“something bad cannot happen”) and liveness properties (“something
good eventually happens”) can be captured [20].

Historically, perhaps the most popular approach to verify temporal proper-
ties of programs has been model checking : one first builds an abstract model that
overapproximates all possible executions of the program, and then checks that
the desired temporal property holds for this model (see e.g. [10,12,15]). How-
ever, this approach has been applied mainly to integer programs; the situation for
memory-aware programs over heap data structures becomes significantly more
challenging, mainly because of the difficulties in constructing suitable abstract
models. One possible approach is simply to translate such heap-aware programs
into integer variables, in such a way that properties such as memory safety or
termination of the original program follows from a corresponding property in

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 491–508, 2017.
DOI: 10.1007/978-3-319-63046-5 30

492 G. Tellez and J. Brotherston

its integer translation [12,15,22]. However, for more general temporal proper-
ties, this technique might produce unsound results. In general, it is not clear
whether it is feasible to provide suitable translations from heap to integer pro-
grams for any temporal property; in particular, numerical abstraction of heap
programs often removes important information about the exact shape of heap
data structures, which might be needed to prove some temporal properties.

Example 1. Consider a “server” program that, given an acyclic linked list with
head pointer x, nondeterministically alternates between adding an arbitrary num-
ber of “job requests” to the head of the list and removing all requests in the list:
while(true){

if(*) {

while(x!=nil) { temp:=x.next; free(x); x:=temp; }

} else {

while (*) { y:=new(); y.next:=x; x:=y; }

} }

Memory safety of this program can be proven using a simple numeric abstrac-
tion recording emptiness/nonemptiness of the list. Proving instead that it is
always possible for the heap to become empty, expressed in CTL as AGEF (emp),
requires a finer abstraction, recording the length of the list. However, such an
abstraction is still not sufficient to prove the property that the heap is always
a nil-terminating acyclic list from x to nil, expressed in CTL as AG(ls(x, nil))
(where ls is the standard list segment predicate of separation logic [26]), because
the information about acyclicity is lost.

Thus, although it is often possible to provide numeric abstractions to suit
specific programs and temporal properties, it is not clear that this is so for
arbitrary programs and properties.

In this paper, we instead approach the above problem via the main (per-
haps less fashionable) alternative to model checking, namely the direct deductive
verification of pointer programs. We formulate a cyclic proof system manipulat-
ing temporal judgements about programs, and employ automatic proof search
in this system to verify that a program has a given temporal property. Given
some fixed program, the judgements of our system express a temporal property
of the program when started from any state satisfying a precondition written
in a fragment of separation logic, a well-known language for describing heap
memory [26]. The core of the proof system is a set of symbolic execution rules
that simulate program execution steps. To handle the fact that symbolic execu-
tion can in general be applied ad infinitum, we employ cyclic proof [6,7,9,29],
in which proofs are finite cyclic graphs subject to a global soundness condition.
Using this approach, we are frequently able to verify temporal properties of heap
programs in an automatic and sound way without the need of abstractions or
program translations. Moreover, our analysis has the added benefit of producing
independently checkable proof objects.

Our proof system is tailored to CTL program properties over separation
logic assertions; subsequently, we show how to adapt this system to handle fair-
ness constraints, where nondeterministic branching may not unfairly favour one

Automatically Verifying Temporal Properties of Pointer Programs 493

branch over another. We have also adapted our system to (fair) LTL properties,
though we do not present this adaptation in this paper due to space constraints.

We provide an implementation of our proof system as an automated verifica-
tion tool within the Cyclist theorem proving framework [9], and evaluate its
performance on a range of examples. The source code, benchmark and executable
binaries of the implementation are publicly available online [1]. Our tool is able
to discover surprisingly complex cyclic proofs of temporal properties with times
often in the millisecond range. Practically speaking, the advantages and disad-
vantages of our approach are entirely typical of deductive verification: on the
one hand, we do not need to employ abstraction or program translation, and we
guarantee soundness; on the other hand, our algorithms might fail to terminate,
and (at least currently) we do not provide counterexamples in case of failure.
Thus we believe our approach should be understood as a useful complement to,
rather than a replacement for, model checking.

The remainder of this paper is structured as follows. Section 2 introduces
our programming language, the memory state assertion language, and temporal
(CTL) assertions over these. Section 3 introduces our proof system for verifying
temporal properties of programs, and Sect. 4 modifies this system to account for
fair program executions. Section 5 presents our implementation and experimental
evaluation, Sect. 6 discusses related work and Sect. 7 concludes.

2 Programs and Assertions

In this section we introduce our programming language, our language of asser-
tions about memory states (based on a fragment of separation logic) and our
language for expressing temporal properties of programs, given by CTL over
memory assertions.

Programming language. We use a simple language of while programs with
pointers and (de)allocation, but without procedures. We assume a countably
infinite set Var of variables and a first-order language of expressions over Var.
Branching conditions B and commands C are given by the following grammar:

B ::= E = E | E �= E | ∗
C ::= x := [E] | [E] := E | x := alloc() | free(E) | x := E |

skip | if B then C else C fi | while B do C od | C;C | ε

where x ∈ Var and E ranges over expressions. We write ε for the empty command,
∗ for a nondeterministic condition, and [E] for dereferencing of expression E.

We define the semantics of the language in a stack-and-heap model employ-
ing heaps of records. We fix a set Val of values, and a set Loc ⊂ Val of address-
able memory locations. A stack is a map s : Var → Val from variables to val-
ues. The semantics [[E]]s of expression E under stack s is standard; in particular,
[[x]]s = s(x) for x ∈ Var. We extend stacks pointwise to act on tuples of terms. A
heap is a partial, finite-domain function h : Loc ⇀fin (Val List), mapping finitely
many memory locations to records, i.e. arbitrary-length tuples of values; we write

494 G. Tellez and J. Brotherston

dom(h) for the set of locations on which h is defined. We write e for the empty
heap, and � to denote composition of domain-disjoint heaps: h1 �h2 is the union
of h1 and h2 when dom(h1) ∩ dom(h2) = ∅ (and undefined otherwise). If f is a
stack or a heap then we write f [x 	→ v] for the stack or heap defined as f except
that f [x 	→ v](x) = v. A paired stack and heap, (s, h), is called a (memory) state.

A (program) configuration γ is a triple 〈C, s, h〉 where C is a command, s a
stack and h a heap. If γ is a configuration, we write γC , γs, and γh respectively
for its first, second and third components. A configuration γ is called final if
γC = ε. The small-step operational semantics of programs is given by a binary
relation � on program configurations, where γ � γ′ holds if the execution of
the command γC in the state (γs, γh) can result in the program configuration γ′

in one step. We write �∗ for the reflexive-transitive closure of �. The special
configuration fault is used to denote a memory fault, e.g., if a command tries
to access non-allocated memory. For brevity, we omit the operational semantics
here, since it is essentially standard.

An execution path is a (maximally finite or infinite) sequence (γi)i≥0 of con-
figurations such that γi � γi+1 for all i ≥ 0. If π is a path, then we write πi for
the ith element of π. A path π starts from configuration γ if π0 = γ.

Remark 1. In temporal program verification, it is relatively common to consider
all program execution paths to be infinite, and all temporal properties to quantify
over infinite paths. This can be achieved either (i) by modifying programs to
contain an infinite loop at every exit point, or (ii) by modifying the operational
semantics so that final configurations loop infinitely (i.e. 〈ε, s, h〉 � 〈ε, s, h〉).

Here, instead, our temporal assertions quantify over paths that are either
infinite or else maximally finite. This has the same effect as directly modifying
programs or their operational semantics, but seems to us slightly cleaner.

Memory state assertions. We express properties of memory states (s, h) using
a standard symbolic-heap fragment of separation logic (cf. [2]) extended with
user-defined (inductive) predicates, typically needed to express data structures
in the memory. We omit the schema for inductive predicates and their interpre-
tations here, since they are identical to those used, e.g., in [7–9,27].

Definition 1. A symbolic heap is given by a disjunction of assertions each of
the form Π : Σ, where Π is a finite set of pure formulas of the form E = E or
E �= E, and Σ is a spatial formula given by the following grammar:

Σ ::= emp | E 	→ E | Σ ∗ Σ | Ψ(E),

where E ranges over expressions, E over tuples of expressions and Ψ over pred-
icate symbols (of arity matching the length of E in Ψ(E)).

Definition 2. Given a state s, h and symbolic heap Π : Σ, we write s, h |= Π :
Σ if s, h |= 	 for all pure formulas 	 ∈ Π, and s, h |= Σ, where the relation
s, h |= A between states and formulas is defined by

Automatically Verifying Temporal Properties of Pointer Programs 495

s, h |= E1 = E2 ⇔ [[E1]]s = [[E2]]s
s, h |= E1 �= E2 ⇔ [[E1]]s �= [[E2]]s

s, h |= emp ⇔ dom(h) = ∅

s, h |= E �→ E ⇔ dom(h) = {[[E]]s} and h([[E]]s) = [[E]]s
s, h |= Ψ(E) ⇔ ([[E]]s, h) ∈ [[Ψ]]

s, h |= Σ1 ∗ Σ2 ⇔ h = h1 � h2 and s, h1 |= Σ1 and s, h2 |= Σ2

s, h |= Ω1 ∨ Ω2 ⇔ s, h |= Ω1 or s, h |= Ω2

Note that the semantics of a predicate symbol, [[Ψ]] ⊆ Val List × Heaps, is typi-
cally obtained from an inductive definition of Ψ in a standard way (see e.g. [6]).

Temporal assertions. We describe temporal properties of our programs using
temporal assertions, built from the memory state assertions given above using
standard operators of computation tree logic (CTL) [11], where the temporal
operators quantify over execution paths from a given configuration.

Definition 3. CTL assertions are described by the grammar:

ϕ ::= P | error | final | ϕ ∧ ϕ | ϕ ∨ ϕ | ♦ϕ | �ϕ
| EFϕ | AFϕ | EGϕ | AGϕ | E(ϕUϕ) | A(ϕUϕ)

where P ranges over memory state assertions (Definition 1).

Note that final and error denote final, respectively faulting configurations.

Definition 4. A configuration γ is a model of the CTL assertion ϕ if the rela-
tion γ |= ϕ holds, defined by structural induction as follows:

γ |= P ⇔ γs, γh |= P
γ |= error ⇔ γ = fault
γ |= final ⇔ γC = ε

γ |= ϕ1 ∧ ϕ2 ⇔ γ |= ϕ1 and γ |= ϕ2

γ |= ϕ1 ∨ ϕ2 ⇔ γ |= ϕ1 or γ |= ϕ2

γ |= ♦ϕ ⇔ ∃γ′. γ � γ′ and γ′ |= ϕ
γ |= �ϕ ⇔ ∀γ′. γ � γ′ implies γ′ |= ϕ

γ |= EFϕ ⇔ ∃γ′. γ �∗ γ′ and γ′ |= ϕ
γ |= AFϕ ⇔ ∀π starting from γ. ∃γ′ ∈ π. γ′ |= ϕ
γ |= EGϕ ⇔ ∃π starting from γ. ∀γ′ ∈ π. γ′ |= ϕ
γ |= AGϕ ⇔ ∀γ′. if γ �∗ γ′ then γ′ |= ϕ

γ |= E(ϕ1Uϕ2) ⇔ ∃π starting from γ. ∃i ≥ 0. πi |= ϕ2 and ∀j : 0 ≤ j < i. πj |= ϕ1

γ |= A(ϕ1Uϕ2) ⇔ ∀π starting from γ. ∃i ≥ 0. πi |= ϕ2 and ∀j : 0 ≤ j < i. πj |= ϕ1

Judgements in our system are given by P � C : ϕ, where P is a symbolic
heap, C is a command sequence and ϕ is a temporal assertion.

Definition 5 (Validity). A CTL judgement P � C : ϕ is valid if and only if,
for all memory states (s, h) such that s, h |= P , we have 〈C, s, h〉 |= ϕ.

496 G. Tellez and J. Brotherston

3 A Cyclic Proof System for Verifying CTL Properties

In this section, we present a cyclic proof system for establishing the validity of
our CTL judgements on programs, as described in the previous section.

Our proof rules for CTL judgements are shown in Fig. 1. The symbolic execu-
tion rules for commands are adapted from those in the proof system for program
termination in [7], accounting for whether a diamond ♦ or box � property is
being established. The dichotomy between ♦ and � is only visible for the non-
deterministic components of a program. In the specific case of our language, the
nondeterministic constructs are (i) nondeterministic while; (ii) nondetreministic
if; and (iii) memory allocation; it is only for these constructs that we need a spe-
cific rule for each case, as shown in our symbolic execution rules. Incidentally,
the difference between E properties and A properties is basically the same as
the difference between ♦ and �, but extended to execution paths rather than
individual steps.

We also introduce faulting execution rules to allow us to prove that a program
faults. The logical rules comprise standard rules for the logical connectives and
standard unfolding rules for the temporal operators and inductive predicates in
memory assertions. For brevity, we omit here the somewhat complex unfolding
rule for inductive predicates, but similar rules can be found in, e.g., [7–9,27].

Proofs in our system are cyclic proofs: standard derivation trees in which
open subgoals can be closed either by applying an axiom or by forming a back-
link to an identical interior node. To ensure that such structures correspond to
sound proofs, a global soundness condition is imposed. The following definitions,
adaptations of similar notions in e.g. [6–9,27], formalise this notion.

Definition 6 (Pre-proof). A leaf of a derivation tree is called open if it is
not the conclusion of an axiom. A pre-proof is a pair P = (D,L), where D is a
finite derivation tree constructed according to the proof rules and L is a back-link
function assigning to every open leaf of D a companion: an interior node of D
labelled by an identical proof judgement.

A pre-proof P = (D,L) can be seen as a finite cyclic graph by identifying
each open leaf of D with its companion. A path in P is then a path in this graph.
It is easy to see that a path in a pre-proof corresponds to one or more paths in
the execution of a program, interleaved with logical inferences.

To qualify as a proof, a cyclic pre-proof must satisfy a global soundness
condition, defined using the notion of a trace along a path in a pre-proof.

Definition 7 (Trace). Let (Ji = Pi � Ci : ϕi)i≥0 be a path in a pre-proof P.
The sequence of temporal formulas along the path, (ϕi)i≥0, is a �-trace (♦-trace)
following that path if there exists a formula ψ such that, for all i ≥ 0:

– the formula ϕi is of the form AGψ (EGψ) or �AGψ (♦EGψ); and
– ϕi = ϕi+1 whenever Ji is the conclusion of the consequence rule (Cons).

We say that a trace progresses whenever a symbolic execution rule is applied. A
trace is infinitely progressing if it progresses at infinitely many points.

Automatically Verifying Temporal Properties of Pointer Programs 497

Fig. 1. Proof rules for CTL judgements. We write ©ϕ to mean “either �ϕ or ♦ϕ”.

We also take account of precondition traces arising from inductive predicates
in the precondition, as employed in [7]. Roughly speaking, a precondition trace
tracks an occurrence of an inductive predicate in the preconditions of the judge-
ments along the path, progressing whenever the predicate occurrence is unfolded.
Again, see [7–9,27] for similar notions.

Definition 8 (Proof). A pre-proof P is a proof if it satisfies the following
global soundness condition: for every infinite path (Pi � Ci : ϕi)i≥0 in P, there

498 G. Tellez and J. Brotherston

is an infinitely progressing �-trace, ♦-trace or precondition trace following some
tail (Pi � Ci : ϕi)i≥n of the path.

Example 2. Consider the server-like program in Example 1 in the Introduction.
We can show that, given that the heap is initially a linked list from x to nil, it
is always possible for the heap to become empty at any point during program
execution. Writing C for our server program, this property is expressed as the
judgement ls(x, nil) � C : AGEF (emp).

Figure 2 shows an outline cyclic proof of this judgement in our system (we
suppress the internal judgements for space reasons, but show the cycle structure
and rule applications). Note that the back-links depicted in blue do not form
infinite loops as they all point to a companion that eventually leads to a (Check)
axiom. The red back-links do give rise to infinite paths; one can see that the
pre-proof qualifies as a valid cyclic proof since there is an infinitely progressing
�-trace along every infinite path.

(Check)···· (EF)

···· (Wh)

···· (EF)

[A]···· (If*�1)
···· (EF)

···· (Wh)

···· (EF)

[B]

[A]···· (If*�1)
···· (EF)

[A]

(Ex Falso)

◦

[A]···· (Cons)

···· (Assign)

···· (EF)

···· (Free)
···· (EF)

···· (Load)
···· (EF)

[A]···· (Cons)

···· (Assign)

···· (EF)

···· (Free)
···· (EF)

[A]···· (Cons)

···· (Assign)

···· (EF)

[D]···· (Cons)

···· (Assign)

(AG)

···· (Free)

(AG)

···· (Load)

(AG)
◦
(ls L.Unf.)

◦

[F]
(Cons)

◦
(Wh)

····
(AG)

[D]

[B]···· (Wh*�2)
···· (EF)

[C]

[C]···· (Cons)

···· (Assign)

···· (EF)

···· (Store)
···· (EF)

···· (New)

···· (EF)

[C]···· (Cons)

···· (Assign)

···· (EF)

···· (Store)
···· (EF)

[C]···· (Cons)

···· (Assign)

···· (EF)

[E]···· (Cons)

···· (Assign)

(AG)

···· (Store)

(AG)

···· (New)

(AG)
◦ [F]

(Wh*�)
◦
(AG)

[E]
(If*�)

◦
(AG)

◦

(Ex Falso)

◦
(Wh)

····
(AG)

[F]

[A] = ls(x, nil) � whilex �= nil do . . . od : EF (emp) [D] = ls(x, nil) � whilex �= nil do . . . od : AGEF (emp)

[B] = ls(x, nil) � whilex = x do . . . od : EF (emp) [E] = ls(x, nil) � while ∗ do . . . od : AGEF (emp)

[C] = ls(x, nil) � while ∗ do . . . od : EF (emp) [F] = ls(x, nil) � whilex = x do . . . od : AGEF (emp)

Fig. 2. Single threaded monolithic server example (Color figure online)

We now show that our proof system is sound.

Lemma 1. Let J = (P � C : ϕ) be the conclusion of a proof rule R. If J is
invalid under (s, h), then there exists a premise of the rule J ′ = P ′ � C ′ : ϕ′ and
a model (s′, h′) such that J ′ is not valid under (s′, h′) and, furthermore,

Automatically Verifying Temporal Properties of Pointer Programs 499

1. if there is a �-trace (ϕ,ϕ′) following the edge (J, J ′) then, letting ψ be the
unique subformula of ϕ given by Definition 7, there is a configuration γ such
that γ �|= ψ, and the finite execution path π′ = 〈C ′, s′, h′〉 . . . γ is well-defined
and a subpath of π = 〈C, s, h〉 . . . γ. Therefore length(π′) ≤ length(π). More-
over, length(π) < length(π′) when R is a symbolic execution rule.

2. if there is a ♦-trace (ϕ,ϕ′) following the edge (J, J ′) then, letting ψ be the
unique subformula of ϕ given by Definition 7, there is a smallest finite execu-
tion tree κ with root 〈C, s, h〉, each of whose leaves γ satisfies γ �|= ψ. More-
over, κ has a subtree κ′ with root 〈C ′, s′, h′〉 and whose leaves are all leaves of
κ. Therefore height(κ′) ≤ height(κ). Moreover, height(κ′) < height(κ) when
R is a symbolic execution rule.

Theorem 1 (Soundness). If P � C : ϕ is provable, then it is valid.

Proof. (Sketch) Suppose for contradiction that there is a cyclic proof P of J =
P � C : ϕ but J is invalid. That is, for some stack s and heap h, we have
(s, h) |= P but 〈C, s, h〉 �|= ϕ. Then, by local soundness of the proof rules, we
can construct an infinite path (Pi � Ci : ϕi)i≥0 in P of invalid judgements. Since
P is a cyclic proof, by Definition 8 there exists an infinitely progressing trace
following some tail (Pi � Ci : ϕi)i≥n of the path.

If this trace is a �-trace, using condition 1 of Lemma 1, we can construct an
infinite sequence of finite paths to a fixed configuration γ of infinitely decreasing
length, contradiction. A similar argument related to the height of computation
trees applies in the case of a ♦-trace. A precondition trace yields an infinitely
decreasing sequence of ordinal approximations of some inductive predicate, also
a contradiction; see [7] for details.

The inductive-coinductive dichotomy shows nicely in our trace condition.
Coinductive (G) properties need to show that something happens infinitely often
whereas inductive (F) properties have to show that something cannot happen
infinitely often. Both cases give us a progress condition: for coinductive proper-
ties, we essentially need program progress on the right of the judgements. For
inductive properties, we need an infinite descent on the left of the judgements
(or for the proof to be finite).

Readers familiar with Hoare-style proof systems might wonder about relative
completeness of our system, i.e., whether all valid judgements are derivable if all
valid entailments between formulas are derivable. Typically, such a result might
be established by showing that for any program C and temporal property ϕ,
we can (a) express the logically weakest precondition for C to satisfy ϕ, say
wp(C,ϕ), and (b) derive wp(C,ϕ) � C : ϕ in our system. Relative completeness
then follows from the rule of consequence, (Cons). Unfortunately, it seems certain
that such weakest preconditions are not expressible in our language. For example,
in [7], the multiplicative implication of separation logic, —∗, is needed to express
weakest preconditions, whereas it is not present in our language due to the
problems it poses for automation (a compromise typical of most separation logic
analyses). Indeed, it seems likely that we would need to extend our precondition

500 G. Tellez and J. Brotherston

language well beyond this, since [7] only treats termination, whereas we treat
arbitrary temporal properties. Since our focus in this paper is on automation,
we leave such an analysis to future work.

4 Fairness

An important component in the verification of reactive systems is a set of fair-
ness requirements to guarantee that no computation is neglected forever. These
fairness constraints are usually categorised as weak and strong fairness [20].
However, since weak fairness requirements are usually restricted to the parallel
composition of processes, a property that our programming language lacks, we
limit ourselves to the treatment of strong fairness.

Definition 9 (Fair execution). Let C be a program command and π =
(πi)i≥0 a program execution. We say that π visits C infinitely often if there
are infinitely many distinct i ≥ 0 such that πi = 〈C, , 〉. A program execution
π is fair for commands Ci, Cj if it is the case that π visits Ci infinitely often if
and only if π visits Cj infinitely often. Furthermore, π is fair for a program C
if it is fair for all pairs of commands Ci, Cj such that C contains a command of
the form if ∗ then Ci else Cj fi or while ∗ do Ci od Cj.

Note that every finite program execution is trivially fair. Also, for the pur-
poses of fairness, we consider program commands to be uniquely labelled (to
avoid confusion between different instances of the same command).

We now modify our cyclic CTL system to treat fairness constraints. First,
we adjust the interpretation of judgements to account for fairness, then we lift
the definition of fairness from program executions to paths in a pre-proof.

Definition 10 (Fair CTL judgement). A fair CTL judgement P �f C : ϕ
is valid if and only if, for all memory states (s, h) such that s, h |= P , we
have 〈C, s, h〉 |=f ϕ, where |=f is the satisfaction relation obtained from |= in
Definition 4 by interpreting the temporal operators as quantifying over fair paths,
rather than all paths. For example, the clause for AG becomes

γ |=f AGϕ ⇔ ∀ fair π startingfrom γ. ∀γ′ ∈ π. γ′ |=f ϕ.

Definition 11. A path in a pre-proof (Ji = Pi �f Ci : ϕi)i≥0 is said to visit C
infinitely often if there are many distinct i ≥ 0 such that JiC = C. A path in a
pre-proof is fair for commands Ci, Cj if it is the case that (Ji)i≥0 visits Ci infi-
nitely often if and only if (Ji)i≥0 visits Cj infinitely often. Finally, the path is fair
for program C iff it is fair for all pairs of commands Ci, Cj such that C contains
a command of the form if ∗ then Ci else Cj fi or while ∗ do Ci od Cj.

Given these new definitions, the global soundness condition of our proofs is
restricted to account only for fair paths in a pre-proof.

Automatically Verifying Temporal Properties of Pointer Programs 501

Definition 12 (Bad pre-proof). A pre-proof P is bad if there is an infinite
path in P such that the rule (Wh*♦1)/(If*♦1) is applied infinitely often and
(Wh*♦2)/(If*♦2) is applied only finitely often, or vice versa.

Definition 13 (Fair proof). A pre-proof P is a fair cyclic proof if it is not bad,
and for every infinite fair path (Pi �f Ci : ϕi)i≥0 in P, there is an infinitely
progressing �-trace, ♦-trace or precondition trace following some tail (Pi �f

Ci : ϕi)i≥n of the path.

Proposition 1 (Decidable soundness condition). It is decidable whether a
pre-proof is a valid fair cyclic proof.

Proof. (Sketch) To check that a pre-proof P is not bad, we construct two Büchi
automata; the first one AB1 accepts all infinite paths in P such that the rule
((Wh*♦1))/(If* ♦1) is applied infinitely often. The second Büchi automata AB2

accepts all infinite paths such that the rule (Wh*♦2)/(If* ♦2) is applied infinitely
often. We then check that the following relation holds of the languages accepted
by each automata: L(AB1) ⊆ L(AB2) and L(AB2) ⊆ L(AB1), where language
inclusion of Büchi automata is decidable.

Moreover, to check that there exists an infinitely progressing trace along every
infinite path of P we construct two automata over strings of nodes of P. The fair
automata AFair that accepts all infinite fair paths in P is a Streett automata
with acceptance condition formed of conjuncts of the form (Fin(i) ∨ Inf(j)) ∧
(Fin(j) ∨ Inf(i)) for each pair of fairness constraints (i, j). The trace automata
ATrace is a Büchi automata that accepts all infinite paths in P such that an
infinitely progressing trace exists along the path (cf. [5]). P is then a valid cyclic
proof if and only if ATrace accepts all strings accepted by AFair. We are then
done since Streett automata can be transformed into Büchi automata [21] and
inclusion between Büchi automata is decidable.

Example 3. We return to our server program from Examples 1 and 2. Suppose
we wish to prove, not that it is always possible for the heap to become empty,
i.e. AGEF (emp), but that the heap will always eventually become empty, i.e.
AGAF (emp). Our server program in fact does not satisfy this property, because
the program can always choose to execute the second inner loop infinitely often,
adding job requests to the list forever. However, it does satisfy this property
under the assumption of fair execution, which prevents the second loop from
being executed infinitely often without executing the first loop.

Figure 3 shows the proof of this property in the adaptation of our system
that is aware of fairness constraints as described above. Adding the fairness con-
straints relaxes the conditions under which back-links can be formed. This relaxed
condition can be seen in back-links depicted in green as they cause an infinite
path with no valid trace to be formed. Yet, because this infinite path is unfair, it
is not considered in the global soundness condition. Our pre-proof qualifies as a
valid cyclic proof since along every fair infinite path there is either a �-trace or
a precondition trace progressing infinitely often.

502 G. Tellez and J. Brotherston

(Ex Falso)

◦

(Check)···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

···· (Load)
···· (AF)

(Wh)

···· AF

[A]

[F]

[C]···· (Cons)

···· (Assign)

···· (AF)

···· (Store)
···· (AF)

···· (New)

···· (AF)

(Wh*�)

···· AF

[C]
(If*�)

···· AF

(Wh)

···· AF

[B]

(Ex Falso)

◦

[C][A]
(If*�)

···· AF

[A]

[B]···· (Cons)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

···· (Load)
···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

···· (Free)
···· (AF)

[A]···· (Cons)

···· (Assign)

···· (AF)

[D]···· (Cons)

···· (Assign)

(AG)

···· (Free)

(AG)

···· (Load)

(AG)

······
(Wh)

····
(AG)

[D]

[C]

[C]

[C]···· (Cons)

···· (Assign)

···· (AF)

···· (Store)
···· (AF)

[C]···· (Cons)

···· (Assign)

···· (AF)

[E]···· (Cons)

···· (Assign)

(AG)

···· (Store)

(AG)

···· (New)

(AG)
[E] [F]

(Wh*�)
◦
(AG)

◦
(If*�)

◦
(AG)

◦
(Wh)

◦
(AG)

[F]

[A] = ls(x, nil) � whilex �= nil do . . . od : AF (emp) [D] = ls(x, nil) � whilex �= nil do . . . od : AGAF (emp)

[B] = ls(x, nil) � whilex = x do . . . od : AF (emp) [E] = ls(x, nil) � while ∗ do . . . od : AGAF (emp)

[C] = ls(x, nil) � while ∗ do . . . od : AF (emp) [F] = ls(x, nil) � whilex = x do . . . od : AGAF (emp)

Fig. 3. Single threaded monolithic server example

Theorem 2 (Soundness). If P �f C : ϕ is provable, then it is valid.

Proof. (Sketch) Suppose for contradiction that there is a fair cyclic proof P of
J = P �f C : ϕ but J is invalid. That is, for some stack s and heap h, we have
(s, h) |= P but 〈C, s, h〉 �|=f ϕ. Then, by local soundness of the proof rules, we
can construct an infinite path (Pi �f Ci : ϕi)i≥0 in P of invalid sequents. By
Definition 13 we know that said infinite path is a fair path (as any unfair path
has been ruled out by requiring that P is not a bad pre-proof according to Defini-
tion 12). Since the path is an infinite fair path, by Definition 13 we also know that
there is an infinitely progressing �-trace, ♦-trace or precondition trace following
some tail of the path. Showing that the existence of an infinitely progressing
trace along the path leads to a contradiction follows the same argument as in
Sect. 3.

5 Implementation and Evaluation

We implement our proof systems on top of the Cyclist theorem prover [9], a
mechanised cyclic theorem proving framework. The implementation, source code
and benchmarks are publicly available at [1] (under the subdirectory titled as
the present paper).

Automatically Verifying Temporal Properties of Pointer Programs 503

Our implementation performs iterative depth-first search, aimed at closing
open nodes in the proof by either applying an inference rule or forming a back-
link. If an open node cannot be closed, we attempt to apply symbolic execution; if
this is not possible, we try unfolding temporal operators and inductive predicates
in the precondition to enable symbolic execution to proceed. Forming back-
links typically requires the use of the consequence rule (i.e. a lemma proven on
demand) to re-establish preconditions altered by symbolic executions (as can be
seen in Figs. 2 and 3). When all open nodes have been closed, a global soundness
check of the cyclic proof is performed automatically. Entailment queries over
symbolic heaps in separation logic, which arise at backlinks and when applying
the (Check) axiom or checking rule side conditions, are handled by a separate
instantiation of Cyclist for separation logic entailments [9].

We evaluate the implementation on handcrafted nondeterministic and non-
terminating programs similar to Example 1. Our test suite can be seen as an
adaptation of the common model checking benchmarks presented in [14,15] for
the verification of temporal properties of nondeterministic programs. Roughly
speaking, operations/iterations on integer variables in the original benchmarks
are replaced in favour of operations/iterations on heap data structures.

Our test suite comprises the following programs:

(i) Examples discussed in the paper are named Exmp;
(ii) Fin-Lock - a finite program that acquires a lock and, once obtained,

proceeds to free from memory the elements of a list and reset the lock;
(iii) Inf-Lock wraps the previous program inside an infinite loop;
(iv) Nd-In-Lock is an infinite loop that nondeterministically acquires a lock,

then proceeds to perform a nondeterministic number of operations before
releasing the lock;

(v) Inf-List is an infinite loop that nondeterministically adds a new element
to the list or advances the head of the list by one element on each iteration;

(vi) Insert-List has a nondeterministic if statement that either adds a single
elements to the head of the list or deletes all elements but one, and is
followed by an infinite loop;

(vii) Append-List appends the second argument to the end of the first argument;
(viii) Cyclic-List is a nonterminating program that iterates through a non-

empty cyclic list;
(ix) Inf-BinTRee is an infinite loop that nondeterministically inserts nodes

to a binary three or performs a random walk of the three;
(x) The programs named with Branch define a somewhat arbitrary nesting of

nondeterministic if and while statements, aimed at testing the capability
of the tool in terms of lines of code and nesting of cycles;

(xi) Finally we also cover sample programs taken from the Windows Update
system (Win Update), the back-end infrastructure of the PostgreSQL
database server (PostgreSQL) and an implementation of the acquire-
release algorithm taken from the aforementioned benchmarks (Acq-Rel).

We show the results of the evaluation of the CTL system and its extension to
consider fairness constraints in Table 1. For each test, we report whether fairness

504 G. Tellez and J. Brotherston

constraints were needed to verify the desired property and the time taken in
seconds. The tests were carried out on an Intel x-64 i5 system at 2.50 GHz.

Our experiments demonstrate the viability of our approach: our runtimes
are mostly in the range of milliseconds and show similar performance to existing
tools for the model checking benchmarks. Overall, the execution times in the
evaluation are quite varied as they depend on a few factors such as the complex-
ity of the program in question and temporal property to verify, but sources of
potential slowdown can be witnessed by different test cases. Even at the level
of pure memory assertions, the base case rule (Check) has to check entailments
P |= Q between symbolic heaps, which involves calling an inductive theorem
prover; this is reasonably fast in some cases, but very costly in others (e.g. the
Append-List example). Another source of slowdown is in attempting to form
back-links too eagerly (e.g. when encountering the same command at two dif-
ferent program locations); since we check soundness when forming a back-link,
which involves calling a model checker (cf. [9]), this too is an expensive operation,
as can be seen in the runtimes of test cases with suffix Branch.

Note that despite the encouraging results, the implementation is not without
limitations as it might, in some cases, fail to terminate and produce a valid proof.
Generalising, our proof search tends to fail either when the temporal property
in question does not hold, or when we fail to establish a sufficiently general
“invariant” to form backlinks in the proof.

6 Related Work

Related work on the automated verification of temporal program properties can
broadly be classified into two main schools, model checking and deductive ver-
ification. In recent years, model checking has been the more popular of these
two. Although earlier work in model checking focused on finite-state transi-
tion systems (e.g. [11,25]), recent advances in areas such as state space restric-
tion [3], precondition synthesis [12], CEGAR [15], bounded model checking [10]
and automata theory [13] have enabled the treatment of infinite transition sys-
tems.

The present paper takes the deductive verification approach. A common lim-
itation of early proof systems for various temporal logics is their restriction to
finite state transition systems [4,18,19]. In the realm of infinite state systems,
previous proof systems for verifying temporal properties of arbitrary transition
systems [23,30] have shed some light on the soundness and relative complete-
ness of deductive verification. However, these early systems have typically relied
upon complex verification conditions that are seemingly difficult to fully auto-
mate, arguably the most cited argument against deductive verification. In con-
trast, our proof system can handle infinite state, non-terminating programs, even
under fairness restrictions, and we provide an implementation and evaluation,
showing that it can indeed work in practice.

Of particular relevance here are those proof systems for temporal properties
based on cyclic proof. Our work can be seen as an extension of the cyclic termi-
nation proofs in [7] to arbitrary temporal properties. In [4], a procedure for the

Automatically Verifying Temporal Properties of Pointer Programs 505

Table 1. Experimental results.

Program Precondition Property Fairness Time (s)

Exmp ls(x,nil) AGEF emp No 2.43

Exmp ls(x,nil) AGAF emp Yes 4.29

Exmp ls(x,nil) AGAF (ls(x,nil)) No 0.26

Exmp ls(x,nil) AGEG (ls(x,nil)) No 0.44

Exmp ls(x,nil) AF emp Yes 0.77

Exmp ls(x,nil) AFEG emp Yes 0.86

Fin-Lock lock �→ 0 * ls(x,nil) AF (lock �→ 1 * emp) No 0.20

Fin-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→1 * emp) No 0.62

Fin-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp ∧ ♦lock �→ 0) No 0.24

Inf-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp) No 1.52

Inf-Lock lock �→ 0 * ls(x,nil) AGAF (lock �→ 1 * emp ∧ ♦lock �→ 0)) No 3.26

Inf-Lock del = false : lock �→ 0 * ls(x,nil) AG (del != true ∨ AF (lock �→ 1 * emp)) No 3.87

Nd-Inf-Lock lock �→ 0 AF(lock �→ 1) Yes 0.15

Nd-Inf-Lock lock �→ 0 AGAF (lock �→ 1) Yes 0.25

Inf-List ls(x,nil) AG ls(x,nil) No 0.21

Inf-List ls(x,nil) AGEF x = nil No 4.39

Inf-List ls(x,nil) AGAF x = nil Yes 8.10

Insert-List ls(three,zero) EF ls(five,zero) No 0.14

Insert-List ls(three,zero) AF ls(five,zero) Yes 0.26

Insert-List ls(n,zero) AGAF n != zero Yes 17.21

Append-List ls(y,x) * ls(x,nil) AF (ls(y,nil)) No 12.67

Cyclic-List cls(x,x) AG cls(x,x) No 0.88

Cyclic-List cls(x,x) AGEG cls(x,x) No 0.34

Inf-BinTree x != nil : bintree(x) AGEG x != nil No 0.72

AFAG Branch x �→ zero AFAG x �→ one No 1.80

EGAG Branch x �→ zero EGAG x �→ one No 0.23

EGAF Branch x �→ zero EGAF x �→ one No 15.48

EG⇒ EF Branch p = zero ∧ q = zero : ls(zero,n) EG(p != one ∨ EF q = one) No 1.60

EG⇒ AF Branch p = zero ∧ q = zero : ls(zero,n) EG(p != one ∨AF q = one) Yes 5.33

AG⇒EG Branch p = zero ∧ q = one : ls(zero,n) AG(p != one ∨ EG q = one) No 0.36

AG⇒ EF Branch p = zero ∧ q = one :u ls(zero,n) AG(p != one ∨ EF q = one) No 1.53

Acq-rel ls(zero,three) AG(acq = 0 ∨ AF rel != 0) No 1.25

Acq-rel ls(zero,three) AG(acq = 0 ∨ EF rel != 0) No 1.25

Acq-rel ls(zero,three) EF acq != 0 ∧ EF AG rel = 0 No 0.33

Acq-rel ls(zero,three) AF AG rel = 0 Yes 0.42

Acq-rel ls(zero,three) EF acq != 0 ∧ EF EG rel = 0 No 0.25

Acq-rel ls(zero,three) AF EG rel = 0 Yes 0.33

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp AGAF w = true ∧ s = s’ ∧ flag = f’ : emp No 0.27

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp AGEF w = true ∧ s = s’ ∧ flag = f’ : emp No 0.26

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp EFEG w = false ∧ s = s’ ∧ flag = f’ No 0.44

PostgreSQL w = true ∧ s = s’ ∧ f = f’ : emp EFAG w = false ∧ s = s’ ∧ flag = f’ No 0.77

Win Update W != nil : ls(W,nil) AGAF W != nil : ls(W,nil) No 1.50

Win Update W != nil : ls(W,nil) AGEF W != nil : ls(W,nil) No 1.00

Win Update W != nil : ls(W,nil) EFEG W = nil : emp No 3.60

Win Update W != nil : ls(W,nil) AFEG W = nil : emp Yes 3.70

Win Update W != nil : ls(W,nil) EFAG W = nil : emp No 3.15

Win Update W != nil : ls(W,nil) AFAG W = nil : emp Yes 4.16

506 G. Tellez and J. Brotherston

verification of CTL* properties is developed that employs a cyclic proof system
for LTL as a sub-procedure. A subtle but important difference when compared to
our work is the lack of cut/consequence rule (used e.g. to generalise precondition
formulas or to apply intermediary lemmas). A side benefit of this restriction is
a simplification of the soundness condition on cyclic proofs.

A cyclic proof system for the verification of CTL* properties of infinite-state
transition systems is presented in [30]. Focusing on generality, this system avoids
considering details of state formulas and their evolution throughout program
execution by assuming an oracle for a general transition system. The system
relies on a soundness condition that is similar to Definition 8, but does not track
progress in the same way, imposing extra conditions on the order in which rules
are applied. The success criterion for validity of a proof also presents some differ-
ences; it relies on finding ranking functions, intermediate assertions and checking
for the validity of Hoare triples, and it is far from clear that such checks can be
fully automated. In contrast, we rely on a relatively simple ω-regular condition,
which is decidable and can be automatically checked by Cyclist [5,9,29].

7 Conclusions and Future Work

Our main contribution in this paper is the formulation, implementation and
evaluation of a deductive cyclic proof system for verifying temporal properties of
pointer programs, building on previous systems for separation logic and for other
temporal verification settings [4,7,30]. We present two variants of our system and
prove both systems sound. We have implemented these proof systems, and proof
search algorithms for them, in the Cyclist theorem prover, and evaluated them
on benchmarks drawn from the literature.

The main advantage of our approach is that we never obtain false positive
results. This advantage is not in fact exclusive to deductive verification: some
automata-theoretic model checking approaches are also proven to be sound [32].
Nonetheless, when compared to such approaches, our treatment of the tempo-
ral verification problem has the advantage of being direct. Owing to our use of
separation logic and a deductive proof system, we do not need to apply approxi-
mation or transformations to the program as a first step; in particular, we avoid
the translation of temporal formulas into complex automata [33] and the instru-
mentation of the original program with auxiliary constructs [13].

One natural direction for future work is to develop improved mechanised tech-
niques, such as generalisation/abstraction, to enhance the performance of proof
search in our system(s). Another possible direction is to consider larger classes
of programs. In particular, concurrency is one very interesting such possibility,
perhaps building on existing verification techniques for concurrency in separa-
tion logic (e.g. [31]). A different direction to explore is the enrichment of our
assertion language, for example to CTL* [17] or μ-calculus [16]. The structure of
CTL* formulas and their classification into path and state subformulas suggest a
possible combination of our CTL system with an LTL system to produce a proof
object composed of smaller proof structures (cf. [4,30]). The encoding of CTL*

Automatically Verifying Temporal Properties of Pointer Programs 507

into μ-calculus [16] and the applicability of cyclic proofs for the verification of
μ-calculus properties (see e.g. [28]) hint at the feasibility of such an extension.

References

1. www.github.com/ngorogiannis/cyclist/releases
2. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.

In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 97–109.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-30538-5 9

3. Beyer, D., Henzinger, T.A., Jhala, R., Majumdar, R.: The software model checker
blast: applications to software engineering. Int. J. Softw. Tools Technol. Transf. 9,
505–525 (2007)

4. Bhat, G., Cleaveland, R., Grumberg, O.: Efficient on-the-fly model checking for
CTL*. In: Proceedings of LICS-10, pp. 388–397. IEEE (1995)

5. Brotherston, J.: Sequent calculus proof systems for inductive definitions. Ph.D.
thesis, University of Edinburgh, November 2006

6. Brotherston, J.: Formalised inductive reasoning in the logic of bunched implica-
tions. In: Nielson, H.R., Filé, G. (eds.) SAS 2007. LNCS, vol. 4634, pp. 87–103.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74061-2 6

7. Brotherston, J., Bornat, R., Calcagno, C.: Cyclic proofs of program termination in
separation logic. In: Proceedings of POPL-35, pp. 101–112. ACM (2008)

8. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety and
termination preconditions. In: Müller-Olm, M., Seidl, H. (eds.) SAS 2014. LNCS,
vol. 8723, pp. 68–84. Springer, Cham (2014). doi:10.1007/978-3-319-10936-7 5

9. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: Jhala, R., Igarashi, A. (eds.) APLAS 2012. LNCS, vol. 7705, pp. 350–367.
Springer, Heidelberg (2012). doi:10.1007/978-3-642-35182-2 25

10. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). doi:10.1007/978-3-540-24730-2 15

11. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons
using branching time temporal logic. In: Kozen, D. (ed.) Logic of Programs 1981.
LNCS, vol. 131, pp. 52–71. Springer, Heidelberg (1982). doi:10.1007/BFb0025774

12. Cook, B., Khlaaf, H., Piterman, N.: On automation of CTL* verification for
infinite-state systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 13–29. Springer, Cham (2015). doi:10.1007/978-3-319-21690-4 2

13. Cook, B., Gotsman, A., Podelski, A., Rybalchenko, A., Vardi, M.Y.: Proving that
programs eventually do something good. In: Proceedings of POPL-34, POPL 2007,
pp. 265–276. ACM (2007)

14. Cook, B., Koskinen, E.: Making prophecies with decision predicates. In: Proceed-
ings of POPL-38, vol. 46, pp. 399–410. ACM (2011)

15. Cook, B., Koskinen, E.: Reasoning about nondeterminism in programs. In: Pro-
ceedings of PLDI-34, pp. 219–230. ACM (2013)

16. Dam, M.: Translating CTL* into the modal μ-calculus. ECS-LFCS-, University
of Edinburgh, Department of Computer Science, Laboratory for Foundations of
Computer Science (1990)

17. Emerson, E.A., Halpern, J.Y.: “Sometimes” and “Not never” revisited: on branch-
ing versus linear time temporal logic. J. ACM 33, 151–178 (1986)

www.github.com/ngorogiannis/cyclist/releases
http://dx.doi.org/10.1007/978-3-540-30538-5_9
http://dx.doi.org/10.1007/978-3-540-74061-2_6
http://dx.doi.org/10.1007/978-3-319-10936-7_5
http://dx.doi.org/10.1007/978-3-642-35182-2_25
http://dx.doi.org/10.1007/978-3-540-24730-2_15
http://dx.doi.org/10.1007/BFb0025774
http://dx.doi.org/10.1007/978-3-319-21690-4_2

508 G. Tellez and J. Brotherston

18. Fix, L., Grumberg, O.: Verification of temporal properties. J. Log. Comput. 6,
343–361 (1996)

19. Hungar, H., Grumberg, O., Damm, W.: What if model checking must be truly
symbolic. In: Camurati, P.E., Eveking, H. (eds.) CHARME 1995. LNCS, vol. 987,
pp. 1–20. Springer, Heidelberg (1995). doi:10.1007/3-540-60385-9 1

20. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Soft-
ware Eng. 3, 125–143 (1977)

21. Löding, C., Thomas, W.: Methods for the transformation of ω-automata: com-
plexity and connection to second order logic. Diploma thesis. University of Kiel
(1998)

22. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Automatic numeric abstractions for
heap-manipulating programs. In: Proceedings of the 37th Annual Symposium on
Principles of Programming Languages, POPL 2010, pp. 211–222. ACM (2010)

23. Manna, Z., Pnueli, A.: Completing the temporal picture (1991)
24. Pnueli, A.: The temporal logic of programs. In: 18th Annual Symposium on Foun-

dations of Computer Science, pp. 46–57. IEEE (1977)
25. Queille, J.P., Sifakis, J.: Specification and verification of concurrent systems

in CESAR. In: Dezani-Ciancaglini, M., Montanari, U. (eds.) Programming
1982. LNCS, vol. 137, pp. 337–351. Springer, Heidelberg (1982). doi:10.1007/
3-540-11494-7 22

26. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
Proceedings of the LICS-17, pp. 55–74. IEEE (2002)

27. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive
procedures in separation logic. In: Proceedings of CPP-6. ACM (2016)

28. Schöpp, U., Simpson, A.: Verifying temporal properties using explicit approxi-
mants: completeness for context-free processes. In: Nielsen, M., Engberg, U. (eds.)
FoSSaCS 2002. LNCS, vol. 2303, pp. 372–386. Springer, Heidelberg (2002). doi:10.
1007/3-540-45931-6 26

29. Sprenger, C., Dam, M.: On the structure of inductive reasoning: circular and tree-
shaped proofs in the µCalculus. In: Gordon, A.D. (ed.) FoSSaCS 2003. LNCS, vol.
2620, pp. 425–440. Springer, Heidelberg (2003). doi:10.1007/3-540-36576-1 27

30. Sprenger, C.: Deductive local model checking - on the verification of CTL* prop-
erties of infinite-state reactive systems. Ph.D. thesis, Swiss Federal Institute of
Technology (2000)

31. Vafeiadis, V., Parkinson, M.: A marriage of rely/guarantee and separation logic. In:
Caires, L., Vasconcelos, V.T. (eds.) CONCUR 2007. LNCS, vol. 4703, pp. 256–271.
Springer, Heidelberg (2007). doi:10.1007/978-3-540-74407-8 18

32. Vardi, M.Y.: Verification of concurrent programs: the automata-theoretic frame-
work*. Ann. Pure Appl. Logic 51(1), 79–98 (1991)

33. Visser, W., Barringer, H.: Practical CTL* model checking: should spin be
extended? Int. J. Softw. Tools Technol. Transfer 2(4), 350–365 (2000)

http://dx.doi.org/10.1007/3-540-60385-9_1
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-11494-7_22
http://dx.doi.org/10.1007/3-540-45931-6_26
http://dx.doi.org/10.1007/3-540-45931-6_26
http://dx.doi.org/10.1007/3-540-36576-1_27
http://dx.doi.org/10.1007/978-3-540-74407-8_18

Satisfiability of Compositional Separation Logic
with Tree Predicates and Data Constraints

Zhaowei Xu1,2, Taolue Chen3,4, and Zhilin Wu1(B)

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing, China

wuzl@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

3 Department of Computer Science, Middlesex University, London, UK
4 State Key Laboratory of Novel Software Technology,

Nanjing University, Nanjing, China

Abstract. In this paper, we propose compositional separation logic with
tree predicates (CSLTP), where properties such as sortedness and height-
balancedness of complex data structures (for instance, AVL trees and
red-black trees) can be fully specified. We show that the satisfiability
problem of CSLTP is decidable. The main technical ingredient of the
decision procedure is to compute the least fixed point of a class of induc-
tively defined predicates that are non-linear and involve dense-order and
difference-bound constraints, which are of independent interests.

1 Introduction

Program verification requires reasoning about complex, size-unbounded data
structures that may carry data ranging over an infinite domain. Examples include
multi-linked lists, nested lists, trees, etc. Programs manipulating these data struc-
tures may modify their shape as well as the data attached to their elements. Sep-
aration Logic (SL) is a well-established approach for deductive verification of pro-
grams that manipulate dynamic data structures [22,30]. Typically, SL is defined
in combination with inductive definitions (SLID in short), which supports user-
defined specifications of the data structures manipulated by a program.

Satisfiability is arguably one of the most fundamental questions for logic, and
has certainly been a main focus in the study of SL. The satisfiability of SLID with
data constraints is evidently undecidable in their most general forms. However,
it is important—both in theory and practice—to identify subclasses which are
sufficiently expressive while still being decidable. Within this context, our pre-
vious work [14] gave complete decision procedures for both the satisfiability and
the entailment problem of linearly compositional SLID. This fragment is able

Taolue Chen is supported by UK EPSRC grant (EP/P00430X/1), European CHIST-
ERA project SUCCESS, NSFC grant (61662035). He is also affiliated with Centre for
Research and Innovation in Software Engineering, Southwest University. Zhilin Wu
is supported by the NSFC grants (61572478, 61472474, 61100062, and 61272135).

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 509–527, 2017.
DOI: 10.1007/978-3-319-63046-5 31

510 Z. Xu et al.

to specify typical shape properties and data/size constraints of data structures,
but is restricted to linear ones such as singly and doubly linked lists.

An obvious question left over is to handle non-linear structures such as trees.
Notice that most tree-shaped data structures in programming require data/size
constraints of one or another. They together, however, impose great challenges.
For satisfiability, the main difficulty roots at the computation of the least fixed
point of the inductively defined predicates derived from SL formulae. These
predicates are non-linear, meaning that the defined predicate may occur more
than once in the body of the inductive rule. They may also involve data/size
constraints to capture, for instance, sortedness and height-balancedness of trees.

Contributions. We define CSLTP, a compositional fragment of SL with tree pred-
icates, where typical tree structures involving data and size constraints (e.g.,
binary search trees, AVL trees, and red-black trees) can be expressed. The basic
rationale of CSLTP is to focus on the compositional predicates introduced in
[12,13] while restricting to dense-order data constraints and difference-bound
size constraints. We remark that compositionality is vital for (deductive) pro-
gram verification without which the entailment checking, an indispensable pro-
cedure for checking assertions in the style of Hoare logic, would otherwise be
exceedingly difficult. (The price is that, instead of trees, one has to consider
trees with one hole to guarantee the compositionality; cf. Sect. 3.) Our main
contribution is summarised as follows:

(i) We provide algorithms to compute the least fixed point of the inductively
defined predicates involving data/size constraints derived from CSLTP for-
mulae (see Theorem 2). To this end, we employ a wide range of techniques
from closed-form evaluation of Datalog programs with integer gap-order
constraints [28], computation of reachability sets of alternating one-counter
systems [4], and the decision procedure for the reachability problem of one-
counter automata [15]. In addition, we show that computation of the least
fixed point of the inductively defined predicates beyond CSLTP may be dif-
ficult in general. More specifically, we prove that, for the predicate corre-
sponding to AVL trees with one hole where all parameters are of the natural
number type, its least fixed point is inexpressible in Presburger arithmetic
(see Theorem 1).

(ii) We propose a complete decision procedure for the satisfiability problem of
CSLTP. Namely, from each CSLTP formula ϕ we define Abs(ϕ) as an abstrac-
tion of ϕ such that ϕ and Abs(ϕ) are equisatisfiable. Roughly speaking,
Abs(ϕ) introduces Boolean variables to encode the spatial part of ϕ and
encompasses computed least fixed points from (i) to address the data and
size constraints. We then can resort to the state-of-the-art SMT solvers (e.g.,
Z3 [34]). We remark that most decision procedures for satisfiability of SL
with inductive definitions and data/size constraints are incomplete (see the
related work for more details).

Satisfiability checking serves as a cornerstone towards a complete procedure
for entailment checking, which requires a separate paper to solve. It can also be

Satisfiability of Compositional Separation Logic with Tree Predicates 511

widely used in, e.g., consistency checking of specifications written in SL, symbolic
execution of programs manipulating dynamic data structures (see [2,20]), etc.
Related work. For SLID without data constraints, [6] provides a complete decision
procedure, setting the satisfiability problem (almost) completely. We also men-
tion some earlier results [2,17] which focus on the symbolic heap fragments for
list segments and binary trees, providing complete proof systems. [12] proposes
a compositional fragment of SLID equipped with an incomplete decision proce-
dure. In addition, [18,19] provide complete decision procedures for the entailment
problem of SLID (without data/size constraints) by reducing to the language
inclusion problem of tree automata.

Towards adding data/size constraints, [29] presents a complete decision pro-
cedure for the quantifier-free fragment of SL (without inductive definitions) inter-
preted over heaplets with data elements ranging over a parametric multi-sorted
(possibly infinite) domain. For SLID with data constraints, [8] provides an incom-
plete decision procedure based on invariants of inductive definitions. These invari-
ants are essentially the fixed points of the inductively defined predicates involv-
ing data/size constraints, and are supposed to be provided by the users. [3] spec-
ifies the data/size constraints by universal quantifiers over the index variables
(and thus is able to express set/multiset constraints), but restricts to the singly
linked lists only. [23,27] reduces the entailment problem of SLID with data/size
constraints to the satisfiability problem in the theory of uninterpreted functions,
though the procedure therein is incomplete and not fully automatic since it relies
on the users to provide lemmas. [24–26] encode SLID into a fragment of first-order
logic with reachability predicates (whose satisfiability is decidable in NP). How-
ever, this fragment cannot accommodate the size or multiset constraints. More
recently, [20] considers the data constraints expressible in Presburger arithmetic.
The decision procedure therein is based on cyclic proofs [5,9] and is incomplete in
general and is complete for a syntactic fragment defined with a specialized well-
founded notion, which is incomparable to CSLTP.

With respect to data/size constraints, [33] is closest to our work, where the
data/size constraints are expressed in Presburger arithmetic, and a complete
decision procedure is given for the satisfiability problem. CSLTP differs from
the fragment in [33] in both the shape properties and the data/size constraints:
1) For the shape properties, CSLTP addresses trees with one hole (which is crucial
for the compositionality), while [33] does not. 2) For the data/size constraints,
the class of data constraints in [33] is incomparable to that of CSLTP: On the
one hand, CSLTP allows only one integer parameter, while [33] may have mul-
tiple ones, although there must be a dominating one. On the other hand, the
order constraints (e.g. sortedness), which require comparing different data para-
meters and are covered by CSLTP, are inexpressible in [33]. In addition, even
when restricted to size constraints, CSLTP goes beyond the fragment in [33].
For instance, the height-balancedness of red-black trees can be easily expressed
in CSLTP, whereas it is inexpressible in [33]. This is because the inductive def-
inition in [33] essentially allows only one inductive rule, with the aid of the
max and min functions and (a form of) disjunctions in the data/size constraint.

512 Z. Xu et al.

Nevertheless, the height-balancedness of red-black trees requires multiple induc-
tive rules to specify, even when max, min and disjunctions are present in the
data/size constraint. Furthermore, we employ an automata-theoretic approach
to compute the least fixed point of data predicates, which is quite different from
the arguments ([33]) which are purely based on induction.

There are methods outside of the SL framework to tackle verification of tree
structures and data constraints. Some of them are based on different extensions
of tree automata, such as forest automata [1], tree automata with size constraints
[16], ree automata with height constraints [11], and visibly tree automata with
memory and constraints [10]. Interestingly, our approach to compute the least
fixed point of data predicates is partially inspired by this line of work, especially
[16]. Even further, [21] takes a logic-based approach to verify balanced trees.
Finally, [31] proposes practical approaches for solving Horn-clause constraints,
which are related to, albeit easier than, computing the least fixed point of data
predicates in this paper. The method therein is based on the construction of
disjunctive interpolants, which are used within an abstraction-refinement loop.
The method therein is incomplete in general.

2 Preliminaries

Throughout the paper, Z and N denote the set of integers and natural numbers
respectively. For each n ∈ N, [n] := {1, . . . , n}. For each vector α = (a1, . . . , an),
|α| denotes the length of α (i.e. n) and α(i) denotes ai for i ∈ [n].

Definition 1 (A1CS and N1CS). An alternating one-counter system (A1CS)
is a pair A = (Q,Θ), where Q is a finite set of states, and Θ ⊆ Q×2(Inst×Q) is a
finite set of transition rules, where Inst = {o n,+n,−n, reset(n)} with o ∈ {=,�,
�} and n ∈ N. A transition (p, {(�1, q1), · · · , (�k, qk)}) ∈ Θ is usually written
as p ↪→ {(�1, q1), · · · , (�k, qk)} for readability. A nondeterministic one-counter
system (N1CS) is an A1CS where for each p ↪→ {(�1, q1), · · · , (�k, qk)}, k = 1.

A configuration of an A1CS A is (p, n) where p ∈ Q and n ∈ N is the value of
the counter. The transition rules induce a transition relation on configurations in
an expected way: for p ↪→ {(�1, q1), · · · , (�k, qk)} ∈ Θ, we have a hyper-transition
(p, n) → {(q1, n1), · · · , (qk, nk)} if for each 1 � i � k, (1) �i = o n′ implies that
n o n′ and ni = n, (2) �i = +n′ implies that ni = n+n′, (3) �i = −n′ implies that
n − n′ � 0 and ni = n − n′, and (4) �i = reset(n′) implies that ni = n′. In this
case, we say that (p, n) is the immediate predecessor of {(q1, n1), · · · , (qk, nk)}.

A computation tree of A is a directed tree whose nodes are labelled by con-
figurations, and where every node is either a leaf or an internal node which is
labelled by a configuration c and has k children labelled by c1, . . . , ck respec-
tively, satisfying that c → {c1, . . . , ck} is a hyper-transition of A. We define the
reachability relation ⇒A as c ⇒A C if there exists a computation tree such that
c labels the root and C is the set of labels of the leaves. If c ⇒A C, then we say
that C is reachable from c in A. For q ∈ Q and a set of configurations C, we use
Pre∗A(q, C) to denote the set of n ∈ N such that (q, n) ⇒A C ′ for some C ′ ⊆ C.

Satisfiability of Compositional Separation Logic with Tree Predicates 513

The transition relation for an N1CS can be defined similarly, and is simpler
in that the computation tree degenerates to a single path of configurations.

Proposition 1 ([4,7,15,32]). The following facts hold for A1CS and N1CS.

1. Let A = (Q,Θ) be an A1CS, q ∈ Q be a state, C be a finite set of configu-
rations of A. Then a quantifier-free Presburger formula ϕq,C(x) in disjunc-
tive normal form can be computed in doubly exponential time to represent
Pre∗A(q, C). In addition, if the constants in A and C are encoded in unary,
then the computation is in exponential time.

2. Let A = (Q,Θ) be an N1CS, and p, q ∈ Q. Then a quantifier-free Presburger
formula ϕp,q(x, y) can be computed in triply exponential time to represent the
relation {(m,n) ∈ N

2 | (p,m) ⇒A (q, n)}. In addition, if the constants in A
are encoded in unary, then the computation is in doubly exponential time.

3 Compositional Separation Logic with Tree Predicates

In this section, we introduce the compositional separation logic with tree pred-
icates, denoted by CSLTP[P], where P is an inductive predicate. We consider
three data types, i.e., location type L, value type D, and size type N. Intu-
itively, D represents the data values stored in the nodes of tree structures, and
N represents the size of tree structures (e.g. height of trees), which we assume
to be natural numbers. As a convention, we use l, l′, · · · ∈ L to denote locations,
d, d′, · · · ∈ D to denote values, and n, n′, · · · ∈ N to denote sizes. Accordingly,
variables in CSLTP[P] comprise location variables LVars ranged over by upper-
case letters E,F,X, Y, · · · , value variables DVars ranged over by x, y, · · · , and
size variables IVars ranged over by h, i, j, · · · .

We consider two kinds of fields, i.e., location fields from F and data fields
from D. Each field f ∈ F (resp. d ∈ D) is associated with L (resp. D). We assume
D is an ordered, countably infinite, dense set. That is, D is equipped with < such
that for each d < d′ ∈ D, d′′ ∈ D exists with d < d′′ < d′. Examples of D include
the set of rationals with the natural order relation, and the set of strings with the
lexicographical order relation. Note that any arithmetic over D is disregarded.

CSLTP[P] formulae may contain tree predicates, each of which is of the form
P (E,α;F,β) and has an associated inductive definition. The parameters of a
tree predicate are classified into two groups: source parameters E,α and des-
tination parameters F,β. We require that the source parameters E,α and the
destination parameters F,β are matched in types, namely, E and F are of the
location type, and two tuples α,β have the same length � > 0 and for each
i : 1 � i � �, both αi and βi have the natural number type or the value type. The
parameters E,F are called the location parameters of P and α,β are called the
data parameters of P . Intuitively, a tree predicate P (E,α;F,β) defines binary
trees with one hole and data constraints.

The CSLTP[P] formulae comprise three types of formulae: pure formulae Π,
data formulae Δ, and spatial formulae Σ, which are defined as follows,

514 Z. Xu et al.

Π :: = E = F | E �= F | Π ∧ Π (pure formulae)
Δ :: = ΔD ∧ ΔN (data formulae)

ΔD :: = true | x o d | x o x′ | ΔD ∧ ΔD (value formulae)
ΔN :: = true | h o n | h o h′ + n | ΔN ∧ ΔN (size formulae)
Σ :: = emp | E �→ ρ | P (E, α; F, β) | Σ ∗ Σ (spatial formulae)
ρ :: = ρf , ρd (field-variable sequences)
ρf :: = (f, X) | ρf , ρf (location field-variable sequences)
ρd :: = (d, x) | ρd, ρd (data field-variable sequences)

where o ∈ {=, <,>,�,�}, f ∈ F , and d ∈ D. For spatial formulae Σ, formulae
of the form emp, E �→ ρ, or P (E,α;F,β) are called spatial atoms. In particular,
formulae of the form E �→ ρ and P (E,α;F,β) are called points-to atoms and
predicate atoms respectively.

A tree predicate P (with one hole) is defined by one base rule, and at least
one inductive rule of the form R1 or R2:

– base rule R0: P (E,α;F,β):: = E = F ∧ α = β ∧ emp,

– left-hole inductive rule R1:
P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd)∗

P (X, δ;F,β) ∗ P (Y,γ; nil, ε),
where Δ is a data formula and ρd is a data field-variable sequence.

– right-hole inductive rule R2:
P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd)∗

P (X,γ; nil, ε) ∗ P (Y, δ;F,β),
where Δ is a data formula and ρd is a data field-variable sequence.

The left-hand (resp. right-hand) side of a rule is called the head (resp. body)
of the rule. We note that the bodies of R1 and R2 do not contain pure formulae.

In the sequel, we specify some constraints on the inductive rules.
The first constraint C1 guarantees that P (E,α;F,β) enjoys the composition

lemma P (E1,α1;E2,α2)∗P (E2,α2;E3,α3) ⇒ P (E1,α1;E3,α3), which is vital
for compositionality (cf. [13]). Note that the destination parameter F does not
occur elsewhere in the body of the inductive rules by definition, since X,Y are
two existentially quantified location variables.
C1 Variables from β do not occur elsewhere in the body of the inductive rules.

The second constraint C2 forbids the repeated occurrences of the variables
in γ, δ and requires that no existentially quantified variables occur in the static
parameters ε.
C2 γ, δ ⊆ α ∪ x ∪ h ∪ D ∪ N, each variable occurs at most once in γ (resp. δ),
and ε ⊆ α ∪ D ∪ N.

The third constraint C3 forbids the situation that an existentially quantified
variable occurs only in Δ, but not in spatial atoms.
C3 All existentially quantified variables x,h occur in some spatial atom.

The fourth constraint C4 is to avoid the difficulty of dealing with inductive
predicates with more than one size source parameter (cf. Theorem 1).

Satisfiability of Compositional Separation Logic with Tree Predicates 515

C4 α contains at most one parameter of the size type, in addition, if α(i) is of
size type, then it must hold that, (i) δ(i),γ(i) ∈ h and ε(i) ∈ N, and (ii) the
size-formula part of Δ is of the form α(i) = δ(i)+n∧ΔN or α(i) = γ(i)+n∧ΔN

such that α(i) does not occur in ΔN.
For a tree predicate P , let Flds(P) (resp. LFlds(P)) denote the set of

fields (resp. location fields) occurring in the inductive rules of P . Evidently,
LFlds(P) = {left, right}. For a spatial atom a, let Flds(a) denote the set of
fields that a refers to: if a = E �→ ρ, then Flds(a) is the set of fields occurring in
ρ; if a = P (−), then Flds(a) = Flds(P).

We write CSLTP[P] for the collection of separation logic formulae ϕ = Π ∧
Δ ∧ Σ such that P is the only tree predicate allowed to appear in Σ, and for
each points-to atom occurring in Σ, the set of fields of this atom is Flds(P). For
a CSLTP[P] formula ϕ, let Vars(ϕ) (resp. LVars(ϕ), DVars(ϕ), IVars(ϕ)) denote
the set of (resp. location, value, size) variables occurring in ϕ. Moreover, we use
ϕ[μ/α] to denote the simultaneous replacement of the variables αj by μj in ϕ.

For the semantics of CSLTP[P], each formula is interpreted on states. For-
mally, a state is a pair (s, h), where

– s is an assignment function which is a partial function from LVars∪ DVars ∪
IVars to L ∪ D ∪ N such that dom(s) is finite and s respects the data type,

– h is a heap which is a partial function from L × (F ∪ D) to L ∪ D such that
• h respects the data type of fields, that is, for each l ∈ L and f ∈ F (resp.

l ∈ L and d ∈ D), if h(l, f) (resp. h(l, d)) is defined, then h(l, f) ∈ L (resp.
h(l, d) ∈ D); and

• h is field-consistent, i.e. every location in h possess the same set of fields.

For a heap h, we use ldom(h) to denote the set of locations l ∈ L such that
h(l, f) or h(l, d) is defined for some f ∈ F and d ∈ D. Moreover, we use Flds(h)
to denote the set of fields f ∈ F or d ∈ D such that h(l, f) or h(l, d) is defined for
some l ∈ L.

Two heaps h1 and h2 are said to be field-compatible if Flds(h1) = Flds(h2).
We write h1#h2 if ldom(h1) ∩ ldom(h2) = ∅. Moreover, we write h1 � h2 for the
disjoint union of two field-compatible fields h1 and h2 (this implies that h1#h2).

Let (s, h) be a state and ϕ be an CSLTP[P] formula. The semantics of
CSLTP[P] formulae is defined as follows,

– (s, h) � E = F (resp. (s, h) � E = F) if s(E) = s(F) (resp. s(E) = s(F)),
– (s, h) � Π1 ∧ Π2 if (s, h) � Π1 and (s, h) � Π2,
– (s, h) � x o c (resp. (s, h) � x o x′) if s(x) o c (resp. s(x) o s(x′)),
– (s, h) � h o c (resp. (s, h) � h o h′ + c) if s(h) o c (resp. s(h) o s(h′) + c),
– (s, h) � Δ1 ∧ Δ2 if (s, h) � Δ1 and (s, h) � Δ2,
– (s, h) � emp if ldom(h) = ∅,
– (s, h) � E �→ ρ if ldom(h) = s(E), and for each (f,X) ∈ ρ (resp. (d, x) ∈ ρ),

h(s(E), f) = s(X) (resp. h(s(E), d) = s(x)),
– (s, h) � P (E,α;F,β) if (s, h) ∈ vP (E,α;F, β)w,
– (s, h) � Σ1 ∗ Σ2 if there are h1, h2 such that h = h1 � h2, (s, h1) � Σ1 and

(s, h2) � Σ2.

516 Z. Xu et al.

where the semantics of predicates vP (E,α;F,β)w is given by the least fixed point
of a monotone operator constructed from the body of rules for P in a standard
way as in [6].

For a formula ϕ, let vϕw denote the set of states (s, h) such that (s, h) � ϕ.
We focus on the satisfiability problem, i.e., given a CSLTP[P] formula ϕ, decide
whether vϕw is empty.

Example 1. The first example bsth specifies binary search trees with one hole,
which exemplifies the usage of value variables for the sortedness constraints.
Here x, y represent the lower and upper bounds of the data values from D.

bsth(E, x, y;F, x′, y′):: = E = F ∧ x = x′ ∧ y = y′ ∧ emp,

bsth(E, x, y;F, x′, y′):: = ∃X,Y, z, x′′, y′′. y′′ < z < x′′ ∧
E �→ ((left,X), (right, Y), (data, z)) ∗
bsth(X,x, y′′;F, x′, y′) ∗ bsth(Y, x′′, y; nil, y, y),

bsth(E, x, y;F, x′, y′):: = ∃X,Y, z, x′′, y′′. y′′ < z < x′′ ∧
E �→ ((left,X), (right, Y), (data, z)) ∗
bsth(X,x, y′′; nil, x, x) ∗ bsth(Y, x′′, y;F, x′, y′).

Note that a binary search tree can be simply defined as bsth(E, x, y; nil, x, x)
or bsth(E, x, y; nil, y, y), where E is the root, and x, y are the lower respective
upper bounds for the data values occurring in the tree nodes.

The second example balthole specifies height-balancedness of AVL-trees with
one hole, which exemplifies the usage of size parameters. Here h ∈ N represents
the height of the tree.

balthole(E, h;F, h
′
):: = E = F ∧ h = h

′ ∧ emp,

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h1 � h2 � h1 + 1 ∧ h = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1;F, h
′
) ∗ balthole(Y, h2; nil, 0),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h = h1 + 1 ∧ h1 = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1;F, h
′
) ∗ balthole(Y, h2; nil, 0),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h1 � h2 � h1 + 1 ∧ h = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1; nil, 0) ∗ balthole(Y, h2;F, h
′
),

balthole(E, h;F, h
′
):: = ∃X, Y, h1, h2. h = h1 + 1 ∧ h1 = h2 + 1 ∧

E �→ ((left, X), (right, Y)) ∗ balthole(X, h1; nil, 0) ∗ balthole(Y, h2;F, h
′
).

The definitions of bsth and balthole can be combined to form a tree predicate
avlth(E, x, y, h;F, x′, y′, h′), which specifies both the sortedness and the height-
balancedness property of AVL-trees with one hole.

4 The Least Fixed Point of Data Predicates

Let P (E,α;F,β) be a tree predicate. The data predicate induced by P , denoted
by PD(α;β), is the predicate whose definition is obtained from the rules of P by
ignoring the spatial variables and spatial atoms. Formally, PD(α;β) is defined
by the rules of the following form,

Satisfiability of Compositional Separation Logic with Tree Predicates 517

– base rule: PD(α;β):: = α = β,

– for each left-hole inductive rule
P (E,α;F,β) :: = ∃X,Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd) ∗

P (X, δ;F,β) ∗ P (Y,γ; nil, ε),
there is an inductive rule for PD of the form:

PD(α;β):: = ∃x∃h. Δ ∧ PD(δ;β) ∧ PD(γ; ε),

– similarly for the right-hole inductive rules.

Naturally, PD(α;β) induces a monotonic function and we use lfp(PD) to
denote its least fixed point.

We start with a “negative” result stating that, if multiple size source para-
meters were allowed in the tree predicates then lfp(PD) would be inexpressible in
Presburger arithmetic in general. This result underpins the constraint C4 which
dictates that only one source parameter of type N is allowed.

Theorem 1. If x, y, x′, y′ in avlth(E, x, y, h;F, x′, y′, h′) are assumed to be of
the type N, then lfp(avlthD) is inexpressible in Presburger arithmetic.

The intuition of Theorem 1 is explained as follows: If the data values in AVL-
trees are assumed to be natural numbers, then in avlth(E, x, y, h; nil, x, x, 0), the
predicate atom for AVL trees, y−x correlates with h and is at least exponential
in h. This relationship goes beyond Presburger arithmetic.

Next, for a tree predicate P in CSLTP, we show that a linear arithmetic
formula can be computed to represent lfp(PD).

Theorem 2. A linear arithmetic formula can be computed in 5-fold exponential
time to represent lfp(PD). In addition, if the natural-number constants in the
inductive definition of PD are encoded in unary, then the complexity is reduced
to 4-fold exponential time.

The rest of this section is devoted to the proof of Theorem 2. We start with
two simpler cases, i.e., dense order constraints and single size parameter.

4.1 Dense Order Constraints

In this subsection, we fix a tree predicate P (E,α;F,β) where all parameters
in α and β are of the type D. As a result, only value formulae ΔD are used in
PD(α;β). Let C(PD) denote the set of constants occurring in the rules of PD.

Definition 2 (Order graphs). Let V be a finite subset of DVars∪D. An order
graph G on V is an edge-labelled graph (V,E), where E ⊆ V × {�, <} × V .

It is evident that order graphs are simply another representation of value
formulae, which are dense order constraints on D. More specifically, from an order
graph G on V , a dense order constraint ΔD(G) can be naturally defined. On the
other hand, an order graph GΔD

can be constructed from a value formula ΔD. For
two order graphs G1, G2, we will use G1 |= G2 to denote ΔD(G1) |= ΔD(G2).

518 Z. Xu et al.

Definition 3 (Saturated order graphs). Assume an order graph G = (V,E).
The saturated graph of G, denoted by Sat(G), is computed from G by the following
procedure:

1. Initially, let Sat(G) := G.
2. Repeat the following procedure until no more edges can be added to Sat(G).

– If there are two edges (v1, o1, v2) and (v2, o2, v3) in Sat[G] such that o1
and o2 are both � and (v1,�, v3) is not an edge in Sat(G), then add
(v1,�, v3) into Sat(G).

– If there are two edges (v1, o1, v2) and (v2, o2, v3) in Sat(G) such that at
least one of o1 and o2 is < and (v1, <, v3) is not an edge in Sat(G), then
add (v1, <, v3) into Sat(G).

Sat(G) is said to be consistent if it does not contain edges of the form (v,<, v)
for v ∈ V . Otherwise, it is said to be inconsistent.

Proposition 2. Let ΔD be a value formula. Then ΔD is satisfiable iff Sat(GΔD
)

is consistent.

For a finite set V ⊆ DVars∪D, we use Gord(V) to denote the set of consistent
saturated order graphs on V . Note that the cardinality of Gord(V) is exponential
in the size of V .

To compute lfp(PD), let V = α∪β ∪C(PD). We define a monotone function
TPD

: 2Gord(V) → 2Gord(V) to capture PD(α;β), and compute lfp(TPD
) by a stan-

dard iteration: let G0 = ∅, and Gi := TPD
(Gi−1) until the iteration stabilises.

The algorithm terminates in exponential time, since TPD
is monotone and the

cardinality of Gord(V) is exponential in the size of V .
Suppose |α| = k. For a vector d,d′ ∈ D

k, define an order graph Gd,d′ =
(V,Ed,d′) as as follows: Let η : V → d ∪ d′ ∪ C(PD) such that η(α(i)) = d(i)
and η(β(i)) = d′(i) for each i ∈ [k], and η(d′′) = d′′ for each d′′ ∈ C(PD). Then
for each z, z′ ∈ V and o ∈ {<,�}, (z, o, z′) ∈ Ed,d′ iff η(z) o η(z′) holds in D.

Proposition 3. For any two vectors d,d′ ∈ D
k, lfp(PD)(d;d′) holds iff there

exists G ∈ lfp(TPD
) such that Gd,d′ |= G.

4.2 Single Size Parameter

In this subsection, we fix a tree predicate P where all (data) parameters are of
type N. Then according to C4, the parameters of P are of the form (E,α;F, β),
where α, β are of type N, in addition, each inductive rule of the associated data
predicate PD(α;β) is of the form

PD(α;β):: = ∃h. ΔN ∧ PD(δ;β) ∧ PD(γ;n). (1)

Let N (PD) denote the set of all constants n occurring in the predicate atom
PD(γ;n) of the body PD(α;β). By C3 and C4, δ and γ are the only existentially
quantified variables, that is, ∃h = ∃δ∃γ. For each n ∈ N (PD), we introduce a
new predicate PD,n(α), the definition of which is as follows:

Satisfiability of Compositional Separation Logic with Tree Predicates 519

– base rule: PD,n(α):: = α = n,
– inductive rules: PD,n(α):: = ∃δ∃γ. Δ ∧ PD,n(δ) ∧ PD,n′(γ), if there is an

inductive rule PD(α;β):: = ∃δ∃γ. Δ ∧ PD(δ;β) ∧ PD(γ;n′).

The general strategy to solve (1) is to first compute lfp(PD,n) as a quantifier-
free Presburger formula ϕPD,n

(α) for the predicates PD,n with n ∈ N (PD). We
then substitute PD(γ, n′) in the body of the inductive rule of PD(α;β) with
ϕPD,n′ (γ), resulting in a new collection of inductive rules for PD(α;β). Finally,
we compute the least fixed point of the function induced by this new collection
of rules of PD(α;β).

Computation of lfp(PD,n). We will reduce the problem to the computation of
the reachability sets of an A1CS APD

= (Q,Θ), where Q is the union of {PD,n |
n ∈ N (PD)} and a set of auxiliary states (see below), and Θ is defined according
to the inductive rules of the predicates PD,n for n ∈ N (PD).

Let us fix a predicate PD,n and an inductive rule of PD,n

PD,n(α):: = ∃δ∃γ. ΔN ∧ PD,n(δ) ∧ PD,n′(γ). (2)

By C4, the size formula ΔN must be of the form α = δ + m ∧ Δ′ or α =
γ +m∧Δ′ such that α does not occur in Δ′. W.l.o.g., we assume that α = δ+m
holds. It follows that Δ′ is a conjunction of difference bound constraints over δ
and γ. Hence, we may constraint γ in terms of α (rather than δ; this is possible
because α = δ+m). Namely, we may assume that Δ′ = Δ′

1(α)∧Δ′
2(α, γ)∧Δ′

3(γ),
where Δ′

1,Δ
′
2,Δ

′
3 are defined by the following rules,

1. Δ′
1(α):: = true | α � l | α � u | l � α � u, where l, u ∈ N,

2. Δ′
2(α, γ):: = true | γ � α + l | γ � α + u | α + l � γ � α + u, where l, u ∈ Z,

3. Δ′
3(γ):: = true | γ � l | γ � u | l � γ � u, where l, u ∈ N.

Θ comprises the transition rules for each predicate PD,n and each inductive
rule of PD,n as in Eq. (2), defined as follows:

– the transition rules for Δ′
1(α):

• if Δ′
1 = true, then PD,n ↪→ {(+0, q1)},

• if Δ′
1 = α � l, then PD,n ↪→ {(� l, q1)},

• if Δ′
1 = α ≤ u, then PD,n ↪→ {(� u, q1)},

• if Δ′
1 = l � α � u, then PD,n ↪→ {(� l, q′1)}, q′1 ↪→ {(� u, q1)};

– the transition rules for α = δ + m ∧ Δ′
2(α, γ):

• if Δ′
2 = true, then q1 ↪→ {(−m,PD,n), (reset(0), q′2)}, q′2 ↪→ {(+1, q′2)},

and q′2 ↪→ {(+0, q2)},
• if Δ′

2 = γ � α + l, then q1 ↪→ {(−m,PD,n), (l, q′2)}, q′2 ↪→ {(+1, q′2)},
q′2 ↪→ {(+0, q2)},

• if Δ′
2 = γ � α + u, then q1 ↪→ {(−m,PD,n), (u, q′2)}, q′2 ↪→ {(−1, q′2)},

q′2 ↪→ {(+0, q2)},
• if Δ′

2 = α + l � γ � α + u, then q1 ↪→ {(−m,PD,n), (m′, q2)} for each
l � m′ � u;

520 Z. Xu et al.

– the transition rules for Δ′
3(γ):

• if Δ′
3 = true, then q2 ↪→ {(+0, PD,n′)},

• if Δ′
3 = γ � l, then q2 ↪→ {(� l, PD,n′)},

• if Δ′
3 = γ � u, then q2 ↪→ {(� u, PD,n′)},

• if Δ′
3 = l � γ � u, then q2 ↪→ {(� l, q′3)}, q′3 ↪→ {(� u, PD,n′)},

where q1, q2, q
′
1, q

′
2, q

′
3 are the auxiliary (control) states.

For each predicate PD,n, we use P(PD,n) to denote the set of predicates PD,n′

such that PD,n′ occurs in the body of some inductive rule of PD,n. In particular,
PD,n ∈ P(PD,n). Then for each PD,n, we define a set of goal configurations
GConf(PD,n) = {(PD,n′ , n′) | PD,n′ ∈ P(PD,n)}.

Proposition 4. For each predicate PD,n and m ∈ N, lfp(PD,n)(m) holds iff
(PD,n,m) ⇒APD

GConf(PD,n).

Thanks to Proposition 4, we have lfp(PD,n) = Pre∗APD
(PD,n,GConf(PD,n)).

According to Proposition 1, for each predicate PD,n, a quantifier-free Presburger
formula ϕPD,n

(α) in disjunctive normal form to represent lfp(PD,n), can be com-
puted in doubly exponential time w.r.t. the size of APD

(thus in doubly expo-
nential time w.r.t. the size of the inductive definition of PD as well). In addition,
if the constants in the inductive definition of PD are encoded in unary, then the
complexity is dropped to singly exponential time.

Computation of lfp(PD). The main idea is to reduce the computation of lfp(PD)
to solving the reachability problem of an N1CS.

From the previous step, the solution of PD,n(γ) is expressed by the formula
ϕPD,n

(γ) in disjunctive normal form, say ϕPD,n
(γ) =

∨

1�i��n

ϕ
(i)
PD,n

(γ), where each

ϕ
(i)
PD,n

(γ) is of the form γ = n1 or γ � n1 ∧ γ ≡ n3 mod n2. Let N ∈ N be the
least common multiplier of the divisors n2 occurring in ϕPD,n

(α) for n ∈ N (PD).
It follows that PD(α;β):: = ∃δ∃γ. ΔN ∧ PD(δ;β) ∧ PD(γ;n) ≡

∨

1�i��n

∃δ∃γ. ΔN ∧ ϕ
(i)
PD,n

(γ) ∧ PD(δ;β). Namely, it suffices to consider PD(α;β) with
multiple rules of the form

PD(α;β):: = ∃δ∃γ. (ΔN ∧ ϕ
(i)
PD,n

(γ)) ∧ PD(δ;β), (3)

for 1 � i ≤ �n, where each ϕ
(i)
PD,n

(γ) is of the form γ = n1 or γ � n1 ∧ γ ≡
n3 mod N . This new collection of rules is linear in that the predicate PD occurs
at most once in the body of each rule, which is simpler than (2).

lfp(PD) can now be computed by appealing to an N1CS BPD
= (Q′, Θ′). The

N1CS BPD
is constructed according to the new collection of rules of PD. The

states of BPD
are of the form (q, r), where q is a location and r ∈ {0, . . . , N −1}.

In BPD
, a special location q0 is used to represent the predicate PD.

Let us fix an inductive rule of PD(α;β), say

PD(α;β):: = ∃δ∃γ. (ΔN ∧ ϕ
(i)
PD,n

(γ)) ∧ PD(δ;β). (4)

Satisfiability of Compositional Separation Logic with Tree Predicates 521

We will demonstrate how to construct the transition rules of BPD
according to

this rule. We will only illustrate the construction for the case that each ϕ
(i)
PD,n

(γ)
is of the form γ � n1 ∧ γ ≡ n3 mod N . The construction for the case γ = n1 is
(much) simpler.

For (4), as before by C4, ΔN must be of the form α = δ + m ∧ Δ′ or α =
γ + m∧Δ′ such that α does not occur in Δ′. We will illustrate the construction
by considering the former case, that is, α = δ + m ∧ Δ′.

Since δ = α − m, we can assume that Δ′ is a formula involving only α, γ
(instead of δ, γ). As before, Δ′ can be written as Δ′

1(α) ∧ Δ′
2(α, γ) ∧ Δ′

3(γ).
Therefore,

Δ′ ∧ ϕ
(i)
PD,n

(γ) = Δ′
1(α) ∧ Δ′

2(α, γ) ∧ (Δ′
3(γ) ∧ γ � n1 ∧ γ ≡ n3 mod N).

For each r ∈ {0, . . . , N − 1}, Θ′ includes the transition rules defined below. Let
us assume that the formula Δ′

3(γ)∧ γ � n1 ∧ γ ≡ n3 mod N is satisfiable (since
otherwise, no transition rules should be included into Θ′ in this case).

– The transition rules for Δ′
1:

• if Δ′
1 = true, then (q0, r) ↪→ (+0, (q1, r)),

• if Δ′
1 = α � l, then (q0, r) ↪→ (� l, (q1, r)),

• if Δ′
1 = α � u, then (q0, r) ↪→ (� u, (q1, r)),

• if Δ′
1 = l � α � u, then (q0, r) ↪→ (� l, (q′1, r)), (q′1, r) ↪→ (� u, (q1, r));

– the transition rules for

Δ′′ = Δ′
2(α, γ) ∧ (Δ′

3(γ) ∧ γ � n1 ∧ γ ≡ n3 mod N) :

• if Δ′
2 = true, then (q1, r) ↪→ (+0, (q2, r)), since Δ′

3(γ) ∧ γ � n1 ∧ γ ≡
n3 mod N is satisfiable (by assumption),

• if Δ′
2 = γ � α + l, then
∗ if Δ′

3 = true or Δ′
3 = γ � l′, then

∃γ. Δ′′ = ∃γ. γ � α + l ∧ Δ′
3 ∧ γ � n1 ∧ γ ≡ n3 mod N

is satisfiable for every value of α, therefore, we have (q1, r) ↪→
(+0, (q2, r)),
∗ if Δ′

3 = γ � u′ or Δ′
3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. γ � α + l ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and
s ≡ n3 mod N , (q1, r) ↪→ (� s − l, (q2, r)),

• if Δ′
2 = γ � α + u,
∗ if Δ′

3 = true or Δ′
3 = γ � l′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. γ � α + u ∧ γ � l′′ ∧ γ ≡ n3 mod N,

which is equivalent to α+u � l′′ +s, where s is the minimum natural
number satisfying 0 � s < N and l′′ + s ≡ n3 mod N , therefore, we
have (q1, r) ↪→ (� l′′ + s − u, (q2, r)),

522 Z. Xu et al.

∗ if Δ′
3 = γ � u′ or Δ′

3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)
respectively, then

∃γ. Δ′′ = ∃γ. γ � α + u ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and
s ≡ n3 mod N , (q1, r) ↪→ (� s − u, (q2, r)),

• if Δ′
2 = α + l � γ � α + u, then
∗ if Δ′

3 = true or Δ′
3 = γ � l′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. α + l � γ � α + u ∧ γ � l′′ ∧ γ ≡ n3 mod N,

which is equivalent to α + s � l′′, provided that α ≡ r mod N , where
s is the maximum natural number such that l � s � u and r + s ≡
n3 mod N , therefore, we have (q1, r) ↪→ (� l′′ − s, (q2, r)),
∗ if Δ′

3 = γ � u′ or Δ′
3 = l′ � γ � u′, let l′′ = n1 or l′′ = max(l′, n1)

respectively, then

∃γ. Δ′′ = ∃γ. α + l � γ � α + u ∧ l′′ � γ � u′ ∧ γ ≡ n3 mod N,

from this, we have that for each s ∈ N such that l′′ � s � u′ and s ≡
n3 mod N , (q1, r) ↪→ (� s− l, (q′2, r)) and (q′2, r) ↪→ (� s− u, (q2, r)),

– the transition rule for α = δ + m: (q2, r) ↪→ (−m, (q0, (r − m) mod N)),

where q1, q2, q
′
1, q

′
2 are the freshly introduced locations.

We have the following result:

Proposition 5. For m,n ∈ N, let r = m mod N and r′ = n mod N . Then
lfp(PD)(m,n) holds iff ((q0, r),m) ⇒BPD

((q0, r′), n).

From Proposition 1, for each r, r′ ∈ {0, . . . , N − 1}, a quantifier-free Pres-
burger formula ϕ(q0,r),(q0,r′)(α, β) can be computed in triply exponential time
w.r.t. the size of BPD

to represent {(m,n) ∈ N
2 | ((q0, r),m) ⇒BPD

((q0, r′), n)}.
Therefore, from Proposition 5, lfp(PD) can be expressed with ϕPD

(α, β) ≡∨

0�r,r′<N

ϕ(q0,r),(q0,r′)(α, β). Since the size of the new collection of inductive rules

of PD—thus the size of BPD
—is at most doubly exponential in the size of the

(original) inductive definition of PD, we conclude that the size of ϕPD
(α, β) is

5-fold exponential in the size of the (original) inductive definition of PD. In addi-
tion, the size of ϕPD

(α, β) is 4-fold exponential if the constants in the inductive
definition of PD are encoded in unary.

4.3 The General Case

In the subsection, we show how to combine the techniques developed in the pre-
ceding sections to tackle the general case. Without loss of generality, we assume
that the data predicate PD(α,β) satisfies that |α| = k > 1, α(1), · · · ,α(k − 1)

Satisfiability of Compositional Separation Logic with Tree Predicates 523

are of type D, and α(k) is of type N. For convenience, we write α = (α′, α′′)
where α′ = (α(1), . . . ,α(k − 1)) and α′′ = α(k). Similarly, β = (β′, β′′). Then
each inductive rule for PD is of the form

PD(α′, α′′;β′, β′′):: = ∃x∃h. ΔD ∧ΔN ∧ PD(δ′, δ′′;β′, β′′)∧ PD(γ′, γ′′; ε′, n).
We split each inductive rule of PD into two rules,

PD,D(α′;β′):: = ∃x. ΔD ∧ PD,D(δ′;β′) ∧ PD,D(γ′; ε′),

PD,N(α′′;β′′):: = ∃h. ΔN ∧ PD,N(δ′′;β′′) ∧ PD,N(γ′′;n).

The computation of lfp(PD) proceeds as follows. Intuitively, we first deal with
PD,D(α′;β′) and PD,N(α′′;β′′) separately by the constructions in Sects. 4.1 and
4.2. More specifically, lfp(TPD,D

), a set of order graphs on V , is computed, and
the A1CS APD,N

and the N1CS BPD,N
are constructed. We then integrate the

order graphs from lfp(TPD,D
) into the states of APD,N

and BPD,N
.

As the first step, we use the algorithm in Sect. 4.1 to compute lfp(TPD,D
).

As a result, we obtain a set of order graphs over V = α′ ∪ β′ ∪ C(PD,D), where
C(PD,D) is the set of constants occurring in the body of the rules of PD,D(α′;β′).

Suppose APD,N
= (Q,Θ) is the A1CS constructed for PD,N(α′′;β′′) as in

Sect. 4.2. Recall that Q is the union of {PD,N,n | n ∈ N (PD,N)} and a set
of auxiliary states. We shall construct a new A1CS A′

PD
. The state space

of A′
PD

is lfp(TPD,D
) × Q. As before, for each n ∈ N (PD,N), we consider a

predicate PD,n(α′, α′′;β′) whose inductive definition is obtained from that of
PD(α′, α′′;β′, β′′) by replacing β′′ with n. Specifically, each inductive rule of
PD,n is of the form,

PD,n(α′, α′′;β′):: = ∃x∃h. ΔD ∧ ΔN ∧ PD,n(δ′, δ′′;β′) ∧ PD,n′(γ′, γ′′; ε′). (5)

Considering the inductive rule of PD,N,n(α′′) corresponding to (5),

PD,N,n(α′′):: = ∃h. ΔN ∧ PD,N,n(δ′′) ∧ PD,N,n′(γ′′). (6)

We lift the transition rules of APD,N
for the inductive rule (6) of PD,N,n(α′′)

to the ones of A′
PD

for the rule (5) of PD,n(α′, α′′;β′) as follows: For every
G,G1, G2 ∈ lfp(TPD,D

) satisfying the proper constraints induced by some induc-
tive rule of PD,D, add G,G1, G2 as the first-component of states. For instance,
the transitions PD,N,n ↪→ (+0, q1), q1 ↪→ {(−m,PD,N,n), (reset(0), q′2)}, q′2 ↪→
{(+1, q′2)}, q′2 ↪→ {(+0, q2)}, and q2 ↪→ {(+0, PD,N,n′)} in APD,N

are changed
to the following transitions in A′

PD
respectively: (G,PD,N,n) ↪→ (+0, (G, q1)),

(G, q1) ↪→ {(−m, (G1, PD,N,n)), (reset(0), (G, q′2))}, (G, q′2) ↪→ {(+1, (G, q′2))},
(G, q′2) ↪→ {(+0, (G, q2))}, and (G, q2) ↪→ {(+0, (G2, PD,N,n′))}.

Recall that P(PD,N,n) is the set of predicates PD,N,n′ occurring in the body of
the inductive rules of PD,N,n. Let GConf′(PD,n) = {((G0, PD,N,n′), n′) | PD,N,n′ ∈
P(PD,N,n)}, where G0 is the order graph corresponding to the value formula α′ =
β′. Again, from Proposition 1, for each state (G,PD,N,n) of A′

PD
, a quantifier-free

Presburger formula ϕ(G,PD,N,n) can be computed to represent the set of natural
numbers Pre∗A′

PD

((G,PD,N,n),GConf ′(PD,n)). As a result, lfp(PD,n) is given by

524 Z. Xu et al.

ϕPD,n
(α′, α′′;β′) =

∨

G∈lfp(TPD,D)

(Δ(G) ∧ ϕ(G,PD,N,n)).

Next, we replace each predicate atom PD(γ′, γ′′; ε′, n) in the body of each
inductive rule by the formula ϕPD,n

(γ′, γ′′; ε′) and rewrite ϕPD,n
(γ′, γ′′; ε′) into

a disjunctive normal form, resulting into a new collection of linear inductive
rules for PD(α′, α′′;β′, β′′).

We can then define the N1CS B′
PD

by adapting the construction of the N1CS
BPD,N

for PD,N. Roughly speaking, this is done by adding the order graphs as
components of the states of BPD,N

. Finally, a linear arithmetic formula ϕPD
(α;β),

which is a mixture of dense order constraints and quantifier-free Presburger
formulae, is computed from B′

PD
to represent lfp(PD), by using Proposition 1.

5 Satisfiability

Let ϕ = Π∧Δ∧Σ be a CSLTP[P] formula. Suppose Σ = a1∗· · ·∗an, where each ai

is either a points-to atom or a predicate atom. Let PD(α;β) be the data predicate
induced by P and ϕPD

(α,β) be the formula constructed in Sect. 4 to represent
lfp(PD). For each inductive rule R of P (E,α;F,β), we define Δ�1

R (α;β) as
follows.

– If R is a left-hole inductive rule

P (E,α;F,β) :: = ∃X∃Y ∃x∃h. Δ ∧ E �→ ((left,X), (right, Y), ρd) ∗
P (X, δ;F,β) ∗ P (Y,γ; nil, ε),

then Δ�1
R (α;β) := ∃x∃h. Δ ∧ ϕPD

[δ/α] ∧ ϕPD
[(γ, ε)/(α,β)].

– If R is a right-hole inductive rule, then Δ�1
R (α;β) is defined similarly.

In addition, we define Δ�1
P (α;β) :=

∨

R: inductive rule of P

Δ�1
R (α;β).

For each predicate atom ai = P (Z1,μ;Z2,ν), we define the formula
Ufld�1(ai) as Δ�1

P (μ,ν). Intuitively, Ufld�1(ai) is the data constraint obtained
by unfolding ai at least once (with the inductive rules of P).

For each location variable E and atom ai in Σ, we introduce a Boolean
variable [E, i] to represent whether E is allocated in ai. Let BVars(ϕ) denote the
set of introduced Boolean variables. We define an abstraction of ϕ [12,14] to be
Abs(ϕ):: = Π ∧ Δ ∧ φΣ ∧ φ∗ over BVars(ϕ) ∪ Vars(ϕ), where

– φΣ =
∧

1�i�n

Abs(ai) is an abstraction of Σ where

• if ai = E �→ ρ, then Abs(ai) = [E, i] ∧ E = nil,

• if ai = P (Z1,μ;Z2,ν), then

Abs(ai) = (¬[Z1, i] ∧ Z1 = Z2 ∧ μ = ν) ∨ ([Z1, i] ∧ Z1 = nil ∧ Ufld�1(ai)).

Satisfiability of Compositional Separation Logic with Tree Predicates 525

– φ∗ states the separation constraint of spatial atoms,

φ∗ =
∧

[Z1,i],[Z′
1,j]∈BVars(ϕ),i
=j

(Z1 = Z ′
1 ∧ [Z1, i]) → ¬[Z ′

1, j].

Proposition 6. For CSLTP[P] formula ϕ, ϕ and Abs(ϕ) are equisatisfiable.

The formula Abs(ϕ) can be turned into a quantifier-free formula Absqf(ϕ) by
removing all the existential quantifiers in Ufld�1(ai) and replace the existentially
quantified variables with some freshly introduced variables. The formula Absqf(ϕ)
can be seen as a mixed real and integer linear arithmetic constraint, thus its
satisfiability can be decided in nondeterministic polynomial time in theory, and
can be solved by using the state-of-the-art SMT solvers, e.g. Z3 [34], in practice.

Theorem 3. The satisfiability of CSLTP[P] formulae can be decided in 6-fold
exponential time. In addition, if the natural-number constants in P are encoded
in unary, the satisfiability can be decided in 5-fold exponential time.

Remark 1. The decision procedure for the satisfiability problem can be easily
generalised to n-ary trees, and to separation logic formulae where several induc-
tive predicates, e.g., lseg(E;F) and bsth(E, x, y;F, x′, y′), occur simultaneously.

6 Conclusion

In this paper, we proposed CSLTP, the compositional separation logic with tree
predicates. We gave a complete decision procedure for the satisfiability problem.
To our best knowledge, this is one of the most expressive fragments of SLID with
data/size constraints that is equipped with a complete decision procedure. The
main ingredient of the decision procedure is to compute the least fixed point
of data predicates involving dense order constraints and difference-bound size
constraints, by utilising an automata-theoretical approach.

For the future work, the decision procedure for the satisfiability problem
paves the way towards a compete decision procedure for the entailment problem
of CSLTP. In addition, we plan to implement the decision procedure and apply
it to the analysis and verification of programs manipulating tree data structures.

References

1. Abdulla, P.A., Hoĺık, L., Jonsson, B., Lengál, O., Trinh, C.Q., Vojnar, T.: Ver-
ification of heap manipulating programs with ordered data by extended forest
automata. In: Hung, D., Ogawa, M. (eds.) ATVA 2013. LNCS, vol. 8172, pp. 224–
239. Springer, Cham (2013). doi:10.1007/978-3-319-02444-8 17

2. Berdine, J., Calcagno, C., O’Hearn, P.W.: Symbolic execution with separation
logic. In: Yi, K. (ed.) APLAS 2005. LNCS, vol. 3780, pp. 52–68. Springer,
Heidelberg (2005). doi:10.1007/11575467 5

http://dx.doi.org/10.1007/978-3-319-02444-8_17
http://dx.doi.org/10.1007/11575467_5

526 Z. Xu et al.

3. Bouajjani, A., Drăgoi, C., Enea, C., Sighireanu, M.: Accurate invariant checking
for programs manipulating lists and arrays with infinite data. In: Chakraborty, S.,
Mukund, M. (eds.) ATVA 2012. LNCS, pp. 167–182. Springer, Heidelberg (2012).
doi:10.1007/978-3-642-33386-6 14

4. Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata:
application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997). doi:10.
1007/3-540-63141-0 10

5. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) CADE
2011. LNCS, vol. 6803, pp. 131–146. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22438-6 12

6. Brotherston, J., Fuhs, C., Perez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: LICS, pp. 25:1–25:10
(2014)

7. Chandra, A.K., Kozen, D.C., Stockmeyer, L.J.: Alternation. J. ACM 28(1), 114–
133 (1981)

8. Chin, W.-N., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape,
size and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

9. Chu, D.-H., Jaffar, J., Trinh, M.-T.: Automatic induction proofs of data-structures
in imperative programs. In: PLDI, pp. 457–466 (2015)

10. Comon-Lundh, H., Jacquemard, F., Perrin, N.: Visibly tree automata with memory
and constraints. Logical Methods Comput. Sci. 4(2), 1–36 (2008)

11. Creus, C., Godoy, G.: Tree automata with height constraints between brothers. In:
RTA-TLCA, pp. 149–163 (2014)

12. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: Garrigue, J. (ed.) APLAS 2014. LNCS,
vol. 8858, pp. 314–333. Springer, Cham (2014). doi:10.1007/978-3-319-12736-1 17

13. Enea, C., Sighireanu, M., Wu, Z.: On automated lemma generation for separa-
tion logic with inductive definitions. In: Finkbeiner, B., Pu, G., Zhang, L. (eds.)
ATVA 2015. LNCS, vol. 9364, pp. 80–96. Springer, Cham (2015). doi:10.1007/
978-3-319-24953-7 7

14. Gu, X., Chen, T., Wu, Z.: A complete decision procedure for linearly compositional
separation logic with data constraints. In: IJCAR, pp. 532–549 (2016)

15. Haase, C., Kreutzer, S., Ouaknine, J., Worrell, J.: Reachability in succinct and
parametric one-counter automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR
2009. LNCS, vol. 5710, pp. 369–383. Springer, Heidelberg (2009). doi:10.1007/
978-3-642-04081-8 25

16. Habermehl, P., Iosif, R., Vojnar, T.: Automata-based verification of programs with
tree updates. Acta Inf. 47(1), 1–31 (2010)

17. Hóu, Z., Goré, R., Tiu, A.: Automated theorem proving for assertions in separation
logic with all connectives. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS,
vol. 9195, pp. 501–516. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 34

18. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: Bonacina, M.P. (ed.) CADE 2013. LNCS, vol. 7898, pp.
21–38. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38574-2 2

19. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS,
vol. 8837, pp. 201–218. Springer, Cham (2014). doi:10.1007/978-3-319-11936-6 15

http://dx.doi.org/10.1007/978-3-642-33386-6_14
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/3-540-63141-0_10
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-642-22438-6_12
http://dx.doi.org/10.1007/978-3-319-12736-1_17
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-319-24953-7_7
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-642-04081-8_25
http://dx.doi.org/10.1007/978-3-319-21401-6_34
http://dx.doi.org/10.1007/978-3-642-38574-2_2
http://dx.doi.org/10.1007/978-3-319-11936-6_15

Satisfiability of Compositional Separation Logic with Tree Predicates 527

20. Le, Q.L., Sun, J., Chin, W.-N.: Satisfiability modulo heap-based programs. In:
Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp. 382–404. Springer,
Cham (2016). doi:10.1007/978-3-319-41528-4 21

21. Manna, Z., Sipma, H.B., Zhang, T.: Verifying balanced trees. In: Artemov, S.N.,
Nerode, A. (eds.) LFCS 2007. LNCS, vol. 4514, pp. 363–378. Springer, Heidelberg
(2007). doi:10.1007/978-3-540-72734-7 26

22. O’Hearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: Fribourg, L. (ed.) CSL 2001. LNCS, vol. 2142, pp. 1–19.
Springer, Heidelberg (2001). doi:10.1007/3-540-44802-0 1

23. Pek, E., Qiu, X., Madhusudan, P.: Natural proofs for data structure manipulation
in C using separation logic. In: PLDI, pp. 440–451 (2014)

24. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic using SMT. In:
Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 773–789. Springer,
Heidelberg (2013). doi:10.1007/978-3-642-39799-8 54

25. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer,
Cham (2014). doi:10.1007/978-3-319-08867-9 47

26. Piskac, R., Wies, T., Zufferey, D.: GRASShopper - complete heap verification with
mixed specifications. In: TACAS, pp. 124–139 (2014)

27. Qiu, X., Garg, P., Stefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI, pp. 231–242 (2013)

28. Revesz, P.Z.: A closed-form evaluation for datalog queries with integer (gap)-order
constraints. Theor. Comput. Sci. 116(1), 117–149 (1993)

29. Reynolds, A., Iosif, R., Serban, C., King, T.: A decision procedure for separation
logic in SMT. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol.
9938, pp. 244–261. Springer, Cham (2016). doi:10.1007/978-3-319-46520-3 16

30. Reynolds, J.C.: Separation logic: a logic for shared mutable data structures. In:
LICS, pp. 55–74 (2002)

31. Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verifi-
cation. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 347–363.
Springer, Heidelberg (2013). doi:10.1007/978-3-642-39799-8 24

32. Seidl, H., Schwentick, T., Muscholl, A., Habermehl, P.: Counting in trees for
free. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 1136–1149. Springer, Heidelberg (2004). doi:10.1007/
978-3-540-27836-8 94

33. Tatsuta, M., Le, Q.L., Chin, W.-N.: Decision procedure for separation logic with
inductive definitions and presburger arithmetic. In: Igarashi, A. (ed.) APLAS
2016. LNCS, vol. 10017, pp. 423–443. Springer, Cham (2016). doi:10.1007/
978-3-319-47958-3 22

34. Z3. http://rise4fun.com/z3

http://dx.doi.org/10.1007/978-3-319-41528-4_21
http://dx.doi.org/10.1007/978-3-540-72734-7_26
http://dx.doi.org/10.1007/3-540-44802-0_1
http://dx.doi.org/10.1007/978-3-642-39799-8_54
http://dx.doi.org/10.1007/978-3-319-08867-9_47
http://dx.doi.org/10.1007/978-3-319-46520-3_16
http://dx.doi.org/10.1007/978-3-642-39799-8_24
http://dx.doi.org/10.1007/978-3-540-27836-8_94
http://dx.doi.org/10.1007/978-3-540-27836-8_94
http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://dx.doi.org/10.1007/978-3-319-47958-3_22
http://rise4fun.com/z3

A Proof Strategy Language and Proof Script
Generation for Isabelle/HOL

Yutaka Nagashima1 and Ramana Kumar1,2(B)

1 Data61, CSIRO, Sydney, Australia
2 Data61, CSIRO/UNSW, Sydney, Australia

ramana.kumar@data61.csiro.au

Abstract. We introduce a language, PSL, designed to capture high level
proof strategies in Isabelle/HOL. Given a strategy and a proof obligation,
PSL’s runtime system generates and combines various tactics to explore a
large search space with low memory usage. Upon success, PSL generates
an efficient proof script, which bypasses a large part of the proof search.
We also present PSL’s monadic interpreter to show that the underlying
idea of PSL is transferable to other ITPs.

1 Introduction

Currently, users of interactive theorem provers (ITPs) spend a lot of time itera-
tively interacting with their ITP to manually specialise and combine tactics. This
time consuming process requires expertise in the ITP, making ITPs more eso-
teric than they should be. The integration of powerful automatic theorem provers
(ATPs) into ITPs ameliorates this problem significantly; however, the exclusive
reliance on general purpose ATPs makes it hard to exploit users’ domain specific
knowledge, leading to combinatorial explosion even for conceptually straight-
forward conjectures.

To address this problem, we introduce PSL, a programmable, extensible,
meta-tool based framework, to Isabelle/HOL [22]. We provide PSL (available on
GitHub [18]) as a language, so that its users can encode proof strategies, abstract
descriptions of how to attack proof obligations, based on their intuitions about
a conjecture. When applied to a proof obligation, PSL’s runtime system creates
and combines several tactics based on the given proof strategy. This makes it
possible to explore a larger search space than has previously been possible with
conventional tactic languages, while utilising users’ intuitions on the conjecture.

We developed PSL to use engineers’ downtime: with PSL, we can run an
automatic proof search for hours while we are attending meetings, sleeping, or
reviewing papers. PSL makes such expensive proof search possible on machines
with limited memory: PSL’s runtime system truncates failed proof attempts as
soon as it backtracks to minimise its memory usage.

Furthermore, PSL’s runtime system attempts to generate efficient proof
scripts from a given strategy by searching for the appropriate specialisation and
combination of tactics for a particular conjecture without direct user interaction.
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 528–545, 2017.
DOI: 10.1007/978-3-319-63046-5 32

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 529

Thus, PSL not only reduces the initial labour cost of theorem proving, but also
keeps proof scripts interactive and maintainable by reducing the execution time
of subsequent proof checking.

In Isabelle, sledgehammer adopts a similar approach [2]. It exports a proof
goal to various external ATPs and waits for them to find a proof. If the external
provers find a proof, sledgehammer tries to reconstruct an efficient proof script
in Isabelle using hints from the ATPs. sledgehammer is often more capable than
most tactics but suffers from discrepancies between the polymorphic higher-order
logic of Isabelle and the monomorphic first-order logic of most backend provers.
While we integrated sledgehammer as a sub-tool in PSL, PSL conducts a search
using Isabelle tactics, thus avoiding the problems arising from the discrepancies
and proof reconstruction.

The underlying implementation idea in PSL is the monadic interpretation of
proof strategies, which we introduce in Sect. 6. We expect this prover-agnostic
formalization brings the following strengths of PSL to other ITPs such as Lean
[14] and Coq [28]:

– runtime tactic generation based on user-defined procedures,
– memory-efficient large-scale proof search, and
– generation of efficient proof scripts for proof maintenance.

2 Background

Interactive theorem proving can be seen as the exploration of a search tree.
Nodes of the tree represent proof states. Edges represent applications of tactics,
which transform the proof state. Tactics are context sensitive: they behave dif-
ferently depending on information stored in background proof contexts. These
proof contexts contain such information as the constants defined and auxiliary
lemmas proved prior to the current step. Since tactic behaviour depends on the
proof context, it is hard to predict the shape of the search tree in advance.

Fig. 1. External and internal view of proof search tree

530 Y. Nagashima and R. Kumar

The goal is to find a node representing a solved state: one in which the proof
is complete. The search tree may be infinitely wide and deep, because there are
endless variations of tactics that may be tried at any point. The goal for a PSL
strategy is to direct an automated search of this tree to find a solved state; PSL
will reconstruct an efficient path to this state as a human-readable proof script.

Figure 1 shows an example of proof search. At the top, the tactic erule
conjE is applied to the proof obligation w ∧ x ⇒ y ∧ z ⇒ z. This tactic invoca-
tion produces two results, as there are two places to apply conjunction elimi-
nation. Applying conjunction elimination to w ∧ x returns the first result, while
doing so to y ∧ z produces the second result. Subsequent application of proof
by assumption can discharge the second result; however, assumption does not
discharge the first one since the z in the assumptions is still hidden by the con-
junction. Isabelle’s proof language, Isar , returns the first result by default, but
users can access the subsequent results using the keyword back.

Isabelle represents this non-deterministic behaviour of tactics using lazy
sequences: tactics are functions of type thm -> [thm], where [·] denotes a (possi-
bly infinite) lazy sequence [25]. Figure 1b illustrates how Isabelle internally han-
dles the above example where ++ stands for the concatenation of lazy sequences.
Each proof state is expressed as a (possibly nested) implication which assumes
proof obligations to conclude the conjecture. One may complete a proof by
removing these assumptions using tactics. Tactic failure is represented as an
empty sequence, which enables backtracking search by combining multiple tac-
tics in a row [30]. For example, one can write apply(erule conjE,assumption)
using the sequential combinator, (comma) in Isar ; this tactic traverses the tree
using backtracking and discharges the proof obligation without relying on the
keyword back.

The search tree grows wider when choosing between multiple tactics, and
it grows deeper when tactics are combined sequentially. In the implementation
language level, the tactic combinators in Isabelle include THEN for sequential
composition (corresponding to , in Isar), APPEND for non-deterministic choice,
ORELSE for deterministic choice, and REPEAT for iteration.

Isabelle/HOL comes with several default tactics such as auto,simp,induct,
rule, and erule. When using tactics, proof authors often have to adjust tactics
using modifiers for each proof obligation. succeed and fail are special tactics:
succeed takes a value of type thm, wraps it in a lazy sequence, and returns it
without modifying the value. fail always returns an empty sequence.

3 Syntax of PSL

The following is the syntax of PSL. We made PSL’s syntax similar to that of
Isabelle’s tactic language aiming at the better usability for users who are familiar
with Isabelle’s tactic language.
strategy := default | dynamic | special | subtool | compound

default := Simp | Clarsimp | Fastforce | Auto | Induct
| Rule | Erule | Cases | Coinduction | Blast

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 531

dynamic := Dynamic (default)
special := IsSolved | Defer | IntroClasses | Transfer

| Normalization | Skip | Fail | User <string >
subtool := Hammer | Nitpick | Quickcheck
compound := Thens [strategy] | Ors [strategy] | Alts [strategy]

| Repeat (strategy) | RepeatN (strategy)
| POrs [strategy] | PAlts [strategy]
| PThenOne [strategy] | PThenAll [strategy]
| Cut int (strategy)

The default strategies correspond to Isabelle’s default tactics without argu-
ments, while dynamic strategies correspond to Isabelle’s default tactics that are
specialised for each conjecture. Given a dynamic strategy and conjecture, the
runtime system generates variants of the corresponding Isabelle tactic. Each of
these variants is specialised for the conjecture with a different combination of
promising arguments found in the conjecture and its proof context. It is the pur-
pose of the PSL runtime system to select the right combination automatically.

subtool represents Isabelle tools such as sledgehammer [2] and counterex-
ample finders. The compound strategies capture the notion of tactic combina-
tors: Thens corresponds to THEN, Ors to ORELSE, Alts to APPEND, and Repeat
to REPEAT. POrs and PAlts are similar to Ors and Alts, respectively, but they
admit parallel execution of sub-strategies. PThenOne and PThenAll take exactly
two sub-strategies, combine them sequentially and apply the second sub-strategy
to the results of the first sub-strategy in parallel in case the first sub-strategy
returns multiple results. Contrary to PThenAll, PThenOne stops its execution as
soon as it produces one result from the second sub-strategy. Users can integrate
user-defined tactics, including those written in Eisbach [13], into PSL strategies
using User. Cut limits the degree of non-determinism within a strategy.

In the following, we explain how to write strategies and how PSL’s runtime
system interprets strategies with examples.

4 PSL by Example

Example 1. For our first example, we take the following lemma from an entry
[23] in the Archive of Formal Proofs (AFP):

lemma dfs app: "dfs g (xs @ ys) zs = dfs g ys (dfs g xs zs)"

where dfs is a recursively defined function for depth-first search. As dfs
is defined recursively, it is natural to expect that its proof involves some sort
of mathematical induction. However, we do not know exactly how we should
conduct mathematical induction here; therefore, we describe this rough idea as
a proof strategy, DInductAuto, with the keyword strategy, and apply it to
dfs app with the keyword find proof as depicted in Fig. 2. The find proof
command tells PSL’s runtime system to interpret DInductAuto. For example, it
interprets Auto as Isabelle’s default tactic, auto.

532 Y. Nagashima and R. Kumar

Fig. 2. Screenshot for Example 1.

The interpretation of Dynamic(Induct) is more involved: the runtime gener-
ates tactics using the information in dfs app and its background context. First,
PSL collects the free variables (noted in italics above) in dfs app and applica-
ble induction rules stored in the context. PSL uses the set of free variables to
specify two things: on which variables instantiated tactics conduct mathematical
induction, and which variables should be generalised in the induction scheme.
The set of applicable rules are used to specify which rules to use. Second, PSL
creates the powerset out of the set of all possible modifiers. Then, it attempts
to instantiate a variant of the induct tactic for each subset of modifiers. Finally,
it combines all the variants of induct with unique results using APPEND. In this
case, PSL tries to generate 4160 induct tactics for dfs app by passing several
combinations of modifiers to Isabelle; however, Isabelle cannot produce valid
induction schemes for some combinations, and some combinations lead to the
same induction scheme. The runtime removes these, focusing on the 223 unique
results. PSL’s runtime combine these tactics with auto using THEN.

PSL’s runtime interprets IsSolved as the is solved tactic, which checks
whether any proof obligations are left or not. If obligations are left, is solved
behaves as fail, triggering backtracking. If not, is solved behaves as succeed,
allowing the runtime to stop the search. This is how DInductAuto uses IsSolved
to ensure that no sub-goals are left before returning an efficient proof script. For
dfs app, PSL interprets DInductAuto as the following tactic:

(induct1 APPEND induct2 APPEND...) THEN auto THEN is solved

where induct ns are variants of the induct tactic specialised with modifiers.
Within the runtime system, Isabelle first applies induct1 to dfs app, then

auto to the resultant proof obligations. Note that each induct tactic and auto
is deterministic: it either fails or returns a lazy sequence with a single element.
However, combined together with APPEND, the numerous variations of induct
tactics en masse are non-deterministic: if is solved finds remaining proof oblig-
ations, Isabelle backtracks to the next induct tactic, induct2 and repeats this

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 533

process until either it discharges all proof obligations or runs out of the variations
of induct tactics. The numerous variants of induct tactics from DInductAuto
allow Isabelle to explore a larger search space than its naive alternative, induct
THEN auto, does. Figure 3a illustrates this search procedure. Each edge and
curved square represents a tactic application and a proof state, respectively,
and edges leading to no object stand for tactic failures. The dashed objects rep-
resent possible future search space, which PSL avoids traversing by using lazy
sequences.

Fig. 3. Proof search tree for some induct

The larger search space specified by DInductAuto leads to a longer search
time. PSL addresses this performance problem by tracing Isabelle’s proof search:
it keeps a log of successful proof attempts while removing backtracked proof
attempts. The monadic interpretation discussed in Sect. 6 let PSL remove failed
proof steps as soon as it backtracks. This minimises PSL memory usage, making
it applicable to hours of expensive automatic proof search. Furthermore, since
PSL follows Isabelle’s execution model based on lazy sequences, it stops proof
search as soon as it finds a specialisation and combination of tactics, with which
Isabelle can pass the no-proof-obligation test imposed by is solved.

We still need a longer search time with PSL, but only once: upon success,
PSL converts the log of successful attempts into an efficient proof script, which
bypasses a large part of proof search. For dfs app, PSL generates the following
proof script from DInductAuto.

apply (induct xs zs rule: DFS.dfs.induct) apply auto done

We implemented PSL as an Isabelle theory; to use it, PSL users only have to
import the relevant theory files to use PSL to their files. Moreover, we have
integrated PSL into Isabelle/Isar, Isabelle’s proof language, and Isabelle/jEdit, its
standard editor. This allows users to define and invoke their own proof strategies
inside their ongoing proof attempts, as shown in Fig. 2; and if the proof search
succeeds PSL presents a proof script in jEdit’s output panel, which users can copy

534 Y. Nagashima and R. Kumar

to the right location with one click. All generated proof scripts are independent
of PSL, so users can maintain them without PSL.

Example 2. DInductAuto is able to pick up the right induction scheme for rela-
tively simple proof obligations using backtracking search. However, in some cases
even if PSL picks the right induction scheme, auto fails to discharge the emerg-
ing sub-goals. In the following, we define InductHard, a more powerful strategy
based on mathematical induction, by combining Dynamic (Induct) with more
involved sub-strategies to use external theorem provers.

strategy SolveAllG = Thens[Repeat(Ors[Fastforce,Hammer]),IsSolved]
strategy PInductHard = PThenOne[Dynamic(Induct),SolveAllG]
strategy InductHard = Ors[DInductAuto, PInductHard]

PSL’s runtime system interprets Fastforce and Hammer as the fastforce
tactic and sledgehammer, respectively. Both fastforce and sledgehammer try
to discharge the first sub-goal only and return an empty sequence if they cannot
discharge the sub-goal.

The repetitive application of sledgehammer would be very time consuming.
We mitigate this problem using Ors and PThenOne. Combined with Ors, PSL
executes PInductHard only if DInductAuto fails. When PInductHard is called,
it first applies Dynamic(Induct), producing various induction schemes and mul-
tiple results. Then, SolveAllG tries to discharge these results in parallel. The
runtime stops its execution when SolveAllG returns at least one result repre-
senting a solved state. We apply this strategy to the following conjecture, which
states the two versions of depth-first search programs (dfs2 and dfs) return the
same results given the same inputs.

lemma "dfs2 g xs ys = dfs g xs ys "

Then, our machine with 28 cores returns the following script within 3 minutes:

apply (induct xs ys rule: DFS.dfs2.induct)
apply fastforce
apply (simp add: dfs_app)
done

Figure 3b roughly shows how the runtime system found this proof script.
The runtime first tried to find a complete proof as in Example 1, but without
much success. Then, it interpreted PInductHard. While doing so, it found that
induction on xs and ys using DFS.dfs2.induct leads to two sub-goals both of
which can be discharged either by fastforce or sledgehammer. For the second
sub-goal, sledgehammer found out that the result of Example 1 can be used as
an auxiliary lemma to prove this conjecture. Then, it returns an efficient proof
script (simp add: dfs app) to PSL, before PSL combines this with other parts
and prints the complete proof script.

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 535

Example 3. In the previous examples, we used IsSolved to get a complete proof
script from PSL. In Example 3, we show how to generate incomplete but useful
proof scripts, using Defer. Incomplete proofs are specially useful when ITP users
face numerous proof obligations, many of which are within the reach of high-level
proof automation tools, such as sledgehammer, but a few of which are not.

Without PSL, Isabelle users had to manually invoke sledgehammer several
times to find out which proof obligations sledgehammer can discharge. We devel-
oped a strategy, HamCheck, to automate this time-consuming process. The fol-
lowing shows its definition and a use case simplified for illustrative purposes.

strategy HamCheck = RepeatN(Ors[Hammer,Thens[Quickcheck,Defer]])
lemma safe trans: shows
1:"ps safe p s " and 2:"valid tran p s s’ c " and 3:"ps safe p s’ "
find proof HamCheck

We made this example simple, so that two sub-goals, 1:"ps safe p s ” and
3:"ps safe p s’ ”, are not hard to prove; however, they are still beyond the
scope of commonly used tactics, such as fastforce.

Generally, for a conjecture and a strategy of the form of RepeatN
(strategy), PSL applies strategy to the conjecture as many times as the num-
ber of proof obligations in the conjecture. In this case, PSL applies Ors [Hammer,
Thens [Quickcheck, Defer]] to safe trans three times.

Note that we integrated quickcheck and nitpick into PSL as assertion tac-
tics. Assertion tactics provide mechanisms for controlling proof search based
on a condition: such a tactic takes a proof state, tests an assertion on it, then
behaves as succeed or fail accordingly. We have already seen one of them in
the previous examples: is solved.

Ors [Hammer, Thens [Quickcheck, Defer]] first applies sledgehammer. If
sledgehammer does not find a proof, it tries to find counter-examples for the sub-
goal using quickcheck. If quickcheck finds no counter-examples, PSL interprets
Defer as defer tac 1, which postpones the current sub-goal to the end of the
list of proof obligations.

In this example, sledgehammer fails to discharge 2:"valid tran p s s’ c ”.
When sledgehammer fails, PSL passes 2 to Thens [Quickcheck, Defer], which
finds no counter-example to 2 and sends 2 to the end of the list; then, PSL
continues working on the sub-goal 3 with sledgehammer. The runtime stops
its execution after applying Ors [Hammers,Thens [Quickcheck, Defer]] three
times, generating the following proof script. This script discharges 1 and 3, but
it leaves 2 as the meaningful task for human engineers, while assuring there is
no obvious counter-examples for 2.

apply (simp add: state_safety ps_safe_def)
defer apply (simp add: state_safety ps_safe_def)

536 Y. Nagashima and R. Kumar

5 The Default Strategy: try hard.

PSL comes with a default strategy, try hard. Users can apply try hard as a
completely automatic tool: engineers need not provide their intuitions by writing
strategies. Unlike other user-defined strategies, one can invoke this strategy by
simply typing try hard without find proof inside a proof attempt. The lack
of input from human engineers makes try hard less specific to each conjecture;
however, we made try hard more powerful than existing proof automation tools
for Isabelle by specifying larger search spaces presented.

We conducted a Judgement Day style evaluation [3] of try hard against
selected theory files from the AFP, coursework assignments and exercises [1],
and Isabelle’s standard library. Tables 1, 2 and 3 show that given 300 s for each
proof goal try hard solves 1115 proof goals out of 1526,while sledgehammer
found proofs for 901 of themusing the same computational resources and re-
constructed proofs in Isabelle for 866 of them. This is a 14% point improvement
of proof search and a 16% point increase for proof reconstruction. Moreover, 299
goals (20% of all goals) were solved only by try hard within 300 s. They also
show that a longer time-out improves the success ratio of try hard, which is
desirable for utilising engineers’ downtime.

Table 1. The number of automatically proved proof obligations from assignments. TH
and SH stand for the number of obligations discharged by try hard and sledgehammer,
respectively. TH\SH represents the number of goals to which try hard found proofs but
sledgehammer did not. POs stands for the number of proof obligations in the theory file.
x(y) for SH means sledgehammer found proofs for x proof obligations, out of which it
managed to reconstruct proof scripts in Isabelle for y goals. We omit these parentheses
when these numbers coincide. Note that all proofs of PSL are checked by Isabelle/HOL.
Besides, sledgehammer inside PSL avoids the smt proof method, as this method is not
allowed in the Archive of Formal Proofs.

assignments [1] POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

assignment 1 19 17 14(13) 4 18 14(13) 5

assignment 2 22 21 5 16 22 5 17

assignment 3 52 30 27 8 35 27 10

assignment 4 82 66 61 10 71 61 10

assignment 5 64 36 41(39) 6 55 44(42) 17

assignment 6 26 11 12(11) 2 14 13(12) 3

assignment 8 52 36 45(39) 1 40 46(39) 0

assignment 9 61 31 32(30) 6 35 32(30) 6

assignment 11 26 14 15 1 20 17 3

sum 404 262 252(241) 54 310 259(246) 71

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 537

Table 2. The number of automatically proved proof obligations from exercises.

exercises [1] POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

exercise 1 15 12 8 4 12 8 4

exercise 2 7 4 3 2 5 3 2

exercise 3 42 27 26(25) 5 29 27(26) 5

exercise 4 23 11 15 0 17 15 2

exercise 5a 13 9 11 0 11 11 0

exercise 5b 83 65 74 1 74 74 1

exercise 6 4 1 2 0 1 3 0

exercise 7a 3 0 0 0 0 0 0

exercise 7b 9 5 6 1 8 6 2

exercise 8a 10 7 7 1 7 7 1

exercise 8b 26 11 9 4 12 12 2

exercise 9 31 14 17 3 19 17 3

exercise 10 15 5 5(4) 1 6 6(5) 1

exercise 11 10 4 6 0 9 6 3

exercise 12 30 8 10 1 12 10 3

sum 321 183 199(197) 23 222 205(203) 29

Table 3. The number of automatically proved proof goals from AFP entries and
Isabelle’s standard libraries.

theory name POs TH SH TH\SH TH SH TH\SH
time out - 30s 30s 30s 300s 300s 300s

DFS.thy [23] 51 24 28 6 34 29 7

Efficient Sort.thy [27] 75 27 28(26) 8 33 31(28) 9

List Index.thy [20] 105 48 72(70) 12 67 75(72) 14

Skew Heap.thy [21] 16 8 6(5) 4 12 8(7) 5

Hash Code.thy [10] 16 7 4 4 11 4 7

CoCallGraph.thy [4] 141 88 78(71) 29 104 79(73) 33

Coinductive Language.thy [29] 139 57 69(68) 11 106 70(69) 43

Context Free Grammar.thy [29] 29 26 2 26 29 2 27

LTL.thy [26] 97 56 61 15 78 65(62) 15

HOL/Library/Tree.thy 124 93 70(68) 32 101 73(70) 32

HOL/Library/Tree Multiset.thy 8 8 1 7 8 1 7

sum 801 442 419(404) 154 583 437(417) 199

538 Y. Nagashima and R. Kumar

try hard is particularly more powerful than sledgehammer at discharging
proof obligations that can be nicely handled by the following:

– mathematical induction or co-induction,
– type class mechanism,
– specific procedures implemented as specialised tactics (such as transfer and
normalization), or

– general simplification rules (such as field simps and algebra simps).

Furthermore, careful observation of PSL indicates that PSL can handle the
so-called “hidden fact” problem in relevance filtering. Hidden facts are auxiliary
lemmas that are useful to discharge a given proof obligation but are not obviously
relevant. For example, a hidden fact may share no constants with the proof
obligation, because it is related only via an intermediate fact. With PSL, a user
can write a strategy that applies rewriting before relevance filtering to reveal
more information. This information allows the relevance filter to find useful facts
that were previously hidden. For example, the following strategy “massages”
the given proof obligation before invoking the relevance filter of sledgehammer:
Thens [Auto, Repeat(Hammer),IsSolved].

For 3 theories out of 35, try hard discharged fewer proof obligations, even
given 300 seconds of time-out. This is due to the fact that PSL uses a slightly
restricted version of sledgehammer internally for the sake of the integration with
other tools and to avoid the smt method, which is not allowed in the AFP. In
these files, sledgehammer can discharge many obligations and other obligations
are not particularly suitable for other sub-tools in try hard. Of course, given
high-performance machines, users can run both try hard and sledgehammer in
parallel to maximise the chance of proving conjectures.

6 Monadic Interpretation of Strategy

The implementation of the tracing mechanism described in Sect. 4 is non-trivial:
PSL’s tracing mechanism has to support arbitrary strategies conforming to its
syntax. What is worse, the runtime behaviour of backtracking search is not
completely predictable statically since PSL generates tactics at runtime, using
information that is not available statically. Moreover, the behaviour of each tactic
varies depending on the proof context and proof obligation at hand.

It is likely to cause code clutter to specify where to backtrack explicitly with
references or pointers, whereas explicit construction of search tree [17] consumes
too much memory space when traversing a large search space. Furthermore,
both of these approaches deviate from the standard execution model of Isabelle
explained in Sect. 2. This deviation makes the proof search and the efficient
proof script generation less reliable. In this section, we introduce our monadic
interpreter for PSL, which yields a modular design and concise implementation
of PSL’s runtime system.

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 539

Program 1. Monad with zero and plus, and lazy sequence as its instance.
signature MONAD0PLUS =

sig

type ’a m0p;

val return : ’a -> ’a m0p;

val bind : ’a m0p -> (’a -> ’b m0p) -> ’b m0p;

val mzero : ’a m0p;

val ++ : (’a m0p * ’a m0p) -> ’a m0p;

end;

structure Nondet : MONAD0PLUS =

struct

type ’a m0p = ’a Seq.seq;

val return = Seq.single;

fun bind xs f = Seq.flat (Seq.map f xs);

val mzero = Seq.empty;

fun (xs ++ ys) = Seq.append xs ys;

end;

Monads in Standard ML. A monad with zero and plus is a constructor class1

with four basic methods (return, bind, mzero, and ++). As Isabelle’s implemen-
tation language, Standard ML, does not natively support constructor classes, we
emulated them using its module system [19]. Program 1 shows how we represent
the type constructor, seq, as an instance of monad with zero and plus.

The body of bind for lazy sequences says that it applies f to all the elements
of xs and concatenates all the results into one sequence. Attentive readers might
notice that this is equivalent to the behaviour of THEN depicted in Fig. 1b and
that of Thens shown in Fig. 3. In fact, we can define all of THEN, succeed, fail,
and APPEND, using bind, return, mzero, and ++, respectively.

Monadic Interpretation of Strategies. Based on this observation, we formalised
PSL’s search procedure as a monadic interpretation of strategies, as shown in
Program 2, where the type core strategy stands for the internal representation
of strategies. Note that Alt and Or are binary versions of Alts and Ors, respec-
tively; PSL desugars Alts and Ors into nested Alts and Ors. We could have defined
Or as a syntactic sugar using Alt, mzero, Fail, and Skip, as explained by Martin
et al. [11]; however, we prefer the less monadic formalisation in Program 2 for bet-
ter time complexity.

eval deals with all the atomic strategies, which correspond to default ,
dynamic , and special in the surface language. For the dynamic strategies,
eval expands them into dynamically generated tactics making use of contextual
information from the current proof state. PSL combines these generated tactics

1 Constructor classes are a class mechanism on type constructors such as list and
option, whereas type classes are a class mechanism on types such as int and double.
Commonly used constructor classes include functor, applicative, monoid, and arrow.

540 Y. Nagashima and R. Kumar

Program 2. The monadic interpretation of strategies.
interp :: core_strategy -> ’a -> ’a m0p

interp (Atom atom_str) n = eval atom_str n

interp Skip n = return n

interp Fail n = mzero

interp (str1 Then str2) n = bind (interp str1 n) (interp str2)

interp (str1 Alt str2) n = interp str1 n ++ interp str2 n

interp (str1 Or str2) n = let val result1 = interp str1 n

in if (result1 != mzero) then result1 else interp str2 n end

interp (Rep str) n = interp ((str THEN (Rep str)) Or Skip) n

interp (Comb (comb, strs)) n = eval_comb (comb, map interp strs) n

Program 3. The writer monad transformer as a ML functor.
functor writer_trans (structure Log:MONOID; structure Base:MONAD0PLUS) =

struct

type ’a m0p = (Log.monoid * ’a) Base.m0p;

fun return (m:’a) = Base.return (Log.mempty, m) : ’a m0p;

fun bind (m:’a m0p) (func: ’a -> ’b m0p) : ’b m0p =

Base.bind m (fn (log1, res1) =>

Base.bind (func res1) (fn (log2, res2) =>

Base.return (Log.mappend log1 log2, res2)));

val mzero = Base.mzero;

val (xs ++ ys) = Base.++ (xs, ys);

end : MONAD0PLUS;

either with APPEND or ORELSE, depending on the nature of each tactic. eval -
comb handles non-monadic strategy combinators, such as Cut. We defined the
body of eval and eval comb for each atomic strategy and strategy combinator
separately using pattern matching. As is obvious in Program 2, interp separates
the complexity of compound strategies from that of runtime tactic generation.

Adding Tracing Modularly for Proof Script Generation. We defined interp
at the constructor class level, abstracting it from the concrete type of proof
state and even from the concrete type constructor. When instantiated with
lazy sequence, interp tries to return the first element of the sequence, working
as depth-first search. This abstraction provides a clear view of how compound
strategies guide proof search while producing tactics at runtime; however, with-
out tracing proof attempts, PSL has to traverse large search spaces every time it
checks proofs.

We added the tracing mechanism to interp, combining the non-deterministic
monad, Nondet, with the writer monad. To combine multiple monads, we emu-
late monad transformers using ML functors: Program 3 shows our ML functor,
writer trans, which takes a module of MONAD0PLUS, adds the logging mecha-
nism to it, and returns a module equipped with both the capability of the base

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 541

monad and the logging mechanism of the writer monad. We pass Nondet to
writer trans as the base monad to combine the logging mechanism and the
backtracking search based on non-deterministic choice. Observe Programs 1, 2
and 3 to see how Alt and Or truncate failed proof attempts while searching for
a proof. The returned module is based on a new type constructor, but it is still
a member of MONAD0PLUS; therefore, we can re-use interp without changing it.

History-Sensitive Tactics using the State Monad Transformer. The flexible run-
time interpretation might lead PSL into a non-terminating loop, such as REPEAT
succeed. To handle such loops, PSL traverses a search space using iterative deep-
ening depth-first search (IDDFS). However, passing around information about
depth as an argument of interp as following quickly impairs its simplicity:

interp (t1 CSeq t2) level n = if level < 1 then return n else ...
interp (t1 COr t2) level n = ...

where level stands for the remaining depth interp can proceed for the current
iteration.

We implemented IDDFS without code clutter, introducing the idea of a
history-sensitive tactic: a tactic that takes the log of proof attempts into account.
Since the writer monad does not allow us to access the log during the search
time, we replaced the writer monad transformer with the state monad trans-
former, with which the runtime keeps the log of proof attempt as the “state”
of proof search and access it during search. By measuring the length of “state”,
interp computes the current depth of proof search at runtime.

The modular design and abstraction discussed above made this replacement
possible with little change to the definition of interp: we only need to change
the clause for Atom, providing a wrapper function, iddfc, for eval, while other
clauses remain intact.

inter (CAtom atom_str) n = iddfc limit eval atom_str n

iddfc limit first reads the length of “state”, which represents the number of
edges to the node from the top of the implicit proof search tree. Then, it behaves
as fail if the length exceeds limit; if not, it executes eval atom str n.2

7 Related Work

ACL2 [9] is a functional programming language and mostly automated first-
order theorem prover. ACL2 is known for the so-called waterfall model, which
is essentially repeated application of various heuristics. Its users can guide proof
search by supplying arguments called “hints”, but the underlining operational
procedure of the waterfall model itself is fixed. ACL2 does not produce efficient
proof scripts after running the waterfall algorithm.

2 In this sense, we implemented IDDFS as a tactic combinator.

542 Y. Nagashima and R. Kumar

PVS [24] provides a collection of commands called “strategies”. Despite
the similarity of the name to PSL, strategies in PVS correspond to tactics in
Isabelle. The highest-level strategy in PVS, grind, can produce re-runnable proof
scripts containing successful proof steps only. However, scripts returned by grind
describe steps of much lower level than human engineers would write manually,
while PSL’s returned scripts are based on tactics engineers use. Furthermore,
grind is known to be useful to complete a proof that does not require induction,
while try hard is good at finding proofs involving mathematical induction.

SEPIA [8] is an automated proof generation tool in Coq. Taking existing
Coq theories as input, SEPIA first produces proof traces, from which it infers
an extended finite state machine. Given a conjecture, SEPIA uses this model
to search for its proof. The authors of SEPIA chose to use breadth-first search
(BFS) to find shorter proofs. For PSL we could emulate the BFS strategy within
the IDDFS framework. However, our experience tells us that the search tree tends
to be very wide and some tactics, such as induct, need to be followed by other
tactics to complete proofs. Therefore, we chose IDDFS for PSL. Both SEPIA and
PSL off-load the construction of proof scripts to search and try to reconstruct
efficient proof scripts. Compared to SEPIA, PSL allows users to specify their own
search strategies to utilize the engineer’s intuition, which enables PSL to return
incomplete proof scripts, as discussed in Sect. 4.

Martin et al. first discussed a monadic interpretation of tactics for their lan-
guage, Angel, in an unpublished draft [12]. We independently developed interp
with the features discussed above, lifting the framework from the tactic level
to the strategy level to traverse larger search spaces. The two interpreters for
different ITPs turned out to be similar to each other, suggesting our approach
is not specific to Isabelle but can be used for other ITPs.

Similar to Ltac [6] in Coq, Eisbach [13] is a framework to write proof methods
in Isabelle. Proof methods are the Isar syntactic layer of tactics. Eisbach does
not generate methods dynamically, trace proof attempts, nor support parallelism
natively. Eisbach is good when engineers already know how to prove their con-
jecture, while try hard is good when they want to find out how to prove it.

IsaPlanner [7] offers a framework for encoding and applying common pat-
terns of reasoning in Isabelle, following the style of proof planning [5]. IsaPlan-
ner addresses the performance issue by a memoization technique, on the other
hand try hard strips off backtracked steps while searching for a proof, which
Isabelle can check later without try hard. While IsaPlanner works on its own
data structure reasoning state, try hard managed to minimize the deviation
from Isabelle’s standard execution model using constructor classes.

8 Conclusions

PSL improves proof automation in higher-order logic, allowing us to exploit both
the engineer’s intuition and various automatic tools. The simplicity of the design
is our intentional choice: we reduced the process of interactive proof development

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 543

to the well-known dynamic tree search problem and added new features (efficient-
proof script generation and IDDFS) by safely abstracting the original execution
model and employing commonly used techniques (monad transformers).

We claim that our approach enjoys significant advantages. Despite the sim-
plicity of the design, our evaluations indicate that PSL reduces the labour cost
of ITP significantly. The conservative extension to the original model lowers the
learning barrier of PSL and makes our proof script generation reliable by min-
imising the deviation. The meta-tool approach makes the generated proof script
independent of PSL, separating the maintenance of proof scripts from that of
PSL; furthermore, by providing a common framework for various tools we sup-
plement one tool’s weakness (e.g. induction for sledgehammer) with other tools’
strength (e.g. the induct tactic), while enhancing their capabilities with runtime
tactic generation. The parallel combinators reduce the labour-intensive process
of interactive theorem proving to embarrassingly parallel problems. The abstrac-
tion to the constructor class and reduction to the tree search problem make our
ideas transferable: other ITPs, such as Lean and Coq, handle inter-tactic back-
tracking, which is best represented in terms of MONAD0PLUS.

Acknowledgements. We thank Jasmin C. Blanchette for his extensive comments
that improved the evaluation of try hard. Pang Luo helped us for the evaluation.
Leonardo de Moura, Daniel Matichuk, Kai Engelhardt, and Gerwin Klein provided
valuable comments on an early draft of this paper. We thank the anonymous reviewers
for useful feedback, both at CADE-26 and for previous versions of this paper at other
conferences. This work was partially funded by the ERC Consolidator grant 649043 -
AI4REASON.

A Appendix: Details of the Evaluation

All evaluations were conducted on a Linux machine with Intel (R) Core (TM)
i7-600 @ 3.40 GHz and 32 GB memory. For both tools, we set the time-out of
proof search to 30 and 300 s for each proof obligation.

Prior to the evaluation, the relevance filter of sledgehammer was trained on
27,041 facts and 18,695 non-trivial Isar proofs from the background libraries
imported by theories under evaluation for both tools. Furthermore, we forbid
sledgehammer inside PSL from using the smt method for proof reconstruction,
since the AFP does not permit this method.

Note that try hard does not use parallel strategy combinators which exploit
parallelism. The evaluation tool does not allow try hard to use multiple threads
either. Therefore, given the same time-out, try hard and sledgehammer enjoy
the same amount of computational resources, assuring the fairness of the evalu-
ation results.

The evaluation tool [16] and results [15] are available at our websites. We
provide the evaluation tool and results in the following websites:

– http://ts.data61.csiro.au/Downloads/cade26 evaluation/
– http://ts.data61.csiro.au/Downloads/cade26 results/

http://ts.data61.csiro.au/Downloads/cade26_evaluation/
http://ts.data61.csiro.au/Downloads/cade26_results/

544 Y. Nagashima and R. Kumar

References

1. Blanchette, J., Fleury, M., Wand, D.: Concrete Semantics with Isabelle/HOL
(2015). http://people.mpi-inf.mpg.de/∼jblanche/cswi/

2. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammer-
ing towards QED. J. Formalized Reasoning 9(1), 101–148 (2016).
http://dx.doi.org/10.6092/issn.1972-5787/4593

3. Böhme, S., Nipkow, T.: Sledgehammer: Judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14203-1 9

4. Breitner, J.: The safety of call arity. Archive of Formal Proofs, February 2015.
http://isa-afp.org/entries/Call Arity.shtml. Formal proof development

5. Bundy, A.: The use of explicit plans to guide inductive proofs. In: Lusk, E., Over-
beek, R. (eds.) CADE 1988. LNCS, vol. 310, pp. 111–120. Springer, Heidelberg
(1988). doi:10.1007/BFb0012826

6. Delahaye, D.: A tactic language for the system Coq. In: Parigot, M., Voronkov, A.
(eds.) LPAR 2000. LNAI, vol. 1955, pp. 85–95. Springer, Heidelberg (2000). doi:10.
1007/3-540-44404-1 7

7. Dixon, L., Fleuriot, J.: IsaPlanner: A prototype proof planner in isabelle. In:
Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 279–283. Springer,
Heidelberg (2003). doi:10.1007/978-3-540-45085-6 22

8. Gransden, T., Walkinshaw, N., Raman, R.: SEPIA: search for proofs using
inferred automata. In: Felty, A.P., Middeldorp, A. (eds.) CADE 2003. LNCS,
vol. 9195, pp. 246–255. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/
978-3-319-21401-6 16

9. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

10. Lammich, P.: Collections framework. Archive of Formal Proofs, November 2009.
http://isa-afp.org/entries/Collections.shtml. Formal proof development

11. Martin, A.P., Gardiner, P.H.B., Woodcock, J.: A tactic calculus-
abridged version. Formal. Asp. Comput. 8(4), 479–489 (1996).
http://dx.doi.org/10.1007/BF01213535

12. Martin, A., Gibbons, J.: A monadic interpretation of tactics (2002)
13. Matichuk, D., Wenzel, M., Murray, T.: An isabelle proof method language. In:

Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol. 8558, pp. 390–405. Springer,
Cham (2014). doi:10.1007/978-3-319-08970-6 25

14. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer, J.: The Lean
theorem prover (system description). In: Felty, A.P., Middeldorp, A. (eds.) CADE
2003. LNCS, vol. 9195, pp. 378–388. Springer, Heidelberg (2015). http://dx.doi.
org/10.1007/978-3-319-21401-6 26

15. Nagashima, Y.: Evaluation Results (2016). http://ts.data61.csiro.au/Downloads/
cade26 results/

16. Nagashima, Y.: Evaluation Tool (2016). http://ts.data61.csiro.au/Downloads/
cade26 evaluation/

17. Nagashima, Y.: Keep failed proof attempts in memory. In: Isabelle Workshop,
Nancy, France, August 2016

18. Nagashima, Y.: PSL (2016). https://github.com/data61/PSL
19. Nagashima, Y., O’Connor, L.: Close encounters of the higher kind - emulating

constructor classes in standard ML, September 2016

http://people.mpi-inf.mpg.de/~jblanche/cswi/
http://dx.doi.org/10.6092/issn.1972-5787/4593
http://dx.doi.org/10.1007/978-3-642-14203-1_9
http://isa-afp.org/entries/Call_Arity.shtml
http://dx.doi.org/10.1007/BFb0012826
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1007/3-540-44404-1_7
http://dx.doi.org/10.1007/978-3-540-45085-6_22
http://dx.doi.org/10.1007/978-3-319-21401-6_16
http://dx.doi.org/10.1007/978-3-319-21401-6_16
http://isa-afp.org/entries/Collections.shtml
http://dx.doi.org/10.1007/BF01213535
http://dx.doi.org/10.1007/978-3-319-08970-6_25
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://dx.doi.org/10.1007/978-3-319-21401-6_26
http://ts.data61.csiro.au/Downloads/cade26_results/
http://ts.data61.csiro.au/Downloads/cade26_results/
http://ts.data61.csiro.au/Downloads/cade26_evaluation/
http://ts.data61.csiro.au/Downloads/cade26_evaluation/
https://github.com/data61/PSL

A Proof Strategy Language and Proof Script Generation for Isabelle/HOL 545

20. Nipkow, T.: List index. Archive of Formal Proofs, February 2010. http://isa-afp.
org/entries/List-Index.shtml. Formal proof development

21. Nipkow, T.: Skew heap. Archive of Formal Proofs, August 2014. http://isa-afp.
org/entries/Skew Heap.shtml. Formal proof development

22. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic. LNCS, vol. 2283. Springer, Heidelberg (2002).
http://dx.doi.org/10.1007/3-540-45949-9

23. Nishihara, T., Minamide, Y.: Depth first search. Archive of Formal Proofs,
June 2004. http://isa-afp.org/entries/Depth-First-Search.shtml. Formal proof
development

24. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:
Kapur, D. (ed.) CADE 1992. LNCS, vol. 607, pp. 748–752. Springer, Heidelberg
(1992). doi:10.1007/3-540-55602-8 217

25. Paulson, L.C.: The foundation of a generic theorem prover. CoRR cs.LO/9301105
(1993). http://arxiv.org/abs/cs.LO/9301105

26. Sickert, S.: Linear temporal logic. Archive of Formal Proofs, March 2016. http://
isa-afp.org/entries/LTL.shtml. Formal proof development

27. Sternagel, C.: Efficient mergesort. Archive of Formal Proofs, November 2011.
http://isa-afp.org/entries/Efficient-Mergesort.shtml. Formal proof development

28. The Coq development team: The Coq proof assistant reference manual (2009)
29. Traytel, D.: A codatatype of formal languages. Archive of Formal Proofs,

November 2013. http://isa-afp.org/entries/Coinductive Languages.shtml. Formal
proof development

30. Wadler, P.: How to replace failure by a list of successes a method for excep-
tion handling, backtracking, and pattern matching in lazy functional languages.
In: Jouannaud, J.-P. (ed.) FPCA 1985. LNCS, vol. 201, pp. 113–128. Springer,
Heidelberg (1985). doi:10.1007/3-540-15975-4 33

http://isa-afp.org/entries/List-Index.shtml
http://isa-afp.org/entries/List-Index.shtml
http://isa-afp.org/entries/Skew_Heap.shtml
http://isa-afp.org/entries/Skew_Heap.shtml
http://dx.doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/Depth-First-Search.shtml
http://dx.doi.org/10.1007/3-540-55602-8_217
http://arxiv.org/abs/cs.LO/9301105
http://isa-afp.org/entries/LTL.shtml
http://isa-afp.org/entries/LTL.shtml
http://isa-afp.org/entries/Efficient-Mergesort.shtml
http://isa-afp.org/entries/Coinductive_Languages.shtml
http://dx.doi.org/10.1007/3-540-15975-4_33

The Binomial Pricing Model in Finance:
A Formalization in Isabelle

Mnacho Echenim(B) and Nicolas Peltier

Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
{Mnacho.Echenim,Nicolas.Peltier}@univ-grenoble-alpes.fr

Abstract. The binomial pricing model is an option valuation method
based on a discrete-time model of the evolution of an equity market.
It allows one to determine the fair price of derivatives from the payoff
they generate at their expiration date. A formalization of this model in
the proof assistant Isabelle is provided. We formalize essential notions
in finance such as the no-arbitrage principle and prove that, under the
hypotheses of the model, the market is complete, meaning that any Euro-
pean derivative can be replicated by creating a portfolio that generates
the same payoff regardless of the evolution of the market.

1 Introduction

There are several kinds of actors who trade on financial markets. The best-known
actors are probably the speculators, who place bets on the markets by investing
in assets with the hope of making a profit at a future time, and of course, risking
to lose money if the price movements are not those they expected. Another
category of actors consists of hedgers. Hedgers trade on financial markets in
order to limit their exposure to price movements. They do not make any bets,
but try to guarantee an outcome regardless of the market evolution.

All of these actors trade on different products, including risk-free assets such
as sovereign bonds, stocks and derivative securities. Derivative securities are
products whose values depend on that of underlying assets. Examples of deriv-
ative securities include contracts such as forwards on the equity market and
interest rate swaps on the fixed income market; or options such as calls on the
equity market and swaptions on the fixed income market. We provide an example
illustrating the differences between some of these derivatives.

Consider a contractor who has just won a contract for a large construction
due the following year. The price for the construction was determined in part
by the price of cement, which was, at the time the proposal was written, 100e
per metric ton. The constructor will not want to buy the required quantity of
cement right away, as this would incur storage costs and there is a risk of the
contract being broken. But then, how can the unknown future price of cement
be taken into account? The contractor is faced with three possibilities:

c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 546–562, 2017.
DOI: 10.1007/978-3-319-63046-5 33

The Binomial Pricing Model in Finance: A Formalization in Isabelle 547

– Waiting for the entire year to pass and buying cement on the market at the
new spot price. This is a speculative move: if this price is less than 100e, then
the contractor will have made a profit; however, if the price is above 100e,
then the unplanned extra cost can cause bankruptcy.

– Entering a forward contract with another financial actor, promising to buy
the necessary quantity of cement at 100e per metric ton in a year. If the
metric ton of cement costs 120e the following year, then the counterpart will
pay the contractor 20e per metric ton, thus in effect permitting the purchase
of cement at the agreed upon price. If the metric ton costs 80e however,
then the contractor will have to pay 20e per metric ton to the counterpart.
Although the exposure to the cement price was hedged, the outcome may seem
disappointing.

– Buying a call option from another financial actor, giving the contractor the
right, but not the obligation to buy cement at 100e per metric ton in a year. If
the metric ton of cement costs 120e the following year, then the counterpart
will pay the contractor 20e per metric ton, and if the metric ton costs 80e,
then the option is considered to be void and the contractor will buy cement
on the market at the spot price.

In general, the third solution is more appealing, and a natural question is:
what is the minimal amount of money the seller should ask for to guarantee being
able to pay what is needed one year later, regardless of the price movement of
cement?

The contracts mentioned above for commodities also exist on the equity mar-
ket, where the underlying product is a stock instead of cement. The call option
is a particular kind of European option; these are options that can only be exer-
cised at a precise agreed-upon date, the maturity. Such contracts are frequently
traded by hedgers to reduce their risk exposure. One of the goals of mathe-
matical finance is to answer the question: what is the fair price of a derivative
security? In other words, how much should the derivative be sold to guarantee
that neither the buyer nor the seller will have the opportunity to make a risk-free
profit? Such risk-free profits are called arbitrages, and a standard assumption for
reasoning in financial markets is that there is no arbitrage opportunity. A no-
arbitrage argument shows that if it is possible to construct a replicating portfolio
for a derivative, i.e., a portfolio whose value at maturity is exactly equal to the
amount of money promised by the derivative (regardless of the market evolu-
tion), then the fair price of the derivative is the initial value of this replicating
portfolio. The topic of this paper is the construction of replicating portfolios in
a particular mathematical model of financial markets.

Mathematical finance is a domain that expanded extremely quickly after the
proof by Black, Scholes and Merton in their seminal papers [1,9] that it is possible
to construct replicating portfolios for European options, under some assumptions
on the evolution of the underlying assets. This domain is based on stochastic
calculus and relies on deep theorems, but the resulting programs (commonly
named pricers) which are used to, e.g., price derivatives have a relatively simple
algorithmic structure, although numerical errors can be hard to detect. Another

548 M. Echenim and N. Peltier

model for option valuation, using discrete time and called the binomial model or
CRR model, was proposed by Cox, Ross and Rubinstein [3]. This approach can be
viewed as a discrete version of the Black-Scholes model and in fact, as the length
of the time steps decreases, the prices computed in this model converge on those
computed in the Black-Scholes formula. The CRR model has the advantage of
being easier to understand and much simpler from a mathematical point of view.
As such, it is often used as an introductory example of financial mathematics
at the late undergraduate or early graduate level (see, e.g., [11]). Its refinements
are still used in financial institutions for pricing particular kinds of options, such
as American options, which can be exercised by the owner at any time until
the option maturity, or Bermudan options, which can be exercised at a set of
predefined times until maturity.

In both the Black-Scholes and CRR models, the following additional assump-
tions are made:

– There are only two securities that can be traded: a risk-free asset and a stock.
The risk-free asset grows at a constant rate, and can be viewed as a money
market account where any amount of cash can be borrowed or lent at the same
constant rate. Similarly, any fractional amount of the stock can be bought or
sold (including short selling1) for the same price.

– The market allows instantaneous trading with no transaction fees.
– There is no risk-free way to make a profit on the market without investing any

money. This no-arbitrage principle is an important condition in all financial
models. In particular, this principle implies the law of one price, which states
that two assets must have the same price today if they deliver the same cash-
flow at the same time in the future regardless of the evolution of the market.
For example, there cannot be two risk-free assets with distinct rates, because
it would otherwise be possible to earn money without any risk by borrowing
cash at the lower rate and lending it at the higher rate.

Under these assumptions, the authors prove that the market is complete, i.e.,
that every derivative admits a replicating portfolio. In this paper, we describe
a formalization of the binomial model and of the construction of replicating
portfolios for European derivatives. We also formalize financial notions such
as the no-arbitrage principle which are sometimes left informal in textbooks,
thus paving the way for the formal treatment of more elaborate models. All
proofs are constructive, hence, from a practical point of view, our work can
be used to construct certified pricers for arbitrary European derivatives in the
binomial model. Certified pricers would be of interest to financial actors who
could then benchmark their more efficient implementations against the former.
All of our formalization is carried out in Isabelle (see https://isabelle.in.tum.de/
or [10]). This is a well-known and widely used proof assistant for higher order
logic. It features both procedural and declarative languages for writing proofs,
various automated proof procedures and a tool to invoke external provers and

1 A short sale consists in borrowing an asset from actor A to sell it to actor B, and
then buying the asset at a later point in time to return it to actor A.

https://isabelle.in.tum.de/

The Binomial Pricing Model in Finance: A Formalization in Isabelle 549

automatically infer proof scripts. Our formalization uses the declarative language
Isar [12] which allows to write human-readable structured proofs.

The rest of the paper is structured as follows. In Sect. 2, basic notions in
finance are introduced along with elements of probability theory which have
already been formalized in Isabelle. The enrichments to the formalization of
probability theory in Isabelle which are necessary to define the CRR model are
described in Sect. 3, and equity markets are formalized in Sect. 4. The formaliza-
tion of the CRR model and the proof that the corresponding market is complete
is the topic of Sect. 5. All the theory files in Isabelle can be downloaded at http://
crr-isabelle.forge.imag.fr.

2 Preliminary Notions

2.1 Some Notions in Finance

We begin by briefly reviewing some basic standard definitions about equity mar-
kets. This treatment is mainly based on Shreve [11], Vol. 1. An equity market
contains a set of assets or securities that can be traded. An actor trading on a
market has a portfolio, which contains different quantities of the traded assets.
These quantities are real numbers that can be positive if the corresponding asset
was bought, or negative if the asset was the object of a short sale. A portfolio
can be static if its composition is fixed once and for all, and dynamic if its com-
position can evolve over time. Among dynamic portfolios, those of a particular
interest are the trading strategies; these are the dynamic portfolios for which the
composition at time t is a random variable that only depends on the available
information up to time t. A portfolio in which all future trades are financed by
buying or selling assets in the portfolio is a self-financing portfolio. An arbitrage
represents a “free lunch”: it is defined as a self-financing trading strategy with a
0 initial investment that offers a riskless possibility of making a profit. A market
is viable if it offers no arbitrage opportunities.

Some of the securities that can be traded are basic securities, such as bonds,
which are generally assumed to be risk-free assets, or stocks, which are risky
assets. Others are derivative securities, whose payoffs (the amount of cash that
should be exchanged at exercise time) depend on the evolution and values of
basic securities. On the equity market, these derivative securities often have an
expiry date, or maturity, after which they are no longer valid. An option, for
instance, is a derivative that can be viewed as an insurance: when it is exercised,
it gives the beholder the right—but not the obligation—to trade an instrument
at a given price. In this paper we will focus on European options, which can
only be exercised at the maturity, see, e.g., [8]. The best-known options are
the call and the put options. A call (resp. put) option gives its beholder the
right, at time T , to buy (resp. sell) the underlying security at the strike price
K, thus guaranteeing that there is a cap (resp. floor) on the price that will be
payed at a future time for the security. In practice, when at time T the price
of the underlying security, denoted by ST , is greater than the strike price K,
the buyer of a call receives ST − K from the seller of the option, and buys

http://crr-isabelle.forge.imag.fr
http://crr-isabelle.forge.imag.fr

550 M. Echenim and N. Peltier

the instrument on the market for ST , in effect only spending K to obtain the
instrument. When ST < K, the seller of the call does not deliver any cash, as
the buyer will directly buy the instrument on the market for a value that is less
than K. Thus, a call option is a derivative that, at maturity T , delivers a payoff
of (ST − K)+ def= max(0, ST − K). In a similar way, a put option delivers at
time T a payoff of (K −ST)+. Options depart from forwards, for which both the
buyer and seller are bound to perform the transaction at maturity; the payoff of
these contracts is of the form ST − K or K − ST .

Once a derivative is sold, the seller is meant to invest the cash by creating a
trading strategy, in order to be able to pay the required amount of money when
the derivative is exercised. A natural question is the following: how much should
a buyer be expected to pay for a given derivative? Ideally, this price should not
be so low that the buyer could make a riskless profit, and it should not be so
high that the seller could make a riskless profit. The answer to this question is
straightforward when the seller is capable of creating a trading strategy whose
value at exercise time is exactly the payoff of the derivative, i.e., of creating a
replicating portfolio. In this case, the fair price for the strategy is the initial
value of the trading strategy. A market is complete if every derivative admits a
replicating portfolio.

In some cases, replicating portfolios are simple to construct. Consider for
example a forward contract for buying a given asset S at a price K at time T .
This contract can be replicated by the seller, using a trading strategy with initial
value S0 − K

(1+r)T
, where S0 is the current price of the asset and r is the risk-free

rate. The seller borrows K
(1+r)T

to buy the asset, and holds on to it until maturity.
At time T , the seller has the asset and owes K

(1+r)T
(1+r)T = K to the bank. The

asset is sold to the buyer for price K, which is used to reimburse the cash that
is owed. The fair price for this contract is therefore S0 − K

(1+r)T
, and any other

price would lead to an arbitrage opportunity. For example, if the contract had
been sold at a price F > S0 − K

(1+r)T
, then the seller would only have to borrow

S0 − F at time 0, and would make a riskless profit of K − (S0 − F)(1 + r)T > 0
at time T .

The construction of replicating portfolios is not as straightforward for more
complex derivatives, and it may not be clear whether such portfolios actually
exist. An answer to the existence of replicating portfolios for European options
was given by Fischer Black and Myron Scholes, and by Robert Merton in [1,9],
in the so-called Black-Scholes-Merton model. They consider a risky asset, the
stock, that pays no dividends and whose evolution is described by a geometric
Brownian motion (see, e.g., [8]), and showed that, under some simple market
hypotheses such as identical bidding and asking prices for the stock and the
absence of arbitrage opportunities, a European option over a single stock can be
replicated with a portfolio consisting of the stock and a cash account.

The Cox-Ross-Rubinstein model [3] that we consider in the present paper can
be viewed as an approximation of the Black-Scholes-Merton model to the case
where time is no longer continuous but discrete; i.e., to the case where securities

The Binomial Pricing Model in Finance: A Formalization in Isabelle 551

are only traded at discrete times 1, 2, . . . , n, . . . In this setting, the evolution of
the stock price is described by a geometric random walk, which can be viewed
as a discrete version of the geometric Brownian motion: if the stock has a price
s at time n, then at time n + 1, this price is either u.s (upward movement)
or d.s (downward movement). The probability of the price going up is always
0 < p < 1, and the probability of it going down is 1 − p. The authors show
that under these conditions, the market is complete: every derivative admits a
replicating portfolio.

2.2 Probability Theory in Isabelle: Existing Notions

A large part of the formalization of measure and probability theory in Isabelle
was carried out by Hölzl [5] and is now included in Isabelle’s distribution. We
briefly recap some of the notions that will be used throughout the paper and
the way they are formalized in Isabelle. We assume the reader has knowledge
of fundamental concepts of measure and probability theory; any missing notions
can be found in Durrett [4] for example. For the sake of readability, in what
follows, a term F t will sometimes be written Ft.

Probability spaces are particular measure spaces. A measure space over a set
Ω consists of a function μ that associates a nonnegative number or +∞ to some
subsets of Ω. The subsets of Ω that can be measured are closed under comple-
ment and countable unions and make up a σ-algebra. The σ-algebra generated
by a set C ⊆ 2Ω is the smallest σ-algebra containing C; it is denoted by σ(C).

The functions μ that measure the elements of a σ-algebra are positive and
countably additive: if A ⊆ 2Ω is a σ-algebra and ∀i ∈ N, Ai ∈ A, then
μ(

⋃
i∈N

Ai) =
∑

i∈N
μ(Ai). In Isabelle, measure spaces are defined as follows

(where R denotes R ∪ {−∞,+∞} and B = {⊥,�}):

measure-space ::α set → α set set → (
α set → R

) → B

measure-space Ω A μ ⇔
σ-algebra Ω A ∧ positive A μ ∧ countably-additive A μ

A measure type is defined by fixing the measure of non-measurable sets to 0:

typedef α measure = {(Ω,A, μ) | (∀A /∈ A. μA = 0) ∧ measure-space Ω A μ}
If M is an element of type α measure, then the corresponding space, σ-algebra
and measure are respectively denoted by ΩM, AM and μM.

A function between two measurable spaces is measurable if the preimage of
every measurable set is measurable. In Isabelle, sets of measurable functions are
defined as follow:

measurable :: α measure → β measure → (α → β) set
measurable M N μ =

{
f : ΩM → ΩN | ∀A ∈ AN . f−1(A) ∩ ΩM ∈ AM

}

Probability measures are measure spaces on which the measure of Ω is finite
and equal to 1. In Isabelle, they are defined by a locale; this allows one to delimit
a range in which the existence of a measure satisfying the desired assumptions

552 M. Echenim and N. Peltier

is assumed, instead of having to explicitly add the corresponding hypotheses in
every theorem, which would be tedious.

locale prob-space = finite-measure + assumes μM(ΩM) = 1

A random variable on a probability space M is a measurable function with
domain ΩM. In what follows, we will consider properties that hold almost surely
(or almost everywhere), i.e., are such that the elements for which they do not
hold reside within a set of measure 0:
lemma AE-iff :
(AEM x. P x) ⇔ (∃N ∈ AM. μM(N) = 0 ∧ {x | ¬P x} ⊆ N).

3 Enriching the Probability Theory

In our context, asset prices and trading strategy values will be defined by
sequences of random variables. These sequences cannot be arbitrary. For exam-
ple, considering an asset price that depends on what happens at a future time is
clearly irrelevant: this price should only depend on events that happened in the
past. We introduce the additional notions from probability that we formalized
to take these restrictions into account.

3.1 Modeling the Passage of Time

We defined several notions related to the passage of time. The first is the notion
of a filtration, which is used to model the increasing amount of information that
is available as time goes by. In general, a filtration is defined as an increasing
collection of σ-algebras, and each element of the filtration is implicitly associ-
ated with a measure that is simply the restriction of the general measure to the
considered algebra. In a formal setting it is more convenient to make this asso-
ciation explicit, thus we define a filtration as an increasing collection of measure
spaces.

restr-measure :: α measure → α measure → B

restr-measure M N ⇔ (ΩM = ΩN) ∧ (AN ⊆ AM)∧
(∀A ∈ AN . μN (A) = μM(A))

We will in particular make use of the restricted measure spaces gen-
erated by functions f : ΩM → ΩN . These are measure spaces of the
form Mf

def= (ΩM,B, μM), where B is the σ-algebra generated by the set{
f−1(A) ∩ ΩM | A ∈ AN

}
. When f is a measurable function, this is indeed a

restricted measure space, and it is the smallest restricted measure space that
makes f measurable relatively to M.

lemma fct-gen-restr-is-restr-measure :
(f ∈ measurable M N) =⇒ restr-measure M Mf

lemma fct-gen-restr-measure-min :
(restr-measure M Q) =⇒ (f ∈ measurable Q N)

=⇒ restr-measure Q Mf

The Binomial Pricing Model in Finance: A Formalization in Isabelle 553

Restricted measures are used to define filtrations. Filtrations are meant
to represent the accumulated information, and although the CRR model is
restricted to a discrete setting, they are defined in a more general setting as
a collection of increasing restricted measures over a totally ordered set. We also
define a locale for probability spaces equipped with a filtration.

filtration :: ((ι :: linorder) → α measure) → B

filtration F ⇔ (∀t. restr-measure M Ft) ∧
(∀s t. s ≤ t ⇒ restr-measure Ft Fs)

locale filtrated-prob-space = prob-space +
fixes F assumes filtration F
In order to model quantities that evolve randomly with the passage of time,

such as the price of a stock, we introduce stochastic processes, which are collec-
tions of random variables.

stoch-procs :: α measure → β measure → (ι → (α → β)) set
stoch-procs M N = {X | ∀t. Xt ∈ measurable M N}

A particular class of stochastic processes of interest are those whose value
at a given time depends only on the information contained in the corresponding
filtration. Intuitively, this simply means that these processes cannot predict the
future. These are adapted stochastic processes:

adapt-stoch-proc :: (ι → (α → β)) → β measure → B

adapt-stoch-proc X N ⇔ ∀t. Xt ∈ measurable Ft N
When modeling equity markets, we will mainly be considering stochastic

processes with real values. The natural σ-algebra on R is the Borel σ-algebra,
which is the σ-algebra generated by the open sets of Ω = R.

abbreviation borel-adapt-stoch-proc X ≡ adapt-stoch-proc X borel

3.2 The Infinite Coin Toss Space

As mentioned in the Introduction, in the CRR model, at every time n, the risky
asset can only move upward or downward with respective probabilities p and
1 − p. This means that the evolution of the risky asset price can be modeled by
tossing at each time n a coin that lands on its head with a probability p, and
having the price move upward at time n + 1 exactly when the coin lands on its
head. The evolution of this price is thus controlled by sequences of coin tosses.
In most introductory textbooks on the CRR model, these sequences are finite
as the results are presented for a given derivative with a finite maturity. We
choose to consider infinite sequences—or streams—of coin tosses for the sake of
generality. Since at time n no event other than the outcome of the coin toss is
required, this outcome can be represented by a Bernoulli distribution of para-
meter p. In Isabelle, because discrete probability distributions and probability
mass functions are isomorphic, the type of probability mass functions are defined
as a subtype of measures [7], along with an injective representation function

554 M. Echenim and N. Peltier

measure-pmf ::α pmf → α measure. The Bernoulli distribution is thus defined
as measure-pmf (bernoulli-pmf p). The measure space for infinite sequences of
independent coin tosses is isomorphic to the infinite product of Bernoulli distrib-
utions with the same parameter. In Isabelle, this measure space is defined using
the function stream-space ::α measure → (α stream) measure. The measure
space thus defined is the smallest one in which the functionnth ::α stream →
N → α such that (nth s n) is the nth element of stream s is measurable [6]. The
measure spaces we consider are defined as follows:

bernoulli-stream :: R → (B stream) measure
bernoulli-stream p = stream-space (measure-pmf (bernoulli-pmf p))

We define a locale in which we impose that 0 < p < 1, and thus obtain a
probability space:

locale infinite-coin-toss-space =
fixes p and M
assumes 0 < p < 1 and M = bernoulli-stream p

The natural information that should be available at time n is the outcome of
the first n coin tosses, and we define a filtration Fnat accordingly: intuitively, in
this filtration, two streams of coin tosses with the same first n outcomes cannot
occur in distinct sets that are measurable in Fnat. In our setting, each restricted
measure space Fnat

n can be defined as generated by an arbitrary measurable
function which maps all streams that agree on the first n coin tosses to the
same element. We thus considered the sequence of so-called pseudo-projection
functions (π�

n)n∈N, where:

π�
n : ΩM → ΩM

(w1, · · · , wn, wn+1, · · ·) �→ (w1, · · · , wn,�,�, · · ·)
These functions are measurable and permit to define a sequence of restricted
measure spaces which is indeed a filtration:

Fnat :: N → (B stream) measure
Fnat n = M(π� n)

We can thus define a locale for the infinite coin toss space along with this filtra-
tion:

locale infinite-cts-filtration = infinite-coin-toss-space +
fixes F assumes F = Fnat

4 Modeling Equity Markets in Discrete Time

4.1 General Definitions

An equity market is characterized by the set of assets that can be traded. The
locale for discrete equity markets is based on a discrete filtration and requires
that the prices of the tradeable assets must be known at all times.

The Binomial Pricing Model in Finance: A Formalization in Isabelle 555

locale nat-filtrated-prob-space = prob-space +
fixes F ::N → (α measure)
assumes filtration F

locale disc-equity-market = nat-filtrated-prob-space +
fixes market-assets :: (N → α → R) set
assumes ∀X ∈ market-assets. borel-adapt-stoch-proc X

The two main notions that need to be modeled in an equity market are
derivatives and portfolios. A (European) derivative with maturity T > 0 is a
product defined by its payoff, i.e., by the amount of cash that its owner receives
at time T . The payoff depends only on the information available at time T , hence
must be Borel-measurable w.r.t. FT . The set of derivatives with maturity T is
thus defined as follows:

deriv-at :: N → (α → R) set
deriv-at T = {f | f ∈ borel-measurable FT }
A portfolio over n assets consists of two functions of domain {1, . . . , n}, the
composition function and the quantities function, which respectively map each
i ∈ {1, . . . , n} to the price of the ith asset in the portfolio, and to the quantity of
the asset that is withheld. Because a portfolio can be dynamic, both functions are
time-dependent, and at any given time, they can be viewed as random variables.

func-seq :: (N → α → R) set
func-seq = UNIV

disc-portfolio :: N → (N → N → α → R) →
(N → N → α → R) → B

disc-portfolio n p q ⇔
(p ∈ {1..n} → func-seq) ∧ (q ∈ {1..n} → func-seq)

We define a discrete portfolio type:

typedef α disc-pf = {(n, p, q) | disc-portfolio n p q},
to which are associated three functions asset-nb, price and qty, that respec-
tively permit to obtain the number of assets in the portfolio, their prices and
quantities in the portfolio. Associated to a portfolio is its value, which, at time
n, is obtained by multiplying each asset price by the withheld quantity:

val-process :: α disc-pf → N → α → R

val-process p n ω =
∑asset-nb p

i=1 (price p i n ω) × (qty p i n ω)

The definition of a portfolio given above is very general and, in practice,
not of much use. It is at least necessary to consider portfolios that only contain
tradeable assets (that are available on the market), to have a constant initial
investment that does not depend on any random event, and to know at all times
what quantities were traded for each asset. Portfolios satisfying this condition
are trading strategies:

556 M. Echenim and N. Peltier

trading-strat :: α disc-pf → B

trading-strat p ⇔
(∃c. ∀ω ∈ ΩM. val-process p 0 ω = c) ∧
(∀i ∈ {1..(asset-nb p)} . ((price p) i) ∈ market-assets) ∧
(∀i ∈ {1..(asset-nb p)} . borel-adapt-stoch-proc ((qty p) i)

Self-financing portfolios are portfolios for which no cash is added or retrieved
at any time other than 0, although the composition of the portfolio may change.
In order to formalize this notion, we define the updated value of a portfolio, which
reflects the evolution of the portfolio’s value when the prices of the assets have
changed but the quantities of each asset have not been updated. The updated
value of a portfolio at time 0 is arbitrarily set to 0.

upd-val-process ::α disc-pf → N → α → R

upd-val-process p 0 ω = 0
upd-val-process p n + 1 ω =

∑asset-nb p

i=1
(price p i (n + 1) ω) × (qty p i n ω)

A portfolio is self-financing if its value at time n+1 is identical to its updated
value at n + 1; this means that the value of the portfolio may be affected by the
evolution of the market but not by the changes in its composition.

self-financing ::α disc-pf → B

self-financing p ⇔
∀n ∈ N. val-process p (n + 1) = upd-val-process p (n + 1)

A replicating portfolio for a derivative is a self-financing trading strategy
which, at maturity, almost surely has a value exactly equal to the cash-flow
of the considered derivative. If such a portfolio exists, then the derivative is
attainable, and if every derivative available on a market is attainable, then the
market is complete:

replic-pf ::α disc-pf → (α → R) → N → B

replic-pf p V T ⇔ (trading-strat p) ∧
(self-financing p) ∧ (AEM ω. (val-process p) T ω = V w)

attainable :: (α → R) → N → B

attainable V T ⇔ (∃p. replic-pf p V T)

complete-market :: B

complete-market ⇔ (∀T ∈ N. ∀V ∈ (deriv-at T). attainable V T)

4.2 Arbitrage Processes and Viable Markets

We define the notion of arbitrage processes. Intuitively, an arbitrage is a trading
strategy that offers the possibility of a riskless profit, e.g., by exploiting differ-
ences of prices between assets generating identical cash-flows. More formally, the

The Binomial Pricing Model in Finance: A Formalization in Isabelle 557

investment and the probability of a loss should be null, and the probability of a
gain should be strictly positive. Although such arbitrage opportunities do exist
in real financial markets, they are quickly exploited and disappear. Most pricing
results in financial mathematics are based on a no-arbitrage assumption.

arbitrage-process ::α disc-pf → B

arbitrage-process p ⇔
(∃m ∈ N.

(trading-strat p) ∧ (self-financing p) ∧
(AEM ω. (val-process p) 0 ω = 0) ∧
(AEM ω. (val-process p) m ω ≥ 0) ∧
(P({ω ∈ ΩM | (val-process p) m ω > 0}) > 0)

We may then define a locale for viable markets, i.e., for markets in which
there is no arbitrage process:

locale viable-market = filtrated-prob-space +
assumes ∀p. ¬(arbitrage-process p)

Models of equity markets generally assume the existence of an asset whose
value is a deterministic process. It is thus a risk-free asset and acts as a money
market account, into which cash can be deposited or from which cash can be
borrowed at a same interest rate. In both the Black-Scholes-Merton and CRR
models, the evolution of the price process of this asset is described by a constant
risk-free rate.

disc-rfr-proc :: R → N → α → R

(disc-rfr-proc r) 0 ω = 1
(disc-rfr-proc r) (n + 1) ω = (1 + r) × ((disc-rfr-proc r) n ω)

In other words, a quantity of cash S invested in the risk-free asset at time n
amounts to obtaining S.(1+r)k at time n+k. We define a locale for a probability
space in which there is a price process corresponding to a risk-free asset, with the
additional assumption that the risk-free rate for this process is strictly greater
than −1:

locale prob-space-risk-free = prob-space +
fixes r and riskless-asset
assumes (−1 < r) ∧ (riskless-asset = disc-rfr-proc r)

We define an operation in this locale to construct self-financing portfolios: it
suffices to specify the quantity processes for the other assets in the portfolio,
and a self-financing portfolio is constructed by investing the required quantity
of cash in the risk-free asset. The function, named self-finance, takes two
arguments, a number representing the initial value of the self-financing portfolio,
and a portfolio that is potentially not self-financing.

558 M. Echenim and N. Peltier

lemma self-finance-initial-value :
(∀ω. val-process (self-finance v p) 0 ω) = v

lemma self-finance-is-self-financing :
(self-financing (self-finance v p))

By combining locales, we define a locale for a viable market in which there
is a risk-free asset:
locale viable-market-risk-free =

viable-market + prob-space-risk-free

5 The CRR Model

All the notions defined above are used to formalize the CRR model. It consists
of a viable market in which there is one risk-free asset and one risky asset, the
price of which evolves according to a sequence of coin tosses. More precisely, the
price of the risky asset is modeled by a geometric random walk with parameters
specifying the upward and downward movements as well as the price of the asset
at time 0:
geom-rand-walk :: R → R → R →

(N → (B stream) → R)
(geom-rand-walk u d v) 0 ω = v
(geom-rand-walk u d v) (n + 1) ω = (if ωn then u else d) ×

((geom-rand-walk u d v) n ω)

The geometric random walk process is an adapted process, in the infinite
coin toss space equipped with its natural filtration, since its value at time n
depends only on the outcome of the first n coin tosses:

lemma geom-rand-walk-borel-adapted :
borel-adapt-stoch-proc (geom-rand-walk u d v)

The locale for the market in the CRR model is defined as follows:
locale CRR-market = infinite-coin-toss-space+

viable-market-risk-free +
fixes S and u and d and v0
assumes 0 < d and d < u and 0 < v0 and

S = geom-rand-walk u d v0 and S ∈ market-assets

A no-arbitrage reasoning provides an additional relationship between the risk-
free rate and the upward and downward movements: we must have d < 1 + r
and 1 + r < u. For example, if 1 + r ≤ d, then a risk-free profit can be made by
borrowing enough money, say, v, at time 0 to buy the risky asset. At time 1, the
amount v . (1+r) is reimbursed and the risky asset is worth either d . v ≥ v . (1+r)
or u . v > v . (1 + r), thus it is impossible to lose any money and there is a
probability p to win (u − 1 − r) . v.

We now informally describe how to construct a replicating portfolio for any
derivative V of maturity T , and refer to [11] Vol. 1 for details. The construc-
tion is given by specifying the quantity that is invested in the risky asset and

The Binomial Pricing Model in Finance: A Formalization in Isabelle 559

considering the corresponding self-financing portfolio, obtained by invoking the
self-finance function with an initial value to be specified.

At a time n, the outcomes of the first n coin tosses are known, and we let l
def=

[ω1, . . . , ωn] represent these outcomes. If we denote by �ω�n the sequence made of
the first n elements of ω, then the space of possible observable sequences at time
n is {ω ∈ ΩM | �ω�n = l}. If X is a random variable that is Fn-measurable, then
by definition, X(ω) only depends on the value of �ω�n, and we may denote by X l

the value of X(w) when �ω�n = l. Similarly, if Y is an Fn+1-measurable random
variable, then we denote by Y l,� (resp. Y l,⊥) the value of Y (ω), when �ω�n = l
and ωn+1 = � (resp. ωn+1 = ⊥). Note that, in particular, since the risky asset is
modeled by a geometric random walk, we have Sl,�

n+1 = u.Sl
n and Sl,⊥

n+1 = d . Sl
n.

Finally, when Y is an Fn+1-measurable random variable, we denote by Y l the
random variable that depends only on ωn+1, and can take as values either Y l,�

or Y l,⊥.
We now show that if Vn+1 is a derivative2 of maturity n+1, then it is possible

to construct at time n a replicating portfolio for Vn+1. We define the numbers

p̃
def= 1+r−d

u−d and q̃
def= u−1−r

u−d .

Their sum is equal to 1, which means that they can be interpreted as comple-
mentary probabilities, from which a corresponding Bernoulli space, of parameter
p̃, can be constructed. We denote by Ẽ the expectation under this probability
space. This probability space is called the risk-neutral probability space. The rea-
son for this is that, in a standard financial market, the expected rate of growth of
a risky asset should be strictly greater than the risk-free rate, since investors in
the risky asset require a compensation for assuming this risk. In the risk-neutral
probability space, the expected rate of growth of the risky asset is

Ẽ[Sl
n+1]

def= p̃ . Sl,�
n+1 + q̃ . Sl,⊥

n+1 = p̃ . u . Sl
n + q̃ . d . Sl

n = (1 + r) . Sl
n.

In other words, under the risk-neutral probability, the expected rate of growth of
the risky asset is equal to the risk-free rate, meaning that investors are neutral
to the fact that investing in the risky asset incurs a risk of losing money. Let V l

n

and Δl
n be defined as follows:

V l
n

def= Ẽ[V l
n+1]

1+r =
p̃ . V l,�

n+1+q̃ . V l,⊥
n+1

1+r , and Δl
n

def=
V l,�
n+1−V l,⊥

n+1

Sl,�
n+1−Sl,⊥

n+1
.

These are both real numbers; V l
n is the discounted risk-neutral expectation of

V l
n, and Δl

n can be viewed as a discrete version of the first-order derivative of
V l

n+1 w.r.t. Sl
n+1.

We claim that the self-financing portfolio starting at time t = n with initial
value V l

n that at time n invests Δl
n in the risky asset is a replicating portfolio

for V l
n+1. The amount of cash invested in the risk-free asset is V l

n − Δl
n . Sl

n, and
since the value of the risk-free asset at time n is (1 + r)n, the portfolio contains
2 The subscript in Vn+1 is unnecessary, since by definition, derivatives of maturity
n+1 are Fn+1-measurable random variables. It was added to make it easier to keep
track of measurability properties of the objects that will be defined.

560 M. Echenim and N. Peltier

a quantity V l
n−Δl

n.Sl
n

(1+r)n of the risk-free asset. Hence, if X l represents the value
process of this portfolio, then at time n + 1, when the outcome of the coin toss
is a head, we have:

X l,� = Δl
n . Sl,�

n+1 +
V l

n − Δl
n . Sl

n

(1 + r)n
. (1 + r)n+1

= Δl
n . u . Sl

n + (V l
n − Δl

n . Sl
n) . (1 + r)

= (1 + r) . V l
n + Δl

n . Sl
n . (u − 1 − r)

= (1 + r) . V l
n +

V l,�
n+1 − V l,⊥

n+1

Sl
n . (u − d)

. Sl
n.(u − 1 − r)

= p̃ . V l,�
n+1 + q̃ . V l,⊥

n+1 + q̃ . V l,�
n+1 − q̃ . V l,⊥

n+1

= V l,�
n+1.

Similarly, X l,⊥ = V l,⊥
n+1 and the portfolio is indeed a replicating portfolio.

Since the initial value V l
n of this replicating portfolio is Fn-measurable, it is

possible to replicate its value by constructing a portfolio starting at time n − 1
(assuming n > 0). By backward induction, we define the adapted processes
(Vn)n≤T and (Δn)n≤T , and show that the self-financing portfolio with initial
value V0, whose quantity process in the risky asset is (Δn)n≤T is a replicating
portfolio for the derivative V with maturity T .

In our formalization, the adapted process (Vn)n≤T is defined by a function
deriv-price, that takes as parameters a random variable V and a number T
such that V is FT -measurable. The adapted process (Δn)n≤T is defined by a
function delta-comp, that also takes as parameters a random variable V and a
number T such that V is FT -measurable. Using the second function we define
the portfolio, named delta-pf, in which we only invest in the stock.

We then define the delta-hedging portfolio for the derivative, by considering
the corresponding self-financing portfolio, and setting its initial value to the
constant value V0

def= (deriv-price V T) 0:

delta-hedging :: (B stream → R) → N → (B stream) disc-pf
delta-hedging V T = self-finance V0 (delta-pf V T)

This portfolio is used to prove the two main results in the CRR model: that
the delta-hedging portfolio is a replicating portfolio, which implies that every
derivative is attainable; in other words, that the market is indeed complete.

lemma delta-neutral-portfolio-is-replicating :
(V ∈ deriv-at T) =⇒ (0 < T) =⇒ replic-pf (delta-hedging V T)

lemma CRR-market-complete :
complete-market

The Binomial Pricing Model in Finance: A Formalization in Isabelle 561

6 Discussion

The entire formalization of the Cox-Ross-Rubinstein model is a few thousand
lines long, which is less than what was initially anticipated. This is due in a large
part to Sledgehammer (a subsystem of Isabelle which allows one to invoke exter-
nal provers, see for instance [2]); and it frequently turned out that parts of proofs
that were expected to be cumbersome were carried out with one-liners thanks to
this tool. The theories available in Isabelle keep expanding and the formalization
would have required even less work if it had begun later. Indeed, this formaliza-
tion was initially carried out in Isabelle 2016, and some of the notions that were
formalized such as filtrations and conditional expectations (not presented in this
paper) are now available in Isabelle 2016-1. The only proofs that required more
work than expected are those that involved symbolic computations. These were
carried out in Isabelle 2016, and we did not investigate whether they could be
carried out more efficiently in Isabelle 2016-1; otherwise, it would be interesting
to have more elaborate tactics supporting formal calculations, and more gener-
ally to have a tighter integration of theorem provers and formal computation
tools.

Although the proof that every derivative is attainable in the Cox-Ross-
Rubinstein model does not require a lot of mathematical background, its for-
malization was not straightforward, especially because some financial notions,
such as that of an arbitrage, are not always defined formally in introductory pric-
ing theory textbooks. It is straightforward to extract from the proof that every
derivative is attainable in the CRR model, a program that generates the repli-
cating portfolio of any European derivative. We did not work on this extraction
here, because such a program would be of little practical use. However, obtaining
similar results in refinements of the CRR model for American derivatives would
allow us to construct a certified program that prices these, and such a program
would actually be used by financial institutions, where these refinements are still
frequently used for such derivatives. We are currently working on a generaliza-
tion of the current results, to restate them in the context of martingale pricing
theory, at which point we intend to generate the first completely certified pricer
for American derivatives in the CRR model.

Acknowledgments. We thank Hervé Guiol for his valuable comments on this work.

References

1. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit.
Econ. 81(3), 637–654 (1973)

2. Böhme, S., Nipkow, T.: Sledgehammer: judgement day. In: Giesl, J., Hähnle, R.
(eds.) IJCAR 2010. LNCS (LNAI), vol. 6173, pp. 107–121. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-14203-1 9

3. Cox, J.C., Ross, S.A., Rubinstein, M.: Option pricing: a simplified approach. J.
Financ. Econ. 7(3), 229–263 (1979)

http://dx.doi.org/10.1007/978-3-642-14203-1_9

562 M. Echenim and N. Peltier

4. Durrett, R.: Probability: Theory and Examples. The Wadsworth & Brooks/Cole
Statistics/Probability Series. Wadsworth Inc., Duxbury Press, Belmont (1991)

5. Hölzl, J.: Construction and stochastic applications of measure spaces in higher-
order logic. Ph.D. thesis, Institut für Informatik, Technische Universität München,
October 2012

6. Hölzl, J.: Markov chains and Markov decision processes in Isabelle/HOL. J. Autom.
Reason., 1–43 (2016). doi:10.1007/s10817-016-9401-5

7. Hölzl, J., Lochbihler, A., Traytel, D.: A formalized hierarchy of probabilistic system
types. In: Urban, C., Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 203–220.
Springer, Cham (2015). doi:10.1007/978-3-319-22102-1 13

8. Hull, J.: Options, Futures and Other Derivatives. Pearson/Prentice Hall, Upper
Saddle River (2009)

9. Merton, R.: The theory of rational option pricing. Bell J. Econ. Manag. Sci. 4,
141–183 (1973)

10. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer, Heidelberg (2002)

11. Shreve, S.E.: Stochastic Calculus for Finance I: The Binomial Asset Pricing Model.
Springer Finance. Springer, New York (2003)

12. Wenzel, M., Paulson, L.: Isabelle/Isar. In: Wiedijk, F. (ed.) The Seventeen Provers
of the World. LNCS, vol. 3600, pp. 41–49. Springer, Heidelberg (2006). doi:10.
1007/11542384 8

http://dx.doi.org/10.1007/s10817-016-9401-5
http://dx.doi.org/10.1007/978-3-319-22102-1_13
http://dx.doi.org/10.1007/11542384_8
http://dx.doi.org/10.1007/11542384_8

Monte Carlo Tableau Proof Search

Michael Färber1(B), Cezary Kaliszyk1, and Josef Urban2

1 Universität Innsbruck, Innsbruck, Austria
{michael.faerber,cezary.kaliszyk}@uibk.ac.at

2 Czech Technical University in Prague, Prague, Czech Republic
josef.urban@gmail.com

Abstract. We study Monte Carlo Tree Search to guide proof search in
tableau calculi. This includes proposing a number of proof-state eval-
uation heuristics, some of which are learnt from previous proofs. We
present an implementation based on the leanCoP prover. The system is
trained and evaluated on a large suite of related problems coming from
the Mizar proof assistant, showing that it is capable to find new and
different proofs.

1 Introduction

Recent advances in Automated Reasoning include both theoretical improvements
in the calculi, including combining superposition with SAT solving in recent ver-
sions of Vampire [4] and research on the InstGen calculus in iProver [16], but
also more practical improvements, such as more efficient and precise term index-
ing techniques [24], efficient non-clausal tableau proof search [20], or the use
of machine learning for problem size reduction [12]. Furthermore, many auto-
mated reasoning techniques have been extended to interesting theories beyond
first-order logic, including the developments in SMT solving in CVC4 [3] or to
higher-order logic [6,29]. Many of these developments have been of great value for
interactive theorem provers, whose most powerful general purpose automation
techniques today rely on automated reasoning tools [5].

However, current automated theorem provers are still quite weak in finding
more complicated proofs, especially over large formal developments [27]. The
search typically blows up after several seconds, making the chance of finding
proofs in longer times exponentially decreasing [2]. This behaviour is reminiscent
of poorly guided search in games such as chess and Go. The number of all possible
variants there typically also grows exponentially, and intelligent guiding methods
are needed to focus on exploring the most promising moves and positions.

The guiding method that has recently very significantly improved automatic
game play is Monte Carlo Tree Search (MCTS), i.e., expanding the search
based on its (variously guided) random sampling [7]. Recent developments in
MCTS include combination of exploration and exploitation [15], combination of
online and offline knowledge with the All-Moves-As-First (AMAF) heuristic [9],
and adaptive tuning of rollout policies during search [21]. As shown for exam-
ple in the AlphaGo system [25], machine learning can be used to train good
c© Springer International Publishing AG 2017
L. de Moura (Ed.): CADE 2017, LNAI 10395, pp. 563–579, 2017.
DOI: 10.1007/978-3-319-63046-5 34

564 M. Färber et al.

position evaluation heuristics even in very complicated domains that were previ-
ously thought to be solely in the realm of “human intuition”. From the point of
game theory, automated theorem proving is a combinatorial single-player game.
For some games in this category, including SameGame [22] and the NP-hard
Morpion Solitaire [21], MCTS has produced state-of-the-art players. [11] shows
that proof search can be positively guided by one-step lookahead, and MCTS
allows approximation of multi-step lookaheads by use of random sampling. While
“finishing the randomly sampled game” – as used in the most straightforward
MCTS for games – is not always possible in ATP (it would mean finishing the
proof), there is a chance of learning good proof state evaluation heuristics that
will guide MCTS for ATPs in a similar way as e.g. in AlphaGo.

In this work, we study MCTS methods that can guide the search in auto-
mated theorem provers, and evaluate their impact on interactive theorem prov-
ing problems in first-order logic. We focus on the tableau calculus and on the
leanCoP prover [18], which has a compact implementation that is easy to exper-
iment with. We can also build on previous machine learning extensions of lean-
CoP [13,28]. To our knowledge, this is the first time MCTS has been applied to
theorem proving.

Contributions

We introduce a set of MCTS heuristics tailored to proof search including two
state transition probability heuristics, three state evaluation heuristics, and two
tree expansion policies related to restricted backtracking (Sect. 4). Furthermore,
we present an implementation interleaving a traditional proof search with MCTS
(Sect. 5) and measure its performance on a set of Mizar Mathematical Library
problems (Sect. 6).

2 Monte Carlo Tree Search

Monte Carlo Tree Search (MCTS) is a technique to guide search in a large
decision space by taking random samples and evaluating their outcome. First,
we will establish a format for problems tractable with MCTS. Then, we give
a notation for Monte Carlo trees. Finally, we show how to create and evolve a
Monte Carlo tree for given problems with problem-specific heuristics.

2.1 Problem Setting and Example

A tree search problem can be minimally characterised with:

– a set of states S,
– an initial state s0 ∈ S, and
– a state transition function δ : S → 2S .

Monte Carlo Tableau Proof Search 565

As an example of a tree search problem, consider the travelling salesman
problem: A salesman has to visit a set of cities C and wants to minimise the
total distance travelled, where d(c1, c2) is the distance between two cities.

A possible tree search characterisation of the travelling salesman problem is:

– The set of states S are the sequences of cities visited so far; for example
[Prague], [Prague, Vienna, Bratislava], [Paris].

– The initial state s0 is the empty sequence.
– The state transition function δ returns for a sequence of already visited

cities the set of sequences where one previously unvisited city is added; i.e.
δ(s) =

⋃
c∈C,c/∈s[s, c]. For example, δ([Prague, Vienna]) could contain [Prague,

Vienna, Budapest] and [Prague, Vienna, Bratislava].

The number of states of the travelling salesman problem is exponential in
the number of cities, therefore constructing a whole tree to obtain an optimal
solution is not feasible. To bias the tree search towards more promising regions,
we define two types of heuristics:

– the probability P : S → [0, 1] of choosing a state and
– the reward ρ : S → [0, 1] for a state.

P (s′ | s) is the probability for choosing state s′ when being in its predecessor
state s, where s′ ∈ δ(s). In the travelling salesman example,

P ([Prague, Vienna] | [Prague]) > P ([Prague, Paris] | [Prague])

means that when the salesman is in Prague, Vienna should be chosen as next
city with a higher probability than Paris.

ρ(s) is the overall quality of a (final) state s. Due to the MCTS flavour we
use [15], it has to be normed between [0, 1]. In the travelling salesman example,
a sensible ρ should yield larger values for city sequences with smaller overall
distance.

2.2 Trees

A Monte Carlo tree stores the states that have been expanded during a tree
search, and keeps statistics about the states. We define the set T of Monte Carlo
tree nodes.

Definition 1 (Monte Carlo tree node). A Monte Carlo tree node is a 5-tuple
(n, r, s, S, T) ∈ T , where:

– n ∈ N is the number of times the node was visited,
– r ∈ R is the sum of the rewards of successors,
– s ∈ S is the state of the node,
– S ∈ 2S are the unvisited successor states of s, and
– T ∈ 2T are the child tree nodes.

Monte Carlo Tree Search evolves a tree by repeatedly applying a step function
until a certain criterion is fulfilled, e.g. a certain number of steps is performed,
time has elapsed etc. Ideally, every step should refine the quality estimate of the
states in the Monte Carlo tree. We show the step function in the next section.

566 M. Färber et al.

2.3 Monte Carlo Step Function

The Monte Carlo step function performs the following: First, it selects a node in
the Monte Carlo tree. From the state of node, it randomly samples a sequence of
successor states (called simulation). It then creates a new node′ with some state
from the simulation and makes it a child of the original node. Finally, a reward
is calculated from the simulation and backpropagated to all ancestors of node′.

The idea is that rewards obtained from simulations starting from a certain
node let us estimate the usefulness of the node itself. A description of the
pseudocode in Algorithm 1 follows. For brevity, the pseudocode assumes that
every state has at least one successor state (i.e., for every s ∈ S, |δ(s)| > 0).

Algorithm 1. Monte Carlo step function.
1: procedure step(node)
2: if node.S = ∅ then
3: best ← arg maxt∈node.T uct(node.n, t) � selection
4: reward ← step(best)
5: else
6: s′ ← biasedDraw(P, node.s, node.S)
7: sim ← simulation(D, s′) � simulation
8: (node′, reward) ← expansion(sim) � expansion
9: node.S ← node.S \ {s′}

10: node.T ← node.T ∪ {node′}
11: node.n ← node.n + 1 � backpropagation
12: node.r ← node.r + reward
13: return reward

In l. 3, the step function recursively selects the child node with the high-
est UCT (Upper Confidence Bounds for Trees) value [15]. UCT establishes an
order on nodes, combining exploration and exploitation: exploration prefers less
frequently visited nodes, whereas exploitation prefers nodes with higher average
reward. The ratio between these two goals is determined by the exploration con-
stant Cp, where higher values give more emphasis to exploration. The average
reward of a node (nj , rj , s, S, T) is rj

nj
. The UCT function takes the number of

times n that a parent node was visited, as well as a child node:

uct(n, (nj , rj , s, S, T)) =
rj

nj
+ Cp

√
ln n

nj
.

As soon as a node with unvisited successor states is encountered (l. 5), an unvis-
ited successor state s′ is drawn (l. 6), where the probability of picking s′ is
proportional to P (s′ | s). From the chosen s′, a simulation is performed up to
a constant simulation depth D. A simulation starting from a state si draws a
state si+1 from δ(si), with probability P (si+1 | si). This is repeated for a certain

Monte Carlo Tableau Proof Search 567

number of times, yielding a simulation [s1, . . . , sD], where D is the simulation
depth and for every i, si+1 ∈ δ(si).

From the simulation, the expansion operation yields a new node′ and a
reward. The default expansion policy creates node′ from the first state s1 of the
simulation and calculates the reward from the last state, i.e. reward = ρ(sD).
Therefore, the new expansion node is node′ = (1, ρ(sD), s1, δ(s1), ∅).

The expansion node node′ is added to the child nodes (l. 10) and the reward
is propagated back until the root (l. 11–13).

3 Tableau

In this section, we shortly recall some basics of tableau [10] and introduce notions
specific to representing tableau as MCTS.

Tableau calculi are methods to prove the inconsistency of formulae. A tableau
is a tree with formulae as nodes. The root is the formula whose inconsistency one
attempts to show. All other nodes are produced by application of tableau rules
to nodes above them; such rules include α-rules to treat conjunctions and β-rules
to treat disjunctions. For example, when a branch contains a disjunction (called
β-formula), then an application of a β-rule (parametrised by the disjunction)
adds the disjuncts as children to some leaf of the branch.

The choice of β-formulae in tableau proof search is one of the main sources
of nondeterminism and has a considerable impact on the length of the proof
search. It corresponds to the choice of given clauses in saturation-based provers
and extension clauses in the connection calculus. Therefore, in this work, we
focus on influencing the proof search mostly by influencing the choice of β-
formulae. We will abstract from the actual tableau steps, only assuming that
the considered tableau calculus that is sound and complete.

A branch of a tableau is closed iff it contains some formula and its negation. A
tableau is closed iff all of its branches are closed. A formula is proven inconsistent
when there is a closed tableau with the formula at the root. For the heuristics
in Sect. 4, we define β-children, which correspond to open subgoals in interactive
theorem provers and literals of open branches in the connection calculus.

Definition 2 (β-children). Given a tableau t, we call direct children of
branches β-children of t and denote them as β(t).

Open β-children (denoted βo(t)) are all β-children on open branches not
having any branch as descendant. Closed β-children (denoted βc(t)) are all β-
children that are not open, i.e. βc(t) = β(t) \ βo(t).

Example 1. In state 4 in Fig. 1, closed β-children are p, ¬p, s, q, and ¬q. Open
β-children are t and r.

The successor tableaux of a tableau are all tableaux that can be obtained from
the original tableau by the application of some rule. We now give a description
of tableau construction for a given formula f in the language of Sect. 2.1:

568 M. Färber et al.

Fig. 1. Proof search for formula f = (p∨q∨r)∧(¬p∨s)∧(¬p∨t∨u)∧¬s∧(¬q∨t)∧(¬q∨s).
Open β-children are surrounded by boxes.

– The set of states S is the set of tableaux.
– The initial state s0 is a tableau containing only the formula f as root.
– The transition function δ(s) obtains all successor tableaux of s produced by

applications of tableaux rules.

This characterisation in conjunction with the default expansion policy from
Sect. 2.3 has the downside that its Monte Carlo trees are approximately as deep
as the number of proof steps, whereas the corresponding tableaux are as deep
as the maximal proof depth. For example, the TPTP [26] problem PUZ035-1
permits a proof consisting of about 40 proof steps in a tableau of depth 6. The
Monte Carlo tableau characterisation, however, requires building a Monte Carlo
search tree with a depth close to 40, which is challenging even when using a good
state reward ρ. The required tree depth can be often decreased with the tableau-
specific expansion policies described in Sect. 4.3, but finding a characterisation
that reliably reduces the depth of the search tree remains future work.

4 Tableau Heuristics

In Sect. 2.1, we defined two kinds of heuristics to guide Monte Carlo Tree Search,
namely transition probability and state reward. In this section, we propose such
heuristics, as well as a set of incomplete expansion policies.

4.1 Transition Probability

The transition probability P (s′ | s) is the probability of choosing state s′ as
successor state when in state s, where s′ ∈ δ(s). P is used to bias the selection
of a successor state in random simulations, as well as to determine the order of
visiting previously unvisited successor states; see Algorithm 1.

When in some state s, different kinds of tableau rules might be applicable;
for example α-rules and β-rules (similarly to extension and reduction rules in
the connection calculus). In this work, we focus on influencing the probability of

Monte Carlo Tableau Proof Search 569

β-rules depending on their used β-formulae, which corresponds to earlier work
about choosing good extension clauses in the connection calculus [28]. Therefore,
we only vary the probabilities of β-rules and attribute to all non-β-rules the same
probabilities.

As transition probabilities are among of the most frequently calculated values
in Monte Carlo Tree Search, the speed of this heuristic is important. The baseline
heuristic is to give the same probability to all transitions, i.e. P1(s′ | s) ∝ 1.

4.1.1 β-size
The β-size heuristic attributes a probability to a β-rule that is inversely propor-
tional to the number of newly opened β-children:

Pβ(s′ | s) ∝ (|βo(s′)| − |βo(s)|)−1.

Example 2. In state 1 of Fig. 1, it is possible to apply the β-rule to the leftmost
branch with either ¬p∨s or ¬p∨ t∨u. The first formula consists of two disjuncts
and the second of three disjuncts, so the β-size heuristic attributes a probability
proportional to 1

2 to the first and 1
3 to the second formula. The probabilities are

normalized to sum to 1, obtaining the actual values 3
5 and 2

5 respectively.

4.1.2 Naive Bayesian Probability
Given the information about the formulae that were used in previous successful
proofs at particular proof states, it is possible to calculate the likelihood that
a given formula contributes to the current proof attempt in the current proof
state. Naive Bayesian probability is used in [13] to order formulae by

P (li | f) =
P (li)P (f | li)

P (f)
∝ P (li)

∏

j

P (fj | li),

where li is a β-formula from a set l of applicable β-formulae, and f is a set of
features that characterises the current tableau, such as its formulae symbols.

P (li) and P (fj | li) as in [13] frequently yield values such that the probability
of applying β-rules is magnitudes smaller than for non-β-rules, slowing down
proof search. For that reason, we introduce normed probability estimates.

First, let us denote the knowledge about the usage of β-formulae in previous
proofs by F (li), which is the multiset of sets of features having occurred in
conjunction with li when li was used in a proof. |F (li)| is the total number of
times that li was used in previous proofs.

Example 3. F (l1) = {{f1, f2} , {f2, f3}} means that the formula l1 was used
twice in previous proofs; once in a situation characterised by the features f1 and
f2, and once when features f2 and f3 were present.

This allows us to write the normed formula probability as

P (li) =
|F (li)|

maxlj∈l |F (lj)|
.

570 M. Färber et al.

Using max instead of
∑

yields larger probabilities, while still ensuring that the
probabilities do not exceed 1.

To obtain the normed conditional feature probability, we distinguish whether
the feature already appeared in conjunction with the formula. In case it did, its
probability is

P (fj | li,∃f ′ ∈ F (li).fj ∈ f ′) =

∑
f ′∈F (li)

1f ′(fj)

|F (li)|
,

where 1A(x) denotes the indicator function that returns 1 if x ∈ A and 0 oth-
erwise. In case the feature fj has never appeared with the rule li before, we
attribute it some minimal probability with respect to all current features f and
all currently applicable rules l:

P (fj | li,¬∃f ′ ∈ F (li).fj ∈ f ′) = min
fj∈f , li∈l, ∃f ′∈F (li).fj∈f ′

P (fj | li)

The two definitions form a complete description of the normed feature probabil-
ity P (fj | li).

4.2 State Reward

The state reward ρ(s) is evaluated for the final state s of a random simulation. It
estimates the likelihood of finding a proof from any ancestor of the starting node
of the random simulation. Therefore, the state reward influences which regions
of the Monte Carlo tree are explored.

As the state reward is only calculated once per random simulation, it can in
practice be a function that is more expensive to calculate than, say, the transition
probability. A baseline state reward function ρr returns random values between
0 and 1.

To estimate the discrimination of a heuristic, i.e. its ability to distinguish
nodes that lead to proofs from nodes that do not, we take the ratio of the
average rewards on the Monte Carlo tree branch leading to a proof and the
average rewards of all Monte Carlo tree nodes.

4.2.1 β-ratio
The β-ratio reward function considers the ratio of closed β-children and all β-
children in the tableau:

ρβ(s) =
|βc(s)|
|β(s)| .

This heuristic guarantees that for a closed tableau s, the reward ρβ(s) is 1.

Example 4. For state 4 in Fig. 1, there are five closed β-children and seven β-
children in total. Therefore, the reward ρβ is 5

7 .

Monte Carlo Tableau Proof Search 571

4.2.2 Formula Weight Reward
The formula weight reward heuristic calculates the average inverse weight
(i.e. formula size) of all open β-children, encouraging tableaux with smaller for-
mulae. Furthermore, the heuristic gives higher impact to formulae closer to the
root, because the closer to the root a formula is in the tableau, the more likely
it is to be chosen in other random simulations from the same starting node,
therefore it is more characteristic for the starting node. For that reason, the
heuristic weighs every inverse formula weight with the depth of the formula in
the tableau, where the depth of a formula f in a tableau is expressed as d(f).
However, because rewards need to be normed between 0 and 1, the depth needs
to be normalised. For that purpose, we introduce the concept of a normalisation
function.

Definition 3 (Normalisation function). A normalisation function Nu
l :

[0,∞) → [u, l) with l < u is strictly increasing and fulfils limx→∞ Nu
l (x) = u

and Nu
l (0) = l.

We choose the normalisation function Nu
l (x) = u −

(
x + (u − l)−1

)−1. This
allows us to write the final formula weight function:

ρw(s) =
1

|βo(s)|
∑

c∈βo(s)

1
|c|N

1
l (d(c)),

where l > 0 is a constant that determines the impact of formula depth. For
example, when l = 1, then depth has no influence whatsoever, whereas l ≈ 0
gives hardly any weight to formulae close to the root. In this particular ρw, we
use the arithmetic mean, but we have also experimented with geometric and
harmonic means as well as the minimum.

Example 5. The open β-children r and t in state 4 of Fig. 1 are at depth 1 and 2,
respectively. Therefore, the formula weight reward of the tableau is the mean of
1

|r|N
1
l (1) and 1

|t|N
1
l (2).

This heuristic is based on similar ideas as the pick-given ratio popularised
by Otter [23].

4.2.3 Machine-Learnt Refutability Estimate
The refutability of a tableau s can be estimated with knowledge how often open
β-children of s were successfully refuted in previous proofs.

We call a formula refuted when all branches on which it lies are closed. A
formula is unsuccessfully refuted if it is present in the tableau, but lies on at least
one open branch. Note that refuted β-children are always closed (as defined in
Sect. 3), but closed β-children are not necessarily refuted.

Example 6. The β-child q in state 4 of Fig. 1 is closed, but not refuted.

572 M. Färber et al.

When statistics about previous refutations of formulae are available, we use
them to estimate the refutability of formulae in the current proof search, similarly
to [8]. Let p(f) be the number of successful and n(f) the number of unsuccessful
refutations of a formula f . Then the irrefutability ratio of f is n(f)

p(f)+n(f) .
We want the irrefutability ratio to have an effect proportional to the amount

of information available about previous refutation attempts. Consider the case
for a formula f where p(f) = 0 and n(f) = 1. The irrefutability ratio of f
then is 100%, but because we have information about only a single refutation
attempt, we want to attribute less meaning to it compared to, say, a formula
where p(f) = 0 and n(f) = 1000. To achieve this, we weigh the irrefutability
with N l

u(v(p(f)+n(f))), where v ≥ 0, u ≥ 0 and l ≤ 1 are constants. This term
reflects the confidence in the irrefutability ratio. v determines how fast we gain
confidence, u is the minimal and l is the maximal confidence.

The estimated refutability of the formula f then is the opposite of its
confidence-weighted irrefutability:

1 − N l
u(v(p(f) + n(f)))

n(f)
p(f) + n(f)

The machine-learnt refutability estimate of a whole tableau is the mean of
estimated refutabilities of the tableau’s open β-children.

Example 7. The open β-children in state 4 of Fig. 1 are t and r. Assume that
p(t) = 222, n(t) = 115, p(r) = 62, and n(r) = 553. Then the machine-learnt
refutability estimate of the tableau is the mean of 1 − N l

u(v · 337)115337 and 1 −
N l

u(v · 615)553615 . In case we have total confidence in the statistics (e.g. by setting
u = l = 1) and use the arithmetic mean, the resulting refutability estimate is
0.38.

4.3 β-minimal Expansion Policies

The default expansion policy in Sect. 2.3 creates new nodes in the Monte Carlo
tree from the first state s1 of a random simulation [s1, . . . , sD]. This can be
counterproductive in cases where the random simulation closes a subtree, but
fails to find a proof in the end. In that case, keeping the successful part of the
proof attempt, i.e. the closed subtree, can accelerate proof search.

This motivates β-minimal expansion policies, where new nodes are created
not from the first state of a simulation, but from some state minimising a function
related to β-children.

The first policy is the β-child expansion policy, which chooses the state with
fewest open β-children, i.e., mini |βo(si)|.

The second policy is the β-parent expansion policy, which chooses the state
with fewest parents of open β-children, i.e. mini

∣
∣
∣
⋃

o∈βo(si)
p(o)

∣
∣
∣, where p(s)

denotes the parent of a node s.
Similarly to restricted backtracking [19], the β-minimal expansion policies

lose completeness, but can in practice perform significantly better than complete
strategies.

Monte Carlo Tableau Proof Search 573

Example 8. In the proof search in Fig. 1, the proof attempt failed. We assume
that the proof search started from a Monte Carlo node n containing state 1.
The default expansion policy would add a new node corresponding to state 2
as child tree node of n to the Monte Carlo tree. However, this would discard
the closed subtree found in state 3. In contrast, the β-child expansion policy
compares the open β-children in all successor states of state 1: State 2 has three
open β-children (s, q, and r), state 3 has two (q and r) and state 4 has two as
well (t and r). State 3 and 4 are therefore minimal, in which case the first of
them (i.e. state 3) is used as state for a new Monte Carlo leaf node that is added
as child tree node of n to the Monte Carlo tree.

5 Implementation

We implemented the proposed Monte Carlo Tableau calculus in the OCaml ver-
sion [14] of leanCoP [18]. The implementation and experimental data are avail-
able at: http://cl-informatik.uibk.ac.at/users/mfaerber/cade-26.html. In the
rest of this paper, we refer to the OCaml version of leanCoP as leanCoP.

Monte Carlo proof search can be used to advise a base prover : The proof
search is conducted by a base prover such as leanCoP. When the base prover has
a choice between different applicable proof rules, it starts the advisor, i.e. Monte
Carlo proof search, which returns after a certain number of iterations an order on
the proof rules to be tried by the base prover. This order is based on the average
Monte Carlo rewards achieved for each rule. Furthermore, when Monte Carlo
proof search finds proofs while establishing the proof rule order, the proofs are
used directly by the base prover. In the extreme case, when setting the number
of Monte Carlo iterations to ∞, the whole proof search is done by Monte Carlo
proof search and the base prover is only responsible for starting it and printing
the proof. We refer to our implementation of Monte Carlo proof search as advisor
for leanCoP as Monte Carlo Prover.

In contrast to leanCoP, Monte Carlo proof search does not require iterative
deepening. Instead, an important parameter is the simulation depth D as shown
in Sect. 2.3, which determines the length of random simulations.

leanCoP is equipped with a set of strategies, where each strategy consists
of a set of options, such as whether to use definitional clausal normal form. A
strategy schedule tries different strategies for a defined amount of time until
a strategy succeeds. One of the most influential developments in leanCoP was
restricted backtracking [19], which discards other possibilities to close a subtree
once it has been closed. See Fig. 2 for a comparison of the complete strategy
with the restricted backtracking strategy, as well as an illustration of a Monte
Carlo search.

In the next section, we evaluate how well our Monte Carlo prover performs
in comparison to single leanCoP strategies.

http://cl-informatik.uibk.ac.at/users/mfaerber/cade-26.html

574 M. Färber et al.

Fig. 2. The two main leanCoP strategies compared with Monte Carlo proof search.

6 Evaluation

In this section, we evaluate the Monte Carlo prover described in Sect. 5. We
first describe the dataset and the evaluation parameters. Then we evaluate the
different heuristics given in Sect. 4, as well as the influence of several numeric
parameters. Finally, we show our best obtained Monte Carlo configuration and
compare it to leanCoP.

Experimental Setup. We used the bushy version of the MPTP2078 dataset [1],
which is particularly valuable for our machine learning algorithms as it provides
consistent symbols over all problems. To generate training data for the machine
learning heuristics, we ran leanCoP for 60 s on all the MPTP2078 problems, using
a strategy schedule with three strategies, including a restricted backtracking and
a complete strategy. The outcome of the training runs were formula usability
data for the Naive Bayes heuristic in Sect. 4.1.2 as well as formula refutability
data for the heuristic in Sect. 4.2.3.

For the main evaluation, we used definitional classification and a timeout
of 10 s per problem for both leanCoP and the Monte Carlo prover, where the
10 s timeout is also used for the MPTP2078 evaluation in [14]. In that setting,
leanCoP solves 509 problems with restricted backtracking and 388 without, the
union being 562 problems. In the remainder of this paper, leanCoP refers to the
restricted backtracking strategy of leanCoP.

For the Monte Carlo prover, we used the following initial parameters:

– Maximal simulation depth D: 50
– Exploration constant Cp: 1 (see Sect. 2.3)
– Transition probability: β-size (see Sect. 4.1.1)
– State reward: β-ratio (see Sect. 4.2.1)
– Depth attenuation for formula weight reward: 0 (see Sect. 4.2.2)
– Refutability mean: min (see Sect. 4.2.3)
– Refutability confidence velocity: 1 (see Sect. 4.2.3)

Monte Carlo Tableau Proof Search 575

– Minimal/maximal refutability confidence: 0/1 (see Sect. 4.2.3)
– Expansion policy: β-child expansion policy (see Sect. 4.3)

Heuristics Influence. We evaluated the Monte Carlo prover with a set of con-
figurations where each configuration deviates by one heuristic from the initial
parameters. For every configuration, we collected the set of solved problems.
Furthermore, we collected the problems solved by all Monte Carlo configura-
tions, amounting to 196 problems. On these problems, for all Monte Carlo con-
figurations, we evaluated the average number of MCTS iterations and MCTS
simulation steps, as well as the average reward discrimination; see Table 1.

The machine-learnt reward heuristic performs best, with a very good dis-
crimination rate of 2.30. Surprisingly, the random reward heuristic solves only
three problems less, despite its worse discrimination.

The Bayesian transition probability shows very poor performance. The β-size
heuristic is the winner for transition probability.

The β-parent expansion policy outperforms the default expansion policy by
20 problems, i.e. 6%.

Table 1. Comparison of Monte Carlo heuristics. Iterations, simulation steps and dis-
crimination ratio are averages on the 196 problems solved by all configurations.

Configuration Iterations Sim. steps Discr. Solved

Base 116.46 1389.82 1.37 332

Random reward 104.88 1167.98 1.19 364

Formula weight reward 108.13 1268.88 1.12 334

ML reward 108.52 1151.61 2.30 367

Bayes P 528.39 8014.03 1.35 248

Constant P 949.62 17539.59 1.31 237

β-parent exp. 224.72 2769.12 1.40 348

Default exp. 371.81 4793.58 1.38 328

Parameter Influence. We identified three numeric parameters to be highly
influential for proof search; namely the simulation depth D, the exploration
constant Cp, and the maximal number of MCTS iterations per base prover step.
We evaluated a large range of values for these parameters, keeping the remaining
parameters fixed to the standard values. The results are shown in Fig. 3.

We achieve the highest performance of the Monte Carlo prover when using
it as an advisor for a base prover. From Fig. 3a, it becomes clear that the Monte
Carlo prover is most useful when given between 20 and 40 iterations per base
prover step. Below that mark, the reward estimates are too imprecise, and above
that mark, the reward precision increases only marginally, compared to the time
spent in the MCTS prover.

The higher the maximal simulation depth D (see Fig. 3b), the more time the
prover spends looking for proofs at less promising higher depths. Figure 3c shows

576 M. Färber et al.

that the average number of simulation steps decreases with increasing D. This
indicates that at higher simulation depths, the computational effort to calculate
the set of possible steps increases.

Figure 3d shows the number of solved problems for the β-ratio and the
machine-learnt state evaluation heuristics as function of the exploration con-
stant Cp. For a good state reward heuristic, one expects in such a graph a local
optimum, where exploration and exploitation combine each other best. As one
can see, this is given for the machine-learnt heuristic at Cp ≈ 0.75, whereas the
curve for the β-ratio heuristic does not expose such an optimum.

Fig. 3. Parameter influence.

Best Found Monte Carlo Configuration. Our best found configuration
MC+ for the Monte Carlo prover uses the arithmetic mean for the ML reward,
a maximal number of 27 MCTS iterations and a simulation depth of 20. Inter-
estingly, is has a discrimination ratio of only 1.07, which suggests that a high
discrimination ratio indicates good performance, but is not absolutely necessary
to achieve it.

Monte Carlo Tableau Proof Search 577

MC+ performs on average 902 times more inferences in MCTS than in the
base prover. Furthermore, for the problems solved both by leanCoP and by MC+,
leanCoP takes on average 21698 inferences, while MC+ takes 20243 inferences
(sum of base prover + MCTS inferences).

MC+ solves 538 problems, compared to 509 by leanCoP. Of the 538 problems,
90 problems were previously not solved by leanCoP. The union of MC+ and
leanCoP solves 599 problems, compared to 531 problems solved by leanCoP with
a timeout of 20 s. That means that we solve 12.8% more problems. Furthermore,
MC+ proves more problems than leanCoP when given only half the time.

Prover Timeout [s] Solved problems

leanCoP 10 509

MC+ 10 538

leanCoP + MC+ 10 + 10 599

leanCoP 20 531

7 Conclusion

We have proposed a combination of Monte Carlo Tree Search and tableau auto-
mated theorem proving. MCTS provides a theoretically founded fine-grained
mechanism to control the search space of tableau-based theorem provers based
on random sampling and state evaluation heuristics, which might eventually even
replace iterative deepening. We have shown that a fast rollout policy combined
with a machine-learnt state evaluation heuristic and a custom expansion policy
produce the best results. The strength of the current system has turned out to
be its function as advisor for existing provers, demonstrated by our integration
into leanCoP. This opens a wide space of future work, profiting from the ongoing
research in MCTS; examples include self-updating reward heuristics, adaptive
simulation depths, automatic parameter tuning, and different characterisations
of tableau search or expansion policies such as AMAF to produce more shallow
Monte Carlo trees. Furthermore, identifying controversial choices in the base
prover would allow using the Monte Carlo prover as advisor more efficiently.
Finally, neural networks could be used as state reward heuristics.

Acknowledgements. We thank the anonymous CPP and CADE referees for their
valuable comments on previous versions of this paper. This work has been supported
by the Austrian Science Fund (FWF) grant P26201 and the European Research Council
(ERC) grants no. 649043 AI4REASON and no. 714034 SMART.

578 M. Färber et al.

References

1. Alama, J., Heskes, T., Kühlwein, D., Tsivtsivadze, E., Urban, J.: Premise selection
for mathematics by corpus analysis and kernel methods. J. Autom. Reasoning
52(2), 191–213 (2014)

2. Alama, J., Kühlwein, D., Urban, J.: Automated and human proofs in general
mathematics: an initial comparison. In: Bjørner, N., Voronkov, A. (eds.) LPAR
2012. LNCS, vol. 7180, pp. 37–45. Springer, Heidelberg (2012). doi:10.1007/
978-3-642-28717-6 6

3. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). doi:10.1007/
978-3-642-22110-1 14

4. Biere, A., Dragan, I., Kovács, L., Voronkov, A.: Experimenting with SAT
solvers in Vampire. In: Gelbukh, A., Espinoza, F.C., Galicia-Haro, S.N. (eds.)
MICAI 2014. LNCS, vol. 8856, pp. 431–442. Springer, Cham (2014). doi:10.1007/
978-3-319-13647-9 39

5. Blanchette, J.C., Kaliszyk, C., Paulson, L.C., Urban, J.: Hammering towards QED.
J. Formaliz. Reasoning 9(1), 101–148 (2016)

6. Brown, C.E.: Satallax: an automatic higher-order prover. In: Gramlich, B., Miller,
D., Sattler, U. (eds.) IJCAR 2012. LNCS (LNAI), vol. 7364, pp. 111–117. Springer,
Heidelberg (2012). doi:10.1007/978-3-642-31365-3 11

7. Browne, C., Powley, E.J., Whitehouse, D., Lucas, S.M., Cowling, P.I., Rohlfshagen,
P., Tavener, S., Liebana, D.P., Samothrakis, S., Colton, S.: A survey of Monte Carlo
tree search methods. IEEE Trans. Comput. Intell. AI Games 4(1), 1–43 (2012)

8. Färber, M., Brown, C.E.: Internal guidance for Satallax. In: Olivetti and Tiwari
[17], pp. 349–361

9. Gelly, S., Silver,D.:Combiningonline andofflineknowledge inUCT. In:Ghahramani,
Z. (ed.) ICML, vol. 227, pp. 273–280. ACM, New York (2007)

10. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, vol. 2, pp. 100–178. Elsevier and MIT Press,
New York (2001)

11. Hoder, K., Reger, G., Suda, M., Voronkov, A.: Selecting the selection. In: Olivetti
and Tiwari [17], pp. 313–329

12. Kaliszyk, C., Schulz, S., Urban, J., Vyskočil, J.: System description: E.T. 0.1. In:
Felty, A.P., Middeldorp, A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 389–
398. Springer, Cham (2015). doi:10.1007/978-3-319-21401-6 27

13. Kaliszyk, C., Urban, J.: FEMaLeCoP: fairly efficient machine learning connec-
tion prover. In: Davis, M., Fehnker, A., McIver, A., Voronkov, A. (eds.) LPAR
2015. LNCS, vol. 9450, pp. 88–96. Springer, Heidelberg (2015). doi:10.1007/
978-3-662-48899-7 7

14. Kaliszyk, C., Urban, J., Vyskocil, J.: Certified connection tableaux proofs for HOL
Light and TPTP. In: Leroy, X., Tiu, A. (eds.) CPP, pp. 59–66. ACM, New York
(2015)

15. Kocsis, L., Szepesvári, C.: Bandit based Monte-Carlo planning. In: Fürnkranz, J.,
Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp.
282–293. Springer, Heidelberg (2006). doi:10.1007/11871842 29

16. Korovin, K.: Inst-Gen – a modular approach to instantiation-based automated rea-
soning. In: Voronkov, A., Weidenbach, C. (eds.) Ganzinger Festschrift. LNCS, vol.
7797, pp. 239–270. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37651-1 10

http://dx.doi.org/10.1007/978-3-642-28717-6_6
http://dx.doi.org/10.1007/978-3-642-28717-6_6
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://dx.doi.org/10.1007/978-3-319-13647-9_39
http://dx.doi.org/10.1007/978-3-319-13647-9_39
http://dx.doi.org/10.1007/978-3-642-31365-3_11
http://dx.doi.org/10.1007/978-3-319-21401-6_27
http://dx.doi.org/10.1007/978-3-662-48899-7_7
http://dx.doi.org/10.1007/978-3-662-48899-7_7
http://dx.doi.org/10.1007/11871842_29
http://dx.doi.org/10.1007/978-3-642-37651-1_10

Monte Carlo Tableau Proof Search 579

17. Olivetti, N., Tiwari, A. (eds.): IJCAR 2016. LNCS (LNAI), vol. 9706. Springer,
Cham (2016). doi:10.1007/978-3-319-40229-1

18. Otten, J.: leanCoP 2.0 and ileanCoP 1.2: high performance lean theorem prov-
ing in classical and intuitionistic logic (system descriptions). In: Armando, A.,
Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS (LNAI), vol. 5195, pp. 283–
291. Springer, Heidelberg (2008). doi:10.1007/978-3-540-71070-7 23

19. Otten, J.: Restricting backtracking in connection calculi. AI Commun. 23(2–3),
159–182 (2010)

20. Otten, J.: nanoCoP: a non-clausal connection prover. In: Olivetti and Tiwari [17],
pp. 302–312

21. Rosin, C.D.: Nested rollout policy adaptation for Monte Carlo tree search. In:
Walsh, T. (ed.) IJCAI, pp. 649–654. IJCAI/AAAI, New York (2011)

22. Schadd, M.P.D., Winands, M.H.M., Tak, M.J.W., Uiterwijk, J.W.H.M.: Single-
player Monte-Carlo tree search for SameGame. Knowl.-Based Syst. 34, 3–11 (2012)

23. Schulz, S.: E - a brainiac theorem prover. AI Commun. 15(2–3), 111–126 (2002)
24. Schulz, S.: System description: E 1.8. In: McMillan, K., Middeldorp, A., Voronkov,

A. (eds.) LPAR 2013. LNCS, vol. 8312, pp. 735–743. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-45221-5 49

25. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S.,
Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M.,
Kavukcuoglu, K., Graepel, T., Hassabis, D.: Mastering the game of Go with deep
neural networks and tree search. Nature 529, 484–503 (2016)

26. Sutcliffe, G.: The 6th IJCAR automated theorem proving system competition -
CASC-J6. AI Commun. 26(2), 211–223 (2013)

27. Urban, J., Hoder, K., Voronkov, A.: Evaluation of automated theorem proving
on the Mizar Mathematical Library. In: Fukuda, K., van der Hoeven, J., Joswig,
M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 155–166. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-15582-6 30

28. Urban, J., Vyskočil, J., Štěpánek, P.: MaLeCoP machine learning connection prover.
In: Brünnler, K., Metcalfe, G. (eds.) TABLEAUX 2011. LNCS (LNAI), vol. 6793,
pp. 263–277. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22119-4 21

29. Wisniewski, M., Steen, A., Benzmüller, C.: LeoPARD — a generic platform for
the implementation of higher-order reasoners. In: Kerber, M., Carette, J., Kaliszyk,
C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS, vol. 9150, pp. 325–330. Springer,
Cham (2015). doi:10.1007/978-3-319-20615-8 22

http://dx.doi.org/10.1007/978-3-319-40229-1
http://dx.doi.org/10.1007/978-3-540-71070-7_23
http://dx.doi.org/10.1007/978-3-642-45221-5_49
http://dx.doi.org/10.1007/978-3-642-15582-6_30
http://dx.doi.org/10.1007/978-3-642-22119-4_21
http://dx.doi.org/10.1007/978-3-319-20615-8_22

Author Index

Andronick, June 1

Barbosa, Haniel 398
Barrett, Clark 148
Becker, Heiko 432
Bender, Markus 166
Biere, Armin 130
Blanchette, Jasmin Christian 398, 432
Blanco, Roberto 255
Bonacina, Maria Paola 42
Brockschmidt, Marc 454
Brotherston, James 472, 491

Chen, Taolue 509
Chihani, Zakaria 255
Cimatti, Alessandro 95
Cristiá, Maximiliano 185
Cruanes, Simon 114
Cruz-Filipe, Luís 220

Dixon, Clare 326

Echenim, Mnacho 546
Egly, Uwe 371
Erbatur, Serdar 60

Färber, Michael 563
Felgenhauer, Bertram 385
Fleuriot, Jacques 357
Fontaine, Pascal 398

Gardner, Philippa 8
Gleiss, Bernhard 291
Gorogiannis, Nikos 472
Graham-Lengrand, Stéphane 42
Griggio, Alberto 95

Heule, Marijn J.H. 130, 220
Horbach, Matthias 77
Hunt Jr., Warren A. 220
Hustadt, Ullrich 326

Ignatovich, Denis 26
Irfan, Ahmed 95
Itegulov, Daniyar 344

Joosten, Sebastiaan J.C. 454

Kaliszyk, Cezary 563
Kanovich, Max 472
Kaufmann, Matt 220
Kiesl, Benjamin 130, 274
Kovács, Laura 291
Kumar, Ramana 528

Lammich, Peter 237
Lonsing, Florian 371

Maksimović, Petar 8
Marshall, Andrew M. 60
Meng, Baoluo 148
Middeldorp, Aart 385
Miller, Dale 255

Nagashima, Yutaka 528
Nagele, Julian 385
Naudžiūnienė, Daiva 8

Ozaki, Ana 326

Papapanagiotou, Petros 357
Passmore, Grant Olney 26
Pease, Adam 310
Peltier, Nicolas 546

Reynolds, Andrew 148
Ringeissen, Christophe 60
Rossi, Gianfranco 185
Roveri, Marco 95

Santos, José Fragoso 8
Schneider-Kamp, Peter 220
Schulz, Stephan 310

Sebastiani, Roberto 95
Shankar, Natarajan 42
Slaney, John 344
Sofronie-Stokkermans, Viorica 166
Sternagel, Christian 413
Sternagel, Thomas 413
Suda, Martin 274, 291
Sutcliffe, Geoff 310

Tellez, Gadi 491
Teucke, Andreas 202
Thiemann, René 454
Tinelli, Cesare 148

Urban, Josef 310, 563

Voigt, Marco 77

Waldmann, Uwe 432
Wand, Daniel 432
Weidenbach, Christoph 77, 202
Woltzenlogel Paleo, Bruno 344
Wu, Zhilin 509

Xu, Zhaowei 509

Yamada, Akihisa 454

582 Author Index

	Preface
	Organization
	Contents
	Reasoning About Concurrency in High-Assurance, High-Performance Software Systems
	1 Formal Verification -- Mentality Shift
	2 Software Systems and Concurrency -- Background
	3 Interrupt-Induced Concurrency
	4 Multicore Concurrency
	5 User-Level Concurrency
	6 Conclusion
	References

	Towards Logic-Based Verification of JavaScript Programs
	1 Introduction
	2 Motivation
	2.1 A Priority Queue Library
	2.2 The Complexity of JavaScript
	2.3 Specification of JavaScript libraries

	3 A Pathway to JavaScript Verification
	3.1 Choosing the Battleground
	3.2 Moving to a Simpler World
	3.3 Trusted Compilation of JavaScript
	3.4 Tackling the Javascript Internal Functions
	3.5 JavaScript Verification Toolchain

	4 Specifying the Priority Queue Library
	4.1 Discussion

	References

	Formal Verification of Financial Algorithms
	1 Introduction
	1.1 Overview

	2 The Stack of Financial Algorithms
	2.1 Venues
	2.2 Smart Order Routers
	2.3 Execution Algorithms
	2.4 Ascending the Stack

	3 Introduction to Imandra
	3.1 Computing with Counterexamples
	3.2 Principal Region Decompositions
	3.3 Staged Symbolic Execution

	4 Verifying Trading Venue Matching Logics
	4.1 A Primer on Market Microstructure
	4.2 Venue Verification Goals
	4.3 UBS ATS and Transitivity of Order Ranking

	5 Verifying Trading System Connectivity
	6 Ascending the Stack
	6.1 Ethereum Virtual Machine
	6.2 Derivatives and Structured Products
	6.3 Formalised (New) Financial Mathematics

	7 Conclusion
	References

	Satisfiability Modulo Theories and Assignments
	1 Introduction
	2 Preliminaries
	3 Assignments and Theory Modules
	3.1 Assignments
	3.2 Theory Modules

	4 Examples of Theory Modules
	4.1 A Module for Propositional Logic
	4.2 A Theory Module for LRA
	4.3 A Theory Module for EUF
	4.4 A Theory Module for Arrays
	4.5 Generic Theory Modules for Equality Sharing

	5 The CDSAT Inference System
	6 Soundness, Termination, and Completeness of CDSAT
	6.1 Soundness
	6.2 Termination
	6.3 Completeness

	7 Discussion
	References

	Notions of Knowledge in Combinations of Theories Sharing Constructors
	1 Introduction
	2 Preliminaries
	3 Combination of Theories
	3.1 Constructor-Sharing Theories
	3.2 Equational Proofs in Combined Theories
	3.3 Frames in Combined Theories

	4 Application to Two Notions of Knowledge in Protocols
	4.1 Deduction Problem
	4.2 Static Equivalence

	5 Conclusion
	References

	On the Combination of the Bernays--Schönfinkel--Ramsey Fragment with Simple Linear Integer Arithmetic
	1 Introduction
	2 Preliminaries
	3 Instantiation for BSR(SLI)
	3.1 Instantiation of Integer Variables
	3.2 Independent Bound Selection
	3.3 Instantiation of Free-Sort Variables

	4 Stratified Clause Sets
	5 Discussion
	References

	Satisfiability Modulo Transcendental Functions via Incremental Linearization
	1 Introduction
	2 Background
	3 Overview of the Approach
	4 Abstraction Refinement for Transcendental Functions
	4.1 Exponential Function
	4.2 Sin Function
	4.3 Optimization

	5 Related Work
	6 Experimental Analysis
	7 Conclusion
	References

	Satisfiability Modulo Bounded Checking
	1 Introduction
	2 Logic
	3 Evaluation with Explanations
	4 Delegating Choices and Conflict Analysis to SAT
	5 Enumeration of Inputs and Iterative Deepening
	5.1 Application to the Introductory Example

	6 Extensions of the Language
	6.1 Uninterpreted Types
	6.2 Functional Unknowns

	7 Refinements to the Calculus
	7.1 Multiple Conflict Clauses
	7.2 Unification Rules

	8 Implementation
	9 Experiments
	10 Conclusion
	References

	Short Proofs Without New Variables
	1 Introduction
	2 Preliminaries
	3 Clause Redundancy and Clausal Proofs
	4 Clause Redundancy via Implication
	5 Short Proofs of the Pigeon Hole Principle
	6 Evaluation
	7 Related Work
	8 Conclusion
	References

	Relational Constraint Solving in SMT
	1 Introduction
	1.1 Related Work
	1.2 Formal Preliminaries

	2 A Relational Extension to a Theory of Finite Sets
	3 A Calculus for the Relational Extension
	4 Calculus Correctness
	5 Applications of TR
	5.1 Alloy Specifications
	5.2 OWL DL Ontologies

	6 Evaluation
	6.1 Experimental Evaluation on Alloy Models
	6.2 Experimental Evaluation on OWL Models

	7 Conclusion and Future Work
	References

	Decision Procedures for Theories of Sets with Measures
	1 Introduction
	2 Examples
	3 Theories of Sets with Measures
	4 Reasoning About Sets and Measures
	4.1 Atomic Decompositions
	4.2 Reasoning with Measures

	5 Locality of Measure Axioms
	5.1 A Tractable Fragment of the Theory of Sets with Measures

	6 Prospective Work: Duration Calculus
	7 Conclusion and Outlook
	References

	A Decision Procedure for Restricted Intensional Sets
	1 Introduction
	2 LRIS: Syntax, Semantics and Applicability
	3 A Solver for LRIS
	3.1 The Solver
	3.2 Rewrite Rules

	4 Decidability of LRIS Formulas
	4.1 Satisfiability of Solved Form
	4.2 Termination and Equisatisfiability

	5 Discussion
	6 RIS in Practice
	6.1 Using {log} for Program Verification
	6.2 Comparison with ProB

	7 Related Work
	8 Concluding Remarks
	References

	Decidability of the Monadic Shallow Linear First-Order Fragment with Straight Dismatching Constraints
	1 Introduction
	2 First-Order Clauses with Straight Dismatching Constraints: MSL(SDC)
	3 Decidability of the MSL(SDC) Fragment
	4 Approximation and Refinement
	5 Experiments
	6 Conclusion
	References

	Efficient Certified RAT Verification
	1 Introduction
	2 Background on Clausal Proof Checking
	3 Introducing the LRAT Format
	4 Verifying LRAT Proofs
	5 Checking LRAT Proofs in Coq
	6 LRAT Checker in ACL2
	7 Experimental Evaluation
	8 Conclusions
	References

	Efficient Verified (UN)SAT Certificate Checking
	1 Introduction
	2 Unsatisfiability Certificates
	3 The GRAT Format
	4 Program Verification with Isabelle/HOL
	5 A Verified GRAT Certificate Checker
	5.1 Syntax and Semantics of Formulas
	5.2 Unit Propagation and RAT
	5.3 Abstract Checker Algorithm
	5.4 Refinement Towards an Efficient Implementation

	6 Multithreaded Generation of Enriched Certificates
	7 Benchmarks
	8 Conclusions
	8.1 Future Work

	References

	Translating Between Implicit and Explicit Versions of Proof
	1 Introduction
	2 The Foundational Proof Certificates Framework
	3 Proof Checking Kernels as Logic Programs
	4 Example FPCs
	4.1 Controlling the Decide Rule
	4.2 Conjunctive Normal Form: A Decision Procedure as an FPC
	4.3 Resolution Refutations

	5 Pairing Certificates
	5.1 The Pairing FPC
	5.2 A Maximally Explicit FPC
	5.3 Elaboration and Distillation of Certificates

	6 The Kernel as a Functional Program
	7 Some Experiments with Certificate Elaboration
	8 Conclusions
	References

	A Unifying Principle for Clause Elimination in First-Order Logic
	1 Introduction
	2 Preliminaries
	3 Implication Modulo Resolution
	4 Blocked Clauses
	5 Asymmetric Tautologies and RATs
	6 Covered Clauses
	7 Resolution Subsumption and More
	8 Predicate Elimination
	9 Confluence Properties
	10 Conclusion
	References

	Splitting Proofs for Interpolation
	1 Introduction
	2 Preliminaries
	3 Interpolants from Refutations
	3.1 Splitting Refutations
	3.2 Intermediants of Linear Size
	3.3 Interpolants as Special Intermediants

	4 Implementing Local Splitting Functions
	4.1 Greedy Weighted Sum Heuristic
	4.2 Encoding Optimal Splitting as a Minimisation Problem

	5 Discussion and Related Work
	6 Experimental Results
	7 Conclusion
	References

	Detecting Inconsistencies in Large First-Order Knowledge Bases
	1 Introduction
	2 Automated Reasoning in Large Theories
	3 Automatic Inconsistency Probing
	3.1 Implementation

	4 Experimental Results
	4.1 SUMO Results
	4.2 OpenCyc Results
	4.3 Mizar Results

	5 Future Work
	6 Conclusion
	References

	Theorem Proving for Metric Temporal Logic over the Naturals
	1 Introduction
	2 Preliminaries
	3 From MTL to LTL: Encoding `gaps'
	4 From MTL to LTL: Encoding Time Differences
	5 Empirical Evaluation of the Translations
	6 An Example: Multiprocessor Job-Shop Scheduling
	7 Experiments with MJS Problems
	8 Conclusion
	References

	Scavenger 0.1: A Theorem Prover Based on Conflict Resolution
	1 Introduction
	2 Propositional CDCL
	3 Conflict Resolution
	4 Lifting Challenges
	5 First-Order Model Construction and Proof Search
	6 Implementation Details
	7 Experiments
	8 Conclusions and Future Work
	References

	WorkflowFM: A Logic-Based Framework for Formal Process Specification and Composition
	1 Introduction
	2 Logic-Based Process Modelling
	2.1 The Proofs-as-processes Paradigm
	2.2 Process Specification Using Linear Logic
	2.3 Composition via Proof
	2.4 Automation
	2.5 Visualisation

	3 Example
	4 Architecture
	4.1 The Reasoner
	4.2 The Server
	4.3 The Client
	4.4 Data Structures

	5 Conclusion
	References

	DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL
	1 Introduction
	2 Preliminaries
	3 QCDCL and the Generalized Q-Resolution Calculus
	4 Features of DepQBF
	5 Experiments
	6 Conclusion
	References

	CSI: New Evidence -- A Progress Report
	1 Introduction
	2 Extensions
	3 Unique Normal Forms
	4 Higher-Order Confluence
	5 Certification
	6 Implementation Details
	7 Experimental Results
	References

	Scalable Fine-Grained Proofs for Formula Processing
	1 Introduction
	1.1 Conventions

	2 Inference System
	3 Contextual Recursion
	3.1 The Generic Algorithm
	3.2 `Let' Expansion
	3.3 Skolemization
	3.4 Theory Simplification
	3.5 Combinations of Transformations
	3.6 Scope and Limitations

	4 Theoretical Properties
	5 Implementation
	5.1 Isabelle
	5.2 veriT

	6 Related Work
	7 Conclusion
	References

	Certifying Confluence of Quasi-Decreasing Strongly Deterministic Conditional Term Rewrite Systems
	1 Introduction
	2 Preliminaries
	3 Confluence of Quasi-Decreasing SDTRSs
	4 Certification
	5 Certification Challenges
	6 Available Check Functions
	7 Experiments
	8 Conclusion and Future Work
	A Browsing Isabelle/HOL Theory Files
	References

	A Transfinite Knuth--Bendix Order for Lambda-Free Higher-Order Terms
	1 Introduction
	2 Extension Orders
	3 Ordinals
	4 Term Orders
	4.1 The Standard First-Order KBO
	4.2 The Applicative KBO
	4.3 The Graceful Higher-Order Basic KBO
	4.4 The Graceful Higher-Order KBO
	4.5 The Graceful Higher-Order KBO with Argument Coefficients

	5 Properties
	6 Formalization
	7 Examples
	8 Conclusion
	References

	Certifying Safety and Termination Proofs for Integer Transition Systems
	1 Introduction
	2 Logic Transition Systems
	3 Certifying Invariants and Safety Proofs
	4 Certifying Termination Proofs
	4.1 Initial Transformation
	4.2 SCC and Cutpoint Decompositions
	4.3 Transition Removal
	4.4 Variable and Location Additions

	5 Linear Integer Arithmetic
	5.1 Reduction to Linear Programming
	5.2 Executable Certifier for ITSs

	6 Experiments
	7 Conclusion and Future Work
	References

	Biabduction (and Related Problems) in Array Separation Logic
	1 Introduction
	2 Motivating Example
	3 Array Separation Logic, ASL
	4 Satisfiability in ASL
	5 Biabduction
	5.1 An Algorithm for Quantifier-Free Biabduction
	5.2 Complexity of Quantifier-Free Biabduction in ASL
	5.3 Biabduction for ASL with Quantifiers

	6 Entailment
	7 Related Work
	8 Conclusions and Future Work
	References

	Automatically Verifying Temporal Properties of Pointer Programs with Cyclic Proof
	1 Introduction
	2 Programs and Assertions
	3 A Cyclic Proof System for Verifying CTL Properties
	4 Fairness
	5 Implementation and Evaluation
	6 Related Work
	7 Conclusions and Future Work
	References

	Satisfiability of Compositional Separation Logic with Tree Predicates and Data Constraints
	1 Introduction
	2 Preliminaries
	3 Compositional Separation Logic with Tree Predicates
	4 The Least Fixed Point of Data Predicates
	4.1 Dense Order Constraints
	4.2 Single Size Parameter
	4.3 The General Case

	5 Satisfiability
	6 Conclusion
	References

	A Proof Strategy Language and Proof Script Generation for Isabelle/HOL
	1 Introduction
	2 Background
	3 Syntax of PSL
	4 PSL by Example
	5 The Default Strategy: try_hard.
	6 Monadic Interpretation of Strategy
	7 Related Work
	8 Conclusions
	A Appendix: Details of the Evaluation
	References

	The Binomial Pricing Model in Finance: A Formalization in Isabelle
	1 Introduction
	2 Preliminary Notions
	2.1 Some Notions in Finance
	2.2 Probability Theory in Isabelle: Existing Notions

	3 Enriching the Probability Theory
	3.1 Modeling the Passage of Time
	3.2 The Infinite Coin Toss Space

	4 Modeling Equity Markets in Discrete Time
	4.1 General Definitions
	4.2 Arbitrage Processes and Viable Markets

	5 The CRR Model
	6 Discussion
	References

	Monte Carlo Tableau Proof Search
	1 Introduction
	2 Monte Carlo Tree Search
	2.1 Problem Setting and Example
	2.2 Trees
	2.3 Monte Carlo Step Function

	3 Tableau
	4 Tableau Heuristics
	4.1 Transition Probability
	4.2 State Reward
	4.3 \beta-minimal Expansion Policies

	5 Implementation
	6 Evaluation
	7 Conclusion
	References

	Author Index

