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Leibniz’s/Hilbert’s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
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How Do We Automate Math, Science, Programming?

� What is mathematical and scientific thinking?
� Pattern-matching, analogy, induction from examples
� Deductive reasoning
� Complicated feedback loops between induction and deduction
� Using a lot of previous knowledge - both for induction and deduction

� We need to develop such methods on computers
� Are there any large corpora suitable for nontrivial deduction?
� Yes! Large libraries of formal proofs and theories
� So let’s develop strong AI on them!
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What is Formal Mathematics and Theorem Proving?

� 1900s: Mathematics put on formal logic foundations – symbolic logic
� Culmination of a program by Leibniz/Frege/Russell/Hilbert/Church/...
� ... led also to the rise of computers (Turing/Church, 1930s)
� ... and rise of AI - Turing’s 1950 paper: Learning Machines, Chess, etc.
� 1950s: First AI program: Logic Theorist by Newell & Simon
� Formalization of math (60s): combine formal foundations and computers
� Proof assistants/Interactive theorem provers and their large libraries:
� Automath (1967), LCF, Mizar, NQTHM, HOL, Coq, Isabelle, ACL2, Lean
� Automated theorem provers - search for proofs automatically:
� Otter, Vampire, E, SPASS, Prover9, CVC4, Z3, Satallax, ...
� more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)
� TP-motivated PLs: ML, Prolog, (logic programming - Hayes, Kowalski)
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Why Do This Today?

1 Practically Useful for Verification of Complex HW/SW and Math
� Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
� Formal Proof of the Feit-Thompson Theorem (2 books, 2012 – Gonthier)
� Verification of several math textbooks and CS algorithms
� Verification of compilers (CompCert)
� Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
� Verification of cryptographic protocols (Amazon), etc.

2 Blue Sky AI Visions:
� Get strong AI by learning/reasoning over large KBs of human thought?
� Big formal theories: good semantic approximation of such thinking KBs?
� Deep non-contradictory semantics – better than scanning books?
� Gradually try learning math/science
� automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

� What are the components (inductive/deductive thinking)?
� How to combine them together?

5 / 31



Example: Irrationality of
p

2 (informal text)

small proof from Hardy & Wright:

Theorem 43 (Pythagoras’ theorem).
p

2 is irrational.
The traditional proof ascribed to Pythagoras runs as follows. If

p
2

is rational, then the equation

a2 = 2b2 (4.3.1)

is soluble in integers a, b with (a;b) = 1. Hence a2 is even, and
therefore a is even. If a = 2c, then 4c2 = 2b2, 2c2 = b2, and b is
also even, contrary to the hypothesis that (a;b) = 1. �
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Irrationality of
p

2 (Formal Proof Sketch)

exactly the same text in Mizar syntax:

theorem Th43: :: Pythagoras’ theorem
sqrt 2 is irrational

proof
assume sqrt 2 is rational;
consider a,b such that

4_3_1: a^2 = 2*b^2 and
a,b are relative prime;

a^2 is even;
a is even;
consider c such that a = 2*c;
4*c^2 = 2*b^2;
2*c^2 = b^2;
b is even;
thus contradiction;

end;
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Irrationality of
p

2 in HOL Light

let SQRT_2_IRRATIONAL = prove
(‘~rational(sqrt(&2))‘,
SIMP_TAC[rational; real_abs; SQRT_POS_LE; REAL_POS] THEN
REWRITE_TAC[NOT_EXISTS_THM] THEN REPEAT GEN_TAC THEN
DISCH_THEN(CONJUNCTS_THEN2 ASSUME_TAC MP_TAC) THEN
SUBGOAL_THEN ‘~((&p / &q) pow 2 = sqrt(&2) pow 2)‘
(fun th -> MESON_TAC[th]) THEN

SIMP_TAC[SQRT_POW_2; REAL_POS; REAL_POW_DIV] THEN
ASM_SIMP_TAC[REAL_EQ_LDIV_EQ; REAL_OF_NUM_LT; REAL_POW_LT;

ARITH_RULE ‘0 < q <=> ~(q = 0)‘] THEN
ASM_MESON_TAC[NSQRT_2; REAL_OF_NUM_POW; REAL_OF_NUM_MUL; REAL_OF_NUM_EQ]);;
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Irrationality of
p

2 in Isabelle/HOL

WKHRUHP�VTUW�BQRWBUDWLRQDO�
���VTUW��UHDO��������
SURRI
��DVVXPH��VTUW��UHDO��������
��WKHQ�REWDLQ�P�Q����QDW�ZKHUH
����QBQRQ]HUR���Q�X����DQG�VTUWBUDW���hVTUW��UHDO���h� �UHDO�P���UHDO�Q�
����DQG�ORZHVWBWHUPV���JFG�P�Q� ������
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��ZLWK�ORZHVWBWHUPV�KDYH����GYG����E\�VLPS
��WKXV�)DOVH�E\�DULWK
THG
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Big Example: The Flyspeck project
� Kepler conjecture (1611): The most compact way of stacking balls of the

same size in space is a pyramid.

V =
�p
18
� 74%

� Proved by Hales in 1998, 300-page proof + computations
� Big: Annals of Mathematics gave up reviewing after 4 years
� Formal proof finished in 2014
� 20000 lemmas in geometry, analysis, graph theory
� All of it at https://code.google.com/p/flyspeck/
� All of it computer-understandable and verified in HOL Light:
� polyhedron s /\ c face_of s ==> polyhedron c
� However, this took 20 – 30 person-years!
� our 2014 work: AI/TP combinations can hammer 40% of the 20k lemmas
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AI and ML Combinations with Theorem Proving

� high-level: pre-select lemmas from a large library, give them to ATPs
� high-level: pre-select a good ATP strategy/portfolio for a problem
� high-level: pre-select good hints for a problem, use them to guide ATPs
� low-level: guide every inference step of ATPs (tableau, superposition)
� low-level: guide every kernel step of LCF-style ITPs
� mid-level: guide application of tactics in ITPs
� mid-level: invent suitable ATP strategies for classes of problems
� mid-level: invent suitable conjectures for a problem
� mid-level: invent suitable concepts/models for problems/theories
� proof sketches: explore stronger/related theories to get proof ideas
� theory exploration: develop interesting theories by conjecturing/proving
� feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
� autoformalization: (semi-)automate translation from LATEX to formal
�
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Today’s AI-ATP systems (?-Hammers)

Proof Assistant ?Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

� Mizar / MML – MizAR
� Isabelle (Auth, Jinja) – Sledgehammer
� Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
� HOL4 (Gauthier and Kaliszyk)
� CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

� 40-45% success by 2016, 60% on Mizar as of 2021

12 / 31



AI/TP Examples and Demos

� ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7
(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz,

� 3-phase ENIGMA: https://bit.ly/3C0Lwa8,https://bit.ly/3BWqR6K
� Long trig proof from 1k axioms: https://bit.ly/2YZ0OgX
� Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
� TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

� Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

� Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

13 / 31

https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv


ENIGMA (2017): Guiding the Best ATPs like E Prover

� ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

� The proof state are two large heaps of clauses processed/unprocessed
� learn on E’s proof search traces, put classifier in E
� positive examples: clauses (lemmas) used in the proof
� negative examples: clauses (lemmas) not used in the proof
� 2021 multi-phase architecture (combination of different methods):

� fast gradient-boosted decision trees (GBDTs)
� logic-aware graph neural network (GNN) run on a GPU server
� logic-based subsumption using fast indexing (discrimination trees)

� 2021: leapfrogging and Split&Merge:
� aiming at learning reasoning/algo components
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Feedback prove/learn loop for ENIGMA on Mizar data

� Done on 57880 Mizar problems recently
� Serious ML-guidance breakthrough applied to the best ATPs
� Ultimately a 70% improvement over the original strategy in 2019
� From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
� Went up to 40k in more iterations and 60s time in 2020
� 75% of the Mizar corpus reached in July 2021 - higher times and many

runs

S S �M0
9 S �M0

9 S �M1
9 S �M1

9 S �M2
9 S �M2

9 S �M3
9 S �M3

9
solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S� -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S �M3

12 S �M3
16 S �M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S� -535 -295 -309 -183
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TacticToe: mid-level ITP Guidance (Gauthier’17,18)

� TTT learns from human and its own tactical HOL4 proofs
� No translation or reconstruction needed - native tactical proofs
� Fully integrated with HOL4 and easy to use
� Similar to rlCoP: policy/value learning for applying tactics in a state
� However much more technically challenging - a real breakthrough:

� tactic and goal state recording
� tactic argument abstraction
� absolutization of tactic names
� nontrivial evaluation issues
� these issues have often more impact than adding better learners

� policy: which tactic/parameters to choose for a current goal?
� value: how likely is this proof state succeed?
� 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
� also for Isabelle (Nagashima), HOL Light (Google), Coq (Blaauwbroek)
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More on Conjecturing and Synthesis in Math

� Targeted: generate intermediate lemmas (cuts) for a harder conjecture
� Unrestricted (theory exploration):
� Creation of interesting conjectures/concepts based on the previous

theory
� One of the most interesting activities mathematicians do (how?)
� Higher-level AI/reasoning task - can we learn it?
� If so, we have solved math:
� ... just (recursively) divide Fermat into many subtasks ...
� ... and conquer (I mean: hammer) them away
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A bit of history

� The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
� Combined with automated theorem proving by Colton et al. in early

2000s (HR)
� Theory exploration for Isabelle by Johansson et al (Hipster)
� Several learning-based/neural approaches by our groups since 2015:
� Based mainly on learning analogies and informalization followed by

probabilistic/neural disambiguation
� Gauthier’s deep RL-based synthesis toolkit in HOL:

� Guiding synthesis of combinators for a given lambda expression
� Guiding synthesis of a diophantine equation characterizing a given set
� Guiding synthesis of programs describing integer sequences (OEIS)
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Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “proof” - typechecks!
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A correct GPT conjecture that was too hard to prove

Original Mizar theorem stated for finite groups:

theorem Th10: :: GROUPP_1:10
for G being finite Group for N being normal Subgroup of G
st N is Subgroup of center G & G ./. N is cyclic holds

G is commutative

Kinyon and Stanovsky (algebraists) confirmed that this GPT generalization
that avoids finiteness is valid:

for G being Group for N being normal Subgroup of G
st N is Subgroup of center G & G ./. N is cyclic holds

G is commutative
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Prover9 - Research-Level Open Conjectures

� Michal Kinyon, Bob Veroff and Prover9: quasigroup and loop theory
� the Abelian Inner Mappinngs (AIM) Conjecture (>10 year program)
� Strong AIM: Q is AIM implies Q/Nuc(Q) is abelian and Q/Z(Q) is a group
� The Weak AIM Conjecture positively resolved in August 2021
� Q is AIM implies Q is nilpotent of class at most 3.
� 20-200k long proofs by Prover9 assisting the humans
� Prover9 hints strategy (Bob Veroff): extract hints from easier proofs to

guide more difficult proofs
� Human-guided exploration to get good hints (not really automated yet)
� Millions of hints collected, various algorithms for their selection for a

particular conjecture
� Symbolic machine learning?
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Neural Autoformalization (Wang et al., 2018)

� generate ca 1M Latex/Mizar (informal/formal) pairs
� train neural seq-to-seq translation models (Luong – NMT)
� evaluate on about 100k examples
� many architectures tested, some work much better than others
� very important latest invention: attention in the seq-to-seq models
� more data very important for neural training – our biggest bottleneck
� Recent addition: unsupervised methods (Lample et all 2018) – no need

for aligned data!
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Neural Autoformalization data

Rendered LATEX If X � Y � Z , then X � Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $ , then $ X \subseteq Z $ .
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Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then lim(s8+s7) = lim s8+ lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ( { s _ { 8 }
} { + } { s _ { 7 } } ) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $ .

Correct seq1 is convergent & seq2 is convergent implies lim ( seq1
+ seq2 ) = ( lim seq1 ) + ( lim seq2 ) ;

Snapshot-
1000

x in dom f implies ( x * y ) * ( f | ( x | ( y | ( y | y )
) ) ) = ( x | ( y | ( y | ( y | y ) ) ) ) ) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim ( seq + seq9 ) = ( lim seq ) + ( lim seq9 ) ;
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Future: AITP Challenges/Bets

� Big challenge: Learn complicated symbolic algorithms (not black box)
� 3 AITP bets from my 2014 talk at Institut Henri Poincare

� In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

� In 10 years: 60% (DONE already in 2021)
� In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math

curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than I expected)

� My (conservative?) estimate when we will do Fermat:
� Human-assisted formalization: by 2050
� Fully automated proof (hard to define precisely): by 2070
� See the Foundation of Math thread: https://bit.ly/300k9Pm
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Computing and Logic: Curry Howard vs Others

� Disclaimer: you may want to discuss this with more formalizers
� But my impression is that Curry-Howard is a nice analogy ...
� ... which is however not much used in ITP practice
� Because extraction of efficient programs from proofs is hard
� Eg: constructive proof of the fundamental theorem of algebra in Coq
� Verified code is typically produced by other mechanisms:
� Extraction of definitions/lemmas as Haskell/ML from Isabelle - Flyspeck
� Verified machine code in HOL Light, CakeML, CompCert, seL4, ...
� Coq: division into efficient automated term normalization (“computing”) vs

slow/manual general “reasoning” (Barendregt?)
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Computing and Logic: Logic Programming

� Kowalski (2014): “The driving force behind logic programming is the idea
that a single formalism suffices for both logic and computation, and that
logic subsumes computation.”

� “Logic programs [..] combine logic and control, but make it possible to
read the same program both logically and procedurally.”

� “I later expressed this as Algorithm = Logic + Control (A = L + C)
[Kowalski, 1979a], influenced by Pat Hayes’ [1973] Computation =
Controlled Deduction.”
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Computing and Logic: Logic Programming

� Kowalski (2014):
� “logic programming can also be understood more generally, for example,

to include negation by failure , set construction, or goal-directed
reasoning with equations”

� Hayes: inference with equations imitates computation in Lisp
� “LP excludes, for example, systems of constructive logic in which proofs

are interpreted as programs,...”
� Today: Clausal ATPs over Mizar seem to begin to learn some

computational tasks
� Numerical calculations, boolean algebra, differentiation/integration, matrix

operations, algebraic rewriting, etc
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Automated Large-Theory Logic Programming?

1 a growing computational/reasoning universe of millions of verified
mathematical (Prolog-style?) concepts/facts/rules

2 many queries: easier/harder mathematical problems including
computation and reasoning

3 queries/conjectures are continuously asked and attempted by
(continuously) trained AI/TP algorithms

4 The AI/TP systems select and combine the facts and rules automatically -
a.k.a learning-guided theorem provers

5 The systems are continuously learning from their successes and failures,
resulting in self-improvement and capability to attack more
efficiently/deterministically harder computational problems

6 I.e., neither the manual programming of control as in Prolog, nor the
unrestricted brute force search as in unguided ATPs

7 Instead: A framework for self-learned automated program control

29 / 31



Let’s Do Generalized (Fuzzy) Logic Programming

� Winograd [1971] “Our heads don’t contain neat sets of logical axioms
from which we can deduce everything through a ‘proof procedure’.
Instead we have a large set of heuristics and procedures for solving
problems at different levels of generality.”

� Our 2021 Learning of (Fuzzy) Reasoning Components (Split & Merge):
1 use a GNN to learn to identify interacting reasoning components based on

many proofs
2 use graph-based and clustering-based algorithms to split the sets of clauses

into components,
3 run saturation ATPs on the components,
4 use premise selection to merge the component results, and
5 iterate the procedure.
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Further Notes For Discussion
� ML and ILP are further examples of (non-human) algorithm construction
� Learning-based symbolic program synthesis - various ways - ILP,

transformers, symbolic regression, combined methods
� Similar to our learning-based proof construction methods (overlapping in

the case of logic programming)
� Cf. Turing’s last chapter on learning machines
� Algorithms are formally defined and often even executable in various

ways in today’s large formalizations: Isabelle, HOL, Coq, Mizar.
� Example: John Harrison’s formalization and machine code for elliptic

curve cryptography.
� Ownership of mathematical statements - the Proofgold blockchain (Chad

Brown - Kuratowski, bounties). Can be similarly done for proofs and
algorithms (smart contracts?) in blockchains. Alternative to law?

� Our 2011 MML licencing paper and its connection to today’s systems like
Copilot: What if you train reasoning/computing systems on large
math/code corpora? How much is even Google search legal (it extracts
knowledge/algorithms from Wikipedia, etc.)
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