
Proofgold: Blockchain for Formal Methods1

Chad E. Brown2

Czech Technical University in Prague3

Cezary Kaliszyk ¡4

University of Innsbruck5

Thibault Gauthier ¡6

Czech Technical University in Prague7

Josef Urban ¡8

Czech Technical University in Prague9

Abstract10

Proofgold is a peer to peer cryptocurrency making use of formal logic. Users can publish theories11

and then develop a theory by publishing documents with definitions, conjectures and proofs. The12

blockchain records the theories and their state of development (e.g., which theorems have been13

proven and when). Two of the main theories are a form of classical set theory (for formalizing14

mathematics) and an intuitionistic theory of higher-order abstract syntax (for reasoning about15

syntax with binders). We give examples of definitions and theorems published into the Proofgold16

blockchain to demonstrate how the Proofgold network can be used to support formalization efforts.17

We have also significantly modified the open source Proofgold Core client software to create a faster,18

more stable and more efficient client, Proofgold Lava. Two important changes are the cryptography19

code and the database code, and we discuss these improvements.20

2012 ACM Subject Classification Theory of computation → Automated reasoning21

Keywords and phrases Formal logic, Blockchain, ProofGold22

Digital Object Identifier 10.4230/OASIcs...23

1 Introduction24

Proofgold is a cryptocurrency network with support for formal logic and mathematics. At25

the core of Proofgold is a proof checker for intuitionistic higher-order logic with functional26

extensionality. On top of this framework users can publish theories. A theory consists of a27

finite number of primitive constants along with their types and a finite number of sentences28

as axioms. A theory is uniquely identified by its 256-bit identifier given by the Merkle root of29

the theory (seen as a tree). After a theory has been published, documents can be published30

in the theory. Documents can define new objects (using primitives or previously defined31

objects), prove new theorems and make new conjectures.32

When a theory is published, the axioms are associated with public keys which are marked33

as the owners of the propositions. Likewise, when a document proves a theorem within a34

theory, a public key (associated with the publisher of the document) is associated with the35

proven proposition. These are the only ways propositions can have declared owners. As a36

consequence, it is possible to determine if a proposition is known (either as an axiom or as a37

previously proven theorem) by checking if it has an owner. This method of keeping up with38

proven propositions by associating them with public keys was described in the Qeditas white39

paper [20] and was part of the Qeditas codebase.1 Ownership of propositions also gives a40

way of redeeming bounties by proving conjectures. A bounty can be placed on an unproven41

1 A large part of Proofgold’s code was inherited from the open source Qeditas project. More information
about Qeditas is at https://iohk.io/en/projects/qeditas/.

© Chad E. Brown, Thibault Gauthier, Cezary Kaliszyk, and Josef Urban;
licensed under Creative Commons License CC-BY 4.0

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cezary.kaliszyk@uibk.ac.at
https://orcid.org/0000-0002-8273-6059
mailto:email@thibaultgauthier.fr
https://orcid.org/0000-0002-7348-0602
mailto:josef.urban@gmail.com
https://orcid.org/0000-0002-1384-1613
https://doi.org/10.4230/OASIcs...
https://iohk.io/en/projects/qeditas/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de


XX:2 Proofgold: Blockchain for Formal Methods

Γ ` s
s ∈ A

Γ ` s
s ∈ Γ

Γ ` s
Γ ` t

s≈t
Γ, s ` t

Γ ` s→ t

Γ ` s→ t Γ ` s
Γ ` t

Γ ` s
Γ ` ∀x.s

x ∈ Vα \ FΓ
Γ ` ∀x.s
Γ ` sxt

x ∈ Vα, t ∈ Λα

Γ ` sx = tx

Γ ` s = t
x ∈ Vα \ (FΓ ∪ Fs ∪ Ft) and s, t ∈ Λαβ

Figure 1 Proof Calculus for Intuitionistic HOL

proposition where this bounty can only be spent by the owner of a proposition (or the owner42

of the negated proposition). By publishing a document resolving the conjecture, the bounty43

proposition (or its negation) will become owned by public keys associated with the publisher44

of the document. After this the bounty can be claimed.45

2 Intuitionistic Higher Order Logic46

We briefly describe a formulation of intuitionistic higher order logic (IHOL). We begin with47

a set T of simple types. One base type o is the type of propositions. In general Proofgold48

allows finitely many other base types, but we will only consider cases with one other base49

type ι. All other types are αβ, meaning the type of functions from α to β.50

We next define a family of simply typed terms. For each type α ∈ T , let Vα be a countably51

infinite set of variables of type α. Let C be a finite set of typed constants. We define a set52

Λα of terms of type α as follows: For each variable x of type α, x ∈ Λα. For each constant c53

of type α, c ∈ Λα. If s ∈ Λαβ and t ∈ Λα, then (st) ∈ Λβ . If x is a variable of type α and54

s ∈ Λβ , then (λx.s) ∈ Λαβ . If s, t ∈ Λo, then (s→ t) ∈ Λo. If x is a variable of type α and55

s ∈ Λo, then (∀x.s) ∈ Λo. Note that Λα also depends on the set C, but this set will be fixed56

in each theory.57

We use common conventions to omit parentheses. We sometimes include annotations on58

λ and ∀ bound variables (e.g., λx : α.s and ∀y : β.s) to indicate the type of the variable.59

We define Fs to be the free variables of s and for sets A of terms we define FA to be60 ⋃
s∈A Fs. We assume a capture avoiding substitution sxt is defined. Terms of type o are61

called propositions. A sentence is a proposition with no free variables.62

The only built-in logical connective is implication (→) and the only built-in quantifier is63

the universal quantifier (∀). In the context of higher-order logic it is well-known how to define64

the remaining logical constructs in a way that respects their intuitionistic meaning. In each65

case we use an impredicative definition that traces its roots to Russell [16] and Prawitz [14].66

We define ⊥ to be the proposition ∀p : o.p where x is a variable of type o. We write ¬s for67

s → ⊥. We define ∧ to be λqr : o.∀p : o.(q → r → p) → p and write s ∧ t for (∧s)t. We68

define ∨ to be λqr : o.∀p : o.(q → p)→ (r → p)→ p and write s ∨ t for (∨s)t. For each type69

α we use ∃x : α.s as notation for ∀p : o.(∀x : α.s→ p)→ p where p is not x and is not free in70

s. For equality we write s = t (where s and t are type α) as notation for ∀p : ααo.pst→ pts71

where p is neither free in s nor t. This is a modification of Leibniz equality which we will72

call symmetric Leibniz equality. We write s 6= t to mean (s = t)→ ⊥. The βη-conversion73

relation s≈t is defined in the usual way.74



C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:3

Let A be a set of sentences intended to be axioms of a theory. A natural deduction75

system for intuitionistic higher-order logic with functional extensionality and axioms A is76

given by Figure 1. In particular the rules define when Γ ` s holds where Γ is a finite set of77

propositions and s is a proposition. Aside from the treatment of functional extensionality,78

this is the same as the natural deduction calculus described in [3].79

Adding Curry-Howard style checkable proof terms to such a calculus is well-understood80

and we do not dwell on this here [18]. Proofs published in Proofgold documents are given81

by such proof terms. There are two practical restrictions Proofgold places on proofs. One82

restriction is that proofs cannot be too big. A proof is part of a document, a document83

is published in a transaction and a transaction is published in a block. Proofgold has a84

block size limit of 500KB, so that proofs larger than 500KB (measured in Proofgold’s binary85

format) cannot be published. Another restriction is that checking a proof is not allowed to be86

too hard. In an extreme case, checking a proof could require β-normalizing a term of size m87

to obtain a term of size 222m

(or even much larger). The Proofgold Core checker avoids such88

“poison proofs” by maintaining a counter that increments while a document is being checked.89

Each step of the computation increments the counter. For example, substituting t for a de90

Bruijn index x in a term r x x increments the counter at least 5 times since there are two91

applications, two occurrences of x and one occurrence of r. Depending on the structure of r92

the counter may be incremented more. Also, in practice the substitution may be beneath93

a binder so that de Bruijn indices in t may need to be shifted. Such shifting increments94

the counter in a similar way. If the counter reaches a certain bound (150 million), then an95

exception is raised and the document is considered to be incorrect.96

3 Proofgold Theories97

3.1 HF Theory98

Proofgold has one built-in theory: a theory of hereditarily finite sets (HF). There are many99

primitive constants, but only six do not have a defining equation: ε : (ιo)ι (a “choice”100

operator), ∈: ιιo (set membership), ∅ : ι (the empty set, also the ordinal 0),
⋃

: ιι (the union101

operator), ℘ : ιι (the power set operator) and r : ι(ιι)ι (the replacement operator). For each102

of the above constants, there is at least one axiom giving a property the constant must satisfy.103

Additional axioms are a classical principle (∀p.¬¬p→ p), set extensionality, an ∈-induction104

principle and an induction principle implying all sets are hereditarily finite.105

The theory additionally includes 97 constants with axioms giving a definitional equation106

for each constant. Examples include a constant indicating a set has exactly 5 elements, a107

constant indicating that an algebraic structure is a loop and a constant indicating that two108

untyped combinators (represented as sets) are equivalent under conversion. The HF theory109

was used to generate pseudorandom bounties for the first 5000 Proofgold blocks. These extra110

constants make it possible to easily generate sentences targeting certain classes.2 The last of111

the pseudorandom bounties was automatically placed in December 2020. As of May 2022,112

38% of the conjectures have been resolved and the bounties collected. The fact that 62% are113

still outstanding after 17 months is an indication of the difficulty of the problems.114

2 More information can be found in http://grid01.ciirc.cvut.cz/~chad/pfghf.pdf.

http://grid01.ciirc.cvut.cz/~chad/pfghf.pdf


XX:4 Proofgold: Blockchain for Formal Methods

3.2 Two HOTG Theories115

There are two theories axiomatizing higher-order Tarski Grothendieck set theory (HOTG).116

The two theories follow the two formulations described in [3]. One is based on the Mizar117

formulation3 and the other is based on the Egal formulation. Both theories are classical118

via the Diaconescu proof of excluded middle from choice (at ι) and set extensionality [15].119

Most of the documents published into the Proofgold blockchain have been published in the120

HOTG-Egal theory. These documents target formalization of mathematics. A highlight is121

the construction of the real numbers via a representation of Conway’s surreal numbers [4].122

3.3 A Theory for HOAS123

A different kind of theory published into the Proofgold blockchain is a theory for reasoning124

about syntax. Unlike the theories above, this theory does not imply classical principles.125

For our theory of syntax, we include one base type ι, two primitive constants P : ιιι and126

B : (ιι)ι and four axioms:127

Pairing is injective: ∀xyzw : ι.Pxy = Pzw → x = z ∧ y = w.128

Binding is injective: ∀fg : ιι.Bf = Bg → f = g.129

Binding and pairing give distinct values: ∀xy : ι.∀f : ιι.Pxy 6= Bf .130

Propositional extensionality: ∀pq : o.(p→ q)→ (q → p)→ p = q.131

The constant P is a generic pairing operation on syntax and B is a generic binding operation,132

allowing representation by higher-order abstract syntax (HOAS) [13].133

We can embed many syntactic constructs into the theory by building on top of the basic134

pairing and binding operators. For example, we could embed untyped λ-calculus by taking P135

to represent application and B to represent λ-abstraction. Instead of adopting this simple136

approach, we will use tagged pairs when representing application and λ-abstraction, so that137

there will still be infinitely many pieces of syntax that do not represent untyped λ-terms. To138

do this we will need one tag, so let us define nil to be B(λx.x). Now we can define A : ιιι to139

be λxy : ι.P nil (P x y) and define L : (ιι)ι to be λf : ιι.P nil (B f). It is easy to prove A and140

L are both injective and give distinct values.141

We can now impredicatively define the set of untyped λ-terms relative to a set G (intended142

to be the set of possible free variables) as follows. Let us write (G, x) for the term λy :143

ι.G y ∨ y = x. Here G has type ιo while x and y have type ι (and are different). We will144

define Ter : (ιo)ιo so that Ter is the least relation satisfying three conditions:145

∀G : ιo.∀y : ι.Gy → Ter G y,146

∀G : ιo.∀f : ιι.(∀x : ι.Ter (G, x) (fx))→ Ter G (L f) and147

∀G : ιo.∀yz : ι.Ter G y → Ter G z → Ter G (A y z).148

Technically, the impredicative definition of Ter is given as

Ter := λG : ιo.λx : ι.∀p : (ιo)ιo.(∀G : ιo.∀y : ι.Gy → p G y)
→ (∀G : ιo.∀f : ιι.(∀x : ι.p (G, x) (fx))→ p G (L f))

→ (∀G : ιo.∀yz : ι.p G y → p G z → p G (A y z))→ p G x.

3 More information about the Mizar formulation of HOTG can be found in http://grid01.ciirc.cvut.cz/
~chad/pfgmizar.pdf.

http://grid01.ciirc.cvut.cz/~chad/pfgmizar.pdf
http://grid01.ciirc.cvut.cz/~chad/pfgmizar.pdf


C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:5

We can similarly define one-step β-reduction (relative to a set of variables) as follows:

Beta1 := λG : ιo.λxy : ι.∀r : (ιo)ιιo.
(∀G : ιo.∀f : ιι.∀z.(∀x.Ter (G, x) (fx))→ Ter Gz → r G (A (L f) z) (fz))

→ (∀G : ιo.∀fg : ιι.(∀z.r (G, z) (fz)(gz))→ r G (L f) (L g))
→ (∀G : ιo.∀xyz.r G x z → Ter Gy → r G (A x y) (A z y))

→ (∀G : ιo.∀xyz.r G y z → Ter Gx→ r G (A x y) (A x z))→ r G x y.

We can then define BetaE G to be the least equivalence relation (relative to the domain149

Ter G) containing Beta1 G. We omit the details here.150

These definitions give us sufficient material to make conjectures that ask for certain kinds151

of untyped λ-terms. Let ∅ be notation for the term λx : ι.⊥ (representing the empty set of152

variables). Consider the following sentences:153

∃F : ι.Ter ∅ F ∧ ∀x : ι.BetaE (∅, x) (A F x) x (1)154

∃Y : ι.Ter ∅ Y ∧ ∀f : ι.BetaE (∅, f) (A Y f) (A f (A Y f)) (2)155

Sentence (1) asserts the existence of an identity combinator while sentence (2) asserts the156

existence of a fixed point combinator. In order to prove each sentence a combinator with the157

right property must be given as a witness and then be proven to have the property.4158

As a demonstration, these sentences were published as conjectures (with bounties) in159

documents published into the Proofgold blockchain. The solutions were then published as160

two theorems (with proofs). The solutions contain the witnesses: L(λx.x) for (1) and the161

famous Y -combinator L(λf.A(L(λx.A f (A x x)))(L(λx.A f (A x x)))) for (2).162

These simple examples suggest how Proofgold could be used to publish conjectures for163

verification conditions of programs or even conjectures asking for a program satisfying a164

specification. This could especially be useful for working with functional smart contract165

languages such as Plutus Core5.166

4 Proofgold Lava Client167

The existing client, ProofGold Core, has already included all the functionality needed to run168

the blockchain. However, certain parts of the implementation did not scale well. In particular169

as the number of proofs already in the blockchain grew operations such as synchronizing new170

clients or rechecking the blockchain became too costly. For these reasons we reimplemented171

parts of the client software and provide it as the Proofgold Lava Client and discuss the172

changes in this section.173

4.1 Database Layer174

The Proofgold client software uses 19 databases. In the Core software they have been stored175

in 19 directories, each with an index file and and a data file. Lookups in this database,176

including locking, became a significant overhead for all Merkle tree operations. For this reason177

in the Lava implementation we switched to the standard Unix DBM interface, in particular178

using the GDBM library by default, which in addition to the already used operations provides179

atomic operations.180

4 Note that in a classical calculus, it would be sufficient to prove such an existential statement by proving
it is impossible for a witness not to exist.

5 https://hydra.iohk.io/build/14133599/download/1/plutus-core-specification.pdf

https://hydra.iohk.io/build/14133599/download/1/plutus-core-specification.pdf


XX:6 Proofgold: Blockchain for Formal Methods

4.2 Cryptography Layer181

Harrison has provided an efficient library6 of field operations in the various cryptographic182

fields verified in the HOL Light theorem prover [8]. The library includes the Elliptic curve used183

by Bitcoin and Proofgold along with a number of other elliptic curves and operations provided184

for them [5]. In the Lava implementation we switched from the OCaml implementation185

of the cryptographic primitives to instead allow a low level efficient implementation. We186

provide the flexibility of switching between two implementations. First, we allow the use of187

the Bitcoin crypto implementation. It has been tested in Bitcoin and other cryptocurrencies,188

so it is likely to be correct. However, we also allow the use of the formally verified version189

(where the verified operations are the addition, multiplication, or inverse modulo in the field,190

but the verification of the actual additions and multiplication of points on the curve is still191

future work).192

In addition to the much more efficient encryption and signing, we also switched to a193

low-level implementation of SHA256 used for hashing, including the recursive hashing of194

all sub-structures used in the Merkle tree. That last operation is used quite often, as all195

subterms used in proof terms are serialized hashed this way.196

4.3 Networking and Proofchecking Layers197

The Lava client also includes a number of smaller improvements to the networking layer198

and to proof checking. We have decided not to change the actual communication protocol199

between the nodes or the limits used in the proof checking, but rather to improve the200

implementation. In particular, we have reduced the complexity of preparing block deltas,201

improved the efficiency of serialization, and replaced the implementation of the checker by a202

more efficient. More efficient checking for the variant of simple type theory used in Proofgold,203

including perfect term sharing and preserving a number of invariants (βη-normal forms,204

negation normalization, etc) is discussed elsewhere [2].205

5 A HOL4 Interface for Mining Bounties from the HF theory206

HOL4 [17] is an interactive theorem prover (ITP) for higher-order logic (HOL) that helps207

users to produce formal proofs and thus verify theorems. We are developing a HOL4 interface208

to Proofgold for two reasons. The first one is to enable people familiar with the HOL4209

system to check and share their proofs in Proofgold. This way, HOL4 users would benefit210

from the additional features provided by Proofgold such as authorship recognition and the211

bounty system. The second one, which is the focus of this section, is to provide a way to212

manually or automatically prove bounties in HF. For this task, we chose HOL4 because it is213

equipped with powerful automation. The source code of this interface can be downloaded at214

http://grid01.ciirc.cvut.cz/~thibault/h4pfg.tar.gz.215

5.1 Importing the HF theory into HOL4216

We import the 6 axioms and 97 definitions of the HF theory into HOL4. A translation217

between the two systems is straightforward since the logics of HOL4 and HF are similar and218

in particular the formula structures are almost identical. When reading a HF statement,219

the logical constants of the HF theory in Proofgold (e.g ∧,∨,∀,→, . . .) are mapped to their220

6 https://github.com/awslabs/s2n-bignum

http://grid01.ciirc.cvut.cz/~thibault/h4pfg.tar.gz
https://github.com/awslabs/s2n-bignum


C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:7

Definition for ⊆
` (a ⊆ b)↔ (∀y.y ∈ a→ y ∈ b)
` (t0 ⊆ t0)↔ (∀y.y ∈ t0 → y ∈ t0)

y ∈ t0 ` y ∈ t0
∀y. ` y ∈ t0 → y ∈ t0

` t0 ⊆ t0

` x1 = x1
` qt0x1 → x1 = x1
` ∀x1.qt0x1 → x1 = x1

` (t0 ⊆ t0) ∧ (∀x1.qt0x1 → x1 = x1)
` ∃x0.(x0 ⊆ t0) ∧ (∀x1.qx0x1 → x1 = x1)

Figure 2 A HOL4 Proof of a HF Bounty

HOL4 native versions. For other HF constants (e.g. ∈,⊂, exactly5 , . . .), new HOL4 constants221

are created. The same process is used to import HF bounties into HOL4.222

5.2 Exporting HOL4 proofs to HF223

To verify theorems proved in HOL4 with Proofgold, we first need to derive the HOL4 kernel224

rules from the IHOL rules and HF axioms. For instance, the HOL4 reflexivity rule can be225

derived from the IHOL rules in the following way:226

ptt ` ptt
` ptt→ ptt

` ∀p.ptt→ ptt

` t = t

227

Every HOL4 theorem is proved by composing applications of the HOL4 kernel inference228

rules. Therefore, to produce a HF proof, we trace these applications during the proof process229

and substitute them by their corresponding derivations in HF.230

5.3 Proving Bounties231

To reward the first users, a finite set of automatically generated bounties was included at the232

beginning of the Proofgold blockchain by the developers. The newer bounties proposed by233

developers and users are now usually based on textbook mathematical knowledge (often from234

interactive theorem provers) and are considerably harder than the automatically generated235

ones (see Section 6). We now show how to prove, using the HOL4 interface, some of the first236

“easy” bounties manually and automatically.237

5.3.1 Manual Proof238

The following auto-generated bounty has a relatively easy proof and therefore is one of the239

first we could manually prove:240

∃x0.x0 ⊆ t0∧∀x1.(∀x2.x2 ⊆ x1 → ∀x3x4.(¬c0x3x4∧ c1x0∧¬c2x2)→ c3(c4(c5x0))x4)→ x1 = x1241

where t0 = ℘(℘(℘(℘∅)))) and [c0, c1, c2, c3, c4, c5] = [tuple, exactly5 , atleast2 , SNo, Sing, SNoLev]242

The main difficulty, when manually proving such an automatically generated bounty, is to243

identify the relevant part of the formula. After a careful analysis, we found that the truth of244

this formula can be derived from this abbreviated version ∃x0.(x0 ⊆ t0)∧ (∀x1.qx0x1 → x1 =245

x1) where the predicate q is used to hide the irrelevant part. Our proof, shown in Figure 2,246

relies on the imported definition of ⊆.247



XX:8 Proofgold: Blockchain for Formal Methods

5.3.2 Automated Proof248

In general, proof automation tools help speed up formalization of theorems in interactive249

theorem provers. As a demonstration of the possible benefits, we have developed a way to250

automatically prove HF bounties by relying on the automation available in HOL4.251

To prove a bounty, we first call HOL(y)Hammer [6] which is one of the strongest general252

automation techniques available in HOL4. It tries to prove the conjectured bounty from the253

6 HF axioms and the 97 HF definitions by translating the problem to external automated254

theorem provers (ATPs). When an external ATP finds a proof, it also returns the axioms255

that are necessary to find that proof. With this information, a weaker internal prover such as256

Metis [10] is usually able to reconstruct a HOL4 proof. The Metis proofs however typically257

exceed the Proofgold block size limit of 500kb and include dependencies to HOL4 axioms258

that are not present (and sometimes not provable) in HF. Thus, we have developed a custom259

internal first-order ATP for HOL4 that produces small proofs and only relies on the HF260

axioms. A reduction in proof size is achieved by making definitions for large terms (e.g.261

irrelevant parts of the conjecture and Skolem functions, similar to the example given in262

Section 5.3.1) and proving auxiliary lemmas for repeated sequences of proof steps (e.g., when263

permuting literals in clauses). With these optimizations, the automated proof for the bounty264

from Section 5.3.1 is only four times as large as the manual one (16kb instead of 4kb). The265

manual proof for this bounty has been submitted and included in the blockchain and the266

bounty associated with it has been collected. In addition to that, we have so far automatically267

found and submitted six proofs of the HF bounties. All these proofs were accepted by the268

Proofgold proof checker and the rewards for these bounties were collected.269

This automated system is currently limited to essentially first-order formulas. In the270

future, we plan to support automated proofs for higher-order formulas based on existing271

automated translations to first-order [12].272

6 The Bounty System and its Applications273

One of the main extra features of Proofgold beyond proof verification is the possibility of274

for users and developers to attach bounties to propositions. Bounties can be used to reward275

users for finding proofs in mathematical domains of general interest or subproofs of a larger276

formalization.277

6.1 Current Bounties278

As mentioned in Section 3.1 for the first 5000 blocks the Proofgold consensus algorithm279

automatically placed a bounty of 25 Proofgold bars (half of the block reward) on a pseudoran-280

dom proposition. We say more about these pseudorandom propositions below. For the next281

10000 blocks 25 Proofgold bars (half of the block reward) were placed into a “bounty fund”282

which was used to place larger bounties on meaningful propositions decided upon through283

a community forum. The propositions chosen vary from first-order problems derived from284

Mizar proofs, finite Ramsey properties (e.g., R(5, 7) is larger than the cardinality of ℘5),285

properties of specific categories (e.g., the category of hereditarily finite sets), and numerous286

others. Since Block 15000 the full block reward is 25 bars and none of this goes towards the287

creation of bounties, and so bounties are placed by intention rather than automation.288

The pseudorandom propositions from the first 5000 blocks can be classified into 8 classes.289



C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:9

Random290

Conjectures in this class are generally not meaningful, but the choices made during the291

generation are also not uniformly random. The conjecture must start with at least two292

(possibly bounded) quantifiers. When a term of type ι must be generated and a bound293

variable is not being chosen, then half the time the binary representation of a number between294

5 and 20 is used, a quarter of the time the unary representation of a number between 5 and295

20 is used. In the remaining quarter of the cases, half the time a unary function is chosen296

(leaving the argument to be generated), a quarter of the term a binary function is chosen297

(leaving two arguments to be generated) and the remaining quarter some other set former is298

used (e.g., Sep). In case the generation seems to be running out of bits of information, then299

it restricts the choices available.300

There are three subclasses of random conjectures. The first kind is simply a sentence301

constructed as roughly described above. The second kind is of the form ∀p : ιo.∀f : ιι.s302

where s is generated as above but is allowed to use the (uninterpreted) unary predicate p and303

unary function f . The third kind is of the form ∀xyz.∀f : ιι.∀pq : ιo.∀g : ιιι.∀r : ιιo.s where304

s is a generated as above though it is allowed to use x, y, z, f, g to construct sets, to use305

p, q, r to construct atomic propositions and is (mostly) disallowed from using the constants306

from the HF set theory.307

The automated miner from Section 5 was tested on problems from this family.308

Quantified boolean formulas (QBF)309

Conjectures in the QBF class are of the form Q1p1 : o. · · · .Qnpn : o.s↔ t where 50 ≤ n ≤ 55,310

each Qi is ∀ or ∃ and s and t are propositions such that F(s) = F(t) = {p1, . . . , pn}. The311

propositions s and t are generated using a similar process.312

Set Constraints313

One of the most challenging aspects of higher-order theorem proving is instantiating set314

variables, i.e., variables of a type like ιo [1]. The only known complete procedure requires315

enumeration of βη-normal terms of this type.316

The set constraint conjectures are of the form

∀P1 : α1.∀P2 : α2.∀P3 : α3.∀P4 : α4.ϕ
1
1 → ϕ1

2 → ϕ2
3 → ϕ2

4 → ϕ3
5 → ϕ3

6 → ϕ4
7 → ϕ4

8 → ⊥

where each αi is a small type of the form β1 · · ·βmi
o and each proposition ϕij is a lower317

bound constraint for Pi over {P1, P2, P3, P4} if j is odd and an upper bound constraint for318

Pi over {P1, P2, P3, P4} if j is even. A lower bound constraint for a variable P is a formula319

that implies P must at least be true for certain elements. An upper bound constraint for a320

variable P is a formula that implies P cannot be true for more than some number of elements.321

Such constraints may also be recursive, e.g., saying if P z holds then P (f z) must hold.322

Recursive constraints can in principle be both lower bound and upper bound constraints.323

The positive version of the conjecture states that there is no solution to this collection of324

set constraints. The negative version can be proven by giving a solution.325

Higher-Order Unification326

Unlike first-order unification, higher-order is undecidable. In spite of this Huet’s preunification327

algorithm [9] provides a reasonable method to search for solutions. A great deal of research328

has been done on higher-order unification and is ongoing today [19].329



XX:10 Proofgold: Blockchain for Formal Methods

The generated conjectures in this class are essentially higher-order unification problems
with eight flex-rigid pairs and four variables to instantiate. The problems are given in a
universal form, so that the positive form states that there is no solution. The negative form
could be proven by giving a solution. In general the conjectures have the form

∀X1 : α1.∀X2 : α2.∀X3 : α3.∀X4 : α4.ϕ
1
1 → ϕ1

2 → ϕ2
3 → ϕ2

4 → ϕ3
5 → ϕ3

6 → ϕ4
7 → ϕ4

8 → ⊥

where αi is a small type not involving o and ϕij is a proposition corresponding to a disagreement330

pair of a unification problem.331

Untyped Combinator Unification332

Since we are in a simply typed setting the untyped combinators are encoded as sets. The
generated conjectures are in the form of eight flex-rigid pairs making using four variables to
be instantiated. Each conjecture is stated in a universal form that means there is no solution.
Proving the negation of the conjecture will usually mean giving a solution, though given the
classical setting it is also possible to provide multiple instantiations and prove one must be a
solution. (This was also the case for the previous two classes of conjectures.) The conjectures
have the form

∀X.combinator X → ∀Y.combinator Y → ∀Z.combinator Z → ∀W.combinator W →
ϕX1 → ϕX2 → ϕY3 → ϕY4 → ϕZ5 → ϕZ6 → ϕW7 → ϕW8 → ⊥

where ϕVi is a proposition giving a flex-rigid pair with local variables and with V as the head
of the left. To be more specific each ϕVi has the form

∀x.combinator x→ ∀y.combinator y → ∀z.combinator z → ∀w.combinator w →
combinator_equiv (V v1 v2 v3 v4 s1 . . . sn) t

where each vi ∈ {x, y, z, w}, t is a random rigid combinator and each of s1, . . . , sn is a random333

combinator. In this context a random rigid combinator is either K t1 or S t1 where t1 is a334

random combinator, or S t1 t2 where t1 and t2 are random combinators, or v t1 · · · tn where335

v ∈ {x, y, z, w} and t1, . . . , tn are random combinators. A random combinator is h t1 · · · tn336

where h ∈ {S,K,X, Y, Z,W, x, y, z, w} and t1, . . . , tn are random combinators.337

Each of these problems can be viewed as a first-order problem. In the first-order variant338

we could assume everything is a combinator (so combinator can be omitted) and use equality339

to play the role of combinator_equiv. It should generally be possible to mimic the equational340

reasoning of a first-order proof in the set theory representation by using appropriate lemmas341

about combinator and combinator_equiv.342

Furthermore it should be possible to define a notion of reduction and prove that if two343

terms are equivalent via combinator_equiv, then they must have a common reduct. This344

would allow one to prove the positive version of the conjecture (meaning there is no solution).345

Abstract HF problems346

The conjectures in the Abstract HF class are about hereditarily finite sets, but without
assuming the full properties about the relevant relations, sets and functions. We fix 24
distinct variables: r0, r1 and r2 of type ιιo, x0, x1, x2, x3 and x4 of type ι, f0 and f1 of
type ιι, g0, g1 and g2 of type ιιι and p0, p1, p2, p3, p4, p5, p6, p7, p8, p9 and p10 of type ιo.
Each of these variable has an intended meaning which can be given by a substitution θ. For



C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:11

example, θ(r0) =∈, meaning r0 is intended to correspond to set membership. Each generated
conjecture is of the form

∀r0r1r2 : ιιo.∀x0x1x2x3x4.∀f0f1 : ιι.∀g0g1g2 : ιιι.∀p0 · · · p10 : ιo.
ϕ1 → · · · → ϕn → ψ.

The propositions ϕ1, . . . , ϕn, ψ are chosen from a set of 1229 specific propositions which hold347

for HF sets, but may not hold in the abstract case. The conjecture essential states that the348

selections of ϕi are sufficient to infer the selected ψ.349

AIM Conjecture Problems350

There are two kinds of AIM Conjecture [11] related problems: one using Loop_with_defs_cex1351

and one using Loop_with_defs_cex2. In both cases the conjecture states that no loop exists352

with counterexamples of the first or second kind satisfying a number of extra equations.353

The two kinds of counterexamples assert that the loop has elements violating one of two354

identities. An AIM loop violating either of the identities would be a counterexample to355

the AIM Conjecture. The pseudorandom propositions do not assume the loop is AIM, but356

only assume some AIM-like identities hold. That is, instead of assuming all inner mappings357

commute, the assumption is that some inner mappings commute. Furthermore, in some cases358

some specific inner mappings are assumed to have a small order (which would not be true in359

all AIM loops).360

Unfortunately there was a bug in the HF defining equation for loops (omitting that the361

identity element must be in the carrier). This made the negation of all of the pseudorandom362

propositions in this class easily provable. A Proofgold developer used this bug to collect the363

bounties and redistribute the bounties to the corrected versions.364

Diophantine Modulo365

A Diophantine Modulo problem generates two polynomials p and q in variables x, y and z366

and a number m (of up to 64 bits). The conjecture states there is no choice of (hereditarily367

finite) sets x, y and z such that the cardinality of p plus 16 is the same as the cardinality of368

q modulo m. The negation of the conjecture could be proven by giving appropriate x, y and369

z and proving they have the property.370

Diophantine371

The final class is given by Diophantine problems (either equations or inequalities). Two372

polynomials p and q in variables x, y, z are generated (as described above). Each polynomial373

uses 256 bits of information. The generated conjecture either states there are no (hereditarily374

finite) sets x, y and z such that the cardinality of p plus 16 is the same as the cardinality of375

q, or that the cardinality of p plus 16 is no larger than the cardinality of q.376

6.2 Large Formalization Projects377

Hales’s Flyspeck [7] project formalizing the proof of the Kepler Conjecture has been one of the378

largest challenges in interactive theorem proving so far, involving several ITP communities379

and to some extent a centralized bounty system. It took more than 10 years to complete380

and combined the expertise of proof assistant users of the HOL Light, Isabelle/HOL and381

Coq systems. With our bounty system, the effort could have been shared with an even382

wider community of researchers interested in formal verification. Indeed, Hales could have383



XX:12 Proofgold: Blockchain for Formal Methods

put This would involve making a plan of the steps required to prove the final theorem,384

splitting the formalization into multiple independent parts, and putting them as conjectures385

into Proofgold with bounties on them. A knowledgeable independent user of an interactive386

theorem prover interface capable of producing Proofgold terms, could then decide to provide387

a proof for a particular part. The final proof is completed when all the bounties have been388

collected. The reward for a particular proof may be increased if it is harder than initially389

thought and/or to motivate Proofgold users to solve it sooner. In the long run, an attempt at390

formally proving Fermat’s last theorem in Proofgold could be made using this approach. An391

even better target to test the effectiveness of the bounty system would be the classification of392

finite simple groups. Its proof required the combined effort of about 100 authors for 50 years393

and consists of tens of thousands of pages distributed over several hundred journal articles.394

References395

1 Chad E. Brown. Solving for set variables in higher-order theorem proving. In Andrei Voronkov,396

editor, Automated Deduction - CADE-18, 18th International Conference on Automated Deduc-397

tion, Copenhagen, Denmark, July 27-30, 2002, Proceedings, volume 2392 of Lecture Notes in398

Computer Science, pages 408–422. Springer, 2002.399

2 Chad E. Brown, Mikoláš Janota, and Cezary Kaliszyk. Proofs for higher-order SMT and400

beyond. http://cl-informatik.uibk.ac.at/cek/submitted/smt2022pfs.pdf.401

3 Chad E. Brown and Karol Pąk. A tale of two set theories. In Cezary Kaliszyk, Edwin C.402

Brady, Andrea Kohlhase, and Claudio Sacerdoti Coen, editors, Intelligent Computer Mathe-403

matics - 12th International Conference, CICM 2019, Prague, Czech Republic, July 8-12, 2019,404

Proceedings, volume 11617 of Lecture Notes in Computer Science, pages 44–60. Springer, 2019.405

4 John H. Conway. On numbers and games, Second Edition. A K Peters, 2001.406

5 Warren E. Ferguson, Jesse Bingham, Levent Erkök, John R. Harrison, and Joe Leslie-Hurd.407

Digit serial methods with applications to division and square root. IEEE Trans. Computers,408

67(3):449–456, 2018. URL: https://doi.org/10.1109/TC.2017.2759764, doi:10.1109/TC.2017.409

2759764.410

6 Thibault Gauthier and Cezary Kaliszyk. Premise selection and external provers for HOL4. In411

Xavier Leroy and Alwen Tiu, editors, Conference on Certified Programs and Proofs (CPP),412

pages 49–57. ACM, 2015. URL: http://doi.org/10.1145/2676724.2693173.413

7 Thomas C. Hales, Mark Adams, Gertrud Bauer, Dat Tat Dang, John Harrison, Truong Le414

Hoang, Cezary Kaliszyk, Victor Magron, Sean McLaughlin, Thang Tat Nguyen, Truong Quang415

Nguyen, Tobias Nipkow, Steven Obua, Joseph Pleso, Jason M. Rute, Alexey Solovyev,416

An Hoai Thi Ta, Trung Nam Tran, Diep Thi Trieu, Josef Urban, Ky Khac Vu, and Roland417

Zumkeller. A formal proof of the kepler conjecture. CoRR, abs/1501.02155, 2015. URL:418

http://arxiv.org/abs/1501.02155, arXiv:1501.02155.419

8 John Harrison. HOL light: A tutorial introduction. In Mandayam Srivas and Albert Camilleri,420

editors, Proceedings of the First International Conference on Formal Methods in Computer-421

Aided Design (FMCAD’96), volume 1166 of Lecture Notes in Computer Science, pages 265–269.422

Springer-Verlag, 1996.423

9 Gérard P. Huet. A unification algorithm for typed lambda-calculus. Theor. Comput. Sci.,424

1(1):27–57, 1975.425

10 Joe Hurd. First-order proof tactics in higher-order logic theorem provers. Design and426

Application of Strategies/Tactics in Higher Order Logics, number NASA/CP-2003-212448 in427

NASA Technical Reports, pages 56–68, 2003.428

11 Michael K. Kinyon, Robert Veroff, and Petr Vojtěchovský. Loops with abelian inner mapping429

groups: An application of automated deduction. In Maria Paola Bonacina and Mark E. Stickel,430

editors, Automated Reasoning and Mathematics - Essays in Memory of William W. McCune,431

volume 7788 of Lecture Notes in Computer Science, pages 151–164. Springer, 2013.432

http://cl-informatik.uibk.ac.at/cek/submitted/smt2022pfs.pdf
https://doi.org/10.1109/TC.2017.2759764
http://dx.doi.org/10.1109/TC.2017.2759764
http://dx.doi.org/10.1109/TC.2017.2759764
http://dx.doi.org/10.1109/TC.2017.2759764
http://doi.org/10.1145/2676724.2693173
http://arxiv.org/abs/1501.02155
http://arxiv.org/abs/1501.02155


C. Brown, T. Gauthier, C. Kaliszyk, J. Urban XX:13

12 Jia Meng and Lawrence C. Paulson. Translating higher-order clauses to first-order clauses.433

Journal of Automated Reasoning, 40(1):35–60, 2008. URL: http://dx.doi.org/10.1007/434

s10817-007-9085-y.435

13 F. Pfenning and C. Elliot. Higher-order abstract syntax. SIGPLAN Notices, 23(7):199–208,436

June 1988.437

14 Dag Prawitz. Natural deduction: a proof-theoretical study. Dover, 2006.438

15 R. Diaconescu. Axiom of choice and complementation. Proceedings of the American Mathe-439

matical Society, 51:176–178, 1975.440

16 Bertrand Russell. The Principles of Mathematics. Cambridge University Press, 1903.441

17 Konrad Slind and Michael Norrish. A brief overview of HOL4. In Otmane Aït Mohamed,442

César A. Muñoz, and Sofiène Tahar, editors, Conference on Theorem Proving in Higher443

Order Logics (TPHOLs), volume 5170 of LNCS, pages 28–32. Springer, 2008. URL: http:444

//dx.doi.org/10.1007/978-3-540-71067-7_6.445

18 M.H.B. Sørensen and P. Urzyczyn. Lectures on the Curry-Howard Isomorphism. Rapport446

(Københavns universitet. Datalogisk institut). Datalogisk Institut, Københavns Universitet,447

1998.448

19 Petar Vukmirovic, Alexander Bentkamp, and Visa Nummelin. Efficient full higher-order449

unification. In Zena M. Ariola, editor, 5th International Conference on Formal Structures450

for Computation and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual451

Conference), volume 167 of LIPIcs, pages 5:1–5:17. Schloss Dagstuhl - Leibniz-Zentrum für452

Informatik, 2020.453

20 Bill White. Qeditas: A formal library as a bitcoin spin-off, 2016. URL: http://qeditas.org/454

docs/qeditas.pdf.455

http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1007/s10817-007-9085-y
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://dx.doi.org/10.1007/978-3-540-71067-7_6
http://qeditas.org/docs/qeditas.pdf
http://qeditas.org/docs/qeditas.pdf
http://qeditas.org/docs/qeditas.pdf

	1 Introduction
	2 Intuitionistic Higher Order Logic
	3 Proofgold Theories
	3.1 HF Theory
	3.2 Two HOTG Theories
	3.3 A Theory for HOAS

	4 Proofgold Lava Client
	4.1 Database Layer
	4.2 Cryptography Layer
	4.3 Networking and Proofchecking Layers

	5 A HOL4 Interface for Mining Bounties from the HF theory
	5.1 Importing the HF theory into HOL4
	5.2 Exporting HOL4 proofs to HF
	5.3 Proving Bounties
	5.3.1 Manual Proof
	5.3.2 Automated Proof


	6 The Bounty System and its Applications
	6.1 Current Bounties
	6.2 Large Formalization Projects


