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Abstract. In this paper, an overview of state-of-the-art techniques for
premise selection in large theory mathematics is provided, and new prem-
ise selection techniques are introduced. Several evaluation metrics are in-
troduced, compared and their appropriateness is discussed in the context
of automated reasoning in large theory mathematics. The methods are
evaluated on the MPTP2078 benchmark, a subset of the Mizar library,
and a 10% improvement is obtained over the best method so far.

1 Introduction: Formal Mathematics and its AI Methods

In recent years, more and more mathematics is becoming available in a computer-
understandable form [12]. A number of large formalization projects are progress-
ing [11,13,15], formal mathematics is considered by influential mathematicians,
and new approaches and proof assistants are discussed and developed by inter-
ested newcomers [3,8,22,39].

As this happens, the users and developers of formal mathematics are increas-
ingly faced with the problem of searching for relevant formal knowledge, anal-
ogous to the search problems started since the early days of the Internet. Web
search has led to a large body of research of robust and scalable non-semantic
methods in fields like information retrieval, machine learning, and data min-
ing. On the other hand, formal mathematics has been traditionally focusing on
exhaustive and precise deductive search methods, typically used on small, care-
fully manually pre-arranged search space. In nutshell, the difference between the
former and the latter methods is that the former focus on heuristically finding
knowledge that could be most relevant for solving semantically underspecified
(typically natural language) queries, while the latter methods try to find a pre-
cise answer and a proof for a conjecture that is expressed with full semantic
precision. The former methods are largely inductive and data-driven [29]: the
“solutions” are unconfirmed suggestions derived from heuristics and previous
evidence, and essential parts of the algorithms are typically obtained by learn-
ing from large corpora. The latter methods have so far been largely deductive
and theory-driven: the solutions are deduced in a logically correct way, and the
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algorithms are to a large extent specified by their programmers without inducing
major parts of the programs from large datasets.

There are a number of interesting ways how existing deductive methods can
be improved in the presence of previous knowledge. Some of them are mentioned
below. An early research done by the Munich group [10] has already produced
a number of ideas and advanced implementations, like for example the pattern-
based proof guidance in E prover [26]. It seems that the recently appeared large
corpora of formal knowledge allow AI combinations of inductive and deductive
thinking (e.g., the MaLARea metasystem [37]) that can hardly be tried in other
AT domains that lack precise semantics and the notion of formal proof.

On the other hand, the first and lasting necessity obvious since 2003, when
the first large formal mathematical corpora became available to Automated The-
orem Provers (ATPs), has been good selection of relevant premises for a given
new conjecture. It has been shown that proper design and choice of knowledge
selection heuristics can change the overall success of large-theory ATP techniques
by tens of percents [1]. Such large improvements provide an incentive for further
research, evaluations, and benchmarks developing the field of knowledge-based
automated reasoning.

This paper develops this field in several ways. First, in Section 2 an overview
of state-of-the-art techniques for premise selection in large-theory mathematics
is provided, focusing on premise ranking. In Section 3 we present several relevant
machine learning metrics developed for feasible training and evaluation of rank-
ing algorithms. The premise selection methods are evaluated on the MPTP2078
benchmark in section 4, using the machine learning metrics as well as several
different ATPs. The learning and ATP evaluation methods are compared, and
the relevance of the machine learning metrics based on human-proof data is dis-
cussed, together with the performance of different methods and ATPs. Based
on the findings, use of ensemble methods for aggregating premise selectors is
proposed and initially tested in Section 5, and shown to further raise the overall
ATP performance by 10% in comparison to the best method so far. Section 6
concludes and proposes directions for further research.

2 Premise Selection Algorithms
2.1 Premise Selection Setting

The typical setting for the task of premise selection is a large developed library of
formally encoded mathematical knowledge, over which mathematicians attempt
to prove new lemmas and theorems [5,32,36]. The actual mathematical corpora
suitable for ATP techniques are only a fraction of all mathematics (e.g. about
50000 lemmas and theorems in the Mizar library) and started to appear only
recently, but they already provide a corpus on which different heuristic meth-
ods can be defined, trained, and evaluated. Premise selection can be useful as a
standalone service for the formalizers (suggesting relevant lemmas), or in con-
junction with ATP methods that can attempt to find a proof from the relevant
premises.



2.2 Learning-based Ranking Algorithms

Learning-based ranking algorithms have a training and a testing phase and typ-
ically represent the data as points in pre-selected feature spaces. In the training
phase the algorithm tries to fit one (or several) prediction functions to the data
it is given. The result of the training is the best fitting prediction function which
can then be used in the testing phase for evaluations.

In the typical setting presented above, the algorithms would train on all ex-
isting proofs in the library and be tested on the new theorem the mathematician
wants to prove. We compare three different algorithms.

SNoW: SNoW (Sparse Network of Winnows) [6] is an implementation of (among
others) the naive Bayes algorithm that has already been successfully used for
premise selection (see e.g. [1,32,33]).

Naive Bayes is a statistical learning method based on Bayes‘ theorem with
a strong (or naive) independence assumption. Given a new conjecture ¢ and a
premise p, SNoW computes the probability of p being needed to prove ¢, based on
the previous use of p in proving conjectures that are similar to c¢. The similarity
is in our case typically expressed using symbols and terms of the formulas. The
independence assumption says that the (non-)occurrence of a symbol/term is
not related to the (non-)occurrence of every other symbol/term.

MOR-CG: MOR-CG (Multi-Output Ranking Conjugate Gradient) is a kernel-
based learning algorithm (see [29]) that is a new variation of our MOR algorithm
described in [1]. The difference between MOR and MOR-CG are that MOR-
CG uses a linear kernel instead of a Gaussian. Furthermore, MOR-CG uses
conjugate-gradient descent to speed up the time needed for training.

Kernel-based algorithms do not aim to model probabilities, but instead try to
minimize the expected loss of the prediction functions on the training data. For
each premise p MOR-CG tries to find a function Cj, such that for each conjecture
¢, Cp(c) = 1 iff p was used in the proof of c. Given a new conjecture ¢, we can
evaluate the learned prediction functions C, on c¢. The higher the value C,(c)
the more relevant p is to prove c.

BiLi: BiLi (Bi-Linear) is a new algorithm that is based on a bilinear model of
premise selection, similar to the work of Chu and Park [7]. Like MOR-CG, BiLi
alms to minimize the expected loss. The difference lies in the kind of prediction
functions they produce. In MOR-CG the prediction functions only take the fea-
tures? of the conjecture into account. In BiLi, the prediction functions use the
features of both the conjectures and the premises.®> The bilinear model learns a
weight for each combination of a conjecture feature together with a premise fea-
ture. Together, this weighted combination determines whether or not a premise
is relevant to the conjecture.

2 In our experiments each feature indicates the presence or absence of a certain symbol
or term in a formula.

3 This makes BiLi a bit closer to methods like SInE that symbolically compare con-
jectures with premises.



When the number of features becomes large, fitting a bilinear model becomes
computationally more challenging. Therefore, in BiLi the number of features is
first reduced to 100, using random projections [4]. To combat the noise intro-
duced by these random projections, this procedure is repeated 20 times, and the
averaged predictions are used for ranking the premises.

2.3 Other Algorithms Used in the Evaluation

SInE: The SInE (SUMO Inference Engine) is a heuristic state-of-the-art premise
selection algorithm by Krystof Hoder [14], recently also implemented in the E
prover.* The basic idea is to use global frequencies of symbols in a problem to
define their global generality, and build a relation linking each symbol S with
all formulas F' in which S is has the lowest global generality among the symbols
of F. In common-sense ontologies, such formulas typically define the symbols
linked to them, which is the reason for calling this relation a D-relation. Premise
selection for a conjecture is then done by recursively following the D-relation,
starting with the conjecture’s symbols. For the experiments described here the
E implementation of SInE has been used, because it can be instructed to select
exactly N most relevant premises. This is compatible with the way how other
premise rankers are used here, and it allows to compare the premise rankings
produced by different algorithms for increasing values of N.?

Aprils: The Automated Prophesier of Relevance Incorporating Latent Seman-
tics (APRILS) [24] is a signature-based premise selection method that employs
Latent Semantic Analysis (LSA) [9] to define symbol and premise similarity. La-
tent semantics is a machine learning method that has been successfully used for
example in the Netflix Prize,® and in web search. Its principle is to automati-
cally derive “semantic” equivalence classes of words (like car, vehicle, automo-
bile) from their co-occurrences in documents, and to work with such equivalence
classes instead of the original words. In APRILS, formulas define the symbol
co-occurrence, each formula is characterized as a vector over the symbols’ equiv-
alence classes, and the premise relevance is its dot product with the conjecture.

2.4 Techniques Not Included in the Evaluation

As a part of the overview, we also list important or interesting algorithms used
for ATP knowledge selection that for various reasons do not fit the evaluation
done here. Because of space contraints we refer readers to [34] for their discussion.
— The default premise selection heuristic used by the Isabelle/Sledgehammer
export [17]. This is an Isabelle-specific symbol-based technique similar to
SInE that would need to be evaluated on Isabelle data.

4 http://www.mpi-inf .mpg.de/departments/rgl/conferences/deduction10/
slides/stephan-schulz.pdf

® The exact parameters used for producing the E-SInE rankings are at
https://raw.github.com/JUrban/MPTP2/master/MaLARea/script/filterl.

S http://www.netflixprize.com
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— Goal directed ATP calculi including the Conjecture Symbol Weight clause se-
lection heuristics in E prover [27] giving lower weights to symbols contained
in the conjecture, the Set of Support (SoS) strategy in resolution/super-
position provers, and tableau calculi like leanCoP [19] that are in practice
goal-oriented.

— Model-based premise selection, as done by Pudlédk’s semantic axiom selection
system for large theories [21], by the SRASS metasystem [30], and in a
different setting by the MaLARea [37] metasystem.

— MaLARea [37] is a large-theory metasystem that loops between deductive
proof and model finding (using ATPs and finite model finders), and learning
premise-selection (currently using SNoW or MOR-CG) from the proofs and
models to attack the conjectures that still remain to be proved.

— Abstract proof trace guidance implemented in the E prover by Stephan
Schulz for his PhD [26]. Proofs are abstracted into clause patterns collected
into a common knowledge base, which is loaded when a new problem is
solved, and used for guiding clause selection. This is also similar to the hints
technique in Prover9 [16].

— The MaLeCoP system [38] where the clause relevance is learned from all
closed tableau branches, and the tableau extension steps are guided by a
trained machine learner that takes as input features a suitable encoding of
the literals on the current tableau branch.

3 Machine Learning Evaluation Metrics

Given a database of proofs, there are several possible ways to evaluate how
good a premise selection algorithm is without running an ATP. Such evaluation
metrics are used to estimate the best parameters (e.g. regularization, tolerance,
step size) of an algorithm. We want to use the evaluation metrics that are the
best indicators for the final ATP performance. The input for each metric is a
ranking of the premises for a conjecture together with the information which
premises where used to prove the conjecture (according to the training data).

Recall Recall@n is a value between 0 and 1 and denotes the fraction of used
premises that are among the top n highest ranked premises.

[{used premises} N {n highest ranked premises}|

Recall@n =
el |{used premises}|

Recall@n is always less than Recall@(n+1). As n increases, Recall@n will even-
tually converge to 1. Our intuition is that the better the algorithm, the faster
its Recall@n converges to 1.

AUC The AUC (Area under the ROC Curve) is the probability that, given a
randomly drawn used premise and a randomly drawn unused premise, the used
premise is ranked higher than the unused premise. Values closer to 1 show better
performance.



Let x1,..,x, be the ranks of the used premises and y1, .., ¥, be the ranks of
the unused premises. Then, the AUC is defined as

- Z? Z;n 1$i>yj
m

n

AUC

where 1,5, = 1 iff 2; > y; and zero otherwise.

100%Recall 100%Recall denotes the minimum 7 such that Recall@n = 1.
100%Recall = min{n | Recall@n = 1}

In other words 100% Recall tells us how many premises (starting from the highest
ranked one) we need to give to the ATP to ensure that all necessary premises
are included.

4 Evaluation
4.1 Evaluation Data

The premise selection methods are evaluated on the large (chainy) problems from
the MPTP2078 benchmark” [1]. These are 2078 related large-theory problems
(conjectures) and 4494 formulas (conjectures and premises) in total, extracted
from the Mizar Mathematical Library (MML). The MPTP2078 benchmark was
developed to supersede the older and smaller MPTP Challenge benchmark (de-
veloped in 2006), while keeping the number of problems manageable for exper-
imenting. Larger evaluations are possible,® but not convenient when testing a
large number of systems with many different settings. MPTP2078 seems suffi-
ciently large to test various hypotheses and find significant differences.

MPTP2078 also contains (in the smaller, bushy problems) for each conjecture
the information about the premises used in the MML proof. This can be used
to train and evaluate machine learning algorithms using a chronological order
emulating the growth of MML. For each conjecture, the algorithms are allowed
to train on all MML proofs that were done up to that conjecture.? For each of
the 2078 problems, the algorithms predict a ranking of the premises.

4.2 Machine Learning Evaluation — Comparison of Predictions with
Known Proofs

We first compare the algorithms introduced in section 2 using the machine learn-
ing evaluation metrics introduced in section 3. All evaluations are based on the
training data, the human-written formal proofs from the MML. They do not
take the possibility of alternative proofs into account.'®

" Available at http://wiki.mizar.org/twiki/bin/view/Mizar/MpTP2078.

8 See [2,35] for recent evaluations spanning the whole MML.

9 This in particular means that the algorithms do not train on the data they were
asked to predict.

10 This could be improved in the future by adding alternative proofs, as discussed in
section 6.
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Recall Figure 1 compares the average Recall@n of MOR-CG, BiLi, SNoW, SInE
and Aprils for the top 200 premises over all 2078 problems. Higher values denote
better performance. The graph shows that MOR-CG performs best, and Aprils
worst. Note that here is a sharp distinction between the learning algorithms,
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Fig. 1: Recall comparison of the premise selection algorithms

which use the MML proofs and eventually reach a very similar recall, and the
heuristic-based algorithms Aprils and SInE.

AUC The average AUC of the premise selection algorithms is reported in ta-
ble 1. Higher values mean better performance, i.e. a higher chance that a used
premise is higher ranked than a unused premise. SNoW (97%) and BiLi (96%)
have the best AUC scores with MOR-CG taking the third spot with an AUC
of 88%. Aprils and SInE are considerably worse with 64% and 42% respectively.
The standard deviation is very low with around 2% for all algorithms.

Table 1: AUC comparison of the premise selection algorithms

Algorithm Avg. AUC  Std.

SNoW 0.9713 0.0216
BiLi 0.9615 0.0215
MOR-CG 0.8806 0.0206
Aprils 0.6443 0.0176

SInE 0.4212 0.0142




100%Recall The comparison of the 100%Recall measure values can be seen
in figure 2. For the first 115 premises, MOR-CG is the best algorithm. From
then on, MOR-CG hardly increases and SNoW takes the lead. Eventually, BiLi
almost catches up with MOR-CG. Again we can see a big gap between the
performance of the learning and the heuristic algorithms with SInE and Aprils
not even reaching 400 problems with 100%Recall.
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Fig. 2: 100%Recall comparison of the premise selection algorithms

Discussion In all three evaluation metrics there is a clear difference between the
performance of the learning-based algorithms SNoW, MOR-CG and BiLi and
the heuristic-based algorithms SInE and Aprils. If the machine-learning metrics
on the MML proofs are a good indicator for the ATP performance then there
should be a corresponding performance difference in the number of problems
solved. We investigate this in the following section.

4.3 ATP Evaluation

Vampire In the first experiment we combined the rankings obtained from the
algorithms introduced in section 2 with version 0.6 of the ATP Vampire!! [23].
For each MPTP2078 problem (containing on average 1976.5 premises), we cre-
ated 20 new problems, containing the 10, 20, ..., 200 highest ranked premises. The
results can be seen in figure 3.

' All ATPs are run with 5s time limit on an Intel Xeon E5520 2.27GHz server with
24GB RAM and 8MB CPU cache. Each problem is always assigned one CPU. We
use Vampire as our default ATP because of its good preformance in the CASC
competitions, and because of its good performance on MML reported in [35].
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Fig. 3: Problems solved — Vampire

Apart from the first 10-premise batch and the three last batches, MOR-CG
always solves the highest number of problems with a maximum of 726 problems
with the top 70 premises. SNoW solves less problems in the beginning, but
catches up in the end. BiLi solves very few problems in the beginning, but gets
better as more premises are given and eventually is as good as SNoW and MOR-
CG. The surprising fact (given the machine learning performance) is that SInE
performs very well, on par with SNoW in the range of 60-100 premises. This
indicates that SInE finds proofs that are very different from the human proofs.
Furthermore, it is worth noting that most algorithms have their peak at around
70-80 premises. It seems that after that, the effect of increased premise recall is
beaten by the effect of the growing ATP search space.

E, SPASS and Z3 We also compared the top three algorithms, MOR-CG,
SNoW and SInE, with three other ATPs: E [27] (version 1.4), SPASS [40] (ver-
sion 3.7) and Z3 [18] (version 3.2). The results can be seen in figure 4, 5, 6
respectively. In all three experiments, MOR-CG gives the best results. Look-
ing at the number of problems solved by E we see that SNoW and SInE solve
about the same number of problems when more than 50 premises are given.
In the SPASS evaluation, SInE performs better than SNoW after the initial 60
premises. The results for Z3 are clearer, with (apart from the first run with
the top 10 premises) MOR-CG always solving more problems than SNoW, and
SNoW solving more problems than SInE. It is worth noting that independent
of the learning algorithm, SPASS solves the fewest problems and Z3 the most,
and that (at least up to the limit of 200 premises used) Z3 is hardly affected by
having too many premises in the problems.
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Discussion The ATP evaluation shows that a good ML evaluation performance
does not necessarily imply a good ATP performance and vice versa. E.g. SInE
performs better than expected, and BiLi worse. A plausible explanation for this
is that the human-written proofs that are the basis of the learning algorithms
are not the best possible guidelines for ATP proofs, because there are a number
of good alternative proofs: the total number of problems proved with Vampire
by the union of all prediction methods is 1197, which is more (in 5s) than the
1105 problems that Vampire can prove in 10s when using only the premises
used exactly in the human-written proofs. One possible way how to test this
hypothesis (to a certain extent at least) would be to train the learning algorithms



800

7001

600

u

=3

S
T

Problems Solved
S
o
o

e Z73-MOR-CG
100r *—+ Z3 - SNoW

&— 73 -SInE

50 100 150 200
Used Premises

Fig. 6: Problems solved — Z3

on all the ATP proofs that are found, and test whether the ML evaluation
performance closer correlates with the ATP evaluation performance.

The most successful 10s combination, solving 939 problems, is to run Z3 with
the 130 best premises selected by MOR-CG, together with Vampire using the
70 best premises selected by SInE. It is also worth noting that when we consider
all provers and all methods, 1415 problems can be solved.

It seems the heuristic and the learning based premise selection methods give
rise to different proofs. In the next section, we try to exploit this by considering
combinations of ranking algorithms.

5 Combining Premise Rankers

There is clear evidence about alternative proofs being feasible from alternative
predictions. This should not be too surprising, because the premises are orga-
nized into a large derivation graph, and there are many explicit (and also quite
likely many yet-undiscovered) semantic dependencies among them.

The evaluated premise selection algorithms are based on different ideas of
similarity, relevance, and functional approximation spaces and norms in them.
This also means that they can be better or worse in capturing different aspects of
the premise selection problem (whose optimal solution is obviously undecidable
in general, and intractable even if we impose some finiteness limits).

An interesting machine learning technique to try in this setting is the combi-
nation of different predictors. There has been a large amount of machine learning
research in this area, done under different names. Fnsembles is one of the most
frequent, a recent overview of ensemble based systems is given in [20], while for
example [28] deals with the specific task of aggregating rankers.

As a final experiment that opens the premise selection field to the application
of advanced ranking-aggregation methods, we have performed an initial simple



evaluation of combining two very different premise ranking methods: MOR-CG
and SInE. The aggregation is done by simple weighted linear combination, i.e.,
the final ranking is obtained via weighted linear combination of the predicted
individual rankings. We test a limited grid of weights, in the interval of [0, 1] with
a step value of 0.25, i.e., apart from the original MOR-CG and SInE rankings we
get three more weighted aggregate rankings as follows: 0.25 x CG + 0.75 % SInE,
0.5%x CG+0.5*SInE, and 0.75 %« CG 4 0.25 %« SInE. The following Figure 7 shows
their ATP evaluation.
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Fig. 7: Combining CG and SInE: Problems solved

The machine learning evaluation (done as before against the data extracted
from the human proofs) is not surprising, and the graphs (which we omit due
to space constraints) look like linear combinations of the corresponding figures
for MOR-CG and SInE. The ATP evaluation (only Vampire was used) is a very
different case. For example the equally weighted combination of MOR-CG and
SInE solves over 604 problems when using only the top 20 ranked premises. The
corresponding values for standalone MOR-CG resp. SInE are 476, resp. 341, i.e.,
they are improved by 27%, resp. 77%. The equally weighted combination solves
797 when using the top 70 premises, which is a 10% improvement over the best
result of all methods (726 problems solved by MOR-CG when using the top
70 premises). Note that unlike the external combination mentioned above, this
is done only in 5 seconds, with only one ATP, one premise selector, and one
threshold.

6 Conclusion and Future Work

Heuristic and inductive methods seem indispensable for strong automated rea-
soning in large formal mathematics, and significant improvements can be achieved
by their proper design, use and combination with precise deductive methods.



Knowing previous proofs and learning from them turns out to be important not
just to mathematicians, but also for automated reasoning in large theories.

The possibility of the ultimate semantic (ATP) evaluation of the proposed
premise rankings adds interesting “combined AI” aspects to the standard ma-
chine learning methods. Without expressive semantics the methods just try to
predict the human proofs as closely as possible. Proposing alternative (and some-
times simpler) proofs is discouraged by the standard machine learning evaluation
metrics. This produces interesting questions to Al researchers: given the explicit
derivation graph of a large theory, and the precise semantics allowing this graph
to grow further, what are good methods and metrics for (reasonably fast) train-
ing of premise selection methods? One pragmatic answer that we can give is to
develop a growing database of ATP and human proofs, and other results (like
counter-models), e.g., in a similar way as in the MaLARea metasystem, and use
this growing database for training instead of just the human proofs, testing (and
caching for further use) the ATP validity of new predictions on-demand.

We have evaluated practically all reasonably fast state-of-the-art premise
selection techniques, tried some new ones, and currently experiment with more.
This has produced a large amount of data on the most suitable (most orthogonal)
combinations of premise selection systems, numbers of premises used, ATPs used,
and ATP (currently E prover) strategies used. We further use machine learning
in the spirit of the E-MaLeS system to determine optimal (either parallel or
lower time-limit) combinations of these. These results are not included here due
to space constraints.!?

There is a trade-off between the precision and speed of the methods, and an
interesting future work is to use fast methods as pre-selectors for more expensive
methods. This is related to the problems of automated clustering the large theo-
ries, that can also be useful by itself for organizing and searching the large formal
repositories. Clustering on a finer level is also one of the methods that could be
used to further improve premise selection. It is quite likely that there are clusters
of theorems that have the same logic power (their conjunctions are equal in the
Lindenbaum algebra), and about the same strength when used with ATPs (the
same conjecture can be proved from them in a similar number of steps). The
current premise selection methods will likely recommend all such equivalent sets,
which is blocking other (possibly necessary) premises, so heuristic identification
of such (nearly) equivalent sets seems important. Including more semantics (for
example evaluation in an evolving set of models as in MaLARea) in the learning
and selection process could be one way how to achieve this.

We would like to make our strongest methods useful to as many formal
mathematicians as possible. Some of them (like SNoW) have been used for MML
and MPTP since 2003, but algorithms like MOR-CG and aggregated rankers are
not deployed yet. We also hope to evaluate and deploy the algorithms at least
for the Isabelle/Sledgehammer framework in near future.

12 The fact that Z3 solves largely orthogonal sets of problems to Vampire is probably
well known by now. Hence our focus on the differences between the premise selection
methods.
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