Conjecturing over large corpora

Thibault Gauthier Cezary Kaliszyk Josef Urban

July 14, 2017

Goal

Automatically discover conjectures in formalized libraries.

Which formalized libraries ?

	theorems	constants	types	theories
Mizar	51086	6462	2710	1230
Coq	23320	3981	860	390
- HOL4	16476	2188	59	126
HOL Light	16191	790	30	68
Isabelle/HOL	14814	1046	30	77
Matita	1712	339	290	101

Why formalized libraries ?

- Easier to learn from.
- Sufficiently large number of theorems.

What for ?

- Improve proof automation, by discovering important intermediate lemmas.

Challenges

How do we conjecture interesting lemmas ?

- Generation: large numbers of possible conjectures.
- Learning: large amount of data.
- Pruning: how to remove false conjectures fast, and select interesting ones.

How to integrate these mechanism in a goal-oriented automatic proof?

Our approach

How do we conjecture interesting lemmas ?

- Generation: analogies, probabilistic grammar.
- Learning: pattern-matching, genetic algorithm.
- Pruning: proof, model-based guidance, neural networks.

How to integrate these mechanism in a goal-oriented automatic proof?

- Copy human reasoning.
- Make high-level inference steps: premise selection + ATPs.

Finding analogies inside libraries

Theorems (first-order, higher-order or type theory):
$\forall x:$ num. $x+0=x \quad \forall x:$ real. $x=\&(\operatorname{Numeral}($ BIT1 0$)) \times x$
Normalization + Conceptualization + Abstraction \rightarrow
Properties:
dnum, $+, 0 . \forall x: n u m x=x+0 \quad$ λ real, $, x, 1 . \forall x:$ real. $x=x \times 1$
Derived constant pairs:

$$
\text { num } \leftrightarrow \mathrm{real},+\leftrightarrow \times, 0 \leftrightarrow 1
$$

Some similar theorems across libraries

rev_append in Coq
$\forall 1$, rev $1=r e v _a p p e n d ~ l[]$.
$\forall 1$ l', rev_append ll' = rev l ++ l'.

REV in HOL4
\forall L. REVERSE L = REV L []
\forall L1 L2. REV L1 L2 = REVERSE L1 ++ L2

Scoring analogies

- Number of common properties.
- TF-IDF to advantage rarer properties.
- Dynamical process (similarity of $01 \rightarrow$ similarity of $+{ }^{*}$).
- Not greedy. Concepts can have multiple analogues.

Some analogies across libraries with good scores

Prover 1	Prover 2	Constant 1	Constant 2
HOL4	HOL Light	(prod real) real	complex
HOL4	Isabelle/HOL	$\frac{\pi}{2}$	$\frac{\pi}{2}$
HOL Light	Isabelle/HOL	real_pow	power real
Coq	Matita	decidable	decidable
Coq	HOL4	length	LENGTH
Isabelle/HOL	Mizar	arccos	arcos
Coq	Mizar	Rlist	FinSequence REAL

Other analogies across libraries with good scores

Prover 1	Prover 2	Constant 1	Constant 2
HOL4	HOL Light	extreal	complex
HOL4	Isabelle/HOL	modu	real_norm complex
HOL Light	Isabelle/HOL	FCONS	case_nat
Coq	Matita	transitive	symmetric
Coq	HOL4	rev_append	REV
Isabelle/HOL	Mizar	sqrt	-
Coq	Mizar	Rlneq_Rsqr	min

Best analogies inside one library

Mizar			HOL4		
54494 analogies		Score	5842 analogies		Score
v2_normsp_1	v8_clvect_1	0.99	BIT2	BIT1	0.97
v5_rlvect_1	v3_normsp_0	0.99	real	int	0.96
v6_rlvect_1	v4_normsp_0	0.99	int_of_num	real_of_num	0.95
/1_normsp_1	12_clvect_1	0.99	real	extreal	0.94
v3_clvect_1	v6_rlvect_1	0.99	semi_ring	ring	0.94
v5_rlvect_1	v2_clvect_1	0.99	\leq	<	0.93

Creating conjectures from analogies

Normalized theorems

$$
\begin{gathered}
x *(y-z)=x * y-x * z \\
x *(y+z)=x * y+x * z \\
x \cup(y \cap z)=(x \cup y) \cap(x \cup z) \\
x+0=x \\
x-0=x
\end{gathered}
$$

$$
\exp (a+b)=\exp (a) * \exp (b) \quad P(\exp ,+, *, i, r)
$$

Properties
$\operatorname{Dist}(*,-, i)$
Analogies
$\operatorname{Dist}(*,+, i) \quad\{* \leftrightarrow \cup,+\leftrightarrow \cap, i \leftrightarrow s\}$
$\operatorname{Dist}(\cup, \cap, s) \quad\{* \leftrightarrow \cup,-\leftrightarrow \cap, i \leftrightarrow s\}$
$\operatorname{Neut}(+, 0, i)$
$\{-\leftrightarrow+\}$

Creating conjectures from analogies

Original goal:

- $\exp (a+b)=\exp (a) * \exp (b)$

Substitutions from analogies:

- $+\rightarrow-$
$\cdot+\rightarrow \cap, * \rightarrow \cup$
Failed conjectures:
- $\exp (a-b)=\exp (a) * \exp (b)$
- $\exp (a \cap b)=\exp (a) \cup \exp (b)$

Expected conjectures (if we had learnt better substitutions):

- $\exp (a-b)=\exp (a) / \exp (b)$
- complement $(a \cap b)=\operatorname{complement}(a) \cup \operatorname{complement}(b)$

Untargeted conjecture generation

Procedure:

- Generation of "best" 73535 conjectures from the Mizar library.
- Premise selection + Vampire prove 10% in 10 s.
- 4464 are not tautologies or consequences of single lemmas.

Examples:

- convex - circled

Problem:

- Unlikely to find something useful for a specific goal.
- How to adapt this method in a goal-oriented setting?

Targeted conjecture generation: evaluation settings

First experiment Second experiments

Library
Evaluated theorems
Accessible library
Concepts
Pair creation
Type checking
Analogies per theorem
Premise selection
ATP
Basic strategy
Premise selection
ATP

Mizar
hardest (22069)
past theorems
ground subterms
pre-computed
no
20
k-NN 128
Vampire 8s
no conjectures
k-NN 128
Vampire 3600s

HOL4
all
past theorems
only constants fair yes 20 -kNN 128
E-prover 8s
no conjectures
k-NN 128
E-prover 16s

First experiment: proof strategy

First experiment: results

Number Non-trivial and proven

Hard goals	22069	
Analogous conjectures	441242	3414
Back-translated conjectures	26770	2170
Affected hard goals	500	7
New proven hard goals		1

- Non-trivial theorem: consequences of at least two theorems.
- Affected goal: From the goal, the procedure proves at least one back-translated conjecture.
- Time: 14 hours on a 64-CPU server (proofs)

First experiment: example

theorem :: MATHMORP:25
for T being non empty right_complementable Abelian add-associative right_zeroed RLSStruct
for $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ being Subset of T
holds X (+) (Y (-) Z) c= (X (+) Y) (-) Z
Proven using:

- Analogy between + and - in additive structures.
- A conjectured lemma which happens to be MATHMORP:26.

First experiment: limits

Issues:

- Huge number of proofs.
- Few affected theorems (500).
- Few conjectured lemmas (in average 4 per affected theorems).
- Do not help in proving the goal.

Reasons:

- Design of the strategy.
- Problem set is hard.
- Proof selection is too restrictive.
- Analogies may be too strict.
- No type checking (set theory).
- No understanding of the type hierarchy.

Second experiment: proof strategy

Second experiment: proof strategy

interesting lemmas

Second experiment: proof strategy

interesting lemmas

conjectures, reflected analogies past theorems
$\underset{\sim}{\text { original conjecture (goal) analogies } \longrightarrow}$

Second experiment: proof strategy

$\underset{\sim}{\text { original conjecture (goal) }} \xrightarrow{\text { analogies }}$

Second experiment: proof strategy

$\underset{\sim}{\text { original conjecture (goal) }} \xrightarrow{\text { analogies }}$

Second experiment: results

Goals 10163
Proven conjectures 8246
Proven goals 2700
Proven goals using one conjecture 724
New proven goals 7

Time: 10 hours on a $40-\mathrm{CPU}$ server
Processes: analogies + premise selection + translation + proof

Second experiment: examples

Theorem
extreal.sub_rdistrib
pred_set.inter_countable real.pow_rat_2
numpair.tri_le ratRing.tLRLRRRRRRR words.word_L2_MULT_e3 real.REAL_EQ_LMUL

From analogues of

extreal.sub_Idistrib pred_set.FINITE_DIFF real.POW_2_LT arithmetic.LESS_EQ_SUC_REFL integerRing.tLRLRRRRRRR words.WORD_NEG_L intExtension.INT_NO_ZERODIV integer.INT_EQ_LMUL2

Conclusion

We designed two conjecture-based proving methods.

- Support many ITP libraries.
- Generate conjectures using analogies.
- Learn analogies by pattern-matching and dynamical scoring.
- Integrated in a proof strategy:

Combine analogies and standard hammering techniques (premise selections and translations to ATPs).
We evaluated them.

- 10% of conjectures from best analogies are provable.
- +1 hard Mizar problem.
- +7 hard HOL4 problem.

Coming sooner or later

- Conjecture generation:
- more complex concepts.
- probabilistic grammar.
- generalization/specification, weakening/strengthening.
- Learning:
- faster pattern-matching.
- genetic algorithm + model evaluation.
- from proofs.
- Pruning or/and guidance:
- better scoring mechanism for substitutions,
- model-based guidance.
- Truth intuition using machine learning (?).
- Improving proof strategies:
- Recursion
- Tree search (Monte-Carlo)

