
REINFORCEMENT LEARNING FOR CONNECTION

CALCULUS, OTHER FEEDBACK LOOPS

Josef Urban

Czech Technical University in Prague

May 3, 2019

1 / 19

Course Overview

� General intro
� Saturation-style ATP – Vampire, E, Prover9
� Infrastructure for ATP - TPTP, applications
� Machine learning for saturation-style ATP:

� statistical guidance: ENIGMA for E (linear, neural, decision trees)
� symbolic guidance: hints in Prover9 (symbolic matching)
� combinations: ProofWatch, EnigmaWatch

� Higher-order ATP, Mizar and Set theory
� ML for guiding connection tableau
� Feedback loops and reinforcement learning
� ML for ITP - TacticToe, hammers
� more topics

2 / 19

Automated Theorem Proving

Historical dispute: Gentzen and Hilbert
� Today two communities: Resolution (-style) and Tableaux

Possible answer: What is better in practice?
� Say the CASC competition or ITP assistance?
� Since the late 90s: resolution (superposition)

But ATP is still far from human performance
� Tableaux may be better for ML methods
� ML methods may be the decisive factor in ATP in the next years

3 / 19

leanCoP: Lean Connection Prover [Otten 2010]

Connected tableaux calculus
� Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC (CADE ATP
competition)

� despite their much larger implementation

Compact Prolog implementation, easy to modify

� Variants for other foundations: iLeanCoP, mLeanCoP
� First experiments with machine learning: MaLeCoP

Easy to imitate
� leanCoP tactic in HOL Light

4 / 19

Lean Connection Tableaux and its Guidance

Clauses:

c1 : P(x)

c2 : R(x ; y) _ :P(x) _Q(y)

c3 : S(x) _ :Q(b)

c4 : :S(x) _ :Q(x)

c5 : :Q(x) _ :R(a; x)

c6 : :R(a; x) _Q(x)

Closed Connection Tableau: P(a)

R(a; b)

:R(a; b) Q(b)

:Q(b) :R(a; b)

:P(a) Q(b)

S(b)

:S(b) :Q(b)

:Q(b)

� learn guidance of every clausal inference in connection tableau (leanCoP)
� set of first-order clauses, extension and reduction steps
� proof finished when all branches are closed
� a lot of nondeterminism, requires backtracking
� good for learning – the tableau compactly represents the proof state

5 / 19

leanCoP calculus

Very simple rules:
� Extension unifies the current literal with a copy of a clause
� Reduction unifies the current literal with a literal on the path

axiom:
fg;M;Path

reduction rule:
C;M;Path [fL2g

C [fL1g;M;Path [fL2g

where there exists a unification substitution � such that
�(L1) = �(L2)

extension rule:
C0 n fL2g;M;Path [fL1g C;M;Path

C [fL1g;M;Path

where C0 is a fresh copy of some C00 2 M such that L2 2 C0and
�(L1) = �(L2) where � is unification substitution.

6 / 19

Prolog code for the core of leanCoP

1 % prove (Cla , Path)
2 prove ([L i t | Cla] , Path) :�
3 (�NegLit= L i t ;� L i t =NegLi t) �>
4 (
5 member (NegL , Path) ,
6 uni fy_wi th_occurs_check (NegL , NegLi t)
7 ;
8 l i t (NegLit , NegL , Cla1 , Grnd1) ,
9 uni fy_wi th_occurs_check (NegL , NegLi t) ,

10 prove (Cla1 , [L i t | Path])
11) ,
12 prove (Cla , Path) .
13 prove ([] , _) .

7 / 19

More detailed Prolog code of leanCoP

prove ([L i t | Cla] , Path , PathLim ,Lem, Set) :�
\+ (member (Li tC , [L i t | Cla]) , member (L i tP , Path) , L i tC== L i tP) ,
(�NegLit= L i t ;� L i t =NegLi t) �> (

member (L i t L ,Lem) , L i t == L i t L
;
member (NegL , Path) ,
un i fy_wi th_occurs_check (NegL , NegLi t)
;
l i t (NegLit , NegL , Cla1 , Grnd1) ,
un i fy_wi th_occurs_check (NegL , NegLi t) ,

(Grnd1=g �> true ;
length (Path ,K) , K<PathLim �> true ;
\+ pa th l im �> assert (pa th l im) , f a i l) ,

prove (Cla1 , [L i t | Path] , PathLim ,Lem, Set)
) , (member (cut , Set) �> ! ; true) ,
prove (Cla , Path , PathLim , [L i t | Lem] , Set) .

prove ([] , _ , _ , _ , _ , []) .
8 / 19

Statistical Guidance of Connection Tableau

� MaLeCoP (2011): first prototype Machine Learning Connection Prover
� extension rules chosen by naive Bayes trained on good decisions
� training examples: tableau features plus the name of the chosen clause
� initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
� 20-time search shortening on the MPTP Challenge
� second version: 2015, with C. Kaliszyk
� both prover and naive Bayes in OCAML, fast indexing
� Fairly Efficient MaLeCoP = FEMaLeCoP
� 15% improvement over untrained leanCoP on the MPTP2078 problems
� using iterative deepening - enumerate shorter proofs before longer ones

9 / 19

General Advising Design

external system:

SNoW

machine learning system

specific communication

protocol of

every external system

P1

A

E1

receives a list of IDs of advised axioms

where ordering on the list

represents usefulness of axioms

sends a query

as a list of

symbols from an

actual sub-problem

theorem prover

based on leancop

alternative prover

using same IDs of

axioms

general advisor

a cache with a binary relation of queries from

provers and answers from external systems

alternative

external system

(i.e. CAS, SMT, …)

E2

P2

10 / 19

LeanCoP modifications

� Consistent clausification across many problems needed for consistent
learning/advice

� Options like definition introduction need to be fixed
� Providing training data for external advising systems
� Mechanisms for taking advice from external system(s)
� Profiling mechanisms
� External advice is quite slow: number of strategies defined trading advice

for speed

11 / 19

Statistical Guidance of Connection Tableau – rlCoP

� 2018: stronger learners via C interface to OCAML (boosted trees)
� remove iterative deepening, the prover can go arbitrarily deep
� added Monte-Carlo Tree Search (MCTS) – AlphaGo/Zero
� MCTS search nodes are sequences of clause application
� a good heuristic to explore new vs exploit good nodes:

wi

ni
+ c � pi �

s
ln N
ni

(UCT - Kocsis, Szepesvari 2006)

� learning both policy (clause selection) and value (state evaluation)
� clauses represented not by names but also by features (generalize!)
� binary learning setting used: | proof state | clause features |
� mostly term walks of length 3 (trigrams), hashed into small integers
� many iterations of proving and learning

12 / 19

Tree Example

r=0.3489
n=1000

p=0.37
r=0.0218

n=287

p=0.70
r=0.0000

n=166

p=0.13
r=0.0000

n=25

p=0.18
r=0.0000

n=74

p=0.11
r=0.0000

n=6

p=0.12
r=0.0000

n=22

p=0.16
r=0.0000

n=39

p=0.30
r=0.1225

n=121

p=0.19
r=0.0000

n=14

p=0.81
r=0.1330

n=107

0.63
r=0.4805

n=713

�
p=0.31

0.18
r=0.3649

n=385

1.00
r=0.3649

n=385

�
p=0.31

0.14
r=0.3562

n=278

...

...

13 / 19

Learn Policy and Value

Policy: Which actions to take?
� Proportions predicted based on proportions in similar states
� Explore less the actions that were “bad” in the past
� Explore more and earlier the actions that were “good”

Value: How good (close to a proof) is a state?

� Reward states that have few goals
� Reward easy goals

Where to get training data?

� Explore 1000 nodes using UCT
� Select the most visited action and focus on it for this proof
� A sequence of selected actions can train both policy and value

14 / 19

Reinforcement from scratch – 2003 problems

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 1037 1110 1166 1179 1182 1198 1196 1193 1212 1210
Iteration 11 12 13 14 15 16 17 18 19 20
Proved 1206 1217 1204 1219 1223 1225 1224 1217 1226 1235

15 / 19

rlCoP on 2003 Mizar problems – Policy and Value only

System leanCoP bare prover rlCoP without policy/value (UCT only)
Problems proved 876 434 770

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 974 1008 1028 1053 1066 1054 1058 1059 1075 1070
Iteration 11 12 13 14 15 16 17 18 19 20
Proved 1074 1079 1077 1080 1075 1075 1087 1071 1076 1075

Iteration 1 2 3 4 5 6 7 8 9 10
Proved 809 818 821 821 818 824 856 831 842 826
Iteration 11 12 13 14 15 16 17 18 19 20
Proved 832 830 825 832 828 820 825 825 831 815

16 / 19

More trees

r=0.3099
n=1182

p=0.24
r=0.3501

n=536

p=0.21
r=0.1859

n=28...
p=0.10

r=0.2038
n=9...

p=0.13
r=0.2110

n=14...
p=0.14

r=0.2384
n=21...

p=0.14
r=0.3370

n=181...
p=0.20

r=0.3967
n=279

p=0.30
r=0.1368

n=14...
p=0.15

r=0.0288
n=2...

p=0.56
r=0.4135

n=262

p=0.66
r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18
r=0.2633

n=8...
p=0.17

r=0.2554
n=6...

p=0.08
r=0.1116

n=3...

p=0.19
r=0.2289

n=58...
p=0.22

r=0.1783
n=40...

p=0.35
r=0.2889

n=548...

(tableau starting
atom)

RelStr(c1)

upper(c1)

Subset(union(c2),carrier(c1))

Subset(c2,powerset(carrier(c1))

17 / 19

rlCoP on 32k Mizar problems

� On 32k Mizar40 problems using 200k inference limit
� nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

� rlCoP with policy/value after 5 proving/learning iters on the training data
� 1624=1143 = 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

18 / 19

Feedback loop for ENIGMA on Mizar data

� Similar to rlCoP - interleave proving and learning of ENIGMA guidance
� Done on 57880 Mizar problems very recently
� Ultimately a 70% improvement over the original strategy

S S �M0
9 S �M0

9 S �M1
9 S �M1

9 S �M2
9 S �M2

9 S �M3
9 S �M3

9
solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S+ +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S� -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S �M3
12 S �M3

12 S �M3
16 S �M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647
S� -535 -295 -309 -183

19 / 19

