REINFORCEMENT LEARNING FOR CONNECTION CALCULUS, OTHER FEEDBACK LOOPS

Josef Urban

Czech Technical University in Prague

May 3, 2019

European Research Council Established by the European Commission

Course Overview

- General intro
- Saturation-style ATP Vampire, E, Prover9
- · Infrastructure for ATP TPTP, applications
- Machine learning for saturation-style ATP:
 - statistical guidance: ENIGMA for E (linear, neural, decision trees)
 - symbolic guidance: hints in Prover9 (symbolic matching)
 - · combinations: ProofWatch, EnigmaWatch
- Higher-order ATP, Mizar and Set theory
- ML for guiding connection tableau
- · Feedback loops and reinforcement learning
- ML for ITP TacticToe, hammers
- more topics

Historical dispute: Gentzen and Hilbert

Today two communities: Resolution (-style) and Tableaux

Possible answer: What is better in practice?

- · Say the CASC competition or ITP assistance?
- · Since the late 90s: resolution (superposition)

But ATP is still far from human performance

- Tableaux may be better for ML methods
- · ML methods may be the decisive factor in ATP in the next years

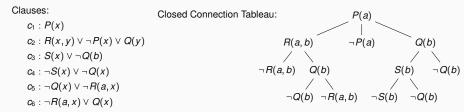
leanCoP: Lean Connection Prover [Otten 2010]

Connected tableaux calculus

• Goal oriented, good for large theories

Regularly beats Metis and Prover9 in CASC (CADE ATP competition)

· despite their much larger implementation


Compact Prolog implementation, easy to modify

- · Variants for other foundations: iLeanCoP, mLeanCoP
- · First experiments with machine learning: MaLeCoP

Easy to imitate

leanCoP tactic in HOL Light

Lean Connection Tableaux and its Guidance

- · learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps
- · proof finished when all branches are closed
- · a lot of nondeterminism, requires backtracking
- · good for learning the tableau compactly represents the proof state

leanCoP calculus

Very simple rules:

- · Extension unifies the current literal with a copy of a clause
- · Reduction unifies the current literal with a literal on the path

axiom:
$$\frac{1}{\{\}, M, Path}$$

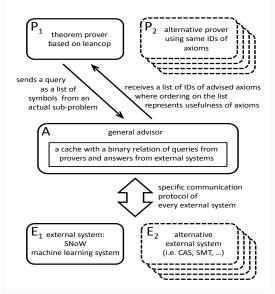
reduction rule:
$$\frac{C, M, Path \cup \{L_2\}}{C \cup \{L_1\}, M, Path \cup \{L_2\}}$$

where there exists a unification substitution σ such that
 $\sigma(L_1) = \sigma(\overline{L_2})$
extension rule:
$$\frac{C' \setminus \{L_2\}, M, Path \cup \{L_1\}}{C \cup \{L_1\}, M, Path}$$

where C' is a fresh copy of some $C'' \in M$ such that $L_2 \in C'$ and
 $\sigma(L_1) = \sigma(\overline{L_2})$ where σ is unification substitution.

Prolog code for the core of leanCoP

```
prove (Cla, Path)
%
prove([Lit|Cla],Path) :-
         (-NegLit=Lit;-Lit=NegLit) \rightarrow
           member(NegL, Path),
           unify with occurs check(NegL, NegLit)
         ÷
           lit (NegLit, NegL, Cla1, Grnd1),
           unify with occurs check(NegL, NegLit),
           prove(Cla1,[Lit|Path])
         ).
         prove(Cla, Path).
prove([], ).
```


More detailed Prolog code of leanCoP

```
prove ([Lit|Cla], Path, PathLim, Lem, Set) :-
  \+ (member(LitC, [Lit|Cla]), member(LitP, Path), LitC==LitP)
  (-NegLit=Lit;-Lit=NegLit) \rightarrow (
      member(LitL,Lem), Lit==LitL
      .
      member(NegL, Path),
      unify with occurs check(NegL, NegLit)
      lit (NegLit, NegL, Cla1, Grnd1),
      unify with occurs check(NegL, NegLit),
        (Grnd1=g \rightarrow true;
           length(Path,K), K<PathLim -> true;
           \+ pathlim -> assert(pathlim), fail ),
      prove(Cla1,[Lit|Path],PathLim,Lem,Set)
    ), (member(cut,Set) \rightarrow !; true),
    prove (Cla, Path, PathLim, [Lit |Lem], Set).
prove([],_,_,_,_,[]).
```

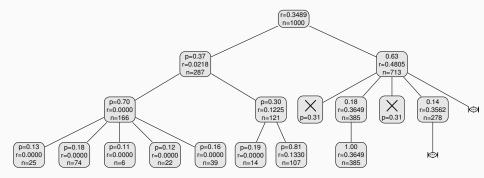
Statistical Guidance of Connection Tableau

- MaLeCoP (2011): first prototype Machine Learning Connection Prover
- · extension rules chosen by naive Bayes trained on good decisions
- training examples: tableau features plus the name of the chosen clause
- · initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
- · 20-time search shortening on the MPTP Challenge
- · second version: 2015, with C. Kaliszyk
- · both prover and naive Bayes in OCAML, fast indexing
- Fairly Efficient MaLeCoP = FEMaLeCoP
- 15% improvement over untrained leanCoP on the MPTP2078 problems
- using iterative deepening enumerate shorter proofs before longer ones

General Advising Design

LeanCoP modifications

- Consistent clausification across many problems needed for consistent learning/advice
- · Options like definition introduction need to be fixed
- Providing training data for external advising systems
- · Mechanisms for taking advice from external system(s)
- Profiling mechanisms
- External advice is quite slow: number of strategies defined trading advice for speed


Statistical Guidance of Connection Tableau - rlCoP

- 2018: stronger learners via C interface to OCAML (boosted trees)
- remove iterative deepening, the prover can go arbitrarily deep
- added Monte-Carlo Tree Search (MCTS) AlphaGo/Zero
- MCTS search nodes are sequences of clause application
- · a good heuristic to explore new vs exploit good nodes:

$$\frac{w_i}{n_i} + c \cdot p_i \cdot \sqrt{\frac{\ln N}{n_i}}$$
 (UCT - Kocsis, Szepesvari 2006)

- learning both *policy* (clause selection) and *value* (state evaluation)
- · clauses represented not by names but also by features (generalize!)
- · binary learning setting used: | proof state | clause features |
- · mostly term walks of length 3 (trigrams), hashed into small integers
- many iterations of proving and learning

Tree Example

Learn Policy and Value

Policy: Which actions to take?

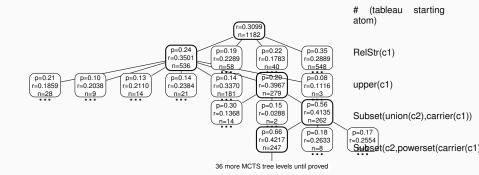
- · Proportions predicted based on proportions in similar states
- · Explore less the actions that were "bad" in the past
- · Explore more and earlier the actions that were "good"

Value: How good (close to a proof) is a state?

- · Reward states that have few goals
- Reward easy goals

Where to get training data?

- Explore 1000 nodes using UCT
- · Select the most visited action and focus on it for this proof
- · A sequence of selected actions can train both policy and value


Reinforcement from scratch – 2003 problems

Iteration Proved	1 1037	2 1110	3 1166	5 1182	6 1198	•	8 1193	9 1212	10 1210
Iteration Proved		12 1217		 	16 1225			19 1226	20 1235

rlCoP on 2003 Mizar problems – Policy and Value only

Syster Proble	m ems pro	ved	leanCo 876		bare pro 434	over	rlCoP wi 770	thout po	olicy/va	lue (U	CT onl	y)
Iteration	1	2	3		4	5	6	7	8	9)	10
Proved	974	100	08 10)28	1053	1066	1054	1058	105	9 1	075	1070
Iteration	11	12	13	}	14	15	16	17	18	1	9	20
Proved	1074	107	79 10)77	1080	1075	1075	1087	107	1 1	076	1075
Itera	ation	1	2	3	4	5	6	7	8	9	10	_
Pro	ved	809	818	821	821	818	824	856	831	842	826	
Itera	ation	11	12	13	14	15	16	17	18	19	20	_
Pro	ved	832	830	825	832	828	820	825	825	831	815	

More trees

rlCoP on 32k Mizar problems

- On 32k Mizar40 problems using 200k inference limit
- nonlearning CoPs:

System	leanCoP	bare prover	rlCoP no policy/value (UCT only)
Training problems proved	10438	4184	7348
Testing problems proved	1143	431	804
Total problems proved	11581	4615	8152

- · rlCoP with policy/value after 5 proving/learning iters on the training data
- 1624/1143 = 42.1% improvement over leanCoP on the testing problems

Iteration	1	2	3	4	5	6	7	8
Training proved Testing proved				14363 1595	14403 1624	14431 1586	14342 1582	14498 1591

Feedback loop for ENIGMA on Mizar data

- · Similar to rICoP interleave proving and learning of ENIGMA guidance
- Done on 57880 Mizar problems very recently

S' S S

· Ultimately a 70% improvement over the original strategy

	S	$S \odot \mathcal{M}_9^0$	$\mathcal{S} \oplus \mathcal{M}_9^0$	$S \odot \mathcal{M}_9^1$	$\mathcal{S} \oplus \mathcal{M}_9^1$	$S \odot \mathcal{M}_9^2$	$\mathcal{S} \oplus \mathcal{M}_9^2$	$S \odot M$
solved	14933	16574	20366	21564	22839	22413	23467	22910
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%	+49.4%	+56.5%	+52.8%
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414	+8407	+8964	+8822
$\mathcal{S}-$	-0	-2723	-782	-1143	-508	-927	-430	-845
		I						
		8	$S \odot \mathcal{M}_{12}^3 = 3$	$S \oplus \mathcal{M}_{12}^3$	$S \odot \mathcal{M}^3_{16}$	$\mathcal{S} \oplus \mathcal{M}^3_{16}$		
	_	solved	24159	24701	25100	25397	-	

olved	24159	24701	25100	25397
%	+61.1%	+64.8%	+68.0%	+70.0%
+	+9761	+10063	+10476	+10647
_	-535	-295	-309	-183