MACHINE LEARNING AND THEOREM PROVING

Josef Urban

Czech Technical University in Prague

The 20th Reasoning Web Summer School
September 19-22, 2024, Bucharest
https://t.ly/yKHBm

https://t.ly/yKHBm

Quick intro: Prove/Learn feedback loop on formal math

- Done on 57880 Mizar Mathematical Library formal math problems

- Efficient ML-guidance inside the best ATPs (E prover and more)

« Training of the ML-guidance is interleaved with proving harder problems

- Ultimately a 70% improvement over the original strategy:

+ ... from 149383 proofs to 25397 proofs (all 10s CPU - no cheating)

« 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

« Details in our Mizar60 paper: https://arxiv.org/abs/2303.06686

| S |[SOM) saM[SOM! SEMI|SOME SEME|SOMS soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4

S+ +0 +4364 +6215 | +7774 +8414 | +8407 +8964 | +8822 +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| SOME, SOM3, | SOMi; SOMj,
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -5635 -295 -309 -183
2/123

https://github.com/ai4reason/ATP_Proofs
https://arxiv.org/abs/2303.06686

Can you do this in 4 minutes? (example proof)

— - : -.-%
LR : T f
1 = [5
== lE=E
i i
el T ==
= : T_= =
== ||
i
[E I I
J-L A
_]L

3/123

Can you do this in 4 minutes?

theoren 7h31:
for A being Subset of R*1
a, he)nq Tes number st 2 < b & 4 = AAT (2,b) holds
- b.]
proof

let A be Subset of R™1; :: thesis:
let a, b be real number ; :: thesis

sis.
RT = RAT 25 Subset of R°1 by mmetss, mmemnir
= b1 28 Subset of R°1 by ronen
the corrier of R\l /A (CL ab) = CL ab by et
44: CURR c= (CLRT) A\ (CLab) by me rorczs;

205

thus CUA c= [.a,b.] :: according to ssooie oiset 10 :: thesis
proo

let x be set ; :: according to Tkt : thesis:

assume x in CUA; :: thesis:

then x in (CURT) /\ (CL ab) by A2, A4;

then x in the carrier of R°1 /\ (Cl ab] by mus;

Bance x in [.a..1 by A1 : th

Shue (.ab.) c= CLA ¢ thesis

proo

let x be set according to meskiider 3 :: thesis:

assume A5: x in [.a,b.] ; :: thesis

then reconsider p ='x 23 "Element of RealSpace by weraic s 13;

y A, xaneac 1:1;
475 b <= b by 45, omen i
per cases by A7, moen o
suppose 45 p'< b ; i thesis:

now ¢ th
let r he real number ; :
reconsider pp = p + r as Elemen(of RealSpace by rernic 1
set pr = min (pp, ((p + b) / 2));
49: min (90, ((p 40} / 2)) <= (b +b) / 2 by mca o

assune A10:
P B+ b/ 20
proof
per cases by cici o.15
suppose nin (pp, ((6's b 7 20) = thesis
5 < nin (B, ((p +) / 2)) by AI0, st 1mi i+ thesis
suppose min (pp, ((p + b) / 2)) = (p +b) / 2 ; :: thesis:
hence p < min (pp,((p + b) / 2)) by A8, wnea 1.226 thesis
end;
end?

hen consider 0 being rational nunber such that
All: p<Q a

412 0 < nin (pp, (54 B) / 2)) by w7
P +b) /2 <b by A8, meu 12

then min’ (5p, ((p.+ m /2) < n by 49, w
then A13: Q < b by o

i Ty e by anens 0:17;

then 414: (min (pp, ((p + b) / 2))) - p <= pp - p by s
reconsider P = Q as Element of RealSpace by rermic .ser 13, xic
P - p < (in (pp,((p +b) / 2))) - p by A1Z, min 1

023

hen Q in A by A2, AI6, xeoolc o

henu Ball (p,r) meets A by A15, 1 :: thesis
4/123

e % in CL A by cosouteror romemser 65 ++ thesis

Can you do this in 4 minutes?

:= README.md V4

Topology - the closure of rationals on (a,b) is [a,b]

359-long proof in 234s using 3-phase ENIGMA, shifting context and aggressive subsumption.
for A being Subset of RA1 for a, b being real number st a <b & A = RAT (a,b) holds ClA=[.a,b.]
The Mizar proof takes 80 lines:

http://grid01.ciirc.cvut.cz/~mptp/7.13.01 4.181.1147/html/borsuk 5.html#T31

E proof (3-phase parental+lgb+gnn-server plus shifting context plus aggr subsumption) using 38 of the 101
heuristically selected premises (subproblem minimization):
http://grid01.ciirc.cvut.cz/~mptp/enigma_prf/t31_borsuk_5

/local1/mptp/parents/out2/2pb3I8-query1024-ctx1536-w0-coop-srv-local1-f1711-jj1-zar-
parents_nothr_gnnm2_solo1_0.05_0.005_0.1_fw.minsub65all_240s_fw/t31_borsuk_5

Proof object clause steps 1 359

Proof object initial clauses used : 56

Proof object initial formulas used : 38

Proof object simplifying inferences : 180

Parsed axioms 1101

Initial clauses in saturation : 153

Processed clauses 1 7274
...remaining for further processing : 4883
Generated clauses 1 438702
...frozen by parental guidance : 133869
...aggressively subsumed 1 83871
User time 1 234.274 s

5/123

Intro2: Search/Check/Learn feedback loop on OEIS

=7 = T T T
. g 2
1.2-10° = — n
= &
= &
2 ﬁ
-
1-10° g 2 o n
oz ° $
I 2 = ~ ©
X e = = .

3 E = o =
£80.000 15 £ | z g |
8 T & Z &

5 S o =] —
= g g =}
260,000 |-& £ R
) S E
wv i O

= [~4

o

40,000

20,000

+Bigger model (it. 170) —
P-O virus created (it. 295)
Analogizing added (it. 336)
Memoization revolution (it. 456)

| | | | | |
00 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

6/123

Intro2: Search/Check/Learn feedback loop on OEIS

+ A machine can find explanations for over 125k OEIS sequences

- This is done from scratch, without any domain knowledge

+ N. Sloane: The OEIS: A Fingerprint File for Mathematics (2021)

« About 350k integer sequences in 2021 from all parts of math

« We use a simple Search-Verify-Train positive feedback loop

« 670 iterations and still refuses to plateau - counters RL wisdom

« Since it interleaves symbolic breakthroughs and statistical learning?
+ The electricity bill is only $1k-$3k, you can do this at home

- ~4.5M explanations invented: 50+ different characterizations of primes
+ Program evolution governed by high-level criteria (Occam, efficiency)
+ Connections to Solomonoff Induction, AlXI, Gédel Machine?

7/123

Search-Verify-Train Positive Feedback Loop

programs

Search

examples

+ Small Turing-complete DSL for our programs, e.g.:
2X =T[/_,2 = loop(2 x x,x,1)
x! =TT,_yy = loop(y x x,x,1)
+ Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — Machine Learner for Automated Reasoning — MaLARea))

- However, the OEIS setting allows much faster feedback on symbolic
conjecturing

8/123

n
o
£
-]
>
>
(@)}
o
o
C
e
5
T
9
)
©
S
©)
-
)
<
o
S
©)
w

($4) 1001 2renbs
(€-116) oseqSIp

(659) 1001 Y1ty

(61+) Wua1OY§200/a[SuRL) —

(Lg€) TeranouAfod/orwolofoho —
(-00¢) Terwouk od/orojopPAd

(867) dseq/moo0

(6L€) swd/dxs —

150 200 250 300 350 400 450 500 550 600 650 700

500

o
g (s-v6) ums | S
§/) “wourq/aSueLn
) o
lec 1) uorsuedxa o pomd |2
, : : : o
= o o o -
= =1 =) b3
<t ™ N =
soouanbag

Iteration

9/123

Some Automatic Technology Jumps

* iter 53: expansion/prime: A29363 Expansion of 1/((1 — x*)(1 — x")(1 — x®)(1 — x19))

« iter 78: triangle/binomial: A38313 Triangle whose (i,j)-th entry is binomial(i, j) % 107~/ % 11/
* iter 94-5: sum: A100192 a(n) = Sumy—o. nbinomial(2n, n + k) % 2k

* 109-121: sum/triangle: A182013 Triangle of partial sums of Motzkin numbers

* 171-2: base/representation: A39080 n st base-9 repr. has the same number of 0’s and 4’s
» 258: occur/base: A44533 n st “2,0” occurs in the base 7 repr of n but not of n + 1

* 300-304: cyclotomic/polynomial: A14620 Inverse of 611th cyclotomic polynomial

* 379: exp/prime: A124214 E.g.f.: exp(x)/(2 — exp(3 * x))'/3

* 419: triangle/coefficient: A15129 Triangle of (Gaussian) g-binomial coefficients for g = —13
* 511,3: digit/base/prime: A260044 Primes with decimal digits in 0,1,3.

» 544: square root: A10538 Decimal expansion of square root of 87.

* 659: 4th root: A11084 Decimal expansion of 4th root of 93.

10/123

Infinite Math-Nerd Sniping

- We have 4.5M problems for math nerds like this one:

+ JU: This thing works for the first 1k values (just checked) - any idea why?
* https://oeis.org/A004578 - Expansion of sqrt(8) in base 3.

« loop2(((y *y) div (X +y)) +V, ¥, X + X, 2, loop((1 + 2) * X, X, 2)) mod (1 + 2)

« MO: Not a proof, just a rough idea: The program iterates the function q
[-> 2+q/ 1+q, where q is a rational number. This converges to sqrt(2).
The number q is represented by an integer ‘a’ such thata = 3* = (2« q),
where ’x’ is the input. Once the approximation is good enough,

a = floor(3* = sqrt(8)), so a mod 3 is the digit we want.

11/123

https://oeis.org/A004578

A30187: Expansion of n(q) = n(q%) = n(q")
A30184: Expansion of n(q) = n(q°) = n(q°)

Serious Math Conjecturing — Elliptic Curves

+ Sander Dahmen: Here are some OEIS labels related to elliptic curves
(and hence modular forms), ordered by difficulty. It would be interesting
to know if some of these appear in your results.

- A006571 A030187 A030184 A128263 A187096 A251913

« JU: We have the first three:

» A6571 : loop((push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then ((if (y mod
loop(1 + (X + x), 2, 2)) <= 0 then (x - y) else x) - y) else x, y, push(0, y))) + X, Y,
push(0, x)), x) * 2) divy, x, 1)

» A30187 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (((2 +y) *y) - 1)) <= 0 then (x + x) else X, 2, y)) else x, y, push(0, y))) + X, V,
push(0, x)), x) div y, x, 1)

* A30184 : loop(push(loop((pop(x) * loop(if (pop(x) mod y) <= 0 then (x - loop(if (x
mod (1 + (y +Y))) <= 0 then (x + X) else x, 2, y)) else x, y, push(0, y))) + X, ¥,
push(0, x)), x) divy, x, 1)

AB571: Expansion of q * Productk-—1(1 — q*)? « (

xn(q"
#n(q

11*k)

1—
) in powers of q.
)

'5) in powers of g.

12/123

More Bragging

- Hofstadter-Conway $10000 sequence: a(n) = a(a(n-1)) + a(n-a(n-1)) with
a(l)=a(2) =1.
+ D. R. Hofstadter, Analogies and Sequences: Intertwined Patterns of

Integers and Patterns of Thought Processes, Lecture in DIMACS
Conference on Challenges of Identifying Integer Sequences, 2014.

Date: Sun, Mar 17, 2024
To: <dughof@indiana.edu>

Dear Douglas,

our system [1l] has today (iteration 552) found a solution of
https://oeis.org/A004074. The solution in Thibault’s programming
language [1] (with push/pop added on top of [1]) is:

((2% 1oop (push (Lloop (pop (x) , x-1, x) , x) +100p (POp (x) , y=X, pop (x)) , x-1,1)) -1) -x

The related A4001 was solved in iteration 463 and the solution is:
loop (push (loop (pop (x), y-x,pop(x)),x) + loop(pop(x), x-1, x), x — 1, 1)

13/123

Quick Intro

Motivation, Learning vs. Reasoning

Bird’'s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection
Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

14/123

Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l'intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)
— Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fdngt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)
— Novalis, quoted by Popper — The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
— G. Polya - Mathematics and Plausible Reasoning

Galileo once said, "Mathematics is the language of Science.” Hence, facing
the same laws of the physical world, alien mathematics must have a good
deal of similarity to ours.

— R. Hamming - Mathematics on a Distant Planet

15/123

Leibniz’s/Hilbert’'s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

wl, too, cveowed
this wan's dveom:
To find the perfect
logical wiethod for solving
all problews, from
Logic, all the way up
to Huwan

el to find o way of
obsolutely vight

Let's have
a picture of
Leibniz

B

Andl so? What
does it tell us, that
you dicn't achieve
"Lefoniz's Dreow''?

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

16/123

How Do We Automate Math and Science?

- What is mathematical and scientific thinking?

« Pattern-matching, analogy, induction from examples

- Deductive reasoning

- Complicated feedback loops between induction and deduction

+ Using a lot of previous knowledge - both for induction and deduction

+ We need to develop such methods on computers

« Are there any large corpora suitable for nontrivial deduction?
- Yes! Large libraries of formal proofs and theories

+ So let’s develop strong Al on them!

17/123

History, Motivation, Al/TP/ML

« Intuition vs Formal Reasoning — Poincaré vs Hilbert, Science & Method

« Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
+ 50s-60s: Beginnings of ATP and ITP — Davis, Simon, Robinson, de Bruijn
+ Lenat, Langley: AM, manually-written heuristics, learn Kepler laws,...

+ Denzinger, Schulz, Goller, Fuchs — late 90’s, ATP-focused:
Learning from Previous Proof Experience (Tree NNs for ATP, E prover, ...)

+ My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar

« Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL
... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI
... hammer-style methods, internal guidance, feedback loops, ...

+ Buzzword bingo timeline: Al vs ML vs NNs vs DL vs LLMs vs AGl vs ...?
See Ben Goertzel's 2018 Prague talk: https://youtu.be/Zt2HSTuGBnS

18/123

https://youtu.be/Zt2HSTuGBn8

Intuition vs Formal Reasoning — Poincaré vs Hilbert

shallexpe
Her:n(?antorhas reate ed for us!

st gmﬁ the [y
Cerwion apostle. |87,
of the vigorovs
exoctress of
logical preof.

Henri Poincaré, the great |
(| French genius, astrong
A beliver fn the iwmportance
of huwon intuition.

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

19/123

Induction/Learning vs Reasoning — Henri Poincaré

+ Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

- “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

« | believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

20/123

Learning vs Reasoning — Alan Turing 1950 — Al

1950: Computing machinery and intelligence — Al, Turing test

- “We may hope that machines will eventually compete with men in all
purely intellectual fields.” (regardless of his 1936 undecidability result!)

- last section on Learning Machines:

« “But which are the best ones [fields] to start [learning on] with?”

« “.. Even this is a difficult decision. Many people think that a very abstract
activity, like the playing of chess, would be best.”

« Why not try with math? It is much more (universally?) expressive ...

+ (formal) math as a universal/science-complete game, semantic sweetspot

21/123

Why Combine Learning and Reasoning Today?

Practically Useful for Verification of Complex HW/SW and Math

Formal Proof of the Kepler Conjecture (2014 — Hales — 20k lemmas)
Formal Proof of the Feit-Thompson Theorem (2 books, 2012 — Gonthier)
Verification of several math textbooks and CS algorithms

Verification of compilers (CompCert)

Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,

Verification of cryptographic protocols (Amazon), etc.

Blue Sky Al Visions:

Get strong Al by learning/reasoning over large KBs of human thought?
Big formal theories: good semantic approximation of such thinking KBs?
Deep non-contradictory semantics — better than scanning books?

Gradually try learning math/science
automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

* What are the components (inductive/deductive thinking)?
* How to combine them together?

22/123

Bird’'s-Eye View of ATP and ML

23/123

What Are Automated Theorem Provers?

« Computer programs that (try to) automatically determine if

» A conjecture C is a logical consequence of a set of axioms Ax
» The derivation of conclusions that follow inevitably from facts.

+ Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, iProver, ...

« Brute-force search calculi (resolution, superposition, tableaux, inst-gen)

« more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)

« TP-motivated PLs: Prolog (logic programming - Hayes, Kowalski)

+ Human-designed heuristics for pruning of the search space

+ Theoretically complete: will solve arbitrary solvable problem (AGI??)

« BUT: Combinatorial explosion, esp. on large KBs like Flyspeck and Mizar
- Need to be equipped with good domain-specific inference guidance ...

+ ... and that is what I try to do ...

- ... typically by learning in various ways from large TP corpora ...

24/123

First Order — Automated Theorem Proving (ATP)

« try to infer conjecture C from axioms Ax: Ax - C
+ most classical methods proceed by refutation: Ax A =C L

« Ax A —C are turned into clauses: universally quantified disjunctions of
atomic formulas and their negations

+ skolemization is used to remove existential quantifiers
« strongest methods: resolution (generalized modus ponens) on clauses:
« —man(X) v mortal(X), man(socrates) - mortal(socrates)

- saturation-style (resolution/superposition) provers generate
inferences/clauses, looking for the contradiction (empty clause)

- tableaux, connection calculus — often implement backtracking (more
suitable for RL/MCTS)

- instantiation-based — systematically add (or guess) ground instances
and use SAT solvers to check satisfiability

- combined approaches — SAT run often inside the ATP (generalized
splitting, AVATAR, iProver, SMT, etc.)

25/123

The CADE ATP System Competition (CASC)

Zipperpin Satallax Vampire | Leo-IIl | CVC4 | LEO-II
20 45 15) 170
Solvedsson 424500 s 29950 287500 194500 1121500
[Solutions [42dam| 3236 2995w 2875w 194mw| 1112
Vampire | Vampire
45 44
Solvedso 19150
I%I 19176 19076%
Vampire | Vampire E CSE E | iProver | GKC CVC4 |Zipperpiy bl Prover9 [CSE |leanCo
45] 25 12 33 051] 20 02 1109 13 22
Solvedsson 429500 4161500 3515 31650 312500 2891500 2755w 2375w 1621500 146/500 124500 111
Solutions 42985%| 41683 31663 312e%| 289s7| 2755|237 16232 146299 124 249 1112
Vampire | Vampire | iProver E PyRes
SAT-45 SAT-44 FNT25 13
Solvednso 238250 226050 637250/ 13050
Solutions 23895 226.90% 63 25% 13 5%
E | Vampire |Etableau| GKC | iProver |lazyCoP
24 45 02 5.1 3a 01
1627250 1480250 128550 124050 20050
16264% 148 500 12851% 124 4% 0 0%
Zipperpir] Leo-1I1 |ATPBoos{ GKC Leo-I1I1
LTB- LTB15 10 ITB051 L1814
1699m0000| 141310000 1237n0000| 49310000 13410000
1699 16%| 1413 1a%) 1237 12% 493 4% 134 1%

26/123

Using First/Higher Order Automated Theorem Proving

+ 1996: Bill McCune proof of Robbins conjecture (Robbins algebras are
Boolean algebras)

+ Robbins conjecture unsolved for 50 years by mathematicians like Tarski
« 2021: M. Kinyon, R. Veroff, Prover9: Weak AIM conjecture

« If Qis an Abelian Innner Mapping loop, then Q is nilpotent of class < 3.
« ATP has currently only limited use for proving new conjectures

- mainly in very specialized algebraic domains

- however ATP has become very useful in Interactive Theorem Proving

- arecent (2020) performance jump in higher-order ATP:

« Zipperposition, HO-Vampire, E-HO (J. Blanchette, A Bentkamp, P.
Vukmirovic)

27/123

Learning Approaches - Data vs Theory Driven

+ John Shawe-Taylor and Nello Cristianini — Kernel Methods for Pattern
Analysis (2004):
« "Many of the most interesting problems in Al and computer science in

general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution.”

- "As an example consider the problem of recognising genes in a DNA
sequence. We do not know how to specify a program to pick out the
subsequences of, say, human DNA that represent genes."

« "Similarly we are not able directly to program a computer to recognise a
face in a photo.”

28/123

Learning Approaches - Data vs Theory Driven

 "Learning systems offer an alternative methodology for tackling these
problems.”

- "By exploiting the knowledge extracted from a sample of data, they are
often capable of adapting themselves to infer a solution to such tasks.”

« "We will call this alternative approach to software design the learning
methodology."

"It is also referred to as the data driven or data based approach, in
contrast to the theory driven approach that gives rise to precise
specifications of the required algorithms."

29/123

For Fun: My Depressive Slide From 2011 AMS

« My personal puzzle:

« The year is 2011.

- The recent Al successes are data-driven, not theory-driven.

« Ten years after the success of Google.

- Fifteen years after the success of Deep Blue with Kasparov.

- Five year after a car drove autonomously across the Mojave desert.
« Four years after the Netflix prize was announced.

« Why am | still the only person training Al systems on large repositories of
human proofs like the Mizar library???

« (This finally started to change in 2011)

30/123

Sample of Learning Approaches

+ neural networks (statistical ML, old!) — backprop, SGD, deep learning,
convolutional, recurrent, attention/transformers, tree NNs, graph NNs, etc.

- decision trees, random forests, gradient boosted trees — find good
classifying attributes (and/or their values); more explainable, often SoTA

- support vector machines — find a good classifying hyperplane, possibly
after non-linear transformation of the data (kernel methods)

+ k-nearest neighbor — find the k nearest neighbors to the query, combine
their solutions, good for online learning (important in ITP)

+ haive Bayes — compute probabilities of outcomes assuming complete
(naive) independence of characterizing features, i.e., just multiplying
probabilities: P(y|X) = P(xy|y) = P(Xa|y) * ... * P(Xaly) = P(y)/P(X)

- inductive logic programming (symbolic ML) — generate logical
explanation (program) from a set of ground clauses by generalization

+ genetic algorithms — evolve large population by crossover and mutation

- various combinations of statistical and symbolic approaches

- supervised, unsupervised, online/incremental, reinforcement

learning (actions, explore/exploit, cumulative reward)
31/123

Learning — Features and Data Preprocessing

- Extremely important - if irrelevant, there is no way to learn the function
from input to output (“garbage in garbage out”)

- Feature discovery/engineering — a big field, a bit overshadowed by DL

- Deep Learning (DL) — deep neural nets that automatically find important
high-level features for a task, can be structured (tree/graph NNs)

- Data Augmentation and Selection — how do we generate/select
more/better data to learn on?

- Latent Semantics, PCA, dimensionality reduction: use linear algebra
(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them; or just use hashing

« word2vec and related/neural methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

- math and theorem proving: syntactic/semantic/computational
patterns/abstractions/programs

+ How do we represent math data (formulas, proofs, models) in our mind?

32/123

Learning of Theorem Proving - Overview

33/123

Using Learning to Guide Theorem Proving

+ high-level: pre-select lemmas from a large library, give them to ATPs

« high-level: pre-select a good ATP strategy/portfolio for a problem

- high-level: pre-select good hints for a problem, use them to guide ATPs
« low-level: guide every inference step of ATPs (tableau, superposition)

- low-level: guide every kernel step of LCF-style ITPs

- mid-level: guide application of tactics in ITPs, learn new tactics

+ mid-level: invent suitable strategies/procedures for classes of problems
- mid-level: invent suitable conjectures for a problem

- mid-level: invent suitable concepts/models for problems/theories

- proof sketches: explore stronger/related theories to get proof ideas

- theory exploration: develop interesting theories by conjecturing/proving
- feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
- autoformalization: (semi-)automate translation from IATEX to formal

34/123

Large Datasets

« Mizar / MML / MPTP — since 2003

« MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)

« Isabelle (and AFP) — since 2005, Sledgehammer

+ Flyspeck (including core HOL Light and Multivariate) — since 2012

+ HOL4 — since 2014, TacticToe (2017), CakeML — 2017, GRUNGE — 2019
+ Coq - since 2013/2016 (CogHammer - 2016, Tactician - 2020)

+ ACL2 — 20147

- Lean?, Stacks?, Arxiv?, ProofWiki?, ...

35/123

AITP Challenges/Bets from 2014

+ 3 AITP bets for 10k EUR from my 2014 talk at Institut Henri Poincare
(tinyurl.com/yb55b3jv)

* In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

* In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)

« In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math
curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than | expected)

+ My (conservative?) estimate when we will do Fermat:

» Human-assisted formalization: by 2050

 Fully automated proof (hard to define precisely): by 2070

» See the Foundation of Math thread: https://bit.1ly/300k9Pm
- and the AITP’22 panel: https://bit.1ly/3dcY5HW

- Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)

36/123

tinyurl.com/yb55b3jv
https://bit.ly/300k9Pm
https://bit.ly/3dcY5HW

Demos

37/123

Al/TP Examples and Demos

« ENIGMA/hammer proofs of Pythagoras : https://bit.1ly/2MVPAn7
(more at http://grid0l.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.1y/30GBdRz,

+ 3-phase ENIGMA: https://bit.1ly/3C0Lwa8,
https://bit.ly/3BWQR6K

+ Long trig proof from 1k axioms: https://bit.1ly/2YZ00gX

+ Extreme Deepire/AVATAR proof of ¢ = W’ nttps://bit.ly/3NedWNX

+ Hammering demo: http://grid0l.ciirc.cvut.cz/~mptp/out4.ogv

« TacticToe on HOL4:
http://grid0l.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

« TacticToe longer: https://www.youtube.com/watch?v=B0O4Y8ynwT6Y

« Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://cog-tactician.github.io/demo.html

« Inf2formal over HOL Light:
http://grid0l.ciirc.cvut.cz/~mptp/demo.ogv

» QSynt: Al rediscovers the Fermat primality test:

https://www.youtube.com/watch?v=240ejR9wsXs
38/123

https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://www.youtube.com/watch?v=BO4Y8ynwT6Y
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

High-level Reasoning Guidance: Premise Selection

39/123

Today’s AI-ATP systems (x-Hammers)

Current Goal First Order Problem
/—\k /—\k
v v

ITP Proof ATP Proof

Proof Assistant *Hammer ATP

How much can it do?
+ Mizar / MML — MizAR
+ Isabelle (Auth, Jinja) — Sledgehammer
« Flyspeck (including core HOL Light and Multivariate) — HOL(y)Hammer
+ HOL4 (Gauthier and Kaliszyk)
« CogHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

~ 40-45% success by 2016, 60% on Mizar as of 2021

40/123

High-level feedback loops — MALARea, ATPBoost

« Machine Learner for Autom. Reasoning (2006) — infinite hammering
feedback loop interleaving ATP with learning premise selection

both syntactic and semantic features for characterizing formulas:

- evolving set of finite (counter)models in which formulas evaluated
winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

\J

initial settings

solve problems
(ATP)
' >
N, YT EEE
<all proved? ——p- st
LI i MalARe] E Zipperpil] Leo-Ill |ATPBoos| GKC | Leodil
N 09 LTB-25 LTB-20 LTB-15 10 LTB05.1 LTB-1.4
-y Solvediomo 7054 000 3393 om0 1699 00m] 1413100| 1237000] 493 u10m| 1341000
leamn i 7054|3393 1699 0] 141310 12371 493 m] 1341
from proofs (ML)
premise
selections (ML)
L 1

41/123

Number of proved theorems

Prove-and-learn loop on MPTP2078 data set

L

1100-
1000-
900- 0O OO0 —0=-0—0—0--0—0—0=-0—0
Method
o= kNN
800~ =o= XGB_simple
=o= XGB_short
700- =o= XGB_negmin_1
=e= XGB_negmin_all
@~ XGB_negmin_rand
600~
500-
400-

Round

42/123

Number of all found proofs

Prove-and-learn loop on MPTP2078 data set

7000~
6000 -
Method
o= kNN
5000 -
o= XGB_simple
=o= XGB_short
=o= XGB_negmin_1
4000 - =e= XGB_negmin_all
@~ XGB_negmin_rand
3000~
2000~

Round

43/123

Number of theorems

250~

200-

i
a
=

=
o
S

I
=

0-

Number of found proofs per theorem at the end of the loop

% 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55
Number of different proofs

44/123

Finding shorter proofs: FAcE_oF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(“!s:real”N->bool c. polyhedron s /\ c face_of s ==> polyhedron c?‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC [RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[Yf: (real”N->bool)->bool'; ‘a: (real”N->bool)->real”N?';
‘b: (real”N->bool)->real'] THEN
STRIP_TAC THEN
MP_TAC (ISPECL [‘s:real”N->bool‘; ‘f: (real”N->bool)->bool?;
‘a: (real”N->bool)->real”N'; ‘b: (real”N->bool)->real]
FACE_OF_POLYHEDRON_EXPLICIT) THEN
ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN (MP_TAC o SPEC ‘c:real”N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real”N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real”N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC [FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC [POLYHEDRON_HYPERPLANE]) ; ;

45/123

Finding shorter proofs: FAcE_oF_POLYHEDRON_POLYHEDRON

polyhedron s /\ ¢ face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX :
Face t of a convex set s is equal to the intersection of s with the affine hull of £.

FACE_OF_STILLCONVEX:

!'s t:real”N->bool. convex s ==>

(t face_of s <=>

t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)
POLYHEDRON_IMP_CONVEX:

!'s:real”N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!'s t:real”N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)
POLYHEDRON_AFFINE_HULL:
!'s. polyhedron(affine hull s)

46/123

Various Improvements and Additions

+ Model-based features for semantic similarity [I[JCAR’08]
« Features encoding term matching/unification [IJCAI'15]
« Various learners: weighted k-NN, boosted trees (LightGBM,XGBoost)

« Matching and transferring concepts and theorems between libraries
(Gauthier & Kaliszyk) — allows “superhammers”, conjecturing, and more

- Lemmatization — extracting and considering millions of low-level lemmas
+ LSI, word2vec, neural models, definitional embeddings (with Google)

+ Learning in binary setting from many alternative proofs

+ Negative/positive mining (ATPBoost - Piotrowski & JU, 2018)

- Stateful neural methods: RNNs and Transformers (Piotrowski & JU, 2020)
(smooth transition from fact selection to conjecturing — Jakubuv & JU 2020)

» Currently strongest: Name-independent graph neural nets (Olsak, 2020)
(generalize very well to new terminology/lemmas)

47/123

Low Level Guidance of Theorem Provers

48/123

Low-level: Statistical Guidance of Connection Tableau

« learn guidance of every clausal inference in connection tableau (leanCoP)
- set of first-order clauses, extension and reduction steps

- proof finished when all branches are closed

- a lot of nondeterminism, requires backtracking

« lterative deepening used in leanCoP to ensure completeness

« good for learning — the tableau compactly represents the proof state

Clauses: Closed Connection Tableau: P(a)
ci: P(x)
e R(x,y) v —P(x) v Qy) R(a, b) /ﬁF"(a)\ Q(b)
¢ S(x) v —Q(b) / N\
¢ —S(x) v —Q(x) —R(a,b) Q(b) S(b) —Q(b)
cs: —Q(x) v —R(a, x) / N\ /

cs: —R(a,x) v Q(x)

49/123

leanCoP: Minimal Prolog FOL Theorem Prover

% prove(Cla, Path, PathLim,Lem, Set)
prove ([Lit|Cla],Path,PathLim, Lem, Set) :—
(—NegLit=Lit;—Lit=NegLit) —
(
member (NegL, Path) ,
unify_with_occurs_check (NegL, NegLit)

% main nondeterminism
lit (NegLit,NegL,Cla1l,Grnd1),
unify_with_occurs_check (NegL, NeglLit),
prove (Cla1l ,[Lit |Path],PathLim, Lem, Set)
) o
prove (Cla, Path,PathLim ,Lem, Set).
prove([] !_1_1_5_)'

50/123

Statistical Guidance of Connection Tableau

+ MaLeCoP (2011): first prototype Machine Learning Connection Prover
« extension rules chosen by naive Bayes trained on good decisions

- training examples: tableau features plus the name of the chosen clause
- initially slow: off-the-shelf learner 1000 times slower than raw leanCoP

+ 20-time search shortening on the MPTP Challenge

+ second version: 2015, with C. Kaliszyk

- Fairly Efficient MaLeCoP = FEMaLeCoP

« both prover and naive Bayes in OCAML, fast indexing, 40% slower

+ 15% real-time improvement over leanCoP on the MPTP2078 problems
- using iterative deepening - enumerate shorter proofs before longer ones

51/123

Statistical Guidance of Connection Tableau — rICoP

« 2018: stronger learners via C interface to OCAML (boosted trees)

« remove iterative deepening, the prover can go arbitrarily deep

- added Monte-Carlo Tree Search (MCTS) (inspired by AlphaGo/Zero)
+ MCTS search nodes are sequences of clause application

 a good heuristic to explore new vs exploit good nodes:

W,'+C P InN
el D -
nj i

(UCT - Kocsis, Szepesvari 2006)

« learning both policy (clause selection) and value (state evaluation)

- clauses represented not by names but also by features (generalize!)
+ binary learning setting used: | proof state | clause features |

- mostly term walks of length 3 (trigrams), hashed into small integers
« many iterations of proving and learning

« More recently fun with GNNs (Olsak, Rawson, Zombori, ...)

52/123

Tree Example

53/123

Statistical Guidance of Connection Tableau — rICoP

+ On 32k Mizar40 problems using 200k inference limit
+ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348

Testing problems proved 1143 431 804

Total problems proved 11581 4615 8152

- rlICoP with policy/value after 5 proving/learning iters on the training data
+ 1624/1143 = 42.1% improvement over leanCoP on the testing problems

lteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

54/123

More trees

(tableau starting
atom)
(r=0.3099)
n=1182

p-022 p-035 RelStr(c1)
3 r=0.2889

upper(c1)
Subset(union(c2),carrier(c1))

p=0.17
r=0.2554 . ,
t(c2,powerset(carrier(c1’

36 more MCTS tree levels until proved

55/123

ENIGMA (2017): Guiding the Best ATPs like E Prover

Basic Saturation Loop — Given Clause Loop (E, Vampire, SPASS, Prover9, ...)

P=g (processeqd)
U := {clausified axioms and a negated conjecture} (unprocesseqd)
while (U # &) do
if (L € U u P) then return Unsatisfiable
(choose a given clause)

P:=Pu{g} (add to processed)

U:=U\{g} (remove from unprocessed)

U := U u {all clauses inferred from g and P} (add inferences)
done

return Satisfiable

Typically, U grows quadratically wrt. P
1M clauses in U in 10s common — choosing good g gets hard — use ML!

56/123

ENIGMA: ML-based Given Clause Guidance

process

processed

given
clauses

Selection Model

ENIGMA
Queue

E Prover
Queue

57/123

ENIGMA (2017): Guiding the Best ATPs like E Prover

+ The proof state are two large heaps of clauses processed/unprocessed
« learn on E’s proof search traces, put classifier in E
- positive examples: clauses (lemmas) used in the proof
- negative examples: clauses (lemmas) not used in the proof
+ 2021 multi-phase architecture (combination of different methods):
« fast gradient-boosted decision trees (GBDTSs) used in 2 ways

« fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
* logic-based subsumption using fast indexing (discrimination trees - Schulz)

« The GNN scores many clauses (context/query) together in a large graph
+ Sparse - vastly more efficient than transformers (~100k symbols)

« 2021: leapfrogging and Split&Merge:

+ aiming at learning reasoning/algo components

58/123

Feedback prove/learn loop for ENIGMA on Mizar data

- Done on 57880 Mizar problems recently

+ Serious ML-guidance breakthrough applied to the best ATPs

 Ultimately a 70% improvement over the original strategy in 2019

« From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)

« Went up to 40k in more iterations and 60s time in 2020

+ 75% of the Mizar corpus reached in July 2021 - higher times and many
runs: https://github.com/aidreason/ATP_Proofs

| S |SoOM) saM|SOM! SEMI|SOME SEM2|SOM soMd
solved | 14933 | 16574 20366 | 21564 22839 | 22413 23467 | 22910 283753
8% | +0% | +10.5% +35.8% | +43.8% +52.3% | +49.4% +56.5% | +52.8% +58.4

S+ +0 +4364 +6215 | +7774 +8414 | +8407 +8964 | +8822 +9274
S— -0 -2723 -782 -1143 -508 -927 -430 -845 -454
| SoM, SOM, | SOMi, SOMi,
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S+ +9761 +10063 +10476 +10647

S— -535 -295 -309 -183

59/123

https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

+ The GNN and GBDTs only learn from formula structure, not symbols

+ Not from symbols like + and = as Transformer & Co.

- E.g., learning on additive groups thus transfers to multiplicative groups
- Evaluation of old-Mizar ENIGMA on 242 new Mizar articles:

+ 13370 new theorems, > 50% of them with new terminology:

« The 3-phase ENIGMA is 58% better on them than unguided E

+ While 53.5% on the old Mizar (where this ENIGMA was trained)

- Generalizing, analogizing and transfer abilities unusual in the large
transformer models

60/123

3-phase Anonymous ENIGMA

The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

Given Clause L

3-phase ENIGMA

Cemntributicn £

ccccc
implif

implify

(unprocessed clauses)

12 61/123

More Low-Level Guidance of Various Creatures

+ Neural (TNN) clause selection in Vampire (Deepire - M. Suda):
Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.

« Fast and surprisingly good

+ GNN-based guidance in iProver (Chvalovsky, Korovin, Piepenbrock)

- New (dynamic data) way of training

« Led to doubled real-time performance of iProver’s instantiation mode
+ CVC5: neural & GBDT instantiation guidance (Piepenbrock, Jakubuv)
- very recently 20% improvement on Mizar

62/123

ProofWatch: Symbolic/Statistical Guidance of E

« Bob Veroff’s hints method used for Prover9

+ solve many easier/related problems, produce millions of lemmas

- load the useful lemmas (hints) on the watchlist (kind of conjecturing)

« boost inferences on clauses that subsume a watchlist clause

 watchlist parts are fast thinking, bridged by standard (slow) search

+ symbolic guidance, initial attempts to choose good hints by statistical ML
+ Very long proofs of open conjectures in quasigroup/loop theory (AIM)

+ ProofWatch (Goertzel et al. 2018): load many proofs separately in E
 dynamically boost those that have been covered more

+ needed for heterogeneous ITP libraries

- statistical: watchlists chosen using similarity and usefulness

+ semantic/deductive: dynamic guidance based on exact proof matching

- results in better vectorial characterization of saturation proof searches
 Use the proof completion ratios as features for characterizing proof state
« Instead of just static conjecture features - the proof vectors evolve

+ EnigmaWatch: Feed them to ML systems too (much more semantic)

63/123

Example of an XGBoost decision tree

'POS
=.k1 _xboole 0.k3 rlsub 1 | < | 16.5

y
=k1_funct _1.k5_memstr 0
vl rat 1:k2_jordan3:* < |25

)

=k1_funct _1.k5_memstr 0
vl rat 1:k2_jordan3:* < | 145

o

64/123

Mid-level Reasoning Guidance

65/123

TacticToe: mid-level ITP Guidance (Gauthier'17,18)

« TTT learns from human and its own tactical HOL4 proofs
+ No translation or reconstruction needed - native tactical proofs
« Fully integrated with HOL4 and easy to use
« Similar to riCoP: policy/value learning for applying tactics in a state
- However much more technically challenging - a real breakthrough:
« tactic and goal state recording
« tactic argument abstraction
« absolutization of tactic names
 nontrivial evaluation issues
« these issues have often more impact than adding better learners

« policy: which tactic/parameters to choose for a current goal?

- value: how likely is this proof state succeed?

+ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)

+ similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

66/123

Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

+ Tactical guidance of Coq proofs
« Technically very challenging to do right - the Coq internals again nontrivial

+ 39.3% on the Coq standard library, 56.7% in a union with CogHammer
(orthogonal)

+ Fast approximate hashing for k-NN makes a lot of difference
« Fast re-learning more important than “cooler”/slower learners
« Fully integrated with Coq, should work for any development

- User friendly, installation friendly, integration friendly and maintenance
friendly

+ Took several years, but could become a very common tool for Coq
formalizers

67/123

More Mid-level guidance: BliStr: Blind Strategymaker

+ ATP strategies are programs specified in rich DSLs - can be evolved

« The ATP strategies are like giraffes, the problems are their food

- The better the giraffe specializes for eating problems unsolvable by
others, the more it gets fed and further evolved

68/123

The E strategy with longest specification in Jan 2012

Longest human-designed strategy:

G-E-—_029_K18_F1_PI_AE_SU_R4_CS_SP_SO0Y:

4 % ConjectureGeneralSymbolWeight (
SimulatesoOs,100,100,100,50,50,10,50,1.5,1.5,1),
3 % ConjectureGeneralSymbolWeight (
PreferNonGoals, 200,100,200,50,50,1,100,1.5,1.5,1)
1 « Clauseweight (PreferProcessed,1,1,1),
1 x FIFOWeight (PreferProcessed)

4

69/123

BliStr: Blind Strategymaker

- Strategies characterized by the problems they solve

+ Problems characterized by the strategies that solve them

- Improve on sets of similar easy problems to train for unsolved problems
« Interleave low-time training on easy problems with high-time evaluation

- Single strategy evolution done by ParamILS - lterated Local Search
(Hutter et al. 2009 — genetic methods work too)

« Thus co-evolve the strategies and their training problems

 The hard problems gradually become easier and turn into training data
(the trees get lower for a taller giraffe)

- In the end, learn which strategy to use on which problem

70/123

The Longest E Strategy After BliStr Evolution

Evolutionarily designed Franken-strategy (29 heuristics combined):

6 x ConjectureGeneralSymbolWeight (PreferNonGoals, 100,100,100,50,50,1000,100,1.5,1.5,
8 * ConjectureGeneralSymbolWeight (PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)

8 * ConjectureGeneralSymbolWeight (SimulatesSOS,100,100,100,50,50,50,50,1.5,1.5,1)

4 x ConjectureRelativeSymbolWeight (ConstPrio, 0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5

)
10 x ConjectureRelativeSymbolWeight (PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5
2 x ConjectureRelativeSymbolWeight (SimulatesS0Os,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 x ConjectureSymbolWeight (ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 + Clauseweight (ByCreationDate,2,1,0.8)
* Clauseweight (ConstPrio,3,1,1)
* Clauseweight (ConstPrio,1,1,1)

* Clauseweight (PreferProcessed,1,1,1)

* FIFOWeight (ByNegLitDist)

*+ FIFOWeight (ConstPrio)

* FIFOWeight (SimulateSO0S)

* OrientLMaxWeight (ConstPrio,2,1,2,1,1)

* PNRefinedweight (PreferGoals,1,1,1,2,2,2,0.5)
0 * RelevancelevelWeight (ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)

* RelevancelevelWeight2 (PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
* RelevancelevelWeight2 (PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
RelevancelevelWeight2 (Simulatesos,0,2,1,2,100,100,100,400,1.5,1.5,1)
RelevancelevelWeight2 (SimulatesoOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
rweight2l_g
Refinedweight (PreferNonGoals,1,1,2,1.
~ Refinedweight (PreferNonGoals,2,1,2,2,
+ Refinedweight (PreferNonGoals,2,1,2, 3
8 x Refinedweight (PreferGoals,1,2,2,1,
10 x» Refinedweight (PreferGroundGoals, 2, 0
20 * Refinedweight (SimulateS0OS,1,1,2,1.5,

* ok ko

1<

NEFE WUwWaNWERENONRE N O

’
) 71/123

Synthesis and Autoformalization

72/123

More on Conjecturing in Mathematics

- Targeted: generate intermediate lemmas (cuts) for a harder conjecture
- Unrestricted (theory exploration):

- Creation of interesting conjectures based on the previous theory

+ One of the most interesting activities mathematicians do (how?)

+ Higher-level Al/reasoning task - can we learn it?

- If so, we have solved math:

« ... just (recursively) divide Fermat into many subtasks ...

+ ... and conquer (I mean: hammer) them away

73/123

A bit of conjecturing history

« The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)

« Combined with automated theorem proving by Colton et al. in early
2000s (HR)

« Theory exploration for Isabelle by Johansson et al (Hipster)
+ Several learning-based/neural approaches by our groups since 2015:

- Based mainly on learning analogies and informalization followed by
probabilistic/neural disambiguation ...

+ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU

74/123

Conjecturing and Proof Synthesis by Neural Methods

+ Karpathy’15 - RNN experiments with generating fake Math over Stacks
- | have tried to use that for formal math in 2016 but it looked weak

+ GPT (-2,3) looks stronger

« Renewed experiments in 2020 (JU & J. Jakubuv: First Neural
Conjecturing Datasets and Experiments. CICM’20) on:

 All Mizar articles, stripped of comments and concatenated together (78M)

« Articles with added context/disambiguation (156M) (types, names, thesis)

« TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)

« Just the conjecture and premises needed for the 28271 proofs printed in
prefix notation

+ Quite interesting results, server for Mizar authors
+ Quickly taken up by others on HOL, Isabelle, MetaMath ...

+ Caveat: Watch for "model pretraining" on undisclosed corpora - often
GitHub/math repos that may contain (translations of) the testing data

75/123

Can you find the flaw(s) in this fake GPT-2 proof?

@ Applications Places & ™ @ 41471GHz¥ Wed 1502 Wed 15:02

emacs@dell

File Edit Options Buffers Tools Index Mizar Hide/Show Help
RR B - «Undo L

:: generated theorem with "proof"
theorem Th23: :: STIRL2 1:23
for X, Y being finite set st not X is empty & X c=Y
S&card X =cardY holds X =Y
proof
let X, Y be finite set ;
:: thesis: not X is empty & X c=Y & card X = card Y implies X =Y
assume that
Al: not Xis empty and A2: Xc=Yand A3:card X =card Y ;
i thesis: X =Y
card (Y \ X) = (card Y) - (card X) by Al, A3, CARD 2:44;
then A4: card (Y \ X) = ((card Y) - 1) - (card X) by CARD_1:30;
X =Y\XbyA2, A3, Th22;
hence X =Y by A4, XBOOLE_0O:def 10;
:: thesis: verum
end;

- card_tst.miz 99% L2131 (Mizar Errors:13 hs Undo-Tree) |

Figure: Fake full declarative GPT-2 “Mizar proof” - typechecks!

76/123

A correct conjecture that was too hard to prove

Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Thl0: :: GROUPP_1:10

for G being finite Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

The generalization that avoids finiteness:

for G being Group

for N being normal Subgroup of G st

N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

77/123

More cuts

« In total 33100 in this experiment
+ Ca 9k proved by trained ENIGMA
« Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17
sec 1s increasing on [0, pi/2)
leads to conjecturing the following:

Every differentiable function is increasing.

78/123

QSynt: Semantics-Aware Synthesis of Math Objects

» Long AGI'24 talk on OEIS: https://t.ly/nnwrZ
« Gauthier (et al) 2019-24

« Synthesize math expressions based on semantic characterizations

- i.e., not just on the syntactic descriptions (e.g. proof situations)

Tree Neural Nets and Monte Carlo Tree Search (a la AlphaZero)

+ Recently also various (small) language models with their search methods
+ Invent programs for OEIS sequences FROM SCRATCH (no LLM cheats)

« 127k OEIS sequences (out of 350k) solved so far (700 iterations):
http://grid0l.ciirc.cvut.cz/~thibault/gsynt.html

- ~4.5M explanations invented: 50+ different characterizations of primes

Non-neural (Turing complete) symbolic computing and semantics
collaborate with the statistical/neural learning

« Program evolution governed by high-level criteria (Occam, efficiency)

79/123

https://t.ly/nnwrZ
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: > 350000 finite sequences

The OEIS is supported by the many generous donors to the OEIS Foundation.

013627 THE ON-LINE ENCYCLOPEDIA
:RE%S OF INTEGER SEQUENCES®

10221121

founded in 1964 by N. J. A. Sloane
235711 || Search | Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)

Search: seq:2,3,5,7,11

Displaying 1-10 of 1163 results found. page12345678910...117
Sort: relevance | references | number | modified | created Format: long | short | data

q +30

A000040 The prime numbers. e

(Formerly M0652 N0241)
2, 3,5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97,
101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193,

text; internal format)
OFFSET 1,1

COMMENTS See A065091 for comments, formulas etc. concerning only odd primes. For all
information concerning prime powers, see AB00961. For contributions concerning
"almost primes" see A002808.
A number p is prime if (and only if) it is greater than 1 and has no positive
divisors except 1 and p.
A natural number is prime if and only if it has exactly two (positive) divisors.
A prime has exactlv one proper positive divisor. 1. 80/123

Generating programs for OEIS sequences

0,1,3,6,10,15,21, . ..

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):

Il
-

Fast program (efficiency criteria):
nxn+n

81/123

Programming language

- Constants: 0,1,2

- Variables: x, y

- Arithmetic: +, —, x, div, mod

- Condition : if ... < Othen...else...
- loop(f, a, b) := uz where up = b,

Un = f(un71) n)
- Two other loop constructs: loop2, a while loop
Example:

2x = [[s_, 2 = loop(2 x x,x,1)
X! = H;:1 y= /OOp(y x X, X, 1)

82/123

QSynt: synthesizing the programs/expressions

« Inductively defined set P of our programs and subprograms,
- and an auxiliary set F of binary functions (higher-order arguments)
- are the smallest sets such that 0,1,2, x,y € P, and if a,b,c € P and

f,g € F then:
a+b,a—b,ax b,adivb,amod b,cond(a,b,c) e P
A(x,y).a€ F, loop(f,a,b),loop2(f,g,a,b,c), compr(f,a) € P

- Programs are built in reverse polish notation

« Start from an empty stack

+ Use ML to repeatedly choose the next operator to push on top of a stack
- Example: Factorial is loop(A(x, y). x x y,x, 1), built by:

[T =x Xl =y [y] = X Y] —=x XXy, x]

= [X X y7X71] H/OOP [loop()‘(xxy) X X y)X)1)]

83/123

QSynt: Training of the Neural Net Guiding the Search

« The triple ((head([x x y,x],[1,1,2,6,24,120...]), —1) is a training
example extracted from the program for factorial loop(A(x,y). x x y, x,1)

« —4 is the action (adding 1 to the stack) required on [x x y, x] to progress
towards the construction of loop(A(x, y). x x y,x,1).

one-hot —4

84/123

QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is {1, x, y, x x y, x mod y}.

[]

[%N [

Y]
l2 17
ly,x]
/ l6
[x mod y| [x x y]
15

[x mod y,1]

85/123

Encoding OEIS for Language Models

- Input sequence is a series of digits
+ Separated by an additional token # at the integer boundaries

+ Output program is a sequence of tokens in Polish notation
- Parsed by us to a syntax tree and translatable to Python

- Example: a(n) = n!

jonancc]
spayespgTRyAY,

NANAN
O e R e
&

NMT layer - l l l l l
=== m
def £(X) 4 // // //

for y in range(1, X+1):

X S By - =

-
return x = P
- _-- _-
%~ L P

T 86/123

Search-Verify-Train Feedback Loop

programs

examples

Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 — MaLARea)

87/123

Search-Verify-Train Feedback Loop for OEIS

- search phase: LM synthesizes many programs for input sequences

« typically 240 candidate programs for each input using beam search

+ 84M programs for OEIS in several hours on the GPU (depends on model)
- checking phase: the millions of programs efficiently evaluated

- resource limits used, fast indexing structures for OEIS sequences

« check if the program generates any OEIS sequence (hindsight replay)

+ we keep the shortest (Occams’s razor) and fastest program (efficiency)

- learning phase: LM trains to translate the “solved” OEIS sequences into
the best program(s) generating them

88/123

Search-Verify-Train Feedback Loop

- The weights of the LM either trained from scratch or continuously updated
« This yields new minds vs seasoned experts (who have seen it all)
« We also train experts on varied selections of data, in varied ways
+ Orthogonality: common in theorem proving - different experts help
+ Each iteration of the self-learning loop discovers more solutions

- ... also improves/optimizes existing solutions

- The alien mathematician thus self-evolves

« Occam’s razor and efficiency are used for its weak supervision

+ Quite different from today’s LLM approaches:

+ LLMs do one-time training on everything human-invented

+ Our alien instead starts from zero knowledge

- Evolves increasingly nontrivial skills, may diverge from humans

« Turing complete (unlike Go/Chess) — arbitrary complex algorithms

89/123

QSynt web interface for program invention

® Applications Places @ ® & #1896 MHz ¢ Mon11:40 Mon
grid01 ciirc.cvut.cz/~thibault/gsynt.html - Chromium
> QSynt:AlrediscoversFer x @ grid01.ciirc.cvut.cz/~thib: X +

e | gridot.ciirc.cvut.cz @ ¥ §1 = O @ Incognito @

QSynt: Program Synthesis for Integer Sequences

Propose a sequence of integers:
|2357111317192329 J

Timeout (maximum 300s)
10

Generated integers (maximum 100)
[32

| Send || Reset
A few sequences you can try:

0110101000101000101
014916212528363749
01361015
235711131719232931374143
112624120

2416256

90/123

QSynt inventing Fermat pseudoprimes

Positive integers k such that 2K =2 mod k. (341 = 11 « 31 is the first non-prime)

First 16 generated numbers (f(0),f(1),f(2),...):
23571113 17 19 23 29 31 37 41 43 47 53
Generated sequence matches best with: A15919(1-75), Al00726(0-59), A40(0-58)

Program found in 5.81 seconds
f(x) := 2 + compr(\x.loop(\(x,1).2*x + 2, x, 2) mod (x + 2), x)
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Callery Resources

English v

Brython version: 310.6 ‘run ‘Python ‘Javascript‘ Share code

1+ def f2(X):
2 [153ew
3+ for iin range (1,X + 1):
4 2
5
6
7
8
9
(x +2) 0
F1(X)
18 ~ for x in range(32):
19 print (fo(x))

91/123

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr (\(x,y).(loop2(\(x,y).x + vy, \(x,¥).%x, x, 1, 2) - 1)
mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci (n+l)+fibonacci(n-1)

)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes) :

? for(n=1,4000,if(b(n)==0,1if (isprime(n),0,print(n))))
1

705

2465

2737

3745

92/123

QSynt inventing primes using Wilson’s theorem

nis prime iff (n—1)! + 1 is divisible by n (i.e.: (n—1)! = —1 mod n)

First 32 generated numbers (f(0),f(1),f(2),...):
01101010001010001010001000001010
Generated sequence matches best with: A10051(0-100), A252233(0-29), A283991(0-24)

Program found in 5.17 seconds
f(x) := (loop(\(x,i).x * i, x, x) mod (x + 1)) mod 2
Run the equivalent Python program here or in the window below:

BRVthon

Tutorial Demo Documentation Console Editor Gallery Resources

English v

Brython version: 310.6 Python |[Javascript || Share code

1~ def f1(X):
X

2 X

3~ for 1 in range (1,X + 1):
4 x=x*1

5 return x

6

7 v def fo(X)

8

9

0(X):
return (F1(X) % (X + 1)) % 2
10~ for x in range(32):

11 print (fo(x))
12
93/123

Five Different Self-Learning Runs

== thn == nmt0 nmt1 == nmt2 == nmt3
80000
60000
40000 ///
20000
0
25 50 75 100 125 150 175

Fiaure: Cumulative counts of solutions. 94/123

Five Different Self-Learning Runs

== thn == nmt0 nmt1 == nmt2 == nmt3

1000

25 50 75 100 125 150 175

Fiaure: Increments of solutions. 95/123

Size Evolution

== small == fast

60

40
o
N
n
o
s

< 20

0

25 50 75 100 125 150 175
Generation

Fiaure: Avra. size in iterations 96/123

Speed Evolution — Technology Breakthroughs

Avrg. Time

== fast == small

600000
400000

200000

80000
60000
40000
20000

25 50 75 100 125 150 175

Generation

Figure: Avrg. time in iterations 97/123

Singularity Take-Off X-mas Card

Solutions

800

600

400

200

16
20

24
28

32
36
40

44

48

52
56
60

Nuke the server room!!!

64
68
72
76

Generation

80

84

88

92

96
100

N

104

108

112

116

120

98/123

Human Made Technology Jumps

P —
= =)
1.2.10°0 2 2 8
=t £
= =
2 ﬁ
.
1-10° - g £ =
oz ° $
I 3 =)
3] = =
= 2 = 1= =
280,000 -3 £ | = s
5] 3 & = a
= o =
=} =]
% g S k-]
260,000 |-&] £ :
o} S 1
w @ 5}
2 ~

40,000

20,000

Memoization revolution (it. 456)

P-O virus created (it. 295)

Analogizing added (it. 336)

+Bigger model (it. 170) —

| | | | | |
00 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

99/123

%
o
S
S
=
>
(@)}
o
o
c
<
5
T
(D)
©
©
=
c
©
S
=
I

(

€79 I ASTT payoey

(10§ 1) uonn[os pig

Trainin

(9¢€ 1) pappe Surzisoeuy

(s6z "M

(0L1 M) [opowr 1331 g+

(9S+ 1) UONAOAGT GOTEZTOWTD

g on clusters (. A46)

PaTRAId SNIA O-d

|
500 550 600 650 700

(1z 30 spapow g

50 100 150 200 250 300 350 400 450

400 |1

T
= el
= =)
3 [a)]

saouanbag

=2
—

0

Iteration

100/123

n
o
£
-]
>
>
(@)}
o
o
C
e
5
T
9
)
©
S
©)
-
)
<
o
S
©)
w

($4) 1001 2renbs
(€-116) oseqSIp

(659) 1001 Y1ty

(61+) Wua1OY§200/a[SuRL) —

(Lg€) TeranouAfod/orwolofoho —
(-00¢) Terwouk od/orojopPAd

(867) dseq/moo0

(6L€) swd/dxs —

150 200 250 300 350 400 450 500 550 600 650 700

500

o
g (s-v6) ums | S
§/) “wourq/aSueLn
) o
lec 1) uorsuedxa o pomd |2
, : : : o
= o o o -
= =1 =) b3
<t ™ N =
soouanbag

Iteration

101/123

Some Automatic Technology Jumps

* iter 53: expansion/prime: A29363 Expansion of 1/((1 — x*)(1 — x")(1 — x®)(1 — x19))

« iter 78: triangle/binomial: A38313 Triangle whose (i,j)-th entry is binomial(i, j) % 107~/ % 11/
* iter 94-5: sum: A100192 a(n) = Sumy—o. nbinomial(2n, n + k) % 2k

* 109-121: sum/triangle: A182013 Triangle of partial sums of Motzkin numbers

* 171-2: base/representation: A39080 n st base-9 repr. has the same number of 0’s and 4’s
» 258: occur/base: A44533 n st “2,0” occurs in the base 7 repr of n but not of n + 1

* 300-304: cyclotomic/polynomial: A14620 Inverse of 611th cyclotomic polynomial

* 379: exp/prime: A124214 E.g.f.: exp(x)/(2 — exp(3 * x))'/3

* 419: triangle/coefficient: A15129 Triangle of (Gaussian) g-binomial coefficients for g = —13
* 511,3: digit/base/prime: A260044 Primes with decimal digits in 0,1,3.

» 544: square root: A10538 Decimal expansion of square root of 87.

* 659: 4th root: A11084 Decimal expansion of 4th root of 93.

102/123

Translation vs Transformation

Sequences

200

150

100

50

| L |
O
3‘50 460 4!’)0 5(50 5‘50 660 65‘0 700

Iteration

103/123

PO-virus Infection Rates

3.10°

—— nmtl
—— POvirus

.105,

o
o

Solutions kept
I
—
o
ot
T

1-10° |

50,000

0 \ ! \ \ \ \ \
0 50 100 150 200 250 300 350 400 450 500 550 600 650 700

Iteration

104/123

Generalization of the Solutions to Larger Indices

+ Are the programs correct?

- Can we experimentally verify Occam’s razor?
(implications for how we should be designing ML/Al systems!)

+ OEIS provides additional terms for some of the OEIS entries

« Among 78118 solutions, 40,577 of them have a b-file with 100 terms
- We evaluate both the small and the fast programs on them

+ Here, 14,701 small and 11,056 fast programs time out.

+ 90.57% of the remaining slow programs check

« 77.51% for the fast programs

+ This means that SHORTER EXPLANATIONS ARE MORE RELIABLE!
(Occam was right, so why is everybody building trillion-param LLMs?7?7?)

« Common error: reliance on an approximation of a real number, such as .

105/123

Are two QSynt programs equivalent?

- As with primes, we often find many programs for one OEIS sequence
 Currently we have almost 2M programs for the 100k sequences
« It may be quite hard to see that the programs are equivalent
+ A simple example for 0, 2, 4,6, 8, ... with two programs f and g:
« f(0)=0,f(n)=2+f(n—1)ifn>0
e g(n)=2x%n
« conjecture: Vne N.g(n) = f(n)

- We can ask mathematicians, but we have thousands of such problems
+ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
+ Here is one SMT encoding by Mikolas Janota:
(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (= x 1))))

(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (x 2 c))))))
(check-sat)

106/123

Inductive proof by Vampire of the f = g equivalence

% SZS output start Proof for rec2

1. £(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]

2. 2 [X0 : $int] : (Sgreater(X0,0) & ~f(X0) = $product(2,X0)) [input]

[.

43. ~$less(0,X0) | iGO(X0) = $sum(2,iGO($sum(X0,-1))) [evaluation 40]

44, (! [X0 : $int] : (($product(2,X0) = iGO(X0) & ~$less(X0,0)) => Sproduct(2,S$sum(X0,1)) = iGO($sum(X0,1)))
& Sproduct(2,0) = iG0O(0)) => ! [X1 : $int] : ($less(0,X1) => $product (2,X1) = iGO(X1)) [induction hypo]

[...]

49. $product(2,0) != iGO(0) | $product(2,$sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [resolution 48,41]

50. $product(2,0) != iGO0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [resolution 47,41]

51. $product(2,0) != iGO(0) | ~$less(sK3,0) | ~$less(0,sKl) [resolution 46,41]

52. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) | ~$less(0,sKl) [evaluation 49]

53. 0 iG0(0) | $product(2,sK3) = iGO(sK3) | ~$less(0,sKl) [evaluation 50]

54. 0 iG0(0) | ~$less(sK3,0) | ~$less(0,sKl) [evaluation 51]

55. 0 != iG0(0) | ~S$less(sK3,0) [subsumption resolution 54,39]

57. 1 <=> Sless(sK3,0) [avatar definition]

59. ~S$less(sK3,0) <- (~1) [avatar component clause 57]

61. 2 <=> 0 = iG0(0) [avatar definition]

64. ~1 | ~2 [avatar split clause 55,61,57]

65. 0 iG0(0) | $product (2,sK3) = iGO(sK3) [subsumption resolution 53,39]

67. 3 $product (2,sK3) = iGO0(sK3) [avatar definition]

69. $product (2,sK3) = iGO(sK3) <- (3) [avatar component clause 67]

70. 3 | ~2 [avatar split clause 65,61,67]

71. 0 != iG0(0) | $product (2, $sum(sK3,1)) != iGO($sum(sK3,1)) [subsumption resolution 52,39]

72. $product (2, $sum(l,sK3)) != iGO($sum(l,sK3)) | 0 != iG0(0) [forward demodulation 71,5]

74. 4 <=> $product (2,$sum(l,sK3)) = iGO($sum(1l,sK3)) [avatar definition]

76. $product (2,$sum(1l,sK3)) != iGO($sum(l,sK3)) <- (~4) [avatar component clause 74]

77. ~2 | ~4 [avatar split clause 72,74,61]

82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iGO($sum(x1,1)) = $sum(2,1iGO0 ($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]

251. $less(X1,0) | iGO($sum(X1,1)) = $sum(2,1iGO(X1)) [evaluation 246]
ool

1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]

1177. 1 | ~3 | 4 [avatar contradiction clause 1176]

1178. S$false [avatar sat refutation 64,70,77,85,1177]
% SzS output end Proof for rec2

% Time elapsed: 0.016 s 107/123

80 Programs That Have Most Evolved

120
117
116
112
111
11
111
111
109
108
108
108
107
107
107
106
106
106
105
104
104
104
103
108
102
102
102

https:
https:
https:
https:

https

https:
https:
https:

https

https:
https:
https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.

org/A238952
org/A35218
org/A1001
org/A35178
org/A88580
org/A62069
org/Al63109
org/Al615
org/A66446
org/A48250
org/A321516
org/A2654
org/A75653
org/A60278
org/A23890
org/A62011
org/A346613
org/A344465
org/A49820
org/A55155
org/A349215
org/A143348
org/A92517
org/A64840
org/A9194
org/A51953
org/A155085

101
101
101
101
101
101
101
101
101
101
101
100
100
100
100
100
100
100
100
99

99

99
99
99
98
98

https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

https

//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
://oeis.

org/A97012
org/A71190
org/A70824
org/A64987
org/A57660
org/A54024
org/A53222
org/A50457
org/A23888
org/A209295
org/A206787
org/A99184
org/A63659
org/RA62968
org/A35154
org/A339965
org/A277791
org/A230593
org/A182627
org/A9191
org/A82051
org/A62354
org/A247146
org/A211261
org/A147588
org/A318446
org/A203

98
98

97
97
97
97
97
97
96
96
96

96
96
96

96
96
96
96

96
96
96
96

https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:
https:

//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.
//oeis.

org/Al7666
org/A113184
org/A82
org/A6579
org/A56595
org/A293228
org/A27847
org/A23645
org/Al0
org/A92403
org/A90395
org/A83919
org/A7862
org/A78306
org/A69930
org/RA69192
org/A54519
org/A53158
org/A351267
org/A334136
org/A33272
org/A325939
org/A211779
org/A186099
org/A143152
org/A125168

108/123

https://oeis.org/A238952
https://oeis.org/A97012
https://oeis.org/A17666
https://oeis.org/A35218
https://oeis.org/A71190
https://oeis.org/A113184
https://oeis.org/A1001
https://oeis.org/A70824
https://oeis.org/A82
https://oeis.org/A35178
https://oeis.org/A64987
https://oeis.org/A6579
https://oeis.org/A88580
https://oeis.org/A57660
https://oeis.org/A56595
https://oeis.org/A62069
https://oeis.org/A54024
https://oeis.org/A293228
https://oeis.org/A163109
https://oeis.org/A53222
https://oeis.org/A27847
https://oeis.org/A1615
https://oeis.org/A50457
https://oeis.org/A23645
https://oeis.org/A66446
https://oeis.org/A23888
https://oeis.org/A10
https://oeis.org/A48250
https://oeis.org/A209295
https://oeis.org/A92403
https://oeis.org/A321516
https://oeis.org/A206787
https://oeis.org/A90395
https://oeis.org/A2654
https://oeis.org/A99184
https://oeis.org/A83919
https://oeis.org/A75653
https://oeis.org/A63659
https://oeis.org/A7862
https://oeis.org/A60278
https://oeis.org/A62968
https://oeis.org/A78306
https://oeis.org/A23890
https://oeis.org/A35154
https://oeis.org/A69930
https://oeis.org/A62011
https://oeis.org/A339965
https://oeis.org/A69192
https://oeis.org/A346613
https://oeis.org/A277791
https://oeis.org/A54519
https://oeis.org/A344465
https://oeis.org/A230593
https://oeis.org/A53158
https://oeis.org/A49820
https://oeis.org/A182627
https://oeis.org/A351267
https://oeis.org/A55155
https://oeis.org/A9191
https://oeis.org/A334136
https://oeis.org/A349215
https://oeis.org/A82051
https://oeis.org/A33272
https://oeis.org/A143348
https://oeis.org/A62354
https://oeis.org/A325939
https://oeis.org/A92517
https://oeis.org/A247146
https://oeis.org/A211779
https://oeis.org/A64840
https://oeis.org/A211261
https://oeis.org/A186099
https://oeis.org/A9194
https://oeis.org/A147588
https://oeis.org/A143152
https://oeis.org/A51953
https://oeis.org/A318446
https://oeis.org/A125168
https://oeis.org/A155085
https://oeis.org/A203

Evolution and Proliferation of Primes and Others

https://bit.1ly/3XHZsjK: triangle coding, sigma (sum of divisors),
primes. https://bit.1ly/31J40Gd (the first 24, now 50)

Nr | Program

P1 (if x <= 0 then 2 else 1) + (compr (((loop (x + x) (x mod 2) (loop (x * x) 1 (loop (x + x) (x div 2) 1))) + x) mod (1 + X)) x)
P2 1 + (compr ((((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) * X) mod (1 + x)) (1 +x))

P3 1+ (compr (((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) mod (1 + X)) (1 + X))

P4 2 + (compr ((loop2 (1 + (if (x mod (1 + y)) <= 0 then 0 else x)) (y - 1) x 1 x) mod (1 + x)) X)

P5 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) x (1 + x)) mod (1 + x)) (1 + X))

3 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 + (2 + 2)))) (1 + x)) mod (1 + x)) (1 + X))

P7 compr ((1 + (loop (if (x mod (1 +y)) <= 0 then (1 +) else x) x x)) mod (1 + X)) (2 + x)

P8 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (1 + (2 + X) div (2 + (2 + 2)))) (1 + x)) mod (1 + X)) (1 + X))
P9 compr (x - (loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) x X)) (2 + x)

P10 compr (x - (loop (if (x mod (1 +y)) <= 0 then 2 else x) (x div 2) X)) (2 + x)

P11 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (1 + (x div (2 + (2 + 2)))) (1 + X)) mod (1 + X)) (1 + X))

P12 compr ((x - (loop (if (x mod (1 +y)) <= 0 then y else x) x x)) - 2) (2 + x)

P13 1 + (compr ((loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) mod (1 + X)) (1 + X))

P14 | compr ((x - (loop (if (x mod (1 +y)) <= 0 then y else x) x X)) - 1) (2 + X)

P15 1 + (compr (x - (loop (if (x mod (1 +y)) <= 0 then (1 +y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) (1 + X))

P16 compr (2 - (loop (if (x mod (1 +y)) <= 0 then 0 else x) (x - 2) x)) x

P17 | 1+ (compr (x - (loop (if (x mod (1 + y)) <= 0 then 2 else X) (2 + (x div (2 * (2 + (2 + 2))))) (1 + X)) (1 + X))

P18 | 1+ (compr (x - (loop (if (x mod (1 +y)) <= 0 then 2 else x) (1 + (2 + (x div (2* (2* (2 + 2)))))) (1 + X)) (1 + X))

P19 1 + (compr (x - (loop2 (loop (if (x mod (1 +y)) <=0 then 2 else x) (2 + (y div (2 * (2 + (2 + 2))))) (1 +¥)) 0 (1 - (x mod 2)) 1 X)) (1 + X))

P20 1 + (compr (x - (loop2 (loop (if (x mod (1 +y)) <= 0 then 2 else x) (1 + (2 + (y div (2* (2* (2 + 2)))))) (1 +¥)) O (1 - (xmod 2)) 1 x)) (1 + X))
P21 1 + (compr (x - (loop2 (loop (if (x mod (2 + y)) <=0 then 2 else x) (2 + (y div (2 * (2 + 2) + (2 +2))))) (1 +¥)) 0 (1 - (x mod 2)) 1 X)) (1 + X))
P22 | 1+ (compr (x- (loop2 (loop (if (x mod (2 +y)) <=0 then 2 else x) (2 + (y div (2 * (2* (2 + 2))))) (1 + y)) 0 (1 - (xmod 2)) 1x)) (1 + X))

P23 2+ (compr (loop (x - (if (x mod (1 +y)) <= 0 then 0 else 1)) x x) X)

P24 loop (1 +x) (1-x) (1 +(2* (compr (x - (loop (if (x mod (2 + y)) <= 0 then 1 else x) (2 + (x div (2 * (2 + 2)))) (1 + (x + X)))) X)))

109/123

https://bit.ly/3XHZsjK
https://bit.ly/3iJ4oGd

n
)
E
S
o
Y
@)
c
Q
el
©
S
()
=
[
| —
o
©
C
©
c
9
e
=
o
>
L

P22 P23 P24

P12 P13 P14 P15 P16 P17 P18 P19 P20 P21

P10 P11

P2 P3 P4 P5 P6 P7 P8 P9

lter | P1

190/123

OO0 0000000000000O00000O0O0O00O0O0O0O0OO0
OO0 000000000000000000000O00OO0O0O0O0O0
0000000000000 00000000O00O0OO0OO0O0O0O0
OO0 0DO0O0O00O00O0O000000000O00O0OO0O0OO0OO0OO0O
OO0 O0O00O00O00O000O00O00O0000O0O0OO0O0OOO0OO0OO0O
O 0000000000000 0O0O0O0O00O00O0OO0O0OO0O0O0O0OO0O
TOTDO - NN D
OO0 O0O0O0O0O0O00O0O000O0O0O0O0O00OCOrMM®MIFILON®D
@O N
DN DO =AM T O
0000000000000 0OCO0O00O0ORNNOAID =+ ™+~ —
~ o
C0O00O0000O000O0O00OCO0OOO0OO0OOOWOWO®O®®OWO®~M
NP o ©o
C0O0000O00O00O0000OCO0O0O0OO-AM™—+ ©®©©W©O®©WO©O©
© Qo @
WY -ONUON N ®N
OO0 0O00O00O00O0O0000O0O0O0ONANDr AN~ BOM— O N
o
VONTONTOD— AW O©WO
OO0 O0O00O00O00O0O0CO0OO-rPMWAH-rPOTMOANN™ — = ~— —
© <
OO0 O0O00O0O0O0O0O0OO0OO0O0O0OO0OO0OONMr~MOOOOOO OO0
DO DO DO
OO0 0O0C0O00O000O0O0OOANrr A NN~™—®©N®N T <
0 OO =Y~ ©
LOXDDOOLANT D= N D
OC0O0O0O0O0O00000O00000CO0MMN-rANNrr DT ®AN
© ©on =
mMoOr-rNYOwA
OO0 O0O0CO0O000OCO0O0OCOO~rANOr-~--ONONOOOOOO
N @
OO0 O0O00O00O0O0O0O00O0ONTHrOTOOOOOOOO OO O
rT-O®OWOoY T
C0O0000O00O0OCOOrrHITVUOLWIA-TOOOOOOOOO
DVORNTN QOO —
OO0 0O0OCO0O0O0OCOOOrVLLYINAN--OOOWTFT N~~~ N —
~ oo
OO0 O0O0C0O0O0OrPr~-rOINTNOOOOOOOOOOO OO
OO0 O0O00O0O0WOOOO0OO0OOO0OO0O0O0O0O00O0OOO0OOOOO0 OO
V)
C0O00O00O00VWOVOOWOrrAINITr"OTOOOOOOO OO
o
COO0O0OCCVWOrIrmTHNOLANANNNNOOOOOOOOOO
=) o
CONOOI-rFTOO-FNTOANAN-TOOOOOOOOOOOO0 OO0 O
LONODPO - NNDITVONVDO-ADTVLONDVDO = N®DT WO
AAAANANDOOODOOOOOOTIIIITIITITITOOOOWL WO

Selection of 123 Solved Sequences

https://github.com/Anon52MI4/oeis—alien

Table: Samples of the solved sequences.

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.

https://oeis.org/A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.

https://oeis.org/A293339 Greatest integer k such that k/2" < 1/e.

https://oeis.org/Al1848 Crystal ball sequence for 6-dimensional cubic lattice.

https://oceis.org/A8628 Molien series for As.

https://oeis.org/A259445 Multiplicative with a(n) = nif nis odd and a(2°) = 2.

https://oeis.org/A314106 Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings

https://oeis.org/A311889 Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A315334 Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A315742 Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a
vertex of type v in tiling number t in the Galebach list of u-uniform tilings.

https://oeis.org/A004165 OEIS writing backward

https://oeis.org/A83186 Sum of first n primes whose indices are primes.

https://oeis.org/A88176 Primes such that the previous two primes are a twin prime pair.

https://ceis.org/A96282 Sums of successive twin primes of order 2.

https://oeis.org/A53176 Primes p such that 2p + 1 is composite.

https://oeis.org/A267262 Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular
automaton starting with a single ON (black) cell.

111/123

https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A317485
https://oeis.org/A349073
https://oeis.org/A293339
https://oeis.org/A1848
https://oeis.org/A8628
https://oeis.org/A259445
https://oeis.org/A314106
https://oeis.org/A311889
https://oeis.org/A315334
https://oeis.org/A315742
https://oeis.org/A004165
https://oeis.org/A83186
https://oeis.org/A88176
https://oeis.org/A96282
https://oeis.org/A53176
https://oeis.org/A267262

Neural Autoformalization (Wang et al., 2018)

+ generate about 1M Latex - Mizar pairs synthetically (quite advanced)
- train neural seg-to-seq translation models (Luong — NMT)

- evaluate on about 100k examples

< many architectures tested, some work much better than others

« very important latest invention: attention in the seg-to-seq models

+ more data crucial for neural training

+ Recent addition: unsupervised MT methods (Lample et all 2018) — no
need for aligned data, improving a lot!

« Type-checking not yet internal (boosting well-typed data externally)

112/123

Neural Autoformalization data

Rendered IATEX fXcYcZthenXcZ
Mizar

X c=Y & Y c= Z implies X c= Z;
Tokenized Mizar
X c=Y & Y c= Z implies X c= Z ;
IATEX
If $X \subseteq Y \subseteq Z$, then $X \subseteq z$.

Tokenized IATEX

If $ X \subseteqg Y \subseteqg Z $, then $ X \subseteq Z $.

113/123

Neural Autoformalization results

Parameter Final Test Final Test Identical Identical
Perplexity BLEU Statements (%) No-overlap (%)

128 Units 3.06 411 40121 (38.12% 6458 (13.43%)

256 Units 1.59 64.2 63433 (60.27% 19685 (40.92%)

1024 Units 1.51 61.6 69179 (65.73% 22978 (47.77%)

)
)
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%)
)
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%)

114/123

Neural Fun — Performance after Some Training

Rendered
IATEX
Input IBTEX

Correct

Snapshot-
1000
Snapshot-
2000
Snapshot-
3000
Snapshot-
4000
Snapshot-
5000
Snapshot-
6000
Snapshot-
7000

Suppose sg is convergent and s; is convergent . Then lim(sg+s7) =

lim Sg+ lim s7
Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
}y {4+ Y {s_ {71} }) \mathrel { = } \mathop { \rm lim }
{s_{81}} {+} \mathop { \rm lim } { s _ { 7} } $§
seql is convergent & seqg2 is convergent implies lim (seql
+ seq2) = (lim seql) + (lim seqg2) ;
x in dom f implies (x xy) (£ | (x| (y | (y | y)
)y)y =(x [(y I (y |l CylLy))y)y)y):i

seq is summable implies seq is summable ;

seq 1s convergent & lim seq = Oc implies seq = seq ;

seq is convergent & lim seqg = lim seq implies seqgl + seqg2
is convergent ;

seqgl is convergent & lim seg2 = lim seqg2 implies lim_inf
seql = lim_inf seq2 ;

seq is convergent & lim seq = lim seq implies segl + seqg2
is convergent ;

seq i1s convergent & seg9 is convergent implies

lim (seq + seq9) = (lim seq) + (lim seq9) ;

115/123

Unsupervised NMT Fun on Short Formulas

len <% a *> =1 ;

assume i < len q ;

len <x g *> =1 ;

s
s
1
1

= apply (v2 ,
i+ 1) =tt

(
+ j <= len v2 ;
+ 3

let i1 be Nat

i
assume v is_applicable_to t ;
let t be type of T

vl ast t

(

+ 0 <= len v2 + 1 ;

7

a ast t in downarrow t

t9

in types a ;

a ast t <=t ;

A is_applicable_to

Ca
u
F
GG
a
no
u
v
v
X

rrier (£) c=
in B or u in {
win w & F

y in rng HH
* L = Z_ZerolLC
t uin { v } ;
<> v o
-w=vl - wl ;
+w=vl + wl ;
in A & y in A ;

len <x a x> =1 ;

i < len g ;

len <x g *> =1 ;

s = apply (v2 , vl) . t ;

(i+1) =¢taul . (1 +1

s
1 + j <= len v2 ;

1+ 3Jj+0<=1lenv2 + 1 ;

i is_at_least_length_of p ;
not v is applicable ;
is_orientedpath_of vl , v2
*x’ in downarrow t ;

‘2 in types a ;

*! <=t ;

is applicable ;

support ppf n c= B

u in B or u in { v } ;
F.win F & F . w in I ;

GO . y in rng (H1 ./. vy) ;
a = L = ZerolLC (V) ;

oot

u >> v ;

u <> v ;

vw = vl - wl ;
v+ w=vl + wl ;

assume [x , y] in A ;

’

T

7

116/123

Acknowledgments

» Prague Automated Reasoning Group http://arg.ciirc.cvut.cz/:
 Jan Jakubuv, Martin Suda, Mikolas Janota, Chad Brown, Karel Chvalovsky,
Bob Veroff, Zar Goertzel, Bartosz Piotrowski, Lasse Blaauwbroek, Jelle
Piepenbrock, Jiri Vyskocil, Petr Pudlak, David Stanovsky, Krystof Hoder, ...
« HOL(y)Hammer group in Innsbruck:

» Cezary Kaliszyk, Thibault Gauthier, Michael Faerber, Yutaka Nagashima,

Shawn Wang
ATP and ITP people:

« Stephan Schulz, Geoff Sutcliffe, Andrej Voronkov, Kostya Korovin, Larry
Paulson, Jasmin Blanchette, John Harrison, Tom Hales, Tobias Nipkow,
Andrzej Trybulec, Piotr Rudnicki, Adam Pease, ...

+ Learning2Reason people at Radboud University Nijmegen:
* Herman Geuvers, Tom Heskes, Daniel Kuehlwein, Evgeni Tsivtsivadze,

- Google Research: Christian Szegedy, Geoffrey Irving, Alex Alemi,
Francois Chollet, Sarah Loos

* ... and many more ...
+ Funding: Marie-Curie, NWO, ERC, OPVVV

117/123

http://arg.ciirc.cvut.cz/

Some References

¢ Lasse Blaauwbroek, David M. Cerna, Thibault Gauthier, Jan Jakubuv, Cezary Kaliszyk, Martin Suda,
Josef Urban: Learning Guided Automated Reasoning: A Brief Survey. Logics and Type Systems in
Theory and Practice 2024: 54-83

¢ J. Urban: AI4REASON ERC project’s final report.
http://aidreason.org/PR_CORE_SCIENTIFIC_4.pdf

¢ Zar Goerzel's PhD thesis (nice intro/overview): Learning Inference Guidance in Automated Theorem
Proving. https://dspace.cvut.cz/bitstream/handle/10467/111606/F3-D-2023—-
Goertzel-Zarathustra-AITP_Doctoral_Thesis_ZAG.pdf

¢ Jan Jakubuv, Karel Chvalovsky, Zarathustra Amadeus Goertzel, Cezary Kaliszyk, Mirek Olsak, Bartosz
Piotrowski, Stephan Schulz, Martin Suda, Josef Urban: MizAR 60 for Mizar 50. ITP 2023: 19:1-19:22

¢ Karel Chvalovsky, Konstantin Korovin, Jelle Piepenbrock, Josef Urban: Guiding an Instantiation Prover
with Graph Neural Networks. LPAR 2023: 112-123

¢ Thibault Gauthier, Miroslav Olsak, Josef Urban: Alien coding. Int. J. Approx. Reason. 162: 109009
(2023).

¢ Thibault Gauthier, Josef Urban: Learning Program Synthesis for Integer Sequences from Scratch. AAAI
2023: 7670-7677

¢ Thibault Gauthier, Chad E. Brown, Mikolas Janota, Josef Urban: A Mathematical Benchmark for
Inductive Theorem Provers. LPAR 2023: 224-237

* Lasse Blaauwbroek, Mirek Olséak, Jason Rute, Fidel lvan Schaposnik Massolo, Jelle Piepenbrock, Vasily
Pestun: Graph2Tac: Online Representation Learning of Formal Math Concepts. ICML 2024

118/123

http://ai4reason.org/PR_CORE_SCIENTIFIC_4.pdf
https://dspace.cvut.cz/bitstream/handle/10467/111606/F3-D-2023-Goertzel-Zarathustra-AITP_Doctoral_Thesis_ZAG.pdf
https://dspace.cvut.cz/bitstream/handle/10467/111606/F3-D-2023-Goertzel-Zarathustra-AITP_Doctoral_Thesis_ZAG.pdf

Some General and Hammer/Tactical References

¢ J. C. Blanchette, C. Kaliszyk, L. C. Paulson, J. Urban: Hammering towards QED. J. Formalized
Reasoning 9(1): 101-148 (2016)

¢ Cezary Kaliszyk, Josef Urban: Learning-Assisted Automated Reasoning with Flyspeck. J. Autom.
Reason. 53(2): 173-213 (2014)

¢ Cezary Kaliszyk, Josef Urban: MizAR 40 for Mizar 40. J. Autom. Reason. 55(3): 245-256 (2015)

¢ Cezary Kaliszyk, Josef Urban: Learning-assisted theorem proving with millions of lemmas. J. Symb.
Comput. 69: 109-128 (2015)

¢ Jasmin Christian Blanchette, David Greenaway, Cezary Kaliszyk, Daniel Kihiwein, Josef Urban: A
Learning-Based Fact Selector for Isabelle/HOL. J. Autom. Reason. 57(3): 219-244 (2016)

¢ Bartosz Piotrowski, Josef Urban: ATPboost: Learning Premise Selection in Binary Setting with ATP
Feedback. IJCAR 2018: 566-574

¢ T. Gauthier, C. Kaliszyk, J. Urban, R. Kumar, M. Norrish: Learning to Prove with Tactics. CoRR
abs/1804.00596 (2018).

¢ Lasse Blaauwbroek, Josef Urban, Herman Geuvers: Tactic Learning and Proving for the Coq Proof
Assistant. LPAR 2020: 138-150

¢ Lasse Blaauwbroek, Josef Urban, Herman Geuvers: The Tactician (extended version): A Seamless,
Interactive Tactic Learner and Prover for Cog. CoRR abs/2008.00120 (2020)

¢ L. Czajka, C. Kaliszyk: Hammer for Coq: Automation for Dependent Type Theory. J. Autom. Reasoning
61(1-4): 423-453 (2018)

¢ G. Irving, C. Szegedy, A. Alemi, N. Eén, F. Chollet, J. Urban: DeepMath - Deep Sequence Models for
Premise Selection. NIPS 2016: 2235-2243

¢ C. Kaliszyk, J. Urban, J. Vyskocil: Efficient Semantic Features for Automated Reasoning over Large
Theories. [JCAI 2015: 3084-3090

¢ J. Urban, G. Sutcliffe, P. Pudlak, J. Vyskocil: MaLARea SG1- Machine Learner for Automated Reasoning
with Semantic Guidance. IJCAR 2008: 441-456

¢ J. Urban, J. Vyskocil: Theorem Proving in Large Formal Mathematics as an Emerging Al Field. LNCS
7788, 240-257, 2013.

119/123

Some References on E/ENIGMA, CoPs and Related

¢ Stephan Schulz: System Description: E 1.8. LPAR 2013: 735-743
¢ S. Schulz, Simon Cruanes, Petar Vukmirovic: Faster, Higher, Stronger: E 2.3. CADE 2019: 495-507

¢ J. Jakubuy, J. Urban: Extending E Prover with Similarity Based Clause Selection Strategies. CICM 2016:
151-156

¢ J. Jakubuv,J. Urban: ENIGMA: Efficient Learning-Based Inference Guiding Machine.CICM 2017:292-302

¢ Cezary Kaliszyk, Josef Urban, Henryk Michalewski, Miroslav Olsak: Reinforcement Learning of Theorem
Proving. NeurlPS 2018: 8836-8847

¢ Zarathustra Goertzel, Jan Jakubuv, Stephan Schulz, Josef Urban: ProofWatch: Watchlist Guidance for
Large Theories in E. ITP 2018: 270-288

* S. M. Loos, G. Irving, C. Szegedy, C. Kaliszyk: Deep Network Guided Proof Search. LPAR 2017: 85-105

¢ Karel Chvalovsky, Jan Jakubuv, Martin Suda, Josef Urban: ENIGMA-NG: Efficient Neural and
Gradient-Boosted Inference Guidance for E. CADE 2019: 197-215

¢ Jan Jakubuv, Josef Urban: Hammering Mizar by Learning Clause Guidance. ITP 2019: 34:1-34:8

* Zarathustra Goertzel, Jan Jakubuv, Josef Urban: ENIGMAWatch: ProofWatch Meets ENIGMA.
TABLEAUX 2019: 374-388

¢ Zarathustra Amadeus Goertzel: Make E Smart Again (Short Paper). IJCAR (2) 2020: 408-415

¢ Jan Jakubuv, Karel Chvalovsky, Miroslav Olsak, Bartosz Piotrowski, Martin Suda, Josef Urban: ENIGMA
Anonymous: Symbol-Independent Inference Guiding Machine. IJCAR (2) 2020: 448-463

* Zsolt Zombori, Adrian Csiszarik, Henryk Michalewski, Cezary Kaliszyk, Josef Urban: Towards Finding
Longer Proofs. CoRR abs/1905.13100 (2019)

¢ Zsolt Zombori, Josef Urban, Chad E. Brown: Prolog Technology Reinforcement Learning Prover -
(System Description). IJCAR (2) 2020: 489-507

¢ Miroslav Olsék, Cezary Kaliszyk, Josef Urban: Property Invariant Embedding for Automated Reasoning.
ECAI 2020: 1395-1402

120/123

Some Conjecturing References

* Douglas Bruce Lenat. AM: An Atrtificial Intelligence Approach to Discovery in Mathematics as Heuristic
Search. PhD thesis, Stanford, 1976.

¢ Siemion Fajtlowicz. On conjectures of Graffiti. Annals of Discrete Mathematics, 72(1-3):113-118, 1988.

¢ Simon Colton. Automated Theory Formation in Pure Mathematics. Distinguished Dissertations. Springer
London, 2012.

* Moa Johansson, Dan Rosén, Nicholas Smallbone, and Koen Claessen. Hipster: Integrating theory
exploration in a proof assistant. In CICM 2014, pages 108-122, 2014.

¢ Thibault Gauthier, Cezary Kaliszyk, and Josef Urban. Initial experiments with statistical conjecturing over
large formal corpora. In CICM’16 WiP Proceedings, pages 219-228, 2016.

¢ Thibault Gauthier, Cezary Kaliszyk: Sharing HOL4 and HOL Light Proof Knowledge. LPAR 2015:
372-386

* Thibault Gauthier. Deep reinforcement learning in HOL4. CoRR, abs/1910.11797, 2019.

¢ Chad E. Brown and Thibault Gauthier. Self-learned formula synthesis in set theory. CoRR,
abs/1912.01525, 2019.

¢ Bartosz Piotrowski, Josef Urban, Chad E. Brown, Cezary Kaliszyk: Can Neural Networks Learn
Symbolic Rewriting? AITP 2019, CoRR abs/1911.04873 (2019)

¢ Zarathustra Goertzel and Josef Urban. Usefulness of Lemmas via Graph Neural Networks (Extende
Abstract). AITP 2019.

¢ Karel Chvalovsky, Thibault Gauthier and Josef Urban: First Experiments with Data Driven Conjecturing
(Extended Abstract). AITP 2019.

¢ Thibault Gauthier: Deep Reinforcement Learning for Synthesizing Functions in Higher-Order Logic.
LPAR 2020: 230-248

¢ Bartosz Piotrowski, Josef Urban: Guiding Inferences in Connection Tableau by Recurrent Neural
Networks. CICM 2020: 309-314

¢ Josef Urban, Jan Jakubuv: First Neural Conjecturing Datasets and Experiments. CICM 2020: 315-323

121/123

References on PCFG and Neural Autoformalization

« Cezary Kaliszyk, Josef Urban, Jiri Vyskocil: Learning to Parse on Aligned
Corpora (Rough Diamond). ITP 2015: 227-233

+ Cezary Kaliszyk, Josef Urban, Jiri Vyskocil, Herman Geuvers:
Developing Corpus-Based Translation Methods between Informal and
Formal Mathematics: Project Description. CICM 2014: 435-439

C. Kaliszyk, J. Urban, J. Vyskocil: Automating Formalization by Statistical
and Semantic Parsing of Mathematics. ITP 2017: 12-27

« Cezary Kaliszyk, Josef Urban, Jiri Vyskocil: System Description:
Statistical Parsing of Informalized Mizar Formulas. SYNASC 2017:
169-172

+ Q. Wang, C. Kaliszyk, J. Urban: First Experiments with Neural Translation
of Informal to Formal Mathematics. CICM 2018: 255-270

- Qingxiang Wang, Chad E. Brown, Cezary Kaliszyk, Josef Urban:
Exploration of neural machine translation in autoformalization of
mathematics in Mizar. CPP 2020: 85-98

122/123

Thanks and Advertisement

+ Thanks for your attention!

- To push Al methods in math and theorem proving, we organize:
+ AITP — Artificial Intelligence and Theorem Proving

+ September 2025, Aussois, France, aitp-conference.org

« ATP/ITP/Math vs AI/ML/AGI people, Computational linguists

+ Discussion-oriented and experimental

123/123

aitp-conference.org

	Quick Intro
	Motivation, Learning vs. Reasoning
	Bird's-Eye View of ATP and ML
	Learning of Theorem Proving - Overview
	Demos
	High-level Reasoning Guidance: Premise Selection
	Low Level Guidance of Theorem Provers
	Mid-level Reasoning Guidance
	Synthesis and Autoformalization

