
COMBINING MACHINE LEARNING AND THEOREM

PROVING

Josef Urban

Czech Technical University in Prague

Summer School on Formal Techniques
May 25-31, 2024, Menlo Park

1 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

2 / 98

Quotes: Learning vs. Reasoning vs. Guessing

“C’est par la logique qu’on démontre, c’est par l’intuition qu’on invente.”
(It is by logic that we prove, but by intuition that we discover.)

– Henri Poincaré, Mathematical Definitions and Education.

“Hypothesen sind Netze; nur der fängt, wer auswirft.”
(Hypotheses are nets: only he who casts will catch.)

– Novalis, quoted by Popper – The Logic of Scientific Discovery

Certainly, let us learn proving, but also let us learn guessing.
– G. Polya - Mathematics and Plausible Reasoning

3 / 98

Leibniz’s/Hilbert’s/Russell’s Dream: Let Us Calculate!

Solve all (math, physics, law, economics, society, ...) problems by
reduction to logic/computation

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]

4 / 98

How Do We Automate Math and Science?

‚ What is mathematical and scientific thinking?
‚ Pattern-matching, analogy, induction from examples
‚ Deductive reasoning
‚ Complicated feedback loops between induction and deduction
‚ Using a lot of previous knowledge - both for induction and deduction

‚ We need to develop such methods on computers
‚ Are there any large corpora suitable for nontrivial deduction?
‚ Yes! Large libraries of formal proofs and theories
‚ So let’s develop strong AI on them!

5 / 98

History, Motivation, AI/TP/ML

‚ Intuition vs Formal Reasoning – Poincaré vs Hilbert, Science & Method
‚ Turing’s 1950 paper: Learning Machines, learn Chess?, undecidability??
‚ 50s-60s: Beginnings of ATP and ITP – Davis, Simon, Robinson, de Bruijn
‚ Lenat, Langley: AM, manually-written heuristics, learn Kepler laws,...
‚ Denzinger, Schulz, Goller, Fuchs – late 90’s, ATP-focused:

Learning from Previous Proof Experience (Tree NNs for ATP, E prover, ...)
‚ My MSc (1998): Try ILP to learn rules and heuristics from IMPS/Mizar
‚ Since: Use large formal math (Big Proof) corpora: Mizar, Isabelle, HOL

... to combine/develop symbolic/statistical deductive/inductive ML/TP/AI

... hammer-style methods, internal guidance, feedback loops, ...
‚ Buzzword bingo timeline: AI vs ML vs NNs vs DL vs LLMs vs AGI vs ...?

See Ben Goertzel’s 2018 Prague talk: https://youtu.be/Zt2HSTuGBn8

6 / 98

https://youtu.be/Zt2HSTuGBn8

Intuition vs Formal Reasoning – Poincaré vs Hilbert

[Adapted from: Logicomix: An Epic Search for Truth by A. Doxiadis]
7 / 98

Induction/Learning vs Reasoning – Henri Poincaré

‚ Science and Method: Ideas about the interplay between correct
deduction and induction/intuition

‚ “And in demonstration itself logic is not all. The true mathematical
reasoning is a real induction [...]”

‚ I believe he was right: strong general reasoning engines have to combine
deduction and induction (learning patterns from data, making
conjectures, etc.)

8 / 98

Learning vs Reasoning – Alan Turing 1950 – AI

‚ 1950: Computing machinery and intelligence – AI, Turing test
‚ “We may hope that machines will eventually compete with men in all

purely intellectual fields.” (regardless of his 1936 undecidability result!)
‚ last section on Learning Machines:
‚ “But which are the best ones [fields] to start [learning on] with?”
‚ “... Even this is a difficult decision. Many people think that a very abstract

activity, like the playing of chess, would be best.”
‚ Why not try with math? It is much more (universally?) expressive ...
‚ (formal) math as a universal/science-complete game, semantic sweetspot

9 / 98

Why Combine Learning and Reasoning Today?

1 Practically Useful for Verification of Complex HW/SW and Math
‚ Formal Proof of the Kepler Conjecture (2014 – Hales – 20k lemmas)
‚ Formal Proof of the Feit-Thompson Theorem (2 books, 2012 – Gonthier)
‚ Verification of several math textbooks and CS algorithms
‚ Verification of compilers (CompCert)
‚ Verification of OS microkernels (seL4), HW chips (Intel), transport, finance,
‚ Verification of cryptographic protocols (Amazon), etc.

2 Blue Sky AI Visions:
‚ Get strong AI by learning/reasoning over large KBs of human thought?
‚ Big formal theories: good semantic approximation of such thinking KBs?
‚ Deep non-contradictory semantics – better than scanning books?
‚ Gradually try learning math/science
‚ automate/verify them, include law, etc. (Leibniz, McCarthy, ..)

‚ What are the components (inductive/deductive thinking)?
‚ How to combine them together?

10 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

11 / 98

What Are Automated Theorem Provers?

‚ Computer programs that (try to) automatically determine if
‚ A conjecture C is a logical consequence of a set of axioms Ax
‚ The derivation of conclusions that follow inevitably from facts.

‚ Systems: Vampire, E, SPASS, Prover9, Z3, CVC4, Satallax, iProver, ...
‚ Brute-force search calculi (resolution, superposition, tableaux, inst-gen)
‚ more limited logics: SAT, QBF, SMT, UEQ, ... (DPLL, CDCL, ...)
‚ TP-motivated PLs: Prolog (logic programming - Hayes, Kowalski)
‚ Human-designed heuristics for pruning of the search space
‚ Theoretically complete: will solve arbitrary solvable problem (AGI??)
‚ BUT: Combinatorial explosion, esp. on large KBs like Flyspeck and Mizar
‚ Need to be equipped with good domain-specific inference guidance ...
‚ ... and that is what I try to do ...
‚ ... typically by learning in various ways from large TP corpora ...

12 / 98

First Order – Automated Theorem Proving (ATP)

‚ try to infer conjecture C from axioms Ax : Ax $ C
‚ most classical methods proceed by refutation: Ax ^ C $ K

‚ Ax ^ C are turned into clauses: universally quantified disjunctions of
atomic formulas and their negations

‚ skolemization is used to remove existential quantifiers
‚ strongest methods: resolution (generalized modus ponens) on clauses:
‚ manpX q _mortalpX q;manpsocratesq $ mortalpsocratesq
‚ saturation-style (resolution/superposition) provers generate

inferences/clauses, looking for the contradiction (empty clause)
‚ tableaux, connection calculus – often implement backtracking (more

suitable for RL/MCTS)
‚ instantiation-based – systematically add (or guess) ground instances

and use SAT solvers to check satisfiability
‚ combined approaches – SAT run often inside the ATP (generalized

splitting, AVATAR, iProver, SMT, etc.)
13 / 98

The CADE ATP System Competition (CASC)

14 / 98

Using First/Higher Order Automated Theorem Proving

‚ 1996: Bill McCune proof of Robbins conjecture (Robbins algebras are
Boolean algebras)

‚ Robbins conjecture unsolved for 50 years by mathematicians like Tarski
‚ 2021: M. Kinyon, R. Veroff, Prover9: Weak AIM conjecture
‚ If Q is an Abelian Innner Mapping loop, then Q is nilpotent of class ď 3.
‚ ATP has currently only limited use for proving new conjectures
‚ mainly in very specialized algebraic domains
‚ however ATP has become very useful in Interactive Theorem Proving
‚ a recent (2020) performance jump in higher-order ATP:
‚ Zipperposition, HO-Vampire, E-HO (J. Blanchette, A Bentkamp, P.

Vukmirovic)

15 / 98

Learning Approaches - Data vs Theory Driven

‚ John Shawe-Taylor and Nello Cristianini – Kernel Methods for Pattern
Analysis (2004):

‚ "Many of the most interesting problems in AI and computer science in
general are extremely complex often making it difficult or even impossible
to specify an explicitly programmed solution."

‚ "As an example consider the problem of recognising genes in a DNA
sequence. We do not know how to specify a program to pick out the
subsequences of, say, human DNA that represent genes."

‚ "Similarly we are not able directly to program a computer to recognise a
face in a photo."

16 / 98

Learning Approaches - Data vs Theory Driven

‚ "Learning systems offer an alternative methodology for tackling these
problems."

‚ "By exploiting the knowledge extracted from a sample of data, they are
often capable of adapting themselves to infer a solution to such tasks."

‚ "We will call this alternative approach to software design the learning
methodology."

‚ "It is also referred to as the data driven or data based approach, in
contrast to the theory driven approach that gives rise to precise
specifications of the required algorithms."

17 / 98

For Fun: My Depressive Slide From 2011 AMS

‚ My personal puzzle:
‚ The year is 2011.
‚ The recent AI successes are data-driven, not theory-driven.
‚ Ten years after the success of Google.
‚ Fifteen years after the success of Deep Blue with Kasparov.
‚ Five year after a car drove autonomously across the Mojave desert.
‚ Four years after the Netflix prize was announced.
‚ Why am I still the only person training AI systems on large repositories of

human proofs like the Mizar library???
‚ (This finally started to change in 2011)

18 / 98

Sample of Learning Approaches
‚ neural networks (statistical ML, old!) – backprop, SGD, deep learning,

convolutional, recurrent, attention/transformers, tree NNs, graph NNs, etc.
‚ decision trees, random forests, gradient boosted trees – find good

classifying attributes (and/or their values); more explainable, often SoTA
‚ support vector machines – find a good classifying hyperplane, possibly

after non-linear transformation of the data (kernel methods)
‚ k-nearest neighbor – find the k nearest neighbors to the query, combine

their solutions, good for online learning (important in ITP)
‚ naive Bayes – compute probabilities of outcomes assuming complete

(naive) independence of characterizing features, i.e., just multiplying
probabilities: Ppy |xq “ Ppx1|yq ˚ Ppx2|yq ˚ ::: ˚ Ppxn|yq ˚ Ppyq{Ppxq

‚ inductive logic programming (symbolic ML) – generate logical
explanation (program) from a set of ground clauses by generalization

‚ genetic algorithms – evolve large population by crossover and mutation
‚ various combinations of statistical and symbolic approaches
‚ supervised, unsupervised, online/incremental, reinforcement

learning (actions, explore/exploit, cumulative reward)
19 / 98

Learning – Features and Data Preprocessing

‚ Extremely important - if irrelevant, there is no way to learn the function
from input to output (“garbage in garbage out”)

‚ Feature discovery/engineering – a big field, a bit overshadowed by DL
‚ Deep Learning (DL) – deep neural nets that automatically find important

high-level features for a task, can be structured (tree/graph NNs)
‚ Data Augmentation and Selection – how do we generate/select

more/better data to learn on?
‚ Latent Semantics, PCA, dimensionality reduction: use linear algebra

(eigenvector decomposition) to discover the most similar features, make
approximate equivalence classes from them; or just use hashing

‚ word2vec and related/neural methods: represent words/sentences by
embeddings (in a high-dimensional real vector space) learned by
predicting the next word on a large corpus like Wikipedia

‚ math and theorem proving: syntactic/semantic/computational
patterns/abstractions/programs

‚ How do we represent math data (formulas, proofs, models) in our mind?
20 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

21 / 98

Using Learning to Guide Theorem Proving

‚ high-level: pre-select lemmas from a large library, give them to ATPs
‚ high-level: pre-select a good ATP strategy/portfolio for a problem
‚ high-level: pre-select good hints for a problem, use them to guide ATPs
‚ low-level: guide every inference step of ATPs (tableau, superposition)
‚ low-level: guide every kernel step of LCF-style ITPs
‚ mid-level: guide application of tactics in ITPs, learn new tactics
‚ mid-level: invent suitable strategies/procedures for classes of problems
‚ mid-level: invent suitable conjectures for a problem
‚ mid-level: invent suitable concepts/models for problems/theories
‚ proof sketches: explore stronger/related theories to get proof ideas
‚ theory exploration: develop interesting theories by conjecturing/proving
‚ feedback loops: (dis)prove, learn from it, (dis)prove more, learn more, ...
‚ autoformalization: (semi-)automate translation from LATEX to formal
‚ ...

22 / 98

Large Datasets

‚ Mizar / MML / MPTP – since 2003
‚ MPTP Challenge (2006), MPTP2078 (2011), Mizar40 (2013)
‚ Isabelle (and AFP) – since 2005, Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – since 2012
‚ HOL4 – since 2014, TacticToe (2017), CakeML – 2017, GRUNGE – 2019
‚ Coq – since 2013/2016 (CoqHammer - 2016, Tactician - 2020)
‚ ACL2 – 2014?
‚ Lean?, Stacks?, Arxiv?, ProofWiki?, ...

23 / 98

AITP Challenges/Bets from 2014

‚ 3 AITP bets for 10k EUR from my 2014 talk at Institut Henri Poincare
(tinyurl.com/yb55b3jv)

‚ In 20 years, 80% of Mizar and Flyspeck toplevel theorems will be provable
automatically (same hardware, same libraries as in 2014 - about 40% then)

‚ In 10 years: 60% (DONE already in 2021 - 3 years ahead of schedule)
‚ In 25 years, 50% of the toplevel statements in LaTeX-written Msc-level math

curriculum textbooks will be parsed automatically and with correct formal
semantics (this may be faster than I expected)

‚ My (conservative?) estimate when we will do Fermat:
‚ Human-assisted formalization: by 2050
‚ Fully automated proof (hard to define precisely): by 2070
‚ See the Foundation of Math thread: https://bit.ly/300k9Pm
‚ and the AITP’22 panel: https://bit.ly/3dcY5HW

‚ Big challenge: Learn complicated symbolic algorithms (not black box -
motivates also our OEIS research)

24 / 98

tinyurl.com/yb55b3jv
https://bit.ly/300k9Pm
https://bit.ly/3dcY5HW

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

25 / 98

AI/TP Examples and Demos
‚ ENIGMA/hammer proofs of Pythagoras : https://bit.ly/2MVPAn7

(more at http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf) and
simplified Carmichael https://bit.ly/3oGBdRz,

‚ 3-phase ENIGMA: https://bit.ly/3C0Lwa8,
https://bit.ly/3BWqR6K

‚ Long trig proof from 1k axioms: https://bit.ly/2YZ0OgX
‚ Extreme Deepire/AVATAR proof of �0 “ !!

!
:
:
:

https://bit.ly/3Ne4WNX
‚ Hammering demo: http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
‚ TacticToe on HOL4:
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv

‚ TacticToe longer: https://www.youtube.com/watch?v=BO4Y8ynwT6Y
‚ Tactician for Coq:
https://blaauwbroek.eu/papers/cicm2020/demo.mp4,
https://coq-tactician.github.io/demo.html

‚ Inf2formal over HOL Light:
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv

‚ QSynt: AI rediscovers the Fermat primality test:
https://www.youtube.com/watch?v=24oejR9wsXs

26 / 98

https://bit.ly/2MVPAn7
http://grid01.ciirc.cvut.cz/~mptp/enigma-ex.pdf
https://bit.ly/3oGBdRz
https://bit.ly/3C0Lwa8
https://bit.ly/3BWqR6K
https://bit.ly/2YZ0OgX
https://bit.ly/3Ne4WNX
http://grid01.ciirc.cvut.cz/~mptp/out4.ogv
http://grid01.ciirc.cvut.cz/~mptp/tactictoe_demo.ogv
https://www.youtube.com/watch?v=BO4Y8ynwT6Y
https://blaauwbroek.eu/papers/cicm2020/demo.mp4
https://coq-tactician.github.io/demo.html
http://grid01.ciirc.cvut.cz/~mptp/demo.ogv
https://www.youtube.com/watch?v=24oejR9wsXs

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

27 / 98

Today’s AI-ATP systems (‹-Hammers)

Proof Assistant ‹Hammer ATP

Current Goal First Order Problem

ITP Proof ATP Proof
.

How much can it do?

‚ Mizar / MML – MizAR
‚ Isabelle (Auth, Jinja) – Sledgehammer
‚ Flyspeck (including core HOL Light and Multivariate) – HOL(y)Hammer
‚ HOL4 (Gauthier and Kaliszyk)
‚ CoqHammer (Czajka and Kaliszyk) - about 40% on Coq standard library

« 40-45% success by 2016, 60% on Mizar as of 2021

28 / 98

High-level feedback loops – MALARea, ATPBoost
‚ Machine Learner for Autom. Reasoning (2006) – infinite hammering
‚ feedback loop interleaving ATP with learning premise selection
‚ both syntactic and semantic features for characterizing formulas:
‚ evolving set of finite (counter)models in which formulas evaluated
‚ winning AI/ATP benchmarks (MPTPChallenge, CASC 08/12/13/18/20)
‚ ATPBoost (Piotrowski) - recent incarnation focusing on multiple proofs

29 / 98

30 / 98

31 / 98

32 / 98

Finding shorter proofs: FACE_OF_POLYHEDRON_POLYHEDRON

let FACE_OF_POLYHEDRON_POLYHEDRON = prove
(‘!s:real^N->bool c. polyhedron s /\ c face_of s ==> polyhedron c‘,
REPEAT STRIP_TAC THEN FIRST_ASSUM
(MP_TAC o GEN_REWRITE_RULE I [POLYHEDRON_INTER_AFFINE_MINIMAL]) THEN
REWRITE_TAC[RIGHT_IMP_EXISTS_THM; SKOLEM_THM] THEN
SIMP_TAC[LEFT_IMP_EXISTS_THM; RIGHT_AND_EXISTS_THM; LEFT_AND_EXISTS_THM] THEN
MAP_EVERY X_GEN_TAC
[‘f:(real^N->bool)->bool‘; ‘a:(real^N->bool)->real^N‘;
‘b:(real^N->bool)->real‘] THEN

STRIP_TAC THEN
MP_TAC(ISPECL [‘s:real^N->bool‘; ‘f:(real^N->bool)->bool‘;

‘a:(real^N->bool)->real^N‘; ‘b:(real^N->bool)->real‘]
FACE_OF_POLYHEDRON_EXPLICIT) THEN

ANTS_TAC THENL [ASM_REWRITE_TAC[] THEN ASM_MESON_TAC[]; ALL_TAC] THEN
DISCH_THEN(MP_TAC o SPEC ‘c:real^N->bool‘) THEN ASM_REWRITE_TAC[] THEN
ASM_CASES_TAC ‘c:real^N->bool = {}‘ THEN
ASM_REWRITE_TAC[POLYHEDRON_EMPTY] THEN
ASM_CASES_TAC ‘c:real^N->bool = s‘ THEN ASM_REWRITE_TAC[] THEN
DISCH_THEN SUBST1_TAC THEN MATCH_MP_TAC POLYHEDRON_INTERS THEN
REWRITE_TAC[FORALL_IN_GSPEC] THEN
ONCE_REWRITE_TAC[SIMPLE_IMAGE_GEN] THEN
ASM_SIMP_TAC[FINITE_IMAGE; FINITE_RESTRICT] THEN
REPEAT STRIP_TAC THEN REWRITE_TAC[IMAGE_ID] THEN
MATCH_MP_TAC POLYHEDRON_INTER THEN
ASM_REWRITE_TAC[POLYHEDRON_HYPERPLANE]);;

33 / 98

Finding shorter proofs: FACE_OF_POLYHEDRON_POLYHEDRON

polyhedron s /\ c face_of s ==> polyhedron c

HOL Light proof: could not be re-played by ATPs.

Alternative proof found by a hammer based on FACE_OF_STILLCONVEX:
Face t of a convex set s is equal to the intersection of s with the affine hull of t .

FACE_OF_STILLCONVEX:
!s t:real^N->bool. convex s ==>
(t face_of s <=>
t SUBSET s /\ convex(s DIFF t) /\ t = (affine hull t) INTER s)

POLYHEDRON_IMP_CONVEX:
!s:real^N->bool. polyhedron s ==> convex s

POLYHEDRON_INTER:
!s t:real^N->bool. polyhedron s /\ polyhedron t
==> polyhedron (s INTER t)

POLYHEDRON_AFFINE_HULL:
!s. polyhedron(affine hull s)

34 / 98

Various Improvements and Additions

‚ Model-based features for semantic similarity [IJCAR’08]
‚ Features encoding term matching/unification [IJCAI’15]
‚ Various learners: weighted k-NN, boosted trees (LightGBM,XGBoost)
‚ Matching and transferring concepts and theorems between libraries

(Gauthier & Kaliszyk) – allows “superhammers”, conjecturing, and more
‚ Lemmatization – extracting and considering millions of low-level lemmas
‚ LSI, word2vec, neural models, definitional embeddings (with Google)
‚ Learning in binary setting from many alternative proofs
‚ Negative/positive mining (ATPBoost - Piotrowski & JU, 2018)
‚ Stateful neural methods: RNNs and Transformers (Piotrowski & JU, 2020)

(smooth transition from fact selection to conjecturing – Jakubuv & JU 2020)
‚ Currently strongest: Name-independent graph neural nets (Olsak, 2020)

(generalize very well to new terminology/lemmas)

35 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

36 / 98

Low-level: Statistical Guidance of Connection Tableau

‚ learn guidance of every clausal inference in connection tableau (leanCoP)
‚ set of first-order clauses, extension and reduction steps
‚ proof finished when all branches are closed
‚ a lot of nondeterminism, requires backtracking
‚ Iterative deepening used in leanCoP to ensure completeness
‚ good for learning – the tableau compactly represents the proof state

Clauses:

c1 : Ppxq

c2 : Rpx ; yq _ Ppxq _Qpyq

c3 : Spxq _ Qpbq

c4 : Spxq _ Qpxq

c5 : Qpxq _ Rpa; xq

c6 : Rpa; xq _Qpxq

Closed Connection Tableau: Ppaq

Rpa; bq

 Rpa; bq Qpbq

 Qpbq Rpa; bq

 Ppaq Qpbq

Spbq

 Spbq Qpbq

 Qpbq

37 / 98

leanCoP: Minimal Prolog FOL Theorem Prover

1 % prove (Cla , Path , PathLim ,Lem, Set)
2 prove ([L i t | Cla] , Path , PathLim ,Lem, Set) :´
3 (´NegLit= L i t ;´ L i t =NegLi t) ´>
4 (
5 member (NegL , Path) ,
6 uni fy_wi th_occurs_check (NegL , NegLi t)
7 ;
8 % main nondeterminism
9 l i t (NegLit , NegL , Cla1 , Grnd1) ,

10 uni fy_wi th_occurs_check (NegL , NegLi t) ,
11 prove (Cla1 , [L i t | Path] , PathLim ,Lem, Set)
12) ,
13 prove (Cla , Path , PathLim ,Lem, Set) .
14 prove ([] , _ , _ , _ , _) .

38 / 98

Statistical Guidance of Connection Tableau

‚ MaLeCoP (2011): first prototype Machine Learning Connection Prover
‚ extension rules chosen by naive Bayes trained on good decisions
‚ training examples: tableau features plus the name of the chosen clause
‚ initially slow: off-the-shelf learner 1000 times slower than raw leanCoP
‚ 20-time search shortening on the MPTP Challenge
‚ second version: 2015, with C. Kaliszyk
‚ Fairly Efficient MaLeCoP = FEMaLeCoP
‚ both prover and naive Bayes in OCAML, fast indexing, 40% slower
‚ 15% real-time improvement over leanCoP on the MPTP2078 problems
‚ using iterative deepening - enumerate shorter proofs before longer ones

39 / 98

Statistical Guidance of Connection Tableau – rlCoP

‚ 2018: stronger learners via C interface to OCAML (boosted trees)
‚ remove iterative deepening, the prover can go arbitrarily deep
‚ added Monte-Carlo Tree Search (MCTS) (inspired by AlphaGo/Zero)
‚ MCTS search nodes are sequences of clause application
‚ a good heuristic to explore new vs exploit good nodes:

wi

ni
` c ¨ pi ¨

d

lnN
ni

(UCT - Kocsis, Szepesvari 2006)

‚ learning both policy (clause selection) and value (state evaluation)
‚ clauses represented not by names but also by features (generalize!)
‚ binary learning setting used: | proof state | clause features |
‚ mostly term walks of length 3 (trigrams), hashed into small integers
‚ many iterations of proving and learning
‚ More recently fun with GNNs (Olsak, Rawson, Zombori, ...)

40 / 98

Tree Example

r=0.3489
n=1000

p=0.37
r=0.0218

n=287

p=0.70
r=0.0000

n=166

p=0.13
r=0.0000

n=25

p=0.18
r=0.0000

n=74

p=0.11
r=0.0000

n=6

p=0.12
r=0.0000

n=22

p=0.16
r=0.0000

n=39

p=0.30
r=0.1225

n=121

p=0.19
r=0.0000

n=14

p=0.81
r=0.1330

n=107

0.63
r=0.4805

n=713

Ś

p=0.31

0.18
r=0.3649

n=385

1.00
r=0.3649

n=385

Ś

p=0.31

0.14
r=0.3562

n=278

...

...

41 / 98

Statistical Guidance of Connection Tableau – rlCoP

‚ On 32k Mizar40 problems using 200k inference limit
‚ nonlearning CoPs:

System leanCoP bare prover rlCoP no policy/value (UCT only)
Training problems proved 10438 4184 7348
Testing problems proved 1143 431 804
Total problems proved 11581 4615 8152

‚ rlCoP with policy/value after 5 proving/learning iters on the training data
‚ 1624{1143 “ 42:1% improvement over leanCoP on the testing problems

Iteration 1 2 3 4 5 6 7 8

Training proved 12325 13749 14155 14363 14403 14431 14342 14498
Testing proved 1354 1519 1566 1595 1624 1586 1582 1591

42 / 98

More trees

r=0.3099
n=1182

p=0.24
r=0.3501

n=536

p=0.21
r=0.1859

n=28...
p=0.10

r=0.2038
n=9...

p=0.13
r=0.2110

n=14...
p=0.14

r=0.2384
n=21...

p=0.14
r=0.3370

n=181...
p=0.20

r=0.3967
n=279

p=0.30
r=0.1368

n=14...
p=0.15

r=0.0288
n=2...

p=0.56
r=0.4135

n=262

p=0.66
r=0.4217

n=247

36 more MCTS tree levels until proved

p=0.18
r=0.2633

n=8...
p=0.17

r=0.2554
n=6...

p=0.08
r=0.1116

n=3...

p=0.19
r=0.2289

n=58...
p=0.22

r=0.1783
n=40...

p=0.35
r=0.2889

n=548...

(tableau starting
atom)

RelStr(c1)

upper(c1)

Subset(union(c2),carrier(c1))

Subset(c2,powerset(carrier(c1))

43 / 98

ENIGMA (2017): Guiding the Best ATPs like E Prover
Basic Saturation Loop – Given Clause Loop (E, Vampire, SPASS, Prover9, ...)

P :“ H (processed)
U :“ tclausified axioms and a negated conjectureu (unprocessed)
while (U ‰ H) do

if (K P U Y P) then return Unsatisfiable
g :“ selectpUq (choose a given clause)
P :“ P Y tgu (add to processed)
U :“ Uztgu (remove from unprocessed)
U :“ U Y tall clauses inferred from g and Pu (add inferences)

done
return Satisfiable

Typically, U grows quadratically wrt. P
1M clauses in U in 10s common – choosing good g gets hard – use ML!

44 / 98

ENIGMA: ML-based Given Clause Guidance

45 / 98

ENIGMA (2017): Guiding the Best ATPs like E Prover

‚ ENIGMA (Jan Jakubuv, Zar Goertzel, Karel Chvalovsky, others)

‚ The proof state are two large heaps of clauses processed/unprocessed
‚ learn on E’s proof search traces, put classifier in E
‚ positive examples: clauses (lemmas) used in the proof
‚ negative examples: clauses (lemmas) not used in the proof
‚ 2021 multi-phase architecture (combination of different methods):

‚ fast gradient-boosted decision trees (GBDTs) used in 2 ways
‚ fast logic-aware graph neural network (GNN - Olsak) run on a GPU server
‚ logic-based subsumption using fast indexing (discrimination trees - Schulz)

‚ The GNN scores many clauses (context/query) together in a large graph
‚ Sparse - vastly more efficient than transformers („100k symbols)
‚ 2021: leapfrogging and Split&Merge:
‚ aiming at learning reasoning/algo components

46 / 98

Feedback prove/learn loop for ENIGMA on Mizar data

‚ Done on 57880 Mizar problems recently
‚ Serious ML-guidance breakthrough applied to the best ATPs
‚ Ultimately a 70% improvement over the original strategy in 2019
‚ From 14933 proofs to 25397 proofs (all 10s CPU - no cheating)
‚ Went up to 40k in more iterations and 60s time in 2020
‚ 75% of the Mizar corpus reached in July 2021 - higher times and many

runs: https://github.com/ai4reason/ATP_Proofs

S S dM0
9 S ‘M

0
9 S dM1

9 S ‘M
1
9 S dM2

9 S ‘M
2
9 S dM3

9 S ‘M
3
9

solved 14933 16574 20366 21564 22839 22413 23467 22910 23753
S% +0% +10.5% +35.8% +43.8% +52.3% +49.4% +56.5% +52.8% +58.4
S` +0 +4364 +6215 +7774 +8414 +8407 +8964 +8822 +9274
S´ -0 -2723 -782 -1143 -508 -927 -430 -845 -454

S dM3
12 S ‘M3

12 S dM3
16 S ‘M3

16
solved 24159 24701 25100 25397
S% +61.1% +64.8% +68.0% +70.0%
S` +9761 +10063 +10476 +10647
S´ -535 -295 -309 -183

47 / 98

https://github.com/ai4reason/ATP_Proofs

ENIGMA Anonymous: Learning from patterns only

‚ The GNN and GBDTs only learn from formula structure, not symbols
‚ Not from symbols like ` and ˚ as Transformer & Co.
‚ E.g., learning on additive groups thus transfers to multiplicative groups
‚ Evaluation of old-Mizar ENIGMA on 242 new Mizar articles:
‚ 13370 new theorems, ą 50% of them with new terminology:
‚ The 3-phase ENIGMA is 58% better on them than unguided E
‚ While 53.5% on the old Mizar (where this ENIGMA was trained)
‚ Generalizing, analogizing and transfer abilities unusual in the large

transformer models

48 / 98

3-phase Anonymous ENIGMA
The 3-phase ENIGMA (single strategy) solves in 30s 56.4% of Mizar (bushy)

12

Given Clause Loop in E + ML Guidance

Parental Guidance Filter:

Fast – GBDT

Clause Selection Models:

2-phase – GBDT + GNN

3-phase ENIGMA

49 / 98

More Low-Level Guidance of Various Creatures

‚ Neural (TNN) clause selection in Vampire (Deepire - M. Suda):
Learn from clause derivation trees only
Not looking at what it says, just who its ancestors were.

‚ Fast and surprisingly good
‚ GNN-based guidance in iProver (Chvalovsky, Korovin, Piepenbrock)
‚ New (dynamic data) way of training
‚ Led to doubled real-time performance of iProver’s instantiation mode
‚ CVC5: neural & GBDT instantiation guidance (Piepenbrock, Jakubuv)
‚ very recently 20% improvement on Mizar

50 / 98

ProofWatch: Symbolic/Statistical Guidance of E

‚ Bob Veroff’s hints method used for Prover9
‚ solve many easier/related problems, produce millions of lemmas
‚ load the useful lemmas (hints) on the watchlist (kind of conjecturing)
‚ boost inferences on clauses that subsume a watchlist clause
‚ watchlist parts are fast thinking, bridged by standard (slow) search
‚ symbolic guidance, initial attempts to choose good hints by statistical ML
‚ Very long proofs of open conjectures in quasigroup/loop theory (AIM)
‚ ProofWatch (Goertzel et al. 2018): load many proofs separately in E
‚ dynamically boost those that have been covered more
‚ needed for heterogeneous ITP libraries
‚ statistical: watchlists chosen using similarity and usefulness
‚ semantic/deductive: dynamic guidance based on exact proof matching
‚ results in better vectorial characterization of saturation proof searches
‚ Use the proof completion ratios as features for characterizing proof state
‚ Instead of just static conjecture features - the proof vectors evolve
‚ EnigmaWatch: Feed them to ML systems too (much more semantic)

51 / 98

Example of an XGBoost decision tree

wl #194 < 0.19

wl #412 < 0.03

!POS

=.k1_xboole_0.k3_rlsub_1

...

< 16.5

=.k1_funct_1.k5_memstr_0

v1_rat_1:k2_jordan3:*

...

< 2.5 ... wl #153 < 0.29

=.k1_funct_1.k5_memstr_0

v1_rat_1:k2_jordan3:*

...

< 14.5

...

52 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

53 / 98

TacticToe: mid-level ITP Guidance (Gauthier’17,18)

‚ TTT learns from human and its own tactical HOL4 proofs
‚ No translation or reconstruction needed - native tactical proofs
‚ Fully integrated with HOL4 and easy to use
‚ Similar to rlCoP: policy/value learning for applying tactics in a state
‚ However much more technically challenging - a real breakthrough:

‚ tactic and goal state recording
‚ tactic argument abstraction
‚ absolutization of tactic names
‚ nontrivial evaluation issues
‚ these issues have often more impact than adding better learners

‚ policy: which tactic/parameters to choose for a current goal?
‚ value: how likely is this proof state succeed?
‚ 66% of HOL4 toplevel proofs in 60s (better than a hammer!)
‚ similar recent work for Isabelle (Nagashima 2018), HOL Light (Google)

54 / 98

Tactician: Tactical Guidance for Coq (Blaauwbroek’20)

‚ Tactical guidance of Coq proofs
‚ Technically very challenging to do right - the Coq internals again nontrivial
‚ 39.3% on the Coq standard library, 56.7% in a union with CoqHammer

(orthogonal)
‚ Fast approximate hashing for k-NN makes a lot of difference
‚ Fast re-learning more important than “cooler”/slower learners
‚ Fully integrated with Coq, should work for any development
‚ User friendly, installation friendly, integration friendly and maintenance

friendly
‚ Took several years, but could become a very common tool for Coq

formalizers

55 / 98

More Mid-level guidance: BliStr: Blind Strategymaker

‚ ATP strategies are programs specified in rich DSLs - can be evolved
‚ The ATP strategies are like giraffes, the problems are their food
‚ The better the giraffe specializes for eating problems unsolvable by

others, the more it gets fed and further evolved

56 / 98

The E strategy with longest specification in Jan 2012

Longest human-designed strategy:

G-E--_029_K18_F1_PI_AE_SU_R4_CS_SP_S0Y:

4 * ConjectureGeneralSymbolWeight(
SimulateSOS,100,100,100,50,50,10,50,1.5,1.5,1),

3 * ConjectureGeneralSymbolWeight(
PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1),

1 * Clauseweight(PreferProcessed,1,1,1),
1 * FIFOWeight(PreferProcessed)

57 / 98

BliStr: Blind Strategymaker

‚ Strategies characterized by the problems they solve
‚ Problems characterized by the strategies that solve them
‚ Improve on sets of similar easy problems to train for unsolved problems
‚ Interleave low-time training on easy problems with high-time evaluation
‚ Single strategy evolution done by ParamILS - Iterated Local Search

(Hutter et al. 2009 – genetic methods work too)
‚ Thus co-evolve the strategies and their training problems
‚ The hard problems gradually become easier and turn into training data

(the trees get lower for a taller giraffe)
‚ In the end, learn which strategy to use on which problem

58 / 98

The Longest E Strategy After BliStr Evolution
Evolutionarily designed Franken-strategy (29 heuristics combined):
6 * ConjectureGeneralSymbolWeight(PreferNonGoals,100,100,100,50,50,1000,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(PreferNonGoals,200,100,200,50,50,1,100,1.5,1.5,1)
8 * ConjectureGeneralSymbolWeight(SimulateSOS,100,100,100,50,50,50,50,1.5,1.5,1)
4 * ConjectureRelativeSymbolWeight(ConstPrio,0.1, 100, 100, 100, 100, 1.5, 1.5, 1.5)
10 * ConjectureRelativeSymbolWeight(PreferNonGoals,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
2 * ConjectureRelativeSymbolWeight(SimulateSOS,0.5, 100, 100, 100, 100, 1.5, 1.5, 1)
10 * ConjectureSymbolWeight(ConstPrio,10,10,5,5,5,1.5,1.5,1.5)
1 * Clauseweight(ByCreationDate,2,1,0.8)
1 * Clauseweight(ConstPrio,3,1,1)
6 * Clauseweight(ConstPrio,1,1,1)
2 * Clauseweight(PreferProcessed,1,1,1)
6 * FIFOWeight(ByNegLitDist)
1 * FIFOWeight(ConstPrio)
2 * FIFOWeight(SimulateSOS)
8 * OrientLMaxWeight(ConstPrio,2,1,2,1,1)
2 * PNRefinedweight(PreferGoals,1,1,1,2,2,2,0.5)
10 * RelevanceLevelWeight(ConstPrio,2,2,0,2,100,100,100,100,1.5,1.5,1)
8 * RelevanceLevelWeight2(PreferNonGoals,0,2,1,2,100,100,100,400,1.5,1.5,1)
2 * RelevanceLevelWeight2(PreferGoals,1,2,1,2,100,100,100,400,1.5,1.5,1)
6 * RelevanceLevelWeight2(SimulateSOS,0,2,1,2,100,100,100,400,1.5,1.5,1)
8 * RelevanceLevelWeight2(SimulateSOS,1,2,0,2,100,100,100,400,1.5,1.5,1)
5 * rweight21_g
3 * Refinedweight(PreferNonGoals,1,1,2,1.5,1.5)
1 * Refinedweight(PreferNonGoals,2,1,2,2,2)
2 * Refinedweight(PreferNonGoals,2,1,2,3,0.8)
8 * Refinedweight(PreferGoals,1,2,2,1,0.8)
10 * Refinedweight(PreferGroundGoals,2,1,2,1.0,1)
20 * Refinedweight(SimulateSOS,1,1,2,1.5,2)
1 * Refinedweight(SimulateSOS,3,2,2,1.5,2)

59 / 98

Outline

Motivation, Learning vs. Reasoning

Bird’s-Eye View of ATP and ML

Learning of Theorem Proving - Overview

Demos

High-level Reasoning Guidance: Premise Selection

Low Level Guidance of Theorem Provers

Mid-level Reasoning Guidance

Synthesis and Autoformalization

60 / 98

More on Conjecturing in Mathematics

‚ Targeted: generate intermediate lemmas (cuts) for a harder conjecture
‚ Unrestricted (theory exploration):
‚ Creation of interesting conjectures based on the previous theory
‚ One of the most interesting activities mathematicians do (how?)
‚ Higher-level AI/reasoning task - can we learn it?
‚ If so, we have solved math:
‚ ... just (recursively) divide Fermat into many subtasks ...
‚ ... and conquer (I mean: hammer) them away

61 / 98

A bit of conjecturing history

‚ The topic goes back at least to Lenat (AM) and Fajtlowicz (Graffiti)
‚ Combined with automated theorem proving by Colton et al. in early

2000s (HR)
‚ Theory exploration for Isabelle by Johansson et al (Hipster)
‚ Several learning-based/neural approaches by our groups since 2015:
‚ Based mainly on learning analogies and informalization followed by

probabilistic/neural disambiguation ...
‚ ... Gauthier, Kaliszyk, Chvalovsky, Piotrowski, Goertzel, Wang, Brown, JU

62 / 98

Conjecturing and Proof Synthesis by Neural Methods

‚ Karpathy’15 - RNN experiments with generating fake Math over Stacks
‚ I have tried to use that for formal math in 2016 but it looked weak
‚ GPT (-2,3) looks stronger
‚ Renewed experiments in 2020 (JU & J. Jakubuv: First Neural

Conjecturing Datasets and Experiments. CICM’20) on:
‚ All Mizar articles, stripped of comments and concatenated together (78M)
‚ Articles with added context/disambiguation (156M) (types, names, thesis)
‚ TPTP proofs of 28271 Mizar/MPTP theorems by E/ENIGMA (658M)
‚ Just the conjecture and premises needed for the 28271 proofs printed in

prefix notation

‚ Quite interesting results, server for Mizar authors
‚ Quickly taken up by others on HOL, Isabelle, MetaMath ...
‚ Caveat: Watch for "model pretraining" on undisclosed corpora - often

GitHub/math repos that may contain (translations of) the testing data

63 / 98

Can you find the flaw(s) in this fake GPT-2 proof?

Figure: Fake full declarative GPT-2 “Mizar proof” - typechecks!

64 / 98

A correct conjecture that was too hard to prove

Kinyon and Stanovsky (algebraists) confirmed that this cut is valid:

theorem Th10: :: GROUPP_1:10
for G being finite Group
for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

The generalization that avoids finiteness:

for G being Group
for N being normal Subgroup of G st
N is Subgroup of center G & G ./. N is cyclic
holds G is commutative

65 / 98

More cuts

‚ In total 33100 in this experiment
‚ Ca 9k proved by trained ENIGMA
‚ Some are clearly false, yet quite natural to ask:

theorem :: SINCOS10:17

sec is increasing on [0, pi/2)

leads to conjecturing the following:

Every differentiable function is increasing.

66 / 98

QSynt: Semantics-Aware Synthesis of Math Objects

‚ Gauthier (et al) 2019-24
‚ Synthesize math expressions based on semantic characterizations
‚ i.e., not just on the syntactic descriptions (e.g. proof situations)
‚ Tree Neural Nets and Monte Carlo Tree Search (a la AlphaZero)
‚ Recently also various (small) language models with their search methods
‚ Invent programs for OEIS sequences FROM SCRATCH (no LLM cheats)
‚ 123k OEIS sequences (out of 350k) solved so far (600 iterations):
https://www.youtube.com/watch?v=24oejR9wsXs,
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

‚ ~3M explanations invented: 50+ different characterizations of primes
‚ Non-neural (Turing complete) symbolic computing and semantics

collaborate with the statistical/neural learning
‚ Program evolution governed by high-level criteria (Occam, efficiency)

67 / 98

https://www.youtube.com/watch?v=24oejR9wsXs
http://grid01.ciirc.cvut.cz/~thibault/qsynt.html

OEIS: ě 350000 finite sequences

68 / 98

Generating programs for OEIS sequences

0;1;3;6;10;15;21; : : :

An undesirable large program:

if x = 0 then 0 else
if x = 1 then 1 else
if x = 2 then 3 else
if x = 3 then 6 else ...

Small program (Occam’s Razor):
n

ÿ

i“1

i

Fast program (efficiency criteria):

n ˆ n ` n
2

69 / 98

Programming language

- Constants: 0;1;2
- Variables: x ; y
- Arithmetic: `;´;ˆ;div ;mod
- Condition : if : : : ď 0 then . . . else . . .
- looppf ;a;bq :“ ua where u0 “ b;

un “ f pun´1;nq

- Two other loop constructs: loop2, a while loop

Example:
2x “

śx
y“1 2 “ loopp2ˆ x ;x;1q

x! “
śx

y“1 y “ looppy ˆ x ;x;1q

70 / 98

QSynt: synthesizing the programs/expressions

‚ Inductively defined set P of our programs and subprograms,
‚ and an auxiliary set F of binary functions (higher-order arguments)
‚ are the smallest sets such that 0;1;2; x ; y P P, and if a;b; c P P and

f ;g P F then:

a` b;a´ b;aˆ b;a div b;a mod b; condpa;b; cq P P

�px ; yq:a P F ; looppf ;a;bq; loop2pf ;g;a;b; cq; comprpf ;aq P P

‚ Programs are built in reverse polish notation
‚ Start from an empty stack
‚ Use ML to repeatedly choose the next operator to push on top of a stack
‚ Example: Factorial is loopp�px ; yq: x ˆ y ; x ;1q , built by:

r s Ñx rxs Ñy rx ; ys Ñˆ rx ˆ ys Ñx rx ˆ y ; xs

Ñ1 rx ˆ y ; x ;1s Ñloop rloopp�px ; yq: x ˆ y ; x ;1qs

71 / 98

QSynt: Training of the Neural Net Guiding the Search
‚ The triple ppheadprx ˆ y ; xs; r1;1;2;6;24;120 : : :sq; Ñ1q is a training

example extracted from the program for factorial loopp�px ; yq: x ˆ y ; x ;1q
‚ Ñ1 is the action (adding 1 to the stack) required on rx ˆ y ; xs to progress

towards the construction of loopp�px ; yq: x ˆ y ; x ;1q.

x y

ˆ

x ˆ y

::

rx ˆ y ; xs r1;1;2;6;24;120; : : :s

head

one-hot Ñ1

::

r1;2;6;24;120; : : :s

::

1 r2;6;24;120; : : :s

::

2

72 / 98

QSynt program search - Monte Carlo search tree

7 iterations of the tree search gradually extending the search tree. The set of
the synthesized programs after the 7th iteration is t1; x ; y ; x ˆ y ; x mod yu.

r s

rxs rys

rx ; ys ry ; xs

rx ˆ ysrx mod ys

rx mod y ;1s

1 3

2

64

5

7

73 / 98

Encoding OEIS for Language Models
‚ Input sequence is a series of digits
‚ Separated by an additional token # at the integer boundaries
‚ Output program is a sequence of tokens in Polish notation
‚ Parsed by us to a syntax tree and translatable to Python
‚ Example: apnq “ n!

74 / 98

Search-Verify-Train Feedback Loop

Search Check

Learn

programs

examplesweights

Analogous to our Prove/Learn feedback loops in learning-guided proving
(since 2006 – MaLARea)

75 / 98

Search-Verify-Train Feedback Loop for OEIS

‚ search phase: LM synthesizes many programs for input sequences
‚ typically 240 candidate programs for each input using beam search
‚ 84M programs for OEIS in several hours on the GPU (depends on model)
‚ checking phase: the millions of programs efficiently evaluated
‚ resource limits used, fast indexing structures for OEIS sequences
‚ check if the program generates any OEIS sequence (hindsight replay)
‚ we keep the shortest (Occams’s razor) and fastest program (efficiency)
‚ learning phase: LM trains to translate the “solved” OEIS sequences into

the best program(s) generating them

76 / 98

Search-Verify-Train Feedback Loop

‚ The weights of the LM either trained from scratch or continuously updated
‚ This yields new minds vs seasoned experts (who have seen it all)
‚ We also train experts on varied selections of data, in varied ways
‚ Orthogonality: common in theorem proving - different experts help
‚ Each iteration of the self-learning loop discovers more solutions
‚ ... also improves/optimizes existing solutions
‚ The alien mathematician thus self-evolves
‚ Occam’s razor and efficiency are used for its weak supervision
‚ Quite different from today’s LLM approaches:
‚ LLMs do one-time training on everything human-invented
‚ Our alien instead starts from zero knowledge
‚ Evolves increasingly nontrivial skills, may diverge from humans
‚ Turing complete (unlike Go/Chess) – arbitrary complex algorithms

77 / 98

QSynt web interface for program invention

78 / 98

QSynt inventing Fermat pseudoprimes
Positive integers k such that 2k ” 2 mod k . (341 “ 11 ˚ 31 is the first non-prime)

79 / 98

Lucas/Fibonacci characterization of (pseudo)primes

input sequence: 2,3,5,7,11,13,17,19,23,29

invented output program:
f(x) := compr(\(x,y).(loop2(\(x,y).x + y, \(x,y).x, x, 1, 2) - 1)

mod (1 + x), x + 1) + 1

human conjecture: x is prime iff? x divides (Lucas(x) - 1)

PARI program:
? lucas(n) = fibonacci(n+1)+fibonacci(n-1)
? b(n) = (lucas(n) - 1) % n

Counterexamples (Bruckman-Lucas pseudoprimes):
? for(n=1,4000,if(b(n)==0,if(isprime(n),0,print(n))))
1
705
2465
2737
3745

80 / 98

QSynt inventing primes using Wilson’s theorem
n is prime iff pn ´ 1q!` 1 is divisible by n (i.e.: pn ´ 1q! ” ´1 mod n)

81 / 98

Five Different Self-Learning Runs

0

20000

40000

60000

80000

25 50 75 100 125 150 175

tnn nmt0 nmt1 nmt2 nmt3

Figure: Cumulative counts of solutions. 82 / 98

Five Different Self-Learning Runs

0

250

500

750

1000

25 50 75 100 125 150 175

tnn nmt0 nmt1 nmt2 nmt3

Figure: Increments of solutions. 83 / 98

Size Evolution

Generation

A
vr

g.
 S

iz
e

0

20

40

60

25 50 75 100 125 150 175

small fast

Figure: Avrg. size in iterations 84 / 98

Speed Evolution – Technology Breakthroughs

Generation

A
vr

g.
 T

im
e

20000

40000

60000
80000

200000

400000

600000

25 50 75 100 125 150 175

fast small

Figure: Avrg. time in iterations 85 / 98

Generalization of the Solutions to Larger Indices

‚ Are the programs correct?
‚ Can we experimentally verify Occam’s razor?

(implications for how we should be designing ML/AI systems!)
‚ OEIS provides additional terms for some of the OEIS entries
‚ Among 78118 solutions, 40,577 of them have a b-file with 100 terms
‚ We evaluate both the small and the fast programs on them
‚ Here, 14,701 small and 11,056 fast programs time out.
‚ 90.57% of the remaining slow programs check
‚ 77.51% for the fast programs
‚ This means that SHORTER EXPLANATIONS ARE MORE RELIABLE!

(Occam was right)
‚ Common error: reliance on an approximation of a real number, such as �.

86 / 98

Are two QSynt programs equivalent?

‚ As with primes, we often find many programs for one OEIS sequence
‚ Currently we have almost 2M programs for the 100k sequences
‚ It may be quite hard to see that the programs are equivalent
‚ A simple example for 0;2;4;6;8; ::: with two programs f and g:

‚ f p0q “ 0; f pnq “ 2` f pn ´ 1q if n ą 0
‚ gpnq “ 2 ˚ n
‚ conjecture: @n P N:gpnq “ f pnq

‚ We can ask mathematicians, but we have thousands of such problems
‚ Or we can try to ask our ATPs (and thus create a large ATP benchmark)!
‚ Here is one SMT encoding by Mikolas Janota:

(set-logic UFLIA)
(define-fun-rec f ((x Int)) Int (ite (<= x 0) 0 (+ 2 (f (- x 1)))))
(assert (exists ((c Int)) (and (> c 0) (not (= (f c) (* 2 c))))))
(check-sat)

87 / 98

Inductive proof by Vampire of the f “ g equivalence
% SZS output start Proof for rec2
1. f(X0) = $ite($lesseq(X0,0), 0,$sum(2,f($difference(X0,1)))) [input]
2. ? [X0 : $int] : ($greater(X0,0) & ~f(X0) = $product(2,X0)) [input]
[...]
43. ~$less(0,X0) | iG0(X0) = $sum(2,iG0($sum(X0,-1))) [evaluation 40]
44. (! [X0 : $int] : (($product(2,X0) = iG0(X0) & ~$less(X0,0)) => $product(2,$sum(X0,1)) = iG0($sum(X0,1)))

& $product(2,0) = iG0(0)) => ! [X1 : $int] : ($less(0,X1) => $product(2,X1) = iG0(X1)) [induction hypo]
[...]
49. $product(2,0) != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [resolution 48,41]
50. $product(2,0) != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [resolution 47,41]
51. $product(2,0) != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [resolution 46,41]
52. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) | ~$less(0,sK1) [evaluation 49]
53. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) | ~$less(0,sK1) [evaluation 50]
54. 0 != iG0(0) | ~$less(sK3,0) | ~$less(0,sK1) [evaluation 51]
55. 0 != iG0(0) | ~$less(sK3,0) [subsumption resolution 54,39]
57. 1 <=> $less(sK3,0) [avatar definition]
59. ~$less(sK3,0) <- (~1) [avatar component clause 57]
61. 2 <=> 0 = iG0(0) [avatar definition]
64. ~1 | ~2 [avatar split clause 55,61,57]
65. 0 != iG0(0) | $product(2,sK3) = iG0(sK3) [subsumption resolution 53,39]
67. 3 <=> $product(2,sK3) = iG0(sK3) [avatar definition]
69. $product(2,sK3) = iG0(sK3) <- (3) [avatar component clause 67]
70. 3 | ~2 [avatar split clause 65,61,67]
71. 0 != iG0(0) | $product(2,$sum(sK3,1)) != iG0($sum(sK3,1)) [subsumption resolution 52,39]
72. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) | 0 != iG0(0) [forward demodulation 71,5]
74. 4 <=> $product(2,$sum(1,sK3)) = iG0($sum(1,sK3)) [avatar definition]
76. $product(2,$sum(1,sK3)) != iG0($sum(1,sK3)) <- (~4) [avatar component clause 74]
77. ~2 | ~4 [avatar split clause 72,74,61]
82. 0 = iG0(0) [resolution 36,10]
85. 2 [avatar split clause 82,61]
246. iG0($sum(X1,1)) = $sum(2,iG0($sum($sum(X1,1),-1))) | $less(X1,0) [resolution 43,14]
251. $less(X1,0) | iG0($sum(X1,1)) = $sum(2,iG0(X1)) [evaluation 246]
[...]
1176. $false <- (~1, 3, ~4) [subsumption resolution 1175,1052]
1177. 1 | ~3 | 4 [avatar contradiction clause 1176]
1178. $false [avatar sat refutation 64,70,77,85,1177]
% SZS output end Proof for rec2
% Time elapsed: 0.016 s 88 / 98

80 Programs That Have Most Evolved

120 https://oeis.org/A238952 101 https://oeis.org/A97012 98 https://oeis.org/A17666
117 https://oeis.org/A35218 101 https://oeis.org/A71190 98 https://oeis.org/A113184
116 https://oeis.org/A1001 101 https://oeis.org/A70824 97 https://oeis.org/A82
112 https://oeis.org/A35178 101 https://oeis.org/A64987 97 https://oeis.org/A6579
111 https://oeis.org/A88580 101 https://oeis.org/A57660 97 https://oeis.org/A56595
111 https://oeis.org/A62069 101 https://oeis.org/A54024 97 https://oeis.org/A293228
111 https://oeis.org/A163109 101 https://oeis.org/A53222 97 https://oeis.org/A27847
111 https://oeis.org/A1615 101 https://oeis.org/A50457 97 https://oeis.org/A23645
109 https://oeis.org/A66446 101 https://oeis.org/A23888 97 https://oeis.org/A10
108 https://oeis.org/A48250 101 https://oeis.org/A209295 96 https://oeis.org/A92403
108 https://oeis.org/A321516 101 https://oeis.org/A206787 96 https://oeis.org/A90395
108 https://oeis.org/A2654 100 https://oeis.org/A99184 96 https://oeis.org/A83919
107 https://oeis.org/A75653 100 https://oeis.org/A63659 96 https://oeis.org/A7862
107 https://oeis.org/A60278 100 https://oeis.org/A62968 96 https://oeis.org/A78306
107 https://oeis.org/A23890 100 https://oeis.org/A35154 96 https://oeis.org/A69930
106 https://oeis.org/A62011 100 https://oeis.org/A339965 96 https://oeis.org/A69192
106 https://oeis.org/A346613 100 https://oeis.org/A277791 96 https://oeis.org/A54519
106 https://oeis.org/A344465 100 https://oeis.org/A230593 96 https://oeis.org/A53158
105 https://oeis.org/A49820 100 https://oeis.org/A182627 96 https://oeis.org/A351267
104 https://oeis.org/A55155 99 https://oeis.org/A9191 96 https://oeis.org/A334136
104 https://oeis.org/A349215 99 https://oeis.org/A82051 96 https://oeis.org/A33272
104 https://oeis.org/A143348 99 https://oeis.org/A62354 96 https://oeis.org/A325939
103 https://oeis.org/A92517 99 https://oeis.org/A247146 96 https://oeis.org/A211779
103 https://oeis.org/A64840 99 https://oeis.org/A211261 96 https://oeis.org/A186099
102 https://oeis.org/A9194 99 https://oeis.org/A147588 96 https://oeis.org/A143152
102 https://oeis.org/A51953 98 https://oeis.org/A318446 96 https://oeis.org/A125168
102 https://oeis.org/A155085 98 https://oeis.org/A203

89 / 98

https://oeis.org/A238952
https://oeis.org/A97012
https://oeis.org/A17666
https://oeis.org/A35218
https://oeis.org/A71190
https://oeis.org/A113184
https://oeis.org/A1001
https://oeis.org/A70824
https://oeis.org/A82
https://oeis.org/A35178
https://oeis.org/A64987
https://oeis.org/A6579
https://oeis.org/A88580
https://oeis.org/A57660
https://oeis.org/A56595
https://oeis.org/A62069
https://oeis.org/A54024
https://oeis.org/A293228
https://oeis.org/A163109
https://oeis.org/A53222
https://oeis.org/A27847
https://oeis.org/A1615
https://oeis.org/A50457
https://oeis.org/A23645
https://oeis.org/A66446
https://oeis.org/A23888
https://oeis.org/A10
https://oeis.org/A48250
https://oeis.org/A209295
https://oeis.org/A92403
https://oeis.org/A321516
https://oeis.org/A206787
https://oeis.org/A90395
https://oeis.org/A2654
https://oeis.org/A99184
https://oeis.org/A83919
https://oeis.org/A75653
https://oeis.org/A63659
https://oeis.org/A7862
https://oeis.org/A60278
https://oeis.org/A62968
https://oeis.org/A78306
https://oeis.org/A23890
https://oeis.org/A35154
https://oeis.org/A69930
https://oeis.org/A62011
https://oeis.org/A339965
https://oeis.org/A69192
https://oeis.org/A346613
https://oeis.org/A277791
https://oeis.org/A54519
https://oeis.org/A344465
https://oeis.org/A230593
https://oeis.org/A53158
https://oeis.org/A49820
https://oeis.org/A182627
https://oeis.org/A351267
https://oeis.org/A55155
https://oeis.org/A9191
https://oeis.org/A334136
https://oeis.org/A349215
https://oeis.org/A82051
https://oeis.org/A33272
https://oeis.org/A143348
https://oeis.org/A62354
https://oeis.org/A325939
https://oeis.org/A92517
https://oeis.org/A247146
https://oeis.org/A211779
https://oeis.org/A64840
https://oeis.org/A211261
https://oeis.org/A186099
https://oeis.org/A9194
https://oeis.org/A147588
https://oeis.org/A143152
https://oeis.org/A51953
https://oeis.org/A318446
https://oeis.org/A125168
https://oeis.org/A155085
https://oeis.org/A203

Evolution and Proliferation of Primes and Others

https://bit.ly/3XHZsjK: triangle coding, sigma (sum of divisors),
primes. https://bit.ly/3iJ4oGd (the first 24, now 50)

Nr Program

P1 (if x <= 0 then 2 else 1) + (compr (((loop (x + x) (x mod 2) (loop (x * x) 1 (loop (x + x) (x div 2) 1))) + x) mod (1 + x)) x)
P2 1 + (compr ((((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) * x) mod (1 + x)) (1 + x))
P3 1 + (compr (((loop (x * x) 1 (loop (x + x) (x div 2) 1)) + x) mod (1 + x)) (1 + x))
P4 2 + (compr ((loop2 (1 + (if (x mod (1 + y)) <= 0 then 0 else x)) (y - 1) x 1 x) mod (1 + x)) x)
P5 1 + (compr ((loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) x (1 + x)) mod (1 + x)) (1 + x))
P6 1 + (compr ((loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) (2 + (x div (2 + (2 + 2)))) (1 + x)) mod (1 + x)) (1 + x))
P7 compr ((1 + (loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) x x)) mod (1 + x)) (2 + x)
P8 1 + (compr ((loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) (1 + ((2 + x) div (2 + (2 + 2)))) (1 + x)) mod (1 + x)) (1 + x))
P9 compr (x - (loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) x x)) (2 + x)
P10 compr (x - (loop (if (x mod (1 + y)) <= 0 then 2 else x) (x div 2) x)) (2 + x)
P11 1 + (compr ((loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) (1 + (x div (2 + (2 + 2)))) (1 + x)) mod (1 + x)) (1 + x))
P12 compr ((x - (loop (if (x mod (1 + y)) <= 0 then y else x) x x)) - 2) (2 + x)
P13 1 + (compr ((loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + x)) mod (1 + x)) (1 + x))
P14 compr ((x - (loop (if (x mod (1 + y)) <= 0 then y else x) x x)) - 1) (2 + x)
P15 1 + (compr (x - (loop (if (x mod (1 + y)) <= 0 then (1 + y) else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + x))) (1 + x))
P16 compr (2 - (loop (if (x mod (1 + y)) <= 0 then 0 else x) (x - 2) x)) x
P17 1 + (compr (x - (loop (if (x mod (1 + y)) <= 0 then 2 else x) (2 + (x div (2 * (2 + (2 + 2))))) (1 + x))) (1 + x))
P18 1 + (compr (x - (loop (if (x mod (1 + y)) <= 0 then 2 else x) (1 + (2 + (x div (2 * (2 * (2 + 2)))))) (1 + x))) (1 + x))
P19 1 + (compr (x - (loop2 (loop (if (x mod (1 + y)) <= 0 then 2 else x) (2 + (y div (2 * (2 + (2 + 2))))) (1 + y)) 0 (1 - (x mod 2)) 1 x)) (1 + x))
P20 1 + (compr (x - (loop2 (loop (if (x mod (1 + y)) <= 0 then 2 else x) (1 + (2 + (y div (2 * (2 * (2 + 2)))))) (1 + y)) 0 (1 - (x mod 2)) 1 x)) (1 + x))
P21 1 + (compr (x - (loop2 (loop (if (x mod (2 + y)) <= 0 then 2 else x) (2 + (y div (2 * ((2 + 2) + (2 + 2))))) (1 + y)) 0 (1 - (x mod 2)) 1 x)) (1 + x))
P22 1 + (compr (x - (loop2 (loop (if (x mod (2 + y)) <= 0 then 2 else x) (2 + (y div (2 * (2 * (2 + 2))))) (1 + y)) 0 (1 - (x mod 2)) 1 x)) (1 + x))
P23 2 + (compr (loop (x - (if (x mod (1 + y)) <= 0 then 0 else 1)) x x) x)
P24 loop (1 + x) (1 - x) (1 + (2 * (compr (x - (loop (if (x mod (2 + y)) <= 0 then 1 else x) (2 + (x div (2 * (2 + 2)))) (1 + (x + x)))) x)))

90 / 98

https://bit.ly/3XHZsjK
https://bit.ly/3iJ4oGd

Evolution and Proliferation of Primes

Iter P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24

25 0
26 6 0
27 7 0
28 8 0
29 9 0
30 10 0
31 4 6 0
32 6 6 0
33 8 1 6 6 0
34 12 4 6 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
35 7 12 6 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
36 4 10 6 0 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
37 3 4 6 0 18 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
38 2 3 1 0 12 18 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
39 2 3 1 0 9 56 31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
40 2 5 2 0 7 59 49 9 1 0 2 0 1 0 0 0 0 0 0 0 0 0 0 0
41 1 2 3 0 4 52 58 42 23 0 13 0 8 0 0 0 0 0 0 0 0 0 0 0
42 0 2 4 0 3 44 50 38 60 8 11 0 55 0 0 0 0 0 0 0 0 0 0 0
43 0 2 12 0 0 37 55 14 116 35 16 7 90 0 0 0 0 0 0 0 0 0 0 0
44 0 2 13 0 0 28 40 6 176 73 19 8 122 9 12 0 0 0 0 0 0 0 0 0
45 0 2 9 0 0 19 24 4 147 185 26 16 94 25 29 0 7 0 0 0 0 0 0 0
46 0 2 4 0 0 11 14 0 101 256 21 14 66 64 30 0 29 0 0 0 0 0 0 0
47 0 0 0 0 0 9 4 0 55 290 23 3 43 116 16 6 62 14 0 0 0 0 0 0
48 0 0 0 0 0 8 0 0 22 261 16 0 34 192 10 6 89 30 0 0 0 0 0 0
49 0 0 0 0 0 8 0 0 6 195 11 0 36 225 8 6 99 34 0 0 0 0 0 0
50 0 0 0 0 0 5 0 0 2 154 8 0 29 168 6 6 108 39 0 0 0 0 0 0
51 0 0 0 0 0 4 0 0 0 121 7 0 21 97 6 6 113 43 0 0 0 0 0 0
52 0 0 0 0 0 2 0 0 0 118 8 0 12 62 6 6 110 51 0 0 0 0 0 0
53 0 0 0 0 0 1 0 0 0 59 7 0 15 33 6 6 125 62 0 0 0 0 0 0
54 0 0 0 0 0 1 0 0 0 41 4 0 16 17 6 9 137 72 0 0 0 0 0 0
55 0 0 0 0 0 2 0 0 0 32 4 0 15 9 6 17 147 82 0 0 0 0 0 0
56 0 0 0 0 0 1 0 0 0 29 4 0 10 7 6 39 152 98 0 0 0 0 0 091 / 98

Selection of 123 Solved Sequences
https://github.com/Anon52MI4/oeis-alien

Table: Samples of the solved sequences.

https://oeis.org/A317485 Number of Hamiltonian paths in the n-Bruhat graph.
https://oeis.org/A349073 a(n) = U(2*n, n), where U(n, x) is the Chebyshev polynomial of the second kind.
https://oeis.org/A293339 Greatest integer k such that k{2n ă 1{e.
https://oeis.org/A1848 Crystal ball sequence for 6-dimensional cubic lattice.
https://oeis.org/A8628 Molien series for A5.
https://oeis.org/A259445 Multiplicative with apnq “ n if n is odd and ap2sq “ 2.
https://oeis.org/A314106 Coordination sequence Gal.6.199.4 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings
https://oeis.org/A311889 Coordination sequence Gal.6.129.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315334 Coordination sequence Gal.6.623.2 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A315742 Coordination sequence Gal.5.302.5 where G.u.t.v denotes the coordination sequence for a

vertex of type v in tiling number t in the Galebach list of u-uniform tilings.
https://oeis.org/A004165 OEIS writing backward
https://oeis.org/A83186 Sum of first n primes whose indices are primes.
https://oeis.org/A88176 Primes such that the previous two primes are a twin prime pair.
https://oeis.org/A96282 Sums of successive twin primes of order 2.
https://oeis.org/A53176 Primes p such that 2p ` 1 is composite.
https://oeis.org/A267262 Total number of OFF (white) cells after n iterations of the "Rule 111" elementary cellular

automaton starting with a single ON (black) cell.
92 / 98

https://github.com/Anon52MI4/oeis-alien
https://oeis.org/A317485
https://oeis.org/A349073
https://oeis.org/A293339
https://oeis.org/A1848
https://oeis.org/A8628
https://oeis.org/A259445
https://oeis.org/A314106
https://oeis.org/A311889
https://oeis.org/A315334
https://oeis.org/A315742
https://oeis.org/A004165
https://oeis.org/A83186
https://oeis.org/A88176
https://oeis.org/A96282
https://oeis.org/A53176
https://oeis.org/A267262

Neural Autoformalization (Wang et al., 2018)

‚ generate about 1M Latex - Mizar pairs synthetically (quite advanced)
‚ train neural seq-to-seq translation models (Luong – NMT)
‚ evaluate on about 100k examples
‚ many architectures tested, some work much better than others
‚ very important latest invention: attention in the seq-to-seq models
‚ more data crucial for neural training
‚ Recent addition: unsupervised MT methods (Lample et all 2018) – no

need for aligned data, improving a lot!
‚ Type-checking not yet internal (boosting well-typed data externally)

93 / 98

Neural Autoformalization data

Rendered LATEX If X Ď Y Ď Z , then X Ď Z .
Mizar

X c= Y & Y c= Z implies X c= Z;

Tokenized Mizar

X c= Y & Y c= Z implies X c= Z ;

LATEX

If $X \subseteq Y \subseteq Z$, then $X \subseteq Z$.

Tokenized LATEX

If $ X \subseteq Y \subseteq Z $, then $ X \subseteq Z $.

94 / 98

Neural Autoformalization results

Parameter Final Test
Perplexity

Final Test
BLEU

Identical
Statements (%)

Identical
No-overlap (%)

Training
Time
(hrs.)

128 Units 3.06 41.1 40121 (38.12%) 6458 (13.43%) 1
256 Units 1.59 64.2 63433 (60.27%) 19685 (40.92%) 3
512 Units 1.6 67.9 66361 (63.05%) 21506 (44.71%) 5
1024 Units 1.51 61.6 69179 (65.73%) 22978 (47.77%) 11
2048 Units 2.02 60 59637 (56.66%) 16284 (33.85%) 31

95 / 98

Neural Fun – Performance after Some Training

Rendered
LATEX

Suppose s8 is convergent and s7 is convergent . Then limps8`s7q “

lim s8` lim s7

Input LATEX Suppose $ { s _ { 8 } } $ is convergent and $ { s _ { 7 } }
$ is convergent . Then $ \mathop { \rm lim } ({ s _ { 8 }
} { + } { s _ { 7 } }) \mathrel { = } \mathop { \rm lim }
{ s _ { 8 } } { + } \mathop { \rm lim } { s _ { 7 } } $.

Correct seq1 is convergent & seq2 is convergent implies lim (seq1
+ seq2) = (lim seq1) + (lim seq2) ;

Snapshot-
1000

x in dom f implies (x * y) * (f | (x | (y | (y | y)
))) = (x | (y | (y | (y | y))))) ;

Snapshot-
2000

seq is summable implies seq is summable ;

Snapshot-
3000

seq is convergent & lim seq = 0c implies seq = seq ;

Snapshot-
4000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
5000

seq1 is convergent & lim seq2 = lim seq2 implies lim_inf
seq1 = lim_inf seq2 ;

Snapshot-
6000

seq is convergent & lim seq = lim seq implies seq1 + seq2
is convergent ;

Snapshot-
7000

seq is convergent & seq9 is convergent implies
lim (seq + seq9) = (lim seq) + (lim seq9) ;

96 / 98

Unsupervised NMT Fun on Short Formulas

len <* a *> = 1 ;
assume i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1 ast t) ;
s . (i + 1) = tt . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
let i be Nat ;
assume v is_applicable_to t ;
let t be type of T ;
a ast t in downarrow t ;
t9 in types a ;
a ast t <= t ;
A is_applicable_to t ;
Carrier (f) c= B
u in B or u in { v } ;
F . w in w & F . w in I ;
GG . y in rng HH ;
a * L = Z_ZeroLC (V) ;
not u in { v } ;
u <> v ;
v - w = v1 - w1 ;
v + w = v1 + w1 ;
x in A & y in A ;

len <* a *> = 1 ;
i < len q ;
len <* q *> = 1 ;
s = apply (v2 , v1) . t ;
s . (i + 1) = tau1 . (i + 1)
1 + j <= len v2 ;
1 + j + 0 <= len v2 + 1 ;
i is_at_least_length_of p ;
not v is applicable ;
t is_orientedpath_of v1 , v2 , T ;
a *’ in downarrow t ;
t ‘2 in types a ;
a *’ <= t ;
A is applicable ;
support ppf n c= B
u in B or u in { v } ;
F . w in F & F . w in I ;
G0 . y in rng (H1 ./. y) ;
a * L = ZeroLC (V) ;
u >> v ;
u <> v ;
vw = v1 - w1 ;
v + w = v1 + w1 ;
assume [x , y] in A ;

97 / 98

Thanks and Advertisement

‚ Thanks for your attention!
‚ AITP – Artificial Intelligence and Theorem Proving
‚ September 1–6, 2024, Aussois, France, aitp-conference.org
‚ ATP/ITP/Math vs AI/ML/AGI people, Computational linguists
‚ Discussion-oriented and experimental
‚ Grown to 80 people in 2019

98 / 98

aitp-conference.org

	Motivation, Learning vs. Reasoning
	Bird's-Eye View of ATP and ML
	Learning of Theorem Proving - Overview
	Demos
	High-level Reasoning Guidance: Premise Selection
	Low Level Guidance of Theorem Provers
	Mid-level Reasoning Guidance
	Synthesis and Autoformalization

