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1. Introduction

In this chapter we introduce some types of morphisms of algebraic stacks. A refer-
ence in the case of quasi-separated algebraic stacks with representable diagonal is
[LMB00].

The goal is to extend the definition of each of the types of morphisms of algebraic
spaces to morphisms of algebraic stacks. Each case is slightly different and it seems
best to treat them all separately.

For morphisms of algebraic stacks which are representable by algebraic spaces we
have already defined a large number of types of morphisms, see Properties of Stacks,
Section 3. For each corresponding case in this chapter we have to make sure the
definition in the general case is compatible with the definition given there.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 MORPHISMS OF ALGEBRAIC STACKS

2. Conventions and abuse of language

We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2.

3. Properties of diagonals

The diagonal of an algebraic stack is closely related to the Isom-sheaves, see Alge-
braic Stacks, Lemma 10.11. By the second defining property of an algebraic stack
these Isom-sheaves are always algebraic spaces.

Lemma 3.1. Let X be an algebraic stack. Let T be a scheme and let x, y be objects
of the fibre category of X over T . Then the morphism IsomX (x, y) → T is locally
of finite type.

Proof. By Algebraic Stacks, Lemma 16.2 we may assume that X = [U/R] for
some smooth groupoid in algebraic spaces. By Descent on Spaces, Lemma 10.7 it
suffices to check the property fppf locally on T . Thus we may assume that x, y
come from morphisms x′, y′ : T → U . By Groupoids in Spaces, Lemma 21.1 we see
that in this case IsomX (x, y) = T ×(y′,x′),U×SU R. Hence it suffices to prove that
R→ U×SU is locally of finite type. This follows from the fact that the composition
s : R → U ×S U → U is smooth (hence locally of finite type, see Morphisms of
Spaces, Lemmas 34.5 and 27.5) and Morphisms of Spaces, Lemma 23.6. �

Lemma 3.2. Let X be an algebraic stack. Let T be a scheme and let x, y be objects
of the fibre category of X over T . Then

(1) IsomX (y, y) is a group algebraic space over T , and
(2) IsomX (x, y) is a pseudo torsor for IsomX (y, y) over T .

Proof. See Groupoids in Spaces, Definitions 5.1 and 9.1. The lemma follows im-
mediately from the fact that X is a stack in groupoids. �

Let f : X → Y be a morphism of algebraic stacks. The diagonal of f is the
morphism

∆f : X −→ X ×Y X
Here are two properties that every diagonal morphism has.

Lemma 3.3. Let f : X → Y be a morphism of algebraic stacks. Then

(1) ∆f is representable by algebraic spaces, and
(2) ∆f is locally of finite type.

Proof. Let T be a scheme and let a : T → X ×Y X be a morphism. By definition
of the fibre product and the 2-Yoneda lemma the morphism a is given by a triple
a = (x, x′, α) where x, x′ are objects of X over T , and α : f(x) → f(x′) is a
morphism in the fibre category of Y over T . By definition of an algebraic stack
the sheaves IsomX (x, x′) and IsomY(f(x), f(x′)) are algebraic spaces over T . In
this language α defines a section of the morphism IsomY(f(x), f(x′)) → T . A T ′-
valued point of X ×X×YX ,a T for T ′ → T a scheme over T is the same thing as an
isomorphism x|T ′ → x′|T ′ whose image under f is α|T ′ . Thus we see that

(3.3.1)

X ×X×YX ,a T

��

// IsomX (x, x′)

��
T

α // IsomY(f(x), f(x′))
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is a fibre square of sheaves over T . In particular we see that X ×X×YX ,a T is an
algebraic space which proves part (1) of the lemma.

To prove the second statement we have to show that the left vertical arrow of Dia-
gram (3.3.1) is locally of finite type. By Lemma 3.1 the algebraic space IsomX (x, x′)
and is locally of finite type over T . Hence the right vertical arrow of Diagram (3.3.1)
is locally of finite type, see Morphisms of Spaces, Lemma 23.6. We conclude by
Morphisms of Spaces, Lemma 23.3. �

Lemma 3.4. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. Then

(1) ∆f is representable (by schemes),
(2) ∆f is locally of finite type,
(3) ∆f is a monomorphism,
(4) ∆f is separated, and
(5) ∆f is locally quasi-finite.

Proof. We have already seen in Lemma 3.3 that ∆f is representable by algebraic
spaces. Hence the statements (2) – (5) make sense, see Properties of Stacks, Section
3. Also Lemma 3.3 guarantees (2) holds. Let T → X ×Y X be a morphism and
contemplate Diagram (3.3.1). By Algebraic Stacks, Lemma 9.2 the right vertical
arrow is injective as a map of sheaves, i.e., a monomorphism of algebraic spaces.
Hence also the morphism T ×X×YX X → T is a monomorphism. Thus (3) holds.
We already know that T ×X×YX X → T is locally of finite type. Thus Morphisms
of Spaces, Lemma 26.10 allows us to conclude that T ×X×YX X → T is locally
quasi-finite and separated. This proves (4) and (5). Finally, Morphisms of Spaces,
Proposition 44.2 implies that T ×X×YX X is a scheme which proves (1). �

Lemma 3.5. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is separated,
(2) ∆f is a closed immersion,
(3) ∆f is proper, or
(4) ∆f is universally closed.

Proof. The statements “f is separated”, “∆f is a closed immersion”, “∆f is uni-
versally closed”, and “∆f is proper” refer to the notions defined in Properties of
Stacks, Section 3. Choose a scheme V and a surjective smooth morphism V → Y.
Set U = X ×Y V which is an algebraic space by assumption, and the morphism
U → X is surjective and smooth. By Categories, Lemma 29.14 and Properties of
Stacks, Lemma 3.3 we see that for any property P (as in that lemma) we have:
∆f has P if and only if ∆U/V : U → U ×V U has P . Hence the equivalence of
(2), (3) and (4) follows from Morphisms of Spaces, Lemma 37.9 applied to U → V .
Moreover, if (1) holds, then U → V is separated and we see that ∆U/V is a closed
immersion, i.e., (2) holds. Finally, assume (2) holds. Let T be a scheme, and
a : T → Y a morphism. Set T ′ = X ×Y T . To prove (1) we have to show that the
morphism of algebraic spaces T ′ → T is separated. Using Categories, Lemma 29.14
once more we see that ∆T ′/T is the base change of ∆f . Hence our assumption (2)
implies that ∆T ′/T is a closed immersion, hence T ′ → T is separated as desired. �
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Lemma 3.6. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is quasi-separated,
(2) ∆f is quasi-compact, or
(3) ∆f is finite type.

Proof. The statements “f is quasi-separated”, “∆f is quasi-compact”, and “∆f

is finite type” refer to the notions defined in Properties of Stacks, Section 3. Note
that (2) and (3) are equivalent in view of the fact that ∆f is locally of finite type
by Lemma 3.4 (and Algebraic Stacks, Lemma 10.9). Choose a scheme V and a
surjective smooth morphism V → Y. Set U = X ×Y V which is an algebraic
space by assumption, and the morphism U → X is surjective and smooth. By
Categories, Lemma 29.14 and Properties of Stacks, Lemma 3.3 we see that we
have: ∆f is quasi-compact if and only if ∆U/V : U → U ×V U is quasi-compact. If
(1) holds, then U → V is quasi-separated and we see that ∆U/V is quasi-compact,
i.e., (2) holds. Assume (2) holds. Let T be a scheme, and a : T → Y a morphism.
Set T ′ = X ×Y T . To prove (1) we have to show that the morphism of algebraic
spaces T ′ → T is quasi-separated. Using Categories, Lemma 29.14 once more we
see that ∆T ′/T is the base change of ∆f . Hence our assumption (2) implies that
∆T ′/T is quasi-compact, hence T ′ → T is quasi-separated as desired. �

Lemma 3.7. Let f : X → Y be a morphism of algebraic stacks representable by
algebraic spaces. Then the following are equivalent

(1) f is locally separated, and
(2) ∆f is an immersion.

Proof. The statements “f is locally separated”, and “∆f is an immersion” refer to
the notions defined in Properties of Stacks, Section 3. Proof omitted. Hint: Argue
as in the proofs of Lemmas 3.5 and 3.6. �

4. Separation axioms

Let X = [U/R] be a presentation of an algebraic stack. Then the properties of
the diagonal of X over S, are the properties of the morphism j : R → U ×S U .
For example, if X = [S/G] for some smooth group G in algebraic spaces over S
then j is the structure morphism G→ U . Hence the diagonal is not automatically
separated itself (contrary to what happens in the case of schemes and algebraic
spaces). To say that [S/G] is quasi-separated over S should certainly imply that
G→ S is quasi-compact, but we hesitate to say that [S/G] is quasi-separated over S
without also requiring the morphism G→ S to be quasi-separated. In other words,
requiring the diagonal morphism to be quasi-compact does not really agree with
our intuition for a “quasi-separated algebraic stack”, and we should also require
the diagonal itself to be quasi-separated.

What about “separated algebraic stacks”? We have seen in Morphisms of Spaces,
Lemma 37.9 that an algebraic space is separated if and only if the diagonal is proper.
This is the condition that is usually used to define separated algebraic stacks too.
In the example [S/G]→ S above this means that G→ S is a proper group scheme.
This means algebraic stacks of the form [Spec(k)/E] are proper over k where E is
an elliptic curve over k (insert future reference here). In certain situations it may
be more natural to assume the diagonal is finite.

http://localhost:8080/tag/04YT
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Definition 4.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is DM if ∆f is unramified1.
(2) We say f is quasi-DM if ∆f is locally quasi-finite2.
(3) We say f is separated if ∆f is proper.
(4) We say f is quasi-separated if ∆f is quasi-compact and quasi-separated.

In this definition we are using that ∆f is representable by algebraic spaces and we
are using Properties of Stacks, Section 3 to make sense out of imposing conditions
on ∆f . We note that these definitions do not conflict with the already existing
notions if f is representable by algebraic spaces, see Lemmas 3.6 and 3.5. There is
an interesting way to characterize these conditions by looking at higher diagonals,
see Lemma 6.4.

Definition 4.2. Let X be an algebraic stack over the base scheme S. Denote
p : X → S the structure morphism.

(1) We say X is DM over S if p : X → S is DM.
(2) We say X is quasi-DM over S if p : X → S is quasi-DM.
(3) We say X is separated over S if p : X → S is separated.
(4) We say X is quasi-separated over S if p : X → S is quasi-separated.
(5) We say X is DM if X is DM3 over Spec(Z).
(6) We say X is quasi-DM if X is quasi-DM over Spec(Z).
(7) We say X is separated if X is separated over Spec(Z).
(8) We say X is quasi-separated if X is quasi-separated over Spec(Z).

In the last 4 definitions we view X as an algebraic stack over Spec(Z) via Algebraic
Stacks, Definition 19.2.

Thus in each case we have an absolute notion and a notion relative to our given base
scheme (mention of which is usually suppressed by our abuse of notation introduced
in Properties of Stacks, Section 2). We will see that (1) ⇔ (5) and (2) ⇔ (6) in
Lemma 4.13. We spend some time proving some standard results on these notions.

Lemma 4.3. Let f : X → Y be a morphism of algebraic stacks.

(1) If f is separated, then f is quasi-separated.
(2) If f is DM, then f is quasi-DM.
(3) If f is representable by algebraic spaces, then f is DM.

Proof. To see (1) note that a proper morphism of algebraic spaces is quasi-compact
and quasi-separated, see Morphisms of Spaces, Definition 37.1. To see (2) note that
an unramified morphism of algebraic spaces is locally quasi-finite, see Morphisms
of Spaces, Lemma 35.7. Finally (3) follows from Lemma 3.4. �

1The letters DM stand for Deligne-Mumford. If f is DM then given any scheme T and any
morphism T → Y the fibre product XT = X ×Y T is an algebraic stack over T whose diagonal is

unramified, i.e., XT is DM. This implies XT is a Deligne-Mumford stack, see Theorem 15.6. In

other words a DM morphism is one whose “fibres” are Deligne-Mumford stacks. This hopefully
at least motivates the terminology.

2If f is quasi-DM, then the “fibres” XT of X → Y are quasi-DM. An algebraic stack X is quasi-
DM exactly if there exists a scheme U and a surjective flat morphism U → X of finite presentation
which is locally quasi-finite, see Theorem 15.3. Note the similarity to being Deligne-Mumford,

which is defined in terms of having an étale covering by a scheme.
3Theorem 15.6 shows that this is equivalent to X being a Deligne-Mumford stack.

http://localhost:8080/tag/04YW
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Lemma 4.4. All of the separation axioms listed in Definition 4.1 are stable under
base change.

Proof. Let f : X → Y and Y ′ → Y be morphisms of algebraic stacks. Let
f ′ : Y ′ ×Y X → Y ′ be the base change of f by Y ′ → Y. Then ∆f ′ is the base
change of ∆f by the morphism X ′ ×Y′ X ′ → X ×Y X , see Categories, Lemma
29.14. By the results of Properties of Stacks, Section 3 each of the properties of
the diagonal used in Definition 4.1 is stable under base change. Hence the lemma
is true. �

Lemma 4.5. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be a
surjective, flat, and locally of finite presentation where W is an algebraic space. If
the base change W ×Y X → W has one of the separation properties of Definition
4.1 then so does f .

Proof. Denote g : W ×Y X →W the base change. Then ∆g is the base change of
∆f by the morphism q : W ×Y (X ×Y X ) → X ×Y X . Since q is the base change
of W → Y we see that q is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Hence the result follows from Properties of Stacks,
Lemma 3.4. �

Lemma 4.6. Let S be a scheme. The property of being quasi-DM over S, quasi-
separated over S, or separated over S (see Definition 4.2) is stable under change of
base scheme, see Algebraic Stacks, Definition 19.3.

Proof. Follows immediately from Lemma 4.4. �

Lemma 4.7. Let f : X → Z, g : Y → Z and Z → T be morphisms of algebraic
stacks. Consider the induced morphism i : X ×Z Y → X ×T Y. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if ∆Z/T is quasi-separated, then i is quasi-separated,
(3) if ∆Z/T is separated, then i is separated,
(4) if Z → T is DM, then i is unramified,
(5) if Z → T is quasi-DM, then i is locally quasi-finite,
(6) if Z → T is separated, then i is proper, and
(7) if Z → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. The following diagram

X ×Z Y
i
//

��

X ×T Y

��
Z

∆Z/T //// Z ×T Z

is a 2-fibre product diagram, see Categories, Lemma 29.13. Hence i is the base
change of the diagonal morphism ∆Z/T . Thus the lemma follows from Lemma 3.3,
and the material in Properties of Stacks, Section 3. �

Lemma 4.8. Let T be an algebraic stack. Let g : X → Y be a morphism of
algebraic stacks over T . Consider the graph i : X → X ×T Y of g. Then

(1) i is representable by algebraic spaces and locally of finite type,
(2) if Y → T is DM, then i is unramified,
(3) if Y → T is quasi-DM, then i is locally quasi-finite,
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(4) if Y → T is separated, then i is proper, and
(5) if Y → T is quasi-separated, then i is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 4.7 applied to the morphism X = X×YY →
X ×T Y. �

Lemma 4.9. Let f : X → T be a morphism of algebraic stacks. Let s : T → X be
a morphism such that f ◦ s is 2-isomorphic to idT . Then

(1) s is representable by algebraic spaces and locally of finite type,
(2) if f is DM, then s is unramified,
(3) if f is quasi-DM, then s is locally quasi-finite,
(4) if f is separated, then s is proper, and
(5) if f is quasi-separated, then s is quasi-compact and quasi-separated.

Proof. This is a special case of Lemma 4.8 applied to g = s and Y = T in which
case i : T → T ×T X is 2-isomorphic to s. �

Lemma 4.10. All of the separation axioms listed in Definition 4.1 are stable under
composition of morphisms.

Proof. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks to which
the axiom in question applies. The diagonal ∆X/Z is the composition

X −→ X ×Y X −→ X ×Z X .
Our separation axiom is defined by requiring the diagonal to have some property
P. By Lemma 4.7 above we see that the second arrow also has this property. Hence
the lemma follows since the composition of morphisms which are representable by
algebraic spaces with property P also is a morphism with property P, see our
general discussion in Properties of Stacks, Section 3 and Morphisms of Spaces,
Lemmas 35.3, 26.3, 37.4, 8.4, and 4.8. �

Lemma 4.11. Let f : X → Y be a morphism of algebraic stacks over the base
scheme S.

(1) If Y is DM over S and f is DM, then X is DM over S.
(2) If Y is quasi-DM over S and f is quasi-DM, then X is quasi-DM over S.
(3) If Y is separated over S and f is separated, then X is separated over S.
(4) If Y is quasi-separated over S and f is quasi-separated, then X is quasi-

separated over S.
(5) If Y is DM and f is DM, then X is DM.
(6) If Y is quasi-DM and f is quasi-DM, then X is quasi-DM.
(7) If Y is separated and f is separated, then X is separated.
(8) If Y is quasi-separated and f is quasi-separated, then X is quasi-separated.

Proof. Parts (1), (2), (3), and (4) follow immediately from Lemma 4.10 and Def-
inition 4.2. For (5), (6), (7), and (8) think of X and Y as algebraic stacks over
Spec(Z) and apply Lemma 4.10. Details omitted. �

The following lemma is a bit different to the analogue for algebraic spaces. To
compare take a look at Morphisms of Spaces, Lemma 4.10.

Lemma 4.12. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks.

(1) If g ◦ f is DM then so is f .
(2) If g ◦ f is quasi-DM then so is f .

http://localhost:8080/tag/050J
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(3) If g ◦ f is separated and ∆g is separated, then f is separated.
(4) If g ◦ f is quasi-separated and ∆g is quasi-separated, then f is quasi-

separated.

Proof. Consider the factorization

X → X ×Y X → X ×Z X

of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces, see Lemmas 3.3 and 4.7. Hence for any scheme T and morphism T →
X ×Y X we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T.

If g ◦ f is DM (resp. quasi-DM), then the composition A→ T is unramified (resp.
locally quasi-finite). Hence (1) (resp. (2)) follows on applying Morphisms of Spaces,
Lemma 35.11 (resp. Morphisms of Spaces, Lemma 26.8). This proves (1) and (2).

Proof of (4). Assume g ◦ f is quasi-separated and ∆g is quasi-separated. Consider
the factorization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is quasi-separated, see Lemmas 3.3 and 4.7. Hence for
any scheme T and morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T

such that B → T is quasi-separated. The composition A→ T is quasi-compact and
quasi-separated as we have assumed that g ◦ f is quasi-separated. Hence A → B
is quasi-separated by Morphisms of Spaces, Lemma 4.10. And A → B is quasi-
compact by Morphisms of Spaces, Lemma 8.8. Thus f is quasi-separated.

Proof of (3). Assume g ◦ f is separated and ∆g is separated. Consider the factor-
ization

X → X ×Y X → X ×Z X
of the diagonal morphism of g ◦ f . Both morphisms are representable by algebraic
spaces and the second one is separated, see Lemmas 3.3 and 4.7. Hence for any
scheme T and morphism T → X ×Y X we get morphisms of algebraic spaces

A = X ×(X×ZX ) T −→ B = (X ×Y X )×(X×ZX ) T −→ T

such that B → T is separated. The composition A → T is proper as we have
assumed that g ◦ f is quasi-separated. Hence A → B is proper by Morphisms of
Spaces, Lemma 37.6 which means that f is separated. �

Lemma 4.13. Let X be an algebraic stack over the base scheme S.

(1) X is DM ⇔ X is DM over S.
(2) X is quasi-DM ⇔ X is quasi-DM over S.
(3) If X is separated, then X is separated over S.
(4) If X is quasi-separated, then X is quasi-separated over S.

Let f : X → Y be a morphism of algebraic stacks over the base scheme S.

(5) If X is DM over S, then f is DM.
(6) If X is quasi-DM over S, then f is quasi-DM.
(7) If X is separated over S and ∆Y/S is separated, then f is separated.

http://localhost:8080/tag/050N
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(8) If X is quasi-separated over S and ∆Y/S is quasi-separated, then f is quasi-
separated.

Proof. Parts (5), (6), (7), and (8) follow immediately from Lemma 4.12 and Spaces,
Definition 13.2. To prove (3) and (4) think of X and Y as algebraic stacks over
Spec(Z) and apply Lemma 4.12. Similarly, to prove (1) and (2), think of X as an
algebraic stack over Spec(Z) consider the morphisms

X −→ X ×S X −→ X ×Spec(Z) X
Both arrows are representable by algebraic spaces. The second arrow is unramified
and locally quasi-finite as the base change of the immersion ∆S/Z. Hence the
composition is unramified (resp. locally quasi-finite) if and only if the first arrow is
unramified (resp. locally quasi-finite), see Morphisms of Spaces, Lemmas 35.3 and
35.11 (resp. Morphisms of Spaces, Lemmas 26.3 and 26.8). �

Lemma 4.14. Let X be an algebraic stack. Let W be an algebraic space, and let
f : W → X be a surjective, flat, locally finitely presented morphism.

(1) If f is unramified (i.e., étale, i.e., X is Deligne-Mumford), then X is DM.
(2) If f is locally quasi-finite, then X is quasi-DM.

Proof. Note that if f is unramified, then it is étale by Morphisms of Spaces, Lemma
36.12. This explains the parenthetical remark in (1). Assume f is unramified (resp.
locally quasi-finite). We have to show that ∆X : X → X × X is unramified (resp.
locally quasi-finite). Note that W ×W → X ×X is also surjective, flat, and locally
of finite presentation. Hence it suffices to show that

W ×X×X ,∆X X = W ×X W −→W ×W
is unramified (resp. locally quasi-finite), see Properties of Stacks, Lemma 3.3. By
assumption the morphism pri : W ×X W → W is unramified (resp. locally quasi-
finite). Hence the displayed arrow is unramified (resp. locally quasi-finite) by Mor-
phisms of Spaces, Lemma 35.11 (resp. Morphisms of Spaces, Lemma 26.8). �

Lemma 4.15. A monomorphism of algebraic stacks is separated and DM. The
same is true for immersions of algebraic stacks.

Proof. If f : X → Y is a monomorphism of algebraic stacks, then ∆f is an iso-
morphism, see Properties of Stacks, Lemma 8.4. Since an isomorphism of algebraic
spaces is proper and unramified we see that f is separated and DM. The second
assertion follows from the first as an immersion is a monomorphism, see Properties
of Stacks, Lemma 9.5. �

Lemma 4.16. Let X be an algebraic stack. Let x ∈ |X |. Assume the residual
gerbe Zx of X at x exists. If X is DM, resp. quasi-DM, resp. separated, resp.
quasi-separated, then so is Zx.

Proof. This is true because Zx → X is a monomorphism hence DM and separated
by Lemma 4.15. Apply Lemma 4.11 to conclude. �

5. Inertia stacks

The (relative) inertia stack of a stack in groupoids is defined in Stacks, Section
7. The actual construction, in the setting of fibred categories, and some of its
properties is in Categories, Section 32.
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Lemma 5.1. Let X be an algebraic stack. Then the inertia stack IX is an algebraic
stack as well. The morphism

IX −→ X
is representable by algebraic spaces and locally of finite type. More generally, let
f : X → Y be a morphism of algebraic stacks. Then the morphism

IX/Y −→ X

is representable by algebraic spaces and locally of finite type.

Proof. By Categories, Lemma 32.1 there are equivalences

IX → X ×∆,X×SX ,∆ X and IX/Y → X ×∆,X×YX ,∆ X

which shows that the inertia stacks are algebraic stacks. Let T → X be a morphism
given by the object x of the fibre category of X over T . Then we get a 2-fibre product
square

IsomX (x, x)

��

// IX

��
T

x // X
This follows immediately from the definition of IX . Since IsomX (x, x) is always
an algebraic space locally of finite type over T (see Lemma 3.1) we conclude that
IX → X is representable by algebraic spaces and locally of finite type. Finally, for
the relative inertia we get

IsomX (x, x)

��

Koo

��

// IX/Y

��
IsomY(f(x), f(x)) T

eoo x // X

with both squares 2-fibre products. This follows from Categories, Lemma 32.3. The
left vertical arrow is a morphism of algebraic spaces locally of finite type over T ,
and hence is locally of finite type, see Morphisms of Spaces, Lemma 23.6. Thus K
is an algebraic space and K → T is locally of finite type. This proves the assertion
on the relative inertia. �

Remark 5.2. Let X be an algebraic stack. In Properties of Stacks, Remark 3.7
we have seen that the 2-category of morphisms X ′ → X representable by algebraic
spaces with target X forms a category. In this category the inertia stack of X is a
group object. Recall that an object of IX is just a pair (x, α) where x is an object
of X and α is an automorphism of x in the fibre category of X that x lives in. The
composition

c : IX ×X IX −→ IX
is given by the rule on objects

((x, α), (x′, α′), β) 7→ (x, α ◦ β−1 ◦ α′ ◦ β)

which makes sense as β : x → x′ is an isomorphism in the fibre category by our
definition of fibre products. The neutral element e : X → IX is given by the functor
x 7→ (x, idx). We omit the proof that the axioms of a group object hold. There is
a variant of this remark for relative inertia stacks.

http://localhost:8080/tag/050Q
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Let X be an algebraic stack and let IX be its inertia stack. We have seen in the
proof of Lemma 5.1 that for any scheme T and object x of X over T there is a
canonical cartesian square

IsomX (x, x)

��

// IX

��
T

x // X

The group structure on IX discussed in Remark 5.2 induces the group structure
on IsomX (x, x) of Lemma 3.2. This allows us to define the sheaf IsomX also for
morphisms from algebraic spaces to X . We formalize this in the following definition.

Definition 5.3. Let X be an algebraic stack and let X be an algebraic space. Let
x : X → X be a morphism. We set

IsomX (x, x) = X ×x,X IX

We endow it with the structure of a group algebraic space overX by pulling back the
composition law discussed in Remark 5.2. We will sometimes refer to IsomX (x, x)
as the sheaf of automorphisms of x.

As a variant we may occasionally use the notation IsomX (x, y) when given two
morphisms x, y : X → X . This will mean simply the algebraic space

(X ×x,X ,y X)×X×X,∆X
X.

Then it is true, as in Lemma 3.2, that IsomX (x, y) is a pseudo torsor for IsomX (x, x)
over X. We omit the verification.

Lemma 5.4. Let π : X → X be a morphism from an algebraic stack to an algebraic
space. Let f : X ′ → X be a morphism of algebraic spaces. Set X ′ = X ′ ×X X .
Then both squares in the diagram

IX ′ //

Categories, Equation (32.2.1)

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares.

Proof. The inertia stack IX ′ is the defined as the category of pairs (x′, α′) where
x′ is an object of X ′ and α′ is an automorphism of x′ in its fibre category over
(Sch/S)fppf , see Categories, Section 32. Suppose that x′ lies over the scheme U
and maps to the object x of X . By the construction of the 2-fibre product in
Categories, Lemma 30.3 we see that x′ = (U, a′, x, 1) where a′ : U → X ′ is a
morphism and 1 indicates that f ◦ a′ = π ◦ x as morphisms U → X. Moreover we
have IsomX ′(x′, x′) = IsomX (x, x) as sheaves on U (by the very construction of the
2-fibre product). This implies that the left square is a fibre product square (details
omitted). �
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Lemma 5.5. Let f : X → Y be a monomorphism of algebraic stacks. Then the
diagram

IX //

��

X

��
IY // Y

is a fibre product square.

Proof. This follows immediately from the fact that f is fully faithful (see Properties
of Stacks, Lemma 8.4) and the definition of the inertia in Categories, Section 32.
Namely, an object of IX over a scheme T is the same thing as a pair (x, α) consisting
of an object x of X over T and a morphism α : x → x in the fibre category of X
over T . As f is fully faithful we see that α is the same thing as a morphism
β : f(x)→ f(x) in the fibre category of Y over T . Hence we can think of objects of
IX over T as triples ((y, β), x, γ) where y is an object of Y over T , β : y → y in YT
and γ : y → f(x) is an isomorhism over T , i.e., an object of IY ×Y X over T . �

Lemma 5.6. Let X be an algebraic stack. Let [U/R] → X be a presentation. Let
G/U be the stabilizer group algebraic space associated to the groupoid (U,R, s, t, c).
Then

G

��

// U

��
IX // X

is a fibre product diagram.

Proof. Immediate from Groupoids in Spaces, Lemma 25.2. �

6. Higher diagonals

Let f : X → Y be a morphism of algebraic stacks. In this situation it makes sense
to consider not only the diagonal

∆f : X → X ×Y X

but also the diagonal of the diagonal, i.e., the morphism

∆∆f
: X −→ X ×(X×YX ) X

Because of this we sometimes use the following terminology. We denote ∆f,0 = f
the zeroth diagonal, we denote ∆f,1 = ∆f the first diagonal, and we denote ∆f,2 =
∆∆f

the second diagonal. Note that ∆f,1 is representable by algebraic spaces and
locally of finite type, see Lemma 3.3. Hence ∆f,2 is representable, a monomorphism,
locally of finite type, separated, and locally quasi-finite, see Lemma 3.4.

We can describe the second diagonal using the relative inertia stack. Namely,
the fibre product X ×(X×YX ) X is equivalent to the relative inertia stack IX/Y
by Categories, Lemma 32.1. Moreover, via this identification the second diagonal
becomes the neutral section

e : X → IX/Y

http://localhost:8080/tag/06R5
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of the relative inertia stack. Moreover, recall from the proof of Lemma 5.1 that
given a morphism x : T → X the fibre product T ×x,X IX/Y is given as the kernel
K of the homomorphism of group algebraic spaces

IsomX (x, x) −→ IsomY(f(x), f(x))

over T . The morphism e corresponds to the neutral section e : T → K in this
situation.

Lemma 6.1. Let f : X → Y be a morphism of algebraic stacks. Then f is repre-
sentable by algebraic spaces if and only if the second diagonal is an isomorphism.

Proof. Namely, f is representable by algebraic spaces if and only if f is faithful,
see Algebraic Stacks, Lemma 15.2. On the other hand, f is faithful if and only
if for every object x of X over a scheme T the functor f induces an injection
IsomX (x, x) → IsomY(f(x), f(x)), which happens if and only if the kernel K is
trivial, which happens if and only if e : T → K is an isomorphism for every
x : T → X . Since K = T ×x,X IX/Y as discussed above, this proves the lemma. �

This lemma leads to the following hierarchy for morphisms of algebraic stacks.

Lemma 6.2. A morphism f : X → Y of algebraic stacks is

(1) a monomorphism if and only if ∆f,1 is an isomorphism,
(2) representable by algebraic spaces if and only if ∆f,1 is a monomorphism,
(3) the second diagonal ∆f,2 is always a monomorphism.

Proof. Recall from Properties of Stacks, Lemma 8.4 that a morphism of algebraic
stacks is a monomorphism if and only if its diagonal is an isomorphism of stacks.
Thus Lemma 6.1 can be rephrased as saying that a morphism is representable
by algebraic spaces if the diagonal is a monomorphism. In particular, it shows
that condition (3) of Lemma 3.4 is actually an if and only if, i.e., a morphism of
algebraic stacks is representable by algebraic spaces if and only if its diagonal is a
monomorphism. �

Lemma 6.3. Let f : X → Y be a morphism of algebraic stacks. Then

(1) ∆f,1 separated⇔ ∆f,2 closed immersion⇔ ∆f,2 proper⇔ ∆f,2 universally
closed,

(2) ∆f,1 quasi-separated ⇔ ∆f,2 finite type ⇔ ∆f,2 quasi-compact, and
(3) ∆f,1 locally separated ⇔ ∆f,2 immersion.

Proof. Follows from Lemmas 3.5, 3.6, and 3.7 applied to ∆f,1. �

The following lemma is kind of cute and it may suggest a generalization of these
conditions to higher algebraic stacks.

Lemma 6.4. Let f : X → Y be a morphism of algebraic stacks. Then

(1) f is separated if and only if ∆f,1 and ∆f,2 are universally closed, and
(2) f is quasi-separated if and only if ∆f,1 and ∆f,2 are quasi-compact.
(3) f is quasi-DM if and only if ∆f,1 and ∆f,2 are locally quasi-finite.
(4) f is DM if and only if ∆f,1 and ∆f,2 are unramified.

Proof. Proof of (1). Assume that ∆f,2 and ∆f,1 are universally closed. Then
∆f,1 is separated and universally closed by Lemma 6.3. By Morphisms of Spaces,
Lemma 9.7 and Algebraic Stacks, Lemma 10.9 we see that ∆f,1 is quasi-compact.
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Hence it is quasi-compact, separated, universally closed and locally of finite type
(by Lemma 3.3) so proper. This proves “⇐” of (1). The proof of the implication
in the other direction is omitted.

Proof of (2). This follows immediately from Lemma 6.3.

Proof of (3). This follows from the fact that ∆f,2 is always locally quasi-finite by
Lemma 3.4 applied to ∆f = ∆f,1.

Proof of (4). This follows from the fact that ∆f,2 is always unramified as Lemma 3.4
applied to ∆f = ∆f,1 shows that ∆f,2 is locally of finite type and a monomorphism.
See More on Morphisms of Spaces, Lemma 11.8. �

7. Quasi-compact morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 3 we have defined what it means for f to be quasi-
compact. Here is another characterization.

Lemma 7.1. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent:

(1) f is quasi-compact, and
(2) for every quasi-compact algebraic stack Z and any morphism Z → Y the

algebraic stack Z ×Y X is quasi-compact.

Proof. Assume (1), and let Z → Y be a morphism of algebraic stacks with Z
quasi-compact. By Properties of Stacks, Lemma 6.2 there exists a quasi-compact
scheme U and a surjective smooth morphism U → Z. Since f is representable by
algebraic spaces and quasi-compact we see by definition that U×YX is an algebraic
space, and that U ×Y X → U is quasi-compact. Hence U ×Y X is a quasi-compact
algebraic space. The morphism U ×Y X → Z ×Y X is smooth and surjective (as
the base change of the smooth and surjective morphism U → Z). Hence Z ×Y X
is quasi-compact by another application of Properties of Stacks, Lemma 6.2

Assume (2). Let Z → Y be a morphism, where Z is a scheme. We have to show
that the morphism of algebraic spaces p : Z ×Y X → Z is quasi-compact. Let
U ⊂ Z be affine open. Then p−1(U) = U ×Y Z and the algebraic space U ×Y Z
is quasi-compact by assumption (2). Hence p is quasi-compact, see Morphisms of
Spaces, Lemma 8.7. �

This motivates the following definition.

Definition 7.2. Let f : X → Y be a morphism of algebraic stacks. We say f is
quasi-compact if for every quasi-compact algebraic stack Z and morphism Z → Y
the fibre product Z ×Y X is quasi-compact.

By Lemma 7.1 above this agrees with the already existing notion for morphisms
of algebraic stacks representable by algebraic spaces. In particular this notion
agrees with the notions already defined for morphisms between algebraic stacks
and schemes.

Lemma 7.3. The base change of a quasi-compact morphism of algebraic stacks by
any morphism of algebraic stacks is quasi-compact.

Proof. Omitted. �

http://localhost:8080/tag/050T
http://localhost:8080/tag/050U
http://localhost:8080/tag/050V


MORPHISMS OF ALGEBRAIC STACKS 15

Lemma 7.4. The composition of a pair of quasi-compact morphisms of algebraic
stacks is quasi-compact.

Proof. Omitted. �

Lemma 7.5. Let
X

f
//

p
��

Y

q
��

Z
be a 2-commutative diagram of morphisms of algebraic stacks. If f is surjective and
p is quasi-compact, then q is quasi-compact.

Proof. Let T be a quasi-compact algebraic stack, and let T → Z be a morphism.
By Properties of Stacks, Lemma 5.3 the morphism T ×Z X → T ×Z Y is surjective
and by assumption T ×Z X is quasi-compact. Hence T ×Z Y is quasi-compact by
Properties of Stacks, Lemma 6.2. �

Lemma 7.6. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks. If
g ◦ f is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y.
The first map is quasi-compact by Lemma 4.9 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 4.4). The
second map is quasi-compact as it is the base change of f , see Lemma 7.3. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 7.4. �

Lemma 7.7. Let f : X → Y be a morphism of algebraic stacks.

(1) If X is quasi-compact and Y is quasi-separated, then f is quasi-compact.
(2) If X is quasi-compact and quasi-separated and Y is quasi-separated, then f

is quasi-compact and quasi-separated.
(3) A fibre product of quasi-compact and quasi-separated algebraic stacks is

quasi-compact and quasi-separated.

Proof. Part (1) follows from Lemma 7.6. Part (2) follows from (1) and Lemma
4.12. For (3) let X → Y and Z → Y be morphisms of quasi-compact and quasi-
separated algebraic stacks. Then X×YZ → Z is quasi-compact and quasi-separated
as a base change of X → Y using (2) and Lemmas 7.3 and 4.4. Hence X ×Y Z is
quasi-compact and quasi-separated as an algebraic stack quasi-compact and quasi-
separated over Z, see Lemmas 4.11 and 7.4. �

8. Noetherian algebraic stacks

We have already defined locally Noetherian algebraic stacks in Properties of Stacks,
Section 7.

Definition 8.1. Let X be an algebraic stack. We say X is Noetherian if X is
quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic stack X is not just quasi-compact and locally
Noetherian, but also quasi-separated. In the language of Section 6 if we denote
p : X → Spec(Z) the “absolute” structure morphism (i.e., the structure morphism
of X viewed as an algebraic stack over Z), then

X Noetherian⇔ X locally Noetherian and ∆p,0,∆p,1,∆p,2 quasi-compact.
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This will later mean that an algebraic stack of finite type over a Noetherian algebraic
stack is not automatically Noetherian.

9. Open morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 3 we have defined what it means for f to be uni-
versally open. Here is another characterization.

Lemma 9.1. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent

(1) f is universally open, and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is open.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective smooth morphism V → Z. By assumption the morphism V ×Y X → V
of algebraic spaces is universally open, in particular the map |V ×Y X| → |V | is
open. By Properties of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|

is surjective. Hence as the left vertical arrow is open it follows that the right
vertical arrow is open. This proves (2). The implication (2)⇒ (1) follows from the
definitions. �

Thus we may use the following natural definition.

Definition 9.2. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is open if the map of topological spaces |X | → |Y| is open.
(2) We say f is universally open if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|

is open, i.e., the base change Z ×Y X → Z is open.

Lemma 9.3. The base change of a universally open morphism of algebraic stacks
by any morphism of algebraic stacks is universally open.

Proof. This is immediate from the definition. �

Lemma 9.4. The composition of a pair of (universally) open morphisms of alge-
braic stacks is (universally) open.

Proof. Omitted. �

http://localhost:8080/tag/06U1
http://localhost:8080/tag/06U2
http://localhost:8080/tag/06U3
http://localhost:8080/tag/06U4


MORPHISMS OF ALGEBRAIC STACKS 17

10. Submersive morphisms

Definition 10.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is submersive4 if the continuous map |X | → |Y| is submersive, see
Topology, Definition 5.3.

(2) We say f is universally submersive if for every morphism of algebraic stacks
Y ′ → Y the base change Y ′ ×Y X → Y ′ is submersive.

We note that a submersive morphism is in particular surjective.

11. Universally closed morphisms

Let f be a morphism of algebraic stacks which is representable by algebraic spaces.
In Properties of Stacks, Section 3 we have defined what it means for f to be uni-
versally closed. Here is another characterization.

Lemma 11.1. Let f : X → Y be a morphism of algebraic stacks which is repre-
sentable by algebraic spaces. The following are equivalent

(1) f is universally closed, and
(2) for every morphism of algebraic stacks Z → Y the morphism of topological

spaces |Z ×Y X| → |Z| is closed.

Proof. Assume (1), and let Z → Y be as in (2). Choose a scheme V and a
surjective smooth morphism V → Z. By assumption the morphism V ×Y X → V
of algebraic spaces is universally closed, in particular the map |V ×Y X| → |V | is
closed. By Properties of Stacks, Section 4 in the commutative diagram

|V ×Y X| //

��

|Z ×Y X|

��
|V | // |Z|

the horizontal arrows are open and surjective, and moreover

|V ×Y X| −→ |V | ×|Z| |Z ×Y X|
is surjective. Hence as the left vertical arrow is closed it follows that the right
vertical arrow is closed. This proves (2). The implication (2) ⇒ (1) follows from
the definitions. �

Thus we may use the following natural definition.

Definition 11.2. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f is closed if the map of topological spaces |X | → |Y| is closed.
(2) We say f is universally closed if for every morphism of algebraic stacks
Z → Y the morphism of topological spaces

|Z ×Y X| → |Z|
is closed, i.e., the base change Z ×Y X → Z is closed.

Lemma 11.3. The base change of a universally closed morphism of algebraic stacks
by any morphism of algebraic stacks is universally closed.

Proof. This is immediate from the definition. �

4This is very different from the notion of a submersion of differential manifolds.
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Lemma 11.4. The composition of a pair of (universally) closed morphisms of
algebraic stacks is (universally) closed.

Proof. Omitted. �

12. Types of morphisms smooth local on source-and-target

Given a property of morphisms of algebraic spaces which is smooth local on the
source-and-target, see Descent on Spaces, Definition 18.1 we may use it to define
a corresponding property of morphisms of algebraic stacks, namely by imposing
either of the equivalent conditions of the lemma below.

Lemma 12.1. Let P be a property of morphisms of algebraic spaces which is smooth
local on the source-and-target. Let f : X → Y be a morphism of algebraic stacks.
Consider commutative diagrams

U

a

��

h
// V

b

��
X

f // Y

where U and V are algebraic spaces and the vertical arrows are smooth. The fol-
lowing are equivalent

(1) for any diagram as above such that in addition U → X ×Y V is smooth the
morphism h has property P, and

(2) for some diagram as above with a : U → X surjective the morphism h has
property P.

If X and Y are representable by algebraic spaces, then this is also equivalent to
f (as a morphism of algebraic spaces) having property P. If P is also preserved
under any base change, and fppf local on the base, then for morphisms f which are
representable by algebraic spaces this is also equivalent to f having property P in
the sense of Properties of Stacks, Section 3.

Proof. Let us prove the implication (1) ⇒ (2). Pick an algebraic space V and
a surjective and smooth morphism V → Y. Pick an algebraic space U and a
surjective and smooth morphism U → X ×Y V . Note that U → X is surjective and
smooth as well, as a composition of the base change X ×Y V → X and the chosen
map U → X ×Y V . Hence we obtain a diagram as in (1). Thus if (1) holds, then
h : U → V has property P, which means that (2) holds as U → X is surjective.

Conversely, assume (2) holds and let U, V, a, b, h be as in (2). Next, let U ′, V ′, a′, b′, h′

be any diagram as in (1). Picture

U

��

h
// V

��
X

f // Y

U ′

��

h′
// V ′

��
X

f // Y
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To show that (2) implies (1) we have to prove that h′ has P. To do this consider
the commutative diagram

U

h

��

U ×X U ′

��

oo

(h,h′)

~~

// U ′

h′

��

U ×Y V ′

cc

��
V V ×Y V ′oo // V ′

of algebraic spaces. Note that the horizontal arrows are smooth as base changes of
the smooth morphisms V → Y, V ′ → Y, U → X , and U ′ → X . Note that

U ×X U ′

��

// U ′

��
U ×Y V ′ // X ×Y V ′

is cartesian, hence the left vertical arrow is smooth as U ′, V ′, a′, b′, h′ is as in (1).
Since P is local on the target we see that the base change U ×Y V ′ → V ×Y V ′ has
P and hence after precomposing by the smooth morphism U ×X U ′ → U ×Y V ′
the morphism we conclude (h, h′) has P. Finally, since U ×X U ′ → U ′ is surjective
this implies that h′ has P as P is local on the source-and-target. This finishes the
proof of the equivalence of (1) and (2).

If X and Y are representable, then Descent on Spaces, Lemma 18.3 applies which
shows that (1) and (2) are equivalent to f having P.

Finally, suppose f is representable, and U, V, a, b, h are as in part (2) of the lemma,
and that P is preserved under arbitrary base change. We have to show that for
any scheme Z and morphism Z → X the base change Z ×Y X → Z has property
P. Consider the diagram

Z ×Y U

��

// Z ×Y V

��
Z ×Y X // Z

Note that the top horizontal arrow is a base change of h and hence has property
P. The left vertical arrow is smooth and surjective and the right vertical arrow is
smooth. Thus Descent on Spaces, Lemma 18.3 kicks in and shows that Z×YX → Z
has property P. �

Definition 12.2. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target. We say a morphism f : X → Y of algebraic
stacks has property P if the equivalent conditions of Lemma 12.1 hold.

Remark 12.3. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target and stable under composition. Then the
property of morphisms of algebraic stacks defined in Definition 12.2 is stable under
composition. Namely, let f : X → Y and g : Y → Z be morphisms of algebraic
stacks having property P. Choose an algebraic space W and a surjective smooth
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morphism W → Z. Choose an algebraic space V and a surjective smooth morphism
V → Y ×Z W . Finally, choose an algebraic space U and a surjective and smooth
morphism U → X ×Y V . Then the morphisms V →W and U → V have property
P by definition. Whence U → W has property P as we assumed that P is stable
under composition. Thus, by definition again, we see that g ◦ f : X → Z has
property P.

Remark 12.4. Let P be a property of morphisms of algebraic spaces which is
smooth local on the source-and-target and stable under base change. Then the
property of morphisms of algebraic stacks defined in Definition 12.2 is stable under
base change. Namely, let f : X → Y and g : Y ′ → Y be morphisms of algebraic
stacks and assume f has property P. Choose an algebraic space V and a surjective
smooth morphism V → Y. Choose an algebraic space U and a surjective smooth
morphism U → X ×Y V . Finally, choose an algebraic space V ′ and a surjective and
smooth morphism V ′ → Y ′ ×Y V . Then the morphism U → V has property P by
definition. Whence V ′ ×V U → V ′ has property P as we assumed that P is stable
under base change. Considering the diagram

V ′ ×V U //

��

Y ′ ×Y X //

��

X

��
V ′ // Y ′ // Y

we see that the left top horizontal arrow is smooth and surjective, whence by
definition we see that the projection Y ′ ×Y X → Y ′ has property P.

Remark 12.5. Let P,P ′ be properties of morphisms of algebraic spaces which are
smooth local on the source-and-target and stable under base change. Suppose that
we have P ⇒ P ′ for morphisms of algebraic spaces. Then we also have P ⇒ P ′ for
the properties of morphisms of algebraic stacks defined in Definition 12.2 using P
and P ′. This is clear from the definition.

13. Morphisms of finite type

The property “locally of finite type” of morphisms of algebraic spaces is smooth
local on the source-and-target, see Descent on Spaces, Remark 18.5. It is also stable
under base change and fpqc local on the target, see Morphisms of Spaces, Lemma
23.3 and Descent on Spaces, Lemma 10.7. Hence, by Lemma 12.1 above, we may
define what it means for a morphism of algebraic spaces to be locally of finite type
as follows and it agrees with the already existing notion defined in Properties of
Stacks, Section 3 when the morphism is representable by algebraic spaces.

Definition 13.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f locally of finite type if the equivalent conditions of Lemma 12.1
hold with P = locally of finite type.

(2) We say f is of finite type if it is locally of finite type and quasi-compact.

Lemma 13.2. The composition of finite type morphisms is of finite type. The
same holds for locally of finite type.

Proof. Combine Remark 12.3 with Morphisms of Spaces, Lemma 23.2. �
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Lemma 13.3. A base change of a finite type morphism is finite type. The same
holds for locally of finite type.

Proof. Combine Remark 12.4 with Morphisms of Spaces, Lemma 23.3. �

Lemma 13.4. An immersion is locally of finite type.

Proof. Follows from Morphisms of Spaces, Lemma 23.7. �

Lemma 13.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type and Y is locally Noetherian, then X is locally Noetherian.

Proof. Let
U

��

// V

��
X // Y

be a commutative diagram where U , V are schemes, V → Y is surjective and
smooth, and U → V ×Y X is surjective and smooth. Then U → V is locally of
finite type. If Y is locally Noetherian, then V is locally Noetherian. By Morphisms,
Lemma 16.6 we see that U is locally Noetherian, which means that X is locally
Noetherian. �

The following two lemmas will be improved on later (after we have discussed mor-
phisms of algebraic stacks which are locally of finite presentation).

Lemma 13.6. Let f : X → Y be a morphism of algebraic stacks. Let W → Y be
a surjective, flat, and locally of finite presentation where W is an algebraic space.
If the base change W ×Y X →W is locally of finite type, then f is locally of finite
type.

Proof. Choose an algebraic space V and a surjective smooth morphism V → Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
have to show that U → V is locally of finite presentation. Now we base change
everything by W → Y: Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and
Y ′ = W ×Y Y = W . Then it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base
change. Hence by our definition of locally finite type morphisms of algebraic stacks
and the assumption that X ′ → Y ′ is locally of finite type, we see that U ′ → V ′ is
locally of finite type. Then, since V ′ → V is surjective, flat, and locally of finite
presentation as a base change of W → Y we see that U → V is locally of finite type
by Descent on Spaces, Lemma 10.7 and we win. �

Lemma 13.7. Let X → Y → Z be morphisms of algebraic stacks. Assume X →
Z is locally of finite type and that X → Y is representable by algebraic spaces,
surjective, flat, and locally of finite presentation. Then Y → Z is locally of finite
type.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Set U = V ×Y X which is an algebraic space. We know that U → V is surjective,
flat, and locally of finite presentation and that U → W is locally of finite type.
Hence the lemma reduces to the case of morphisms of algebraic spaces. The case
of morphisms of algebraic spaces is Descent on Spaces, Lemma 14.2. �
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Lemma 13.8. Let f : X → Y, g : Y → Z be morphisms of algebraic stacks. If
g ◦ f : X → Z is locally of finite type, then f : X → Y is locally of finite type.

Proof. We can find a diagram

U //

��

V //

��

W

��
X // Y // Z

where U , V , W are schemes, the vertical arrow W → Z is surjective and smooth,
the arrow V → Y ×Z W is surjective and smooth, and the arrow U → X ×Y V
is surjective and smooth. Then also U → X ×Z V is surjective and smooth (as a
composition of a surjective and smooth morphism with a base change of such). By
definition we see that U → W is locally of finite type. Hence U → V is locally of
finite type by Morphisms, Lemma 16.8 which in turn means (by definition) that
X → Y is locally of finite type. �

14. Points of finite type

Let X be an algebraic stack. A finite type point x ∈ |X | is a point which can be
represented by a morphism Spec(k)→ X which is locally of finite type. Finite type
points are a suitable replacement of closed points for algebraic spaces and algebraic
stacks. There are always “enough of them” for example.

Lemma 14.1. Let X be an algebraic stack. Let x ∈ |X |. The following are equiv-
alent:

(1) There exists a morphism Spec(k) → X which is locally of finite type and
represents x.

(2) There exists a scheme U , a closed point u ∈ U , and a smooth morphism
ϕ : U → X such that ϕ(u) = x.

Proof. Let u ∈ U and U → X be as in (2). Then Spec(κ(u))→ U is of finite type,
and U → X is representable and locally of finite type (by Morphisms of Spaces,
Lemmas 36.8 and 27.5). Hence we see (1) holds by Lemma 13.2.

Conversely, assume Spec(k) → X is locally of finite type and represents x. Let
U → X be a surjective smooth morphism where U is a scheme. By assumption
U ×X Spec(k)→ U is a morphism of algebraic spaces which is locally of finite type.
Pick a finite type point v of U ×X Spec(k) (there exists at least one, see Morphisms
of Spaces, Lemma 25.3). By Morphisms of Spaces, Lemma 25.4 the image u ∈ U
of v is a finite type point of U . Hence by Morphisms, Lemma 17.4 after shrinking
U we may assume that u is a closed point of U , i.e., (2) holds. �

Definition 14.2. Let X be an algebraic stack. We say a point x ∈ |X | is a finite
type point5 if the equivalent conditions of Lemma 14.1 are satisfied. We denote
Xft-pts the set of finite type points of X .

We can describe the set of finite type points as follows.

5This is a slight abuse of language as it would perhaps be more correct to say “locally finite
type point”.
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Lemma 14.3. Let X be an algebraic stack. We have

Xft-pts =
⋃

ϕ:U→X smooth
|ϕ|(U0)

where U0 is the set of closed points of U . Here we may let U range over all schemes
smooth over X or over all affine schemes smooth over X .

Proof. Immediate from Lemma 14.1. �

Lemma 14.4. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type, then f(Xft-pts) ⊂ Yft-pts.

Proof. Take x ∈ Xft-pts. Represent x by a locally finite type morphism x :
Spec(k) → X . Then f ◦ x is locally of finite type by Lemma 13.2. Hence f(x) ∈
Yft-pts. �

Lemma 14.5. Let f : X → Y be a morphism of algebraic stacks. If f is locally of
finite type and surjective, then f(Xft-pts) = Yft-pts.

Proof. We have f(Xft-pts) ⊂ Yft-pts by Lemma 14.4. Let y ∈ |Y| be a finite type
point. Represent y by a morphism Spec(k)→ Y which is locally of finite type. As
f is surjective the algebraic stack Xk = Spec(k) ×Y X is nonempty, therefore has
a finite type point x ∈ |Xk| by Lemma 14.3. Now Xk → X is a morphism which
is locally of finite type as a base change of Spec(k) → Y (Lemma 13.3). Hence
the image of x in X is a finite type point by Lemma 14.4 which maps to y by
construction. �

Lemma 14.6. Let X be an algebraic stack. For any locally closed subset T ⊂ |X |
we have

T 6= ∅ ⇒ T ∩ Xft-pts 6= ∅.
In particular, for any closed subset T ⊂ |X | we see that T ∩ Xft-pts is dense in T .

Proof. Let i : Z → X be the reduced induced substack structure on T , see Prop-
erties of Stacks, Remark 10.5. An immersion is locally of finite type, see Lemma
13.4. Hence by Lemma 14.4 we see Zft-pts ⊂ Xft-pts ∩ T . Finally, any nonempty
affine scheme U with a smooth morphism towards Z has at least one closed point,
hence Z has at least one finite type point by Lemma 14.3. The lemma follows. �

Here is another, more technical, characterization of a finite type point on an al-
gebraic stack. It tells us in particular that the residual gerbe of X at x exists
whenever x is a finite type point!

Lemma 14.7. Let X be an algebraic stack. Let x ∈ |X |. The following are equiv-
alent:

(1) x is a finite type point,
(2) there exists an algebraic stack Z whose underlying topological space |Z| is

a singleton, and a morphism f : Z → X which is locally of finite type such
that {x} = |f |(|Z|), and

(3) the residual gerbe Zx of X at x exists and the inclusion morphism Zx → X
is locally of finite type.

Proof. (All of the morphisms occurring in this paragraph are representable by
algebraic spaces, hence the conventions and results of Properties of Stacks, Section
3 are applicable.) Assume x is a finite type point. Choose an affine scheme U , a
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closed point u ∈ U , and a smooth morphism ϕ : U → X with ϕ(u) = x, see Lemma
14.3. Set u = Spec(κ(u)) as usual. Set R = u ×X u so that we obtain a groupoid
in algebraic spaces (u,R, s, t, c), see Algebraic Stacks, Lemma 16.1. The projection
morphisms R→ u are the compositions

R = u×X u→ u×X U → u×X X = u

where the first arrow is of finite type (a base change of the closed immersion of
schemes u → U) and the second arrow is smooth (a base change of the smooth
morphism U → X ). Hence s, t : R → u are locally of finite type (as compositions,
see Morphisms of Spaces, Lemma 23.2). Since u is the spectrum of a field, it follows
that s, t are flat and locally of finite presentation (by Morphisms of Spaces, Lemma
27.7). We see that Z = [u/R] is an algebraic stack by Criteria for Representability,
Theorem 17.2. By Algebraic Stacks, Lemma 16.1 we obtain a canonical morphism

f : Z −→ X

which is fully faithful. Hence this morphism is representable by algebraic spaces,
see Algebraic Stacks, Lemma 15.2 and a monomorphism, see Properties of Stacks,
Lemma 8.4. It follows that the residual gerbe Zx ⊂ X of X at x exists and that
f factors through an equivalence Z → Zx, see Properties of Stacks, Lemma 11.11.
By construction the diagram

u

��

// U

��
Z

f // X
is commutative. By Criteria for Representability, Lemma 17.1 the left vertical
arrow is surjective, flat, and locally of finite presentation. Consider

u×X U

��

// Z ×X U //

��

U

��
u // Z

f // X

As u → X is locally of finite type, we see that the base change u ×X U → U is
locally of finite type. Moreover, u ×X U → Z ×X U is surjective, flat, and locally
of finite presentation as a base change of u→ Z. Thus {u×X U → Z ×X U} is an
fppf covering of algebraic spaces, and we conclude that Z ×X U → U is locally of
finite type by Descent on Spaces, Lemma 14.1. By definition this means that f is
locally of finite type (because the vertical arrow Z ×X U → Z is smooth as a base
change of U → X and surjective as Z has only one point). Since Z = Zx we see
that (3) holds.

It is clear that (3) implies (2). If (2) holds then x is a finite type point of X by
Lemma 14.4 and Lemma 14.6 to see that Zft-pts is nonempty, i.e., the unique point
of Z is a finite type point of Z. �

15. Special presentations of algebraic stacks

The following lemma gives a criterion for when a “slice” of a presentation is still
flat over the algebraic stack.
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Lemma 15.1. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let f1, . . . , fr ∈ Γ(U,OU ) and z ∈ |F | such that f1, . . . , fr map to a
regular sequence in the local ring OF,z. Then, after replacing U by an open subspace
containing p(z), the morphism

V (f1, . . . , fr) −→ X

is flat and locally of finite presentation.

Proof. Choose a scheme W and a surjective smooth morphism W → X . Choose an
extension of fields k ⊂ k′ and a morphism w : Spec(k′)→W such that Spec(k′)→
W → X is 2-isomorphic to Spec(k′) → Spec(k) → X . This is possible as W → X
is surjective. Consider the commutative diagram

U

��

U ×X Wpr0
oo

��

F ′
p′

oo

��
X Woo Spec(k′)oo

both of whose squares are cartesian. By our choice of w we see that F ′ = F×Spec(k)

Spec(k′). Thus F ′ → F is surjective and we can choose a point z′ ∈ |F ′| mapping to
z. Since F ′ → F is flat we see that OF,z → OF ′,z′ is flat, see Morphisms of Spaces,
Lemma 28.8. Hence f1, . . . , fr map to a regular sequence in OF ′,z′ , see Algebra,
Lemma 67.7. Note that U ×X W → W is a morphism of algebraic spaces which
is flat and locally of finite presentation. Hence by More on Morphisms of Spaces,
Lemma 22.1 we see that there exists an open subspace U ′ of U ×X W containing
p(z′) such that the intersection U ′∩(V (f1, . . . , fr)×XW ) is flat and locally of finite
presentation over W . Note that pr0(U ′) is an open subspace of U containing p(z)
as pr0 is smooth hence open. Now we see that U ′ ∩ (V (f1, . . . , fr)×X W ) → X is
flat and locally of finite presentation as the composition

U ′ ∩ (V (f1, . . . , fr)×X W )→W → X .

Hence Properties of Stacks, Lemma 3.5 implies pr0(U ′)∩ V (f1, . . . , fr)→ X is flat
and locally of finite presentation as desired. �

Lemma 15.2. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is locally of finite type. Let
z ∈ |F | be such that dimz(F ) = 0. Then, after replacing U by an open subspace
containing p(z), the morphism

U −→ X
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is locally quasi-finite.

Proof. Since f : U → X is locally of finite type there exists a maximal open
W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is locally quasi-finite,
see Properties of Stacks, Remark 9.19 (2). Hence all we need to do is prove that
p(z) is a point of W (f). Moreover, the remark referenced above also shows the
formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is locally quasi-finite at z. This follows immediately from Morphisms
of Spaces, Lemma 32.6. �

A quasi-DM stack has a locally quasi-finite “covering” by a scheme.

Theorem 15.3. Let X be an algebraic stack. The following are equivalent

(1) X is quasi-DM, and
(2) there exists a scheme W and a surjective, flat, locally finitely presented,

locally quasi-finite morphism W → X .

Proof. The implication (2) ⇒ (1) is Lemma 4.14. Assume (1). Let x ∈ |X |
be a finite type point. We will produce a scheme over X which “works” in a
neighbourhood of x. At the end of the proof we will take the disjoint union of all
of these to conclude.

Let U be an affine scheme, U → X a smooth morphism, and u ∈ U a closed point
which maps to x, see Lemma 14.1. Denote u = Spec(κ(u)) as usual. Consider the
following commutative diagram

u

��

Roo

��
U

��

F

��

p
oo

X uoo

with both squares fibre product squares, in particular R = u×X u. In the proof of
Lemma 14.7 we have seen that (u,R, s, t, c) is a groupoid in algebraic spaces with
s, t locally of finite type. Let G → u be the stabilizer group algebraic space (see
Groupoids in Spaces, Definition 15.2). Note that

G = R×(u×u) u = (u×X u)×(u×u) u = X ×X×X u.

As X is quasi-DM we see that G is locally quasi-finite over u. By More on Groupoids
in Spaces, Lemma 7.11 we have dim(R) = 0.

Let e : u→ R be the identity of the groupoid. Thus both compositions u→ R→ u
are equal to the identity morphism of u. Note that R ⊂ F is a closed subspace
as u ⊂ U is a closed subscheme. Hence we can also think of e as a point of F .
Consider the maps of étale local rings

OU,u
p]−→ OF,e −→ OR,e

Note that OR,e has dimension 0 by the result of the first paragraph. On the other
hand, the kernel of the second arrow is p](mu)OF,e as R is cut out in F by mu.
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Thus we see that

mz =
√
p](mu)OF,e

On the other hand, as the morphism U → X is smooth we see that F → u is a
smooth morphism of algebraic spaces. This means that F is a regular algebraic
space (Spaces over Fields, Lemma 9.1). Hence OF,e is a regular local ring (Proper-
ties of Spaces, Lemma 23.1). Note that a regular local ring is Cohen-Macaulay (Al-
gebra, Lemma 102.3). Let d = dim(OF,e). By Algebra, Lemma 100.10 we can find
f1, . . . , fd ∈ OU,u whose images ϕ(f1), . . . , ϕ(fd) form a regular sequence in OF,z.
By Lemma 15.1 after shrinking U we may assume that Z = V (f1, . . . , fd) → X is
flat and locally of finite presentation. Note that by construction FZ = Z ×X u is a
closed subspace of F = U ×X u, that e is a point of this closed subspace, and that

dim(OFZ ,e) = 0.

By Morphisms of Spaces, Lemma 32.1 it follows that dime(FZ) = 0 because the
transcendence degree of e relative to u is zero. Hence it follows from Lemma 15.2
that after possibly shrinking U the morphism Z → X is locally quasi-finite.

We conclude that for every finite type point x of X there exists a locally quasi-finite,
flat, locally finitely presented morphism fx : Zx → X with x in the image of |fx|.
Set W =

∐
x Zx and f =

∐
fx. Then f is flat, locally of finite presentation, and

locally quasi-finite. In particular the image of |f | is open, see Properties of Stacks,
Lemma 4.7. By construction the image contains all finite type points of X , hence
f is surjective by Lemma 14.6 (and Properties of Stacks, Lemma 4.4). �

Lemma 15.4. Let Z be a DM, locally Noetherian, reduced algebraic stack with |Z| a
singleton. Then there exists a field k and a surjective étale morphism Spec(k)→ Z.

Proof. By Properties of Stacks, Lemma 11.3 there exists a field k and a surjec-
tive, flat, locally finitely presented morphism Spec(k) → Z. Set U = Spec(k) and
R = U ×Z U so we obtain a groupoid in algebraic spaces (U,R, s, t, c), see Alge-
braic Stacks, Lemma 9.2. Note that by Algebraic Stacks, Remark 16.3 we have an
equivalence

fcan : [U/R] −→ Z
The projections s, t : R → U are locally of finite presentation. As Z is DM we see
that the stabilizer group algebraic space

G = U ×U×U R = U ×U×U (U ×Z U) = U ×X×X ,∆X X
is unramified over U . In particular dim(G) = 0 and by More on Groupoids in
Spaces, Lemma 7.11 we have dim(R) = 0. This implies that R is a scheme, see
Spaces over Fields, Lemma 7.1. By Varieties, Lemma 13.2 we see that R (and also
G) is the disjoint union of spectra of Artinian local rings finite over k via either s or
t. Let P = Spec(A) ⊂ R be the open and closed subscheme whose underlying point
is the identity e of the groupoid scheme (U,R, s, t, c). As s ◦ e = t ◦ e = idSpec(k)

we see that A is an Artinian local ring whose residue field is identified with k via
either s] : k → A or t] : k → A. Note that s, t : Spec(A) → Spec(k) are finite (by
the lemma referenced above). Since G→ Spec(k) is unramified we see that

G ∩ P = P ×U×U U = Spec(A⊗k⊗k k)

is unramified over k. On the other hand A ⊗k⊗k k is local as a quotient of A and
surjects onto k. We conclude that A ⊗k⊗k k = k. It follows that P → U × U
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is universally injective (as P has only one point with residue field k, unramified
(by the computation of the fibre over the unique image point above), and of finite

type (because s, t are) hence a monomorphism (see Étale Morphisms, Lemma 7.1).
Thus s|P , t|P : P → U define a finite flat equivalence relation. Thus we may
apply Groupoids, Proposition 21.8 to conclude that U/P exists and is a scheme U .
Moreover, U → U is finite locally free and P = U ×U U . In fact U = Spec(k0)
where k0 ⊂ k is the ring of R-invariant functions. As k is a field it follows from the
definition Groupoids, Equation (21.0.1) that k0 is a field.

We claim that

(15.4.1) Spec(k0) = U = U/P → [U/R] = Z

is the desired surjective étale morphism. It follows from Properties of Stacks,
Lemma 11.1 that this morphism is surjective. Thus it suffices to show that (15.4.1)
is étale6. Instead of proving the étaleness directly we first apply Bootstrap, Lemma
9.1 to see that there exists a groupoid scheme (U,R, s, t, c) such that (U,R, s, t, c) is
the restriction of (U,R, s, t, c) via the quotient morphism U → U . (We verified all
the hypothesis of the lemma above except for the assertion that j : R → U × U is
separated and locally quasi-finite which follows from the fact that R is a separated
scheme locally quasi-finite over k.) Since U → U is finite locally free we see that
[U/R]→ [U/R] is an equivalence, see Groupoids in Spaces, Lemma 24.2.

Note that s, t are the base changes of the morphisms s, t by U → U . As {U → U} is
an fppf covering we conclude s, t are flat, locally of finite presentation, and locally
quasi-finite, see Descent, Lemmas 19.13, 19.9, and 19.22. Consider the commutative
diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open in
R we conclude that e is an open immersion by Descent, Lemma 19.14.

But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 4.1 which shows that ΩR/U = 0 implies that

s, t : R → U is unramified (see Morphisms, Lemma 36.2), which in turn implies
that s, t are étale (see Morphisms, Lemma 37.16). Hence Z = [U/R] is an étale
presentation of the algebraic stack Z and we conclude that U → Z is étale by
Properties of Stacks, Lemma 3.3. �

6We urge the reader to find his/her own proof of this fact. In fact the argument has a lot in
common with the final argument of the proof of Bootstrap, Theorem 10.1 hence probably should

be isolated into its own lemma somewhere.
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Lemma 15.5. Let X be an algebraic stack. Consider a cartesian diagram

U

��

F
p

oo

��
X Spec(k)oo

where U is an algebraic space, k is a field, and U → X is flat and locally of finite
presentation. Let z ∈ |F | be such that F → Spec(k) is unramified at z. Then, after
replacing U by an open subspace containing p(z), the morphism

U −→ X
is étale.

Proof. Since f : U → X is flat and locally of finite presentation there exists a
maximal open W (f) ⊂ U such that the restriction f |W (f) : W (f) → X is étale,
see Properties of Stacks, Remark 9.19 (5). Hence all we need to do is prove that
p(z) is a point of W (f). Moreover, the remark referenced above also shows the
formation of W (f) commutes with arbitrary base change by a morphism which
is representable by algebraic spaces. Hence it suffices to show that the morphism
F → Spec(k) is étale at z. Since it is flat and locally of finite presentation as a
base change of U → X and since F → Spec(k) is unramified at z by assumption,
this follows from Morphisms of Spaces, Lemma 36.12. �

A DM stack is a Deligne-Mumford stack.

Theorem 15.6. Let X be an algebraic stack. The following are equivalent

(1) X is DM,
(2) X is Deligne-Mumford, and
(3) there exists a scheme W and a surjective étale morphism W → X .

Proof. Recall that (3) is the definition of (2), see Algebraic Stacks, Definition 12.2.
The implication (3)⇒ (1) is Lemma 4.14. Assume (1). Let x ∈ |X | be a finite type
point. We will produce a scheme over X which “works” in a neighbourhood of x.
At the end of the proof we will take the disjoint union of all of these to conclude.

By Lemma 14.7 the residual gerbe Zx of X at x exists and Zx → X is locally of
finite type. By Lemma 4.16 the algebraic stack Zx is DM. By Lemma 15.4 there
exists a field k and a surjective étale morphism z : Spec(k) → Zx. In particular
the composition x : Spec(k)→ X is locally of finite type (by Morphisms of Spaces,
Lemmas 23.2 and 36.9).

Pick a scheme U and a smooth morphism U → X such that x is in the image of
|U | → |X |. Consider the following fibre square

U

��

Foo

��
X Spec(k)

xoo

in other words F = U ×X ,x Spec(k). By Properties of Stacks, Lemma 4.3 we see
that F is nonempty. As Zx → X is a monomorphism we have

Spec(k)×z,Zx,z Spec(k) = Spec(k)×x,X ,x Spec(k)
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with étale projection maps to Spec(k) by construction of z. Since

F ×U F = (Spec(k)×X Spec(k))×Spec(k) F

we see that the projections maps F ×U F → F are étale as well. It follows that
∆F/U : F → F ×U F is étale (see Morphisms of Spaces, Lemma 36.11). By Mor-
phisms of Spaces, Lemma 45.2 this implies that ∆F/U is an open immersion, which
finally implies by Morphisms of Spaces, Lemma 35.9 that F → U is unramified.

Pick a nonempty affine scheme V and an étale morphism V → F . (This could be
avoided by working directly with F , but it seems easier to explain what’s going on
by doing so.) Picture

U

��

Foo

��

Voo

{{
X Spec(k)

xoo

Then V → Spec(k) is a smooth morphism of schemes and V → U is an unramified
morphism of schemes (see Morphisms of Spaces, Lemmas 34.2 and 35.3). Pick a
closed point v ∈ V with k ⊂ κ(v) finite separable, see Varieties, Lemma 15.6. Let
u ∈ U be the image point. The local ring OV,v is regular (see Varieties, Lemma
15.3) and the local ring homomorphism

ϕ : OU,u −→ OV,v

coming from the morphism V → U is such that ϕ(mu)OV,v = mv, see Mor-
phisms, Lemma 36.14. Hence we can find f1, . . . , fd ∈ OU,u such that the images
ϕ(f1), . . . , ϕ(fd) form a basis for mv/m

2
v over κ(v). Since OV,v is a regular local

ring this implies that ϕ(f1), . . . , ϕ(fd) form a regular sequence in OV,v (see Alge-
bra, Lemma 102.3). After replacing U by an open neighbourhood of u we may
assume f1, . . . , fd ∈ Γ(U,OU ). After replacing U by a possibly even smaller open
neighbourhood of u we may assume that V (f1, . . . , fd) → X is flat and locally of
finite presentation, see Lemma 15.1. By construction

V (f1, . . . , fd)×X Spec(k)←− V (f1, . . . , fd)×X V

is étale and V (f1, . . . , fd)×XV is the closed subscheme T ⊂ V cut out by f1|V , . . . , fd|V .
Hence by construction v ∈ T and

OT,v = OV,v/(ϕ(f1), . . . , ϕ(fd)) = κ(v)

a finite separable extension of k. It follows that T → Spec(k) is unramified at
v, see Morphisms, Lemma 36.14. By definition of an unramified morphism of
algebraic spaces this means that V (f1, . . . , fd)×X Spec(k)→ Spec(k) is unramified
at the image of v in V (f1, . . . , fd)×X Spec(k). Applying Lemma 15.5 we see that on
shrinking U to yet another open neighbourhood of u the morphism V (f1, . . . , fd)→
X is étale.

We conclude that for every finite type point x of X there exists an étale morphism
fx : Wx → X with x in the image of |fx|. Set W =

∐
xWx and f =

∐
fx. Then f

is étale. In particular the image of |f | is open, see Properties of Stacks, Lemma 4.7.
By construction the image contains all finite type points of X , hence f is surjective
by Lemma 14.6 (and Properties of Stacks, Lemma 4.4). �
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16. Quasi-finite morphisms

The property “locally quasi-finite” of morphisms of algebraic spaces is not smooth
local on the source-and-target so we cannot use the material in Section 12 to define
locally quasi-finite morphisms of algebraic stacks. We do already know what it
means for a morphism of algebraic stacks representable by algebraic spaces to be
locally quasi-finite, see Properties of Stacks, Section 3. To find a condition suitable
for general morphisms we make the following observation.

Lemma 16.1. Let f : X → Y be a morphism of algebraic stacks. Assume f is
representable by algebraic spaces. The following are equivalent

(1) f is locally quasi-finite, and
(2) f is locally of finite type and for every morphism Spec(k) → Y where k is

a field the space |Spec(k)×Y X| is discrete.

Proof. Assume (1). In this case the morphism of algebraic spaces Xk → Spec(k)
is locally quasi-finite as a base change of f . Hence |Xk| is discrete by Morphisms of
Spaces, Lemma 26.5. Conversely, assume (2). Pick a surjective smooth morphism
V → Y where V is a scheme. It suffices to show that the morphism of algebraic
spaces V ×YX → V is locally quasi-finite, see Properties of Stacks, Lemma 3.3. The
morphism V ×Y X → V is locally of finite type by assumption. For any morphism
Spec(k)→ V where k is a field

Spec(k)×V (V ×Y X ) = Spec(k)×Y X

has a discrete space of points by assumption. Hence we conclude that V ×Y X → V
is locally quasi-finite by Morphisms of Spaces, Lemma 26.5. �

A morphism of algebraic stacks which is representable by algebraic spaces is quasi-
DM, see Lemma 4.3. Combined with the lemma above we see that the following
definition does not conflict with all of the already existing notion in the case of
morphisms representable by algebraic spaces.

Definition 16.2. Let f : X → Y be a morphism of algebraic stacks. We say f is
locally quasi-finite if f is quasi-DM, locally of finite type, and for every morphism
Spec(k)→ Y where k is a field the space |Xk| is discrete.

The condition that f be quasi-DM is natural. For example, let k be a field and
consider the morphism π : [Spec(k)/Gm] → Spec(k) which has singleton fibres
and is locally of finite type. As we will see later this morphism is smooth of
relative dimension −1, and we’d like our locally quasi-finite morphisms to have
relative dimension 0. Also, note that the section Spec(k) → [Spec(k)/Gm] does
not have discrete fibres, hence is not locally quasi-finite, and we’d like to have the
following permanence property for locally quasi-finite morphisms: If f : X → X ′ is
a morphism of algebraic stacks locally quasi-finite over the algebraic stack Y, then
f is locally quasi-finite (in fact something a bit stronger holds, see Lemma 16.8).

Another justification for the definition above is Lemma 16.7 below which character-
izes being locally quasi-finite in terms of the existence of suitable “presentations”
or “coverings” of X and Y.

Lemma 16.3. A base change of a locally quasi-finite morphism is locally quasi-
finite.
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Proof. We have seen this for quasi-DM morphisms in Lemma 4.4 and for locally
finite type morphisms in Lemma 13.3. It is immediate that the condition on fibres
is inherited by a base change. �

Lemma 16.4. Let X → Spec(k) be a locally quasi-finite morphism where X is an
algebraic stack and k is a field. Let f : V → X be a locally quasi-finite morphism
where V is a scheme. Then V → Spec(k) is locally quasi-finite.

Proof. By Lemma 13.2 we see that V → Spec(k) is locally of finite type. Assume,
to get a contradiction, that V → Spec(k) is not locally quasi-finite. Then there
exists a nontrivial specialization v  v′ of points of V , see Morphisms, Lemma 21.6.
In particular trdegk(κ(v)) > trdegk(κ(v′)), see Morphisms, Lemma 29.6. Because
|X | is discrete we see that |f |(v) = |f |(v′). Consider R = V ×X V . Then R is
an algebraic space and the projections s, t : R → V are locally quasi-finite as base
changes of V → X (which is representable by algebraic spaces so this follows from
the discussion in Properties of Stacks, Section 3). By Properties of Stacks, Lemma
4.3 we see that there exists an r ∈ |R| such that s(r) = v and t(r) = v′. By
Morphisms of Spaces, Lemma 31.3 we see that the transcendence degree of v/k is
equal to the transcendence degree of r/k is equal to the transcendence degree of
v′/k. This contradiction proves the lemma. �

Lemma 16.5. A composition of a locally quasi-finite morphisms is locally quasi-
finite.

Proof. We have seen this for quasi-DM morphisms in Lemma 4.10 and for locally
finite type morphisms in Lemma 13.2. Let X → Y and Y → Z be locally quasi-
finite. Let k be a field and let Spec(k) → Z be a morphism. It suffices to show
that |Xk| is discrete. By Lemma 16.3 the morphisms Xk → Yk and Yk → Spec(k)
are locally quasi-finite. In particular we see that Yk is a quasi-DM algebraic stack,
see Lemma 4.13. By Theorem 15.3 we can find a scheme V and a surjective,
flat, locally finitely presented, locally quasi-finite morphism V → Yk. By Lemma
16.4 we see that V is locally quasi-finite over k, in particular |V | is discrete. The
morphism V ×Yk

Xk → Xk is surjective, flat, and locally of finite presentation hence
|V ×Yk

Xk| → |Xk| is surjective and open. Thus it suffices to show that |V ×Yk
Xk|

is discrete. Note that V is a disjoint union of spectra of Artinian local k-algebras
Ai with residue fields ki, see Varieties, Lemma 13.2. Thus it suffices to show that
each

|Spec(Ai)×Yk
Xk| = |Spec(ki)×Yk

Xk| = |Spec(ki)×Y X|
is discrete, which follows from the assumption that X → Y is locally quasi-finite. �

Before we characterize locally quasi-finite morphisms in terms of coverings we do
it for quasi-DM morphisms.

Lemma 16.6. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is quasi-DM,
(2) for any morphism V → Y with V an algebraic space there exists a surjective,

flat, locally finitely presented, locally quasi-finite morphism U → X ×Y V
where U is an algebraic space, and

(3) there exist algebraic spaces U , V and a morphism V → Y which is surjec-
tive, flat, and locally of finite presentation, and a morphism U → X ×Y V

http://localhost:8080/tag/06UC
http://localhost:8080/tag/06UD
http://localhost:8080/tag/06UE


MORPHISMS OF ALGEBRAIC STACKS 33

which is surjective, flat, locally of finite presentation, and locally quasi-
finite.

Proof. The implication (2) ⇒ (3) is immediate.

Assume (1) and let V → Y be as in (2). Then X ×Y V → V is quasi-DM, see
Lemma 4.4. By Lemma 4.3 the algebraic space V is DM, hence quasi-DM. Thus
X ×Y V is quasi-DM by Lemma 4.11. Hence we may apply Theorem 15.3 to get
the morphism U → X ×Y V as in (2).

Assume (3). Let V → Y and U → X×YV be as in (3). To prove that f is quasi-DM
it suffices to show that X ×Y V → V is quasi-DM, see Lemma 4.5. By Lemma 4.14
we see that X ×Y V is quasi-DM. Hence X ×Y V → V is quasi-DM by Lemma 4.13
and (1) holds. This finishes the proof of the lemma. �

Lemma 16.7. Let f : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) f is locally quasi-finite,
(2) f is quasi-DM and for any morphism V → Y with V an algebraic space

and any locally quasi-finite morphism U → X ×Y V where U is an algebraic
space the morphism U → V is locally quasi-finite,

(3) for any morphism V → Y from an algebraic space V there exists a sur-
jective, flat, locally finitely presented, and locally quasi-finite morphism
U → X ×Y V where U is an algebraic space such that U → V is locally
quasi-finite,

(4) there exists algebraic spaces U , V , a surjective, flat, and locally of finite
presentation morphism V → Y, and a morphism U → X ×Y V which is
surjective, flat, locally of finite presentation, and locally quasi-finite such
that U → V is locally quasi-finite.

Proof. Assume (1). Then f is quasi-DM by assumption. Let V → Y and U →
X ×Y V be as in (2). By Lemma 16.5 the composition U → X ×Y V → V is locally
quasi-finite. Thus (1) implies (2).

Assume (2). Let V → Y be as in (3). By Lemma 16.6 we can find an algebraic space
U and a surjective, flat, locally finitely presented, locally quasi-finite morphism
U → X ×Y V . By (2) the composition U → V is locally quasi-finite. Thus (2)
implies (3).

It is immediate that (3) implies (4).

Assume (4). We will prove (1) holds, which finishes the proof. By Lemma 16.6 we
see that f is quasi-DM. To prove that f is locally of finite type it suffices to prove
that g : X ×Y V → V is locally of finite type, see Lemma 13.6. Then it suffices
to check that g precomposed with h : U → X ×Y V is locally of finite type, see
Lemma 13.7. Since g ◦h : U → V was assumed to be locally quasi-finite this holds,
hence f is locally of finite type. Finally, let k be a field and let Spec(k) → Y be
a morphism. Then V ×Y Spec(k) is a nonempty algebraic space which is locally
of finite presentation over k. Hence we can find a finite extension k ⊂ k′ and a
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morphism Spec(k′)→ V such that

Spec(k′) //

��

V

��
Spec(k) // Y

commutes (details omitted). Then Xk′ → Xk is representable (by schemes), surjec-
tive, and finite locally free. In particular |Xk′ | → |Xk| is surjective and open. Thus
it suffices to prove that |Xk′ | is discrete. Since

U ×V Spec(k′) = U ×X×YV Xk′

we see that U×V Spec(k′)→ Xk′ is surjective, flat, and locally of finite presentation
(as a base change of U → X ×Y V ). Hence |U×V Spec(k′)| → |Xk′ | is surjective and
open. Thus it suffices to show that |U ×V Spec(k′)| is discrete. This follows from
the fact that U → V is locally quasi-finite (either by our definition above or from
the original definition for morphisms of algebraic spaces, via Morphisms of Spaces,
Lemma 26.5). �

Lemma 16.8. Let X → Y → Z be morphisms of algebraic stacks. Assume that
X → Z is locally quasi-finite and Y → Z is quasi-DM. Then X → Y is locally
quasi-finite.

Proof. Write X → Y as the composition

X −→ X ×Z Y −→ Y
The second arrow is locally quasi-finite as a base change of X → Z, see Lemma
16.3. The first arrow is locally quasi-finite by Lemma 4.8 as Y → Z is quasi-DM.
Hence X → Y is locally quasi-finite by Lemma 16.5. �

17. Flat morphisms

The property “being flat” of morphisms of algebraic spaces is smooth local on the
source-and-target, see Descent on Spaces, Remark 18.5. It is also stable under base
change and fpqc local on the target, see Morphisms of Spaces, Lemma 28.4 and
Descent on Spaces, Lemma 10.11. Hence, by Lemma 12.1 above, we may define
what it means for a morphism of algebraic spaces to be flat as follows and it agrees
with the already existing notion defined in Properties of Stacks, Section 3 when the
morphism is representable by algebraic spaces.

Definition 17.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
flat if the equivalent conditions of Lemma 12.1 hold with P = flat.

Lemma 17.2. The composition of flat morphisms is flat.

Proof. Combine Remark 12.3 with Morphisms of Spaces, Lemma 28.3. �

Lemma 17.3. A base change of a flat morphism is flat.

Proof. Combine Remark 12.4 with Morphisms of Spaces, Lemma 28.4. �

Lemma 17.4. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y be
a surjective flat morphism of algebraic stacks. If the base change Z ×Y X → Z is
flat, then f is flat.
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Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Then W → Z is surjective and flat (Morphisms of Spaces, Lemma 34.7) hence
W → Y is surjective and flat (by Properties of Stacks, Lemma 5.2 and Lemma
17.2). Since the base change of Z ×Y X → Z by W → Z is a flat morphism
(Lemma 17.3) we may replace Z by W .

Choose an algebraic space V and a surjective smooth morphism V → Y. Choose
an algebraic space U and a surjective smooth morphism U → V ×Y X . We have
to show that U → V is flat. Now we base change everything by W → Y: Set
U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W . Then it is
still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by our definition
of flat morphisms of algebraic stacks and the assumption that X ′ → Y ′ is flat, we
see that U ′ → V ′ is flat. Then, since V ′ → V is surjective as a base change of
W → Y we see that U → V is flat by Morphisms of Spaces, Lemma 29.3 (2) and
we win. �

Lemma 17.5. Let X → Y → Z be morphisms of algebraic stacks. If X → Z is
flat and X → Y is surjective and flat, then Y → Z is flat.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and that U →W is flat. Also, as X → Y is surjective we
see that U → V is surjective (as a composition of surjective morphisms). Hence the
lemma reduces to the case of morphisms of algebraic spaces. The case of morphisms
of algebraic spaces is Morphisms of Spaces, Lemma 29.5. �

18. Morphisms of finite presentation

The property “locally of finite presentation” of morphisms of algebraic spaces is
smooth local on the source-and-target, see Descent on Spaces, Remark 18.5. It is
also stable under base change and fpqc local on the target, see Morphisms of Spaces,
Lemma 27.3 and Descent on Spaces, Lemma 10.8. Hence, by Lemma 12.1 above,
we may define what it means for a morphism of algebraic spaces to be locally of
finite presentation as follows and it agrees with the already existing notion defined
in Properties of Stacks, Section 3 when the morphism is representable by algebraic
spaces.

Definition 18.1. Let f : X → Y be a morphism of algebraic stacks.

(1) We say f locally of finite presentation if the equivalent conditions of Lemma
12.1 hold with P = locally of finite presentation.

(2) We say f is of finite presentation if it is locally of finite presentation, quasi-
compact, and quasi-separated.

Note that a morphism of finite presentation is not just a quasi-compact morphism
which is locally of finite presentation.

Lemma 18.2. The composition of finitely presented morphisms is of finite presen-
tation. The same holds for morphisms which are locally of finite presentation.

Proof. Combine Remark 12.3 with Morphisms of Spaces, Lemma 27.2. �

Lemma 18.3. A base change of a finitely presented morphism is of finite presen-
tation. The same holds for morphisms which are locally of finite presentation.
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Proof. Combine Remark 12.4 with Morphisms of Spaces, Lemma 27.3. �

Lemma 18.4. A morphism which is locally of finite presentation is locally of finite
type. A morphism of finite presentation is of finite type.

Proof. Combine Remark 12.5 with Morphisms of Spaces, Lemma 27.5. �

Lemma 18.5. Let f : X → Y and g : Y → Z be morphisms of algebraic stacks If
g ◦ f is locally of finite presentation and g is locally of finite type, then f is locally
of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → Y ×Z W .
Choose an algebraic space U and a surjective smooth morphism U → X ×Y V . The
lemma follows upon applying Morphisms of Spaces, Lemma 27.9 to the morphisms
U → V →W . �

Lemma 18.6. An open immersion is locally of finite presentation.

Proof. Follows from Morphisms of Spaces, Lemma 27.11. �

Lemma 18.7. Let f : X → Y be a morphism of algebraic stacks. Let Z → Y
be a surjective, flat, locally finitely presented morphism of algebraic stacks. If the
base change Z ×Y X → Z is locally of finite presentation, then f is locally of finite
presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Then W → Z is surjective, flat, and locally of finite presentation (Morphisms
of Spaces, Lemmas 34.7 and 34.5) hence W → Y is surjective, flat, and locally of
finite presentation (by Properties of Stacks, Lemma 5.2 and Lemmas 17.2 and 18.2).
Since the base change of Z ×Y X → Z by W → Z is locally of finite presentation
(Lemma 17.3) we may replace Z by W .

Choose an algebraic space V and a surjective smooth morphism V → Y. Choose an
algebraic space U and a surjective smooth morphism U → V ×YX . We have to show
that U → V is locally of finite presentation. Now we base change everything by
W → Y: Set U ′ = W ×Y U , V ′ = W ×Y V , X ′ = W ×Y X , and Y ′ = W ×Y Y = W .
Then it is still true that U ′ → V ′ ×Y′ X ′ is smooth by base change. Hence by
our definition of locally finitely presented morphisms of algebraic stacks and the
assumption that X ′ → Y ′ is locally of finite presentation, we see that U ′ → V ′ is
locally of finite presentation. Then, since V ′ → V is surjective, flat, and locally of
finite presentation as a base change of W → Y we see that U → V is locally of
finite presentation by Descent on Spaces, Lemma 10.8 and we win. �

Lemma 18.8. Let X → Y → Z be morphisms of algebraic stacks. If X → Z
is locally of finite presentation and X → Y is surjective, flat, and locally of finite
presentation, then Y → Z is locally of finite presentation.

Proof. Choose an algebraic space W and a surjective smooth morphism W → Z.
Choose an algebraic space V and a surjective smooth morphism V → W ×Z Y.
Choose an algebraic space U and a surjective smooth morphism U → V ×Y X . We
know that U → V is flat and locally of finite presentation and that U → W is
locally of finite presentation. Also, as X → Y is surjective we see that U → V is
surjective (as a composition of surjective morphisms). Hence the lemma reduces
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to the case of morphisms of algebraic spaces. The case of morphisms of algebraic
spaces is Descent on Spaces, Lemma 14.1. �

Lemma 18.9. Let f : X → Y be a morphism of algebraic stacks which is surjective,
flat, and locally of finite presentation. Then for every scheme U and object y of Y
over U there exists an fppf covering {Ui → U} and objects xi of X over Ui such
that f(xi) ∼= y|Ui

in YUi
.

Proof. We may think of y as a morphism U → Y. By Properties of Stacks, Lemma
5.3 and Lemmas 18.3 and 17.3 we see that X ×Y U → U is surjective, flat, and
locally of finite presentation. Let V be a scheme and let V → X ×Y U smooth
and surjective. Then V → X ×Y U is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 34.7 and 34.5). Hence also V → U
is surjective, flat, and locally of finite presentation, see Properties of Stacks, Lemma
5.2 and Lemmas 18.2, and 17.2. Hence {V → U} is the desired fppf covering and
x : V → X is the desired object. �

Lemma 18.10. Let fj : Xj → X , j ∈ J be a family of morphisms of algebraic
stacks which are each flat and locally of finite presentation and which are jointly
surjective, i.e., |X | =

⋃
|Xi|. Then for every scheme U and object x of X over U

there exists an fppf covering {Ui → U}i∈I , a map a : I → J , and objects xi of Xa(i)

over Ui such that fa(i)(xi) ∼= y|Ui in XUi .

Proof. Apply Lemma 18.9 to the morphism
∐
j∈J Xj → X . (There is a slight set

theoretic issue here – due to our setup of things – which we ignore.) To finish, note
that a morphism xi : Ui →

∐
j∈J Xj is given by a disjoint union decomposition

Ui =
∐
Ui,j and morphisms Ui,j → Xj . Then the fppf covering {Ui,j → U} and

the morphisms Ui,j → Xj do the job. �

Lemma 18.11. Let f : X → Y be flat and locally of finite presentation. Then
|f | : |X | → |Y| is open.

Proof. Choose a scheme V and a smooth surjective morphism V → Y. Choose a
scheme U and a smooth surjective morphism U → V ×Y X . By assumption the
morphism of schemes U → V is flat and locally of finite presentation. Hence U → V
is open by Morphisms, Lemma 26.9. By construction of the topology on |Y| the
map |V | → |Y| is open. The map |U | → |X | is surjective. The result follows from
these facts by elementary topology. �

19. Gerbes

An important type of algebraic stack are the stacks of the form [B/G] where B
is an algebraic space and G is a flat and locally finitely presented group algebraic
space over B (acting trivially on B), see Criteria for Representability, Lemma 18.3.
It turns out that an algebraic stack is a gerbe when it locally in the fppf topology
is of this form, see Lemma 19.8. In this section we briefly discuss this notion and
the corresponding relative notion.

Definition 19.1. Let f : X → Y be a morphism of algebraic stacks. We say X
is a gerbe over Y if X is a gerbe over Y as stacks in groupoids over (Sch/S)fppf ,
see Stacks, Definition 11.4. We say an algebraic stack X is a gerbe if there exists a
morphism X → X where X is an algebraic space which turns X into a gerbe over
X.
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The condition that X be a gerbe over Y is defined purely in terms of the topology
and category theory underlying the given algebraic stacks; but as we will see later
this condition has geometric consequences. For example it implies that X → Y is
surjective, flat, and locally of finite presentation, see Lemma 19.7. The absolute
notion is trickier to parse, because it may not be at first clear that X is well
determined. Actually, it is.

Lemma 19.2. Let X be an algebraic stack. If X is a gerbe, then the sheafification
of the presheaf

(Sch/S)oppfppf → Sets, U 7→ Ob(XU )/∼=
is an algebraic space and X is a gerbe over it.

Proof. (In this proof the abuse of language introduced in Section 2 really pays
off.) Choose a morphism π : X → X where X is an algebraic space which turns
X into a gerbe over X. It suffices to prove that X is the sheafification of the
presheaf F displayed in the lemma. It is clear that there is a map c : F → X.
We will use Stacks, Lemma 11.3 properties (2)(a) and (2)(b) to see that the map
c# : F# → X is surjective and injective, hence an isomorphism, see Sites, Lemma
12.2. Surjective: Let T be a scheme and let f : T → X. By property (2)(a) there
exists an fppf covering {hi : Ti → T} and morphisms xi : Ti → X such that f ◦ hi
corresponds to π ◦ xi. Hence we see that f |Ti is in the image of c. Injective: Let T
be a scheme and let x, y : T → X be morphisms such that c ◦ x = c ◦ y. By (2)(b)
we can find a covering {Ti → T} and morphisms x|Ti

→ y|Ti
in the fibre category

XTi
. Hence the restrictions x|Ti

, y|Ti
are equal in F(Ti). This proves that x, y give

the same section of F# over T as desired. �

Lemma 19.3. Let

X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If X is a gerbe over Y, then X ′ is a gerbe
over Y ′.

Proof. Immediate from the definitions and Stacks, Lemma 11.5. �

Lemma 19.4. Let X → Y and Y → Z be morphisms of algebraic stacks. If X is
a gerbe over Y and Y is a gerbe over Z, then X is a gerbe over Z.

Proof. Immediate from Stacks, Lemma 11.6. �

Lemma 19.5. Let

X ′ //

��

X

��
Y ′ // Y

be a fibre product of algebraic stacks. If Y ′ → Y is surjective, flat, and locally of
finite presentation and X ′ is a gerbe over Y ′, then X is a gerbe over Y.

Proof. Follows immediately from Lemma 18.9 and Stacks, Lemma 11.7. �
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Lemma 19.6. Let π : X → U be a morphism from an algebraic stack to an
algebraic space and let x : U → X be a section of π. Set G = IsomX (x, x), see
Definition 5.3. If X is a gerbe over U , then

(1) there is a canonical equivalence of stacks in groupoids

xcan : [U/G] −→ X .
where [U/G] is the quotient stack for the trivial action of G on U ,

(2) G→ U is flat and locally of finite presentation, and
(3) U → X is surjective, flat, and locally of finite presentation.

Proof. Set R = U ×x,X ,x U . The morphism R → U × U factors through the
diagonal ∆U : U → U × U as it factors through U ×U U = U . Hence R = G
because

G = IsomX (x, x)

= U ×x,X IX
= U ×x,X (X ×∆,X×SX ,∆ X )

= (U ×x,X ,x U)×U×U,∆U
U

= R×U×U,∆U
U

= R

for the fourth equality use Categories, Lemma 29.12. Let t, s : R → U be the
projections. The composition law c : R×s,U,tR→ R constructed on R in Algebraic
Stacks, Lemma 16.1 agrees with the group law on G (proof omitted). Thus Alge-
braic Stacks, Lemma 16.1 shows we obtain a canonical fully faithful 1-morphism

xcan : [U/G] −→ X
of stacks in groupoids over (Sch/S)fppf . To see that it is an equivalence it suffices
to show that it is essentially surjective. To do this it suffices to show that any
object of X over a scheme T comes fppf locally from x via a morphism T → U ,
see Stacks, Lemma 4.8. However, this follows the condition that π turns X into a
gerbe over X, see property (2)(a) of Stacks, Lemma 11.3.

By Criteria for Representability, Lemma 18.3 we conclude that G → U is flat and
locally of finite presentation. Finally, U → X is surjective, flat, and locally of finite
presentation by Criteria for Representability, Lemma 17.1. �

Lemma 19.7. Let π : X → Y be a morphism of algebraic stacks. The following
are equivalent

(1) X is a gerbe over Y, and
(2) there exists an algebraic space U , a group algebraic space G flat and locally

of finite presentation over U , and a surjective, flat, and locally finitely
presented morphism U → Y such that X ×Y U ∼= [U/G] over U .

Proof. Assume (2). By Lemma 19.5 to prove (1) it suffices to show that [U/G] is
a gerbe over U . This is immediate from Groupoids in Spaces, Lemma 26.2.

Assume (1). Any base change of π is a gerbe, see Lemma 19.3. As a first step
we choose a scheme V and a surjective smooth morphism V → Y. Thus we may
assume that π : X → V is a gerbe over a scheme. This means that there exists an
fppf covering {Vi → V } such that the fibre category XVi

is nonempty, see Stacks,
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Lemma 11.3 (2)(a). Note that U =
∐
Vi → U is surjective, flat, and locally of finite

presentation. Hence we may replace V by U and assume that π : X → U is a gerbe
over a scheme U and that there exists an object x of X over U . By Lemma 19.6
we see that X = [U/G] over U for some flat and locally finitely presented group
algebraic space G over U . �

Lemma 19.8. Let π : X → Y be a morphism of algebraic stacks. If X is a gerbe
over Y, then π is surjective, flat, and locally of finite presentation.

Proof. By Properties of Stacks, Lemma 5.4 and Lemmas 17.4 and 18.7 it suffices to
prove to the lemma after replacing π by a base change with a surjective, flat, locally
finitely presented morphism Y ′ → Y. By Lemma 19.7 we may assume Y = U is an
algebraic space and X = [U/G] over U . Then U → [U/G] is surjective, flat, and
locally of finite presentation, see Lemma 19.6. This implies that π is surjective, flat,
and locally of finite presentation by Properties of Stacks, Lemma 5.5 and Lemmas
17.5 and 18.8. �

Proposition 19.9. Let X be an algebraic stack. The following are equivalent

(1) X is a gerbe, and
(2) IX → X is flat and locally of finite presentation.

Proof. Assume (1). Choose a morphism X → X into an algebraic space X which
turns X into a gerbe over X. Let X ′ → X is a surjective, flat, locally finitely
presented morphism and set X ′ = X ′ ×X X . Note that X ′ is a gerbe over X ′ by
Lemma 19.3. Then both squares in

IX ′ //

��

X ′ //

��

X ′

��
IX // X // X

are fibre product squares, see Lemma 5.4. Hence to prove IX → X is flat and
locally of finite presentation it suffices to do so after such a base change by Lemmas
17.4 and 18.7. Thus we can apply Lemma 19.7 to assume that X = [U/G]. By
Lemma 19.6 we see G is flat and locally of finite presentation over U and that
x : U → [U/G] is surjective, flat, and locally of finite presentation. Moreover, the
pullback of IX by x is G and we conclude that (2) holds by descent again, i.e., by
Lemmas 17.4 and 18.7.

Conversely, assume (2). Choose a smooth presentation X = [U/R], see Algebraic
Stacks, Section 16. Denote G → U the stabilizer group algebraic space of the
groupoid (U,R, s, t, c, e, i), see Groupoids in Spaces, Definition 15.2. By Lemma
5.6 we see that G→ U is flat and locally of finite presentation as a base change of
IX → X , see Lemmas 17.3 and 18.3. Consider the following action

a : G×U,t R→ R, (g, r) 7→ c(g, r)

of G on R. This action is free on T -valued points for any scheme T as R is a
groupoid. Hence R′ = R/G is an algebraic space and the quotient morphism
π : R → R′ is surjective, flat, and locally of finite presentation by Bootstrap,
Lemma 11.7. The projections s, t : R → U are G-invariant, hence we obtain
morphisms s′, t′ : R′ → U such that s = s′ ◦ π and t = t′ ◦ π. Since s, t : R→ U are
flat and locally of finite presentation we conclude that s′, t′ are flat and locally of
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finite presentation, see Morphisms of Spaces, Lemmas 29.5 and Descent on Spaces,
Lemma 14.1. Consider the morphism

j′ = (t′, s′) : R′ −→ U × U.
We claim this is a monomorphism. Namely, suppose that T is a scheme and that
a, b : T → R′ are morphisms which have the same image in U × U . By definition
of the quotient R′ = R/G there exists an fppf covering {hj : Tj → T} such that
a ◦ hj = π ◦ aj and b ◦ hj = π ◦ bj for some morphisms aj , bj : Tj → R. Since
aj , bj have the same image in U × U we see that gj = c(aj , i(bj)) is a Tj-valued
point of G such that c(gj , bj) = aj . In other words, aj and bj have the same image
in R′ and the claim is proved. Since j : R → U × U is a pre-equivalence relation
(see Groupoids in Spaces, Lemma 11.2) and R → R′ is surjective (as a map of
sheaves) we see that j′ : R′ → U × U is an equivalence relation. Hence Bootstrap,
Theorem 10.1 shows that X = U/R′ is an algebraic space. Finally, we claim that
the morphism

X = [U/R] −→ X = U/R′

turns X into a gerbe over X. This follows from Groupoids in Spaces, Lemma
26.1 as R → R′ is surjective, flat, and locally of finite presentation (if needed use
Bootstrap, Lemma 4.6 to see this implies the required hypothesis). �

At this point we have developed enough machinery to prove that residual gerbes
(when they exist) are gerbes.

Lemma 19.10. Let Z be a reduced, locally Noetherian algebraic stack such that
|Z| is a singleton. Then Z is a gerbe over a reduced, locally Noetherian algebraic
space Z with |Z| a singleton.

Proof. By Properties of Stacks, Lemma 11.3 there exists a surjective, flat, locally
finitely presented morphism Spec(k)→ Z where k is a field. Then IZ×Z Spec(k)→
Spec(k) is representable by algebraic spaces and locally of finite type (as a base
change of IZ → Z, see Lemmas 5.1 and 13.3). Therefore it is locally of finite
presentation, see Morphisms of Spaces, Lemma 27.7. Of course it is also flat as k
is a field. Hence we may apply Lemmas 17.4 and 18.7 to see that IZ → Z is flat
and locally of finite presentation. We conclude that Z is a gerbe by Proposition
19.9. Let π : Z → Z be a morphism to an algebraic space such that Z is a gerbe
over Z. Then π is surjective, flat, and locally of finite presentation by Lemma
19.8. Hence Spec(k) → Z is surjective, flat, and locally of finite presentation as
a composition, see Properties of Stacks, Lemma 5.2 and Lemmas 17.2 and 18.2.
Hence by Properties of Stacks, Lemma 11.3 we see that |Z| is a singleton and that
Z is locally Noetherian and reduced. �

Lemma 19.11. Let f : X → Y be a morphism of algebraic stacks. If X is a gerbe
over Y then the map |X | → |Y| is a homeomorphism of topological spaces.

Proof. Let k be a field and let y be an object of Y over Spec(k). By Stacks, Lemma
11.3 property (2)(a) there exists an fppf covering {Ti → Spec(k)} and objects xi of
X over Ti with f(xi) ∼= y|Ti

. Choose an i such that Ti 6= ∅. Choose a morphism
Spec(K) → Ti for some field K. Then k ⊂ K and xi|K is an object of X lying
over y|K . Thus we see that |Y| → |X |. is surjective. The map |Y| → |X | is also
injective. Namely, if x, x′ are objects of X over Spec(k) whose images f(x), f(x′)
become isomorphic (over an extension) in Y, then Stacks, Lemma 11.3 property
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(2)(b) guarantees the existence of an extension of k over which x and x′ become
isomorphic (details omitted). Hence |X | → |Y| is continuous and bijective and it
suffices to show that it is also open. This follows from Lemmas 19.8 and 18.11. �

The following lemma tells us that residual gerbes exist for all points on any algebraic
stack which is a gerbe.

Lemma 19.12. Let X be an algebraic stack. If X is a gerbe then for every x ∈ |X |
the residual gerbe of X at x exists.

Proof. Let π : X → X be a morphism from X into an algebraic space X which
turns X into a gerbe over X. Let Zx → X be the residual space of X at x, see
Decent Spaces, Definition 11.6. Let Z = X ×X Zx. By Lemma 19.3 the algebraic
stack Z is a gerbe over Zx. Hence |Z| = |Zx| (Lemma 19.11) is a singleton. Since
Z → Zx is locally of finite presentation as a base change of π (see Lemmas 19.8 and
18.3) we see that Z is locally Noetherian, see Lemma 13.5. Thus the residual gerbe
Zx of X at x exists and is equal to Zx = Zred the reduction of the algebraic stack
Z. Namely, we have seen above that |Zred| is a singleton mapping to x ∈ |X |, it is
reduced by construction, and it is locally Noetherian (as the reduction of a locally
Noetherian algebraic stack is locally Noetherian, details omitted). �

20. Stratification by gerbes

The goal of this section is to show that many algebraic stacks X have a “stratifica-
tion” by locally closed substacks Xi ⊂ X such that each Xi is a gerbe. This shows
that in some sense gerbes are the building blocks out of which any algebraic stack
is constructed. Note that by stratification we only mean that

|X | =
⋃

i
|Xi|

is a stratification of the topological space associated to X and nothing more (in
this section). Hence it is harmless to replace X by its reduction (see Properties of
Stacks, Section 10) in order to study this stratification.

The following proposition tells us there is (almost always) a dense open substack
of the reduction of X

Proposition 20.1. Let X be a reduced algebraic stack such that IX → X is quasi-
compact. Then there exists a dense open substack U ⊂ X which is a gerbe.

Proof. According to Proposition 19.9 it is enough to find a dense open substack U
such that IU → U is flat and locally of finite presentation. Note that IU = IX×X U ,
see Lemma 5.4.

Choose a presentation X = [U/R]. Let G → U be the stabilizer group algebraic
space of the groupoid R. By Lemma 5.6 we see that G→ U is the base change of
IX → X hence quasi-compact (by assumption) and locally of finite type (by Lemma
5.1). Let W ⊂ U be the largest open (possibly empty) subscheme such that the
restriction GW → W is flat and locally of finite presentation (we omit the proof
that W exists; hint: use that the properties are local). By Morphisms of Spaces,
Proposition 30.1 we see that W ⊂ U is dense. Note that W ⊂ U is R-invariant
by More on Groupoids in Spaces, Lemma 4.2. Hence W corresponds to an open
substack U ⊂ X by Properties of Stacks, Lemma 9.10. Since |U | → |X | is open
and |W | ⊂ |U | is dense we conclude that U is dense in X . Finally, the morphism
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IU → U is flat and locally of finite presentation because the base change by the
surjective smooth morphism W → U is the morphism GW → W which is flat and
locally of finite presentation by construction. See Lemmas 17.4 and 18.7. �

The above proposition immediately implies that any point has a residual gerbe on
an algebraic stack with quasi-compact inertia, as we will show in Lemma 21.1. It
turns out that there doesn’t always exist a finite stratification by gerbes. Here is
an example.

Example 20.2. Let k be a field. Take U = Spec(k[x0, x1, x2, . . .]) and let Gm

act by t(x0, x1, x2, . . .) = (tx0, t
px1, t

p2x2, . . .) where p is a prime number. Let
X = [U/Gm]. This is an algebraic stack. There is a stratification of X by strata

(1) X0 is where x0 is not zero,
(2) X1 is where x0 is zero but x1 is not zero,
(3) X2 is where x0, x1 are zero, but x2 is not zero,
(4) and so on, and
(5) X∞ is where all the xi are zero.

Each stratum is a gerbe over a scheme with group µpi for Xi and Gm for X∞. The
strata are reduced locally closed substacks. There is no coarser stratification with
the same properties.

Nonetheless, using transfinite induction we can use Proposition 20.1 find possibly
infinite stratifications by gerbes...!

Lemma 20.3. Let X be an algebraic stack such that IX → X is quasi-compact.
Then there exists a well-ordered index set I and for every i ∈ I a reduced locally
closed substack Ui ⊂ X such that

(1) each Ui is a gerbe,
(2) we have |X | =

⋃
i∈I |Ui|,

(3) Ti = |X | \
⋃
i′<i |Ui′ | is closed in |X | for all i ∈ I, and

(4) |Ui| is open in Ti.

We can moreover arrange it so that either (a) |Ui| ⊂ Ti is dense, or (b) Ui is quasi-
compact. In case (a), if we choose Ui as large as possible (see proof for details),
then the stratification is canonical.

Proof. Let T ⊂ |X | be a nonempty closed subset. We are going to find (resp.
choose) for every such T a reduced locally closed substack U(T ) ⊂ X with |U(T )| ⊂
T open dense (resp. nonempty quasi-compact). Namely, by Properties of Stacks,
Lemma 10.1 there exists a unique reduced closed substack X ′ ⊂ X such that T =
|X ′|. Note that IX ′ = IX ×X X ′ by Lemma 5.5. Hence IX ′ → X ′ is quasi-compact
as a base change, see Lemma 7.3. Therefore Proposition 20.1 implies there exists
a dense maximal (see proof proposition) open substack U ⊂ X ′ which is a gerbe.
In case (a) we set U(T ) = U (this is canonical) and in case (b) we simply choose a
nonempty quasi-compact open U(T ) ⊂ U , see Properties of Stacks, Lemma 4.9 (we
can do this for all T simultaneously by the axiom of choice).

By transfinite induction we construct for every ordinal α a closed subset Tα ⊂ |X |.
For α = 0 we set T0 = |X |. Given Tα set

Tα+1 = Tα \ |U(Tα)|.
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If β is a limit ordinal we set

Tβ =
⋂

α<β
Tα.

We claim that Tα = ∅ for all α large enough. Namely, assume that Tα 6= ∅ for all α.
Then we obtain an injective map from the class of ordinals into the set of subsets
of |X | which is a contradiction.

The claim implies the lemma. Namely, let

I = {α | Uα 6= ∅}.
This is a well-ordered set by the claim. For i = α ∈ I we set Ui = Uα. So Ui
is a reduced locally closed substack and a gerbe, i.e., (1) holds. By construction
Ti = Tα if i = α ∈ I, hence (3) holds. Also, (4) and (a) or (b) hold by our choice of
U(T ) as well. Finally, to see (2) let x ∈ |X |. There exists a smallest ordinal β with
x 6∈ Tβ (because the ordinals are well-ordered). In this case β has to be a successor
ordinal by the definition of Tβ for limit ordinals. Hence β = α+ 1 and x ∈ |U(Tα)|
and we win. �

Remark 20.4. We can wonder about the order type of the canonical stratifications
which occur as output of the stratifications of type (a) constructed in Lemma 20.3.
A natural guess is that the well-ordered set I has cardinality at most ℵ0. We have
no idea if this is true or false. If you do please email stacks.project@gmail.com.

21. Existence of residual gerbes

In this section we prove that residual gerbes (as defined in Properties of Stacks, Def-
inition 11.8) exist on many algebraic stacks. First, here is the promised application
of Proposition 20.1.

Lemma 21.1. Let X be an algebraic stack such that IX → X is quasi-compact.
Then the residual gerbe of X at x exists for every x ∈ |X |.

Proof. Let T = {x} ⊂ |X | be the closure of x. By Properties of Stacks, Lemma
10.1 there exists a reduced closed substack X ′ ⊂ X such that T = |X ′|. Note
that IX ′ = IX ×X X ′ by Lemma 5.5. Hence IX ′ → X ′ is quasi-compact as a base
change, see Lemma 7.3. Therefore Proposition 20.1 implies there exists a dense
open substack U ⊂ X ′ which is a gerbe. Note that x ∈ |U| because {x} ⊂ T is a
dense subset too. Hence a residual gerbe Zx ⊂ U of U at x exists by Lemma 19.12.
It is immediate from the definitions that Zx → X is a residual gerbe of X at x. �

If the stack is quasi-DM then residual gerbes exist too. In particular, residual
gerbes always exist for Delinge-Mumford stacks.

Lemma 21.2. Let X be a quasi-DM algebraic stack. Then the residual gerbe of X
at x exists for every x ∈ |X |.

Proof. Choose a scheme U and a surjective, flat, locally finite presented, and
locally quasi-finite morphism U → X , see Theorem 15.3. Set R = U ×X U . The
projections s, t : R → U are surjective, flat, locally of finite presentation, and
locally quasi-finite as base changes of the morphism U → X . There is a canonical
morphism [U/R]→ X (see Algebraic Stacks, Lemma 16.1) which is an equivalence
because U → X is surjective, flat, and locally of finite presentation, see Algebraic
Stacks, Remark 16.3. Thus we may assume that X = [U/R] where (U,R, s, t, c) is
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a groupoid in algebraic spaces such that s, t : R→ U are surjective, flat, locally of
finite presentation, and locally quasi-finite. Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let

R′ = U ′ ×X U ′ = R×(U×U) (U ′ × U ′)
Because U ′ → U is a monomorphism we see that both projections s′, t′ : R′ → U ′

factor as a monomorphism followed by a locally quasi-finite morphism. Hence, as
U ′ is a disjoint union of spectra of fields, using Spaces over Fields, Lemma 7.3 we
conclude that the morphisms s′, t′ : R′ → U ′ are locally quasi-finite. Again since
U ′ is a disjoint union of spectra of fields, the morphisms s′, t′ are also flat. Finally,
s′, t′ locally quasi-finite implies s′, t′ locally of finite type, hence s′, t′ locally of finite
presentation (because U ′ is a disjoint union of spectra of fields in particular locally
Noetherian, so that Morphisms of Spaces, Lemma 27.7 applies). Hence Z = [U ′/R′]
is an algebraic stack by Criteria for Representability, Theorem 17.2. As R′ is the
restriction of R by U ′ → U we see Z → X is a monomorphism by Groupoids
in Spaces, Lemma 24.1 and Properties of Stacks, Lemma 8.4. Since Z → X is a
monomorphism we see that |Z| → |X | is injective, see Properties of Stacks, Lemma
8.5. By Properties of Stacks, Lemma 4.3 we see that

|U ′| = |Z ×X U ′| −→ |Z| ×|X | |U ′|
is surjective which implies (by our choice of U ′) that |Z| → |X | has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., Z is reduced and locally Noetherian. This means that the essential
image of Z → X is the residual gerbe of X at x, see Properties of Stacks, Lemma
11.11. �

22. Smooth morphisms

The property “being smooth” of morphisms of algebraic spaces is smooth local on
the source-and-target, see Descent on Spaces, Remark 18.5. It is also stable under
base change and fpqc local on the target, see Morphisms of Spaces, Lemma 34.3
and Descent on Spaces, Lemma 10.24. Hence, by Lemma 12.1 above, we may define
what it means for a morphism of algebraic spaces to be smooth as follows and it
agrees with the already existing notion defined in Properties of Stacks, Section 3
when the morphism is representable by algebraic spaces.

Definition 22.1. Let f : X → Y be a morphism of algebraic stacks. We say f is
smooth if the equivalent conditions of Lemma 12.1 hold with P = smooth.

Lemma 22.2. The composition of smooth morphisms is smooth.

Proof. Combine Remark 12.3 with Morphisms of Spaces, Lemma 34.2. �

Lemma 22.3. A base change of a smooth morphism is smooth.

Proof. Combine Remark 12.4 with Morphisms of Spaces, Lemma 34.3. �
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