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2 SIMPLICIAL METHODS

1. Introduction

This is a minimal introduction to simplicial methods. We just add here whenever
something is needed later on. A general reference to this material is perhaps [GJ99].
An example of the things you can do is the paper by Quillen on Homotopical
Algebra, see [Qui67] or the paper on Étale Homotopy by Artin and Mazur, see
[AM69].

2. The category of finite ordered sets

The category ∆ is the category with

(1) objects [0], [1], [2], . . . with [n] = {0, 1, 2, . . . , n} and
(2) a morphism [n]→ [m] is a nondecreasing map {0, 1, 2, . . . , n} → {0, 1, 2, . . . ,m}

between the corresponding sets.

Here nondecreasing for a map ϕ : [n] → [m] means by definition that ϕ(i) ≥
ϕ(j) if i ≥ j. In other words, ∆ is a category equivalent to the “big” category
of finite totally ordered sets and nondecreasing maps. There are exactly n + 1
morphisms [0]→ [n] and there is exactly 1 morphism [n]→ [0]. There are exactly
(n + 1)(n + 2)/2 morphisms [1] → [n] and there are exactly n + 2 morphisms
[n]→ [1]. And so on and so forth.

Definition 2.1. For any integer n ≥ 1, and any 0 ≤ j ≤ n we let δnj : [n− 1]→ [n]
denote the injective order preserving map skipping j. For any integer n ≥ 0, and
any 0 ≤ j ≤ n we denote σnj : [n + 1] → [n] the surjective order preserving map

with (σnj )−1({j}) = {j, j + 1}.

Lemma 2.2. Any morphism in ∆ can be written as a composition of the morphisms
δnj and σnj .

Proof. Let ϕ : [n] → [m] be a morphism of ∆. If j 6∈ Im(ϕ), then we can write
ϕ as δmj ◦ ψ for some morphism ψ : [n] → [m − 1]. If ϕ(j) = ϕ(j + 1) then we

can write ϕ as ψ ◦ σn−1
j for some morphism ψ : [n − 1] → [m]. The result follows

because each replacement as above lowers n+m and hence at some point ϕ is both
injective and surjective, hence an identity morphism. �

Lemma 2.3. The morphisms δnj and σnj satisfy the following relations.

(1) If 0 ≤ i < j ≤ n + 1, then δn+1
j ◦ δni = δn+1

i ◦ δnj−1. In other words the
diagram

[n]
δn+1
j

""
[n− 1]

δni

<<

δnj−1 ""

[n+ 1]

[n]

δn+1
i

<<

commutes.
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(2) If 0 ≤ i < j ≤ n − 1, then σn−1
j ◦ δni = δn−1

i ◦ σn−2
j−1 . In other words the

diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j−1 $$

[n− 1]

[n− 2]

δn−1
i

::

commutes.
(3) If 0 ≤ j ≤ n − 1, then σn−1

j ◦ δnj = id[n−1] and σn−1
j ◦ δnj+1 = id[n−1]. In

other words the diagram

[n]
σn−1
j

""
[n− 1]

δnj

<<

δnj+1 ""

id[n−1] // [n− 1]

[n]

σn−1
j

<<

commutes.
(4) If 0 < j + 1 < i ≤ n, then σn−1

j ◦ δni = δn−1
i−1 ◦ σ

n−2
j . In other words the

diagram

[n]
σn−1
j

$$
[n− 1]

δni

::

σn−2
j $$

[n− 1]

[n− 2]

δn−1
i−1

::

commutes.
(5) If 0 ≤ i ≤ j ≤ n − 1, then σn−1

j ◦ σni = σn−1
i ◦ σnj+1. In other words the

diagram

[n]
σn−1
j

""
[n+ 1]

σni

<<

σnj+1 ""

[n− 1]

[n]

σn−1
i

<<

commutes.

Proof. Omitted. �

Lemma 2.4. The category ∆ is the universal category with objects [n], n ≥ 0
and morphisms δnj and σnj such that (a) every morphism is a composition of these
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4 SIMPLICIAL METHODS

morphisms, (b) the relations listed in Lemma 2.3 are satisfied, and (c) any relation
among the morphisms is a consequence of those relations.

Proof. Omitted. �

3. Simplicial objects

Definition 3.1. Let C be a category.

(1) A simplicial object U of C is a contravariant functor U from ∆ to C, in a
formula:

U : ∆opp −→ C
(2) If C is the category of sets, then we call U a simplicial set.
(3) If C is the category of abelian groups, then we call U a simplicial abelian

group.
(4) A morphism of simplicial objects U → U ′ is a transformation of functors.
(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing
map ϕ : [m] → [n] a morphism U(ϕ) : U([n]) → U([m]), satisfying U(ϕ ◦ ψ) =
U(ψ) ◦ U(ϕ).

In particular there is a unique morphism U([0])→ U([n]) and there are exactly n+1
morphisms U([n])→ U([0]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 2 above.

Lemma 3.2. Let C be a category.

(1) Given a simplicial object U in C we obtain a sequence of objects Un =
U([n]) endowed with the morphisms dnj = U(δnj ) : Un → Un−1 and snj =
U(σnj ) : Un → Un+1. These morphisms satisfy the opposites of the relations
displayed in Lemma 2.3.

(2) Conversely, given a sequence of objects Un and morphisms dnj , snj satisfying
these relations there exists a unique simplicial object U in C such that Un =
U([n]), dnj = U(δnj ), and snj = U(σnj ).

(3) A morphism between simplicial objects U and U ′ is given by a family of
morphisms Un → U ′n commuting with the morphisms dnj and snj .

Proof. This follows from Lemma 2.4. �

Remark 3.3. By abuse of notation we sometimes write di : Un → Un−1 instead of
dni , and similarly for si : Un → Un+1. The relations among the morphisms dni and
sni may be expressed as follows:

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.
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We get a unique morphism s0
0 = U(σ0

0) : U0 → U1 and two morphisms d1
0 = U(δ1

0),
and d1

1 = U(δ1
1) which are morphisms U1 → U0. There are two morphisms s1

0 =
U(σ1

0), s1
1 = U(σ1

1) which are morphisms U1 → U2. Three morphisms d2
0 = U(δ2

0),
d2

1 = U(δ2
1), d2

2 = U(δ2
2) which are morphisms U3 → U2. And so on.

Pictorially we think of U as follows:

U2

//
//
//
U1

//
//oo

oo
U0

oo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the
arrows pointing left.

Example 3.4. The simplest example is the constant simplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .

Example 3.5. Suppose that Y → X is a morphism of C such that all the fibred
products Y ×X Y ×X . . . ×X Y exist. Then we set Un equal to the (n + 1)-fold
fibre product, and we let ϕ : [n] → [m] correspond to the map (on “coordinates”)
(y0, . . . , ym) 7→ (yϕ(0), . . . , yϕ(n)). In other words, the map U0 = Y → U1 = Y ×X Y
is the diagonal map. The two maps U1 = Y ×X Y → U0 = Y are the projection
maps.

Geometrically Example 3.5 above is an important example. It tells us that it is
a good idea to think of the maps dnj : Un → Un−1 as projection maps (forgetting
the jth component), and to think of the maps snj : Un → Un+1 as diagonal maps
(repeating the jth coordinate). We will return to this in the sections below.

Lemma 3.6. Let C be a category. Let U be a simplicial object of C. Each of the
morphisms sni : Un → Un+1 has a left inverse. In particular sni is a monomorphism.

Proof. This is true because dn+1
i ◦ sni = idUn . �

4. Simplicial objects as presheaves

Another observation is that we may think of a simplicial object of C as a presheaf
with values in C over ∆. See Sites, Definition 2.2. And in fact, if U , U ′ are simplicial
objects of C, then we have

(4.0.1) Mor(U,U ′) = MorPSh(∆)(U,U
′).

Some of the material below could be replaced by the more general constructions in
the chapter on sites. However, it seems a clearer picture arises from the arguments
specific to simplicial objects.

5. Cosimplicial objects

A cosimplicial object of a category C could be defined simply as a simplicial object
of the opposite category Copp. This is not really how the human brain works, so we
introduce them separately here and point out some simple properties.

Definition 5.1. Let C be a category.

(1) A cosimplicial object U of C is a covariant functor U from ∆ to C, in a
formula:

U : ∆ −→ C
(2) If C is the category of sets, then we call U a cosimplicial set.

http://localhost:8080/tag/016D
http://localhost:8080/tag/016E
http://localhost:8080/tag/016F
http://localhost:8080/tag/016J
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(3) If C is the category of abelian groups, then we call U a cosimplicial abelian
group.

(4) A morphism of cosimplicial objects U → U ′ is a transformation of functors.
(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]), U([1]), U([2]), . . . and for ϕ any nondecreasing
map ϕ : [m] → [n] a morphism U(ϕ) : U([m]) → U([n]), satisfying U(ϕ ◦ ψ) =
U(ϕ) ◦ U(ψ).

In particular there is a unique morphism U([n])→ U([0]) and there are exactly n+1
morphisms U([0])→ U([n]) corresponding to the n+ 1 maps [0]→ [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section 2 above.

Lemma 5.2. Let C be a category.

(1) Given a cosimplicial object U in C we obtain a sequence of objects Un =
U([n]) endowed with the morphisms δnj = U(δnj ) : Un−1 → Un and σnj =
U(σnj ) : Un+1 → Un. These morphisms satisfy the relations displayed in
Lemma 2.3.

(2) Conversely, given a sequence of objects Un and morphisms δnj , σnj satisfying
these relations there exists a unique cosimplicial object U in C such that
Un = U([n]), δnj = U(δnj ), and σnj = U(σnj ).

(3) A morphism between cosimplicial objects U and U ′ is given by a family of
morphisms Un → U ′n commuting with the morphisms δnj and σnj .

Proof. This follows from Lemma 2.4. �

Remark 5.3. By abuse of notation we sometimes write δi : Un−1 → Un instead of
δni , and similarly for σi : Un+1 → Un. The relations among the morphisms δni and
σni may be expressed as follows:

(1) If i < j, then δj ◦ δi = δi ◦ δj−1.
(2) If i < j, then σj ◦ δi = δi ◦ σj−1.
(3) We have id = σj ◦ δj = σj ◦ δj+1.
(4) If i > j + 1, then σj ◦ δi = δi−1 ◦ σj .
(5) If i ≤ j, then σj ◦ σi = σi ◦ σj+1.

This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism σ0
0 = U(σ0

0) : U1 → U0 and two morphisms δ1
0 = U(δ1

0),
and δ1

1 = U(δ1
1) which are morphisms U0 → U1. There are two morphisms σ1

0 =
U(σ1

0), σ1
1 = U(σ1

1) which are morphisms U2 → U1. Three morphisms δ2
0 = U(δ2

0),
δ2
1 = U(δ2

1), δ2
2 = U(δ2

2) which are morphisms U2 → U3. And so on.

Pictorially we think of U as follows:

U0
//
// U1

oo
//
//
//
U2oo

oo

Here the δ-morphisms are the arrows pointing right and the σ-morphisms are the
arrows pointing left.

Example 5.4. The simplest example is the constant cosimplicial object with value
X ∈ Ob(C). In other words, Un = X and all maps are idX .
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Example 5.5. Suppose that Y → X is a morphism of C such that all the pushouts
Y
∐
X Y

∐
X . . .

∐
X Y exist. Then we set Un equal to the (n+1)-fold pushout, and

we let ϕ : [n]→ [m] correspond to the map

(y in ith component) 7→ (y in ϕ(i)th component)

on “coordinates”. In other words, the map U1 = Y
∐
X Y → U0 = Y is the identity

on each component. The two maps U0 = Y → U1 = Y
∐
X Y are the two natural

maps.

Lemma 5.6. Let C be a category. Let U be a cosimplicial object of C. Each of the
morphisms δni : Un−1 → Un has a left inverse. In particular δni is a monomorphism.

Proof. This is true because σn−1
i ◦ δni = idUn for j < n. �

6. Products of simplicial objects

Of course we should define the product of simplicial objects as the product in the
category of simplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the
product directly as follows.

Definition 6.1. Let C be a category. Let U and V be simplicial objects of C.
Assume the products Un × Vn exist in C. The product of U and V is the simplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, U × V is the product of the presheaves U and V on ∆.

Lemma 6.2. If U and V are simplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third simplicial object W of C.

Proof. Omitted. �

7. Fibre products of simplicial objects

Of course we should define the fibre product of simplicial objects as the fibre product
in the category of simplicial objects. This may lead to the potentially confusing
situation where the fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.

Definition 7.1. Let C be a category. Let U, V,W be simplicial objects of C. Let
a : V → U , b : W → U be morphisms. Assume the fibre products Vn ×Un Wn exist
in C. The fibre product of V and W over U is the simplicial object V ×UW defined
as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, V ×U W is the fibre product of the presheaves V and W over the
presheaf U on ∆.
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Lemma 7.2. If U, V,W are simplicial objects in the category C, and if a : V → U ,
b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth simplicial object T of C.

Proof. Omitted. �

8. Pushouts of simplicial objects

Of course we should define the pushout of simplicial objects as the pushout in the
category of simplicial objects. This may lead to the potentially confusing situation
where the pushouts exist but are not as described below. To avoid this we define
the pushout directly as follows.

Definition 8.1. Let C be a category. Let U, V,W be simplicial objects of C. Let
a : U → V , b : U → W be morphisms. Assume the pushouts Vn qUn Wn exist in
C. The pushout of V and W over U is the simplicial object V qU W defined as
follows:

(1) (V qU W )n = Vn qUn Wn,
(2) dni = (dni , d

n
i ), and

(3) sni = (sni , s
n
i ).

In other words, V qUW is the pushout of the presheaves V and W over the presheaf
U on ∆.

Lemma 8.2. If U, V,W are simplicial objects in the category C, and if a : U → V ,
b : U →W are morphisms and if V qU W exists, then we have

Mor(V qU W,T ) = Mor(V, T )×Mor(U,T ) Mor(W,T )

for any fourth simplicial object T of C.

Proof. Omitted. �

9. Products of cosimplicial objects

Of course we should define the product of cosimplicial objects as the product in
the category of cosimplicial objects. This may lead to the potentially confusing
situation where the product exists but is not described as below. To avoid this we
define the product directly as follows.

Definition 9.1. Let C be a category. Let U and V be cosimplicial objects of C.
Assume the products Un×Vn exist in C. The product of U and V is the cosimplicial
object U × V defined as follows:

(1) (U × V )n = Un × Vn,
(2) for any ϕ : [n] → [m] the map (U × V )(ϕ) : Un × Vn → Um × Vm is the

product U(ϕ)× V (ϕ).

Lemma 9.2. If U and V are cosimplicial objects in the category C, and if U × V
exists, then we have

Mor(W,U × V ) = Mor(W,U)×Mor(W,V )

for any third cosimplicial object W of C.

Proof. Omitted. �
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10. Fibre products of cosimplicial objects

Of course we should define the fibre product of cosimplicial objects as the fibre
product in the category of cosimplicial objects. This may lead to the potentially
confusing situation where the product exists but is not described as below. To
avoid this we define the fibre product directly as follows.

Definition 10.1. Let C be a category. Let U, V,W be cosimplicial objects of C. Let
a : V → U and b : W → U be morphisms. Assume the fibre products Vn ×Un Wn

exist in C. The fibre product of V and W over U is the cosimplicial object V ×UW
defined as follows:

(1) (V ×U W )n = Vn ×Un Wn,
(2) for any ϕ : [n] → [m] the map (V ×U W )(ϕ) : Vn ×Un Wn → Vm ×Um Wm

is the product V (ϕ)×U(ϕ) W (ϕ).

Lemma 10.2. If U, V,W are cosimplicial objects in the category C, and if a : V →
U , b : W → U are morphisms and if V ×U W exists, then we have

Mor(T, V ×U W ) = Mor(T, V )×Mor(T,U) Mor(T,W )

for any fourth cosimplicial object T of C.

Proof. Omitted. �

11. Simplicial sets

Let U be a simplicial set. It is a good idea to think of U0 as the 0-simplices, the
set U1 as the 1-simplices, the set U2 as the 2-simplices, and so on.

We think of the maps snj : Un → Un+1 as the map that associates to an n-simplex
A the degenerate (n+ 1)-simplex B whose (j, j + 1)-edge is collapsed to the vertex
j of A. We think of the map dnj : Un → Un−1 as the map that associates to an
n-simplex A one of the faces, namely the face that omits the vertex j. In this way it
become possible to visualize the relations among the maps snj and dnj geometrically.

Definition 11.1. Let U be a simplicial set. We say x is an n-simplex of U to
signify that x is an element of Un. We say that y is the jthe face of x to signify
that dnj x = y. We say that z is the jth degeneracy of x if z = snj x. A simplex is
called degenerate if it is the degeneracy of another simplex.

Here are a few fundamental examples.

Example 11.2. For every n ≥ 0 we denote ∆[n] the simplicial set

∆opp −→ Sets

[k] 7−→ Mor∆([k], [n])

We leave it to the reader to verify the following statements. Every m-simplex of
∆[n] with m > n is degenerate. There is a unique nondegenerate n-simplex of ∆[n],
namely id[n].

Lemma 11.3. Let U be a simplicial set. Let n ≥ 0 be an integer. There is a
canonical bijection

Mor(∆[n], U) −→ Un

which maps a morphism ϕ to the value of ϕ on the unique nondegenerate n-simplex
of ∆[n].
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Proof. Omitted. �

Example 11.4. Consider the category ∆/[n] of objects over [n] in ∆, see Cate-
gories, Example 2.13. There is a functor p : ∆/[n] → ∆. The fibre category of p
over [k], see Categories, Section 33, has as objects the set ∆[n]k of k-simplices in
∆[n], and as morphisms only identities. For every morphism ϕ : [k]→ [l] of ∆, and
every object ψ : [l]→ [n] in the fibre category over [l] there is a unique object over
[k] with a morphism covering ϕ, namely ψ ◦ ϕ : [k] → [n]. Thus ∆/[n] is fibred
in sets over ∆. In other words, we may think of ∆/[n] as a presheaf of sets over
∆. See also, Categories, Example 36.7. And this presheaf of sets agrees with the
simplicial set ∆[n]. In particular, from Equation (4.0.1) and Lemma 11.3 above we
get the formula

MorPSh(∆)(∆/[n], U) = Un

for any simplicial set U .

Lemma 11.5. Let U , V be simplicial sets. Let a, b ≥ 0 be integers. Assume every
n-simplex of U is degenerate if n > a. Assume every n-simplex of V is degenerate
if n > b. Then every n-simplex of U × V is degenerate if n > a+ b.

Proof. Suppose n > a+b. Let (u, v) ∈ (U×V )n = Un×Vn. By assumption, there
exists a α : [n] → [a] and a u′ ∈ Ua and a β : [n] → [b] and a v′ ∈ Vb such that
u = U(α)(u′) and v = V (β)(v′). Because n > a + b, there exists an 0 ≤ i ≤ a + b
such that α(i) = α(i+ 1) and β(i) = β(i+ 1). It follows immediately that (u, v) is
in the image of sn−1

i . �

12. Truncated simplicial objects and skeleton functors

Let ∆≤n denote the full subcategory of ∆ with objects [0], [1], [2], . . . , [n]. Let C be
a category.

Definition 12.1. An n-truncated simplicial object of C is a contravariant functor
from ∆≤n to C. A morphism of n-truncated simplicial objects is a transformation
of functors. We denote the category of n-truncated simplicial objects of C by the
symbol Simpn(C).

Given a simplicial object U of C the truncation sknU is the restriction of U to the
subcategory ∆≤n. This defines a skeleton functor

skn : Simp(C) −→ Simpn(C)

from the category of simplicial objects of C to the category of n-truncated simplicial
objects of C. See Remark 20.6 to avoid possible confusion with other functors in
the literature.

13. Products with simplicial sets

Let C be a category. Let U be a simplicial set. Let V be a simplicial object of C.
We can consider the covariant functor which associates to a simplicial object W of
C the set
(13.0.1){

(fn,u : Vn →Wn)n≥0,u∈Un such that
∀ϕ : [m]→ [n]

fm,U(ϕ)(u) ◦ V (ϕ) = W (ϕ) ◦ fn,u

}
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If this functor is of the form MorSimp(C)(Q,−) then we can think of Q as the
product of U with V . Instead of formalizing this in this way we just directly define
the product as follows.

Definition 13.1. Let C be a category such that the coproduct of any two objects
of C exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume
that each Un is finite nonempty. In this case we define the product U ×V of U and
V to be the simplicial object of C whose nth term is the object

(U × V )n =
∐

u∈Un
Vn

with maps for ϕ : [m]→ [n] given by the morphism∐
u∈Un

Vn −→
∐

u′∈Um
Vm

which maps the component Vn corresponding to u to the component Vm correspond-
ing to u′ = U(ϕ)(u) via the morphism V (ϕ). More loosely, if all of the coproducts
displayed above exist (without assuming anything about C) we will say that the
product U × V exists.

Lemma 13.2. Let C be a category such that the coproduct of any two objects of C
exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that
each Un is finite nonempty. The functor W 7→ MorSimp(C)(U×V,W ) is canonically
isomorphic to the functor which maps W to the set in Equation (13.0.1).

Proof. Omitted. �

Lemma 13.3. Let C be a category such that the coproduct of any two objects of C
exists. Let us temporarily denote FSSets the category of simplicial sets all of whose
components are finite nonempty.

(1) The rule (U, V ) 7→ U × V defines a functor FSSets× Simp(C)→ Simp(C).
(2) For every U , V as above there is a canonical map of simplicial objects

U × V −→ V

defined by taking the identity on each component of (U × V )n =
∐
u Vn.

Proof. Omitted. �

We briefly study a special case of the construction above. Let C be a category. Let
X be an object of C. Let k ≥ 0 be an integer. If all coproducts X

∐
. . .
∐
X exist

then according to the definition above the product

X ×∆[k]

exists, where we think of X as the corresponding constant simplicial object.

Lemma 13.4. With X and k as above. For any simplicial object V of C we have
the following canonical bijection

MorSimp(C)(X ×∆[k], V ) −→ MorC(X,Vk).

wich maps γ to the restriction of the morphism γk to the component corresponding
to id[k]. Similarly, for any n ≥ k, if W is an n-truncated simplicial object of C,
then we have

MorSimpn(C)(skn(X ×∆[k]),W ) = MorC(X,Wk).
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Proof. A morphism γ : X × ∆[k] → V is given by a family of morphisms γα :
X → Vn where α : [n] → [k]. The morphisms have to satisfy the rules that for all
ϕ : [m]→ [n] the diagrams

X
γα //

idX

��

Vn

V (ϕ)

��
X

γα◦ϕ // Vm

commute. Taking α = id[k], we see that for any ϕ : [m] → [k] we have γϕ =
V (ϕ)◦γid[k]

. Thus the morphism γ is determined by the value of γ on the component
corresponding to id[k]. Conversely, given such a morphism f : X → Vk we easily
construct a morphism γ by putting γα = V (α) ◦ f .

The truncated case is similar, and left to the reader. �

A particular example of this is the case k = 0. In this case the formula of the
lemma just says that

MorC(X,V0) = MorSimp(C)(X,V )

where on the right hand side X indicates the constant simplicial object with value
X. We will use this formula without further mention in the following.

14. Hom from simplicial sets into cosimplicial objects

Let C be a category. Let U be a simplicial object of C, and let V be a cosimplicial
object of C. Then we get a cosimplicial set HomC(U, V ) as follows:

(1) we set HomC(U, V )n = MorC(Un, Vn), and
(2) for ϕ : [m]→ [n] we take the map HomC(U, V )m → HomC(U, V )n given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ).

This is our motivation for the following definition.

Definition 14.1. Let C be a category with finite products. Let V be a cosimplicial
object of C. Let U be a simplicial set such that each Un is finite nonempty. We
define Hom(U, V ) to be the cosimplicial object of C defined as follows:

(1) we set Hom(U, V )n =
∏
u∈Un Vn, in other words the unique object of C such

that its X-valued points satisfy

MorC(X,Hom(U, V )n) = Map(Un,MorC(X,Vn))

and
(2) for ϕ : [m] → [n] we take the map Hom(U, V )m → Hom(U, V )n given by

f 7→ V (ϕ) ◦ f ◦ U(ϕ) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between
products. We also point out that the construction is functorial in both U (con-
travariantly) and V (covariantly), exactly as in Lemma 13.3 in the case of products
of simplicial sets with simplicial objects.

http://localhost:8080/tag/019V
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15. Internal Hom

Let C be a category with finite nonempty products. Let U , V be simplicial objects
C. In some cases the functor

Simp(C)opp −→ Sets

W 7−→ MorSimp(C)(W × V,U)

is representable. In this case we denote Hom(V,U) the resulting simplicial object
of C, and we say that the internal hom of V into U exists. Moreover, in this case
we would have

MorC(X,Hom(V,U)n) = MorSimp(C)(X ×∆[n],Hom(V,U))

= MorSimp(C)(X ×∆[n]× V,U)

= MorSimp(C)(X,Hom(∆[n]× V,U))

= MorC(X,Hom(∆[n]× V,U)0)

provided that Hom(∆[n]× V,U) exists also. Here we have used the material from
Section 13.

The lesson we learn from this is that, given U and V , if we want to construct the
internal hom then we should try to construct the objects

Hom(∆[n]× V,U)0

because these should be the nth term of Hom(V,U). In the next section we study
a construction of simplicial objects “Hom(∆[n], U)”.

16. Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial
object classifying morphisms from a simplicial set into a given simplicial object of
the category C.

Definition 16.1. Let C be a category such that the coproduct of any two objects
exists. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V be
a simplicial object of C. We denote Hom(U, V ) any simplicial object of C such that

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )

functorially in the simplicial object W of C.

Of course Hom(U, V ) need not exist. Also, by the discussion in Section 15 we expect
that if it does exist, then Hom(U, V )n = Hom(U × ∆[n], V )0. We do not use the
italic notation for these Hom objects since Hom(U, V ) is not an internal hom.

Lemma 16.2. Assume the category C has coproducts of any two objects and count-
able limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Let V
be a simplicial object of C. Then the functor

Copp −→ Sets

X 7−→ MorSimp(C)(X × U, V )

is representable.

http://localhost:8080/tag/017I
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Proof. A morphism from X × U into V is given by a collection of morphisms
fu : X → Vn with n ≥ 0 and u ∈ Un. And such a collection actually defines a
morphism if and only if for all ϕ : [m]→ [n] all the diagrams

X
fu //

idX

��

Vn

V (ϕ)

��
X
fU(ϕ)(u)// Vm

commute. Thus it is natural to introduce a category U and a functor V : Uopp → C
as follows:

(1) The set of objects of U is
∐
n≥0 Un,

(2) a morphism from u′ ∈ Um to u ∈ Un is a ϕ : [m]→ [n] such that U(ϕ)(u) =
u′

(3) for u ∈ Un we set V(u) = Vn, and
(4) for ϕ : [m]→ [n] such that U(ϕ)(u) = u′ we set V(ϕ) = V (ϕ) : Vn → Vm.

At this point it is clear that our functor is nothing but the functor defining

limUopp V

Thus if C has countable limits then this limit and hence an object representing the
functor of the lemma exist. �

Lemma 16.3. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n� 0. Let V be a simplicial object
of C. Then the functor

Copp −→ Sets

X 7−→ MorSimp(C)(X × U, V )

is representable.

Proof. We have to show that the category U described in the proof of Lemma 16.2
has a finite subcategory U ′ such that the limit of V over U ′ is the same as the limit
of V over U . We will use Categories, Lemma 17.4. For m > 0 let U≤m denote the
full subcategory with objects

∐
0≤n≤m Um. Let m0 be an integer such that every

n-simplex of the simplicial set U is degenerate if n > m0. For any m ≥ m0 large
enough, the subcategory U≤m satisfies property (1) of Categories, Definition 17.3.

Suppose that u ∈ Un and u′ ∈ Un′ with n, n′ ≤ m0 and suppose that ϕ : [k] →
[n], ϕ′ : [k] → [n′] are morphisms such that U(ϕ)(u) = U(ϕ′)(u′). A simple
combinatorial argument shows that if k > 2m0, then there exists an index 0 ≤ i ≤
2m0 such that ϕ(i) = ϕ(i + 1) and ϕ′(i) = ϕ′(i + 1). (The pigeon hole principle
would tell you this works if k > m2

0 which is good enough for the argument below

anyways.) Hence, if k > 2m0, we may write ϕ = ψ ◦ σk−1
i and ϕ′ = ψ′ ◦ σk−1

i for

some ψ : [k − 1] → [n] and some ψ′ : [k − 1] → [n′]. Since sk−1
i : Uk−1 → Uk is

injective, see Lemma 3.6, we conclude that U(ψ)(u) = U(ψ′)(u′) also. Continuing
in this fashion we conclude that given morphisms u → z and u′ → z of U with

http://localhost:8080/tag/017K
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u, u′ ∈ U≤m0
, there exists a commutative diagram

u

  ''
a // z

u′

?? 77

with a ∈ U≤2m0 .

It is easy to deduce from this that the finite subcategory U≤2m0 works. Namely,
suppose given x′ ∈ Un and x′′ ∈ Un′ with n, n′ ≤ 2m0 as well as morphisms x′ → x
and x′′ → x of U with the same target. By our choice of m0 we can find objects
u, u′ of U≤m0

and morphisms u→ x′, u′ → x′′. By the above we can find a ∈ U≤2m0

and morphisms u→ a, u′ → a such that

u

!! ((

// x′

  
a // x

u′

== 66

// x′′

>>

is commutative. Turning this diagram 90 degrees clockwise we get the desired
diagram as in (2) of Categories, Definition 17.3. �

Lemma 16.4. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with Un finite nonempty for all n ≥ 0. Assume
that all n-simplices of U are degenerate for all n� 0. Let V be a simplicial object
of C. Then Hom(U, V ) exists, moreover we have the expected equalities

Hom(U, V )n = Hom(U ×∆[n], V )0.

Proof. We construct this simplicial object as follows. For n ≥ 0 let Hom(U, V )n
denote the object of C representing the functor

X 7−→ MorSimp(C)(X × U ×∆[n], V )

This exists by Lemma 16.3 because U ×∆[n] is a simplicial set with finite sets of
simplices and no nondegenerate simplices in high enough degree, see Lemma 11.5.
For ϕ : [m] → [n] we obtain an induced map of simplicial sets ϕ : ∆[m] → ∆[n].
Hence we obtain a morphism X ×U ×∆[m]→ X ×U ×∆[n] functorial in X, and
hence a transformation of functors, which in turn gives

Hom(U, V )(ϕ) : Hom(U, V )n −→ Hom(U, V )m.

Clearly this defines a contravariant functor Hom(U, V ) from ∆ into the category C.
In other words, we have a simplicial object of C.
We have to show that Hom(U, V ) satisfies the desired universal property

MorSimp(C)(W,Hom(U, V )) = MorSimp(C)(W × U, V )

To see this, let f : W → Hom(U, V ) be given. We want to construct the element f ′ :
W × U → V of the right hand side. By construction, each fn : Wn → Hom(U, V )n

http://localhost:8080/tag/017L
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corresponds to a morphism fn : Wn×U ×∆[n]→ V . Further, for every morphism
ϕ : [m]→ [n] the diagram

Wn × U ×∆[m]
W (ϕ)×id×id

//

id×id×ϕ
��

Wm × U ×∆[m]

fm

��
Wn × U ×∆[n]

fn // V

is commutative. For ψ : [n]→ [k] in (∆[n])k we denote (fn)k,ψ : Wn×Uk → Vk the
component of (fn)k corresponding to the element ψ. We define f ′n : Wn×Un → Vn
as f ′n = (fn)n,id, in other words, as the restriction of (fn)n : Wn×Un×(∆[n])n → Vn
to Wn×Un× id[n]. To see that the collection (f ′n) defines a morphism of simplicial
objects, we have to show for any ϕ : [m]→ [n] that V (ϕ) ◦ f ′n = f ′m ◦W (ϕ)×U(ϕ).
The commutative diagram above says that (fn)m,ϕ : Wn × Um → Vm is equal to
(fm)m,id ◦W (ϕ) : Wn × Um → Vm. But then the fact that fn is a morphism of
simplicial objects implies that the diagram

Wn × Un × (∆[n])n
(fn)n

//

id×U(ϕ)×ϕ
��

Vn

V (ϕ)

��
Wn × Um × (∆[n])m

(fn)m // Vm

is commutative. And this implies that (fn)m,ϕ ◦ U(ϕ) is equal to V (ϕ) ◦ (fn)n,id.
Altogether we obtain V (ϕ) ◦ (fn)n,id = (fn)m,ϕ ◦U(ϕ) = (fm)m,id ◦W (ϕ) ◦U(ϕ) =
(fm)m,id ◦W (ϕ)× U(ϕ) as desired.

On the other hand, given a morphism f ′ : W × U → V we define a morphism
f : W → Hom(U, V ) as follows. By Lemma 13.4 the morphisms id : Wn → Wn

corresponds to a unique morphism cn : Wn × ∆[n] → W . Hence we can consider
the composition

Wn ×∆[n]× U cn−→W × U f ′−→ V.

By construction this corresponds to a unique morphism fn : Wn → Hom(U, V )n.
We leave it to the reader to see that these define a morphism of simplicial sets as
desired.

We also leave it to the reader to see that f 7→ f ′ and f ′ 7→ f are mutually inverse
operations. �

We spell out the construction above in a special case. Let X be an object of a
category C. Assume that self products X × . . . × X exist. Let k be an integer.
Consider the simplicial object U with terms

Un =
∏

α∈Mor([k],[n])
X

and maps given ϕ : [m]→ [n]

U(ϕ) :
∏

α∈Mor([k],[n])
X −→

∏
α′∈Mor([k],[m])

X

(fα)α 7−→ (fϕ◦α′)α′

In terms of “coordinates”, the element (xα)α is mapped to the element (xϕ◦α′)α′ .
We claim this object is equal to

Hom(∆[k], X)
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where we think of X as the constant simplicial object X.

Lemma 16.5. With X, k and U as above.

(1) For any simplicial object V of C we have the following canonical bijection

MorSimp(C)(V,U) −→ MorC(Vk, X).

wich maps γ to the morphism γk composed with the projection onto the
factor corresponding to id[k].

(2) Similarly, if W is an k-truncated simplicial object of C, then we have

MorSimpk(C)(W, skkU) = MorC(Wk, X).

(3) The object U constructed above is an incarnation of Hom(∆[k], X).

Proof. We first prove (1). Suppose that γ : V → U is a morphism. This is given
by a family of morphisms γα : Vn → X for γ : [k] → [n]. The morphisms have to
satisfy the rules that for all ϕ : [m]→ [n] the diagrams

X

idX

��

Vn

V (ϕ)

��

γϕ◦α′
oo

X Vm
γα′oo

commute for all α′ : [k]→ [m]. Taking α′ = id[k], we see that for any ϕ : [k]→ [n]
we have γϕ = γid[k]

◦ V (ϕ). Thus the morphism γ is determined by the component
of γk corresponding to id[k]. Conversely, given such a morphism f : Vk → X we
easily construct a morphism γ by putting γα = f ◦ V (α).

The truncated case is similar, and left to the reader.

To see (3) we argue as follows:

Mor(V,Hom(∆[k], X)) = Mor(V ×∆[k], X)

= {(fn : Vn ×∆[k]n → X) | fn compatible}
= {(fn : Vn →

∏
∆[k]n

X) | fn compatible}

= Mor(V,U)

Thus U and Hom(∆[k], X) define the same functor on the category of simplicial
objects and hence are canonically isomorphic. �

Lemma 16.6. Assume the category C has coproducts of any two objects and finite
limits. Let a : U → V , b : U → W be morphisms of simplicial sets. Assume
Un, Vn,Wn finite nonempty for all n ≥ 0. Assume that all n-simplices of U, V,W
are degenerate for all n� 0. Let T be a simplicial object of C. Then

Hom(V, T )×Hom(U,T ) Hom(W,T ) = Hom(V qU W,T )

In other words, the fibre product on the left hand side is represented by the Hom
object on the right hand side.

Proof. By Lemma 16.4 all the required Hom objects exist and satisfy the correct
functorial properties. Now we can identify the nth term on the left hand side as the
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object representing the functor that associates to X the first set of the following
sequence of functorial equalities

Mor(X ×∆[n],Hom(V, T )×Hom(U,T ) Hom(W,T ))

= Mor(X ×∆[n],Hom(V, T ))×Mor(X×∆[n],Hom(U,T )) Mor(X ×∆[n],Hom(W,T ))

= Mor(X ×∆[n]× V, T )×Mor(X×∆[n]×U,T ) Mor(X ×∆[n]×W,T )

= Mor(X ×∆[n]× (V qU W ), T ))

Here we have used the fact that

(X ×∆[n]× V )×X×∆[n]×U (X ×∆[n]×W ) = X ×∆[n]× (V qU W )

which is easy to verify term by term. The result of the lemma follows as the last
term in the displayed sequence of equalities corresponds to Hom(V qU W,T )n. �

17. Splitting simplicial objects

A subobject N of an object X of the category C is an object N of C together with
a monomorphism N → X. Of course we say (by abouse of notation) that the
subobjects N , N ′ are equal if there exists an isomorphism N → N ′ compatible
with the morphisms to X. The collection of subobjects forms a partially ordered
set. (Because of our conventions on categories; not true for category of spaces up
to homotopy for example.)

Definition 17.1. Let C be a category which admits finite nonempty coproducts.
We say a simplicial object U of C is split if there exist subobjects N(Um) of Um,
m ≥ 0 with the property that

(17.1.1)
∐

ϕ:[n]→[m] surjective
N(Um) −→ Un

is an isomorphism for all n ≥ 0.

If this is the case, then N(U0) = U0. Next, we have U1 = U0

∐
N(U1). Second we

have

U2 = U0

∐
N(U1)

∐
N(U1)

∐
N(U2).

It turns out that in many categories C every simplicial object is split.

Lemma 17.2. Let U be a simplicial set. Then U has a splitting with N(Um) equal
to the set of nondegenerate m-simplices.

Proof. Let x ∈ Un. Suppose that there are surjections ϕ : [n] → [k] and ψ :
[n] → [l] and nondegenerate simplices y ∈ Uk, z ∈ Ul such that x = U(ϕ)(y) and
x = U(ψ)(z). Choose a right inverse ξ : [l] → [n] of ψ, i.e., ψ ◦ ξ = id[l]. Then
z = U(ξ)(x). Hence z = U(ξ)(x) = U(ϕ ◦ ξ)(y). Since z is nondegenerate we
conclude that ϕ ◦ ξ : [l]→ [k] is surjective, and hence l ≥ k. Similarly k ≥ l. Hence
we see that ϕ◦ξ : [l]→ [k] has to be the identity map for any choice of right inverse
ξ of ψ. This easily implies that ψ = ϕ. �

Of course it can happen that a map of simplicial sets maps a nondegenerate n-
simplex to a degenerate n-simplex. Thus the splitting of Lemma 17.2 is not func-
torial. Here is a case where it is functorial.
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Lemma 17.3. Let f : U → V be a morphism of simplicial sets. Suppose that (a)
the image of every nondegenerate simplex of U is a nondegenerate simplex of V
and (b) no two nondegenerate simplices of U are mapped to the same simplex of V .
Then fn is injective for all n. Same holds with “injective” replaced by “surjective”
or “bijective”.

Proof. Under hypothesis (a) we see that the map f preserves the disjoint union
decompositions of the splitting of Lemma 17.2, in other words that we get commu-
tative diagrams ∐

ϕ:[n]→[m] surjectiveN(Um) //

��

Un

��∐
ϕ:[n]→[m] surjectiveN(Vm) // Vn.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective,
resp. bijective). �

Lemma 17.4. Let U be a simplicial set. Let n ≥ 0 be an integer. The rule

U ′m =
⋃

ϕ:[m]→[i], i≤n
Im(U(ϕ))

defines a sub simplicial set U ′ ⊂ U with U ′i = Ui for i ≤ n. Moreover, all m-
simplices of U ′ are degenerate for all m > n.

Proof. If x ∈ Um and x = U(ϕ)(y) for some y ∈ Ui, i ≤ n and some ϕ : [m]→ [i]
then any image U(ψ)(x) for any ψ : [m′] → [m] is equal to U(ϕ ◦ ψ)(y) and
ϕ ◦ ψ : [m′] → [i]. Hence U ′ is a simplicial set. By construction all simplices in
dimension n+ 1 and higher are degenerate. �

Lemma 17.5. Let U be a simplicial abelian group. Then U has a splitting obtained
by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(Um) in the lemma
guarantees that (17.1.1) is an isomorphism for m ≤ n. This is clear for n = 0. In
the rest of this proof we are going to drop the superscripts from the maps di and
si in order to improve readability. We will also repeatedly use the relations from
Remark 3.3.

First we make a general remark. For 0 ≤ i ≤ m and z ∈ Um we have di(si(z)) = z.
Hence we can write any x ∈ Um+1 uniquely as x = x′ + x′′ with di(x

′) = 0 and
x′′ ∈ Im(si) by taking x′ = (x − si(di(x))) and x′′ = si(di(x)). Moreover, the
element z ∈ Um such that x′′ = si(z) is unique because si is injective.

Here is a procedure for decomposing any x ∈ Un+1. First, write x = x0 + s0(z0)
with d0(x0) = 0. Next, write x0 = x1 + s1(z1) with dn(x1) = 0. Continue like this
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to get

x = x0 + s0(z0),

x0 = x1 + s1(z1),

x1 = x2 + s2(z2),

. . . . . . . . .

xn−1 = xn + sn(zn)

where di(xi) = 0 for all i = n, . . . , 0. By our general remark above all of the xi and
zi are determined uniquely by x. We claim that xi ∈ Ker(d0)∩Ker(d1)∩. . .∩Ker(di)
and zi ∈ Ker(d0) ∩ . . . ∩ Ker(di−1) for i = n, . . . , 0. Here and in the following an
empty intersection of kernels indicates the whole space; i.e., the notation z0 ∈
Ker(d0) ∩ . . . ∩Ker(di−1) when i = 0 means z0 ∈ Un with no restriction.

We prove this by ascending induction on i. It is clear for i = 0 by construction of
x0 and z0. Let us prove it for 0 < i ≤ n assuming the result for i−1. First of all we
have di(xi) = 0 by construction. So pick a j with 0 ≤ j < i. We have dj(xi−1) = 0
by induction. Hence

0 = dj(xi−1) = dj(xi) + dj(si(zi)) = dj(xi) + si−1(dj(zi)).

The last equality by the relations of Remark 3.3. These relations also imply
that di−1(dj(xi)) = dj(di(xi)) = 0 because di(xi) = 0 by construction. Then
the uniqueness in the general remark above shows the equality 0 = x′ + x′′ =
dj(xi) + si−1(dj(zi)) can only hold if both terms are zero. We conclude that
dj(xi) = 0 and by injectivity of si−1 we also conclude that dj(zi) = 0. This
proves the claim.

The claim implies we can uniquely write

x = s0(z0) + s1(z1) + . . .+ sn(zn) + x0

with x0 ∈ N(Un+1) and zi ∈ Ker(d0)∩ . . .∩Ker(di−1). We can reformulate this as
saying that we have found a direct sum decomposition

Un+1 = N(Un+1)⊕
⊕i=n

i=0
si

(
Ker(d0) ∩ . . . ∩Ker(di−1)

)
with the property that

Ker(d0) ∩ . . . ∩Ker(dj) = N(Un+1)⊕
⊕i=n

i=j+1
si

(
Ker(dn) ∩ . . . ∩Ker(di−1)

)
for j = 0, . . . , n. The result follows from this statement as follows. Each of the zi
in the expression for x can be written uniquely as

zi = si(z
′
i,i) + . . .+ sn−1(z′i,n−1) + zi,0

with zi,0 ∈ N(Un) and z′i,j ∈ Ker(d0) ∩ . . . ∩ Ker(dj−1). The first few steps in the
decomposition of zi are zero because zi already is in the kernel of d0, . . . , di. This
in turn uniquely gives

x = x0 + s0(z0,0) + s1(z1,0) + . . .+ sn(zn,0) +
∑

0≤i≤j≤n−1
si(sj(z

′
i,j)).

Continuing in this fashion we see that we in the end obtain a decomposition of x
as a sum of terms of the form

si1si2 . . . sik(z)
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with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n − k + 1 and z ∈ N(Un+1−k). This is exactly the
required decomposition, because any surjective map [n + 1] → [n + 1 − k] can be
uniquely expressed in the form

σn−kik
. . . σn−1

i2
σni1

with 0 ≤ i1 ≤ i2 ≤ . . . ≤ ik ≤ n− k + 1. �

Lemma 17.6. Let A be an abelian category. Let U be a simplicial object in A.
Then U has a splitting obtained by taking N(U0) = U0 and for m ≥ 1 taking

N(Um) =
⋂m−1

i=0
Ker(dmi ).

Moreover, this splitting is functorial on the category of simplicial objects of A.

Proof. For any object A of A we obtain a simplicial abelian group MorA(A,U).
Each of these are canonically split by Lemma 17.5. Moreover,

N(MorA(A,Um)) =
⋂m−1

i=0
Ker(dmi ) = MorA(A,N(Um)).

Hence we see that the morphism (17.1.1) becomes an isomorphism after applying
the functor MorA(A,−) for any object of A. Hence it is an isomorphism by the
Yoneda lemma. �

Lemma 17.7. Let A be an abelian category. Let f : U → V be a morphism of
simplicial objects of A. If the induced morphisms N(f)i : N(U)i → N(V )i are
injective for all i, then fi is injective for all i. Same holds with “injective” replaced
with “surjective”, or “isomorphism”.

Proof. This is clear from Lemma 17.6 and the definition of a splitting. �

Lemma 17.8. Let A be an abelian category. Let U be a simplicial object in A. Let
N(Um) as in Lemma 17.6 above. Then dmm(N(Um)) ⊂ N(Um−1).

Proof. For j = 0, . . . ,m−2 we have dm−1
j dmm = dm−1

m−1d
m
j by the relations in Remark

3.3. The result follows. �

Lemma 17.9. Let A be an abelian category. Let U be a simplicial object of A. Let
n ≥ 0 be an integer. The rule

U ′m =
∑

ϕ:[m]→[i], i≤n
Im(U(ϕ))

defines a sub simplicial object U ′ ⊂ U with U ′i = Ui for i ≤ n. Moreover, N(U ′m) =
0 for all m > n.

Proof. Pick m, i ≤ n and some ϕ : [m]→ [i]. The image under U(ψ) of Im(U(ϕ))
for any ψ : [m′]→ [m] is equal to the image of U(ϕ◦ψ) and ϕ◦ψ : [m′]→ [i]. Hence
U ′ is a simplicial object. Pick m > n. We have to show N(U ′m) = 0. By definition
of N(Um) and N(U ′m) we have N(U ′m) = U ′m ∩N(Um) (intersection of subobjects).
Since U is split by Lemma 17.6, it suffices to show that U ′m is contained in the sum∑

ϕ:[m]→[m′] surjective, m′<m
Im(U(ϕ)|N(Um′ )

).

By the splitting each Um′ is the sum of images of N(Um′′) via U(ψ) for surjective
maps ψ : [m′]→ [m′′]. Hence the displayed sum above is the same as∑

ϕ:[m]→[m′] surjective, m′<m
Im(U(ϕ)).
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Clearly U ′m is contained in this by the simple fact that any ϕ : [m] → [i], i ≤ n
occurring in the definition of U ′m may be factored as [m]→ [m′]→ [i] with [m]→
[m′] surjective and m′ < m as in the last displayed sum above. �

18. Coskeleton functors

Let C be a category. The coskeleton functor (if it exists) is a functor

coskn : Simpn(C) −→ Simp(C)

which is right adjoint to the skeleton functor. In a formula

(18.0.1) MorSimp(C)(U, cosknV ) = MorSimpn(C)(sknU, V )

Given a n-truncated simplicial object V we say that cosknV exists if there exists a
cosknV ∈ Ob(Simp(C)) and a morphism skncosknV → V such that the displayed
formula holds, in other words if the functor U 7→ MorSimpn(C)(sknU, V ) is repre-
sentable. If it exists it is unique up to unique isomorphism by the Yoneda lemma.
See Categories, Section 3.

Example 18.1. Suppose the category C has finite nonempty self products. A 0-
truncated simplicial object of C is the same as an object X of C. In this case we
claim that cosk0(X) is the simplicial object U with Un = Xn+1 the (n + 1)-fold
self product of X, and structure of simplicial object as in Example 3.5. Namely, a
morphism V → U where V is a simplicial object is given by morphisms Vn → Xn+1,
such that all the diagrams

Vn //

V ([0]→[n],07→i)
��

Xn+1

pri

��
V0

// X

commute. Clearly this means that the map determines and is determined by a
unique morphism V0 → X. This proves that formula (18.0.1) holds.

Recall the category ∆/[n], see Example 11.4. We let (∆/[n])≤m denote the full
subcategory of ∆/[n] consisting of objects [k]→ [n] of ∆/[n] with k ≤ m. In other
words we have the following commutative diagram of categories and functors

(∆/[n])≤m //

��

∆/[n]

��
∆≤m // ∆

Given a m-truncated simplicial object U of C we define a functor

U(n) : (∆/[n])opp≤m −→ C

by the rules

([k]→ [n]) 7−→ Uk

ψ : ([k′]→ [n])→ ([k]→ [n]) 7−→ U(ψ) : Uk → Uk′

For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor

ϕ : (∆/[n])≤m −→ (∆/[n′])≤m

http://localhost:8080/tag/0182


SIMPLICIAL METHODS 23

which maps α : [k] → [n] to ϕ ◦ α : [k] → [n′]. The composition U(n′) ◦ ϕ is equal
to the functor U(n).

Lemma 18.2. If the category C has finite limits, then coskm functors exist for all
m. Moreover, for any m-truncated simplicial object U the simplicial object coskmU
is described by the formula

(coskmU)n = lim(∆/[n])opp≤m
U(n)

and for ϕ : [n]→ [n′] the map coskmU(ϕ) comes from the identification U(n′)◦ϕ =
U(n) above via Categories, Lemma 14.8.

Proof. During the proof of this lemma we denote coskmU the simplicial object
with (coskmU)n equal to lim(∆/[n])opp≤m

U(n). We will conclude at the end of the

proof that it does satisfy the required mapping property.

Suppose that V is a simplicial object. A morphism γ : V → coskmU is given by a
sequence of morphisms γn : Vn → (coskmU)n. By definition of a limit, this is given
by a collection of morphisms γ(α) : Vn → Uk where α ranges over all α : [k]→ [n]
with k ≤ m. These morphisms then also satisfy the rules that

Vn
γ(α)

// Uk

Vn′
γ(α′) //

V (ϕ)

OO

Uk′

U(ψ)

OO

are commutative, given any 0 ≤ k, k′ ≤ m, 0 ≤ n, n′ and any ψ : [k] → [k′],
ϕ : [n] → [n′], α : [k] → [n] and α′ : [k′] → [n′] in ∆ such that ϕ ◦ α = α′ ◦ ψ.
Taking n = k, ϕ = α′, and α = ψ = id[k] we deduce that γ(α′) = γ(id[k]) ◦ V (α′).
In other words, the morphisms γ(id[k]), k ≤ m determine the morphism γ. And it
is easy to see that these morphisms form a morphism skmV → U .

Conversely, given a morphism γ : skmV → U , we obtain a family of morphisms γ(α)
where α ranges over all α : [k]→ [n] with k ≤ m by setting γ(α) = γ(id[k]) ◦ V (α).
These morphisms satisfy all the displayed commutativity restraints pictured above,
and hence give rise to a morphism V → coskmU . �

Lemma 18.3. Let C be a category. Let U be an m-truncated simplicial object of C.
For n ≤ m the limit lim(∆/[n])opp≤m

U(n) exists and is canonically isomorphic to Un.

Proof. This is true because the category (∆/[n])≤m has an final object in this
case, namely the identity map [n]→ [n]. �

Lemma 18.4. Let C be a category with finite limits. Let U be an n-truncated
simplicial object of C. The morphism skncosknU → U is an isomorphism.

Proof. Combine Lemmas 18.2 and 18.3. �

Let us describe a particular instance of the coskeleton functor in more detail. By
abuse of notation we will denote skn also the restriction functor Simpn′(C) →
Simpn(C) for any n′ ≥ n. We are going to describe a right adjoint of the functor skn :
Simpn+1(C)→ Simpn(C). For n ≥ 1, 0 ≤ i < j ≤ n+1 define δn+1

i,j : [n−1]→ [n+1]

to be the increasing map omitting i and j. Note that δn+1
i,j = δn+1

j ◦δni = δn+1
i ◦δnj−1,

see Lemma 2.3. This motivates the following lemma.
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Lemma 18.5. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then

Un+1 = lim(∆/[n+1])opp≤n
U(n)

Proof. The limit, if it exists, represents the functor that associates to an object T
the set

{(fα)α:[k]→[n+1],k≤n | fα◦ψ = U(ψ) ◦ fα ∀ ψ : [k′]→ [k], α : [k]→ [n+ 1]}.

In fact we will show this functor is isomorphic to the one displayed in the lemma.
The map in one direction is given by the rule

(fα)α 7−→ (fδn+1
0

, . . . , fδn+1
n+1

).

This satisfies the conditions of the lemma because

dnj−1 ◦ fδn+1
i

= fδn+1
i ◦δnj−1

= fδn+1
j ◦δni

= dni ◦ fδn+1
j

by the relations we recalled above the lemma. To construct a map in the other
direction we have to associate to a system (f0, . . . , fn+1) as in the displayed formula
of the lemma a system of maps fα. Let α : [k]→ [n+ 1] be given. Since k ≤ n the
map α is not surjective. Hence we can write α = δn+1

i ◦ ψ for some 0 ≤ i ≤ n + 1
and some ψ : [k]→ [n]. We have no choice but to define

fα = U(ψ) ◦ fi.

Of course we have to check that this is independent of the choice of the pair (i, ψ).
First, observe that given i there is a unique ψ which works. Second, suppose that
(j, φ) is another pair. Then i 6= j and we may assume i < j. Since both i, j are
not in the image of α we may actually write α = δn+1

i,j ◦ ξ and then we see that
ψ = δnj−1 ◦ ξ and φ = δni ◦ ξ. Thus

U(ψ) ◦ fi = U(δnj−1 ◦ ξ) ◦ fi
= U(ξ) ◦ dnj−1 ◦ fi
= U(ξ) ◦ dni ◦ fj
= U(δni ◦ ξ) ◦ fj
= U(φ) ◦ fj

as desired. We still have to verify that the maps fα so defined satisfy the rules of
a system of maps (fα)α. To see this suppose that ψ : [k′] → [k], α : [k] → [n + 1]
with k, k′ ≤ n. Set α′ = α ◦ ψ. Choose i not in the image of α. Then clearly i is
not in the image of α′ also. Write α = δn+1

i ◦ φ (we cannot use the letter ψ here

because we’ve already used it). Then obviously α′ = δn+1
i ◦ φ ◦ ψ. By construction

above we then have

U(ψ) ◦ fα = U(ψ) ◦ U(φ) ◦ fi = U(φ ◦ ψ) ◦ fi = fα◦ψ = fα′

as desired. We leave to the reader the pleasant task of verifying that our construc-
tions are mutually inverse bijections, and are functorial in T . �
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Lemma 18.6. Let n be an integer ≥ 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(f0, . . . , fn+1) ∈ MorC(T,Un) | dnj−1 ◦ fi = dni ◦ fj ∀ 0 ≤ i < j ≤ n+ 1}

If this functor is representable by some object Un+1 of C, then there exists an (n+1)-

truncated simplicial object Ũ , with sknŨ = U and Ũn+1 = Un+1 such that the
following adjointness holds

MorSimpn+1(C)(V, Ũ) = MorSimpn(C)(sknV,U)

Proof. By Lemma 18.3 there are identifications

Ui = lim(∆/[i])opp≤n
U(i)

for 0 ≤ i ≤ n. By Lemma 18.5 we have

Un+1 = lim(∆/[n+1])opp≤n
U(n).

Thus we may define for any ϕ : [i] → [j] with i, j ≤ n + 1 the corresponding map

Ũ(ϕ) : Ũj → Ũi exactly as in Lemma 18.2. This defines an (n + 1)-truncated

simplicial object Ũ with sknŨ = U .

To see the adjointness we argue as follows. Given any element γ : sknV → U
of the right hand side of the formula consider the morphisms fi = γn ◦ dn+1

i :
Vn+1 → Vn → Un. These clearly satisfy the relations dnj−1 ◦ fi = dni ◦ fj and hence
define a unique morphism Vn+1 → Un+1 by our choice of Un+1. Conversely, given

a morphism γ′ : V → Ũ of the left hand side we can simply restrict to ∆≤n to
get an element of the right hand side. We leave it to the reader to show these are
mutually inverse constructions. �

Remark 18.7. Let U , and Un+1 be as in Lemma 18.6. On T -valued points we

can easily describe the face and degeneracy maps of Ũ . Explicitly, the maps dn+1
i :

Un+1 → Un are given by

(f0, . . . , fn+1) 7−→ fi.

And the maps snj : Un → Un+1 are given by

f 7−→ (sn−1
j−1 ◦ d

n−1
0 ◦ f,

sn−1
j−1 ◦ d

n−1
1 ◦ f,

. . .

sn−1
j−1 ◦ d

n−1
j−1 ◦ f,

f,

f,

sn−1
j ◦ dn−1

j+1 ◦ f,
sn−1
j ◦ dn−1

j+2 ◦ f,
. . .

sn−1
j ◦ dn−1

n ◦ f)

where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma 18.6. For n = 0 there is one map, namely f 7→ (f, f). For n = 1
there are two maps, namely f 7→ (f, f, s0d1f) and f 7→ (s0d0f, f, f). For n = 2
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there are three maps, namely f 7→ (f, f, s0d1f, s0d2f), f 7→ (s0d0f, f, f, s1d2f),
and f 7→ (s1d0f, s1d1f, f, f). And so on and so forth.

Remark 18.8. The construction of Lemma 18.6 above in the case of simplicial
sets is the following. Given an n-truncated simplicial set U , we make a canonical
(n + 1)-truncated simplicial set Ũ as follows. We add a set of (n + 1)-simplices
Un+1 by the formula of the lemma. Namely, an element of Un+1 is a numbered
collection of (f0, . . . , fn+1) of n-simplices, with the property that they glue as they
would in a (n + 1)-simplex. In other words, the ith face of fj is the (j − 1)st face
of fi for i < j. Geometrically it is obvious how to define the face and degeneracy
maps for Ũ . If V is an (n + 1)-truncated simplicial set, then its (n + 1)-simplices
give rise to compatible collections of n-simplices (f0, . . . , fn+1) with fi ∈ Vn. Hence

there is a natural map Mor(sknV,U)→ Mor(V, Ũ) which is inverse to the canonical
restriction mapping the other way.

Also, it is enough to do the combinatorics of the construction in the case of trun-
cated simplicial sets. Namely, for any object T of the category C, and any n-
truncated simplicial object U of C we can consider the n-truncated simplicial set
Mor(T,U). We may apply the construction to this, and take its set of (n + 1)-
simplices, and require this to be representable. This is a good way to think about
the result of Lemma 18.6.

Remark 18.9. Inductive construction of coskeleta. Suppose that C is a category
with finite limits. Suppose that U is an m-truncated simplicial object in C. Then
we can inductively construct n-truncated objects Un as follows:

(1) To start, set Um = U .

(2) Given Un for n ≥ m set Un+1 = Ũn, where Ũn is constructed from Un as
in Lemma 18.6.

Since the construction of Lemma 18.6 has the property that it leaves the n-skeleton
of Un unchanged, we can then define coskmU to be the simplicial object with
(coskmU)n = Unn = Un+1

n = . . .. And it follows formally from Lemma 18.6 that Un

satisfies the formula

MorSimpn(C)(V,U
n) = MorSimpm(C)(skmV,U)

for all n ≥ m. It also then follows formally from this that

MorSimp(C)(V, coskmU) = MorSimpm(C)(skmV,U)

with coskmU chosen as above.

Lemma 18.10. Let C be a category which has finite limits.

(1) For every n the functor skn : Simp(C) → Simpn(C) has a right adjoint
coskn.

(2) For every n′ ≥ n the functor skn : Simpn′(C) → Simpn(C) has a right
adjoint, namely skn′coskn.

(3) For every m ≥ n ≥ 0 and every n-truncated simplicial object U of C we
have coskmskmcosknU = cosknU .

(4) If U is a simplicial object of C such that the canonical map U → cosknsknU
is an isomorphism for some n ≥ 0, then the canonical map U → coskmskmU
is an isomorphism for all m ≥ n.
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Proof. The existence in (1) follows from Lemma 18.2 above. Parts (2) and (3)
follow from the discussion in Remark 18.9. After this (4) is obvious. �

Remark 18.11. We do not need all finite limits in order to be able to define the
coskeleton functors. Here are some remarks

(1) We have seen in Examples 18.1 that if C has products of pairs of objects
then cosk0 exists.

(2) For k > 0 the functor coskk exists if C has finite connected limits.

This is clear from the inductive procedure of constructing coskeleta (Remarks 18.8
and 18.9) but it also follows from the fact that the categories (∆/[n])≤k for k ≥ 1
and n ≥ k + 1 used in Lemma 18.2 are connected. Observe that we do not need
the categories for n ≤ k by Lemma 18.3 or Lemma 18.4. (As k gets higher the
categories (∆/[n])≤k for k ≥ 1 and n ≥ k + 1 are more and more connected in a
topological sense.)

Lemma 18.12. Let U , V be n-truncated simplicial objects of a category C. Then

coskn(U × V ) = cosknU × cosknV

whenever the left and right hand sides exist.

Proof. Let W be a simplicial object. We have

Mor(W, coskn(U × V )) = Mor(sknW,U × V )

= Mor(sknW,U)×Mor(sknW,V )

= Mor(W, cosknU)×Mor(W, cosknV )

= Mor(W, cosknU × cosknV )

The lemma follows. �

Lemma 18.13. Assume C has fibre products. Let U, V,W be n-truncated simplicial
objects of the category C. Then

coskn(V ×U W ) = cosknU ×cosknU cosknV

whenever the left and right hand side exist.

Proof. Omitted, but very similar to the proof of Lemma 18.12 above. �

Lemma 18.14. Let C be a category with finite limits. Let X ∈ Ob(C). The functor
C/X → C commutes with the coskeleton functors coskk for k ≥ 1.

Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial
object X, then coskkU computed in C/X is the same as computed in C. This
follows for example from Categories, Lemma 16.2 because the categories (∆/[n])≤k
for k ≥ 1 and n ≥ k + 1 used in Lemma 18.2 are connected. Observe that we do
not need the categories for n ≤ k by Lemma 18.3 or Lemma 18.4. �

Lemma 18.15. The canonical map ∆[n]→ cosk1sk1∆[n] is an isomorphism.

Proof. Consider a simplicial set U and a morphism f : U → ∆[n]. This is a rule
that associates to each u ∈ Ui a map fu : [i] → [n] in ∆. Furthermore, these
maps should have the property that fu ◦ ϕ = fU(ϕ)(u) for any ϕ : [j]→ [i]. Denote
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εij : [0]→ [i] the map which maps 0 to j. Denote F : U0 → [n] the map u 7→ fu(0).
Then we see that

fu(j) = F (εij(u))

for all 0 ≤ j ≤ i and u ∈ Ui. In particular, if we know the function F then we know
the maps fu for all u ∈ Ui all i. Conversely, given a map F : U0 → [n], we can set
for any i, and any u ∈ Ui and any 0 ≤ j ≤ i

fu(j) = F (εij(u))

This does not in general define a morphism f of simplicial sets as above. Namely,
the condition is that all the maps fu are nondecreasing. This clearly is equivalent
to the condition that F (εij(u)) ≤ F (εij′(u)) whenever 0 ≤ j ≤ j′ ≤ i and u ∈ Ui.
But in this case the morphisms

εij , ε
i
j′ : [0]→ [i]

both factor through the map εij,j′ : [1]→ [i] defined by the rules 0 7→ j, 1 7→ j′. In
other words, it is enough to check the inequalities for i = 1 and u ∈ X1. In other
words, we have

Mor(U,∆[n]) = Mor(sk1U, sk1∆[n])

as desired. �

19. Augmentations

Definition 19.1. Let C be a category. Let U be a simplicial object of C. An
augmentation ε : U → X of U towards an object X of C is a morphism from U into
the constant simplicial object X.

Lemma 19.2. Let C be a category. Let X ∈ Ob(C). Let U be a simplicial object
of C. To give an augmentation of U towards X is the same as giving a morphism
ε0 : U0 → X such that ε0 ◦ d1

0 = ε0 ◦ d1
1.

Proof. Given a morphism ε : U → X we certainly obtain an ε0 as in the lemma.
Conversely, given ε0 as in the lemma, define εn : Un → X by choosing any morphism
α : [0] → [n] and taking εn = ε0 ◦ U(α). Namely, if β : [0] → [n] is another choice,
then there exists a morphism γ : [1] → [n] such that α and β both factor as
[0]→ [1]→ [n]. Hence the condition on ε0 shows that εn is well defined. Then it is
easy to show that (εn) : U → X is a morphism of simplicial objects. �

Lemma 19.3. Let C be a category with fibred products. Let f : Y → X be a
morphism of C. Let U be the simplicial object of C whose nth term is the (n+1)fold
fibred product Y ×X Y ×X . . .×X Y . See Example 3.5. For any simplicial object V
of C we have

MorSimp(C)(V,U) = MorSimp1(C)(sk1V, sk1U)

= {g0 : V0 → Y | f ◦ g0 ◦ d1
0 = f ◦ g0 ◦ d1

1}

In particular we have U = cosk1sk1U .
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Proof. Suppose that g : sk1V → sk1U is a morphism of 1-truncated simplicial
objects. Then the diagram

V1

d10 //

d11

//

g1

��

V0

g0

��
Y ×X Y

pr1 //

pr0
// Y // X

is commutative, which proves that the relation shown in the lemma holds. We have
to show that, conversely, given a morphism g0 satisfying the relation f ◦ g0 ◦ d1

0 =
f ◦ g0 ◦ d1

1 we get a unique morphism of simplicial objects g : V → U . This is done
as follows. For any n ≥ 1 let gn,i = g0 ◦V ([0]→ [n], 0 7→ i) : Vn → Y . The equality
above implies that f ◦ gn,i = f ◦ gn,i+1 because of the commutative diagram

[0]

07→0 ��

07→i

++[1]
0 7→i,17→i+1 // [n]

[0]

07→1

??

0 7→i+1

33

Hence we get (gn,0, . . . , gn,n) : Vn → Y ×X . . .×X Y = Un. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma
is equivalent to the first equality in the displayed formula of the lemma. �

Remark 19.4. Let C be a category with fibre products. Let V be a simplicial
object. Let ε : V → X be an augmentation. Let U be the simplicial object whose
nth term is the (n+ 1)st fibred product of V0 over X. By a simple combination of
Lemmas 19.2 and 19.3 we obtain a canonical morphism V → U .

20. Left adjoints to the skeleton functors

In this section we construct a left adjoint im! of the skeleton functor skm in certain
cases. The adjointness formula is

MorSimpm(C)(U, skmV ) = MorSimp(C)(im!U, V ).

It turns out that this left adjoint exists when the category C has finite colimits.

We use a similar construction as in Section 12. Recall the category [n]/∆ of objects
under [n], see Categories, Example 2.14. Its objects are morphisms α : [n] → [k]
and its morphisms are commutative triangles. We let ([n]/∆)≤m denote the full
subcategory of [n]/∆ consisting of objects [n] → [k] with k ≤ m. Given a m-
truncated simplicial object U of C we define a functor

U(n) : ([n]/∆)opp≤m −→ C

by the rules

([n]→ [k]) 7−→ Uk

ψ : ([n]→ [k′])→ ([n]→ [k]) 7−→ U(ψ) : Uk → Uk′
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For a given morphism ϕ : [n]→ [n′] of ∆ we have an associated functor

ϕ : ([n′]/∆)≤m −→ ([n]/∆)≤m

which maps α : [n′] → [k] to ϕ ◦ α : [n] → [k]. The composition U(n) ◦ ϕ is equal
to the functor U(n′).

Lemma 20.1. Let C be a category which has finite colimits. The functors im! exist
for all m. Let U be an m-truncated simplicial object of C. The simplicial object
im!U is described by the formula

(im!U)n = colim([n]/∆)opp≤m
U(n)

and for ϕ : [n] → [n′] the map im!U(ϕ) comes from the identification U(n) ◦ ϕ =
U(n′) above via Categories, Lemma 14.7.

Proof. In this proof we denote im!U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness
property.

Let V be a simplicial object of C. Let γ : U → skmV be given. A morphism

colim([n]/∆)opp≤m
U(n)→ T

is given by a compatible system of morphisms fα : Uk → T where α : [n]→ [k] with
k ≤ m. Certainly, we have such a system of morphisms by taking the compositions

Uk
γk−→ Vk

V (α)−−−→ Vn.

Hence we get an induced morphism (im!U)n → Vn. We leave it to the reader to see
that these form a morphism of simplicial objects γ′ : im!U → V .

Conversely, given a morphism γ′ : im!U → V we obtain a morphism γ : U → skmV
by setting γi : Ui → Vi equal to the composition

Ui
id[i]−−→ colim([i]/∆)opp≤m

U(i)
γ′i−→ Vi

for 0 ≤ i ≤ n. We leave it to the reader to see that this is the inverse of the
construction above. �

Lemma 20.2. Let C be a category. Let U be an m-truncated simplicial object of
C. For any n ≤ m the colimit

colim([n]/∆)opp≤m
U(n)

exists and is equal to Un.

Proof. This is so because the category ([n]/∆)≤m has an initial object, namely
id : [n]→ [n]. �

Lemma 20.3. Let C be a category which has finite colimits. Let U be an m-
truncated simplicial object of C. The map U → skmim!U is an isomorphism.

Proof. Combine Lemmas 20.1 and 20.2. �

Lemma 20.4. If U is an m-truncated simplicial set and n > m then all n-simplices
of im!U are degenerate.
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Proof. This can be seen from the construction of im!U in Lemma 20.1, but we can
also argue directly as follows. Write V = im!U . Let V ′ ⊂ V be the simplicial subset
with V ′i = Vi for i ≤ m and all i simplices degenerate for i > m, see Lemma 17.4.
By the adjunction formula, since skmV

′ = U , there is an inverse to the injection
V ′ → V . Hence V ′ = V . �

Lemma 20.5. Let U be a simplicial set. Let n ≥ 0 be an integer. The morphism
in!sknU → U identifies in!sknU with the simplicial set U ′ ⊂ U defined in Lemma
17.4.

Proof. By Lemma 20.4 the only nondegenerate simplices of in!sknU are in degrees
≤ n. The map in!sknU → U is an isomorphism in degrees ≤ n. Combined we
conclude that the map in!sknU → U maps nondegenerate simplices to nondegen-
erate simplices and no two nondegenerate simplices have the same image. Hence
Lemma 17.3 applies. Thus in!sknU → U is injective. The result follows easily from
this. �

Remark 20.6. In some texts the composite functor

Simp(C) skm−−→ Simpm(C) im!−−→ Simp(C)
is denoted skm. This makes sense for simplicial sets, because then Lemma 20.5
says that im!skmV is just the sub simplicial set of V consisting of all i-simplices of
V , i ≤ m and their degeneracies. In those texts it is also customary to denote the
composition

Simp(C) skm−−→ Simpm(C) coskm−−−−→ Simp(C)
by coskm.

Lemma 20.7. Let U ⊂ V be simplicial sets. Suppose n ≥ 0 and x ∈ Vn, x 6∈ Un
are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj, z 6∈ Uj for j > n is degenerate.

Let ∆[n] → V be the unique morphism mapping the nondegenerate n-simplex of
∆[n] to x. In this case the diagram

∆[n] // V

i(n−1)!skn−1∆[n] //

OO

U

OO

is a pushout diagram.

Proof. Let us denote ∂∆[n] = i(n−1)!skn−1∆[n] for convenience. There is a natural
map U q∂∆[n] ∆[n] → V . We have to show that it is bijective in degree j for all
j. This is clear for j ≤ n. Let j > n. The third condition means that any
z ∈ Vj , z 6∈ Uj is a degenerate simplex, say z = sj−1

i (z′). Of course z′ 6∈ Uj−1.
By induction it follows that z′ is a degeneracy of x. Thus we conclude that all
j-simplices of V are either in U or degeneracies of x. This implies that the map
Uq∂∆[n]∆[n]→ V is surjective. Note that a nondegenerate simplex of Uq∂∆[n]∆[n]
is either the image of a nondegenerate simplex of U , or the image of the (unique)
nondegenerate n-simplex of ∆[n]. Since clearly x is nondegenerate we deduce that
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U q∂∆[n] ∆[n]→ V maps nondegenerate simplices to nondegenerate simplices and
is injective on nondegenerate simplices. Hence it is injective, by Lemma 17.3. �

Lemma 20.8. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty for all
n. Assume that U and V have finitely many nondegenerate simplices. Then there
exists a sequence of sub simplicial sets

U = W 0 ⊂W 1 ⊂W 2 ⊂ . . .W r = V

such that Lemma 20.7 applies to each of the inclusions W i ⊂W i+1.

Proof. Let n be the smallest integer such that V has a nondegenerate simplex that
does not belong to U . Let x ∈ Vn, x 6∈ Un be such a nondegenerate simplex. Let
W ⊂ V be the set of elements which are either in U , or are a (repeated) degeneracy
of x (in other words, are of the form V (ϕ)(x) with ϕ : [m] → [n] surjective). It is
easy to see that W is a simplicial set. The inclusion U ⊂W satisfies the conditions
of Lemma 20.7. Moreover the number of nondegenerate simplices of V which are
not contained in W is exactly one less than the number of nondegenerate simplices
of V which are not contained in U . Hence we win by induction on this number. �

Lemma 20.9. Let A be an abelian category Let U be an m-truncated simplicial
object of A. For n > m we have N(im!U)n = 0.

Proof. Write V = im!U . Let V ′ ⊂ V be the simplicial subobject of V with V ′i = Vi
for i ≤ m and N(V ′i ) = 0 for i > m, see Lemma 17.9. By the adjunction formula,
since skmV

′ = U , there is an inverse to the injection V ′ → V . Hence V ′ = V . �

Lemma 20.10. Let A be an abelian category. Let U be a simplicial object of A.
Let n ≥ 0 be an integer. The morphism in!sknU → U identifies in!sknU with the
simplicial subobject U ′ ⊂ U defined in Lemma 17.9.

Proof. By Lemma 20.9 we have N(in!sknU)i = 0 for i > n. The map in!sknU → U
is an isomorphism in degrees ≤ n, see Lemma 20.3. Combined we conclude that the
map in!sknU → U induces injective maps N(in!sknU)i → N(U)i for all i. Hence
Lemma 17.7 applies. Thus in!sknU → U is injective. The result follows easily from
this. �

Here is another way to think about the coskeleton functor using the material above.

Lemma 20.11. Let C be a category with finite coproducts and finite limits. Let V
be a simplicial object of C. In this case

(cosknsknV )n+1 = Hom(in!skn∆[n+ 1], V )0.

Proof. By Lemma 13.4 the object on the left represents the functor which assigns
to X the first set of the following equalities

Mor(X ×∆[n+ 1], cosknsknV ) = Mor(X × skn∆[n+ 1], sknV )

= Mor(X × in!skn∆[n+ 1], V ).

The object on the right in the formula of the lemma is represented by the functor
which assigns to X the last set in the sequence of equalities. This proves the result.

In the sequence of equalities we have used that skn(X×∆[n+1]) = X×skn∆[n+1]
and that in!(X×skn∆[n+1]) = X×in!skn∆[n+1]. The first equality is obvious. For
any (possibly truncated) simplicial object W of C and any object X of C denote tem-
porarily MorC(X,W ) the (possibly truncated) simplicial set [n] 7→ MorC(X,Wn).
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From the definitions it follows that Mor(U ×X,W ) = Mor(U,MorC(X,W )) for any
(possibly truncated) simplicial set U . Hence

Mor(X × in!skn∆[n+ 1],W ) = Mor(in!skn∆[n+ 1],MorC(X,W ))

= Mor(skn∆[n+ 1], skn MorC(X,W ))

= Mor(X × skn∆[n+ 1], sknW )

= Mor(in!(X × skn∆[n+ 1]),W ).

This proves the second equality used, and ends the proof of the lemma. �

Lemma 20.12. Let C be a category with finite coproducts and finite limits. Let X
be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X) −→ cosk1sk1 Hom(∆[k], X)

is an isomorphism.

Proof. For any simplicial object V we have

Mor(V, cosk1sk1 Hom(∆[k], X)) = Mor(sk1V, sk1 Hom(∆[k], X))

= Mor(i1!sk1V,Hom(∆[k], X))

= Mor(i1!sk1V ×∆[k], X)

The first equality by the adjointness of sk and cosk, the second equality by the
adjointness of i1! and sk1, and the first equality by Definition 16.1 where the last
X denotes the constant simplicial object with value X. By Lemma 19.2 an element
in this set depends only on the terms of degree 0 and 1 of i1!sk1V ×∆[k]. These
agree with the degree 0 and 1 terms of V × ∆[k], see Lemma 20.3. Thus the set
above is equal to Mor(V ×∆[k], X) = Mor(V,Hom(∆[k], X)). �

Lemma 20.13. Let C be a category with finite coproducts and finite limits. Let X
be an object of C. Let k ≥ 0. The canonical map

Hom(∆[k], X)1 −→ (cosk0sk0 Hom(∆[k], X))1

is identified with the map ∏
α:[k]→[1]

X −→ X ×X

which is the projection onto the factors where α is a constant map.

Proof. It is shown in Example 18.1 that cosk0Z equals Z×Z in degree 1. Moreover,
it is true in general that the morphism V1 → (cosk0sk0V )1 is the morphism (d1

0, d
1
1) :

V1 → V0 × V0 (left to the reader). Thus we simply have to compute the 0th and
1st term of Hom(∆[k], X). According to Lemma 16.5 we have Hom(∆[k], X)0 =∏
α:[k]→[0]X = X, and Hom(∆[k], X)0 =

∏
α:[k]→[1]X. The lemma follows from the

description of the morphisms of the simplicial object just above Lemma 16.5. �

21. Simplicial objects in abelian categories

Recall that an abelian category is defined in Homology, Section 5.

Lemma 21.1. Let A be an abelian category.

(1) The categories Simp(A) and CoSimp(A) are abelian.
(2) A morphism of (co)simplicial objects f : A → B is injective if and only if

each fn : An → Bn is injective.
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(3) A morphism of (co)simplicial objects f : A→ B is surjective if and only if
each fn : An → Bn is surjective.

(4) A sequence of (co)simplicial objects

A
f−→ B

g−→ C

is exact at B if and only if each sequence

Ai
fi−→ Bi

gi−→ Ci

is exact at Bi.

Proof. Pre-additivity is easy. A final object is given by Un = 0 in all degrees.
Existence of direct products we saw in Lemmas 6.2 and 9.2. Kernels and cokernels
are obtained by taking termwise kernels and cokernels. �

For an object A of A and an integer k consider the k-truncated simplicial object U
with

(1) Ui = 0 for i < k,
(2) Uk = A,
(3) all morphisms U(ϕ) equal to zero, except U(id[k]) = idA.

Since A has both finite limits and finite colimits we see that both coskkU and ik!U
exist. We will describe both of these and the canonical map ik!U → coskkU .

Lemma 21.2. With A, k and U as above, so Ui = 0, i < k and Uk = A.

(1) Given a k-truncated simplicial object V we have

Mor(U, V ) = {f : A→ Vk | dki ◦ f = 0, i = 0, . . . , k}
and

Mor(V,U) = {f : Vk → A | f ◦ sk−1
i = 0, i = 0, . . . , k − 1}.

(2) The object ik!U has nth term equal to
⊕

αA where α runs over all surjective
morphisms α : [n]→ [k].

(3) For any ϕ : [m]→ [n] the map ik!U(ϕ) is described as the mapping
⊕

αA→⊕
α′ A which maps to component corresponding to α : [n] → [k] to zero if

α ◦ ϕ is not surjective and by the identity to the component corresponding
to α ◦ ϕ if it is surjective.

(4) The object coskkU has nth term equal to
⊕

β A, where β runs over all

injective morphisms β : [k]→ [n].
(5) For any ϕ : [m] → [n] the map coskkU(ϕ) is described as the mapping⊕

β A →
⊕

β′ A which maps to component corresponding to β : [k] → [n]
to zero if β does not factor through ϕ and by the identity to each of the
components corresponding to β′ such that β = ϕ ◦ β′ if it does.

(6) The canonical map c : ik!U → coskkU in degree n has (α, β) coefficient
A→ A equal to zero if α ◦ β is not the identity and equal to idA if it is.

(7) The canonical map c : ik!U → coskkU is injective.

Proof. The proof of (1) is left to the reader.

Let us take the rules of (2) and (3) as the definition of a simplicial object, call it

Ũ . We will show that it is an incarnation of ik!U . This will prove (2), (3) at the
same time. We have to show that given a morphism f : U → skkV there exists a
unique morphism f̃ : Ũ → V which recovers f upon taking the k-skeleton. From
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(1) we see that f corresponds with a morphism fk : A → Vk which maps into the

kernel of dki for all i. For any surjective α : [n] → [k] we set f̃α : A → Vn equal to

the composition f̃α = V (α) ◦ fk : A → Vn. We define f̃n : Ũn → Vn as the sum of

the f̃α over α : [n] → [k] surjective. Such a collection of f̃α defines a morphism of
simplicial objects if and only if for any ϕ : [m]→ [n] the diagram⊕

α:[n]→[k] surjectiveA
f̃n

//

(3)

��

Vn

V (ϕ)

��⊕
α′:[m]→[k] surjectiveA

f̃m // Vm

is commutative. Choosing ϕ = α shows our choice of f̃α is uniquely determined by
fk. The commutativity in general may be checked for each summand of the left
upper corner separately. It is clear for the summands corresponding to α where α◦ϕ
is surjective, because those get mapped by idA to the summand with α′ = α ◦ ϕ,
and we have f̃α′ = V (α′) ◦ fk = V (α ◦ ϕ) ◦ fk = V (ϕ) ◦ f̃α. For those where α ◦ ϕ
is not surjective, we have to show that V (ϕ) ◦ f̃α = 0. By definition this is equal
to V (ϕ) ◦ V (α) ◦ fk = V (α ◦ϕ) ◦ fk. Since α ◦ϕ is not surjective we can write it as
δki ◦ ψ, and we deduce that V (ϕ) ◦ V (α) ◦ fk = V (ψ) ◦ dki ◦ fk = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it

Ũ . We will show that it is an incarnation of coskkU . This will prove (4), (5) at the
same time. The argument is completely dual to the proof of (2), (3) above, but we
give it anyway. We have to show that given a morphism f : skkV → U there exists
a unique morphism f̃ : V → Ũ which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fk : Vk → A which is zero on the

image of sk−1
i for all i. For any injective β : [k]→ [n] we set f̃β : Vn → A equal to

the composition f̃β = fk ◦ V (β) : Vn → A. We define f̃n : Vn → Ũn as the sum of

the f̃β over β : [k] → [n] injective. Such a collection of f̃β defines a morphism of
simplicial objects if and only if for any ϕ : [m]→ [n] the diagram

Vn

V (ϕ)

��

f̃n

//⊕
β:[k]→[n] injectiveA

(5)

��
Vm

f̃m //⊕
β′:[k]→[m] injectiveA

is commutative. Choosing ϕ = β shows our choice of f̃β is uniquely determined by
fk. The commutativity in general may be checked for each summand of the right
lower corner separately. It is clear for the summands corresponding to β′ where ϕ◦β′
is injective, because these summands get mapped into by exactly the summand with
β = ϕ◦β′ and we have in that case f̃β′ ◦V (ϕ) = fk ◦V (β′)◦V (ϕ) = fk ◦V (β) = f̃β .

For those where ϕ ◦ β′ is not injective, we have to show that f̃β′ ◦ V (ϕ) = 0. By
definition this is equal to fk◦V (β′)◦V (ϕ) = fk◦V (ϕ◦β′). Since ϕ◦β′ is not injective

we can write it as ψ◦σk−1
i , and we deduce that fk◦V (β′)◦V (ϕ) = fk◦sk−1

i ◦V (ψ) = 0
see above.

The composition ik!U → coskkU is the unique map of simplicial objects which is
the identity on A = Uk = (ik!U)k = (coskkU)k. Hence it suffices to check that the
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proposed rule defines a morphism of simplicial objects. To see this we have to show
that for any ϕ : [m]→ [n] the diagram⊕

α:[n]→[k] surjectiveA

(3)

��

(6)
//⊕

β:[k]→[n] injectiveA

(5)

��⊕
α′:[m]→[k] surjectiveA

(6) //⊕
β′:[k]→[m] injectiveA

is commutative. Now we can think of this in terms of matrices filled with only
0’s and 1’s as follows: The matrix of (3) has a nonzero (α′, α) entry if and only
if α′ = α ◦ ϕ. Likewise the matrix of (5) has a nonzero (β′, β) entry if and only
if β = ϕ ◦ β′. The upper matrix of (6) has a nonzero (α, β) entry if and only if
α ◦ β = id[k]. Similarly for the lower matrix of (6). The commutativity of the
diagram then comes down to computing the (α, β′) entry for both compositions
and seeing they are equal. This comes down to the following equality

#
{
β | β = ϕ ◦ β′ ∧ α ◦ β = id[k]

}
= #

{
α′ | α′ = α ◦ ϕ ∧ α′ ◦ β′ = id[k]

}
whose proof may safely be left to the reader.

Finally, we prove (7). This follows directly from Lemmas 17.7, 18.4, 20.3 and
20.9. �

Definition 21.3. Let A be an abelian category. Let A be an object of A and let
k be an integer ≥ 0. The Eilenberg-Maclane object K(A, k) is given by the object
K(A, k) = ik!U which is described in Lemma 21.2 above.

Lemma 21.4. Let A be an abelian category. Let A be an object of A and let k be
an integer ≥ 0. Consider the simplicial object E defined by the following rules

(1) En =
⊕

αA, where the sum is over α : [n]→ [k + 1] whose image is either
[k] or [k + 1].

(2) Given ϕ : [m] → [n] the map En → Em maps the summand corresponding
to α via idA to the summand corresponding to α ◦ ϕ, provided Im(α ◦ ϕ) is
equal to [k] or [k + 1].

Then there exists a short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0

which is term by term split exact.

Proof. The maps K(A, k)n → En resp. En → K(A, k + 1)n are given by the
inclusion of direct sums, resp. projection of direct sums which is obvious from the
inclusions of index sets. It is clear that these are maps of simplicial objects. �

Lemma 21.5. Let A be an abelian category. For any simplicial object V of A we
have

V = colimn in!sknV

where all the transition maps are injections.

Proof. This is true simply because each Vm is equal to (in!sknV )m as soon as
n ≥ m. See also Lemma 20.10 for the transition maps. �
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22. Simplicial objects and chain complexes

Let A be an abelian category. See Homology, Section 12 for conventions and nota-
tion regarding chain complexes. Let U be a simplicial object of A. The associated
chain complex s(U) of U , sometimes called the Moore complex, is the chain complex

. . .→ U2 → U1 → U0 → 0→ 0→ . . .

with boundary maps dn : Un → Un−1 given by the formula

dn =
∑n

i=0
(−1)idni .

This is a complex because, by the relations listed in Remark 3.3, we have

dn ◦ dn+1 = (
∑n

i=0
(−1)idni ) ◦ (

∑n+1

j=0
(−1)jdn+1

j )

=
∑

0≤i<j≤n+1
(−1)i+jdnj−1 ◦ dn+1

i +
∑

n≥i≥j≥0
(−1)i+jdni ◦ dn+1

j

= 0.

The signs cancel! We denote the associated chain complex s(U). Clearly, the
construction is functorial and hence defines a functor

s : Simp(A) −→ Ch≥0(A).

Thus we have the confusing but correct formula s(U)n = Un.

Lemma 22.1. The functor s is exact.

Proof. Clear from Lemma 21.1. �

Lemma 22.2. Let A be an abelian category. Let A be an object of A and let k be
an integer. Let E be the object described in Lemma 21.4. Then the complex s(E)
is acyclic.

Proof. For a morphism α : [n]→ [k + 1] we define α′ : [n+ 1]→ [k + 1] to be the
map such that α′|[n] = α and α′(n+1) = k+1. Note that if the image of α is [k] or
[k+1], then the image of α′ is [k+1]. Consider the family of maps hn : En → En+1

which maps the summand corresponding to α to the summand corresponding to α′

via the identity on A. Let us compute dn+1 ◦ hn − hn−1 ◦ dn. We will first do this
in case the category A is the category of abelian groups. Let us use the notation
xα to indicate the element x ∈ A in the summand of En corresponding to the map
α occurring in the index set. Let us also adopt the convention that xα designates
the zero element of En whenever Im(α) is not [k] or [k+1]. With these conventions
we see that

dn+1(hn(xα)) =
∑n+1

i=0
(−1)ixα′◦δn+1

i

and

hn−1(dn(xα)) =
∑n

i=0
(−1)ix(α◦δni )′

It is easy to see that α′ ◦ δn+1
i = (α ◦ δni )′ for i = 0, . . . , n. It is also easy to see that

α′ ◦ δn+1
n+1 = α. Thus we see that

(dn+1 ◦ hn − hn−1 ◦ dn)(xα) = (−1)n+1xα

These identities continue to hold if A is any abelian category because they hold
in the simplicial abelian group [n] 7→ Hom(A,En); details left to the reader. We
conclude that the identity map on E is homotopic to zero, with homotopy given by
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the system of maps h′n = (−1)n+1hn : En → En+1. Hence we see that E is acyclic,
for example by Homology, Lemma 12.5. �

Lemma 22.3. Let A be an abelian category. Let A be an object of A and let k be
an integer. We have Hi(s(K(A, k))) = A if i = k and 0 else.

Proof. First, let us prove this if k = 0. In this case we have K(A, 0)n = A for
all n. Furthermore, all the maps in this simplicial abelian group are idA, in other
words K(A, 0) is the constant simplicial object with value A. The boundary maps
dn =

∑n
i=0(−1)iidA = 0 if n odd and = idA if n is even. Thus s(K(A, 0)) looks

like this

. . .→ A
0−→ A

1−→ A
0−→ A→ 0

and the result is clear.

Next, we prove the result for all k by induction. Given the result for k consider the
short exact sequence

0→ K(A, k)→ E → K(A, k + 1)→ 0

from Lemma 21.4. By Lemma 21.1 the associated sequence of chain complexes is
exact. By Lemma 22.2 we see that s(E) is acyclic. Hence the result for k+1 follows
from the long exact sequence of homology, see Homology, Lemma 12.6. �

There is a second chain complex we can associate to a simplicial object of A.
Recall that by Lemma 17.6 any simplicial object U of A is canonically split with
N(Um) =

⋂m−1
i=0 Ker(dmi ). We define the normalized chain complex N(U) to be the

chain complex

. . .→ N(U2)→ N(U1)→ N(U0)→ 0→ 0→ . . .

with boundary map dn : N(Un)→ N(Un−1) given by the restriction of (−1)ndnn to
the direct summand N(Un) of Un. Note that Lemma 17.8 implies that dnn(N(Un)) ⊂
N(Un−1). It is a complex because dnn◦dn+1

n+1 = dnn◦dn+1
n and dn+1

n is zero on N(Un+1)
by definition. Thus we obtain a second functor

N : Simp(A) −→ Ch≥0(A).

Here is the reason for the sign in the differential.

Lemma 22.4. Let A be an abelian category. Let U be a simplicial object of A. The
canonical map N(Un)→ Un gives rise to a morphism of complexes N(U)→ s(U).

Proof. This is clear because the differential on s(U)n = Un is
∑

(−1)idni and
the maps dni , i < n are zero on N(Un), whereas the restriction of (−1)ndnn is the
boundary map of N(U) by definition. �

Lemma 22.5. Let A be an abelian category. Let A be an object of A and let k be
an integer. We have N(K(A, k))i = A if i = k and 0 else.

Proof. It is clear that N(K(A, k))i = 0 when i < k because K(A, k)i = 0 in that
case. It is clear that N(K(A, k))k = A since K(A, k)k−1 = 0 and K(A, k)k = A.
For i > k we have N(K(A, k))i = 0 by Lemma 20.9 and the definition of K(A, k),
see Definition 21.3. �
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Lemma 22.6. Let A be an abelian category. Let U be a simplicial object of A.
The canonical morphism of chain complexes N(U)→ s(U) is split. In fact,

s(U) = N(U)⊕A(U)

for some complex A(U). The construction U 7→ A(U) is functorial.

Proof. Define A(U)n to be the image of⊕
ϕ:[n]→[m] surjective, m<n

N(Um)
⊕
U(ϕ)−−−−−→ Un

which is a subobject of Un complementary to N(Un) according to Lemma 17.6
and Definition 17.1. We show that A(U) is a subcomplex. Pick a surjective map
ϕ : [n]→ [m] with m < n and consider the composition

N(Um)
U(ϕ)−−−→ Un

dn−→ Un−1.

This composition is the sum of the maps

N(Um)
U(ϕ◦δni )−−−−−→ Un−1

with sign (−1)i, i = 0, . . . , n.

First we will prove by ascending induction on m, 0 ≤ m < n− 1 that all the maps
U(ϕ ◦ δni ) map N(Um) into A(U)n−1. (The case m = n − 1 is treated below.)
Whenever the map ϕ ◦ δni : [n − 1] → [m] is surjective then the image of N(Um)
under U(ϕ ◦ δni ) is contained in A(U)n−1 by definition. If ϕ ◦ δni : [n − 1] → [m]
is not surjective, set j = ϕ(i) and observe that i is the unique index whose image
under ϕ is j. We may write ϕ ◦ δni = δmj ◦ ψ ◦ δni for some ψ : [n − 1] → [m − 1].
Hence U(ϕ ◦ δni ) = U(ψ ◦ δni ) ◦ dmj which is zero on N(Um) unless j = m. If j = m,
then dmm(N(Um)) ⊂ N(Um−1) and hence U(ϕ◦δni )(N(Um)) ⊂ U(ψ ◦δni )(N(Um−1))
and we win by induction hypothesis.

To finish proving that A(U) is a subcomplex we still have to deal with the compo-
sition

N(Um)
U(ϕ)−−−→ Un

dn−→ Un−1.

in case m = n− 1. In this case ϕ = σn−1
j for some 0 ≤ j ≤ n− 1 and U(ϕ) = sn−1

j .
Thus the composition is given by the sum∑

(−1)idni ◦ sn−1
j

Recall from Remark 3.3 that dnj ◦s
n−1
j = dnj+1◦s

n−1
j = id and these drop out because

the corresponding terms have opposite signs. The map dnn◦sn−1
j , if j < n−1, is equal

to sn−2
j ◦ dn−1

n−1. Since dn−1
n−1 maps N(Un−1) into N(Un−2), we see that the image

dnn(sn−1
j (N(Un−1)) is contained in sn−2

j (N(Un−2)) which is contained in A(Un−1) by

definition. For all other combinations of (i, j) we have either dni ◦s
n−1
j = sn−2

j−1 ◦d
n−1
i

(if i < j), or dni ◦ s
n−1
j = sn−2

j ◦ dn−1
i−1 (if n > i > j + 1) and in these cases the map

is zero because of the definition of N(Un−1). �

Lemma 22.7. The functor N is exact.

Proof. By Lemma 22.1 and the functorial decomposition of Lemma 22.6. �
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Lemma 22.8. Let A be an abelian category. Let V be a simplicial object of A.
The canonical morphism of chain complexes N(V )→ s(V ) is a quasi-isomorphism.
In other words, the complex A(V ) of Lemma 22.6 is acyclic.

Proof. Note that the result holds for K(A, k) for any object A and any k ≥ 0,
by Lemmas 22.3 and 22.5. Consider the hypothesis IHn,m: for all V such that
Vj = 0 for j ≤ m and all i ≤ n the map N(V ) → s(V ) induces an isomorphism
Hi(N(V ))→ Hi(s(V )).

To start of the induction, note that IHn,n is trivially true, because in that case
N(V )n = 0 and s(V )n = 0.

Assume IHn,m, with m ≤ n. Pick a simplicial object V such that Vj = 0 for j < m.
By Lemma 21.2 and Definition 21.3 we have K(Vm,m) = im!skmV . By Lemma
20.10 the natural morphism

K(Vm,m) = im!skmV → V

is injective. Thus we get a short exact sequence

0→ K(Vm,m)→ V →W → 0

for some W with Wi = 0 for i = 0, . . . ,m. This short exact sequence induces a
morphism of short exact sequence of associated complexes

0 // N(K(Vm,m)) //

��

N(V ) //

��

N(W ) //

��

0

0 // s(K(Vm,m)) // s(V ) // s(W ) // 0

see Lemmas 22.1 and 22.7. Hence we deduce the result for V from the result on
the ends. �

23. Dold-Kan

Lemma 23.1. Let A be an abelian category. The functor N is faithful, and reflects
isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma 17.6.
The statement on reflecting injections, surjections, and isomorphisms follows from
Lemma 17.7. �

Lemma 23.2. Let A and B be abelian categories. Let N : A → B, and S : B → A
be functors. Suppose that

(1) the functors S and N are exact,
(2) there is an isomorphism g : N ◦ S → idB to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.

Then S and N are quasi-inverse equivalences of categories.

Proof. It suffices to construct a functorial isomorphism S(N(A)) ∼= A. To do this
choose B and an isomorphism f : A→ S(B). Consider the map

f−1 ◦ gS(B) ◦ S(N(f)) : S(N(A))→ S(N(S(B)))→ S(B)→ A.

It is easy to show this does not depend on the choice of f,B and gives the desired
isomorphism S ◦N → idA. �
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Theorem 23.3. Let A be an abelian category. The functor N induces an equiva-
lence of categories

N : Simp(A) −→ Ch≥0(A)

Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma 21.4 (except that we throw in a sign to get the boundaries right).
Let A• be a chain complex with boundary maps dA,n : An → An−1. For each n ≥ 0
denote

In =
{
α : [n]→ {0, 1, 2, . . .} | Im(α) = [k] for some k

}
.

For α ∈ In we denote k(α) the unique integer such that Im(α) = [k]. We define a
simplicial object S(A•) as follows:

(1) S(A•)n =
⊕

α∈In Ak(α), which we will write as
⊕

α∈In Ak(α) · α to suggest
thinking of “α” as a basis vector for the summand corresponding to it,

(2) given ϕ : [m] → [n] we define S(A•)(ϕ) by its restriction to the direct
summand Ak(α) · α of S(A•)n as follows
(a) α ◦ ϕ 6∈ Im then we set it equal to zero,
(b) α ◦ ϕ ∈ Im but k(α ◦ ϕ) not equal to either k(α) or k(α)− 1 then we

set it equal to zero as well,
(c) if α ◦ϕ ∈ Im and k(α ◦ϕ) = k(α) then we use the identity map to the

summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m, and

(d) if α ◦ ϕ ∈ Im and k(α ◦ ϕ) = k(α)− 1 then we use (−1)k(α)dA,k(α) to
the summand Ak(α◦ϕ) · (α ◦ ϕ) of S(A•)m.

It is an exercise (FIXME) to show that this is a simplicial complex; one has to use
in particular that the compositions dA,k ◦ dA,k−1 are all zero.

Having verified this, the correct way to proceed with the proof would be to prove
directly that N and S are quasi-inverse functors (FIXME). Instead we prove this
by an indirect method using Eilenberg-Maclane objects and truncations. It is clear
that A• 7→ S(A•) is an exact functor from chain complexes to simplicial objects. If
Ai = 0 for i = 0, . . . , n then S(A•)i = 0 for i = 0, . . . , n. The objects K(A, k), see
Definition 21.3, are equal to S(A[−k]) where A[−k] is the chain complex with A in
degree k and zero elsewhere.

Moreover, for each integer k we get a sub simplicial object S≤k(A•) by considering
only those α with k(α) ≤ k. In fact this is nothing but S(σ≤kA•), where σ≤kA•
is the “stupid” truncation of A• at k (which simply replaces Ai by 0 for i > k).
Also, by Lemma 20.10 we see that it is equal to ik!skkS(A•). Clearly, the quotient
S≤k(A•)/S≤k−1(A•) = K(Ak, k) and the quotient S(A•)/S≤k(A•) = S(A/σ≤kA•)
is a simplicial object whose ith term is zero for i = 0, . . . , k. Since S≤k−1(A•)
is filtered with subquotients K(Ai, i), i < k we see that N(S≤k−1(A•))k = 0 by
exactness of the functor N , see Lemma 22.7. All in all we conclude that the maps

N(S(A•))k ← N(S≤k(A•))k → N(S(Ak[−k])) = N(K(Ak, k))k = Ak

are functorial isomorphisms.

It is actually easy to identify the map Ak → N(S(A•))k. Note that there is a
unique map Ak → S(A•)k corresponding to the summand α = id[k]. Note that

Im(id[k] ◦ δki ) has cardinality k − 1 but does not have image [k − 1] unless i = k.

Hence dki kills the summand Ak · id[k] for i = 0, . . . , k − 1. From the abstract
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computation of N(S(A•))k above we conclude that the summand Ak · id[k] is equal
to N(S(A•))k.

In order to show that N ◦ S is the identity functor on Ch≥0(A), the last thing we
have to verify is that we recover the map dA,k+1 : Ak+1 → Ak as the differential on
the complex N(S(A•)) as follows

Ak+1 = N(S(A•))k+1 → N(S(A•))k = Ak

By definition the map N(S(A•))k+1 → N(S(A•))k corresponds to the restriction

of (−1)k+1dk+1
k+1 to N(S(A•)) which is the summand Ak+1 · id[k+1]. And by the

definition of S(A•) above the map dk+1
k+1 maps Ak+1 · id[k+1] into Ak · id[k] by

(−1)k+1dA,k+1. The signs cancel and hence the desired equality.

We know that N is faithful, see Lemma 23.1. If we can show that S is es-
sentially surjective, then it will follow that N is an equivalence, see Homology,
Lemma 23.2. Note that if A• is a chain complex then S(A•) = colimn S≤n(A•) =
colimn S(σ≤nA•) = colimn in!sknS(A•) by construction of S. By Lemma 21.5 it
suffices to show that in!V is in the essential image for any n-truncated simplicial
object V . By induction on n it suffices to show that any extension

0→ S(A•)→ V → K(A,n)→ 0

where Ai = 0 for i ≥ n is in the essential image of S. By Homology, Lemma 7.2 we
have abelian group homomorphisms

ExtSimp(A)(K(A,n), S(A•))
N //

ExtCh≥0(A)(A[−n], A•)
S
oo

between ext groups (see Homology, Definition 6.2). We want to show that S is
surjective. We know that N ◦ S = id. Hence it suffices to show that Ker(N) = 0.
Clearly an extension

0 // 0 //

��

An−1
//

��

An−2
//

��

. . . // A0
//

��

0

E : 0 // A //

��

An−1
//

��

An−2
//

��

. . . // A0
//

��

0

0 // A // 0 // 0 // . . . // 0 // 0

of A• by A[−n] in Ch(A) is zero if and only if the map A → An−1 is zero. Thus
we have to show that any extension

0→ S(A•)→ V → K(A,n)→ 0

such that A = N(V )n → N(V )n−1 is zero is split. By Lemma 21.2 we have

Mor(K(A,n), V ) =
{
f : A→

⋂n

i=0
Ker(dni : Vn → Vn−1)

}
and if A = N(V )n → N(V )n−1 is zero, then the intersection occurring in the
formula above is equal to A. Let i : K(A,n)→ V be the morphism corresponding
to idA on the right hand side of the displayed formula. Clearly this is a section to
the map V → K(A,n) and the extension is split as desired. �
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24. Dold-Kan for cosimplicial objects

Let A be an abelian category. According to Homology, Lemma 5.2 also Aopp is
abelian. It follows formally from the definitions that

CoSimp(A) = Simp(Aopp)opp.
Thus Dold-Kan (Theorem 23.3) implies that CoSimp(A) is equivalent to the cate-
gory Ch≥0(Aopp)opp. And it follows formally from the definitions that

CoCh≥0(A) = Ch≥0(Aopp)opp.
Putting these arrows together we obtain an equivalence

Q : CoSimp(A) −→ CoCh≥0(A).

In this section we describe Q.

First we define the cochain complex s(U) associated to a cosimplicial object U .
It is the cochain complex with terms zero in negative degrees, and s(U)n = Un
for n ≥ 0. As differentials we use the maps dn : s(U)n → s(U)n+1 defined by

dn =
∑n+1
i=0 (−1)iδn+1

i . In other words the complex s(U) looks like

0 // U0

δ10−δ
1
1 // U1

δ20−δ
2
1+δ22 // U2

// . . .

This is sometimes also called the Moore complex associated to U .

On the other hand, given a cosimplicial object U of A set Q(U)0 = U0 and

Q(U)n = Coker(
⊕n−1

i=0 Un−1

δni // Un ).

The differential dn : Q(U)n → Q(U)n+1 is induced by (−1)n+1δn+1
n+1 , i.e., by fitting

the morphism (−1)n+1δn+1
n+1 into a commutative diagram

Un
(−1)n+1δn+1

n+1

//

��

Un+1

��
Q(U)n

dn // Q(U)n+1.

We leave it to the reader to show that this diagram makes sense, i.e., that the image
of δni maps into the kernel of the right vertical arrow for i = 0, . . . , n− 1. (This is
dual to Lemma 17.8.) Thus our cochain complex Q(U) looks like this

0→ Q(U)0 → Q(U)1 → Q(U)2 → . . .

This is called the normalized cochain complex associated to U . The dual to the
Dold-Kan Theorem 23.3 is the following.

Lemma 24.1. Let A be an abelian category.

(1) The functor s : CoSimp(A)→ CoCh≥0(A) is exact.
(2) The maps s(U)n → Q(U)n define a morphism of cochain complexes.
(3) There exists a functorial direct sum decomposition s(U) = A(U)⊕Q(U) in

CoCh≥0(A).
(4) The functor Q is exact.
(5) The morphism of complexes s(U)→ Q(U) is a quasi-isomorphism.
(6) The functor U 7→ Q(U)• defines an equivalence of categories CoSimp(A)→

CoCh≥0(A).
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Proof. Omitted. But the results are the exact dual statements to Lemmas 22.1,
22.4, 22.6, 22.7, 22.8, and Theorem 23.3. �

25. Homotopies

Consider the simplicial sets ∆[0] and ∆[1]. Recall that there are two morphisms

e0, e1 : ∆[0] −→ ∆[1],

coming from the morphisms [0]→ [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set ∆[1]k is finite. Hence, if the category C has finite coproducts,
then we can form the product

U ×∆[1]

for any simplicial object U of C, see Definition 13.1. Note that ∆[0] has the property
that ∆[0]k = {∗} is a singleton for all k ≥ 0. Hence U × ∆[0] = U . Thus e0, e1

above gives rise to morphisms

e0, e1 : U → U ×∆[1].

Definition 25.1. Let C be a category having finite coproducts. Suppose that U
and V are two simplicial objects of C. Let a, b : U → V be two morphisms.

(1) We say a morphism

h : U ×∆[1] −→ V

is a homotopy connecting a to b if a = h ◦ e0 and b = h ◦ e1.
(2) We say morphisms a and b are homotopic if there exists a homotopy con-

necting a to b or a homotopy connecting b to a.

Warning: Being homotopic is not an equivalence relation on the set of all mor-
phisms from U to V ! The relation “there exists a homotopy from a to b” is not
symmetric.

It turns out we can define homotopies between pairs of maps of simplicial objects
in any category. To do this you just work out what it means to have the morphisms
hn : (U ×∆[1])n → Vn in terms of the mapping property of coproducts.

Let C be a category with finite coproducts. Let U , V be simplicial objects of C. Let
a, b : U → V be morphisms. Further, suppose that h : U ×∆[1]→ V is a homotopy
connecting a to b. For every n ≥ 0 let us write

∆[1]n = {αn0 , . . . , αnn+1}
where αni : [n]→ [1] is the map such that

αni (j) =

{
0 if j < i
1 if j ≥ i

Thus
hn : (U ×∆[1])n =

∐
Un · αni −→ Vn

has a component hn,i : Un → Vn which is the restriction to the summand corre-
sponding to αni for all i = 0, . . . , n+ 1.

Lemma 25.2. In the situation above, we have the following relations:

(1) We have hn,0 = bn and hn,n+1 = an.
(2) We have dnj ◦ hn,i = hn−1,i−1 ◦ dnj for i > j.
(3) We have dnj ◦ hn,i = hn−1,i ◦ dnj for i ≤ j.
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(4) We have snj ◦ hn,i = hn+1,i+1 ◦ snj for i > j.
(5) We have snj ◦ hn,i = hn+1,i ◦ snj for i ≤ j.

Conversely, given a system of maps hn,i satisfying the properties listed above, then
these define a morphisms h which is a homotopy between a and b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma 2.4
that to give a morphism of simplicial objects is the same as giving a sequence of
morphisms hn commuting with all dnj and snj . �

Example 25.3. Suppose in the situation above a = b. Then there is a trivial
homotopy between a and b, namely the one with hn,i = an = bn.

Remark 25.4. Let C be any category (no assumptions whatsoever). We say that
a pair of morphisms a, b : U → V of simplicial objects are homotopic if there exist
morphisms1 hn,i : Un → Vn, for n ≥ 0, i = 0, . . . , n + 1 satisfying the relations of
Lemma 25.2 (potentially with the roles of a and b switched). This is a “better”
definition, because it applies to any category. Also it has the following property:
if F : C → C′ is any functor then a homotopic to b implies trivially that F (a) is
homotopic to F (b). Since the lemma says that the newer notion is the same as the
old one in case finite coproduct exist, we deduce in particular that functors preserve
the old notion whenever both categories have finite coproducts.

Remark 25.5. Let C be any category. Suppose two morphisms a, a′ : U → V of
simplicial objects are homotopic. Then for any morphism b : V →W the two maps
b◦a, b◦a′ : U →W are homotopic. Similarly, for any morphism c : X → U the two
maps a◦c, a′ ◦c : X → V are homotopic. In fact the maps b◦a◦c, b◦a′ ◦c : X →W
are homotopic. Namely, if the maps hn,i : U → U define a homotopy between a
and a′ then the maps b ◦ hn,i ◦ c define a homotopy between b ◦ a ◦ c and b ◦ a′ ◦ c.
Definition 25.6. Let U and V be two simplicial objects of a category C. We
say a morphism a : U → V is a homotopy equivalence if there exists a morphism
b : V → U such that a◦b is homotopic to idV and b◦a is homotopic to idU . If there
exists such a morphism between U and V , then we say that U and V are homotopy
equivalent2.

Example 25.7. The simplicial set ∆[m] is homotopy equivalent to ∆[0]. Namely,
there is a unique morphism f : ∆[m] → ∆[0] and we take g : ∆[0] → ∆[m] to be
given by the inclusion of the last 0-simplex of ∆[m]. We have f ◦ g = id and we
will give a homotopy h : ∆[m]×∆[1]→ ∆[m] between id∆[m] and g ◦ f . Namely h
given by the maps

Mor∆([n], [m])×Mor∆([n], [1])→ Mor∆([n], [m])

which send (ϕ, α) to

k 7→
{
ϕ(k) if α(k) = 0
m if α(k) = 1

Note that this only works because we took g to be the inclusion of the last 0-simplex.
If we took g to be the inclusion of the first 0-simplex we could find a homotopy from
g ◦ f to id∆[m]. This is an illustration of the asymmetry inherent in homotopies in
the category of simplicial sets.

1In the literature, often the maps hn+1,i ◦ si : Un → Vn+1 are used instead of the maps hn,i.

Of course the relations these maps satisfy are different from the ones in Lemma 25.2.
2Warning: This notion is not an equivalence relation on objects in general.
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The following lemma says that U ×∆[1] is homotopy equivalent to U .

Lemma 25.8. Let C be a category with finite coproducts. Let U be a simplicial
object of C. Consider the maps e1, e0 : U → U ×∆[1], and π : U ×∆[1] → U , see
Lemma 13.3.

(1) We have π ◦ e1 = π ◦ e0 = idU , and
(2) The morphisms idU×∆[1], and e0 ◦ π are homotopic.
(3) The morphisms idU×∆[1], and e1 ◦ π are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets ∆[1]×∆[1] −→ ∆[1] which in degree n assigns to a pair (β1, β2), βi : [n]→ [1]
the morphism β : [n]→ [1] defined by the rule

β(i) = max{β1(i), β2(i)}.

It is a morphism of simplicial sets, because the action ∆[1](ϕ) : ∆[1]n → ∆[1]m of
ϕ : [m]→ [n] is by precomposing. Clearly, using notation from Section 25, we have
β = β1 if β2 = αn0 and β = αnn+1 if β2 = αnn+1. This implies easily that the induced
morphism

U ×∆[1]×∆[1] −→ U ×∆[1]

of Lemma 13.3 is a homotopy between idU×∆[1] and e0 ◦π. Similarly for e1 ◦π (use
minimum instead of maximum). �

Lemma 25.9. Let f : Y → X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example
3.5 starting with f . The morphism U → U which in each degree is the self map
(s◦f)n+1 of Y ×X . . .×X Y given by s◦f on each factor is homotopic to the identity
on U . In particular, U is homotopy equivalent to the constant simplicial object X.

Proof. Set g0 = idY and g1 = s ◦ f . We use the morphisms

Y ×X . . .×X Y ×Mor([n], [1]) → Y ×X . . .×X Y

(y0, . . . , yn)× α 7→ (gα(0)(y0), . . . , gα(n)(yn))

where we use the functor of points point of view to define the maps. Another way to
say this is to say that hn,0 = id, hn,n+1 = (s◦f)n+1 and hn,i = idi+1

Y × (s◦f)n+1−i.
We leave it to the reader to show that these satisfy the relations of Lemma 25.2.
Hence they define the desired homotopy. See also Remark 25.4 which shows that
we do not need to assume anything else on the category C. �

Lemma 25.10. Let C be a category.

(1) If at, bt : Xt → Yt, t ∈ T are homotopic morphisms between simplicial
objects of C, then

∏
at,
∏
bt :

∏
Xt →

∏
Yt are homotopic morphisms

between simplicial objects of C, provided
∏
Xt and

∏
Yt exist in Simp(C).

(2) If (Xt, Yt), t ∈ T are homotopy equivalent pairs of simplicial objects of C,
then

∏
Xt and

∏
Yt are homotopy equivalent pairs of simplicial objects of

C, provided
∏
Xt and

∏
Yt exist in Simp(C).

Proof. If ht = (ht,n,i) are homotopies connecting at and bt (see Remark 25.4),
then h = (

∏
t ht,n,i) is a homotopy connecting

∏
at and

∏
bt. This proves (1).

Part (2) follows from part (1) and the definitions. �
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26. Homotopies in abelian categories

Let A be an abelian category. Let U , V be simplicial objects of A. Let a, b : U → V
be morphisms. Further, suppose that h : U×∆[1]→ V is a homotopy connecting a
and b. Consider the two morphisms of chain complexes s(a), s(b) : s(U) −→ s(V ).
Using the notation introduced above Lemma 25.2 we define

s(h)n : Un −→ Vn+1

by the formula

(26.0.1) s(h)n =
∑n

i=0
(−1)i+1hn+1,i+1 ◦ sni .

Let us compute dn+1 ◦ s(h)n + s(h)n−1 ◦ dn. We first compute

dn+1 ◦ s(h)n =
∑n+1

j=0

∑n

i=0
(−1)j+i+1dn+1

j ◦ hn+1,i+1 ◦ sni

=
∑

1≤i+1≤j≤n+1
(−1)j+i+1hn,i+1 ◦ dn+1

j ◦ sni

+
∑

n≥i≥j≥0
(−1)i+j+1hn,i ◦ dn+1

j ◦ sni

=
∑

1≤i+1<j≤n+1
(−1)j+i+1hn,i+1 ◦ sn−1

i ◦ dnj−1

+
∑

1≤i+1=j≤n+1
(−1)j+i+1hn,i+1

+
∑

n≥i=j≥0
(−1)i+j+1hn,i

+
∑

n≥i>j≥0
(−1)i+j+1hn,i ◦ sn−1

i−1 ◦ d
n
j

We leave it to the reader to see that the first and the last of the four sums cancel
exactly against all the terms of

s(h)n−1 ◦ dn =

n−1∑
i=0

n∑
j=0

(−1)i+1+jhn,i+1 ◦ sn−1
i ◦ dnj .

Hence we obtain

dn+1 ◦ s(h)n + s(h)n−1 ◦ dn =
n+1∑
j=1

(−1)2jhn,j +
n∑
i=0

(−1)2i+1hn,i

= hn,n+1 − hn,0
= an − bn

Thus we’ve proved part of the following lemma.

Lemma 26.1. Let A be an abelian category. Let a, b : U → V be morphisms of
simplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U) → s(V ), and
N(a), N(b) : N(U)→ N(V ) are homotopic maps of chain complexes.

Proof. The part about s(a) and s(b) is clear from the calculation above the lemma.
On the other hand, if follows from Lemma 22.6 that N(a), N(b) are compositions

N(U)→ s(U)→ s(V )→ N(V )

where we use s(a), s(b) in the middle. Hence the assertion follows from Homology,
Lemma 12.1. �
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Lemma 26.2. Let A be an abelian category. Let a : U → V be a morphism of
simplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) → s(V ),
and N(a) : N(U)→ N(V ) are homotopy equivalences of chain complexes.

Proof. Omitted. See Lemma 26.1 above. �

27. Homotopies and cosimplicial objects

Let C be a category with finite products. Let V be a cosimplicial object and consider
Hom(∆[1], V ), see Section 14. The morphisms e0, e1 : ∆[0] → ∆[1] produce two
morphisms e0, e1 : Hom(∆[1], V )→ V .

Definition 27.1. Let C be a category having finite products. Suppose that U and
V are two cosimplicial objects of C. We say morphisms a, b : U → V are homotopic
if there exists a morphism

h : U −→ Hom(∆[1], V )

such that a = e0 ◦ h and b = e1 ◦ h. In this case h is called a homotopy connecting
a and b.

This is really exactly the same as the notion we introduced for simplicial objects
earlier. In particular, recall that ∆[1]n is a finite set, and that

hn = (hn,α) : U −→
∏

α∈∆[1]n
Vn

is given by a collection of maps hn,α : Un → Vn parametrized by elements of
∆[1]n = Mor∆([n], [1]). As in Lemma 25.2 these morphisms satisfy some relations.
Namely, for every f : [n]→ [m] in ∆ we should have

(27.1.1) hm,α ◦ U(f) = V (f) ◦ hn,α◦f
The condition that a = e0 ◦ h means that an = hn,0:[n]→[1] where 0 : [n] → [1] is
the constant map with value zero. Similarly, we should have bn = hn,1:[n]→[1]. In
particular we deduce once more that the notion of homotopy can be formulated
between cosimplicial objects of any category, i.e., existence of products is not nec-
essary. Here is a precise formulation of why this is dual to the notion of a homotopy
between morphisms of simplicial objects.

Lemma 27.2. Let C be a category having finite products. Suppose that U and V
are two cosimplicial objects of C. Let a, b : U → V be morphisms of cosimplicial
objects. Recall that U , V correspond to simplicial objects U ′, V ′ of Copp. Moreover
a, b correspond to morphisms a′, b′ : V ′ → U ′. The following are equivalent

(1) The morphisms a, b : U → V of cosimplicial objects are homotopic.
(2) The morphisms a′, b′ : V ′ → U ′ of simplicial objects of Copp are homotopic.

Proof. If C has finite products, then Copp has finite coproducts. And the con-
travariant functor (−)′ : C → Copp transforms products into coproducts. Then it is
immediate from the definitions that (Hom(∆[1], V ))′ = V ′ ×∆[1]. And so on and
so forth. �

Lemma 27.3. Let C, C′,D,D′ be categories such that C, C′ have finite products, and
D,D′ have finite coproducts.

(1) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → D′
be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of simplicial objects.
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(2) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → C′
be a covariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (U)→ F (V ) of cosimplicial objects.

(3) Let a, b : U → V be morphisms of simplicial objects of D. Let F : D → C
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of cosimplicial objects.

(4) Let a, b : U → V be morphisms of cosimplicial objects of C. Let F : C → D
be a contravariant functor. If a and b are homotopic, then F (a), F (b) are
homotopic morphisms F (V )→ F (U) of simplicial objects.

Proof. By Lemma 27.2 above, we can turn F into a covariant functor between
a pair of categories which have finite coproducts, and we have to show that the
functor preserves homotopic pairs of maps. It is explained in Remark 25.4 how this
is the case. Even if the functor does not commute with coproducts! �

Lemma 27.4. Let f : Y → X be a morphism of a category C with pushouts. As-
sume f has a section s. Consider the cosimplicial object U constructed in Example
5.5 starting with f . The morphism U → U which in each degree is the self map of
Y qX . . .qX Y given by s ◦ f on each factor is homotopic to the identity on U . In
particular, U is homotopy equivalent to the constant cosimplicial object X.

Proof. The dual statement which is Lemma 25.9. Hence this lemma follows on
applying Lemma 27.2. �

Lemma 27.5. Let A be an abelian category. Let a, b : U → V be morphisms of
cosimplicial objects of A. If a, b are homotopic, then s(a), s(b) : s(U)→ s(V ), and
Q(a), Q(b) : Q(U)→ Q(V ) are homotopic maps of cochain complexes.

Proof. Let (−)′ : A → Aopp be the contravariant functor A 7→ A. By Lemma
27.4 the maps a′ and b′ are homotopic. By Lemma 26.1 we see that s(a′) and
s(b′) are homotopic maps of chain complexes. Since s(a′) = (s(a))′ and s(b′) =
(s(b))′ we conclude that also s(a) and s(b) are homotopic by applying the additive
contravariant functor (−)′′ : Aopp → A. The result for the Q-complexes follows
from the direct sum decomposition of Lemma 24.1 for example. �

28. More homotopies in abelian categories

Let A be an abelian category. In this section we show that a homotopy between
morphisms in Ch≥0(A) always comes from a morphism U × ∆[1] → V in the
category of simplicial objects. In some sense this will provide a converse to Lemma
26.1. We first develop some material on homotopies between morphisms of chain
complexes.

Lemma 28.1. Let A be an abelian category. Let A be a chain complex. Consider
the covariant functor

B 7−→ {(a, b, h) | a, b : A→ B and h a homotopy between a, b}
There exists a chain complex �A such that MorCh(A)(�A,−) is isomorphic to the
displayed functor. The construction A 7→ �A is functorial.

Proof. We set �An = An ⊕An ⊕An−1, and we define d�A,n by the matrix

d�A,n =

dA,n 0 idAn−1

0 dA,n −idAn−1

0 0 −dA,n−1

 : An ⊕An ⊕An−1 → An−1 ⊕An−1 ⊕An−2
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If A is the category of abelian groups, and (x, y, z) ∈ An ⊕ An ⊕ An−1 then
d�A,n(x, y, z) = (dn(x) + z, dn(y) − z,−dn−1(z)). It is easy to verify that d2 = 0.
Clearly, there are two maps �a, �b : A→ �A (first summand and second summand),
and a map �A→ A[−1] which give a short exact sequence

0→ A⊕A→ �A→ A[−1]→ 0

which is termwise split. Moreover, there is a sequence of maps �hn : An → �An+1,
namely the identity from An to the summand An of �An+1, such that �h is a
homotopy between �a and �b.

We conclude that any morphism f : �A→ B gives rise to a triple (a, b, h) by setting
a = f ◦ �a, b = f ◦ �b and hn = fn+1 ◦ �hn. Conversely, given a triple (a, b, h) we
get a morphism f : �A→ B by taking

fn = (an, bn, hn−1).

To see that this is a morphism of chain complexes you have to do a calculation.
We only do this in case A is the category of abelian groups: Say (x, y, z) ∈ �An =
An ⊕An ⊕An−1. Then

fn−1(dn(x, y, z)) = fn−1(dn(x) + z, dn(y)− z,−dn−1(z))

= an(dn(x)) + an(z) + bn(dn(y))− bn(z)− hn−2(dn−1(z))

and

dn(fn(x, y, z) = dn(an(x) + bn(y) + hn−1(z))

= dn(an(x)) + dn(bn(y)) + dn(hn−1(z))

which are the same by definition of a homotopy. �

Note that the extension

0→ A⊕A→ �A→ A[−1]→ 0

comes with sections of the morphisms �An → A[−1]n with the property that the
associated morphism δ : A[−1] → (A⊕ A)[−1], see Homology, Lemma 14.4 equals
the morphism (1,−1) : A[−1]→ A[−1]⊕A[−1].

Lemma 28.2. Let A be an abelian category. Let

0→ A⊕A→ B → C → 0

be a short exact sequence of chain complexes of A. Suppose given in addition
morphisms sn : Cn → Bn splitting the associated short exact sequence in degree
n. Let δ(s) : C → (A ⊕ A)[−1] = A[−1] ⊕ A[−1] be the associated morphism
of complexes, see Homology, Lemma 14.4. If δ(s) factors through the morphism
(1,−1) : A[−1]→ A[−1]⊕A[−1], then there is a unique morphism B → �A fitting
into a commutative diagram

0 // A⊕A

��

// B //

��

C

��

// 0

0 // A⊕A // �A // A[−1] // 0

where the vertical maps are compatible with the splittings sn and the splittings of
�An → A[−1]n as well.
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Proof. Denote (pn, qn) : Bn → An ⊕ An the morphism πn of Homology, Lemma
14.4. Also write (a, b) : A ⊕ A → B, and r : B → C for the maps in the short
exact sequence. Write the factorization of δ(s) as δ(s) = (1,−1) ◦ f . This means
that pn−1 ◦ dB,n ◦ sn = fn, and qn−1 ◦ dB,n ◦ sn = −fn, and Set Bn → �An =
An ⊕An ⊕An−1 equal to (pn, qn, fn ◦ rn).

Now we have to check that this actually defines a morphism of complexes. We will
only do this in the case of abelian groups. Pick x ∈ Bn. Then x = an(x1)+bn(x2)+
sn(x3) and it suffices to show that our definition commutes with differential for each
term separately. For the term an(x1) we have (pn, qn, fn ◦ rn)(an(x1)) = (x1, 0, 0)
and the result is obvious. Similarly for the term bn(x2). For the term sn(x3) we
have

(pn, qn, fn ◦ rn)(dn(sn(x3))) = (pn, qn, fn ◦ rn)(

an(fn(x3))− bn(fn(x3)) + sn(dn(x3)))

= (fn(x3),−fn(x3), fn(dn(x3)))

by definition of fn. And

dn(pn, qn, fn ◦ rn)(sn(x3)) = dn(0, 0, fn(x3))

= (fn(x3),−fn(x3), dA[−1],n(fn(x3)))

The result follows as f is a morphism of complexes. �

Lemma 28.3. Let A be an abelian category. Let U , V be simplicial objects of
A. Let a, b : U → V be a pair of morphisms. Assume the corresponding maps of
chain complexes N(a), N(b) : N(U) → N(V ) are homotopic by a homotopy {Nn :
N(U)n → N(V )n+1}. Then a, b are homotopic in the sense of Definition 25.1.
Moreover, one can choose the homotopy h : U ×∆[1] → V such that Nn = N(h)n
where N(h) is the homotopy coming from h as in Section 26.

Proof. Let (�N(U), �a, �b, �h) be as in Lemma 28.1 and its proof. By that lemma
there exists a morphism �N(U)→ N(V ) representing the triple (N(a), N(b), {Nn}).
We will show there exists a morphism ψ : N(U ×∆[1]) → �N(U) such that �a =
ψ ◦N(e0), and �b = ψ ◦N(e1). Moreover, we will show that the homotopy between
N(e0), N(e1) : N(U) → N(U ×∆[1]) coming from (26.0.1) and Lemma 26.1 with
h = idU×∆[1] is mapped via ψ to the canonical homotopy �h between the two maps
�a, �b : N(U)→ �N(U). Certainly this will imply the lemma.

Note that N : Simp(A) → Ch≥0(A) as a functor is a direct summand of the
functor N : Simp(A) → Ch≥0(A). Also, the functor � is compatible with direct
sums. Thus it suffices instead to construct a morphism Ψ : s(U ×∆[1]) → �s(U)
with the corresponding properties. This is what we do below.

By Definition 25.1 the morphisms e0 : U → U ×∆[1] and e1 : U → U ×∆[1] are
homotopic with homotopy idU×∆[1]. By Lemma 26.1 we get an explicit homotopy
{hn : s(U)n → s(U ×∆[1])n+1} between the morphisms of chain complexes s(e0) :
s(U)→ s(U ×∆[1]) and s(e1) : s(U)→ s(U ×∆[1]). By Lemma 28.2 above we get
a corresponding morphism

Φ : �s(U)→ s(U ×∆[1])
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According to the construction, Φn restricted to the summand s(U)[−1]n = s(U)n−1

of �s(U)n is equal to hn−1. And

hn−1 =
∑n−1

i=0
(−1)i+1sni · αni+1 : Un−1 →

⊕
j
Un · αnj .

with obvious notation.

On the other hand, the morphisms ei : U → U ×∆[1] induce a morphism (e0, e1) :
U ⊕ U → U ×∆[1]. Denote W the cokernel. Note that, if we write (U ×∆[1])n =⊕

α:[n]→[1] Un · α, then we may identify Wn =
⊕n

i=1 Un · αni with αni as in Section

25. We have a commutative diagram

0 // U ⊕ U

(1,1)
%%

// U ×∆[1]

π

��

// W // 0

U

This implies we have a similar commutative diagram after applying the functor s.
Next, we choose the splittings σn : s(W )n → s(U×∆[1])n by mapping the summand
Un ·αni ⊂Wn via (−1, 1) to the summands Un ·αn0⊕Un ·αni ⊂ (U×∆[1])n. Note that
s(π)n ◦ σn = 0. It follows that (1, 1) ◦ δ(σ)n = 0. Hence δ(σ) factors as in Lemma
28.2. By that lemma we obtain a canonical morphism Ψ : s(U ×∆[1])→ �s(U).

To compute Ψ we first compute the morphism δ(σ) : s(W )→ s(U)[−1]⊕ s(U)[−1].
According to Homology, Lemma 14.4 and its proof, to do this we have compute

ds(U×δ[1]),n ◦ σn − σn−1 ◦ ds(W ),n

and write it as a morphism into Un−1 ·αn−1
0 ⊕Un−1 ·αn−1

n . We only do this in case
A is the category of abelian groups. We use the short hand notation xα for x ∈ Un
to denote the element x in the summand Un · α of (U ×∆[1])n. Recall that

ds(U×δ[1]),n =
∑n

i=0
(−1)idni

where dni maps the summand Un ·α to the summand Un−1 ·(α◦δni ) via the morphism
dni of the simplicial object U . In terms of the notation above this means

ds(U×δ[1]),n(xα) =
∑n

i=0
(−1)i(dni (x))α◦δni

Starting with xα ∈Wn, in other words α = αnj for some j ∈ {1, . . . , n}, we see that
σn(xα) = xα − xαn0 and hence

(ds(U×δ[1]),n ◦ σn)(xα) =
∑n

i=0
(−1)i(dni (x))α◦δni −

∑n

i=0
(−1)i(dni (x))αn0 ◦δni

To compute ds(W ),n(xα), we have to omit all terms where α ◦ δni = αn−1
0 , αn−1

n .
Hence we get

(σn−1 ◦ ds(W ),n)(xα) =∑
i=0,...,n and α◦δni 6=α

n−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δni − (−1)i(dni (x))αn−1

0

)
Clearly the difference of the two terms is the sum∑

i=0,...,n and α◦δni =αn−1
0 or αn−1

n

(
(−1)i(dni (x))α◦δni − (−1)i(dni (x))αn−1

0

)
Of course, if α ◦ δni = αn−1

0 then the term drops out. Recall that α = αnj for some

j ∈ {1, . . . , n}. The only way αnj ◦δni = αn−1
n is if j = n and i = n. Thus we actually
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get 0 unless j = n and in that case we get (−1)n(dnn(x))αn−1
n
− (−1)n(dnn(x))αn−1

0
.

In other words, we conclude the morphism

δ(σ)n : Wn → (s(U)[−1]⊕ s(U)[−1])n = Un−1 ⊕ Un−1

is zero on all summands except Un · αnn and on that summand it is equal to
((−1)ndnn,−(−1)ndnn). (Namely, the first summand of the two corresponds to the
factor with αn−1

n because that is the map [n − 1] → [1] which maps everybody to
0, and hence corresponds to e0.)

We obtain a canonical diagram

0 // s(U)⊕ s(U) //

��

�s(U) //

Φ

��

s(U)[−1] //

��

0

0 // s(U)⊕ s(U) //

��

s(U ×∆[1]) //

Ψ

��

s(W ) //

��

0

0 // s(U)⊕ s(U) // �s(U) // s(U)[−1] // 0

We claim that Φ ◦ Ψ is the identity. To see this it is enough to prove that the
composition of Φ and δ(σ) as a map s(U)[−1]→ s(W )→ s(U)[−1]⊕s(U)[−1] is the
identity in the first factor and minus identity in the second. By the computations
above it is ((−1)ndn0 ,−(−1)ndn0 ) ◦ (−1)nsnn = (1,−1) as desired. �

29. Trivial Kan fibrations

Recall that for n ≥ 0 the simplicial set ∆[n] is given by the rule [k] 7→ Mor∆([k], [n]),
see Example 11.2. Recall that ∆[n] has a unique nondegenerate n-simplex and all
nondegenerate simplices are faces of this n-simplex. In fact, the nondegenerate
simplices of ∆[n] correspond exactly to injective morphisms [k] → [n], which we
may identify with subsets of [n]. Moreover, recall that Mor(∆[n], X) = Xn for any
simplicial set X (Lemma 11.3). We set

∂∆[n] = i(n−1)!skn−1∆[n]

and we call it the boundary of ∆[n]. From Lemma 20.5 we see that ∂∆[n] ⊂ ∆[n]
is the simplicial subset having the same nondegenerate simplices in degrees ≤ n−1
but not containing the nondegenerate n-simplex.

Definition 29.1. A map X → Y of simplicial sets is called a trivial Kan fibration
if X0 → Y0 is surjective and for all n ≥ 1 and any commutative solid diagram

∂∆[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.
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Lemma 29.2. Let f : X → Y be a trivial Kan fibration of simplicial sets. For any
solid commutative diagram

Z
b
//

��

X

��
W

a //

>>

Y

of simplicial sets with Z → W (termwise) injective a dotted arrow exists making
the diagram commute.

Proof. Suppose that Z 6= W . Let n be the smallest integer such that Zn 6= Wn.
Let x ∈Wn, x 6∈ Zn. Denote Z ′ ⊂W the simplicial subset containing Z, x, and all
degeneracies of x. Let ϕ : ∆[n]→ Z ′ be the morphism corresponding to x (Lemma
11.3). Then ϕ|∂∆[n] maps into Z as all the nondegenerate simplices of ∂∆[n] end
up in Z. By assumption we can extend b ◦ ϕ|∂∆[n] to β : ∆[n] → X. By Lemma
20.7 the simplicial set Z ′ is the pushout of ∆[n] and Z along ∂∆[n]. Hence b and
β define a morphism b′ : Z ′ → X. In other words, we have extended the morphism
b to a bigger simplicial subset of Z.

The proof is finished by an application of Zorn’s lemma (omitted). �

Lemma 29.3. Let f : X → Y be a trivial Kan fibration of simplicial sets. Let
Y ′ → Y be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a trivial Kan
fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. �

Lemma 29.4. The composition of two trivial Kan fibrations is a trivial Kan fibra-
tion.

Proof. Omitted. �

Lemma 29.5. Let . . . → U2 → U1 → U0 be a sequence of trivial Kan fibrations.
Let U = limU t defined by taking Un = limU tn. Then U → U0 is a trivial Kan
fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �

Lemma 29.6. Let Xi → Yi be a set of trivial Kan fibrations. Then
∏
Xi →

∏
Yi

is a trivial Kan fibration.

Proof. Omitted. �

Lemma 29.7. A filtered colimit of trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories,
Section 19. �

Lemma 29.8. Let f : X → Y be a trivial Kan fibration of simplicial sets. Then f
is a homotopy equivalence.
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Proof. By Lemma 29.2 we can choose an right inverse g : Y → X to f . Consider
the diagram

∂∆[1]×X

��

// X

��
∆[1]×X //

::

Y

Here the top horizontal arrow is given by idX and g ◦ f where we use that (∂∆[1]×
X)n = Xn qXn for all n ≥ 0. The bottom horizontal arrow is given by the map
∆[1]→ ∆[0] and f : X → Y . The diagram commutes as f ◦ g ◦ f = f . By Lemma
29.2 we can fill in the dotted arrow and we win. �

30. Kan fibrations

Let n, k be integers with 0 ≤ k ≤ n and 1 ≤ n. Let σ0, . . . , σn be the n + 1 faces
of the unique nondegenerate n-simplex σ of ∆[n], i.e., σi = diσ. We let

Λk[n] ⊂ ∆[n]

be the kth horn of the n-simplex ∆[n]. It is the simplicial subset of ∆[n] generated
by σ0, . . . , σ̂k, . . . , σn. In other words, the image of the displayed inclusion contains
all the nondegenerate simplices of ∆[n] except for σ and σk.

Definition 30.1. A map X → Y of simplicial sets is called a Kan fibration if for
all k, n with 1 ≤ n, 0 ≤ k ≤ n and any commutative solid diagram

Λk[n] //

��

X

��
∆[n] //

==

Y

a dotted arrow exists making the diagram commute. A Kan complex is a simplicial
set X such that X → ∗ is a Kan fibration, where ∗ is the constant simplicial set on
a singleton.

Note that Λk[n] is always nonempty. This a morphism from the empty simplicial
set to any simplicial set is always a Kan fibration. It follows from Lemma 29.2 that
a trivial Kan fibration is a Kan fibration.

Lemma 30.2. Let f : X → Y be a Kan fibration of simplicial sets. Let Y ′ → Y
be a morphism of simplicial sets. Then X ×Y Y ′ → Y ′ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma 7.2) and the definitions. �

Lemma 30.3. The composition of two Kan fibrations is a Kan fibration.

Proof. Omitted. �

Lemma 30.4. Let . . . → U2 → U1 → U0 be a sequence of Kan fibrations. Let
U = limU t defined by taking Un = limU tn. Then U → U0 is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. �
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Lemma 30.5. Let Xi → Yi be a set of Kan fibrations. Then
∏
Xi →

∏
Yi is a

Kan fibration.

Proof. Omitted. �

The following lemma is due to J.C. Moore, see [Moo55].

Lemma 30.6. Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof
in the reference mentioned above. Using the terminology as explained in the intro-
duction to this section, suppose f : Λk[n] → X is a morphism from a horn. Set

xi = f(σi) ∈ Xn−1 for i = 0, . . . , k̂, . . . , n. This means that for i < j we have
dixj = dj−1xi whenever i, j 6= k. We have to find an x ∈ Xn such that xi = dix

for i = 0, . . . , k̂, . . . , n.

We first prove there exists a u ∈ Xn such that diu = xi for i < k. This is trivial for
k = 0. If k > 0, one defines by induction an element ur ∈ Xn such that diu

r = xi
for 0 ≤ i ≤ r. Start with u0 = s0x0. If r < k − 1, we set

yr = sr+1((dr+1u
r)−1xr+1), ur+1 = uryr.

An easy calculation shows that diy
r = 1 (unit element of the group Xn−1) for i ≤ r

and dr+1y
r = (dr+1u

r)−1xr+1. It follows that diu
r+1 = xi for i ≤ r + 1. Finally,

take u = uk−1 to get u as promised.

Next we prove, by induction on the integer r, 0 ≤ r ≤ n−k, there exists a xr ∈ Xn

such that
dix

r = xi for i < k and i > n− r.
Start with x0 = u for r = 0. Having defined xr for r ≤ n− k − 1 we set

zr = sn−r−1((dn−rx
r)−1xn−r), xr+1 = xrzr

A simple calculation, using the given relations, shows that diz
r = 1 for i < k and

i > n − r and that dn−r(z
r) = (dn−rx

r)−1xn−r. It follows that dix
r+1 = xi for

i < k and i > n− r − 1. Finally, we take x = xn−k which finishes the proof. �

Lemma 30.7. Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

Λk[n]
a
//

��

X

��
∆[n]

b //

==

Y

as in Definition 30.1. The map a corresponds to x0, . . . , x̂k, . . . , xn ∈ Xn−1 sat-
isfying dixj = dj−1xi for i < j, i, j 6= k. The map b corresponds to an element
y ∈ Yn such that diy = f(xi) for i 6= k. Our task is to produce an x ∈ Xn such
that dix = xi for i 6= k and f(x) = y.

Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y− f(x) and xi by xi − dix for i 6= k. Then we see that we may assume y = 0.
In particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y
by 0. In this case the statement become Lemma 30.6. �
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Lemma 30.8. Let f : X → Y be a homomorphism of simplicial abelian groups
which is termwise surjective and induces a quasi-isomorphism on associated chain
complexes. Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

∂∆[n]
a
//

��

X

��
∆[n]

b //

==

Y

as in Definition 29.1. The map a corresponds to x0, . . . , xn ∈ Xn−1 satisfying
dixj = dj−1xi for i < j. The map b corresponds to an element y ∈ Yn such that
diy = f(xi). Our task is to produce an x ∈ Xn such that dix = xi and f(x) = y.

Since f is termwise surjective we can find x ∈ Xn with f(x) = y. Replace y by
0 = y − f(x) and xi by xi − dix. Then we see that we may assume y = 0. In
particular f(xi) = 0. In other words, we can replace X by Ker(f) ⊂ X and Y by 0.
This works, because by Homology, Lemma 12.6 the homology of the chain complex
associated to Ker(f) is zero and hence Ker(f)→ 0 induces a quasi-isomorphism on
associated chain complexes.

Since X is a Kan complex (Lemma 30.6) we can find x ∈ Xn with dix = xi
for i = 0, . . . , n − 1. After replacing xi by xi − dix for i = 0, . . . , n we may
assume that x0 = x1 = . . . = xn−1 = 0. In this case we see that dixn = 0 for
i = 0, . . . , n − 1. Thus xn ∈ N(X)n−1 and lies in the kernel of the differential
N(X)n−1 → N(X)n−2. Here N(X) is the normalized chain complex associated to
X, see Section 22. Since N(X) is quasi-isomorphic to s(X) (Lemma 22.8) and thus
acyclic we find x ∈ N(Xn) whose differential is xn. This x answers the question
posed by the lemma and we are done. �

Lemma 30.9. Let f : X → Y be a map of simplicial abelian groups. If f is
termwise surjective3 and a homotopy equivalence of simplicial sets, then f induces
a quasi-isomorphism of associated chain complexes.

Proof. By assumption there exists a map g : Y → X of simplicial sets, a homotopy
h : X×∆[1]→ X between g◦f and idX , and a homotopy h′ : Y ×∆[1]→ Y between
f ◦ g and idY . During this proof we will write Hn(X) = Hn(s(X)) = Hn(N(X)),
see Section 22.

Note that H0(X) is the cokernel of the difference map d1− d0 : X1 → X0. Observe
that x ∈ X0 corresponds to a morphism ∆[0]→ X. Composing h with the induced
map ∆[0]×∆[1]→ X ×∆[1] we see that x and g(f(x)) are equal to d0x

′ and d1x
′

for some x′ ∈ X1. Similarly for y ∈ Y0. We conclude that f defines a bijection
H0(X)→ H0(Y ).

3This assumption is not necessary. Also the proof as currently given is not the right one. A
better proof is to define the homotopy groups of Kan complex and show that these are equal to

the homology groups of the associated complex for a simplicial abelian group.
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Let n ≥ 1. Consider the simplicial set S which is the pushout of

∂∆[n] //

��

∗

��
∆[n] // S

Concretely, we take

Sk = {ϕ : [k]→ [n] | ϕ is surjective} q {∗}.

Denote E = Z[S] the free abelian group on S. The inclusion ∆[0]→ S coming from
∗ ∈ S0 determines an injection K(Z, 0)→ E whose cokernel is the object K(Z, n),
i.e., we have a short exact sequence

0→ K(Z, 0)→ E → K(Z, n)→ 0

See Definition 21.3 and the description of the Eilenberg-Maclane objects in Lemma
21.2. Note that the extension above is split, for example because the element
ξ = [id[n]]− [∗] ∈ En satisfies diξ = 0 and maps to the “generator” of K(Z, n). We
have

MorSimp(Sets)(S,X) = MorSimp(Ab)(E,X) = X0 ×
⋂

i=0,...,n
Ker(di : Xn → Xn−1)

This uses the choice of our splitting above and the description of morphisms out
of Eilenberg-Maclane objects given in Lemma 21.2. Note that we can think of⋂
i=0,...,n Ker(di : Xn → Xn−1) as the cycles in degree n in the normalized chain

complex associated toX, see Section 22. If two maps a, b : S → X are homotopic (as
maps of simplicial sets), then the corresponding maps a′, b′ : E → X are homotopic
as maps of simplicial abelian groups (because taking the free abelian group on is
a functor). Thus if a, resp. b correspond to (a0, an), resp. (b0, bn) in the formula
above, then a0 and b0 define the same element of H0(X) and an and bn define the
same class in Hn(X). See Lemma 26.1.

We come the final arguments of the proof. An element y of Hn(Y ) can be rep-
resented by an element yn in

⋂
i=0,...,n Ker(di : Yn → Yn−1). Let a : S → Y be

the map of simplicial sets corresponding to (0, yn). Then b = g ◦ a corresponds
to some (b0, bn) as above for X. Using the homotopy h′ we see (f(b0), f(bn)) and
(0, yn) come from homotopic maps S → Y and hence yn and f(bn) define the same
element of Hn(Y ). Clearly this shows that Hn(f) is surjective. Conversely, sup-
pose xn in

⋂
i=0,...,n Ker(di : Xn → Xn−1) and f(xn) = d(y′) with y′ ∈ N(Yn+1).

Since f is termwise surjective so is the induced map f : N(Xn+1)→ N(Yn+1) (see
Lemma 22.6). Thus we can pick x′ ∈ N(Xn+1) mapping to y′. After replacing xn
by xn − d(x′) we reach the point where f(xn) = 0. This means that the morphism
a : S → X corresponding to (0, xn) has the property that f ◦ a is the constant
morphism with value 0 in Y . Hence g ◦ f ◦ a is also a constant morphism, i.e.,
corresponds to a pair (b0, 0). Since as before xn and 0 represent the same element
of Hn(X) we conclude. �
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31. A homotopy equivalence

Suppose that A, B are sets, and that f : A→ B is a map. Consider the associated
map of simplicial sets

cosk0(A)
(
. . . A×A×A

��

//
//
//
A×A

��

//
//oo

oo
A
)
��

oo

cosk0(B)
(
. . . B ×B ×B

//
//
//
B ×B //

//oo
oo

B
)

oo

See Example 18.1. The case n = 0 of the following lemma says that this map of
simplicial sets is a trivial Kan fibration if f is surjective.

Lemma 31.1. Let f : V → U be a morphism of simplicial sets. Let n ≥ 0 be an
integer. Assume

(1) The map fi : Vi → Ui is a bijection for i < n.
(2) The map fn : Vn → Un is a surjection.
(3) The canonical morphism U → cosknsknU is an isomorphism.
(4) The canonical morphism V → cosknsknV is an isomorphism.

Then f is a trivial Kan fibration.

Proof. Consider a solid diagram

∂∆[k] //

��

V

��
∆[k] //

==

U

as in Definition 29.1. Let x ∈ Uk be the k-simplex corresponding to the lower
horizontal arrow. If k ≤ n then the dotted arrow is the one corresponding to a
lift y ∈ Vk of x; the diagram will commute as the other nondegenerate simplices of
∆[k] are in degrees < k where f is an isomorphism. If k > n, then by conditions
(3) and (4) we have (using adjointness of skeleton and coskeleton functors)

Mor(∆[k], U) = Mor(skn∆[k], sknU) = Mor(skn∂∆[k], sknU) = Mor(∂∆[k], U)

and similarly for V because skn∆[k] = skn∂∆[k] for k > n. Thus we obtain a
unique dotted arrow fitting into the diagram in this case also. �

Let A,B be sets. Let f0, f1 : A → B be maps of sets. Consider the induced
maps f0, f1 : cosk0(A) → cosk0(B) abusively denoted by the same symbols. The
following lemma for n = 0 says that f0 is homotopic to f1. In fact, the homotopy
is given by the map h : cosk0(A)×∆[1]→ cosk0(A) with components

hm : A× . . .×A×Mor∆([m], [1]) −→ A× . . .×A,
(a0, . . . , am, α) 7−→ (fα(0)(a0), . . . , fα(m)(am))

To check that this works, note that for a map ϕ : [k] → [m] the induced maps are
(a0, . . . , am) 7→ (aϕ(0), . . . , aϕ(k)) and α 7→ α ◦ ϕ. Thus h = (hm)m≥0 is clearly a
map of simplicial sets as desired.

Lemma 31.2. Let f0, f1 : V → U be maps of a simplicial sets. Let n ≥ 0 be an
integer. Assume
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(1) The maps f ji : Vi → Ui, j = 0, 1 are equal for i < n.
(2) The canonical morphism U → cosknsknU is an isomorphism.
(3) The canonical morphism V → cosknsknV is an isomorphism.

Then f0 is homotopic to f1.

First proof. Let W be the n-truncated simplicial set with Wi = Ui for i < n and
Wn = Un/ ∼ where ∼ is the equivalence relation generated by f0(y) ∼ f1(y) for
y ∈ Vn. This makes sense as the morphisms U(ϕ) : Un → Ui corresponding to
ϕ : [i] → [n] for i < n factor through the quotient map Un → Wn because f0 and
f1 are morphisms of simplicial sets and equal in degrees < n. Next, we upgrade W
to a simplicial set by taking cosknW . By Lemma 31.1 the morphism g : U → W
is a trivial Kan fibration. Observe that g ◦ f0 = g ◦ f1 by construction and denote
this morphism f : V →W . Consider the diagram

∂∆[1]× V
f0,f1

//

��

U

��
∆[1]× V

f //

66

W

By Lemma 29.2 the dotted arrow exists and the proof is done. �

Second proof. We have to construct a morphism of simplicial sets h : V ×∆[1]→
U which recovers f i on composing with ei. The case n = 0 was dealt with above
the lemma. Thus we may assume that n ≥ 1. The map ∆[1] → cosk1sk1∆[1] is
an isomorphism, see Lemma 18.15. Thus we see that ∆[1] → cosknskn∆[1] is an
isomorphism as n ≥ 1, see Lemma 18.10. And hence V ×∆[1]→ cosknskn(V ×∆[1])
is an isomorphism too, see Lemma 18.12. In other words, in order to construct the
homotopy it suffices to construct a suitable morphism of n-truncated simplicial sets
h : sknV × skn∆[1]→ sknU .

For k = 0, . . . , n−1 we define hk by the formula hk(v, α) = f0(v) = f1(v). The map
hn : Vn ×Mor∆([k], [1])→ Un is defined as follows. Pick v ∈ Vn and α : [n]→ [1]:

(1) If Im(α) = {0}, then we set hn(v, α) = f0(v).
(2) If Im(α) = {0, 1}, then we set hn(v, α) = f0(v).
(3) If Im(α) = {1}, then we set hn(v, α) = f1(v).

Let ϕ : [k]→ [l] be a morphism of ∆≤n. We will show that the diagram

Vl ×Mor([l], [1]) //

��

Ul

��
Vk ×Mor([k], [1]) // Uk

commutes. Pick v ∈ Vl and α : [l]→ [1]. The commutativity means that

hk(V (ϕ)(v), α ◦ ϕ) = U(ϕ)(hl(v, α)).

In almost every case this holds because hk(V (ϕ)(v), α ◦ ϕ) = f0(V (ϕ)(v)) and
U(ϕ)(hl(v, α)) = U(ϕ)(f0(v)), combined with the fact that f0 is a morphism of
simplicial sets. The only cases where this does not hold is when either (A) Im(α) =
{1} and l = n or (B) Im(α◦ϕ) = {1} and k = n. Observe moreover that necessarily
f0(v) = f1(v) for any degenerate n-simplex of V . Thus we can narrow the cases
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above down even further to the cases (A) Im(α) = {1}, l = n and v nondegenerate,
and (B) Im(α ◦ ϕ) = {1}, k = n and V (ϕ)(v) nondegenerate.

In case (A), we see that also Im(α◦ϕ) = {1}. Hence we see that not only hl(v, α) =
f1(v) but also hk(V (ϕ)(v), α ◦ ϕ) = f1(V (ϕ)(v)). Thus we see that the relation
holds because f1 is a morphism of simplicial sets.

In case (B) we conclude that l = k = n and ϕ is bijective, since otherwise V (ϕ)(v)
is degenerate. Thus ϕ = id[n], which is a trivial case. �

Lemma 31.3. Let A, B be sets, and that f : A → B is a map. Consider the
simplicial set U with n-simplices

A×B A×B . . .×B A (n+ 1 factors).

see Example 3.5. If f is surjective, the morphism U → B where B indicates the
constant simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U

��

// cosk0(B)

��
B // cosk0(A)

Since the right vertical arrow is a trivial Kan fibration by Lemma 31.1, so is the
left by Lemma 29.3. �

32. Standard resolutions

Some of the material in this section can be found in [God73, Appendix 1] and [Ill72,
I 1.5].

Situation 32.1. Let A, S be categories and let i : A → S be a functor with a left
adjoint F : S → A.

In this very general situation we will construct a simplicial object X in the category
of functors from A to A. Please keep the following example in mind while we do
this.

Example 32.2. As an example of the above we can take i : Rings→ Sets to be the
forgetful functor and F : Sets→ Rings to be the functor that associates to a set E
the polynomial algebra Z[E] on E over Z. The simplicial object X when evaluated
on an ring A will give the simplicial ring

Z[Z[Z[A]]]
//
//
//
Z[Z[A]]

//
//oo

oo
Z[A]oo

which comes with an augmentation towards A. We will also show this augmentation
is a homotopy equivalence.

For the general construction we will use the horizontal composition as defined in
Categories, Section 26. The definition of the adjunction morphisms k : F ◦ i→ idA
and t : idS → i ◦ F in Categories, Section 24 shows that the compositions

(32.2.1) i
t?1i−−→ i ◦ F ◦ i 1i?k−−−→ i and F

1F ?t−−−→ F ◦ i ◦ F k?1F−−−→ F
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are the identity morphisms. Here to define the morphism t ? 1 we silently identify
i with idS ◦ i and 1 stands for idi : i → i. We will use this notation and these
relations repeatedly in what follows. For n ≥ 0 we set

Xn = (F ◦ i)◦(n+1) = F ◦ i ◦ F ◦ . . . ◦ i ◦ F

In other words, Xn is the (n + 1)-fold composition of F ◦ i with itself. We also
set X−1 = idA. We have Xn+m+1 = Xn ◦ Xm for all n,m ≥ −1. We will endow
this sequence of functors with the structure of a simplicial object of Fun(A,A) by
constructing the morphisms of functors

dnj : Xn → Xn−1, snj : Xn → Xn+1

satisfying the relations displayed in Lemma 2.3. Namely, we set

dnj = 1Xj−1
? k ? 1Xn−j−1

and snj = 1Xj−1◦F ? t ? 1i◦Xn−j−1

Finally, write ε0 = k : X0 → X−1.

Example 32.3. In Example 32.2 we have Xn(A) = Z[Z[. . . [A] . . .]] with n + 1
brackets. We describe the maps constructed above using a typical element ξ =∑
ni[nij [aij ]] of X1(A). The maps d0, d1 : Z[Z[A]]→ Z[A] are given by

d0(ξ) =
∑

ninij [aij ] and d1(ξ) =
∑

ni[nijaij ].

The maps s0, s1 : Z[Z[A]]→ Z[Z[Z[A]]] are given by

s0(ξ) =
∑

ni[[nij [aij ]]] and s1(ξ) =
∑

ni[nij [[aij ]]].

Lemma 32.4. In Situation 32.1 the system X = (Xn, d
n
j , s

n
j ) is a simplicial object

of Fun(A,A) and ε0 defines an augmentation ε from X to the constant simplicial
object with value X−1 = idA.

Proof. Suppose that we have shown that X is a simplicial object. Then to prove
that ε0 = k defines an augmentation we have to check that ε0 ◦ d1

0 = ε0 ◦ d1
1 as

morphisms X1 → X−1, see Lemma 19.2. In other words, we have to check that the
diagram

F ◦ i ◦ F ◦ i
1F◦i?k

//

k?1F◦i
��

F ◦ i

k

��
F ◦ i k // idA

is commutative. More precisely we should write this as the equality

(k ? 1idA) ◦ (1F◦i ? k) = (1idA ? k) ◦ (k ? 1F◦i)

as morphisms (F ◦ i) ◦ (F ◦ i) → idA ◦ idA. Applying the general property of
Categories, Lemma 26.2 both sides expand to k ? k when equality holds.

To prove that X is a simplicial object we have to check (see Remark 3.3):

(1) If i < j, then di ◦ dj = dj−1 ◦ di.
(2) If i < j, then di ◦ sj = sj−1 ◦ di.
(3) We have id = dj ◦ sj = dj+1 ◦ sj .
(4) If i > j + 1, then di ◦ sj = sj ◦ di−1.
(5) If i ≤ j, then si ◦ sj = sj+1 ◦ si.
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Relation (1) is proved in exactly the same manner as the proof of the equality
ε0 ◦ d1

0 = ε0 ◦ d1
1 above.

The simplest case of equality (5) is the commutativity of the diagram

F ◦ i
1F ?t?1i

//

1F ?t?1i
��

F ◦ i ◦ F ◦ i

1F ?t?1i◦F◦i
��

F ◦ i ◦ F ◦ i 1F◦i◦F ?t?1i // F ◦ i ◦ F ◦ i ◦ F ◦ i
which holds because both compositions expand to the morphism 1F ? t ? t ? 1i from
F ◦ idA ◦ idA ◦ i to F ◦ (i ◦ F ) ◦ (i ◦ F ) ◦ i. All other cases of (5) are proved in the
same manner.

The simplest case of equalities (2) and (4) is the commutativity of the diagram

F ◦ i ◦ F ◦ i
1F ?k?1i

//

1F◦i◦F◦i?t

��

F ◦ i

1F◦i?t

��
F ◦ i ◦ F ◦ i ◦ F ◦ i 1F ?k?1i◦F◦i◦F // F ◦ i ◦ F ◦ i

which again holds because both compositions expand to give 1F ? k ? 1i ? t as maps
from F ◦ (i ◦ F ) ◦ i ◦ idA to F ◦ idA ◦ i ◦ (F ◦ i). All other cases of (2) and (4) are
proved in the same manner.

The relations (3) are the only nontrivial ones and these are consequences of the fact
that the compositions in (32.2.1) are the identity. For example, the simplest case
of (3) states that the compositions

F ◦ i
1F◦i?t

//

t?1F◦i
��

F ◦ i ◦ F ◦ i

1F ?k?1i
��

F ◦ i ◦ F ◦ i 1F ?k?1i // F ◦ i
go around the diagram either way evaluate out to the identity. Going around the
top the composition evaluates to 1F ? ((k ? 1i) ◦ (1i ? t)) which is the identity by
what was said above. The other cases of (3) are proved in the same manner. �

Before reading the proof of the following lemma, we strongly urge the reader to
look at the example discussed in Example 32.6 in order to understand the purpose
of the lemma.

Lemma 32.5. In Situation 32.1 the maps

1i ? ε : i ◦X → i, and ε ? 1F : X ◦ F → F

are homotopy equivalences.

Proof. Denote εn : Xn → X−1 the components of the augmentation morphism.
We observe that εn = k?(n+1), the (n + 1)-fold ?-composition of k. Recall that
t : idS → i ◦ F is the adjunction map. We have the morphisms

t?(n+1) ? 1i : i −→ i ◦ (F ◦ i)◦(n+1) = i ◦Xn

which are right inverse to 1i ? εn and the morphisms

1F ? t
?(n+1) : F −→ (F ◦ i)◦(n+1) ◦ F = Xn ◦ F
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which are right inverse to εn ? 1F . These morphisms determine morphisms of
simplicial objects b : i → i ◦ X and c : F → X ◦ F (proof omitted). To finish it
suffices to construct a homotopy between the morphisms 1, b◦ (1i ?ε) : i◦X → i◦X
and between the two morphisms 1, c ◦ (ε ? 1F ) : X ◦ F → X ◦ F .

To show the morphisms b ◦ (1i ? ε), 1 : i ◦ X → i ◦ X are homotopic we have to
construct morphisms

hn,j : i ◦Xn → i ◦Xn

for n ≥ 0 and 0 ≤ j ≤ n+ 1 satisfying the relations described in Lemma 25.2. See
also Remark 25.4. We are forced to set hn,0 = 1 and

hn,n+1 = bn ◦ (1i ? εn) = (t?(n+1) ? 1i) ◦ (1i ? k
?(n+1))

Thus a logical choice is

hn,j = (t?(j) ? 1) ◦ (1i ? k
?(j) ? 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing

i ◦Xn = i ◦ F ◦ i ◦ . . . ◦ F ◦ i
we can think of the morphism hn,j as collapsing the first j pairs (F ◦ i) to idS using

k?(j), then adding a idS in front and expanding this to j pairs (i ◦ F ) using t?(j).
We have to prove

(1) We have dnm ◦ hn,j = hn−1,j−1 ◦ dnm for j > m.
(2) We have dnm ◦ hn,j = hn−1,j ◦ dnm for j ≤ m.
(3) We have snm ◦ hn,j = hn+1,j+1 ◦ snm for j > m.
(4) We have snm ◦ hn,j = hn+1,j ◦ snm for j ≤ m.

Recall that dnm is given by applying k to the (m + 1)st pair (F ◦ i) in the functor
Xn = (F ◦ i)◦(n+1). Thus it is clear that (2) holds (because k does ?-commute with
k, but not with t). Similarly, snm is given by applying 1F ?t? ii to the (m+1)st pair
(F ◦ i) in Xn = (F ◦ i)◦(n+1). Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in (32.2.1) are the identity causes the
drop in the index j. Some details omitted.

To show the morphisms 1, c ◦ (ε ? 1F ) : X ◦ F → X ◦ F are homotopic we have to
construct morphisms

hn,j : Xn ◦ F −→ Xn ◦ F
for n ≥ 0 and 0 ≤ j ≤ n+ 1 satisfying the relations described in Lemma 25.2. See
also Remark 25.4. We are forced to set hn,0 = 1 and

hn,n+1 = cn ◦ (εn ? 1F ) = (1F ? t
?(n+1)) ◦ (k?(n+1) ? 1F )

Thus a logical choice is

hn,j = (1F ? t
?(j) ? 1) ◦ (k?(j) ? 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing

Xn ◦ F = F ◦ i ◦ F ◦ . . . ◦ i ◦ F
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we can think of the morphism hn,j as collapsing the first j pairs (F ◦ i) to idS using

k?(j), then inserting a idS just after the first F and expanding this to j pairs (i◦F )
using t?(j). We have to prove

(1) We have dnm ◦ hn,j = hn−1,j−1 ◦ dnm for j > m.
(2) We have dnm ◦ hn,j = hn−1,j ◦ dnm for j ≤ m.
(3) We have snm ◦ hn,j = hn+1,j+1 ◦ snm for j > m.
(4) We have snm ◦ hn,j = hn+1,j ◦ snm for j ≤ m.

Recall that dnm is given by applying k to the (m + 1)st pair (F ◦ i) in the functor
Xn = (F ◦ i)◦(n+1). Thus it is clear that (2) holds (because k does ?-commute with
k, but not with t). Similarly, snm is given by applying 1F ?t? ii to the (m+1)st pair
(F ◦ i) in Xn = (F ◦ i)◦(n+1). Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in (32.2.1) are the identity causes the
drop in the index j. Some details omitted. �

Example 32.6. Going back to the example discussed in Example 32.2 our Lemma
32.5 signifies that for any ring A the map of simplicial rings

Z[Z[Z[A]]]

��

//
//
//
Z[Z[A]]

��

//
//oo

oo
Z[A]

��

oo

A
//
//
//
A

//
//oo

oo
Aoo

is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map
constructed in Lemma 32.5 is in degree n given by

a 7−→ [. . . [a] . . .]

with obvious notation. In the other direction the lemma tells us that for every set
E there is a homotopy equivalence

Z[Z[Z[Z[E]]]]

��

//
//
//
Z[Z[Z[E]]]

��

//
//oo

oo
Z[Z[E]]

��

oo

Z[E]
//
//
//
Z[E]

//
//oo

oo
Z[E]oo

of rings. The inverse map constructed in the lemma is in degree n given by the ring
map∑

me1,...,ep [e1][e2] . . . [ep] 7−→
∑

me1,...,ep [. . . [e1] . . .][. . . [e2] . . .] . . . [. . . [ep] . . .]

(with obvious notation).
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