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1. Introduction

In this chapter we discuss Chow homology groups and the construction of chern
classes of vector bundles as elements of operational Chow cohomology groups (ev-
erything with Z-coefficients). We follow the first few chapters of [Ful98], except
that we have been less precise about the supports of the cycles involved. More clas-
sical discussions of Chow groups can be found in [Sam56], [Che58a], and [Che58b].
Of course there are many others.

To make the material a little bit more challenging we decided to treat a somewhat
more general case than is usually done. Namely we assume our schemes X are
locally of finite type over a fixed locally Noetherian base scheme which is universally
catenary and has a given dimension function. This seems to be all that is needed
to be able to define the Chow homology groups A∗(X) and the action of capping
with chern classes on them. This is an indication that we should be able to define
these also for algebraic stacks locally of finite type over such a base.

In another chapter we will define the intersection products on A∗(X) using Serre’s
Tor-formula in case X is nonsingular (see [Ser00], or [Ser65]) and we have a good
moving lemma. See (insert future reference here).

2. Determinants of finite length modules

The material in this section is related to the material in the paper [KM76] and to
the material in the thesis [Ros09]. If you have a good reference then please email
stacks.project@gmail.com.

Given any field κ and any finite dimensional κ-vector space V we set detκ(V ) =
∧n(V ) where n = dimκ(V ). We want to generalize this slightly.

Definition 2.1. Let R be a local ring with maximal ideal m and residue field κ.
Let M be a finite length R-module. Say l = lengthR(M).

(1) Given elements x1, . . . , xr ∈ M we denote 〈x1, . . . , xr〉 = Rx1 + . . . + Rxr
the R-submodule of R generated by x1, . . . , xr.

(2) We will say an l-tuple of elements (e1, . . . , el) of M is admissible if mei ∈
〈e1, . . . , ei−1〉 for i = 1, . . . , l.

(3) A symbol [e1, . . . , el] will mean (e1, . . . , el) is an admissible l-tuple.
(4) An admissible relation between symbols is one of the following:

(a) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea ∈ 〈e1, . . . , ea−1〉, then [e1, . . . , el] = 0,

(b) if (e1, . . . , el) is an admissible sequence and for some 1 ≤ a ≤ l we have
ea = λe′a + x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉, then

[e1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el]

where λ ∈ κ∗ is the image of λ in the residue field, and
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(c) if (e1, . . . , el) is an admissible sequence and mea ⊂ 〈e1, . . . , ea−2〉 then

[e1, . . . , el] = −[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el].

(5) We define the determinant of the finite length R-module M to be

detκ(M) =

{
κ-vector space generated by symbols

κ-linear combinations of admissible relations

}
We stress that always l = lengthR(M). We also stress that it does not follow that
the symbol [e1, . . . , el] is additive in the entries (this will typically not be the case).
Before we can show that the determinant detκ(M) actually has dimension 1 we
have to show that it has dimension at most 1.

Lemma 2.2. With notations as above we have dimκ(detκ(M)) ≤ 1.

Proof. Fix an admissible sequence (f1, . . . , fl) of M such that

lengthR(〈f1, . . . , fi〉) = i

for i = 1, . . . , l. Such an admissible sequence exists exactly because M has length l.
We will show that any element of detκ(M) is a κ-multiple of the symbol [f1, . . . , fl].
This will prove the lemma.

Let (e1, . . . , el) be an admissible sequence of M . It suffices to show that [e1, . . . , el]
is a multiple of [f1, . . . , fl]. First assume that 〈e1, . . . , el〉 6= M . Then there exists
an i ∈ [1, . . . , l] such that ei ∈ 〈e1, . . . , ei−1〉. It immediately follows from the
first admissible relation that [e1, . . . , en] = 0 in detκ(M). Hence we may assume
that 〈e1, . . . , el〉 = M . In particular there exists a smallest index i ∈ {1, . . . , l}
such that f1 ∈ 〈e1, . . . , ei〉. This means that ei = λf1 + x with x ∈ 〈e1, . . . , ei−1〉
and λ ∈ R∗. By the second admissible relation this means that [e1, . . . , el] =
λ[e1, . . . , ei−1, f1, ei+1, . . . , el]. Note that mf1 = 0. Hence by applying the third
admissible relation i− 1 times we see that

[e1, . . . , el] = (−1)i−1λ[f1, e1, . . . , ei−1, ei+1, . . . , el].

Note that it is also the case that 〈f1, e1, . . . , ei−1, ei+1, . . . , el〉 = M . By induction
suppose we have proven that our original symbol is equal to a scalar times

[f1, . . . , fj , ej+1, . . . , el]

for some admissible sequence (f1, . . . , fj , ej+1, . . . , el) whose elements generate M ,
i.e., with 〈f1, . . . , fj , ej+1, . . . , el〉 = M . Then we find the smallest i such that
fj+1 ∈ 〈f1, . . . , fj , ej+1, . . . , ei〉 and we go through the same process as above to see
that

[f1, . . . , fj , ej+1, . . . , el] = (scalar)[f1, . . . , fj , fj+1, ej+1, . . . , êi, . . . , el]

Continuing in this vein we obtain the desired result. �

Before we show that detκ(M) always has dimension 1, let us show that it agrees
with the usual top exterior power in the case the module is a vector space over κ.

Lemma 2.3. Let R be a local ring with maximal ideal m and residue field κ. Let
M be a finite length R-module which is annihilated by m. Let l = n = dimκ(M).
Then the map

detκ(M) −→ ∧lκ(M), [e1, . . . , el] 7−→ e1 ∧ . . . ∧ el
is an isomorphism.
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Proof. It is clear that the rule described in the lemma gives a κ-linear map since
all of the admissible relations are satisfied by the usual symbols e1 ∧ . . . ∧ el. It is
also clearly a surjective map. Since by Lemma 2.2 the left hand side has dimension
at most one we see that the map is an isomorphism. �

Lemma 2.4. Let R be a local ring with maximal ideal m and residue field κ. Let M
be a finite length R-module. The determinant detκ(M) defined above is a κ-vector
space of dimension 1. It is generated by the symbol [f1, . . . , fl] for any admissible
sequence such that 〈f1, . . . fl〉 = M .

Proof. We know detκ(M) has dimension at most 1, and in fact that it is generated
by [f1, . . . , fl], by Lemma 2.2 and its proof. We will show by induction on l =
length(M) that it is nonzero. For l = 1 it follows from Lemma 2.3. Choose a
nonzero element f ∈ M with mf = 0. Set M = M/〈f〉, and denote the quotient
map x 7→ x. We will define a surjective map

ψ : detk(M)→ detκ(M)

which will prove the lemma since by induction the determinant of M is nonzero.

We define ψ on symbols as follows. Let (e1, . . . , el) be an admissible sequence. If
f 6∈ 〈e1, . . . , el〉 then we simply set ψ([e1, . . . , el]) = 0. If f ∈ 〈e1, . . . , el〉 then we
choose an i minimal such that f ∈ 〈e1, . . . , ei〉 and write ei = λf+x for some λ ∈ R
and x ∈ 〈e1, . . . , ei−1〉. In this case we set

ψ([e1, . . . , el]) = λ[e1, . . . , ei−1, ei+1, . . . , el].

Note that it is indeed the case that (e1, . . . , ei−1, ei+1, . . . , el) is an admissible se-
quence in M , so this makes sense. Let us show that extending this rule κ-linearly
to linear combinations of symbols does indeed lead to a map on determinants. To
do this we have to show that the admissible relations are mapped to zero.

Type (a) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea ∈ 〈e1, . . . , ea−1〉. Suppose that f ∈ 〈e1, . . . , ei〉
with i minimal. Then it is immediate that i 6= a. Since it is also the case that
ea ∈ 〈e1, . . . , êi, . . . , ea−1〉 we see immediately that the same admissible relation for
detκ(M) forces the symbol [e1, . . . , ei−1, ei+1, . . . , el] to be zero as desired.

Type (b) relations. Suppose we have (e1, . . . , el) an admissible sequence and for
some 1 ≤ a ≤ l we have ea = λe′a+x with λ ∈ R∗, and x ∈ 〈e1, . . . , ea−1〉. Suppose
that f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = µf + y with y ∈ 〈e1, . . . , ei−1〉. If
i < a then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ei−1, ei+1, . . . , ea−1, e
′
a, ea+1, . . . , el]

which follows from ea = λe′a + x and the corresponding admissible relation for
detκ(M). If i > a then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from ea = λe′a + x and the corresponding admissible relation for
detκ(M). The interesting case is when i = a. In this case we have ea = λe′a + x =
µf + y. Hence also e′a = λ−1(µf + y − x). Thus we see that

ψ([e1, . . . , el]) = µ[e1, . . . , ei−1, ei+1, . . . , el] = ψ(λ[e1, . . . , ea−1, e
′
a, ea+1, . . . , el])

as desired.
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CHOW HOMOLOGY AND CHERN CLASSES 5

Type (c) relations. Suppose that (e1, . . . , el) is an admissible sequence and mea ⊂
〈e1, . . . , ea−2〉. Suppose that f ∈ 〈e1, . . . , ei〉 with i minimal. Say ei = λf + x with
x ∈ 〈e1, . . . , ei−1〉. If i < a− 1, then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ei−1, ei+1, . . . , ea−2, ea, ea−1, ea+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M). Similarly, if i > a,
then the desired equality is

λ[e1, . . . , ei−1, ei+1, . . . , el] = λ[e1, . . . , ea−2, ea, ea−1, ea+1, . . . , ei−1, ei+1, . . . , el]

which follows from the type (c) admissible relation for detκ(M). If i = a, then the
desired equality is

λ[e1, . . . , ea−1, ea+1, . . . , el] = λ[e1, . . . , ea−2, ea−1, ea+1, . . . , el]

which is tautological. Finally, the interesting case is i = a−1. This case itself splits
into two cases as to whether f ∈ 〈e1, . . . , ea−2, ea〉 or not. If not, then we see that
the desired equality is

λ[e1, . . . , ea−2, ea, . . . , el] = λ[e1, . . . , ea−2, ea, ea+1, . . . , el]

which is tautological since after switching ea−1 and ea the smallest index such that
f is in the becomes equal to i′ = a and it is again ea which is removed. On the other
hand, suppose that f ∈ 〈e1, . . . , ea−2, ea〉. In this case we see that we can, besides
the equality ea−1 = λf +x of above, also write ea = µf +y with y ∈ 〈e1, . . . , ea−2〉.
Clearly this means that both ea ∈ 〈e1, . . . , ea−1〉 and ea−1 ∈ 〈e1, . . . , ea−2, ea〉.
Thus we can use relations of type (a) and the compatibility of ψ with these shown
above to see that both

ψ([e1, . . . , el]) and ψ([e1, . . . , ea−2, ea, ea−1, ea+1, . . . , el])

are zero, as desired.

At this point we have shown that ψ is well defined, and all that remains is to show
that it is surjective. To see this let (f2, . . . , f l) be an admissible sequence in M . We
can choose lifts f2, . . . , fl ∈M , and then (f, f2, . . . , fl) is an admissible sequence in
M . Since ψ([f, f2, . . . , fl]) = [f2, . . . , fl] we win. �

Let R be a local ring with maximal ideal m and residue field κ. Note that if ϕ :
M → N is an isomorphism of finite length R-modules, then we get an isomorphism

detκ(ϕ) : detκ(M)→ detκ(N)

simply by the rule

detκ(ϕ)([e1, . . . , el]) = [ϕ(e1), . . . , ϕ(el)]

for any symbol [e1, . . . , el] for M . Hence we see that detκ is a functor

(2.4.1)

{
finite length R-modules

with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
This is typical for a “determinant functor” (see [Knu02]), as is the following addi-
tivity property.

Lemma 2.5. Let (R,m, κ) be a local ring. For every short exact sequence

0→ K → L→M → 0

http://localhost:8080/tag/02PA
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of finite length R-modules there exists a canonical isomorphism

γK→L→M : detκ(K)⊗κ detκ(M) −→ detκ(L)

defined by the rule on nonzero symbols

[e1, . . . , ek]⊗ [f1, . . . , fm] −→ [e1, . . . , ek, f1, . . . , fm]

with the following properties:

(1) For every isomorphism of short exact sequences, i.e., for every commutative
diagram

0 // K //

u

��

L //

v

��

M //

w

��

0

0 // K ′ // L′ // M ′ // 0
with short exact rows and isomorphisms u, v, w we have

γK′→L′→M ′ ◦ (detκ(u)⊗ detκ(w)) = detκ(v) ◦ γK→L→M ,
(2) for every commutative square of finite length R-modules with exact rows

and columns

0

��

0

��

0

��
0 // A //

��

B //

��

C //

��

0

0 // D //

��

E //

��

F //

��

0

0 // G //

��

H //

��

I //

��

0

0 0 0

the following diagram is commutative

detκ(A)⊗ detκ(C)⊗ detκ(G)⊗ detκ(I)

ε

��

γA→B→C⊗γG→H→I
// detκ(B)⊗ detκ(H)

γB→E→H

��
detκ(E)

detκ(A)⊗ detκ(G)⊗ detκ(C)⊗ detκ(I)
γA→D→G⊗γC→F→I // detκ(D)⊗ detκ(F )

γD→E→F

OO

where ε is the switch of the factors in the tensor product times (−1)cg with
c = lengthR(C) and g = lengthR(G), and

(3) the map γK→L→M agrees with the usual isomorphism if 0 → K → L →
M → 0 is actually a short exact sequence of κ-vector spaces.

Proof. The significance of taking nonzero symbols in the explicit description of
the map γK→L→M is simply that if (e1, . . . , el) is an admissible sequence in K,
and (f1, . . . , fm) is an admissible sequence in M , then it is not guaranteed that
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(e1, . . . , el, f1, . . . , fm) is an admissible sequence in L (where of course fi ∈ L sig-
nifies a lift of f i). However, if the symbol [e1, . . . , el] is nonzero in detκ(K), then
necessarily K = 〈e1, . . . , ek〉 (see proof of Lemma 2.2), and in this case it is true
that (e1, . . . , ek, f1, . . . , fm) is an admissible sequence. Moreover, by the admissible
relations of type (b) for detκ(L) we see that the value of [e1, . . . , ek, f1, . . . , fm] in
detκ(L) is independent of the choice of the lifts fi in this case also. Given this
remark, it is clear that an admissible relation for e1, . . . , ek in K translates into an
admissible relation among e1, . . . , ek, f1, . . . , fm in L, and similarly for an admissi-
ble relation among the f1, . . . , fm. Thus γ defines a linear map of vector spaces as
claimed in the lemma.

By Lemma 2.4 we know detκ(L) is generated by any single symbol [x1, . . . , xk+m]
such that (x1, . . . , xk+m) is an admissible sequence with L = 〈x1, . . . , xk+m〉. Hence
it is clear that the map γK→L→M is surjective and hence an isomorphism.

Property (1) holds because

detκ(v)([e1, . . . , ek, f1, . . . , fm])

= [v(e1), . . . , v(ek), v(f1), . . . , v(fm)]

= γK′→L′→M ′([u(e1), . . . , u(ek)]⊗ [w(f1), . . . , w(fm)]).

Property (2) means that given a symbol [α1, . . . , αa] generating detκ(A), a symbol
[γ1, . . . , γc] generating detκ(C), a symbol [ζ1, . . . , ζg] generating detκ(G), and a
symbol [ι1, . . . , ιi] generating detκ(I) we have

[α1, . . . , αa, γ̃1, . . . , γ̃c, ζ̃1, . . . , ζ̃g, ι̃1, . . . , ι̃i]

= (−1)cg[α1, . . . , αa, ζ̃1, . . . , ζ̃g, γ̃1, . . . , γ̃c, ι̃1, . . . , ι̃i]

(for suitable lifts x̃ in E) in detκ(E). This holds because we may use the admissible

relations of type (c) cg times in the following order: move the ζ̃1 past the elements

γ̃c, . . . , γ̃1 (allowed since mζ̃1 ⊂ A), then move ζ̃2 past the elements γ̃c, . . . , γ̃1
(allowed since mζ̃2 ⊂ A+Rζ̃1), and so on.

Part (3) of the lemma is obvious. This finishes the proof. �

We can use the maps γ of the lemma to define more general maps γ as follows.
Suppose that (R,m, κ) is a local ring. Let M be a finite length R-module and
suppose we are given a finite filtration (see Homology, Definition 16.1)

M = Fn ⊃ Fn+1 ⊃ . . . ⊃ Fm−1 ⊃ Fm = 0.

Then there is a canonical isomorphism

γ(M,F ) :
⊗

i
detκ(F i/F i+1) −→ detκ(M)

well defined up to sign(!). One can make the sign explicit either by giving a well
defined order of the terms in the tensor product (starting with higher indices un-
fortunately), and by thinking of the target category for the functor detκ as the
category of 1-dimensional super vector spaces. See [KM76, Section 1].

Here is another typical result for determinant functors. It is not hard to show. The
tricky part is usually to show the existence of a determinant functor.
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Lemma 2.6. Let (R,m, κ) be any local ring. The functor

detκ :

{
finite length R-modules

with isomorphisms

}
−→

{
1-dimensional κ-vector spaces

with isomorphisms

}
endowed with the maps γK→L→M is characterized by the following properties

(1) its restriction to the subcategory of modules annihilated by m is isomorphic
to the usual determinant functor (see Lemma 2.3), and

(2) (1), (2) and (3) of Lemma 2.5 hold.

Proof. Omitted. �

Lemma 2.7. Let (R,m, κ) be a local ring. Let I ⊂ m be an ideal, and set R′ = R/I.

Let detR,κ denote the determinant functor on the category ModfR finite length R-

modules and denote detR′,κ the determinant on the category ModfR′ of finite length

R′-modules. Then ModfR′ ⊂ ModfR is a full subcategory and there exists an isomor-
phism of functors

detR,κ |Modf
R′

= detR′,κ

compatible with the isomorphisms γK→L→M for either of these functors.

Proof. This can be shown by using the characterization of the pair (detR′,κ, γ)
in Lemma 2.6. But really the isomorphism is obtained by mapping a symbol
[x1, . . . , xl] ∈ detR,κ(M) to the corresponding symbol [x1, . . . , xl] ∈ detR′,κ(M)
which “obviously” works. �

Here is a case where we can compute the determinant of a linear map. In fact
there is nothing mysterious about this in any case, see Example 2.9 for a random
example.

Lemma 2.8. Let R be a local ring with residue field κ. Let u ∈ R∗ be a unit. Let M
be a module of finite length over R. Denote uM : M → M the map multiplication
by u. Then

detκ(uM ) : detκ(M) −→ detκ(M)

is multiplication by ul where l = lengthR(M) and u ∈ κ∗ is the image of u.

Proof. Denote fM ∈ κ∗ the element such that detκ(uM ) = fM iddetκ(M). Suppose
that 0 → K → L → M → 0 is a short exact sequence of finite R-modules. Then
we see that uk, uL, uM give an isomorphism of short exact sequences. Hence by
Lemma 2.5 (1) we conclude that fKfM = fL. This means that by induction on
length it suffices to prove the lemma in the case of length 1 where it is trivial. �

Example 2.9. Consider the local ring R = Zp. Set M = Zp/(p
2)⊕ Zp/(p

3). Let
u : M →M be the map given by the matrix

u =

(
a b
pc d

)
where a, b, c, d ∈ Zp, and a, d ∈ Z∗p. In this case detκ(u) equals multiplication by

a2d3 mod p ∈ F∗p. This can easily be seen by consider the effect of u on the symbol

[p2e, pe, pf, e, f ] where e = (0, 1) ∈M and f = (1, 0) ∈M .
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3. Periodic complexes

Of course there is a very general notion of periodic complexes. We can require
periodicity of the maps, or periodicity of the objects. We will add these here as
needed. For the moment we only need the following cases.

Definition 3.1. Let R be a ring.

(1) A 2-periodic complex over R is given by a quadruple (M,N,ϕ, ψ) consisting
of R-modules M , N and R-module maps ϕ : M → N , ψ : N → M such
that

. . . // M
ϕ // N

ψ // M
ϕ // N // . . .

is a complex. In this setting we define the cohomology modules of the
complex to be the R-modules

H0(M,N,ϕ, ψ) = Ker(ϕ)/Im(ψ), and H1(M,N,ϕ, ψ) = Ker(ψ)/Im(ϕ).

We say the 2-periodic complex is exact if the cohomology groups are zero.
(2) A (2, 1)-periodic complex over R is given by a triple (M,ϕ, ψ) consisting of

an R-module M and R-module maps ϕ : M →M , ψ : M →M such that

. . . // M
ϕ // M

ψ // M
ϕ // M // . . .

is a complex. Since this is a special case of a 2-periodic complex we have its
cohomology modules H0(M,ϕ, ψ), H1(M,ϕ, ψ) and a notion of exactness.

In the following we will use any result proved for 2-periodic complexes without
further mention for (2, 1)-periodic complexes. It is clear that the collection of
2-periodic complexes (resp. (2, 1)-periodic complexes) forms a category with mor-
phisms (f, g) : (M,N,ϕ, ψ)→ (M ′, N ′, ϕ′, ψ′) pairs of morphisms f : M →M ′ and
g : N → N ′ such that ϕ′ ◦ f = f ◦ ϕ and ψ′ ◦ g = g ◦ ψ. In fact it is an abelian
category, with kernels and cokernels as in Homology, Lemma 12.3. Also, note that
a special case are the (2, 1)-periodic complexes of the form (M, 0, ψ). In this special
case we have

H0(M, 0, ψ) = Coker(ψ), and H1(M, 0, ψ) = Ker(ψ).

Definition 3.2. Let R be a local ring. Let (M,N,ϕ, ψ) be a 2-periodic complex
over R whose cohomology groups have finite length over R. In this case we define
the multiplicity of (M,N,ϕ, ψ) to be the integer

eR(M,N,ϕ, ψ) = lengthR(H0(M,N,ϕ, ψ))− lengthR(H1(M,N,ϕ, ψ))

We will sometimes (especially in the case of a (2, 1)-periodic complex with ϕ = 0)
call this the Herbrand quotient1.

Lemma 3.3. Let R be a local ring.

(1) If (M,N,ϕ, ψ) is a 2-periodic complex such that M , N have finite length.
Then eR(M,N,ϕ, ψ) = lengthR(M)− lengthR(N).

(2) If (M,ϕ, ψ) is a (2, 1)-periodic complex such that M has finite length. Then
eR(M,ϕ, ψ) = 0.

1If the residue field of R is finite with q elements it is customary to call the Herbrand quotient
h(M,N,ϕ, ψ) = qeR(M,N,ϕ,ψ) which is equal to the number of elements of H0 divided by the

number of elements of H1.
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(3) Suppose that we have a short exact sequence of (2, 1)-periodic complexes

0→ (M1, N1, ϕ1, ψ1)→ (M2, N2, ϕ2, ψ2)→ (M3, N3, ϕ3, ψ3)→ 0

If two out of three have cohomology modules of finite length so does the
third and we have

eR(M2, N2, ϕ2, ψ2) = eR(M1, N1, ϕ1, ψ1) + eR(M3, N3, ϕ3, ψ3).

Proof. Proof of (3). Abbreviate A = (M1, N1, ϕ1, ψ1), B = (M2, N2, ϕ2, ψ2) and
C = (M3, N3, ϕ3, ψ3). We have a long exact cohomology sequence

. . .→ H1(C)→ H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ H1(C)→ . . .

This gives a finite exact sequence

0→ I → H0(A)→ H0(B)→ H0(C)→ H1(A)→ H1(B)→ K → 0

with 0 → K → H1(C) → I → 0 a filtration. By additivity of the length function
(Algebra, Lemma 50.3) we see the result. The proofs of (1) and (2) are omitted. �

Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a (2, 1)-periodic complex
over R. Assume that M has finite length and that (M,ϕ, ψ) is exact. We are going
to use the determinant construction to define an invariant of this situation. See
Section 2. Let us abbreviate Kϕ = Ker(ϕ), Iϕ = Im(ϕ), Kψ = Ker(ψ), and
Iψ = Im(ψ). The short exact sequences

0→ Kϕ →M → Iϕ → 0, 0→ Kψ →M → Iψ → 0

give isomorphisms

γϕ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M), γψ : detκ(Kψ)⊗ detκ(Iψ) −→ detκ(M),

see Lemma 2.5. On the other hand the exactness of the complex gives equalities
Kϕ = Iψ, and Kψ = Iϕ and hence an isomorphism

σ : detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(Kψ)⊗ detκ(Iψ)

by switching the factors. Using this notation we can define our invariant.

Definition 3.4. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ) is
exact. The determinant of (M,ϕ, ψ) is the element

detκ(M,ϕ, ψ) ∈ κ∗

such that the composition

detκ(M)
γψ◦σ◦γ−1

ϕ−−−−−−→ detκ(M)

is multiplication by (−1)lengthR(Iϕ)lengthR(Iψ) detκ(M,ϕ, ψ).

Remark 3.5. Here is a more down to earth description of the determinant intro-
duced above. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ)
is exact. Let us abbreviate Iϕ = Im(ϕ), Iψ = Im(ψ) as above. Assume that
lengthR(Iϕ) = a and lengthR(Iψ) = b, so that a + b = lengthR(M) by exactness.
Choose admissible sequences x1, . . . , xa ∈ Iϕ and y1, . . . , yb ∈ Iψ such that the sym-
bol [x1, . . . , xa] generates detκ(Iϕ) and the symbol [x1, . . . , xb] generates detκ(Iψ).
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Choose x̃i ∈M such that ϕ(x̃i) = xi. Choose ỹj ∈M such that ψ(ỹj) = yj . Then
detκ(M,ϕ, ψ) is characterized by the equality

[x1, . . . , xa, ỹ1, . . . , ỹb] = (−1)ab detκ(M,ϕ, ψ)[y1, . . . , yb, x̃1, . . . , x̃a]

in detκ(M). This also explains the sign.

Lemma 3.6. Let R be a local ring with residue field κ. Let (M,ϕ, ψ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ, ψ) is
exact. Then

detκ(M,ϕ, ψ) detκ(M,ψ, ϕ) = 1.

Proof. Omitted. �

Lemma 3.7. Let R be a local ring with residue field κ. Let (M,ϕ, ϕ) be a (2, 1)-
periodic complex over R. Assume that M has finite length and that (M,ϕ, ϕ) is
exact. Then lengthR(M) = 2lengthR(Im(ϕ)) and

detκ(M,ϕ, ψ) = (−1)lengthR(Im(ϕ)) = (−1)
1
2 lengthR(M)

Proof. Follows directly from the sign rule in the definitions. �

Lemma 3.8. Let R be a local ring with residue field κ. Let M be a finite length
R-module.

(1) if ϕ : M →M is an isomorphism then detκ(M,ϕ, 0) = detκ(ϕ).
(2) if ψ : M →M is an isomorphism then detκ(M, 0, ψ) = detκ(ψ)−1.

Proof. Let us prove (1). Set ψ = 0. Then we may, with notation as above
Definition 3.4, identify Kϕ = Iψ = 0, Iϕ = Kψ = M . With these identifications,
the map

γϕ : κ⊗ detκ(M) = detκ(Kϕ)⊗ detκ(Iϕ) −→ detκ(M)

is identified with detκ(ϕ−1). On the other hand the map γψ is identified with the
identity map. Hence γψ ◦ σ ◦ γ−1ϕ is equal to detκ(ϕ) in this case. Whence the
result. We omit the proof of (2). �

Lemma 3.9. Let R be a local ring with residue field κ. Suppose that we have a
short exact sequence of (2, 1)-periodic complexes

0→ (M1, ϕ1, ψ1)→ (M2, ϕ2, ψ2)→ (M3, ϕ3, ψ3)→ 0

with all Mi of finite length, and each (M1, ϕ1, ψ1) exact. Then

detκ(M2, ϕ2, ψ2) = detκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3).

in κ∗.
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Proof. Let us abbreviate Iϕ,i = Im(ϕi), Kϕ,i = Ker(ϕi), Iψ,i = Im(ψi), and
Kψ,i = Ker(ψi). Observe that we have a commutative square

0

��

0

��

0

��
0 // Kϕ,1

//

��

Kϕ,2
//

��

Kϕ,3
//

��

0

0 // M1
//

��

M2
//

��

M3
//

��

0

0 // Iϕ,1 //

��

Iϕ,2 //

��

Iϕ,3 //

��

0

0 0 0

of finite length R-modules with exact rows and columns. The top row is exact
since it can be identified with the sequence Iψ,1 → Iψ,2 → Iψ,3 → 0 of images, and
similarly for the bottom row. There is a similar diagram involving the modules
Iψ,i and Kψ,i. By definition detκ(M2, ϕ2, ψ2) corresponds, up to a sign, to the
composition of the left vertical maps in the following diagram

detκ(M1)⊗ detκ(M3)
γ //

γ−1⊗γ−1

��

detκ(M2)

γ−1

��
detκ(Kϕ,1)⊗ detκ(Iϕ,1)⊗ detκ(Kϕ,3)⊗ detκ(Iϕ,3)

σ⊗σ
��

γ⊗γ // detκ(Kϕ,2)⊗ detκ(Iϕ,2)

σ

��
detκ(Kψ,1)⊗ detκ(Iψ,1)⊗ detκ(Kψ,3)⊗ detκ(Iψ,3)

γ⊗γ
��

γ⊗γ // detκ(Kψ,2)⊗ detκ(Iψ,2)

γ

��
detκ(M1)⊗ detκ(M3)

γ // detκ(M2)

The top and bottom squares are commutative up to sign by applying Lemma 2.5
(2). The middle square is trivially commutative (we are just switching factors).
Hence we see that detκ(M2, ϕ2, ψ2) = εdetκ(M1, ϕ1, ψ1) detκ(M3, ϕ3, ψ3) for some
sign ε. And the sign can be worked out, namely the outer rectangle in the diagram
above commutes up to

ε = (−1)length(Iϕ,1)length(Kϕ,3)+length(Iψ,1)length(Kψ,3)

= (−1)length(Iϕ,1)length(Iψ,3)+length(Iψ,1)length(Iϕ,3)

(proof omitted). It follows easily from this that the signs work out as well. �

Example 3.10. Let k be a field. Consider the ring R = k[T ]/(T 2) of dual numbers
over k. Denote t the class of T in R. Let M = R and ϕ = ut, ψ = vt with u, v ∈ k∗.
In this case detk(M) has generator e = [t, 1]. We identify Iϕ = Kϕ = Iψ =
Kψ = (t). Then γϕ(t ⊗ t) = u−1[t, 1] (since u−1 ∈ M is a lift of t ∈ Iϕ) and
γψ(t⊗ t) = v−1[t, 1] (same reason). Hence we see that detk(M,ϕ, ψ) = −u/v ∈ k∗.
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Example 3.11. Let R = Zp and let M = Zp/(p
l). Let ϕ = pbu and ϕ = pav with

a, b ≥ 0, a + b = l and u, v ∈ Z∗p. Then a computation as in Example 3.10 shows
that

detFp(Zp/(p
l), pbu, pav) = (−1)abua/vb mod p

= (−1)ordp(α)ordp(β)
αordp(β)

βordp(α)
mod p

with α = pbu, β = pav ∈ Zp. See Lemma 4.10 for a more general case (and a proof).

Example 3.12. Let R = k be a field. Let M = k⊕a⊕k⊕b be l = a+b dimensional.
Let ϕ and ψ be the following diagonal matrices

ϕ = diag(u1, . . . , ua, 0, . . . , 0), ψ = diag(0, . . . , 0, v1, . . . , vb)

with ui, vj ∈ k∗. In this case we have

detk(M,ϕ, ψ) =
u1 . . . ua
v1 . . . vb

.

This can be seen by a direct computation or by computing in case l = 1 and using
the additivity of Lemma 3.9.

Example 3.13. Let R = k be a field. Let M = k⊕a ⊕ k⊕a be l = 2a dimensional.
Let ϕ and ψ be the following block matrices

ϕ =

(
0 U
0 0

)
, ψ =

(
0 V
0 0

)
,

with U, V ∈ Mat(a× a, k) invertible. In this case we have

detk(M,ϕ, ψ) = (−1)a
det(U)

det(V )
.

This can be seen by a direct computation. The case a = 1 is similar to the compu-
tation in Example 3.10.

Example 3.14. Let R = k be a field. Let M = k⊕4. Let

ϕ =


0 0 0 0
u1 0 0 0
0 0 0 0
0 0 u2 0

 ϕ =


0 0 0 0
0 0 v2 0
0 0 0 0
v1 0 0 0


with u1, u2, v1, v2 ∈ k∗. Then we have

detk(M,ϕ, ψ) = −u1u2
v1v2

.

Next we come to the analogue of the fact that the determinant of a composition
of linear endomorphisms is the product of the determinants. To avoid very long
formulae we write Iϕ = Im(ϕ), and Kϕ = Ker(ϕ) for any R-module map ϕ : M →
M . We also denote ϕψ = ϕ ◦ ψ for a pair of morphisms ϕ,ψ : M →M .

Lemma 3.15. Let R be a local ring with residue field κ. Let M be a finite length
R-module. Let α, β, γ be endomorphisms of M . Assume that

(1) Iα = Kβγ , and similarly for any permutation of α, β, γ,
(2) Kα = Iβγ , and similarly for any permutation of α, β, γ.

Then

(1) The triple (M,α, βγ) is an exact (2, 1)-periodic complex.
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(2) The triple (Iγ , α, β) is an exact (2, 1)-periodic complex.
(3) The triple (M/Kβ , α, γ) is an exact (2, 1)-periodic complex.
(4) We have

detκ(M,α, βγ) = detκ(Iγ , α, β) detκ(M/Kβ , α, γ).

Proof. It is clear that the assumptions imply part (1) of the lemma.

To see part (1) note that the assumptions imply that Iγα = Iαγ , and similarly for
kernels and any other pair of morphisms. Moreover, we see that Iγβ = Iβγ = Kα ⊂
Iγ and similarly for any other pair. In particular we get a short exact sequence

0→ Iβγ → Iγ
α−→ Iαγ → 0

and similarly we get a short exact sequence

0→ Iαγ → Iγ
β−→ Iβγ → 0.

This proves (Iγ , α, β) is an exact (2, 1)-periodic complex. Hence part (2) of the
lemma holds.

To see that α, γ give well defined endomorphisms of M/Kβ we have to check that
α(Kβ) ⊂ Kβ and γ(Kβ) ⊂ Kβ . This is true because α(Kβ) = α(Iγα) = Iαγα ⊂
Iαγ = Kβ , and similarly in the other case. The kernel of the map α : M/Kβ →
M/Kβ is Kβα/Kβ = Iγ/Kβ . Similarly, the kernel of γ : M/Kβ → M/Kβ is equal
to Iα/Kβ . Hence we conclude that (3) holds.

We introduce r = lengthR(Kα), s = lengthR(Kβ) and t = lengthR(Kγ). By
the exact sequences above and our hypotheses we have lengthR(Iα) = s + t,
lengthR(Iβ) = r + t, lengthR(Iγ) = r + s, and length(M) = r + s+ t. Choose

(1) an admissible sequence x1, . . . , xr ∈ Kα generating Kα

(2) an admissible sequence y1, . . . , ys ∈ Kβ generating Kβ ,
(3) an admissible sequence z1, . . . , zt ∈ Kγ generating Kγ ,
(4) elements x̃i ∈M such that βγx̃i = xi,
(5) elements ỹi ∈M such that αγỹi = yi,
(6) elements z̃i ∈M such that βαz̃i = zi.

With these choices the sequence y1, . . . , ys, αz̃1, . . . , αz̃t is an admissible sequence
in Iα generating it. Hence, by Remark 3.5 the determinant D = detκ(M,α, βγ) is
the unique element of κ∗ such that

[y1, . . . , ys, αz̃1, . . . , αz̃s, x̃1, . . . , x̃r]

= (−1)r(s+t)D[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

By the same remark, we see that D1 = detκ(M/Kβ , α, γ) is characterized by

[y1, . . . , ys, αz̃1, . . . , αz̃t, x̃1, . . . , x̃r] = (−1)rtD1[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t]

By the same remark, we see that D2 = detκ(Iγ , α, β) is characterized by

[y1, . . . , ys, γx̃1, . . . , γx̃r, z̃1, . . . , z̃t] = (−1)rsD2[x1, . . . , xr, γỹ1, . . . , γỹs, z̃1, . . . , z̃t]

Combining the formulas above we see that D = D1D2 as desired. �

Lemma 3.16. Let R be a local ring with residue field κ. Let α : (M,ϕ, ψ) →
(M ′, ϕ′, ψ′) be a morphism of (2, 1)-periodic complexes over R. Assume

(1) M , M ′ have finite length,
(2) (M,ϕ, ψ), (M ′, ϕ′, ψ′) are exact,
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(3) the maps ϕ, ψ induce the zero map on K = Ker(α), and
(4) the maps ϕ, ψ induce the zero map on Q = Coker(α).

Denote N = α(M) ⊂ M ′. We obtain two short exact sequences of (2, 1)-periodic
complexes

0→ (N,ϕ′, ψ′)→ (M ′, ϕ′, ψ′)→ (Q, 0, 0)→ 0
0→ (K, 0, 0)→ (M,ϕ, ψ)→ (N,ϕ′, ψ′)→ 0

which induce two isomorphisms αi : Q→ K, i = 0, 1. Then

detκ(M,ϕ, ψ) = detκ(α−10 ◦ α1) detκ(M ′, ϕ′, ψ′)

In particular, if α0 = α1, then detκ(M,ϕ, ψ) = detκ(M ′, ϕ′, ψ′).

Proof. There are (at least) two ways to prove this lemma. One is to produce
an enormous commutative diagram using the properties of the determinants. The
other is to use the characterization of the determinants in terms of admissible
sequences of elements. It is the second approach that we will use.

First let us explain precisely what the maps αi are. Namely, α0 is the composition

α0 : Q = H0(Q, 0, 0)→ H1(N,ϕ′, ψ′)→ H2(K, 0, 0) = K

and α1 is the composition

α1 : Q = H1(Q, 0, 0)→ H2(N,ϕ′, ψ′)→ H3(K, 0, 0) = K

coming from the boundary maps of the short exact sequences of complexes displayed
in the lemma. The fact that the complexes (M,ϕ, ψ), (M ′, ϕ′, ψ′) are exact implies
these maps are isomorphisms.

We will use the notation Iϕ = Im(ϕ), Kϕ = Ker(ϕ) and similarly for the other
maps. Exactness for M and M ′ means that Kϕ = Iψ and three similar equalities.
We introduce k = lengthR(K), a = lengthR(Iϕ), b = lengthR(Iψ). Then we see
that lengthR(M) = a + b, and lengthR(N) = a + b − k, lengthR(Q) = k and
lengthR(M ′) = a+b. The exact sequences below will show that also lengthR(Iϕ′) =
a and lengthR(Iψ′) = b.

The assumption that K ⊂ Kϕ = Iψ means that ϕ factors through N to give an
exact sequence

0→ α(Iψ)→ N
ϕα−1

−−−→ Iψ → 0.

Here ϕα−1(x′) = y means x′ = α(x) and y = ϕ(x). Similarly, we have

0→ α(Iϕ)→ N
ψα−1

−−−→ Iϕ → 0.

The assumption that ψ′ induces the zero map on Q means that Iψ′ = Kϕ′ ⊂ N .
This means the quotient ϕ′(N) ⊂ Iϕ′ is identified with Q. Note that ϕ′(N) = α(Iϕ).
Hence we conclude there is an isomorphism

ϕ′ : Q→ Iϕ′/α(Iϕ)

simply described by ϕ′(x′ mod N) = ϕ′(x′) mod α(Iϕ). In exactly the same way
we get

ψ′ : Q→ Iψ′/α(Iψ)

Finally, note that α0 is the composition

Q
ϕ′ // Iϕ′/α(Iϕ)

ψα−1|I
ϕ′/α(Iϕ)

// K
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and similarly α1 = ϕα−1|Iψ′/α(Iψ) ◦ ψ
′.

To shorten the formulas below we are going to write αx instead of α(x) in the
following. No confusion should result since all maps are indicated by greek letters
and elements by roman letters. We are going to choose

(1) an admissible sequence z1, . . . , zk ∈ K generating K,
(2) elements z′i ∈M such that ϕz′i = zi,
(3) elements z′′i ∈M such that ψz′′i = zi,
(4) elements xk+1, . . . , xa ∈ Iϕ such that z1, . . . , zk, xk+1, . . . , xa is an admissi-

ble sequence generating Iϕ,
(5) elements x̃i ∈M such that ϕx̃i = xi,
(6) elements yk+1, . . . , yb ∈ Iψ such that z1, . . . , zk, yk+1, . . . , yb is an admissible

sequence generating Iψ,
(7) elements ỹi ∈M such that ψỹi = yi, and
(8) elements w1, . . . , wk ∈ M ′ such that w1 mod N, . . . , wk mod N are an ad-

missible sequence in Q generating Q.

By Remark 3.5 the element D = detκ(M,ϕ, ψ) ∈ κ∗ is characterized by

[z1, . . . , zk, xk+1, . . . , xa, z
′′
1 , . . . , z

′′
k , ỹk+1, . . . , ỹb]

= (−1)abD[z1, . . . , zk, yk+1, . . . , yb, z
′
1, . . . , z

′
k, x̃k+1, . . . , x̃a]

Note that by the discussion above αxk+1, . . . , αxa, ϕw1, . . . , ϕwk is an admissible
sequence generating Iϕ′ and αyk+1, . . . , αyb, ψw1, . . . , ψwk is an admissible sequence
generating Iψ′ . Hence by Remark 3.5 the element D′ = detκ(M ′, ϕ′, ψ′) ∈ κ∗ is
characterized by

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb, w1, . . . , wk]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a, w1, . . . , wk]

Note how in the first, resp. second displayed formula the the first, resp. last k
entries of the symbols on both sides are the same. Hence these formulas are really
equivalent to the equalities

[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= (−1)abD[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

and

[αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]

= (−1)abD′[αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

in detκ(N). Note that ϕ′w1, . . . , ϕ
′wk and αz′′1 , . . . , z

′′
k are admissible sequences

generating the module Iϕ′/α(Iϕ). Write

[ϕ′w1, . . . , ϕ
′wk] = λ0[αz′′1 , . . . , αz

′′
k ]

in detκ(Iϕ′/α(Iϕ)) for some λ0 ∈ κ∗. Similarly, write

[ψ′w1, . . . , ψ
′wk] = λ1[αz′1, . . . , αz

′
k]

in detκ(Iψ′/α(Iψ)) for some λ1 ∈ κ∗. On the one hand it is clear that

αi([w1, . . . , wk]) = λi[z1, . . . , zk]

for i = 0, 1 by our description of αi above, which means that

detκ(α−10 ◦ α1) = λ1/λ0
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and on the other hand it is clear that

λ0[αxk+1, . . . , αxa, αz
′′
1 , . . . , αz

′′
k , αỹk+1, . . . , αỹb]

= [αxk+1, . . . , αxa, ϕ
′w1, . . . , ϕ

′wk, αỹk+1, . . . , αỹb]

and

λ1[αyk+1, . . . , αyb, αz
′
1, . . . , αz

′
k, αx̃k+1, . . . , αx̃a]

= [αyk+1, . . . , αyb, ψ
′w1, . . . , ψ

′wk, αx̃k+1, . . . , αx̃a]

which imply λ0D = λ1D
′. The lemma follows. �

4. Symbols

The correct generality for this construction is perhaps the situation of the following
lemma.

Lemma 4.1. Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Assume ϕ,ψ : M →M are two injective A-module maps, and assume
ϕ(ψ(M)) = ψ(ϕ(M)), for example if ϕ and ψ commute. Then lengthR(M/ϕψM) <
∞ and (M/ϕψM,ϕ, ψ) is an exact (2, 1)-periodic complex.

Proof. Let q be a minimal prime of the support of M . Then Mq is a finite length
Aq-module, see Algebra, Lemma 61.3. Hence both ϕ and ψ induce isomorphisms
Mq → Mq. Thus the support of M/ϕψM is {mA} and hence it has finite length
(see lemma cited above). Finally, the kernel of ϕ on M/ϕψM is clearly ψM/ϕψM ,
and hence the kernel of ϕ is the image of ψ on M/ϕψM . Similarly the other way
since M/ϕψM = M/ψϕM by assumption. �

Lemma 4.2. Let A be a Noetherian local ring. Let a, b ∈ A.

(1) If M is a finite A-module of dimension 1 such that a, b are nonzerodivisors
on M , then lengthA(M/abM) < ∞ and (M/abM, a, b) is a (2, 1)-periodic
exact complex.

(2) If a, b are nonzerodivisors and dim(A) = 1 then lengthA(A/(ab)) <∞ and
(A/(ab), a, b) is a (2, 1)-periodic exact complex.

In particular, in these cases detκ(M/abM, a, b) ∈ κ∗, resp. detκ(A/(ab), a, b) ∈ κ∗
are defined.

Proof. Follows from Lemma 4.1. �

Definition 4.3. Let A be a Noetherian local ring with residue field κ. Let a, b ∈ A.
Let M be a finite A-module of dimension 1 such that a, b are nonzerodivisors on
M . We define the symbol associated to M,a, b to be the element

dM (a, b) = detκ(M/abM, a, b) ∈ κ∗

Lemma 4.4. Let A be a Noetherian local ring. Let a, b, c ∈ A. Let M be a finite
A-module with dim(M) = 1. Assume a, b, c are nonzerodivisors on M . Then

dM (a, bc) = dM (a, b)dM (a, c)

and dM (a, b)dM (b, a) = 1.

Proof. The first statement is immediate from Lemma 3.15 above. The second
comes from Lemma 3.6. �
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Definition 4.5. Let A be a Noetherian local domain of dimension 1 with residue
field κ. Let K be the fraction field of A. We define the tame symbol of A to be the
map

K∗ ×K∗ −→ κ∗, (x, y) 7−→ dA(x, y)

where dA(x, y) is extended to K∗ ×K∗ by the multiplicativity of Lemma 4.4.

It is clear that we may extend more generally dM (−,−) to certain rings of fractions
of A (even if A is not a domain).

Lemma 4.6. Let A be a Noetherian local ring. Let M be a finite A-module of
dimension 1. Let b ∈ A be a nonzerodivisor on M , and let u ∈ A∗. Then

dM (u, b) = ulengthM (M/bM) mod mA.

In particular, if M = A, then dA(u, b) = uordA(b) mod mA.

Proof. Note that in this case M/ubM = M/bM on which multiplication by b is
zero. Hence dM (u, b) = detκ(u|M/bM ) by Lemma 3.8. The lemma then follows from
Lemma 2.8. �

Lemma 4.7. Let A be a Noetherian local ring. Let a, b ∈ A. Let

0→M →M ′ →M ′′ → 0

be a short exact sequence of A-modules of dimension 1 such that a, b are nonzero-
divisors on all three A-modules. Then

dM ′(a, b) = dM (a, b)dM ′′(a, b)

in κ∗.

Proof. It is easy to see that this leads to a short exact sequence of exact (2, 1)-
periodic complexes

0→ (M/abM, a, b)→ (M ′/abM ′, a, b)→ (M ′′/abM ′′, a, b)→ 0

Hence the lemma follows from Lemma 3.9. �

Lemma 4.8. Let A be a Noetherian local ring. Let α : M → M ′ be a homomor-
phism of finite A-modules of dimension 1. Let a, b ∈ A. Assume

(1) a, b are nonzerodivisors on both M and M ′, and
(2) dim(Ker(α)),dim(Coker(α)) ≤ 0.

Then dM (a, b) = dM ′(a, b).

Proof. If a ∈ A∗, then the equality follows from the equality length(M/bM) =
length(M ′/bM ′) and Lemma 4.6. Similarly if b is a unit the lemma holds as well
(by the symmetry of Lemma 4.4). Hence we may assume that a, b ∈ mA. This in
particular implies that m is not an associated prime of M , and hence α : M →M ′

is injective. This permits us to think of M as a submodule of M ′. By assumption
M ′/M is a finite A-module with support {mA} and hence has finite length. Note
that for any third module M ′′ with M ⊂ M ′′ ⊂ M ′ the maps M → M ′′ and
M ′′ → M ′ satisfy the assumptions of the lemma as well. This reduces us, by
induction on the length of M ′/M , to the case where lengthA(M ′/M) = 1. Finally,
in this case consider the map

α : M/abM −→M ′/abM ′.
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By construction the cokernel Q of α has length 1. Since a, b ∈ mA, they act trivially
on Q. It also follows that the kernel K of α has length 1 and hence also a, b act
trivially on K. Hence we may apply Lemma 3.16. Thus it suffices to see that the
two maps αi : Q → K are the same. In fact, both maps are equal to the map
q = x′ mod Im(α) 7→ abx′ ∈ K. We omit the verification. �

Lemma 4.9. Let A be a Noetherian local ring. Let M be a finite A-module with
dim(M) = 1. Let a, b ∈ A nonzerodivisors on M . Let q1, . . . , qt be the minimal
primes in the support of M . Then

dM (a, b) =
∏

i=1,...,t
dA/qi(a, b)

lengthAqi
(Mqi

)

as elements of κ∗.

Proof. Choose a filtration by A-submodules

0 = M0 ⊂M1 ⊂ . . . ⊂Mn = M

such that each quotient Mj/Mj−1 is isomorphic to A/pj for some prime ideal pj
of A. See Algebra, Lemma 61.1. For each j we have either pj = qi for some i, or
pj = mA. Moreover, for a fixed i, the number of j such that pj = qi is equal to
lengthAqi

(Mqi) by Algebra, Lemma 61.5. Hence dMj
(a, b) is defined for each j and

dMj
(a, b) =

{
dMj−1(a, b)dA/qi(a, b) if pj = qi

dMj−1(a, b) if pj = mA

by Lemma 4.7 in the first instance and Lemma 4.8 in the second. Hence the
lemma. �

Lemma 4.10. Let A be a discrete valuation ring with fraction field K. For nonzero
x, y ∈ K we have

dA(x, y) = (−1)ordA(x)ordA(y)x
ordA(y)

yordA(x)
mod mA,

in other words the symbol is equal to the usual tame symbol.

Proof. By multiplicativity it suffices to prove this when x, y ∈ A. Let t ∈ A be
a uniformizer. Write x = tbu and y = tbv for some a, b ≥ 0 and u, v ∈ A∗. Set
l = a + b. Then tl−1, . . . , tb is an admissible sequence in (x)/(xy) and tl−1, . . . , ta

is an admissible sequence in (y)/(xy). Hence by Remark 3.5 we see that dA(x, y)
is characterized by the equation

[tl−1, . . . , tb, v−1tb−1, . . . , v−1] = (−1)abdA(x, y)[tl−1, . . . , ta, u−1ta−1, . . . , u−1].

Hence by the admissible relations for the symbols [x1, . . . , xl] we see that

dA(x, y) = (−1)abua/vb mod mA

as desired. �

We add the following lemma here. It is very similar to Algebra, Lemma 115.2.

Lemma 4.11. Let R be a local Noetherian domain of dimension 1 with maximal
ideal m. Let a, b ∈ m be nonzero. There exists a finite ring extension R ⊂ R′

with same field of fractions, and t, a′, b′ ∈ R′ such that a = ta′ and b = tb′ and
R′ = a′R′ + b′R′.

http://localhost:8080/tag/02Q5
http://localhost:8080/tag/02Q6
http://localhost:8080/tag/02Q7


20 CHOW HOMOLOGY AND CHERN CLASSES

Proof. Set I = (a, b). The idea is to blow up R in I as in the proof of Algebra,
Lemma 115.2. Instead of doing the algebraic argument we work geometrically. Let
X = Proj(

⊕
Id/Id+1). By Divisors, Lemma 18.7 this is an integral scheme. The

morphism X → Spec(R) is projective by Divisors, Lemma 18.11. By Algebra,
Lemma 109.2 and the fact that X is quasi-compact we see that the fibre of X →
Spec(R) over m is finite. By Properties, Lemma 27.5 there exists an affine open
U ⊂ X containing this fibre. Hence X = U because X → Spec(R) is closed. In
other words X is affine, say X = Spec(R′). By Morphisms, Lemma 16.2 we see
that R→ R′ is of finite type. Since X → Spec(R) is proper and affine it is integral
(see Morphisms, Lemma 44.7). Hence R → R′ is of finite type and integral, hence
finite (Algebra, Lemma 35.5). By Divisors, Lemma 18.4 we see that IR′ is a locally
principal ideal. Since R′ is semi-local we see that IR′ is principal, see Algebra,
Lemma 75.6, say IR′ = (t). Then we have a = a′t and b = b′t and everything is
clear. �

Lemma 4.12. Let A be a Noetherian local ring. Let a, b ∈ A. Let M be a finite
A-module of dimension 1 on which each of a, b, b− a are nonzerodivisors. Then

dM (a, b− a)dM (b, b) = dM (b, b− a)dM (a, b)

in κ∗.

Proof. By Lemma 4.9 it suffices to show the relation when M = A/q for some
prime q ⊂ A with dim(A/q) = 1.

In case M = A/q we may replace A by A/q and a, b by their images in A/q. Hence
we may assume A = M and A a local Noetherian domain of dimension 1. The
reason is that the residue field κ of A and A/q are the same and that for any A/q-
module M the determinant taken over A or over A/q are canonically identified. See
Lemma 2.7.

It suffices to show the relation when both a, b are in the maximal ideal. Namely,
the case where one or both are units follows from Lemma 4.6.

Choose an extension A ⊂ A′ and factorizations a = ta′, b = tb′ as in Lemma 4.11.
Note that also b− a = t(b′ − a′) and that A′ = (a′, b′) = (a′, b′ − a′) = (b′ − a′, b′).
Here and in the following we think of A′ as an A-module and a, b, a′, b′, t as A-
module endomorphisms of A′. We will use the notation dAA′(a

′, b′) and so on to
indicate

dAA′(a
′, b′) = detκ(A′/a′b′A′, a′, b′)

which is defined by Lemma 4.1. The upper index A is used to distinguish this from
the already defined symbol dA′(a

′, b′) which is different (for example because it has
values in the residue field of A′ which may be different from κ). By Lemma 4.8 we
see that dA(a, b) = dAA′(a, b), and similarly for the other combinations. Using this
and multiplicativity we see that it suffices to prove

dAA′(a
′, b′ − a′)dAA′(b′, b′) = dAA′(b

′, b′ − a′)dAA′(a′, b′)

Now, since (a′, b′) = A′ and so on we have

A′/(a′(b′ − a′)) ∼= A′/(a′)⊕A′/(b′ − a′)
A′/(b′(b′ − a′)) ∼= A′/(b′)⊕A′/(b′ − a′)

A′/(a′b′) ∼= A′/(a′)⊕A′/(b′)
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Moreover, note that multiplication by b′ − a′ on A/(a′) is equal to multiplication
by b′, and that multiplication by b′−a′ on A/(b′) is equal to multiplication by −a′.
Using Lemmas 3.8 and 3.9 we conclude

dAA′(a
′, b′ − a′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′−a′))

dAA′(b
′, b′ − a′) = detκ(−a′|A′/(b′))−1 detκ(b′|A′/(b′−a′))

dAA′(a
′, b′) = detκ(b′|A′/(a′))−1 detκ(a′|A′/(b′))

Hence we conclude that

(−1)lengthA(A′/(b′))dAA′(a
′, b′ − a′) = dAA′(b

′, b′ − a′)dAA′(a′, b′)

the sign coming from the −a′ in the second equality above. On the other hand, by
Lemma 3.7 we have dAA′(b

′, b′) = (−1)lengthA(A′/(b′)), and the lemma is proved. �

The tame symbol is a Steinberg symbol.

Lemma 4.13. Let A be a Noetherian local domain of dimension 1. Let K =
f.f.(A). For x ∈ K \ {0, 1} we have

dA(x, 1− x) = 1

Proof. Write x = a/b with a, b ∈ A. The hypothesis implies, since 1−x = (b−a)/b,
that also b− a 6= 0. Hence we compute

dA(x, 1− x) = dA(a, b− a)dA(a, b)−1dA(b, b− a)−1dA(b, b)

Thus we have to show that dA(a, b − a)dA(b, b) = dA(b, b − a)dA(a, b). This is
Lemma 4.12. �

5. Lengths and determinants

In this section we use the determinant to compare lattices. The key lemma is the
following.

Lemma 5.1. Let R be a noetherian local ring. Let q ⊂ R be a prime with
dim(R/q) = 1. Let ϕ : M → N be a homomorphism of finite R-modules. As-
sume there exist x1, . . . , xl ∈M and y1, . . . , yl ∈M with the following properties

(1) M = 〈x1, . . . , xl〉,
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l,
(3) N = 〈y1, . . . , yl〉, and
(4) 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= R/q for i = 1, . . . , l.

Then ϕ is injective if and only if ϕq is an isomorphism, and in this case we have

lengthR(Coker(ϕ)) = ordR/q(f)

where f ∈ κ(q) is the element such that

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl]

in detκ(q)(Nq).

Proof. First, note that the lemma holds in case l = 1. Namely, in this case x1 is a
basis of M over R/q and y1 is a basis of N over R/q and we have ϕ(x1) = fy1 for
some f ∈ R. Thus ϕ is injective if and only if f 6∈ q. Moreover, Coker(ϕ) = R/(f, q)
and hence the lemma holds by definition of ordR/q(f) (see Algebra, Definition
117.2).
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In fact, suppose more generally that ϕ(xi) = fiyi for some fi ∈ R, fi 6∈ q. Then
the induced maps

〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 −→ 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉

are all injective and have cokernels isomorphic to R/(fi, q). Hence we see that

lengthR(Coker(ϕ)) =
∑

ordR/q(fi).

On the other hand it is clear that

[ϕ(x1), . . . , ϕ(xl)] = f1 . . . fl[y1, . . . , yl]

in this case from the admissible relation (b) for symbols. Hence we see the result
holds in this case also.

We prove the general case by induction on l. Assume l > 1. Let i ∈ {1, . . . , l} be
minimal such that ϕ(x1) ∈ 〈y1, . . . , yi〉. We will argue by induction on i. If i = 1,
then we get a commutative diagram

0 // 〈x1〉 //

��

〈x1, . . . , xl〉 //

��

〈x1, . . . , xl〉/〈x1〉 //

��

0

0 // 〈y1〉 // 〈y1, . . . , yl〉 // 〈y1, . . . , yl〉/〈y1〉 // 0

and the lemma follows from the snake lemma and induction on l. Assume now that
i > 1. Write ϕ(x1) = a1y1 + . . . + ai−1yi−1 + ayi with aj , a ∈ R and a 6∈ q (since
otherwise i was not minimal). Set

x′j =

{
xj if j = 1
axj if j ≥ 2

and y′j =

{
yj if j < i
ayj if j ≥ i

Let M ′ = 〈x′1, . . . , x′l〉 and N ′ = 〈y′1, . . . , y′l〉. Since ϕ(x′1) = a1y
′
1+. . .+ai−1y

′
i−1+y′i

by construction and since for j > 1 we have ϕ(x′j) = aϕ(xi) ∈ 〈y′1, . . . , y′l〉 we get a
commutative diagram of R-modules and maps

M ′

��

ϕ′
// N ′

��
M

ϕ // N

By the result of the second paragraph of the proof we know that lengthR(M/M ′) =
(l−1)ordR/q(a) and similarly lengthR(M/M ′) = (l−i+1)ordR/q(a). By a diagram
chase this implies that

lengthR(Coker(ϕ′)) = lengthR(Coker(ϕ)) + i ordR/q(a).

On the other hand, it is clear that writing

[ϕ(x1), . . . , ϕ(xl)] = f [y1, . . . , yl], [ϕ′(x′1), . . . , ϕ(x′l)] = f ′[y′1, . . . , y
′
l]

we have f ′ = aif . Hence it suffices to prove the lemma for the case that ϕ(x1) =
a1y1 + . . . ai−1yi−1 + yi, i.e., in the case that a = 1. Next, recall that

[y1, . . . , yl] = [y1, . . . , yi−1, a1y1 + . . . ai−1yi−1 + yi, yi+1, . . . , yl]

by the admissible relations for symbols. The sequence y1, . . . , yi−1, a1y1 + . . . +
ai−1yi−1 +yi, yi+1, . . . , yl satisfies the conditions (3), (4) of the lemma also. Hence,
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we may actually assume that ϕ(x1) = yi. In this case, note that we have qx1 = 0
which implies also qyi = 0. We have

[y1, . . . , yl] = −[y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl]

by the third of the admissible relations defining detκ(q)(Nq). Hence we may replace
y1, . . . , yl by the sequence y′1, . . . , y

′
l = y1, . . . , yi−2, yi, yi−1, yi+1, . . . , yl (which also

satisfies conditions (3) and (4) of the lemma). Clearly this decreases the invariant
i by 1 and we win by induction on i. �

To use the previous lemma we show that often sequences of elements with the
required properties exist.

Lemma 5.2. Let R be a local Noetherian ring. Let q ⊂ R be a prime ideal. Let M
be a finite R-module such that q is one of the minimal primes of the support of M .
Then there exist x1, . . . , xl ∈M such that

(1) the support of M/〈x1, . . . , xl〉 does not contain q, and
(2) 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 ∼= R/q for i = 1, . . . , l.

Moreover, in this case l = lengthRq
(Mq).

Proof. The condition that q is a minimal prime in the support of M implies
that l = lengthRq

(Mq) is finite (see Algebra, Lemma 61.3). Hence we can find

y1, . . . , yl ∈Mq such that 〈y1, . . . , yi〉/〈y1, . . . , yi−1〉 ∼= κ(q) for i = 1, . . . , l. We can
find fi ∈ R, fi 6∈ q such that fiyi is the image of some element zi ∈M . Moreover,
as R is Noetherian we can write q = (g1, . . . , gt) for some gj ∈ R. By assumption
gjyi ∈ 〈y1, . . . , yi−1〉 inside the module Mq. By our choice of zi we can find some
further elements fji ∈ R, fij 6∈ q such that fijgjzi ∈ 〈z1, . . . , zi−1〉 (equality in the
module M). The lemma follows by taking

x1 = f11f12 . . . f1tz1, x2 = f11f12 . . . f1tf21f22 . . . f2tz2,

and so on. Namely, since all the elements fi, fij are invertible in Rq we still have
that Rqx1+ . . .+Rqxi/Rqx1+ . . .+Rqxi−1 ∼= κ(q) for i = 1, . . . , l. By construction,
qxi ∈ 〈x1, . . . , xi−1〉. Thus 〈x1, . . . , xi〉/〈x1, . . . , xi−1〉 is an R-module generated by
one element, annihilated q such that localizing at q gives a q-dimensional vector
space over κ(q). Hence it is isomorphic to R/q. �

Here is the main result of this section. We will see below the various different
consequences of this proposition. The reader is encouraged to first prove the easier
Lemma 5.4 his/herself.

Proposition 5.3. Let R be a local Noetherian ring with residue field κ. Suppose
that (M,ϕ, ψ) is a (2, 1)-periodic complex over R. Assume

(1) M is a finite R-module,
(2) the cohomology modules of (M,ϕ, ψ) are of finite length, and
(3) dim(Supp(M)) = 1.

Let qi, i = 1, . . . , t be the minimal primes of the support of M . Then we have2

−eR(M,ϕ, ψ) =
∑

i=1,...,t
ordR/qi

(
detκ(qi)(Mqi , ϕqi , ψqi)

)
2 Obviously we could get rid of the minus sign by redefining detκ(M,ϕ, ψ) as the inverse of its

current value, see Definition 3.4.
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Proof. We first reduce to the case t = 1 in the following way. Note that Supp(M) =
{m, q1, . . . , qt}, where m ⊂ R is the maximal ideal. Let Mi denote the image of
M →Mqi , so Supp(Mi) = {m, qi}. The map ϕ (resp. ψ) induces an R-module map
ϕi : Mi → Mi (resp. ψi : Mi → Mi). Thus we get a morphism of (2, 1)-periodic
complexes

(M,ϕ, ψ) −→
⊕

i=1,...,t
(Mi, ϕi, ψi).

The kernel and cokernel of this map have support equal to {m} (or are zero). Hence
by Lemma 3.3 these (2, 1)-periodic complexes have multiplicity 0. In other words
we have

eR(M,ϕ, ψ) =
∑

i=1,...,t
eR(Mi, ϕi, ψi)

On the other hand we clearly have Mqi = Mi,qi , and hence the terms of the right
hand side of the formula of the lemma are equal to the expressions

ordR/qi
(
detκ(qi)(Mi,qi , ϕi,qi , ψi,qi)

)
In other words, if we can prove the lemma for each of the modules Mi, then the
lemma holds. This reduces us to the case t = 1.

Assume we have a (2, 1)-periodic complex (M,ϕ, ψ) over a Noetherian local ring
with M a finite R-module, Supp(M) = {m, q}, and finite length cohomology mod-
ules. The proof in this case follows from Lemma 5.1 and careful bookkeeping.
Denote Kϕ = Ker(ϕ), Iϕ = Im(ϕ), Kψ = Ker(ψ), and Iψ = Im(ψ). Since R is
Noetherian these are all finite R-modules. Set

a = lengthRq
(Iϕ,q) = lengthRq

(Kψ,q), b = lengthRq
(Iψ,q) = lengthRq

(Kϕ,q).

Equalities because the complex becomes exact after localizing at q. Note that
l = lengthRq

(Mq) is equal to l = a+ b.

We are going to use Lemma 5.2 to choose sequences of elements in finite R-modules
N with support contained in {m, q}. In this case Nq has finite length, say n ∈ N.
Let us call a sequence w1, . . . , wn ∈ N with properties (1) and (2) of Lemma 5.2 a
“good sequence”. Note that the quotient N/〈w1, . . . , wn〉 of N by the submodule
generated by a good sequence has support (contained in) {m} and hence has finite
length (Algebra, Lemma 61.3). Moreover, the symbol [w1, . . . , wn] ∈ detκ(q)(Nq) is
a generator, see Lemma 2.4.

Having said this we choose good sequences

x1, . . . , xb in Kϕ, t1, . . . , ta in Kψ,
y1, . . . , ya in Iϕ ∩ 〈t1, . . . ta〉, s1, . . . , sb in Iψ ∩ 〈x1, . . . , xb〉.

We will adjust our choices a little bit as follows. Choose lifts ỹi ∈M of yi ∈ Iϕ and
s̃i ∈M of si ∈ Iψ. It may not be the case that qỹ1 ⊂ 〈x1, . . . , xb〉 and it may not be
the case that qs̃1 ⊂ 〈t1, . . . , ta〉. However, using that q is finitely generated (as in the
proof of Lemma 5.2) we can find a d ∈ R, d 6∈ q such that qdỹ1 ⊂ 〈x1, . . . , xb〉 and
qds̃1 ⊂ 〈t1, . . . , ta〉. Thus after replacing yi by dyi, ỹi by dỹi, si by dsi and s̃i by ds̃i
we see that we may assume also that x1, . . . , xb, ỹ1, . . . , ỹb and t1, . . . , ta, s̃1, . . . , s̃b
are good sequences in M .

Finally, we choose a good sequence z1, . . . , zl in the finite R-module

〈x1, . . . , xb, ỹ1, . . . , ỹa〉 ∩ 〈t1, . . . , ta, s̃1, . . . , s̃b〉.
Note that this is also a good sequence in M .
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Since Iϕ,q = Kψ,q there is a unique element h ∈ κ(q) such that [y1, . . . , ya] =
h[t1, . . . , ta] inside detκ(q)(Kψ,q). Similarly, as Iψ,q = Kϕ,q there is a unique element
h ∈ κ(q) such that [s1, . . . , sb] = g[x1, . . . , xb] inside detκ(q)(Kϕ,q). We can also do
this with the three good sequences we have in M . All in all we get the following
identities

[y1, . . . , ya] = h[t1, . . . , ta]

[s1, . . . , sb] = g[x1, . . . , xb]

[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]

[z1, . . . , zl] = fψ[t1, . . . , ta, s̃1, . . . , s̃b]

for some g, h, fϕ, fψ ∈ κ(q).

Having set up all this notation let us compute detκ(q)(M,ϕ, ψ). Namely, consider

the element [z1, . . . , zl]. Under the map γψ ◦ σ ◦ γ−1ϕ of Definition 3.4 we have

[z1, . . . , zl] = fϕ[x1, . . . , xb, ỹ1, . . . , ỹa]

7→ fϕ[x1, . . . , xb]⊗ [y1, . . . , ya]

7→ fϕh/g[t1, . . . , ta]⊗ [s1, . . . , sb]

7→ fϕh/g[t1, . . . , ta, s̃1, . . . , s̃b]

= fϕh/fψg[z1, . . . , zl]

This means that detκ(q)(Mq, ϕq, ψq) is equal to fϕh/fψg up to a sign.

We abbreviate the following quantities

kϕ = lengthR(Kϕ/〈x1, . . . , xb〉)
kψ = lengthR(Kψ/〈t1, . . . , ta〉)
iϕ = lengthR(Iϕ/〈y1, . . . , ya〉)
iψ = lengthR(Iψ/〈s1, . . . , sa〉)
mϕ = lengthR(M/〈x1, . . . , xb, ỹ1, . . . , ỹa〉)
mψ = lengthR(M/〈t1, . . . , ta, s̃1, . . . , s̃b〉)
δϕ = lengthR(〈x1, . . . , xb, ỹ1, . . . , ỹa〉〈z1, . . . , zl〉)
δψ = lengthR(〈t1, . . . , ta, s̃1, . . . , s̃b〉〈z1, . . . , zl〉)

Using the exact sequences 0→ Kϕ →M → Iϕ → 0 we get mϕ = kϕ+ iϕ. Similarly
we have mψ = kψ + iψ. We have δϕ + mϕ = δψ + mψ since this is equal to the
colength of 〈z1, . . . , zl〉 in M . Finally, we have

δϕ = ordR/q(fϕ), δψ = ordR/q(fψ)

by our first application of the key Lemma 5.1.
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Next, let us compute the multiplicity of the periodic complex

eR(M,ϕ, ψ) = lengthR(Kϕ/Iψ)− lengthR(Kψ/Iϕ)

= lengthR(〈x1, . . . , xb〉/〈s1, . . . , sb〉) + kϕ − iψ
−lengthR(〈t1, . . . , ta〉/〈y1, . . . , ya〉)− kψ + iϕ

= ordR/q(g/h) + kϕ − iψ − kψ + iϕ

= ordR/q(g/h) +mϕ −mψ

= ordR/q(g/h) + δψ − δϕ
= ordR/q(fψg/fϕh)

where we used the key Lemma 5.1 twice in the third equality. By our computation
of detκ(q)(Mq, ϕq, ψq) this proves the proposition. �

In most applications the following lemma suffices.

Lemma 5.4. Let R be a Noetherian local ring with maximal ideal m. Let M be a
finite R-module, and let ψ : M →M be an R-module map. Assume that

(1) Ker(ψ) and Coker(ψ) have finite length, and
(2) dim(Supp(M)) ≤ 1.

Write Supp(M) = {m, q1, . . . , qt} and denote fi ∈ κ(qi)
∗ the element such that

detκ(qi)(ψqi) : detκ(qi)(Mqi)→ detκ(qi)(Mqi) is multiplication by fi. Then we have

lengthR(Coker(ψ))− lengthR(Ker(ψ)) =
∑

i=1,...,t
ordR/qi(fi).

Proof. Recall that H0(M, 0, ψ) = Coker(ψ) and H1(M, 0, ψ) = Ker(ψ), see re-
marks above Definition 3.2. The lemma follows by combining Proposition 5.3 with
Lemma 3.8.

Alternative proof. Reduce to the case Supp(M) = {m, q} as in the proof of Propo-
sition 5.3. Then directly combine Lemmas 5.1 and 5.2 to prove this specific case
of Proposition 5.3. There is much less bookkeeping in this case, and the reader is
encouraged to work this out. Details omitted. �

Lemma 5.5. Let R be a Noetherian local ring with maximal ideal m. Let M be a
finite R-module. Let x ∈ R. Assume that

(1) dim(Supp(M)) ≤ 1, and
(2) dim(M/xM) ≤ 0.

Write Supp(M) = {m, q1, . . . , qt}. Then

lengthR(Mx)− lengthR(xM) =
∑

i=1,...,t
ordR/qi(x)lengthRqi

(Mqi).

where Mx = M/xM and xM = Ker(x : M →M).

Proof. This is a special case of Lemma 5.4. To see that fi = x
lengthRqi

(Mqi
)

see
Lemma 2.8. �

Lemma 5.6. Let R be a Noetherian local ring with maximal ideal m. Let I ⊂ R be
an ideal and let x ∈ R. Assume x is a nonzerodivisor on R/I and that dim(R/I) =
1. Then

lengthR(R/(x, I)) =
∑

i
lengthR(R/(x, qi))lengthRqi

((R/I)qi)
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where q1, . . . , qn are the minimal primes over I. More generally if M is any finite
Cohen-Macaulay module of dimension 1 over R and dim(M/xM) = 0, then

lengthR(M/xM) =
∑

i
lengthR(R/(x, qi))lengthRqi

(Mqi).

where q1, . . . , qt are the minimal primes of the support of M .

Proof. These are special cases of Lemma 5.5. �

Lemma 5.7. Let A be a Noetherian local ring. Let M be a finite A-module. Let
a, b ∈ A. Assume

(1) dim(A) = 1,
(2) both a and b are nonzerodivisors in A,
(3) A has no embedded primes,
(4) M has no embedded associated primes,
(5) Supp(M) = Spec(A).

Let I = {x ∈ A | x(a/b) ∈ A}. Let q1, . . . , qt be the minimal primes of A. Then
(a/b)IM ⊂M and

lengthA(M/(a/b)IM)− lengthA(M/IM) =
∑

i
lengthAqi

(Mqi)ordA/qi(a/b)

Proof. Since M has no embedded associated primes, and since the support of M
is Spec(A) we see that Ass(M) = {q1, . . . , qt}. Hence a, b are nonzerodivisors on
M . Note that

lengthA(M/(a/b)IM)

= lengthA(bM/aIM)

= lengthA(M/aIM)− lengthA(M/bM)

= lengthA(M/aM) + lengthA(aM/aIM)− lengthA(M/bM)

= lengthA(M/aM) + lengthA(M/IM)− lengthA(M/bM)

as the injective map b : M → bM maps (a/b)IM to aIM and the injective map
a : M → aM maps IM to aIM . Hence the left hand side of the equation of the
lemma is equal to

lengthA(M/aM)− lengthA(M/bM).

Applying the second formula of Lemma 5.6 with x = a, b respectively and using
Algebra, Definition 117.2 of the ord-functions we get the result. �

6. Application to tame symbol

In this section we apply the results above to show the following lemma.

Lemma 6.1. Let A be a 2-dimensional Noetherian local domain. Let K = f.f.(A).
Let f, g ∈ K∗. Let q1, . . . , qt be the height 1 primes q of A such that either f or g
is not an element of A∗q. Then we have∑

i=1,...,t
ordA/qi(dAqi

(f, g)) = 0

We can also write this as∑
height(q)=1

ordA/q(dAq
(f, g)) = 0

since at any height one prime q of A where f, g ∈ A∗q we have dAq
(f, g) = 1 by

Lemma 4.6.

http://localhost:8080/tag/02QH
http://localhost:8080/tag/02QJ


28 CHOW HOMOLOGY AND CHERN CLASSES

Proof. Since the tame symbols dAq
(f, g) are additive (Lemma 4.4) and the or-

der functions ordA/q are additive (Algebra, Lemma 117.1) it suffices to prove the
formula when f = a ∈ A and g = b ∈ A. In this case we see that we have to show∑

height(q)=1
ordA/q(detκ(Aq/(ab), a, b)) = 0

By Proposition 5.3 this is equivalent to showing that

eA(A/(ab), a, b) = 0.

Since the complex A/(ab)
a−→ A/(ab)

b−→ A/(ab)
a−→ A/(ab) is exact we win. �

7. Setup

We will throughout work over a locally Noetherian universally catenary base S
endowed with a dimension function δ. Although it is likely possible to generalize
(parts of) the discussion in the chapter, it seems that this is a good first approx-
imation. We usually do not assume our schemes are separated or quasi-compact.
Many interesting algebraic stacks are non-separated and/or non-quasi-compact and
this is a good case study to see how to develop a reasonable theory for those as
well. In order to reference these hypotheses we give it a number.

Situation 7.1. Here S is a locally Noetherian, and universally catenary scheme.
Moreover, we assume S is endowed with a dimension function δ : S −→ Z.

See Morphisms, Definition 18.1 for the notion of a universally catenary scheme,
and see Topology, Definition 19.1 for the notion of a dimension function. Recall
that any locally Noetherian catenary scheme locally has a dimension function, see
Properties, Lemma 11.3. Moreover, there are lots of schemes which are universally
catenary, see Morphisms, Lemma 18.4.

Let (S, δ) be as in Situation 7.1. Any scheme X locally of finite type over S is
locally Noetherian and catenary. In fact, X has a canonical dimension function

δ = δX/S : X −→ Z

associated to (f : X → S, δ) given by the rule δX/S(x) = δ(f(x))+trdegκ(f(x))κ(x).
See Morphisms, Lemma 31.2. Moreover, if h : X → Y is a morphism of schemes
locally of finite type over S, and x ∈ X, y = h(x), then obviously δX/S(x) =
δY/S(y) + trdegκ(y)κ(x). We will freely use this function and its properties in the
following.

Here are the basic examples of setups as above. In fact, the main interest lies in
the case where the base is the spectrum of a field, or the case where the base is the
spectrum of a Dedekind ring (e.g. Z, or a discrete valuation ring).

Example 7.2. Here S = Spec(k) and k is a field. We set δ(pt) = 0 where pt
indicates the unique point of S. The pair (S, δ) is an example of a situation as in
Situation 7.1 by Morphisms, Lemma 18.4.

Example 7.3. Here S = Spec(A), where A is a Noetherian domain of dimension
1. For example we could consider A = Z. We set δ(p) = 0 if p is a maximal ideal
and δ(p) = 1 if p = (0) corresponds to the generic point. This is an example of
Situation 7.1 by Morphisms, Lemma 18.4.

In good cases δ corresponds to the dimension function.
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Lemma 7.4. Let (S, δ) be as in Situation 7.1. Assume in addition S is a Jacobson
scheme, and δ(s) = 0 for every closed point s of S. Let X be locally of finite type
over S. Let Z ⊂ X be an integral closed subscheme and let ξ ∈ Z be its generic
point. The following integers are the same:

(1) δX/S(ξ),
(2) dim(Z), and
(3) dim(OZ,z) where z is a closed point of Z.

Proof. Let X → S, ξ ∈ Z ⊂ X be as in the lemma. Since X is locally of finite
type over S we see that X is Jacobson, see Morphisms, Lemma 17.9. Hence closed
points of X are dense in every closed subset of Z and map to closed points of S.
Hence given any chain of irreducible closed subsets of Z we can end it with a closed
point of Z. It follows that dim(Z) = supz(dim(OZ,z) (see Properties, Lemma 11.4)
where z ∈ Z runs over the closed points of Z. Note that dim(OZ,z) = δ(ξ)− δ(z))
by the properties of a dimension function. For each closed z ∈ Z the field extension
κ(z) ⊃ κ(f(z)) is finite, see Morphisms, Lemma 17.8. Hence δX/S(z) = δ(f(z)) = 0
for z ∈ Z closed. It follows that all three integers are equal. �

In the situation of the lemma above the value of δ at the generic point of a closed
irreducible subset is the dimension of the irreducible closed subset. However, in
general we cannot expect the equality to hold. For example if S = Spec(C[[t]])
and X = Spec(C((t))) then we would get δ(x) = 1 for the unique point of X,
but dim(X) = 0. Still we want to think of δX/S as giving the dimension of the
irreducible closed subschemes. Thus we introduce the following terminology.

Definition 7.5. Let (S, δ) as in Situation 7.1. For any scheme X locally of finite
type over S and any irreducible closed subset Z ⊂ X we define

dimδ(Z) = δ(ξ)

where ξ ∈ Z is the generic point of Z. We will call this the δ-dimension of Z.
If Z is a closed subscheme of X, then we define dimδ(Z) as the supremum of the
δ-dimensions of its irreducible components.

8. Cycles

Since we are not assuming our schemes are quasi-compact we have to be a little
careful when defining cycles. We have to allow infinite sums because a rational
function may have infinitely many poles for example. In any case, if X is quasi-
compact then a cycle is a finite sum as usual.

Definition 8.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let k ∈ Z.

(1) A collection of closed subschemes {Zi}i∈I of X is said to be locally finite if
for every quasi-compact open U ⊂ X the set

#{i ∈ I | Zi ∩ U 6= ∅}
is finite.

(2) A cycle on X is a formal sum

α =
∑

nZ [Z]

where the sum is over integral closed subschemes Z ⊂ X, each nZ ∈ Z, and
the collection {Z;nZ 6= 0} is locally finite.
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(3) A k-cycle, on X is a cycle

α =
∑

nZ [Z]

where nZ 6= 0⇒ dimδ(Z) = k.
(4) The abelian group of all k-cycles on X is denoted Zk(X).

In other words, a k-cycle on X is a locally finite formal Z-linear combination of
integral closed subschemes of δ-dimension k. Addition of k-cycles α =

∑
nZ [Z]

and β =
∑
mZ [Z] is given by

α+ β =
∑

(nZ +mZ)[Z],

i.e., by adding the coefficients.

9. Cycle associated to a closed subscheme

Lemma 9.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme.

(1) The collection of irreducible components of Z is locally finite.
(2) Let Z ′ ⊂ Z be an irreducible component and let ξ ∈ Z ′ be its generic point.

Then

lengthOX,ξOZ,ξ <∞
(3) If dimδ(Z) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point of an

irreducible component of Z.

Proof. Let U ⊂ X be a quasi-compact open subscheme. Then U is a Noether-
ian scheme, and hence has a Noetherian underlying topological space (Properties,
Lemma 5.5). Hence every subspace is Noetherian and has finitely many irreducible
components (see Topology, Lemma 8.2). This proves (1).

Let Z ′ ⊂ Z, ξ ∈ Z ′ be as in (2). Then dim(OZ,ξ) = 0 (for example by Properties,
Lemma 11.4). Hence OZ,ξ is Noetherian local ring of dimension zero, and hence
has finite length over itself (see Algebra, Proposition 59.6). Hence, it also has finite
length over OX,ξ, see Algebra, Lemma 50.12.

Assume ξ ∈ Z and δ(ξ) = k. Consider the closure Z ′ = {ξ}. It is an irreducible
closed subscheme with dimδ(Z

′) = k by definition. Since dimδ(Z) = k it must be
an irreducible component of Z. Hence we see (3) holds. �

Definition 9.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let Z ⊂ X be a closed subscheme.

(1) For any irreducible component Z ′ ⊂ Z with generic point ξ the integer
mZ′,Z = lengthOX,ξOZ,ξ (Lemma 9.1) is called the multiplicity of Z ′ in Z.

(2) Assume dimδ(Z) ≤ k. The k-cycle associated to Z is

[Z]k =
∑

mZ′,Z [Z ′]

where the sum is over the irreducible components of Z of δ-dimension k.
(This is a k-cycle by Lemma 9.1.)

It is important to note that we only define [Z]k if the δ-dimension of Z does not
exceed k. In other words, by convention, if we write [Z]k then this implies that
dimδ(Z) ≤ k.
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10. Cycle associated to a coherent sheaf

Lemma 10.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let F be a coherent OX-module.

(1) The collection of irreducible components of the support of F is locally finite.
(2) Let Z ′ ⊂ Supp(F) be an irreducible component and let ξ ∈ Z ′ be its generic

point. Then

lengthOX,ξFξ <∞

(3) If dimδ(Supp(F)) ≤ k and ξ ∈ Z with δ(ξ) = k, then ξ is a generic point
of an irreducible component of Supp(F).

Proof. By Cohomology of Schemes, Lemma 9.7 the support Z of F is a closed
subset of X. We may think of Z as a reduced closed subscheme of X (Schemes,
Lemma 12.4). Hence (1) and (3) follow immediately by applying Lemma 9.1 to
Z ⊂ X.

Let ξ ∈ Z ′ be as in (2). In this case for any specialization ξ′  ξ in X we have
Fξ′ = 0. Recall that the non-maximal primes of OX,ξ correspond to the points
of X specializing to ξ (Schemes, Lemma 13.2). Hence Fξ is a finite OX,ξ-module
whose support is {mξ}. Hence it has finite length by Algebra, Lemma 61.3. �

Definition 10.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let F be a coherent OX -module.

(1) For any irreducible component Z ′ ⊂ Supp(F) with generic point ξ the
integer mZ′,F = lengthOX,ξFξ (Lemma 10.1) is called the multiplicity of Z ′

in F .
(2) Assume dimδ(Supp(F)) ≤ k. The k-cycle associated to F is

[F ]k =
∑

mZ′,F [Z ′]

where the sum is over the irreducible components of Supp(F) of δ-dimension
k. (This is a k-cycle by Lemma 10.1.)

It is important to note that we only define [F ]k if F is coherent and the δ-dimension
of Supp(F) does not exceed k. In other words, by convention, if we write [F ]k then
this implies that F is coherent on X and dimδ(Supp(F)) ≤ k.

Lemma 10.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Z ⊂ X be a closed subscheme. If dimδ(Z) ≤ k, then [Z]k = [OZ ]k.

Proof. This is because in this case the multiplicities mZ′,Z and mZ′,OZ agree by
definition. �

Lemma 10.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let 0 → F → G → H → 0 be a short exact sequence of coherent sheaves on
X. Assume that the δ-dimension of the supports of F , G, and H is ≤ k. Then
[G]k = [F ]k + [H]k.

Proof. Follows immediately from additivity of lengths, see Algebra, Lemma 50.3.
�
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11. Preparation for proper pushforward

Lemma 11.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume X, Y integral and dimδ(X) =
dimδ(Y ). Then either f(X) is contained in a proper closed subscheme of Y , or f
is dominant and the extension of function fields R(Y ) ⊂ R(X) is finite.

Proof. The closure f(X) ⊂ Y is irreducible as X is irreducible (Topology, Lemmas

7.2 and 7.3). If f(X) 6= Y , then we are done. If f(X) = Y , then f is dominant and
by Morphisms, Lemma 8.5 we see that the generic point ηY of Y is in the image of
f . Of course this implies that f(ηX) = ηY , where ηX ∈ X is the generic point of X.
Since δ(ηX) = δ(ηY ) we see that R(Y ) = κ(ηY ) ⊂ κ(ηX) = R(X) is an extension of
transcendence degree 0. Hence R(Y ) ⊂ R(X) is a finite extension by Morphisms,
Lemma 47.4 (which applies by Morphisms, Lemma 16.8). �

Lemma 11.2. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is quasi-compact, and {Zi}i∈I is

a locally finite collection of closed subsets of X. Then {f(Zi)}i∈I is a locally finite
collection of closed subsets of Y .

Proof. Let V ⊂ Y be a quasi-compact open subset. Since f is quasi-compact the
open f−1(V ) is quasi-compact. Hence the set {i ∈ I | Zi ∩ f−1(V ) 6= ∅} is finite by
assumption (Definition 8.1). Since this is the same as the set

{i ∈ I | f(Zi) ∩ V 6= ∅} = {i ∈ I | f(Zi) ∩ V 6= ∅}
the lemma is proved. �

12. Proper pushforward

Definition 12.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = k. We define

f∗[Z] =

{
0 if dimδ(f(Z)) < k,

deg(Z/f(Z))[f(Z)] if dimδ(f(Z)) = k.

Here we think of f(Z) ⊂ Y as an integral closed subscheme. The degree of
Z over f(Z) is finite if dimδ(f(Z)) = dimδ(Z) by Lemma 11.1.

(2) Let α =
∑
nZ [Z] be a k-cycle on X. The pushforward of α as the sum

f∗α =
∑

nZf∗[Z]

where each f∗[Z] is defined as above. The sum is locally finite by Lemma
11.2 above.

By definition the proper pushforward of cycles

f∗ : Zk(X) −→ Zk(Y )

is a homomorphism of abelian groups. It turns X 7→ Zk(X) into a covariant functor
on the category of schemes locally of finite type over S with morphisms equal to
proper morphisms.

Lemma 12.2. Let (S, δ) be as in Situation 7.1. Let X, Y , and Z be locally of
finite type over S. Let f : X → Y and g : Y → Z be proper morphisms. Then
g∗ ◦ f∗ = (g ◦ f)∗ as maps Zk(X)→ Zk(Z).
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Proof. Let W ⊂ X be an integral closed subscheme of dimension k. Consider
W ′ = f(Z) ⊂ Y and W ′′ = g(f(Z)) ⊂ Z. Since f , g are proper we see that
W ′ (resp. W ′′) is an integral closed subscheme of Y (resp. Z). We have to show
that g∗(f∗[W ]) = (f ◦ g)∗[W ]. If dimδ(W

′′) < k, then both sides are zero. If
dimδ(W

′′) = k, then we see the induced morphisms

W −→W ′ −→W ′′

both satisfy the hypotheses of Lemma 11.1. Hence

g∗(f∗[W ]) = deg(W/W ′) deg(W ′/W ′′)[W ′′], (f ◦ g)∗[W ] = deg(W/W ′′)[W ′′].

Then we can apply Morphisms, Lemma 47.6 to conclude. �

Lemma 12.3. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is proper.

(1) Let Z ⊂ X be a closed subscheme with dimδ(Z) ≤ k. Then

f∗[Z]k = [f∗OZ ]k.

(2) Let F be a coherent sheaf on X such that dimδ(Supp(F)) ≤ k. Then

f∗[F ]k = [f∗F ]k.

Note that the statement makes sense since f∗F and f∗OZ are coherent OY -modules
by Cohomology of Schemes, Proposition 17.2.

Proof. Part (1) follows from (2) and Lemma 10.3. Let F be a coherent sheaf on
X. Assume that dimδ(Supp(F)) ≤ k. By Cohomology of Schemes, Lemma 9.7
there exists a closed subscheme i : Z → X and a coherent OZ-module G such that
i∗G ∼= F and such that the support of F is Z. Let Z ′ ⊂ Y be the scheme theoretic
image of f |Z : Z → Y .Consider the commutative diagram of schemes

Z
i
//

f |Z
��

X

f

��
Z ′

i′ // Y

We have f∗F = f∗i∗G = i′∗(f |Z)∗G by going around the diagram in two ways.
Suppose we know the result holds for closed immersions and for f |Z . Then we see
that

f∗[F ]k = f∗i∗[G]k = (i′)∗(f |Z)∗[G]k = (i′)∗[(f |Z)∗G]k = [(i′)∗(f |Z)∗G]k = [f∗F ]k

as desired. The case of a closed immersion is straightforward (omitted). Note that
f |Z : Z → Z ′ is a dominant morphism (see Morphisms, Lemma 6.3). Thus we have
reduced to the case where dimδ(X) ≤ k and f : X → Y is proper and dominant.

Assume dimδ(X) ≤ k and f : X → Y is proper and dominant. Since f is dominant,
for every irreducible component Z ⊂ Y with generic point η there exists a point
ξ ∈ X such that f(ξ) = η. Hence δ(η) ≤ δ(ξ) ≤ k. Thus we see that in the
expressions

f∗[F ]k =
∑

nZ [Z], and [f∗F ]k =
∑

mZ [Z].

whenever nZ 6= 0, or mZ 6= 0 the integral closed subscheme Z is actually an irre-
ducible component of Y of δ-dimension k. Pick such an integral closed subscheme
Z ⊂ Y and denote η its generic point. Note that for any ξ ∈ X with f(ξ) = η we
have δ(ξ) ≥ k and hence ξ is a generic point of an irreducible component of X of

http://localhost:8080/tag/02R6


34 CHOW HOMOLOGY AND CHERN CLASSES

δ-dimension k as well (see Lemma 9.1). Since f is quasi-compact and X is locally
Noetherian, there can be only finitely many of these and hence f−1({η}) is finite.
By Morphisms, Lemma 47.1 there exists an open neighbourhood η ∈ V ⊂ Y such
that f−1(V )→ V is finite. Replacing Y by V and X by f−1(V ) we reduce to the
case where Y is affine, and f is finite.

Write Y = Spec(R) and X = Spec(A) (possible as a finite morphism is affine).

Then R and A are Noetherian rings and A is finite over R. Moreover F = M̃ for
some finite A-module M . Note that f∗F corresponds to M viewed as an R-module.
Let p ⊂ R be the minimal prime corresponding to η ∈ Y . The coefficient of Z in
[f∗F ]k is clearly lengthRp

(Mp). Let qi, i = 1, . . . , t be the primes of A lying over p.

Then Ap =
∏
Aqi since Ap is an Artinian ring being finite over the dimension zero

local Noetherian ring Rp. Clearly the coefficient of Z in f∗[F ]k is∑
i=1,...,t

[κ(qi) : κ(p)]lengthAqi
(Mqi)

Hence the desired equality follows from Algebra, Lemma 50.12. �

13. Preparation for flat pullback

Recall that a morphism f : X → Y which is locally of finite type is said to have
relative dimension r if every nonempty fibre is equidimensional of dimension r. See
Morphisms, Definition 30.1.

Lemma 13.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension r.
For any closed subset Z ⊂ Y we have

dimδ(f
−1(Z)) = dimδ(Z) + r.

If Z is irreducible and Z ′ ⊂ f−1(Z) is an irreducible component, then Z ′ dominates
Z and dimδ(Z

′) = dimδ(Z) + r.

Proof. It suffices to prove the final statement. We may replace Y by the integral
closed subscheme Z and X by the scheme theoretic inverse image f−1(Z) = Z×Y X.
Hence we may assume Z = Y is integral and f is a flat morphism of relative
dimension r. Since Y is locally Noetherian the morphism f which is locally of finite
type, is actually locally of finite presentation. Hence Morphisms, Lemma 26.9
applies and we see that f is open. Let ξ ∈ X be a generic point of an irreducible
component of X. By the openness of f we see that f(ξ) is the generic point η of
Z = Y . Note that dimξ(Xη) = r by assumption that f has relative dimension r.
On the other hand, since ξ is a generic point of X we see that OX,ξ = OXη,ξ has
only one prime ideal and hence has dimension 0. Thus by Morphisms, Lemma 29.1
we conclude that the transcendence degree of κ(ξ) over κ(η) is r. In other words,
δ(ξ) = δ(η) + r as desired. �

Here is the lemma that we will use to prove that the flat pullback of a locally finite
collection of closed subschemes is locally finite.

Lemma 13.2. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume {Zi}i∈I is a locally finite
collection of closed subsets of Y . Then {f−1(Zi)}i∈I is a locally finite collection of
closed subsets of Y .
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Proof. Let U ⊂ X be a quasi-compact open subset. Since the image f(U) ⊂ Y
is a quasi-compact subset there exists a quasi-compact open V ⊂ Y such that
f(U) ⊂ V . Note that

{i ∈ I | f−1(Zi) ∩ U 6= ∅} ⊂ {i ∈ I | Zi ∩ V 6= ∅}.
Since the right hand side is finite by assumption we win. �

14. Flat pullback

In the following we use f−1(Z) to denote the scheme theoretic inverse image of a
closed subscheme Z ⊂ Y for a morphism of schemes f : X → Y . We recall that
the scheme theoretic inverse image is the fibre product

f−1(Z) //

��

X

��
Z // Y

and it is also the closed subscheme of X cut out by the quasi-coherent sheaf of
ideals f−1(I)OX , if I ⊂ OY is the quasi-coherent sheaf of ideals corresponding to
Z in Y . (This is discussed in Schemes, Section 4 and Lemma 17.6 and Definition
17.7.)

Definition 14.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite
type over S. Let f : X → Y be a morphism. Assume f is flat of relative dimension
r.

(1) Let Z ⊂ Y be an integral closed subscheme of δ-dimension k. We define
f∗[Z] to be the (k + r)-cycle on X to the scheme theoretic inverse image

f∗[Z] = [f−1(Z)]k+r.

This makes sense since dimδ(f
−1(Z)) = k + r by Lemma 13.1.

(2) Let α =
∑
ni[Zi] be a k-cycle on Y . The flat pullback of α by f is the sum

f∗α =
∑

nif
∗[Zi]

where each f∗[Zi] is defined as above. The sum is locally finite by Lemma
13.2.

(3) We denote f∗ : Zk(Y )→ Zk+r(X) the map of abelian groups so obtained.

An open immersion is flat. This is an important though trivial special case of a flat
morphism. If U ⊂ X is open then sometimes the pullback by j : U → X of a cycle
is called the restriction of the cycle to U . Note that in this case the maps

j∗ : Zk(X) −→ Zk(U)

are all surjective. The reason is that given any integral closed subscheme Z ′ ⊂ U , we
can take the closure of Z of Z ′ in X and think of it as a reduced closed subscheme of
X (see Schemes, Lemma 12.4). And clearly Z∩U = Z ′, in other words j∗[Z] = [Z ′]
whence the surjectivity. In fact a little bit more is true.

Lemma 14.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let U ⊂ X be an open subscheme, and denote i : Y = X \ U → X as a reduced
closed subscheme of X. For every k ∈ Z the sequence

Zk(Y )
i∗ // Zk(X)

j∗ // Zk(U) // 0
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is an exact complex of abelian groups.

Proof. By the description above the basis elements [Z] of the free abelian group
Zk(X) map either to (distinct) basis elements [Z ∩ U ] or to zero if Z ⊂ Y . Hence
the lemma is clear. �

Lemma 14.3. Let (S, δ) be as in Situation 7.1. Let X,Y, Z be locally of finite type
over S. Let f : X → Y and g : Y → Z be flat morphisms of relative dimensions r
and s. Then g ◦ f is flat of relative dimension r + s and

f∗ ◦ g∗ = (g ◦ f)∗

as maps Zk(Z)→ Zk+r+s(X).

Proof. The composition is flat of relative dimension r + s by Morphisms, Lemma
30.3. Suppose that

(1) W ⊂ Z is a closed integral subscheme of δ-dimension k,
(2) W ′ ⊂ Y is a closed integral subscheme of δ-dimension k + s with W ′ ⊂

g−1(W ), and
(3) W ′′ ⊂ Y is a closed integral subscheme of δ-dimension k + s + r with

W ′′ ⊂ f−1(W ′).

We have to show that the coefficient n of [W ′′] in (g ◦ f)∗[W ] agrees with the
coefficient m of [W ′′] in f∗(g∗[W ]). That it suffices to check the lemma in these
cases follows from Lemma 13.1. Let ξ′′ ∈ W ′′, ξ′ ∈ W ′ and ξ ∈ W be the generic
points. Consider the local rings A = OZ,ξ, B = OY,ξ′ and C = OX,ξ′′ . Then we
have local flat ring maps A→ B, B → C and moreover

n = lengthC(C/mAC), and m = lengthC(C/mBC)lengthB(B/mAB)

Hence the equality follows from Algebra, Lemma 50.14. �

Lemma 14.4. Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r.

(1) Let Z ⊂ Y be a closed subscheme with dimδ(Z) ≤ k. Then we have
dimδ(f

−1(Z)) ≤ k + r and [f−1(Z)]k+r = f∗[Z]k in Zk+r(X).
(2) Let F be a coherent sheaf on Y with dimδ(Supp(F)) ≤ k. Then we have

dimδ(Supp(f∗F)) ≤ k + r and

f∗[F ]k = [f∗F ]k+r

in Zk+r(X).

Proof. Part (1) follows from part (2) by Lemma 10.3 and the fact that f∗OZ =
Of−1(Z).

Proof of (2). As X, Y are locally Noetherian we may apply Cohomology of Schemes,
Lemma 9.1 to see that F is of finite type, hence f∗F is of finite type (Modules,
Lemma 9.2), hence f∗F is coherent (Cohomology of Schemes, Lemma 9.1 again).
Thus the lemma makes sense. Let W ⊂ Y be an integral closed subscheme of
δ-dimension k, and let W ′ ⊂ X be an integral closed subscheme of dimension k+ r
mapping into W under f . We have to show that the coefficient n of [W ] in f∗[F ]k
agrees with the coefficient m of [W ] in [f∗F ]k+r. Let ξ ∈ W and ξ′ ∈ W ′ be the
generic points. Let A = OY,ξ, B = OX,ξ′ and set M = Fξ as an A-module. (Note
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that M has finite length by our dimension assumptions, but we actually do not
need to verify this. See Lemma 10.1.) We have f∗Fξ′ = B⊗AM . Thus we see that

n = lengthB(B ⊗AM) and m = lengthA(M)lengthB(B/mAB)

Thus the equality follows from Algebra, Lemma 50.13. �

15. Push and pull

In this section we verify that proper pushforward and flat pullback are compat-
ible when this makes sense. By the work we did above this is a consequence of
cohomology and base change.

Lemma 15.1. Let (S, δ) be as in Situation 7.1. Let

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

be a fibre product diagram of schemes locally of finite type over S. Assume f : X →
Y proper and g : Y ′ → Y flat of relative dimension r. Then also f ′ is proper and
g′ is flat of relative dimension r. For any k-cycle α on X we have

g∗f∗α = f ′∗(g
′)∗α

in Zk+r(Y
′).

Proof. The assertion that f ′ is proper follows from Morphisms, Lemma 42.5. The
assertion that g′ is flat of relative dimension r follows from Morphisms, Lemmas
30.2 and 26.7. It suffices to prove the equality of cycles when α = [W ] for some
integral closed subscheme W ⊂ X of δ-dimension k. Note that in this case we have
α = [OW ]k, see Lemma 10.3. By Lemmas 12.3 and 14.4 it therefore suffices to show
that f ′∗(g

′)∗OW is isomorphic to g∗f∗OW . This follows from cohomology and base
change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 15.2. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a finite locally free morphism of degree d (see Morphisms,
Definition 46.1). Then f is both proper and flat of relative dimension 0, and

f∗f
∗α = dα

for every α ∈ Zk(Y ).

Proof. A finite locally free morphism is flat and finite by Morphisms, Lemma 46.2,
and a finite morphism is proper by Morphisms, Lemma 44.10. We omit showing
that a finite morphism has relative dimension 0. Thus the formula makes sense. To
prove it, let Z ⊂ Y be an integral closed subscheme of δ-dimension k. It suffices
to prove the formula for α = [Z]. Since the base change of a finite locally free
morphism is finite locally free (Morphisms, Lemma 46.4) we see that f∗f

∗OZ is a
finite locally free sheaf of rank d on Z. Hence

f∗f
∗[Z] = f∗f

∗[OZ ]k = [f∗f
∗OZ ]k = d[Z]

where we have used Lemmas 14.4 and 12.3. �
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16. Preparation for principal divisors

Recall that if Z is an irreducible closed subset of a scheme X, then the codimension
of Z in X is equal to the dimension of the local ring OX,ξ, where ξ ∈ Z is the generic
point. See Properties, Lemma 11.4.

Definition 16.1. Let X be a locally Noetherian scheme. Assume X is integral.
Let f ∈ R(X)∗. For every integral closed subscheme Z ⊂ X of codimension 1 we
define the order of vanishing of f along Z as the integer

ordZ(f) = ordOX,ξ(f)

where the right hand side is the notion of Algebra, Definition 117.2 and ξ is the
generic point of Z.

Of course it can happen that ordZ(f) < 0. In this case we say that f has a pole
along Z and that −ordZ(f) > 0 is the order of pole of f along Z. Note that for
f, g ∈ R(X)∗ we have

ordZ(fg) = ordZ(f) + ordZ(g).

Lemma 16.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral. If Z ⊂ X is an integral closed subscheme of codimension
1, then dimδ(Z) = dimδ(X)− 1.

Proof. This is more or less the defining property of a dimension function. �

Lemma 16.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral. Let f ∈ R(X)∗. Then the set

{Z ⊂ X | Z is integral, closed of codimension 1 and ordZ(f) 6= 0}
is locally finite in X.

Proof. This is true simply because there exists a nonempty open subscheme U ⊂ X
such that f corresponds to a section of Γ(U,O∗X), and hence the codimension 1
irreducibles which can occur in the set of the lemma are all irreducible components
of X \ U . Hence Lemma 9.1 gives the desired result. �

Lemma 16.4. Let f : X → Y be a morphism of schemes. Let ξ ∈ Y be a point.
Assume that

(1) X, Y are integral,
(2) X is locally Noetherian
(3) f is proper, dominant and R(X) ⊂ R(Y ) is finite, and
(4) dim(OY,ξ) = 1.

Then there exists an open neighbourhood V ⊂ Y of ξ such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. This lemma is a special case of Varieties, Lemma 24.2. Here is a direct
argument in this case. By Cohomology of Schemes, Lemma 19.2 it suffices to prove
that f−1({ξ}) is finite. We replace Y by an affine open, say Y = Spec(R). Note that
R is Noetherian, as X is assumed locally Noetherian. Since f is proper it is quasi-
compact. Hence we can find a finite affine open covering X = U1 ∪ . . . ∪ Un with
each Ui = Spec(Ai). Note that R → Ai is a finite type injective homomorphism
of domains with f.f.(R) ⊂ f.f.(Ai) finite. Thus the lemma follows from Algebra,
Lemma 109.2. �
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17. Principal divisors

The following definition is the key to everything that follows.

Definition 17.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral with dimδ(X) = n. Let f ∈ R(X)∗. The principal
divisor associated to f is the (n− 1)-cycle

div(f) = divX(f) =
∑

ordZ(f)[Z]

where the sum is over integral closed subschemes of codimension 1 and ordZ(f) is
as in Definition 16.1. This makes sense by Lemmas 16.2 and 16.3.

Lemma 17.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral with dimδ(X) = n. Let f, g ∈ R(X)∗. Then

div(fg) = div(f) + div(g)

in Zn−1(X).

Proof. This is clear from the additivity of the ord functions. �

An important role in the discussion of principal divisors is played by the “universal”
principal divisor [0]− [∞] on P1

S . To make this more precise, let us denote

D0, D∞ ⊂ P1
S = Proj

S
(OS [X0, X1])

the closed subscheme cut out by the sectionX1, resp.X0 ofO(1). These are effective
Cartier divisors, see Divisors, Definition 9.1 and Lemma 9.20. The following lemma
says that loosely speaking we have “div(X1/X0) = [D0]− [D1]” and that this is the
universal principal divisor.

Lemma 17.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let f ∈ R(X)∗. Let U ⊂ X
be a nonempty open such that f corresponds to a section f ∈ Γ(U,O∗X). Let Y ⊂
X ×S P1

S be the closure of the graph of f : U → P1
S. Then

(1) the projection morphism p : Y → X is proper,
(2) p|p−1(U) : p−1(U)→ U is an isomorphism,

(3) the pullbacks q−1D0 and q−1D∞ via the morphism q : Y → P1
S are effective

Cartier divisors on Y ,
(4) we have

divY (f) = [q−1D0]n−1 − [q−1D∞]n−1

(5) we have

divX(f) = p∗divY (f)

(6) if we view Y0 = q−1D0, and Y∞ = q−1D∞ as closed subschemes of X via
the morphism p then we have

divX(f) = [Y0]n−1 − [Y∞]n−1

Proof. Since X is integral, we see that U is integral. Hence Y is integral, and
(1, f)(U) ⊂ Y is an open dense subscheme. Also, note that the closed subscheme
Y ⊂ X ×S P1

S does not depend on the choice of the open U , since after all it is the
closure of the one point set {η′} = {(1, f)(η)} where η ∈ X is the generic point.
Having said this let us prove the assertions of the lemma.
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For (1) note that p is the composition of the closed immersion Y → X×SP1
S = P1

X

with the proper morphism P1
X → X. As a composition of proper morphisms is

proper (Morphisms, Lemma 42.4) we conclude.

It is clear that Y ∩ U ×S P1
S = (1, f)(U). Thus (2) follows. It also follows that

dimδ(Y ) = n.

Note that q(η′) = f(η) is not contained inD0 orD∞ since f ∈ R(X)∗. Hence q−1D0

and q−1D∞ are effective Cartier divisors on Y by Divisors, Lemma 9.12. Thus we
see (3). It also follows that dimδ(q

−1D0) = n− 1 and dimδ(q
−1D∞) = n− 1.

Consider the effective Cartier divisor q−1D0. At every point ξ ∈ q−1D0 we have
f ∈ OY,ξ and the local equation for q−1D0 is given by f . In particular, if δ(ξ) = n−1
so ξ is the generic point of a integral closed subscheme Z of δ-dimension n−1, then
we see that the coefficient of [Z] in divY (f) is

ordZ(f) = lengthOY,ξ(OY,ξ/fOY,ξ) = lengthOY,ξ(Oq−1D0,ξ)

which is the coefficient of [Z] in [q−1D0]n−1. A similar argument using the rational
function 1/f shows that −[q−1D∞] agrees with the terms with negative coefficients
in the expression for divY (f). Hence (4) follows.

Note that D0 → S is an isomorphism. Hence we see that X ×S D0 → X is an
isomorphism as well. Clearly we have q−1D0 = Y ∩ X ×S D0 (scheme theoretic
intersection) inside X ×S P1

S . Hence it is really the case that Y0 → X is a closed
immersion. By the same token we see that

p∗Oq−1D0
= OY0

and hence by Lemma 12.3 we have p∗[q
−1D0]n−1 = [Y0]n−1. Of course the same is

true for D∞ and Y∞. Hence to finish the proof of the lemma it suffices to prove
the last assertion.

Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. We want to
show that the coefficient of [Z] in div(f) is the same as the coefficient of [Z] in
[Y0]n−1− [Y∞]n−1. We may apply Lemma 16.4 to the morphism p : Y → X and the
generic point ξ ∈ Z. Hence we may replace X by an affine open neighbourhood of
ξ and assume that p : Y → X is finite. Write X = Spec(R) and Y = Spec(A) with
p induced by a finite homomorphism R→ A of Noetherian domains which induces
an isomorphism f.f.(R) ∼= f.f.(A) of fraction fields. Now we have f ∈ f.f.(R) and
a prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z] in divX(f) is ordRp

(f).
The coefficient of [Z] in p∗divY (f) is∑

q lying over p
[κ(q) : κ(p)]ordAq

(f)

The desired equality therefore follows from Algebra, Lemma 117.8. �

This lemma will be superseded by the more general Lemma 20.1.

Lemma 17.4. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dimδ(Y ). Let f : X → Y be a flat
morphism of relative dimension r. Let g ∈ R(Y )∗. Then

f∗(divY (g)) = divX(g)

in Zn+r−1(X).
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Proof. Note that since f is flat it is dominant so that f induces an embedding
R(Y ) ⊂ R(X), and hence we may think of g as an element of R(X)∗. Let Z ⊂ X
be an integral closed subscheme of δ-dimension n+ r − 1. Let ξ ∈ Z be its generic
point. If dimδ(f(Z)) > n− 1, then we see that the coefficient of [Z] in the left and

right hand side of the equation is zero. Hence we may assume that Z ′ = f(Z) is
an integral closed subscheme of Y of δ-dimension n − 1. Let ξ′ = f(ξ). It is the
generic point of Z ′. Set A = OY,ξ′ , B = OX,ξ. The ring map A→ B is a flat local
homomorphism of Noetherian local domains of dimension 1. We have g ∈ f.f.(A).
What we have to show is that

ordA(g)lengthB(B/mAB) = ordB(g).

This follows from Algebra, Lemma 50.13 (details omitted). �

18. Two fun results on principal divisors

The first lemma implies that the pushforward of a principal divisor along a generi-
cally finite morphism is a principal divisor.

Lemma 18.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dimδ(X) = dimδ(Y ). Let p : X → Y
be a dominant proper morphism. Let f ∈ R(X)∗. Set

g = NmR(X)/R(Y )(f).

Then we have p∗div(f) = div(g).

Proof. Let Z ⊂ Y be an integral closed subscheme of δ-dimension n − 1. We
want to show that the coefficient of [Z] in p∗div(f) and div(g) are equal. We may
apply Lemma 16.4 to the morphism p : X → X and the generic point ξ ∈ Z.
Hence we may replace X by an affine open neighbourhood of ξ and assume that
p : Y → X is finite. Write X = Spec(R) and Y = Spec(A) with p induced by
a finite homomorphism R → A of Noetherian domains which induces an finite
field extension f.f.(R) ⊂ f.f.(A) of fraction fields. Now we have f ∈ f.f.(A),
g = Nm(f) ∈ f.f.(R), and a prime p ⊂ R with dim(Rp) = 1. The coefficient of [Z]
in divY (g) is ordRp

(g). The coefficient of [Z] in p∗divX(f) is∑
q lying over p

[κ(q) : κ(p)]ordAq
(f)

The desired equality therefore follows from Algebra, Lemma 117.8. �

The following lemma says that the degree of a principal divisor on a proper curve
is zero.

Lemma 18.2. Let K be any field. Let X be a 1-dimensional integral scheme
endowed with a proper morphism c : X → Spec(K). Let f ∈ K(X)∗ be an invertible
rational function. Then∑

x∈X closed
[κ(x) : K]ordOX,x(f) = 0

where ord is as in Algebra, Definition 117.2. In other words, c∗div(f) = 0.
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Proof. Consider the diagram

Y
p

//

q

��

X

c

��
P1
K

c′ // Spec(K)

that we constructed in Lemma 17.3 starting with X and the rational function f
over S = Spec(K). We will use all the results of this lemma without further
mention. We have to show that c∗divX(f) = c∗p∗divY (f) = 0. This is the same
as proving that c′∗q∗divY (f) = 0. If q(Y ) is a closed point of P1

K then we see
that divX(f) = 0 and the lemma holds. Thus we may assume that q is dominant.
Since divY (f) = [q−1D0]0 − [q−1D∞]0 we see (by definition of flat pullback) that
divY (f) = q∗([D0]0 − [D∞]0). Suppose we can show that q : Y → P1

K is finite
locally free of degree d (see Morphisms, Definition 46.1). Then byy Lemma 15.2 we
get q∗divY (f) = d([D0]0 − [D∞]0). Since clearly c′∗[D0]0 = c′∗[D∞]0 we win.

It remains to show that q is finite locally free. (It will automatically have some given
degree as P1

K is connected.) Since dim(P1
K) = 1 we see that q is finite for example

by Lemma 16.4. All local rings of P1
K at closed points are regular local rings of

dimension 1 (in other words discrete valuation rings), since they are localizations
of K[T ] (see Algebra, Lemma 110.1). Hence for y ∈ Y closed the local ring OY,y
will be flat over OP1

K ,q(y)
as soon as it is torsion free. This is obviously the case as

OY,y is a domain and q is dominant. Thus q is flat. Hence q is finite locally free by
Morphisms, Lemma 46.2. �

19. Rational equivalence

In this section we define rational equivalence on k-cycles. We will allow locally finite
sums of images of principal divisors (under closed immersions). This leads to some
pretty strange phenomena, see Example 19.3. However, if we do not allow these
then we do not know how to prove that capping with chern classes of line bundles
factors through rational equivalence.

Definition 19.1. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let k ∈ Z.

(1) Given any locally finite collection {Wj ⊂ X} of integral closed subschemes
with dimδ(Wj) = k + 1, and any fj ∈ R(Wj)

∗ we may consider∑
(ij)∗div(fj) ∈ Zk(X)

where ij : Wj → X is the inclusion morphism. This makes sense as the
morphism

∐
ij :

∐
Wj → X is proper.

(2) We say that α ∈ Zk(X) is rationally equivalent to zero if α is a cycle of the
form displayed above.

(3) We say α, β ∈ Zk(X) are rationally equivalent and we write α ∼rat β if
α− β is rationally equivalent to zero.

(4) We define

Ak(X) = Zk(X)/ ∼rat
to be the Chow group of k-cycles on X. This is sometimes called the Chow
group of k-cycles module rational equivalence on X.
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There are many other interesting (adequate) equivalence relations. Rational equiv-
alence is the coarsest one of them all. A very simple but important lemma is the
following.

Lemma 19.2. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let U ⊂ X be an open subscheme, and denote i : Y = X \U → X as a
reduced closed subscheme of X. Let k ∈ Z. Suppose α, β ∈ Zk(X). If α|U ∼rat β|U
then there exist a cycle γ ∈ Zk(Y ) such that

α ∼rat β + i∗γ.

In other words, the sequence

Ak(Y )
i∗ // Ak(X)

j∗ // Ak(U) // 0

is an exact complex of abelian groups.

Proof. Let {Wj}j∈J be a locally finite collection of integral closed subschemes
of δ-dimension k + 1, and let fj ∈ R(Wj)

∗ be elements such that (α − β)|U =∑
(ij)∗div(fj) as in the definition. Set W ′j ⊂ X equal to the closure of Wj . Suppose

that V ⊂ X is a quasi-compact open. Then also V ∩U is quasi-compact open in U
as V is Noetherian. Hence the set {j ∈ J |Wj ∩ V 6= ∅} = {j ∈ J |W ′j ∩ V 6= ∅} is
finite since {Wj} is locally finite. In other words we see that {W ′j} is also locally
finite. Since R(Wj) = R(W ′j) we see that

α− β −
∑

(i′j)∗div(fj)

is a cycle supported on Y and the lemma follows (see Lemma 14.2). �

Example 19.3. Here is a “strange” example. Suppose that S is the spectrum of
a field k with δ as in Example 7.2. Suppose that X = C1 ∪ C2 ∪ . . . is an infinite
union of curves Cj ∼= P1

k glued together in the following way: The point ∞ ∈ Cj is
glued transversally to the point 0 ∈ Cj+1 for j = 1, 2, 3, . . .. Take the point 0 ∈ C1.
This gives a zero cycle [0] ∈ Z0(X). The “strangeness” in this situation is that
actually [0] ∼rat 0! Namely we can choose the rational function fj ∈ R(Cj) to be
the function which has a simple zero at 0 and a simple pole at ∞ and no other
zeros or poles. Then we see that the sum

∑
(ij)∗div(fj) is exactly the 0-cycle [0].

In fact it turns out that A0(X) = 0 in this example. If you find this too bizarre,
then you can just make sure your spaces are always quasi-compact (so X does not
even exist for you).

Remark 19.4. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Suppose we have infinite collections αi, βi ∈ Zk(X), i ∈ I of k-cycles
on X. Suppose that the supports of αi and βi form locally finite collections of
closed subsets of X so that

∑
αi and

∑
βi are defined as cycles. Moreover, assume

that αi ∼rat βi for each i. Then it is not clear that
∑
αi ∼rat

∑
βi. Namely,

the problem is that the rational equivalences may be given by locally finite families
{Wi,j , fi,j ∈ R(Wi,j)

∗}j∈Ji but the union {Wi,j}i∈I,j∈Ji may not be locally finite.

In many cases in practice, one has a locally finite family of closed subsets {Ti}i∈I
such that αi, βi are supported on Ti and such that αi = βi in Ak(Ti), in other words,
the families {Wi,j , fi,j ∈ R(Wi,j)

∗}j∈Ji consist of subschemes Wi,j ⊂ Ti. In this
case it is true that

∑
αi ∼rat

∑
βi on X, simply because the family {Wi,j}i∈I,j∈Ji

is automatically locally finite in this case.
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20. Properties of rational equivalence

Lemma 20.1. Let (S, δ) be as in Situation 7.1. Let X, Y be schemes locally of
finite type over S. Let f : X → Y be a flat morphism of relative dimension r. Let
α ∼rat β be rationally equivalent k-cycles on Y . Then f∗α ∼rat f∗β as (k + r)-
cycles on X.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ Y

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)

∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on Y . Then we have to show that

f∗(
∑

ij,∗div(fj))

is rationally equivalent to zero on X.

Consider the fibre products

i′j : W ′j = Wj ×Y X −→ X.

For each j, consider the collection {W ′j,l}l∈Lj of irreducible components W ′j,l ⊂W ′j
having δ-dimension k + 1. We may write

[W ′j ]k+1 =
∑

l∈Lj
nj,l[W

′
j,l]k+1

for some nj,l > 0. By Lemma 13.1 we see that W ′j,l → Wj is dominant and

hence we can let fj,l ∈ R(W ′j,l)
∗ denote the image of fj under the map of fields

R(Wj)→ R(W ′j,l). We claim that

(1) the collection {W ′j,l}j∈J,l∈Lj is locally finite on X, and

(2) with obvious notation f∗(
∑
ij,∗div(fj)) =

∑
i′j,l,∗div(f

nj,l
j,l ).

Clearly this claim implies the lemma.

To show (1), note that {W ′j} is a locally finite collection of closed subschemes of
X by Lemma 13.2. Hence if U ⊂ X is quasi-compact, then U meets only finitely
many W ′j . By Lemma 9.1 the collection of irreducible components of each Wj is
locally finite as well. Hence we see only finitely many W ′j,l meet U as desired.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k+ r. We have to show
that the coefficient n of [Z] in f∗(

∑
ij,∗div(fj)) is equal to the coefficient m of

[Z] in
∑
i′j,l,∗div(f

nj,l
j,l ). Let Z ′ be the closure of f(Z) which is an integral closed

subscheme of Y . By Lemma 13.1 we have dimδ(Z
′) ≥ k. If dimδ(Z

′) > k, then
the coefficients n and m are both zero, since the generic point of Z will not be
contained in any W ′j or W ′j,l. Hence we may assume that dimδ(Z

′) = k.

We are going to translate the equality of n and m into algebra. Namely, let ξ′ ∈ Z ′
and ξ ∈ Z be the generic points. Set A = OY,ξ′ and B = OX,ξ. Note that A, B
are Noetherian, A→ B is flat, local, and that mAB is an ideal of definition of the
local ring B. There are finitely many j such that Wj passes through ξ′, and these
correspond to prime ideals

p1, . . . , pT ⊂ A
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with the property that dim(A/pt) = 1 for each t = 1, . . . , T . The rational functions
fj correspond to elements ft ∈ κ(pt)

∗. Say pt corresponds to Wj . By construction,
the closed subschemes W ′j,l which meet ξ correspond 1− 1 with minimal primes

ptB ⊂ qt,1, . . . , qt,St ⊂ B

over ptB. The integers nj,l correspond to the integers

nt,s = lengthBqt,s
((B/ptB)Bqt,s

)

The rational functions fj,l correspond to the images ft,s ∈ κ(qt,s)
∗ of the elements

ft ∈ κ(pt)
∗. Putting everything together we see that

n =
∑

ordA/pt(ft)lengthB(B/mAB)

and that

m =
∑

ordB/qt,s(ft,s)lengthBqt,s
((B/ptB)Bqt,s

)

Note that it suffices to prove the equality for each t ∈ {1, . . . , T} separately. Writing
ft = x/y for some nonzero x, y ∈ A/pt coming from x, y ∈ A we see that it suffices
to prove

lengthA/pt(A/(pt, x))lengthB(B/mAB) = lengthB(B/(x, pt)B)

(equality uses Algebra, Lemma 50.13) equals∑
s=1,...,St

ordB/qt,s(B/(x, qt,s))lengthBqt,s
((B/ptB)Bqt,s

)

and similarly for y. Note that as x 6∈ pt we see that x is a nonzerodivisor on A/pt.
As A→ B is flat it follows that x is a nonzerodivisor on the module M = B/ptB.
Hence the equality above follows from Lemma 5.6. �

Lemma 20.2. Let (S, δ) be as in Situation 7.1. Let X, Y be schemes locally of
finite type over S. Let p : X → Y be a proper morphism. Suppose α, β ∈ Zk(X)
are rationally equivalent. Then p∗α is rationally equivalent to p∗β.

Proof. What do we have to show? Well, suppose we are given a collection

ij : Wj −→ X

of closed immersions, with each Wj integral of δ-dimension k + 1 and rational
functions fj ∈ R(Wj)

∗. Moreover, assume that the collection {ij(Wj)}j∈J is locally
finite on X. Then we have to show that

p∗

(∑
ij,∗div(fj)

)
is rationally equivalent to zero on X.

Note that the sum is equal to ∑
p∗ij,∗div(fj).

Let W ′j ⊂ Y be the integral closed subscheme which is the image of p ◦ ij . The
collection {W ′j} is locally finite in Y by Lemma 11.2. Hence it suffices to show, for
a given j, that either p∗ij,∗div(fj) = 0 or that it is equal to i′j,∗div(gj) for some
gj ∈ R(W ′j)

∗.
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The arguments above therefore reduce us to the case of a since integral closed
subscheme W ⊂ X of δ-dimension k + 1. Let f ∈ R(W )∗. Let W ′ = p(W ) as
above. We get a commutative diagram of morphisms

W
i
//

p′

��

X

p

��
W ′

i′ // Y

Note that p∗i∗div(f) = i′∗(p
′)∗div(f) by Lemma 12.2. As explained above we have

to show that (p′)∗div(f) is the divisor of a rational function on W ′ or zero. There
are three cases to distinguish.

The case dimδ(W
′) < k. In this case automatically (p′)∗div(f) = 0 and there is

nothing to prove.

The case dimδ(W
′) = k. Let us show that (p′)∗div(f) = 0 in this case. Let η ∈W ′

be the generic point. Note that c : Wη → Spec(K) is a proper integral curve over
K = κ(η) whose function field K(Wη) is identified with R(W ). Here is a diagram

Wη
//

c

��

W

p′

��
Spec(K) // W ′

Let us denote fη ∈ K(Wη)∗ the rational function corresponding to f ∈ R(W )∗.
Moreover, the closed points ξ of Wη correspond 1 − 1 to the closed integral sub-
schemes Z = Zξ ⊂W of δ-dimension k with p′(Z) = W ′. Note that the multiplicity
of Zξ in div(f) is equal to ordOWη,ξ(fη) simply because the local rings OWη,ξ and

OW,ξ are identified (as subrings of their fraction fields). Hence we see that the mul-
tiplicity of [W ′] in (p′)∗div(f) is equal to the multiplicity of [Spec(K)] in c∗div(fη).
By Lemma 18.2 this is zero.

The case dimδ(W
′) = k + 1. In this case Lemma 18.1 applies, and we see that

indeed p′∗div(f) = div(g) for some g ∈ R(W ′)∗ as desired. �

21. Different characterizations of rational equivalence

Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite type over S.
Given any closed subscheme Z ⊂ X ×S P1

S = X × P1 we let Z0, resp. Z∞ be the

scheme theoretic closed subscheme Z0 = pr−12 (D0), resp. Z∞ = pr−12 (D∞). Here
D0, D∞ are as defined just above Lemma 17.3.

Lemma 21.1. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let W ⊂ X ×S P1

S be an integral closed subscheme of δ-dimension
k + 1. Assume W 6= W0, and W 6= W∞. Then

(1) W0, W∞ are effective Cartier divisors of W ,
(2) W0, W∞ can be viewed as closed subschemes of X and

[W0]k ∼rat [W∞]k,

(3) for any locally finite family of integral closed subschemes Wi ⊂ X×S P1
S of

δ-dimension k+1 with Wi 6= (Wi)0 and Wi 6= (Wi)∞ we have
∑

([(Wi)0]k−
[(Wi)∞]k) ∼rat 0 on X, and
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(4) for any α ∈ Zk(X) with α ∼rat 0 there exists a locally finite family
of integral closed subschemes Wi ⊂ X ×S P1

S as above such that α =∑
([(Wi)0]k − [(Wi)∞]k).

Proof. Part (1) follows from Divisors, Lemma 9.12 since the generic point of W is
not mapped into D0 or D∞ under the projection X ×S P1

S → P1
S by assumption.

Since X ×S D0 → X is an isomorphism we see that W0 is isomorphic to a closed
subscheme of X. Similarly for W∞. Consider the morphism p : W → X. It is
proper and on W we have [W0]k ∼rat [W∞]k. Hence part (2) follows from Lemma
20.2 as clearly p∗[W0]k = [W0]k and similarly for W∞.

The only content of statement (3) is, given parts (1) and (2), that the collection
{(Wi)0, (Wi)∞} is a locally finite collection of closed subschemes of X. This is clear.

Suppose that α ∼rat 0. By definition this means there exist integral closed sub-
schemes Vi ⊂ X of δ-dimension k + 1 and rational functions fi ∈ R(Vi)

∗ such that
the family {Vi}i∈I is locally finite in X and such that α =

∑
(Vi → X)∗div(fi). Let

Wi ⊂ Vi ×S P1
S ⊂ X ×S P1

S

be the closure of the graph of the rational map fi as in Lemma 17.3. Then we have
that (Vi → X)∗div(fi) is equal to [(Wi)0]k − [(Wi)∞]k by that same lemma. Hence
the result is clear. �

Lemma 21.2. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of
finite type over S. Let Z be a closed subscheme of X × P1. Assume dimδ(Z) ≤
k + 1, dimδ(Z0) ≤ k, dimδ(Z∞) ≤ k and assume any embedded point ξ (Divisors,
Definition 4.1) of Z has δ(ξ) < k. Then

[Z0]k ∼rat [Z∞]k

as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Z which have
δ-dimension k + 1. Write

[Z]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 9.1. We claim that

[Z0]k =
∑

ni[(Wi)0]k

and similarly for [Z∞]k. If we prove this then the lemma follows from Lemma 21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [Z0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point.

Set ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S ,ξ
. Let I ⊂ A

be the ideal cutting out Z, in other words so that A/I = OZ,ξ. Let t ∈ A be
the element cutting out X ×S D0 (i.e., the coordinate of P1 at zero pulled back).
By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence dim(A/I) = 1. Since ξ is
not an embedded point by definition we see that A/I is Cohen-Macaulay. Since
dimδ(Z0) = k we see that dim(A/(t, I)) = 0 which implies that t is a nonzerodivisor
on A/I. Finally, the irreducible closed subschemes Wi passing through ξ correspond
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to the minimal primes I ⊂ qi over I. The multiplicities ni correspond to the lengths
lengthAqi

(A/I)qi . Hence we see that

n = lengthA(A/(t, I))

and

m =
∑

lengthA(A/(t, qi))lengthAqi
(A/I)qi

Thus the result follows from Lemma 5.6. �

Lemma 21.3. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let F be a coherent sheaf on X × P1. Let i0, i∞ : X → X × P1 be
the closed immersion such that it(x) = (x, t). Denote F0 = i∗0F and F∞ = i∗∞F .
Assume

(1) dimδ(Supp(F)) ≤ k + 1,
(2) dimδ(Supp(F0)) ≤ k, dimδ(Supp(F∞)) ≤ k, and
(3) any nonmaximal associated point (insert future reference here) ξ ∈ Supp(F)

of F has δ(ξ) < k.

Then

[F0]k ∼rat [F∞]k

as k-cycles on X.

Proof. Let {Wi}i∈I be the collection of irreducible components of Supp(F) which
have δ-dimension k + 1. Write

[F ]k+1 =
∑

ni[Wi]

with ni > 0 as per definition. Note that {Wi} is a locally finite collection of closed
subsets of X ×S P1

S by Lemma 10.1. We claim that

[F0]k =
∑

ni[(Wi)0]k

and similarly for [F∞]k. If we prove this then the lemma follows from Lemma 21.1.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z ′] in [F0]k is the same
as the coefficient m of [Z ′] in

∑
ni[(Wi)0]k. Let ξ′ ∈ Z ′ be the generic point. Set

ξ = (ξ′, 0) ∈ X ×S P1
S . Consider the local ring A = OX×SP1

S ,ξ
. Let M = Fξ as

an A-module. Let t ∈ A be the element cutting out X ×S D0 (i.e., the coordinate
of P1 at zero pulled back). By our choice of ξ′ ∈ Z ′ we have δ(ξ) = k and hence
dim(M) = 1. Since ξ is not an associated point of F by definition we see that M is
Cohen-Macaulay module. Since dimδ(Supp(F0)) = k we see that dim(M/tM) = 0
which implies that t is a nonzerodivisor on M . Finally, the irreducible closed
subschemes Wi passing through ξ correspond to the minimal primes qi of Ass(M).
The multiplicities ni correspond to the lengths lengthAqi

Mqi . Hence we see that

n = lengthA(M/tM)

and

m =
∑

lengthA(A/(t, qi)A)lengthAqi
Mqi

Thus the result follows from Lemma 5.6. �
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22. Rational equivalence and K-groups

In this section we compare the cycle groups Zk(X) and the Chow groupsAk(X) with
certain K0-groups of abelian categories of coherent sheaves on X. We avoid having
to talk about K1(A) for an abelian category A by dint of Homology, Lemma 10.3.
In particular, the motivation for the precise form of Lemma 22.4 is that lemma.

Let us introduce the following notation. Let (S, δ) be as in Situation 7.1. Let X be
a scheme locally of finite type over S. We denote Coh(X) = Coh(OX) the category
of coherent sheaves on X. It is an abelian category, see Cohomology of Schemes,
Lemma 9.2. For any k ∈ Z we let Coh≤k(X) be the full subcategory of Coh(X)
consisting of those coherent sheaves F having dimδ(Supp(F)) ≤ k.

Lemma 22.1. Let us introduce the following notation. Let (S, δ) be as in Situation
7.1. Let X be a scheme locally of finite type over S. The categories Coh≤k(X) are
Serre subcategories of the abelian category Coh(X).

Proof. Omitted. The definition of a Serre subcategory is Homology, Definition
9.1. �

Lemma 22.2. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. There are maps

Zk(X) −→ K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X)

whose composition is the identity. The first is the map∑
nZ [Z] 7→

[⊕
nZ>0

O⊕nZZ

]
−
[⊕

nZ<0
O⊕−nZZ

]
and the second comes from the map F 7→ [F ]k. If X is quasi-compact, then both
maps are isomorphisms.

Proof. Note that the direct sum
⊕

nZ>0O
⊕nZ
Z is indeed a coherent sheaf on X

since the family {Z | nZ > 0} is locally finite on X. The map F → [F ]k is additive
on Coh≤k(X), see Lemma 10.4. And [F ]k = 0 if F ∈ Coh≤k−1(X). This implies
we have the left map as shown in the lemma. It is clear that their composition is
the identity.

In case X is quasi-compact we will show that the right arrow is injective. Sup-
pose that q ∈ K0(Coh≤k(X)/Coh≤k+1(X)) maps to zero in Zk(X). By Homology,
Lemma 10.3 we can find a q̃ ∈ K0(Coh≤k(X)) mapping to q. Write q̃ = [F ]− [G] for
some F ,G ∈ K0(Coh≤k(X)). Since X is quasi-compact we may apply Cohomology
of Schemes, Lemma 12.3. This shows that there exist integral closed subschemes
Zj , Ti ⊂ X and (nonzero) ideal sheaves Ij ⊂ OZj , Ii ⊂ OTi such that F , resp. G
have filtrations whose successive quotients are the sheaves Ij , resp. Ii. In particular
we see that dimδ(Zj),dimδ(Ti) ≤ k. In other words we have

[F ] =
∑

j
[Ij ], [G] =

∑
i
[Ii],

in K0(Coh≤k(X)). Our assumption is that
∑
j [Ij ]k −

∑
i[Ii]k = 0. It is clear that

we may throw out the indices j, resp. i such that dimδ(Zj) < k, resp. dimδ(Ti) < k,
since the corresponding sheaves are in Cohk−1(X) and also do not contribute to
the cycle. Moreover, the exact sequences 0 → Ij → OZj → OZj/Ij → 0 and
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0 → Ii → OTi → OZi/Ii → 0 show similarly that we may replace Ij , resp. Ii by
OZj , resp. OTi . OK, and finally, at this point it is clear that our assumption∑

j
[OZj ]k −

∑
i
[OTi ]k = 0

implies that in K0(Cohk(X)) we have also
∑
j [OZj ]−

∑
i[OTi ] = 0 as desired. �

Remark 22.3. It seems likely that the arrows of Lemma 22.2 are not isomorphisms
if X is not quasi-compact. For example, suppose X is an infinite disjoint union X =∐
n∈N P1

k over a field k. Let F , resp. G be the coherent sheaf on X whose restriction
to the nth summand is equal to the skyscraper sheaf at 0 associated to OP1

k,0
/mn0 ,

resp. κ(0)⊕n. The cycle associated to F is equal to the cycle associated to G, namely
both are equal to

∑
n[0n] where 0n ∈ X denotes 0 on the nth component of X.

But there seems to be no way to show that [F ] = [G] in K0(Coh(X)) since any
proof we can envision uses infinitely many relations.

Lemma 22.4. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Let F be a coherent sheaf on X. Let

. . . // F
ϕ // F

ψ // F
ϕ // F // . . .

be a complex as in Homology, Equation (10.2.1). Assume that

(1) dimδ(Supp(F)) ≤ k + 1.
(2) dimδ(Supp(Hi(F , ϕ, ψ))) ≤ k for i = 0, 1.

Then we have
[H0(F , ϕ, ψ)]k ∼rat [H1(F , ϕ, ψ)]k

as k-cycles on X.

Proof. Let {Wj}j∈J be the collection of irreducible components of Supp(F) which
have δ-dimension k+1. Note that {Wj} is a locally finite collection of closed subsets
of X by Lemma 10.1. For every j, let ξj ∈Wj be the generic point. Set

fj = detκ(ξj)(Fξj , ϕξj , ψξj ) ∈ R(Wj)
∗.

See Definition 3.4 for notation. We claim that

−[H0(F , ϕ, ψ)]k + [H1(F , ϕ, ψ)]k =
∑

(Wj → X)∗div(fj)

If we prove this then the lemma follows.

Let Z ⊂ X be an integral closed subscheme of δ-dimension k. To prove the
equality above it suffices to show that the coefficient n of [Z] in [H0(F , ϕ, ψ)]k −
[H1(F , ϕ, ψ)]k is the same as the coefficient m of [Z] in

∑
(Wj → X)∗div(fj). Let

ξ ∈ Z be the generic point. Consider the local ring A = OX,ξ. Let M = Fξ as an
A-module. Denote ϕ,ψ : M →M the action of ϕ,ψ on the stalk. By our choice of
ξ ∈ Z we have δ(ξ) = k and hence dim(M) = 1. Finally, the integral closed sub-
schemes Wj passing through ξ correspond to the minimal primes qi of Supp(M). In
each case the element fj ∈ R(Wj)

∗ corresponds to the element detκ(qi)(Mqi , ϕ, ψ)
in κ(qi)

∗. Hence we see that

n = −eA(M,ϕ, ψ)

and
m =

∑
ordA/qi(detκ(qi)(Mqi , ϕ, ψ))

Thus the result follows from Proposition 5.3. �
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Lemma 22.5. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Denote Bk(X) the image of the map

K0(Coh≤k(X)/Coh≤k−1(X)) −→ K0(Coh≤k+1(X)/Coh≤k−1(X)).

There is a commutative diagram

K0

(
Coh≤k(X)

Coh≤k−1(X)

)
//

��

Bk(X)

��

� � // K0

(
Coh≤k+1(X)

Coh≤k−1(X)

)

Zk(X) // Ak(X)

where the left vertical arrow is the one from Lemma 22.2. If X is quasi-compact
then both vertical arrows are isomorphisms.

Proof. Suppose we have an element [A] − [B] of K0(Coh≤k(X)/Coh≤k−1(X))
which maps to zero in Bk(X), i.e., in K0(Coh≤k+1(X)/Coh≤k−1(X)). Suppose
[A] = [A] and [B] = [B] for some coherent sheaves A,B on X supported in
δ-dimension ≤ k. The assumption that [A] − [B] maps to zero in the group
K0(Coh≤k+1(X)/Coh≤k−1(X)) means that there exists coherent sheaves A′,B′ on
X supported in δ-dimension ≤ k − 1 such that [A ⊕ A′] − [B ⊕ B′] is zero in
K0(Cohk+1(X)) (use part (1) of Homology, Lemma 10.3). By part (2) of Homol-
ogy, Lemma 10.3 this means there exists a (2, 1)-periodic complex (F , ϕ, ψ) in the
category Coh≤k+1(X) such that A⊕A′ = H0(F , ϕ, ψ) and B ⊕ B′ = H1(F , ϕ, ψ).
By Lemma 22.4 this implies that

[A⊕A′]k ∼rat [B ⊕ B′]k
This proves that [A]− [B] maps to zero via the composition

K0(Coh≤k(X)/Coh≤k−1(X)) −→ Zk(X) −→ Ak(X).

In other words this proves the commutative diagram exists.

Next, assume that X is quasi-compact. By Lemma 22.2 the left vertical arrow is
bijective. Hence it suffices to show any α ∈ Zk(X) which is rationally equivalent to
zero maps to zero in Bk(X) via the inverse of the left vertical arrow composed with
the horizontal arrow. By Lemma 21.1 we see that α =

∑
([(Wi)0]k − [(Wi)∞]k) for

some closed integral subschemes Wi ⊂ X ×S P1
S of δ-dimension k + 1. Moreover

the family {Wi} is finite because X is quasi-compact. Note that the ideal sheaves
Ii,Ji ⊂ OWi

of the effective Cartier divisors (Wi)0, (Wi)∞ are isomorphic (as OWi
-

modules). This is true because the ideal sheaves ofD0 andD∞ on P1 are isomorphic
and Ii,Ji are the pullbacks of these. (Some details omitted.) Hence we have short
exact sequences

0→ Ii → OWi → O(Wi)0 → 0, 0→ Ji → OWi → O(Wi)∞ → 0

of coherent OWi
-modules. Also, since [(Wi)0]k = [p∗O(Wi)0 ]k in Zk(X) we see that

the inverse of the left vertical arrow maps [(Wi)0]k to the element [p∗O(Wi)0 ] in
K0(Coh≤k(X)/Coh≤k−1(X)). Thus we have

α =
∑

([(Wi)0]k − [(Wi)∞]k)

7→
∑(

[p∗O(Wi)0 ]− [p∗O(Wi)∞ ]
)

=
∑

([p∗OWi ]− [p∗Ii]− [p∗OWi ] + [p∗Ji])
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in K0(Coh≤k+1(X)/Coh≤k−1(X)). By what was said above this is zero, and we
win. �

Remark 22.6. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Assume X is quasi-compact. The result of Lemma 22.5 in particular
gives a map

Ak(X) −→ K0(Coh(X)/Coh≤k−1(X)).

We have not been able to find a statement or conjecture in the literature as to
whether this map is should be injective or not. If X is connected nonsingular,
then, using the isomorphism K0(X) = K0(X) (see insert future reference here)
and chern classes (see below), one can show that the map is an isomorphism up to
(p− 1)!-torsion where p = dimδ(X)− k.

23. Preparation for the divisor associated to an invertible sheaf

For the following remarks, see Divisors, Section 15. Let X be a scheme. Let L
be an invertible OX -module. Let ξ ∈ X be a point. If sξ, s

′
ξ ∈ Lξ generate Lξ

as OX,ξ-module, then there exists a unit u ∈ O∗X,ξ such that sξ = us′ξ. The stalk

of the sheaf of meromorphic sections KX(L) of L at x is equal to KX,x ⊗OX,x Lx.
Thus the image of any meromorphic section s of L in the stalk at x can be written
as s = fsξ with f ∈ KX,x. Below we will abbreviate this by saying f = s/sξ.
Also, if X is integral we have KX,x = R(X) is equal to the function field of X, so
s/sξ ∈ R(X). If s is a regular meromorphic section (see Divisors, Definition 15.11),
then actually f ∈ R(X)∗. (On an integral scheme a regular meromorphic section is
the same thing as a nonzero meromorphic section.) Hence the following definition
makes sense.

Definition 23.1. Let X be a locally Noetherian scheme. Assume X is integral.
Let L be an invertible OX -module. Let s ∈ Γ(X,KX(L)) be a regular meromorphic
section of L. For every integral closed subscheme Z ⊂ X of codimension 1 we define
the order of vanishing of s along Z as the integer

ordZ,L(s) = ordOX,ξ(s/sξ)

where the right hand side is the notion of Algebra, Definition 117.2, ξ ∈ Z is the
generic point, and sξ ∈ Lξ is a generator.

Lemma 23.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral. Let L be an invertible OX-module. Let s ∈ KX(L) be a
regular (i.e., nonzero) meromorphic section of L. Then the set

{Z ⊂ X | Z is irreducible, closed of codimension 1 and ordZ,L(s) 6= 0}

is locally finite in X.

Proof. This is true simply because there exists a nonempty open subscheme U ⊂ X
such that s corresponds to a section of Γ(U,L) which generates L over U . Hence
the codimension 1 irreducibles which can occur in the set of the lemma are all
irreducible components of X \ U . Hence Lemma 9.1 gives the desired result. �

Lemma 23.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module. Let
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s, s′ ∈ KX(L) be nonzero meromorphic sections of L. Then f = s/s′ is an element
of R(X)∗ and we have∑

ordZ,L(s)[Z] =
∑

ordZ,L(s′)[Z] + div(f)

(where the sums are over integral closed subschemes Z ⊂ X of δ-dimension n− 1)
as elements of Zn−1(X).

Proof. This is clear from the definitions. Note that Lemma 23.2 guarantees that
the sums are indeed elements of Zn−1(X). �

24. The divisor associated to an invertible sheaf

The material above allows us to define the divisor associated to an invertible sheaf.

Definition 24.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let L be an invertible OX -module.

(1) For any nonzero meromorphic section s of L we define the Weil divisor
associated to s as

divL(s) :=
∑

ordZ,L(s)[Z] ∈ Zn−1(X)

where the sum is over integral closed subschemes Z ⊂ X of δ-dimension
n− 1.

(2) We define Weil divisor associated to L

c1(L) ∩ [X] = class of divL(s) ∈ An−1(X)

where s is any nonzero meromorphic section of L over X. This is well
defined by Lemma 23.3.

There are some cases where it is easy to compute the Weil divisor associated to an
invertible sheaf.

Lemma 24.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module. Let
s ∈ Γ(X,L) be a nonzero global section. Then

divL(s) = [Z(s)]n−1

in Zn−1(X) and

c1(L) ∩ [X] = [Z(s)]n−1

in An−1(X).

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension n − 1. Let
ξ ∈ Z be its generic point. Choose a generator sξ ∈ Lξ. Write s = fsξ for some
f ∈ OX,ξ. By definition of Z(s), see Divisors, Definition 9.18 we see that Z(s) is
cut out by a quasi-coherent sheaf of ideals I ⊂ OX such that Iξ = (f). Hence
lengthOX,x(OZ(s),ξ) = lengthOX,x(OX,ξ/(f)) = ordOX,x(f) as desired. �

Lemma 24.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L, N be invertible OX-modules.
Then

http://localhost:8080/tag/02SJ
http://localhost:8080/tag/02SK
http://localhost:8080/tag/02SL


54 CHOW HOMOLOGY AND CHERN CLASSES

(1) Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is
a nonzero meromorphic section of L ⊗N , and

divL⊗N (st) = divL(s) + divN (t)

in Zn−1(X).
(2) We have

c1(L) ∩ [X] + c1(N ) ∩ [X] = c1(L ⊗OX N ) ∩ [X]

in An−1(X).

Proof. Let s, resp. t be a nonzero meromorphic section of L, resp. N . Then st is a
nonzero meromorphic section of L⊗N . Let Z ⊂ X be an integral closed subscheme
of δ-dimension n − 1. Let ξ ∈ Z be its generic point. Choose generators sξ ∈ Lξ,
and tξ ∈ Nξ. Then sξtξ is a generator for (L ⊗ N )ξ. So st/(sξtξ) = (s/sξ)(t/tξ).
Hence we see that

divL⊗N ,Z(st) = divL,Z(s) + divN ,Z(t)

by the additivity of the ordZ function. �

The following lemma will be superseded by the more general Lemma 25.4.

Lemma 24.4. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Assume X, Y are integral and n = dimδ(Y ). Let L be an invertible OY -
module. Let f : X → Y be a flat morphism of relative dimension r. Let L be an
invertible sheaf on Y . Then

f∗(c1(L) ∩ [Y ]) = c1(f∗L) ∩ [X]

in An+r−1(X).

Proof. Let s be a nonzero meromorphic section of L. We will show that actually
f∗divL(s) = divf∗L(f∗s) and hence the lemma holds. To see this let ξ ∈ Y be a
point and let sξ ∈ Lξ be a generator. Write s = gsξ with g ∈ R(X)∗. Then there is
an open neighbourhood V ⊂ Y of ξ such that sξ ∈ L(V ) and such that sξ generates
L|V . Hence we see that

divL(s)|V = div(g)|V .
In exactly the same way, since f∗sξ generates L over f−1(V ) and since f∗s = gf∗sξ
we also have

divL(f∗s)|f−1(V ) = div(g)|f−1(V ).

Thus the desired equality of cycles over f−1(V ) follows from the corresponding
result for pullbacks of principal divisors, see Lemma 17.4. �

25. Intersecting with Cartier divisors

Definition 25.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX -module. We define, for every integer k, an
operation

c1(L) ∩ − : Zk+1(X)→ Ak(X)

called intersection with the first chern class of L.

(1) Given an integral closed subscheme i : W → X with dimδ(W ) = k + 1 we
define

c1(L) ∩ [W ] = i∗(c1(i∗L) ∩ [W ])

where the right hand side is defined in Definition 24.1.
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(2) For a general (k + 1)-cycle α =
∑
ni[Wi] we set

c1(L) ∩ α =
∑

nic1(L) ∩ [Wi]

Write each c1(L) ∩Wi =
∑
j ni,j [Zi,j ] with {Zi,j}j a locally finite sum of integral

closed subschemes of Wi. Since {Wi} is a locally finite collection of integral closed
subschemes on X, it follows easily that {Zi,j}i,j is a locally finite collection of
closed subschemes of X. Hence c1(L) ∩ α =

∑
nini,j [Zi,j ] is a cycle. Another,

more convenient, way to think about this is to observe that the morphism
∐
Wi →

X is proper. Hence c1(L) ∩ α can be viewed as the pushforward of a class in
Ak(

∐
Wi) =

∏
Ak(Wi). This also explains why the result is well defined up to

rational equivalence on X.

The main goal for the next few sections is to show that intersecting with c1(L)
factors through rational equivalence, and is commutative. This is not a triviality.

Lemma 25.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L, N be an invertible sheaves on X. Then

c1(L) ∩ α+ c1(N ) ∩ α = c1(L ⊗OX N ) ∩ α
in Ak(X) for every α ∈ Zk−1(X). Moreover, c1(OX) ∩ α = 0 for all α.

Proof. The additivity follows directly from Lemma 24.3 and the definitions. To
see that c1(OX) ∩ α = 0 consider the section 1 ∈ Γ(X,OX). This restricts to
an everywhere nonzero section on any integral closed subscheme W ⊂ X. Hence
c1(OX) ∩ [W ] = 0 as desired. �

The following lemma is a useful result in order to compute the intersection product
of the c1 of an invertible sheaf and the cycle associated to a closed subscheme.
Recall that Z(s) ⊂ X denotes the zero scheme of a global section s of an invertible
sheaf on a scheme X, see Divisors, Definition 9.18.

Lemma 25.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Let Z ⊂ X be a closed subscheme. Assume
dimδ(Z) ≤ k + 1. Let s ∈ Γ(Z,L|Z). Assume

(1) dimδ(Z(s)) ≤ k, and
(2) for every generic point ξ of an irreducible component of Z(s) of dimension

k the multiplication by s induces an injection OZ,ξ → (L|Z)ξ.

This holds for example if s is a regular section of L|Z . Then

[Z(s)]k = c1(L) ∩ [Z]k+1

in Ak(X).

Proof. Write
[Z]k+1 =

∑
ni[Wi]

where Wi ⊂ Z are the irreducible components of Z of δ-dimension k+1 and ni > 0.
By assumption the restriction si = s|Wi

∈ Γ(Wi,L|Wi
) is not zero, and hence is a

regular section. By Lemma 24.2 we see that [Z(si)]k represents c1(L|Wi
). Hence

by definition

c1(L) ∩ [Z]k+1 =
∑

ni[Z(si)]k

In fact, the proof below will show that we have

(25.3.1) [Z(s)]k =
∑

ni[Z(si)]k
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as k-cycles on X.

Let Z ′ ⊂ X be an integral closed subscheme of δ-dimension k. Let ξ′ ∈ Z ′ be
its generic point. We want to compare the coefficient n of [Z ′] in the expression∑
ni[Z(si)]k with the coefficient m of [Z ′] in the expression [Z(s)]k. Choose a

generator sξ′ ∈ Lξ. Let I ⊂ OX be the ideal sheaf of Z. Write A = OX,ξ′ , L = Lξ′
and I = Iξ′ . Then L = Asξ′ and L/IL = (A/I)sξ′ = (L|Z)ξ′ . Write s = fsξ′ for
some (unique) f ∈ A/I. Hypothesis (2) means that f : A/I → A/I is injective.
Since dimδ(Z) ≤ k + 1 and dimδ(Z

′) = k we have dim(A/I) = 0 or 1. We have

m = lengthA(A/(f, I))

which is finite in either case.

If dim(A/I) = 0, then f : A/I → A/I being injective implies that f ∈ (A/I)∗.
Hence in this case m is zero. Moreover, the condition dim(A/I) = 0 means that ξ′

does not lie on any irreducible component of δ-dimension k + 1, i.e., n = 0 as well.

Now, let dim(A/I) = 1. Since A is a Noetherian local ring there are finitely
many minimal primes q1, . . . , qt ⊃ I over I. These correspond 1-1 with Wi passing
through ξ′. Moreover ni = lengthAqi

((A/I)qi). Also, the multiplicity of [Z ′] in

[Z(si)]k is lengthA(A/(f, qi)). Hence the equation to prove in this case is

lengthA(A/(f, I)) =
∑

lengthAqi
((A/I)qi)lengthA(A/(f, qi))

which follows from Lemma 5.6. �

Lemma 25.4. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r. Let L be an
invertible sheaf on Y . Let α be a k-cycle on Y . Then

f∗(c1(L) ∩ α) = c1(f∗L) ∩ f∗α
in Ak+r−1(X).

Proof. Write α =
∑
ni[Wi]. We claim it suffices to show that f∗(c1(L) ∩ [Wi]) =

c1(f∗L) ∩ f∗[Wi] for each i. Proof of this claim is omitted. (Remarks: it is clear
in the quasi-compact case. Something similar happened in the proof of Lemma
20.1, and one can copy the method used there here. Another possibility is to check
the cycles and rational equivalences used for all Wi combined at each step form a
locally finite collection).

Let W ⊂ Y be an integral closed subscheme of δ-dimension k. We have to show that
f∗(c1(L) ∩ [W ]) = c1(f∗L) ∩ f∗[W ]. Consider the following fibre product diagram

W ′ = W ×Y X //

��

X

��
W // Y

and let W ′i ⊂ W ′ be the irreducible components of δ-dimension k + r. Write
[W ′]k+r =

∑
ni[W

′
i ] with ni > 0 as per definition. So f∗[W ] =

∑
ni[W

′
i ]. Choose

a nonzero meromorphic section s of L|W . Since each W ′i → W is dominant we see
that si = s|W ′i is a nonzero meromorphic section for each i. We claim that we have
the following equality of cycles∑

nidivL|Wi (si) = f∗divL|W (s)
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in Zk+r−1(X).

Having formulated the problem as an equality of cycles we may work locally on Y .
Hence we may assume Y and also W affine, and s = p/q for some nonzero sections
p ∈ Γ(W,L) and q ∈ Γ(W,O). If we can show both∑

nidivL|Wi (pi) = f∗divL|W (p), and
∑

nidivO|Wi (qi) = f∗divO|W (q)

(with obvious notations) then we win by the additivity, see Lemma 24.3. Thus we
may assume that s ∈ Γ(W,L|W ). In this case we may apply the equality (25.3.1)
obtained in the proof of Lemma 25.3 to see that∑

nidivL|Wi (si) = [Z(s′)]k+r−1

where s′ ∈ f∗L|W ′ denotes the pullback of s to W ′. On the other hand we have

f∗divL|W (s) = f∗[Z(s)]k−1 = [f−1(Z(s))]k+r−1,

by Lemmas 24.2 and 14.4. Since Z(s′) = f−1(Z(s)) we win. �

Lemma 25.5. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a proper morphism. Let L be an invertible sheaf on Y .
Let s be a nonzero meromorphic section s of L on Y . Assume X, Y integral, f
dominant, and dimδ(X) = dimδ(Y ). Then

f∗ (divf∗L(f∗s)) = [R(X) : R(Y )]divL(s).

In particular

f∗(c1(f∗L) ∩ [X]) = c1(L) ∩ f∗[Y ].

Proof. The last equation follows from the first since f∗[X] = [R(X) : R(Y )][Y ]
by definition. It turns out that we can re-use Lemma 18.1 to prove this. Namely,
since we are trying to prove an equality of cycles, we may work locally on Y . Hence
we may assume that L = OY . In this case s corresponds to a rational function
g ∈ R(Y ), and we are simply trying to prove

f∗ (divX(g)) = [R(X) : R(Y )]divY (g).

Comparing with the result of the aforementioned Lemma 18.1 we see this true since
NmR(X)/R(Y )(g) = g[R(X):R(Y )] as g ∈ R(Y )∗. �

Lemma 25.6. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let p : X → Y be a proper morphism. Let α ∈ Zk+1(X). Let L be an
invertible sheaf on Y . Then

p∗(c1(p∗L) ∩ α) = c1(L) ∩ p∗α

in Ak(Y ).

Proof. Suppose that p has the property that for every integral closed subscheme
W ⊂ X the map p|W : W → Y is a closed immersion. Then, by definition of
capping with c1(L) the lemma holds.

We will use this remark to reduce to a special case. Namely, write α =
∑
ni[Wi]

with ni 6= 0 and Wi pairwise distinct. Let W ′i ⊂ Y be the image of Wi (as an

http://localhost:8080/tag/02ST
http://localhost:8080/tag/02SU


58 CHOW HOMOLOGY AND CHERN CLASSES

integral closed subscheme). Consider the diagram

X ′ =
∐
Wi q

//

p′

��

X

p

��
Y ′ =

∐
W ′i

q′ // Y.

Since {Wi} is locally finite on X, and p is proper we see that {W ′i} is locally finite on
Y and that q, q′, p′ are also proper morphisms. We may think of

∑
ni[Wi] also as a

k-cycle α′ ∈ Zk(X ′). Clearly q∗α
′ = α. We have q∗(c1(q∗p∗L)∩α′) = c1(p∗L)∩q∗α′

and (q′)∗(c1((q′)∗L) ∩ p′∗α′) = c1(L) ∩ q′∗p′∗α′ by the initial remark of the proof.
Hence it suffices to prove the lemma for the morphism p′ and the cycle

∑
ni[Wi].

Clearly, this means we may assume X, Y integral, f : X → Y dominant and
α = [X]. In this case the result follows from Lemma 25.5. �

26. Cartier divisors and K-groups

In this section we describe how the intersection with the first chern class of an
invertible sheaf L corresponds to tensoring with L −O in K-groups.

Lemma 26.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let L be an invertible OX-module. Let F be a coherent OX-module. Let
s ∈ Γ(X,KX(L)) be a meromorphic section of L. Assume

(1) dimδ(X) ≤ k + 1,
(2) X has no embedded points,
(3) F has no embedded associated points,
(4) the support of F is X, and
(5) the section s is regular meromorphic.

In this situation let I ⊂ OX be the ideal of denominators of s, see Divisors, Defi-
nition 15.15. Then we have the following:

(1) there are short exact sequences

0 → IF 1−→ F → Q1 → 0

0 → IF s−→ F ⊗OX L → Q2 → 0

(2) the coherent sheaves Q1, Q2 are supported in δ-dimension ≤ k,
(3) the section s restricts to a regular meromorphic section si on every irre-

ducible component Xi of X of δ-dimension k + 1, and
(4) writing [F ]k+1 =

∑
mi[Xi] we have

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

in Zk(X), in particular

[Q2]k − [Q1]k = c1(L) ∩ [F ]k+1

in Ak(X).

Proof. Recall from Divisors, Lemma 15.16 the existence of injective maps 1 :
IF → F and s : IF → F ⊗OX L whose cokernels are supported on a closed
nowhere dense subsets T . Denote Qi there cokernels as in the lemma. We conclude
that dimδ(Supp(Qi)) ≤ k. By Divisors, Lemmas 15.4 and 15.12 the pullbacks si
are defined and are regular meromorphic sections for L|Xi . The equality of cycles
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in (4) implies the equality of cycle classes in (4). Hence the only remaining thing
to show is that

[Q2]k − [Q1]k =
∑

mi(Xi → X)∗divL|Xi (si)

holds in Zk(X). To see this, let Z ⊂ X be an integral closed subscheme of δ-
dimension k. Let ξ ∈ Z be the generic point. Let A = OX,ξ and M = Fξ.
Moreover, choose a generator sξ ∈ Lξ. Then we can write s = (a/b)sξ where
a, b ∈ A are nonzerodivisors. In this case I = Iξ = {x ∈ A | x(a/b) ∈ A}. In this
case the coefficient of [Z] in the left hand side is

lengthA(M/(a/b)IM)− lengthA(M/IM)

and the coefficient of [Z] in the right hand side is∑
lengthAqi

(Mqi)ordA/qi(a/b)

where q1, . . . , qt are the minimal primes of the 1-dimensional local ring A. Hence
the result follows from Lemma 5.7. �

Lemma 26.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be an invertible OX-module. Let F be a coherent OX-module. Assume
dimδ(Support(F)) ≤ k + 1. Then the element

[F ⊗OX L]− [F ] ∈ K0(Coh≤k+1(X)/Coh≤k−1(X))

lies in the subgroup Bk(X) of Lemma 22.5 and maps to the element c1(L)∩ [F ]k+1

via the map Bk(X)→ Ak(X).

Proof. Let

0→ K → F → F ′ → 0

be the short exact sequence constructed in Divisors, Lemma 4.5. This in particular
means that F ′ has no embedded associated points. Since the support of K is
nowhere dense in the support of F we see that dimδ(Supp(K)) ≤ k. We may
re-apply Divisors, Lemma 4.5 starting with K to get a short exact sequence

0→ K′′ → K → K′ → 0

where now dimδ(Supp(K′′)) < k and K′ has no embedded associated points. Sup-
pose we can prove the lemma for the coherent sheaves F ′ and K′. Then we see
from the equations

[F ]k+1 = [F ′]k+1 + [K′]k+1 + [K′′]k+1

(use Lemma 10.4),

[F ⊗OX L]− [F ] = [F ′ ⊗OX L]− [F ′] + [K′ ⊗OX L]− [K′] + [K′′ ⊗OX L]− [K′′]
(use the ⊗L is exact) and the trivial vanishing of [K′′]k+1 and [K′′ ⊗OX L] − [K′′]
in K0(Coh≤k+1(X)/Coh≤k−1(X)) that the result holds for F . What this means is
that we may assume that the sheaf F has no embedded associated points.

Assume X, F as in the lemma, and assume in addition that F has no embedded
associated points. Consider the sheaf of ideals I ⊂ OX , the corresponding closed
subscheme i : Z → X and the coherent OZ-module G constructed in Divisors,
Lemma 4.6. Recall that Z is a locally Noetherian scheme without embedded points,
G is a coherent sheaf without embedded associated points, with Supp(G) = Z and
such that i∗G = F . Moreover, set N = L|Z .

http://localhost:8080/tag/02SX


60 CHOW HOMOLOGY AND CHERN CLASSES

By Divisors, Lemma 15.13 the invertible sheaf N has a regular meromorphic section
s over Z. Let us denote J ⊂ OZ the sheaf of denominators of s. By Lemma 26.1
there exist short exact sequences

0 → JG 1−→ G → Q1 → 0

0 → JG s−→ G ⊗OZ N → Q2 → 0

such that dimδ(Supp(Qi)) ≤ k and such that the cycle [Q2]k − [Q1]k is a represen-
tative of c1(N ) ∩ [G]k+1. We see (using the fact that i∗(G ⊗ N ) = F ⊗ L by the
projection formula, see Cohomology, Lemma 8.2) that

[F ⊗OX L]− [F ] = [i∗Q2]− [i∗Q1]

in K0(Coh≤k+1(X)/Coh≤k−1(X)). This already shows that [F ⊗OX L]− [F ] is an
element of Bk(X). Moreover we have

[i∗Q2]k − [i∗Q1]k = i∗ ([Q2]k − [Q1]k)

= i∗ (c1(N ) ∩ [G]k+1)

= c1(L) ∩ i∗[G]k+1

= c1(L) ∩ [F ]k+1

by the above and Lemmas 25.6 and 12.3. And this agree with the image of the
element under Bk(X)→ Ak(X) by definition. Hence the lemma is proved. �

27. Blowing up lemmas

In this section we prove some lemmas on representing Cartier divisors by suitable
effective Cartier divisors on blow-ups. These lemmas can be found in [Ful98, Section
2.4]. We have adapted the formulation so they also work in the non-finite type
setting. It may happen that the morphism b of Lemma 27.7 is a composition of
infinitely many blow ups, but over any given quasi-compact open W ⊂ X one needs
only finitely many blow-ups (and this is the result of loc. cit.).

Lemma 27.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a proper morphism. Let D ⊂ Y be an effective Cartier
divisor. Assume X, Y integral, n = dimδ(X) = dimδ(Y ) and f dominant. Then

f∗[f
−1(D)]n−1 = [R(X) : R(Y )][D]n−1.

In particular if f is birational then f∗[f
−1(D)]n−1 = [D]n−1.

Proof. Immediate from Lemma 25.5 and the fact that D is the zero scheme of the
canonical section 1D of OX(D). �

Lemma 27.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral with dimδ(X) = n. Let L be an invertible OX-module. Let s
be a nonzero meromorphic section of L. Let U ⊂ X be the maximal open subscheme
such that s corresponds to a section of L over U . There exists a projective morphism

π : X ′ −→ X

such that

(1) X ′ is integral,
(2) π|π−1(U) : π−1(U)→ U is an isomorphism,
(3) there exist effective Cartier divisors D,E ⊂ X ′ such that

π∗L = OX′(D − E),
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(4) the meromorphic section s corresponds, via the isomorphism above, to the
meromorphic section 1D ⊗ (1E)−1 (see Divisors, Definition 9.14),

(5) we have

π∗([D]n−1 − [E]n−1) = divL(s)

in Zn−1(X).

Proof. Let I ⊂ OX be the quasi-coherent ideal sheaf of denominators of s. Namely,
we declare a local section f of OX to be a local section of I if and only if fs is

a local section of L. On any affine open U = Spec(A) of X write L|U = L̃ for
some invertible A-module L. Then A is a Noetherian domain with fraction field
K = R(X) and we may think of s|U as an element of L⊗AK (see Divisors, Lemma

15.7). Let I = {x ∈ A | xs ∈ L}. Then we see that I|U = Ĩ (details omitted) and
hence I is quasi-coherent.

Consider the closed subscheme Z ⊂ X defined by I. It is clear that U = X \ Z.
This suggests we should blow up Z. Let

π : X ′ = Proj
X

(⊕
n≥0
In
)
−→ X

be the blowing up of X along Z. The quasi-coherent sheaf of OX -algebras
⊕

n≥0 In
is generated in degree 1 over OX . Moreover, the degree 1 part is a coherent OX -
module, in particular of finite type. Hence we see that π is projective and OX′(1)
is relatively very ample.

By Divisors, Lemma 18.7 we have X ′ is integral. By Divisors, Lemma 18.4 there
exists an effective Cartier divisor E ⊂ X ′ such that π−1I · OX′ = IE . Also, by the
same lemma we see that π−1(U) ∼= U .

Denote s′ the pullback of the meromorphic section s to a meromorphic section of
L′ = π∗L over X ′. It follows from the fact that Is ⊂ L that IEs′ ⊂ L′. In
other words, s′ gives rise to an OX′ -linear map IE → L′, or in other words a
section t ∈ L′ ⊗ OX′(E). By Divisors, Lemma 9.20 we obtain a unique effective
Cartier divisor D ⊂ X ′ such that L′ ⊗OX′(E) ∼= OX′(D) with t corresponding to
1D. Reversing this procedure we conclude that L′ = OX′(−E) ∼= OX′(D) with s′

corresponding to 1D ⊗ 1−1E as in (4).

We still have to prove (5). By Lemma 25.5 we have

π∗(divL′(s
′)) = divL(s).

Hence it suffices to show that divL′(s
′) = [D]n−1 − [E]n−1. This follows from the

equality s′ = 1D ⊗ 1−1E and additivity, see Lemma 24.3. �

Definition 27.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two effective Cartier
divisors in X. Let Z ⊂ X be an integral closed subscheme with dimδ(Z) = n− 1.
The ε-invariant of this situation is

εZ(D1, D2) = nZ ·mZ

where nZ , resp. mZ is the coefficient of Z in the (n−1)-cycle [D1]n−1, resp. [D2]n−1.

Lemma 27.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X integral and dimδ(X) = n. Let D1, D2 be two effective Cartier
divisors in X. Let Z be an open and closed subscheme of the scheme D1 ∩ D2.
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Assume dimδ(D1 ∩ D2 \ Z) ≤ n − 2. Then there exists a morphism b : X ′ → X,
and Cartier divisors D′1, D

′
2, E on X ′ with the following properties

(1) X ′ is integral,
(2) b is projective,
(3) b is the blow up of X in the closed subscheme Z,
(4) E = b−1(Z),
(5) b−1(D1) = D′1 + E, and b−1D2 = D′2 + E,
(6) dimδ(D

′
1 ∩D′2) ≤ n− 2, and if Z = D1 ∩D2 then D′1 ∩D′2 = ∅,

(7) for every integral closed subscheme W ′ with dimδ(W
′) = n− 1 we have

(a) if εW ′(D
′
1, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n− 1

and

εW ′(D
′
1, E) < εW (D1, D2),

(b) if εW ′(D
′
2, E) > 0, then setting W = b(W ′) we have dimδ(W ) = n− 1

and

εW ′(D
′
2, E) < εW (D1, D2),

Proof. Note that the quasi-coherent ideal sheaf I = ID1
+ ID2

defines the scheme
theoretic intersection D1 ∩D2 ⊂ X. Since Z is a union of connected components
of D1 ∩ D2 we see that for every z ∈ Z the kernel of OX,z → OZ,z is equal to
Iz. Let b : X ′ → X be the blow up of X in Z. (So Zariski locally around Z it is
the blow up of X in I.) Denote E = b−1(Z) the corresponding effective Cartier
divisor, see Divisors, Lemma 18.4. Since Z ⊂ D1 we have E ⊂ f−1(D1) and hence
D1 = D′1 +E for some effective Cartier divisor D′1 ⊂ X ′, see Divisors, Lemma 9.8.
Similarly D2 = D′2 + E. This takes care of assertions (1) – (5).

Note that if W ′ is as in (7) (a) or (7) (b), then the image W of W ′ is contained
in D1 ∩ D2. If W is not contained in Z, then b is an isomorphism at the generic
point of W and we see that dimδ(W ) = dimδ(W

′) = n − 1 which contradicts the
assumption that dimδ(D1 ∩D2 \ Z) ≤ n − 2. Hence W ⊂ Z. This means that to
prove (6) and (7) we may work locally around Z on X.

Thus we may assume that X = Spec(A) with A a Noetherian domain, and D1 =
Spec(A/a), D2 = Spec(A/b) and Z = D1 ∩D2. Set I = (a, b). Since A is a domain
and a, b 6= 0 we can cover the blow up by two patches, namely U = Spec(A[s]/(as−
b)) and V = Spec(A[t]/(bt − a)). These patches are glued using the isomorphism
A[s, s−1]/(as − b) ∼= A[t, t−1]/(bt − a) which maps s to t−1. The effective Cartier
divisor E is described by Spec(A[s]/(as− b, a)) ⊂ U and Spec(A[t]/(bt−a, b)) ⊂ V .
The closed subscheme D′1 corresponds to Spec(A[t]/(bt − a, t)) ⊂ U . The closed
subscheme D′2 corresponds to Spec(A[s]/(as − b, s)) ⊂ V . Since “ts = 1” we see
that D′1 ∩D′2 = ∅.

Suppose we have a prime q ⊂ A[s]/(as− b) of height one with s, a ∈ q. Let p ⊂ A
be the corresponding prime of A. Observe that a, b ∈ p. By the dimension formula
we see that dim(Ap) = 1 as well. The final assertion to be shown is that

ordAp
(a)ordAp

(b) > ordBq
(a)ordBq

(s)

where B = A[s]/(as− b). By Algebra, Lemma 120.1 we have ordAp
(x) ≥ ordBq

(x)
for x = a, b. Since ordBq

(s) > 0 we win by additivity of the ord function and the
fact that as = b. �
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Definition 27.5. Let X be a scheme. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Suppose given a function I → Z≥0, i 7→ ni.
The sum of the effective Cartier divisors D =

∑
niDi, is the unique effective

Cartier divisor D ⊂ X such that on any quasi-compact open U ⊂ X we have
D|U =

∑
Di∩U 6=∅ niDi|U is the sum as in Divisors, Definition 9.6.

Lemma 27.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Suppose given ni ≥ 0 for i ∈ I. Then

[D]n−1 =
∑

i
ni[Di]n−1

in Zn−1(X).

Proof. Since we are proving an equality of cycles we may work locally on X.
Hence this reduces to a finite sum, and by induction to a sum of two effective Cartier
divisors D = D1+D2. By Lemma 24.2 we see that D1 = divOX(D1)(1D1) where 1D1

denotes the canonical section of OX(D1). Of course we have the same statement for
D2 and D. Since 1D = 1D1

⊗1D2
via the identification OX(D) = OX(D1)⊗OX(D2)

we win by Lemma 24.3. �

Lemma 27.7. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = d. Let {Di}i∈I be a locally finite collection
of effective Cartier divisors on X. Assume that for all {i, j, k} ⊂ I, #{i, j, k} = 3
we have Di ∩Dj ∩Dk = ∅. Then there exist

(1) an open subscheme U ⊂ X with dimδ(X \ U) ≤ d− 3,
(2) a morphism b : U ′ → U , and
(3) effective Cartier divisors {D′j}j∈J on U ′

with the following properties:

(1) b is proper morphism b : U ′ → U ,
(2) U ′ is integral,
(3) b is an isomorphism over the complement of the union of the pairwise in-

tersections of the Di|U ,
(4) {D′j}j∈J is a locally finite collection of effective Cartier divisors on U ′,
(5) dimδ(D

′
j ∩D′j′) ≤ d− 2 if j 6= j′, and

(6) b−1(Di|U ) =
∑
nijD

′
j for certain nij ≥ 0.

Moreover, if X is quasi-compact, then we may assume U = X in the above.

Proof. Let us first prove this in the quasi-compact case, since it is perhaps the
most interesting case. In this case we produce inductively a sequence of blowups

X = X0
b0←− X1

b1←− X2 ← . . .

and finite sets of effective Cartier divisors {Dn,i}i∈In . At each stage these will have
the property that any triple intersection Dn,i∩Dn,j ∩Dn,k is empty. Moreover, for
each n ≥ 0 we will have In+1 = In

∐
P (In) where P (In) denotes the set of pairs of

elements of In. Finally, we will have

b−1n (Dn,i) = Dn+1,i +
∑

i′∈In,i′ 6=i
Dn+1,{i,i′}

We conclude that for each n ≥ 0 we have (b0 ◦ . . . ◦ bn)−1(Di) is a nonnegative
integer combination of the divisors Dn+1,j , j ∈ In+1.
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To start the induction we set X0 = X and I0 = I and D0,i = Di.

Given (Xn, {Dn,i}i∈In) let Xn+1 be the blow up of Xn in the closed subscheme
Zn =

⋃
{i,i′}∈P (In)

Dn,i ∩Dn,i′ . Note that the closed subschemes Dn,i ∩Dn,i′ are

pairwise disjoint by our assumption on triple intersections. In other words we
may write Zn =

∐
{i,i′}∈P (In)

Dn,i ∩ Dn,i′ . Moreover, in a Zariski neighbourhood

of Dn,i ∩ Dn,i′ the morphism bn is equal to the blow up of the scheme Xn in
the closed subscheme Dn,i ∩ Dn,i′ , and the results of Lemma 27.4 apply. Hence
setting Dn+1,{i,i′} = b−1n (Di ∩Di′) we get an effective Cartier divisor. The Cartier

divisors Dn+1,{i,i′} are pairwise disjoint. Clearly we have b−1n (Dn,i) ⊃ Dn+1,{i,i′}
for every i′ ∈ In, i′ 6= i. Hence, applying Divisors, Lemma 9.8 we see that indeed
b−1(Dn,i) = Dn+1,i+

∑
i′∈In,i′ 6=iDn+1,{i,i′} for some effective Cartier divisor Dn+1,i

on Xn+1. In a neighbourhood of Dn+1,{i,i′} these divisors Dn+1,i play the role of the
primed divisors of Lemma 27.4. In particular we conclude that Dn+1,i∩Dn+1,i′ = ∅
if i 6= i′, i, i′ ∈ In by part (6) of Lemma 27.4. This already implies that triple
intersections of the divisors Dn+1,i are zero.

OK, and at this point we can use the quasi-compactness of X to conclude that the
invariant
(27.7.1)

ε(X, {Di}i∈I) = max{εZ(Di, Di′) | Z ⊂ X,dimδ(Z) = d− 1, {i, i′} ∈ P (I)}
is finite, since after all each Di has at most finitely many irreducible components.
We claim that for some n the invariant ε(Xn, {Dn,i}i∈In) is zero. Namely, if not
then by Lemma 27.4 we have a strictly decreasing sequence

ε(X, {Di}i∈I) = ε(X0, {D0,i}i∈I0) > ε(X1, {D1,i}i∈I1) > . . .

of positive integers which is a contradiction. Take n with invariant ε(Xn, {Dn,i}i∈In)
equal to zero. This means that there is no integral closed subscheme Z ⊂ Xn

and no pair of indices i, i′ ∈ In such that εZ(Dn,i, Dn,i′) > 0. In other words,
dimδ(Dn,i, Dn,i′) ≤ d− 2 for all pairs {i, i′} ∈ P (In) as desired.

Next, we come to the general case where we no longer assume that the scheme X is
quasi-compact. The problem with the idea from the first part of the proof is that
we may get and infinite sequence of blow ups with centers dominating a fixed point
of X. In order to avoid this we cut out suitable closed subsets of codimension ≥ 3
at each stage. Namely, we will construct by induction a sequence of morphisms
having the following shape

X = X0

U0

j0

OO

X1
b0oo

U1

j1

OO

X2
b1oo

U2

j2

OO

X3
b2oo

Each of the morphisms jn : Un → Xn will be an open immersion. Each of the mor-
phisms bn : Xn+1 → Un will be a proper birational morphism of integral schemes.
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As in the quasi-compact case we will have effective Cartier divisors {Dn,i}i∈In
on Xn. At each stage these will have the property that any triple intersection
Dn,i∩Dn,j∩Dn,k is empty. Moreover, for each n ≥ 0 we will have In+1 = In

∐
P (In)

where P (In) denotes the set of pairs of elements of In. Finally, we will arrange it
so that

b−1n (Dn,i|Un) = Dn+1,i +
∑

i′∈In,i′ 6=i
Dn+1,{i,i′}

We start the induction by setting X0 = X, I0 = I and D0,i = Di.

Given (Xn, {Dn,i}) we construct the open subscheme Un as follows. For each pair
{i, i′} ∈ P (In) consider the closed subscheme Dn,i ∩ Dn,i′ . This has “good” irre-
ducible components which have δ-dimension d−2 and “bad” irreducible components
which have δ-dimension d− 1. Let us set

Bad(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−1
W

and similarly

Good(i, i′) =
⋃

W⊂Dn,i∩Dn,i′ irred. comp. with dimδ(W )=d−2
W.

Then Dn,i ∩Dn,i′ = Bad(i, i′)∪Good(i, i′) and moreover we have dimδ(Bad(i, i′)∩
Good(i, i′)) ≤ d− 3. Here is our choice of Un:

Un = Xn \
⋃
{i,i′}∈P (In)

Bad(i, i′) ∩Good(i, i′).

By our condition on triple intersections of the divisors Dn,i we see that the union
is actually a disjoint union. Moreover, we see that (as a scheme)

Dn,i|Un ∩Dn,i′ |Un = Zn,i,i′
∐

Gn,i,i′

where Zn,i,i′ is δ-equidimension of dimension d− 1 and Gn,i,i′ is δ-equidimensional
of dimension d−2. (So topologically Zn,i,i′ is the union of the bad components but
throw out intersections with good components.) Finally we set

Zn =
⋃
{i,i′}∈P (In)

Zn,i,i′ =
∐
{i,i′}∈P (In)

Zn,i,i′ ,

and we let bn : Xn+1 → Xn be the blow up in Zn. Note that Lemma 27.4 applies
to the morphism bn : Xn+1 → Xn locally around each of the loci Dn,i|Un ∩Dn,i′ |Un .
Hence, exactly as in the first part of the proof we obtain effective Cartier divisors
Dn+1,{i,i′} for {i, i′} ∈ P (In) and effective Cartier divisors Dn+1,i for i ∈ In such

that b−1n (Dn,i|Un) = Dn+1,i +
∑
i′∈In,i′ 6=iDn+1,{i,i′}. For each n denote πn : Xn →

X the morphism obtained as the composition j0 ◦ . . . ◦ jn−1 ◦ bn−1.

Claim: given any quasi-compact open V ⊂ X for all sufficiently large n the maps

π−1n (V )← π−1n+1(V )← . . .

are all isomorphisms. Namely, if the map π−1n (V ) ← π−1n+1(V ) is not an isomor-

phism, then Zn,i,i′ ∩ π−1n (V ) 6= ∅ for some {i, i′} ∈ P (In). Hence there exists an
irreducible component W ⊂ Dn,i ∩Dn,i′ with dimδ(W ) = d − 1. In particular we
see that εW (Dn,i, Dn,i′) > 0. Applying Lemma 27.4 repeatedly we see that

εW (Dn,i, Dn,i′) < ε(V, {Di|V })− n
with ε(V, {Di|V }) as in (27.7.1). Since V is quasi-compact, we have ε(V, {Di|V }) <
∞ and taking n > ε(V, {Di|V }) we see the result.
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Note that by construction the difference Xn \ Un has dimδ(Xn \ Un) ≤ d− 3. Let
Tn = πn(Xn \ Un) be its image in X. Traversing in the diagram of maps above
using each bn is closed it follows that T0∪ . . .∪Tn is a closed subset of X for each n.
Any t ∈ Tn satisfies δ(t) ≤ d− 3 by construction. Hence Tn ⊂ X is a closed subset
with dimδ(Tn) ≤ d−3. By the claim above we see that for any quasi-compact open
V ⊂ X we have Tn∩V 6= ∅ for at most finitely many n. Hence {Tn}n≥0 is a locally

finite collection of closed subsets, and we may set U = X \
⋃
Tn. This will be U as

in the lemma.

Note that Un ∩ π−1n (U) = π−1n (U) by construction of U . Hence all the morphisms

bn : π−1n+1(U) −→ π−1n (U)

are proper. Moreover, by the claim they eventually become isomorphisms over each
quasi-compact open of X. Hence we can define

U ′ = limn π
−1
n (U).

The induced morphism b : U ′ → U is proper since this is local on U , and over
each compact open the limit stabilizes. Similarly we set J =

⋃
n≥0 In using the

inclusions In → In+1 from the construction. For j ∈ J choose an n0 such that j
corresponds to i ∈ In0 and define D′j = limn≥n0 Dn,i. Again this makes sense as
locally over X the morphisms stabilize. The other claims of the lemma are verified
as in the case of a quasi-compact X. �

28. Intersecting with effective Cartier divisors

To be able to prove the commutativity of intersection products we need a little
more precision in terms of supports of the cycles. Here is the relevant notion.

Definition 28.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let D be an effective Cartier divisor on X, and denote i : D → X the
closed immersion. We define, for every integer k, a Gysin homomorphism

i∗ : Zk+1(X)→ Ak(D).

(1) Given a integral closed subscheme W ⊂ X with dimδ(W ) = k+1 we define
(a) if W 6⊂ D, then i∗[W ] = [D ∩W ]k as a k-cycle on D, and
(b) if W ⊂ D, then i∗[W ] = i′∗(c1(OX(D)|W ) ∩ [W ]), where i′ : W → D

is the induced closed immersion.
(2) For a general (k + 1)-cycle α =

∑
nj [Wj ] we set

i∗α =
∑

nji
∗[Wj ]

(3) We denote D · α = i∗i
∗α the pushforward of the class to a class on X.

In fact, as we will see later, this Gysin homomorphism i∗ can be viewed as an
example of a non-flat pullback. Thus we will sometimes informally call the class
i∗α the pullback of the class α.

Lemma 28.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let D be an effective Cartier divisor on X. Let α be a (k+1)-cycle on X. Then
D · α = c1(OX(D)) ∩ α in Ak(X).
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Proof. Write α =
∑
nj [Wj ] where ij : Wj → X are integral closed subschemes

with dimδ(Wj) = k. Since D is the zero scheme of the canonical section 1D of
OX(D) we see that D ∩Wj is the zero scheme of the restriction 1D|Wj . Hence for
each j such that Wj 6⊂ D we have c1(OX(D)) ∩ [Wj ] = [D ∩Wj ]k by Lemma 25.3.
So we have

c1(OX(D)) ∩ α =
∑

Wj 6⊂D
nj [D ∩Wj ]k +

∑
Wj⊂D

njij,∗(c1(OX(D)|Wj
) ∩ [Wj ])

in Ak(X) by Definition 25.1. The right hand side matches (termwise) the pushfor-
ward of the class i∗α on D from Definition 28.1. Hence we win. �

The following lemma will be superseded later.

Lemma 28.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let D be an effective Cartier divisor on X. Let W ⊂ X be a closed subscheme
such that D′ = W ∩D is an effective Cartier divisor on W .

D′
i′
//

i′′

��

W

��
D

i // X

For any (k + 1)-cycle on W we have i∗α = (i′′)∗(i
′)∗α in Ak(D).

Proof. Suppose α = [Z] for some integral closed subscheme Z ⊂ W . In case
Z 6⊂ D we have Z ∩ D′ = Z ∩ D scheme theoretically. Hence the equality holds
as cycles. In case Z ⊂ D we also have Z ⊂ D′ and the equality holds since
OX(D)|Z ∼= OW (D′)|Z and the definition of i∗ and (i′)∗ in these cases. �

Lemma 28.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let i : D → X be an effective Cartier divisor on X.

(1) Let Z ⊂ X be a closed subscheme such that dimδ(Z) ≤ k+ 1 and such that
D ∩ Z is an effective Cartier divisor on Z. Then i∗[Z]k+1 = [D ∩ Z]k.

(2) Let F be a coherent sheaf on X such that dimδ(Support(F)) ≤ k + 1 and
1D : F → F ⊗OX OX(D) is injective. Then

i∗[F ]k+1 = [i∗F ]k

in Ak(D).

Proof. Assume Z ⊂ X as in (1). Then set F = OZ . The assumption that D∩Z is
an effective Cartier divisor is equivalent to the assumption that 1D : F → F ⊗OX
OX(D) is injective. Moreover [Z]k+1 = [F ]k+1] and [D ∩ Z]k = [OD∩Z ]k = [i∗F ]k.
See Lemma 10.3. Hence part (1) follows from part (2).

Write [F ]k+1 =
∑
mj [Wj ] with mj > 0 and pairwise distinct integral closed

subschemes Wj ⊂ X of δ-dimension k + 1. The assumption that 1D : F →
F ⊗OX OX(D) is injective implies that Wj 6⊂ D for all j. By definition we see
that

i∗[F ]k+1 =
∑

[D ∩Wj ]k.

We claim that ∑
[D ∩Wj ]k = [i∗F ]k

as cycles. Let Z ⊂ D be an integral closed subscheme of δ-dimension k. Let
ξ ∈ Z be its generic point. Let A = OX,ξ. Let M = Fξ. Let f ∈ A be an
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element generating the ideal of D, i.e., such that OD,ξ = A/fA. By assumption
dim(M) = 1, f : M → M is injective, and lengthA(M/fM) < ∞. Moreover,
lengthA(M/fM) is the coefficient of [Z] in [i∗F ]k. On the other hand, let q1, . . . , qt
be the minimal primes in the support of M . Then∑

lengthAqi
(Mqi)ordA/qi(f)

is the coefficient of [Z] in
∑

[D∩Wj ]k. Hence we see the equality by Lemma 5.6. �

Lemma 28.5. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let {ij : Dj → X}j∈J be a locally finite collection of effective Cartier divisors
on X. Let nj > 0, j ∈ J . Set D =

∑
j∈J njDj, and denote i : D → X the inclusion

morphism. Let α ∈ Zk+1(X). Then

p :
∐

j∈J
Dj −→ D

is proper and

i∗α = p∗

(∑
nji
∗
jα
)

in Ak(D).

Proof. The proof of this lemma is made a bit longer than expected by a subtlety
concerning infinite sums of rational equivalences. In the quasi-compact case the
family Dj is finite and the result is altogether easy and a straightforward conse-
quence of Lemmas 24.2 and 24.3 and the definitions.

The morphism p is proper since the family {Dj}j∈J is locally finite. Write α =∑
a∈Ama[Wa] with Wa ⊂ X an integral closed subscheme of δ-dimension k + 1.

Denote ia : Wa → X the closed immersion. We assume that ma 6= 0 for all a ∈ A
such that {Wa}a∈A is locally finite on X.

Observe that by Definition 28.1 the class i∗α is the class of a cycle
∑
maβa for

certain βa ∈ Zk(Wa∩D). Namely, if Wa 6⊂ D then βa = [D∩Wa]k and if Wa ⊂ D,
then βa is a cycle representing c1(OX(D)) ∩ [Wa].

For each a ∈ A write J = Ja,1
∐
Ja,2

∐
Ja,3 where

(1) j ∈ Ja,1 if and only if Wa ∩Dj = ∅,
(2) j ∈ Ja,2 if and only if Wa 6= Wa ∩D1 6= ∅, and
(3) j ∈ Ja,3 if and only if Wa ⊂ Dj .

Since the family {Dj} is locally finite we see that Ja,3 is a finite set. For every
a ∈ A and j ∈ J we choose a cycle βa,j ∈ Zk(Wa ∩Dj) as follows

(1) if j ∈ Ja,1 we set βa,j = 0,
(2) if j ∈ Ja,2 we set βa,j = [Dj ∩Wa]k, and
(3) if j ∈ Ja,3 we choose βa,j ∈ Zk(Wa) representing c1(i∗aOX(Dj)) ∩ [Wj ].

We claim that

βa ∼rat
∑

j∈J
njβa,j

in Ak(Wa ∩D).

Case I: Wa 6⊂ D. In this case Ja,3 = ∅. Thus it suffices to show that [D ∩Wa]k =∑
nj [Dj ∩Wa]k as cycles. This is Lemma 27.6.
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Case II: Wa ⊂ D. In this case βa is a cycle representing c1(i∗aOX(D))∩ [Wa]. Write
D = Da,1 +Da,2 +Da,3 with Da,s =

∑
j∈Ja,s njDj . By Lemma 24.3 we have

c1(i∗aOX(D)) ∩ [Wa] = c1(i∗aOX(Da,1)) ∩ [Wa] + c1(i∗aOX(Da,2)) ∩ [Wa]

+c1(i∗aOX(Da,3)) ∩ [Wa].

It is clear that the first term of the sum is zero. Since Ja,3 is finite we see that the last
term agrees with

∑
j∈Ja,3 njc1(i∗aLj) ∩ [Wa], see Lemma 24.3. This is represented

by
∑
j∈Ja,3 njβa,j . Finally, by Case I we see that the middle term is represented by

the cycle
∑
j∈Ja,2 nj [Dj ∩Wa]k =

∑
j∈Ja,2 njβa,j . Whence the claim in this case.

At this point we are ready to finish the proof of the lemma. Namely, we have
i∗D ∼rat

∑
maβa by our choice of βa. For each a we have βa ∼rat

∑
j βa,j with

the rational equivalence taking place on D ∩ Wa. Since the collection of closed
subschemes D∩Wa is locally finite on D, we see that also

∑
maβa ∼rat

∑
a,jmaβa,j

on D! (See Remark 19.4.) Ok, and now it is clear that
∑
amaβa,j (viewed as a

cycle on Dj) represents i∗jα and hence
∑
a,jmaβa,j represents p∗

∑
j i
∗
jα and we

win. �

Lemma 28.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier divisors
on X. Assume dimδ(D ∩ D′) = n − 2. Let i : D → X, resp. i′ : D′ → X be the
corresponding closed immersions. Then

(1) there exists a cycle α ∈ Zn−2(D ∩D′) whose pushforward to D represents
i∗[D′]n−1 ∈ An−2(D) and whose pushforward to D′ represents (i′)∗[D]n−1 ∈
An−2(D′), and

(2) we have

D · [D′]n−1 = D′ · [D]n−1

in An−2(X).

Proof. Part (2) is a trivial consequence of part (1). Let us write [D]n−1 =
∑
na[Za]

and [D′]n−1 =
∑
mb[Zb] with Za the irreducible components of D and [Zb] the irre-

ducible components ofD′. According to Definition 28.1, we have i∗D′ =
∑
mbi

∗[Zb]
and (i′)∗D =

∑
na(i′)∗[Za]. By assumption, none of the irreducible components

Zb is contained in D, and hence i∗[Zb] = [Zb ∩ D]n−2 by definition. Similarly
(i′)∗[Za] = [Za ∩D′]n−2. Hence we are trying to prove the equality of cycles∑

na[Za ∩D′]n−2 =
∑

mb[Zb ∩D]n−2

which are indeed supported on D∩D′. Let W ⊂ X be an integral closed subscheme
with dimδ(W ) = n − 2. Let ξ ∈ W be its generic point. Set R = OX,ξ. It is a
Noetherian local domain. Note that dim(R) = 2. Let f ∈ R, resp. f ′ ∈ R be an
element defining the ideal of D, resp. D′. By assumption dim(R/(f, f ′)) = 0. Let
q′1, . . . , q

′
t ⊂ R be the minimal primes over (f ′), let q1, . . . , qs ⊂ R be the minimal

primes over (f). The equality above comes down to the equality∑
i=1,...,s

lengthRqi
(Rqi/(f))ordR/qi(f

′) =
∑

j=1,...,t

lengthRq′
j

(Rq′j
/(f ′))ordR/q′j (f).

By Lemma 5.5 applied with M = R/(f) the left hand side of this equation is equal
to

lengthR(R/(f, f ′))− lengthR(Ker(f ′ : R/(f)→ R/(f)))
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OK, and now we note that Ker(f ′ : R/(f) → R/(f)) is canonically isomorphic to
((f) ∩ (f ′))/(ff ′) via the map x mod (f) 7→ f ′x mod (ff ′). Hence the left hand
side is

lengthR(R/(f, f ′))− lengthR((f) ∩ (f ′)/(ff ′))

Since this is symmetric in f and f ′ we win. �

Lemma 28.7. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let {Dj}j∈J be a locally finite collection
of effective Cartier divisors on X. Let nj ,mj ≥ 0 be collections of nonnegative
integers. Set D =

∑
njDj and D′ =

∑
mjDj. Assume that dimδ(Dj∩Dj′) = n−2

for every j 6= j′. Then D · [D′]n−1 = D′ · [D]n−1 in An−2(X).

Proof. This lemma is a trivial consequence of Lemmas 27.6 and 28.6 in case the
sums are finite, e.g., if X is quasi-compact. Hence we suggest the reader skip the
proof.

Here is the proof in the general case. Let ij : Dj → X be the closed immersions
Let p :

∐
Dj → X denote coproduct of the morphisms ij . Let {Za}a∈A be the

collection of irreducible components of
⋃
Dj . For each j we write

[Dj ]n−1 =
∑

dj,a[Za].

By Lemma 27.6 we have

[D]n−1 =
∑

njdj,a[Za], [D′]n−1 =
∑

mjdj,a[Za].

By Lemma 28.5 we have

D · [D′]n−1 = p∗

(∑
nji
∗
j [D
′]n−1

)
, D′ · [D]n−1 = p∗

(∑
mj′i

∗
j′ [D]n−1

)
.

As in the definition of the Gysin homomorphisms (see Definition 28.1) we choose
cycles βa,j on Dj ∩ Za representing i∗j [Za]. (Note that in fact βa,j = [Dj ∩ Za]n−2
if Za is not contained in Dj , i.e., there is no choice in that case.) Now since p is a
closed immersion when restricted to each of the Dj we can (and we will) view βa,j
as a cycle on X. Plugging in the formulas for [D]n−1 and [D′]n−1 obtained above
we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j , D′ · [D]n−1 =

∑
j,j′,a

mj′njdj,aβa,j′ .

Moreover, with the same conventions we also have

Dj · [Dj′ ]n−1 =
∑

dj′,aβa,j .

In these terms Lemma 28.6 (see also its proof) says that for j 6= j′ the cycles∑
dj′,aβa,j and

∑
dj,aβa,j′ are equal as cycles! Hence we see that

D · [D′]n−1 =
∑

j,j′,a
njmj′dj′,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj′,aβa,j

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j 6=j′
njmj′

(∑
a
dj,aβa,j′

)
+
∑

j,a
njmjdj,aβa,j

=
∑

j,j′,a
mj′njdj,aβa,j′

= D′ · [D]n−1

and we win. �
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Here is the key lemma of this chapter. A stronger version of this lemma asserts
that D · [D′]n−1 = D′ · [D]n−1 holds in An−2(D ∩D′) for suitable representatives
of the dot products involved. The first proof of the lemma together with Lemmas
28.5, 28.6, and 28.7 can be modified to show this (see [Ful98]). It is not so clear
how to modify the second proof to prove the refined version. An application of the
refined version is a proof that the Gysin homomorphism factors through rational
equivalence. We will show this by another method later.

Lemma 28.8. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let D, D′ be effective Cartier divisors
on X. Then

D · [D′]n−1 = D′ · [D]n−1

in An−2(X).

First proof of Lemma 28.8. First, let us prove this in case X is quasi-compact.
In this case, apply Lemma 27.7 to X and the two element set {D,D′} of effective
Cartier divisors. Thus we get a proper morphism b : X ′ → X, a finite collection of
effective Cartier divisors D′j ⊂ X ′ intersecting pairwise in codimension ≥ 2, with

b−1(D) =
∑
njD

′
j , and b−1(D′) =

∑
mjD

′
j . Note that b∗[b

−1(D)]n−1 = [D]n−1 in
Zn−1(X) and similarly for D′, see Lemma 27.1. Hence, by Lemma 25.6 we have

D · [D′]n−1 = b∗
(
b−1(D) · [b−1(D′)]n−1

)
in An−2(X) and similarly for the other term. Hence the lemma follows from the
equality b−1(D) · [b−1(D′)]n−1 = b−1(D′) · [b−1(D)]n−1 in An−2(X ′) of Lemma 28.7.

Note that in the proof above, each referenced lemma works also in the general case
(when X is not assumed quasi-compact). The only minor change in the general
case is that the morphism b : U ′ → U we get from applying Lemma 27.7 has as its
target an open U ⊂ X whose complement has codimension ≥ 3. Hence by Lemma
19.2 we see that An−2(U) = An−2(X) and after replacing X by U the rest of the
proof goes through unchanged. �

Second proof of Lemma 28.8. Let I = OX(−D) and I ′ = OX(−D′) be the
invertible ideal sheaves of D and D′. We denote ID′ = I ⊗OX OD′ and I ′D =
I ′ ⊗OX OD. We can restrict the inclusion map I → OX to D′ to get a map

ϕ : ID′ −→ OD′
and similarly

ψ : I ′D −→ OD
It is clear that

Coker(ϕ) ∼= OD∩D′ ∼= Coker(ψ)

and

Ker(ϕ) ∼=
I ∩ I ′

II ′
∼= Ker(ψ).

Hence we see that
γ = [ID′ ]− [OD′ ] = [I ′D]− [OD]

in K0(Coh≤n−1(X)). On the other hand it is clear that

[I ′D]n−1 = [D]n−1, [ID′ ]n−1 = [D′]n−1.

and that
OX(D′)⊗ I ′D = OD, OX(D)⊗ ID′ = OD′ .
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By Lemma 26.2 (applied two times) this means that the element γ is an element
of Bn−2(X), and maps to both c1(OX(D′)) ∩ [D]n−1 and to c1(OX(D)) ∩ [D′]n−1
and we win (since the map Bn−2(X)→ An−2(X) is well defined – which is the key
to this proof). �

29. Commutativity

At this point we can start using the material above and start proving more inter-
esting results.

Lemma 29.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X integral and dimδ(X) = n. Let L, N be invertible on X. Choose a
nonzero meromorphic section s of L and a nonzero meromorphic section t of N .
Set α = divL(s) and β = divN (t). Then

c1(N ) ∩ α = c1(L) ∩ β

in An−2(X).

Proof. By Lemma 27.2 (applied twice) there exists a proper morphism π : X ′ → X
and effective Cartier divisors D1, E1, D2, E2 on X ′ such that

b∗L = OX′(D1 − E1), b∗N = OX′(D2 − E2),

and such that

α = π∗([D1]n−1 − [E1]n−1), β = π∗([D2]n−1 − [E2]n−1).

By the projection formula of Lemma 25.6 and the additivity of Lemma 25.2 it is
enough to show the equality

c1(OX′(D1)) ∩ [D2]n−1 = c1(OX′(D2)) ∩ [D1]n−1

and three other similar equalities involving Di and Ej . By Lemma 28.2 this is the
same as showing that D1 · [D2]n−1 = D2 · [D1]n−1 and so on. Thus the result follows
from Lemma 28.8. �

Lemma 29.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L be invertible on X. The operation α 7→ c1(L)∩α factors through rational
equivalence to give an operation

c1(L) ∩ − : Ak+1(X)→ Ak(X)

Proof. Let α ∈ Zk+1(X), and α ∼rat 0. We have to show that c1(L)∩α as defined
in Definition 25.1 is zero. By Definition 19.1 there exists a locally finite family
{Wj} of integral closed subschemes with dimδ(Wj) = k + 2 and rational functions
fj ∈ R(Wj)

∗ such that

α =
∑

(ij)∗divWj (fj)

Note that p :
∐
Wj → X is a proper morphism, and hence α = p∗α

′ where
α′ ∈ Zk+1(

∐
Wj) is the sum of the principal divisors divWj (fj). By the projection

formula (Lemma 25.6) we have c1(L) ∩ α = p∗(c1(p∗L) ∩ α′). Hence it suffices to
show that each c1(L|Wj

) ∩ divWj
(fj) is zero. In other words we may assume that

X is integral and α = divX(f) for some f ∈ R(X)∗.

Assume X is integral and α = divX(f) for some f ∈ R(X)∗. We can think of
f as a regular meromorphic section of the invertible sheaf N = OX . Choose a
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meromorphic section s of L and denote β = divL(s). By Lemma 29.1 we conclude
that

c1(L) ∩ α = c1(OX) ∩ β.
However, by Lemma 25.2 we see that the right hand side is zero in Ak(X) as
desired. �

For any integer s ≥ 0 we will denote

c1(L)s ∩ − : Ak+s(X)→ Ak(X)

the s-fold iterate of the operation c1(L)∩−. This makes sense by the lemma above.

Lemma 29.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let L, N be invertible on X. For any α ∈ Ak+2(X) we have

c1(L) ∩ c1(N ) ∩ α = c1(N ) ∩ c1(L) ∩ α
as elements of Ak(X).

Proof. Write α =
∑
mj [Zj ] for some locally finite collection of integral closed

subschemes Zj ⊂ X with dimδ(Zj) = k + 2. Consider the proper morphism p :∐
Zj → X. Set α′ =

∑
mj [Zj ] as a (k+ 2)-cycle on

∐
Zj . By several applications

of Lemma 25.6 we see that c1(L) ∩ c1(N ) ∩ α = p∗(c1(p∗L) ∩ c1(p∗N ) ∩ α′) and
c1(N ) ∩ c1(L) ∩ α = p∗(c1(p∗N ) ∩ c1(p∗L) ∩ α′). Hence it suffices to prove the
formula in case X is integral and α = [X]. In this case the result follows from
Lemma 29.1 and the definitions. �

30. Gysin homomorphisms

We want to show the Gysin homomorphisms factor through rational equivalence.
One method (see [Ful98]) is to prove a more precise version of the key Lemma
28.8 keeping track of supports. Having obtained this one can find analogues of the
lemmas of Section 29 for the Gysin homomorphism and get the result. We will use
another method.

Lemma 30.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let X be integral and n = dimδ(X). Let a ∈ Γ(X,OX) be a nonzero function.
Let i : D = Z(a) → X be the closed immersion of the zero scheme of a. Let
f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. Write divX(f) =
∑
nj [Zj ] for some integral closed subschemes Zj ⊂ X of

δ-dimension n − 1. We may assume that the family {Zj}j∈J is locally finite and
that f ∈ Γ(U,O∗U ) where U = X \

⋃
Zj (see Lemma 16.3 and its proof).

Write J = J1
∐
J2 where J1 = {j ∈ J | Zj ⊂ D}. Note that OX(D) ∼= OX

because a−1 is a trivializing global section. Hence by Definition 28.1 of i∗ we see
that i∗divX(f) is represented by∑

j∈J2
nj [D ∩ Zj ]n−2.

Namely, the terms involving c1(OX(D)|Zj ) ∩ Zj may be dropped since c1(O) ∩ −
is the zero operation anyway (see Lemma 25.2).

For each j let ξj ∈ Zj be its generic point. Let Bj = OX,ξj , which has residue field
κj = κ(ξj) = R(Zj). For j ∈ J1, let

fj = dBj (f, a)

http://localhost:8080/tag/02TJ
http://localhost:8080/tag/02TL


74 CHOW HOMOLOGY AND CHERN CLASSES

be the tame symbol, see Definition 4.5. We claim that we have the following equality
of cycles ∑

j∈J2
nj [D ∩ Zj ]n−2 =

∑
j∈J1

(Zj → D)∗divZj (fj)

on D. Indeed, note that [D∩Zj ]n−2 = divZj (a). Hence nj [D∩Zj ]n−2 = divZj (a
nj ).

Since nj = ordBj (f) we see that in fact also nj [D∩Zj ]n−2 = divZj (dBj (a, f)), as a

is a unit in Bj see Lemma 4.6. Note that dBj (f, a) = dBj (a, f)−1, see Lemma 4.4.
Hence altogether we are trying to show that∑

j∈J
(Zj → D)∗divZj (dBj (a, f)) = 0

as an (n− 2)-cycle. Consider any codimension 2 integral closed subscheme W ⊂ X
with generic point ζ ∈ X. Set A = OX,ζ . Applying Lemma 6.1 to (A, a, f) we see
that the coefficient of [W ] in the expression above is zero as desired. �

Lemma 30.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let X be integral and n = dimδ(X). Let i : D → X be an effective Cartier
divisor. Let f ∈ R(X)∗. In this case i∗divX(f) = 0 in An−2(D).

Proof. This proof is a repeat of the proof of Lemma 30.1. So make sure you’ve
read that one first.

Write divX(f) =
∑
nj [Zj ] for some integral closed subschemes Zj ⊂ X of δ-

dimension n− 1. We may assume that the family {Zj}j∈J is locally finite and that
f ∈ Γ(U,O∗U ) where U = X \

⋃
Zj (see Lemma 16.3 and its proof).

Write J = J1
∐
J2 where J1 = {j ∈ J | Zj ⊂ D}. For each j let ξj ∈ Zj be its

generic point. Let us write L = OX(D). Choose s̃j ∈ Lξj a generator. Denote
sj ∈ Lξj ⊗ κ(ξj) the corresponding nonzero meromorphic section of L|Zj . Then by
Definition 28.1 of i∗ we see that i∗divX(f) is represented by the cycle∑

j∈J2
nj [D ∩ Zj ]n−2 +

∑
j∈J2

njdivL|Zj (sj)

on D. Our goal is to show that this is rationally equivalent to zero on D.

Let Bj = OX,ξj , which has residue field κj = κ(ξj) = R(Zj). Write s = aj s̃j for
some aj ∈ Bj . For j ∈ J1 let

fj = dBj (f, aj) ∈ κ∗j = R(Zj)
∗

be the tame symbol, see Definition 4.5. We claim that we have the following equality
of cycles∑

j∈J2
nj [D ∩ Zj ]n−2 +

∑
j∈J2

njdivL|Zj (sj) =
∑

j∈J1
(Zj → D)∗divZj (fj)

on D. This will clearly prove the lemma.

Note that for j ∈ J2 we have [D ∩ Zj ]n−2 = divL|Zj (s|Zj ). Since s|Zj = aj |Zjsj we

see that [D ∩ Zj ]n−2 = divL|Zj (sj) + divZj (aj |Zj ). Hence, still for j ∈ J2, we have

nj [D ∩ Zj ]n−2 = njdivL|Zj (sj) + divZj ((aj |Zj )nj )

Since nj = ordBj (f) we see that divZj ((aj |Zj )nj ) = divZj (dBj (aj , f)), as aj is a

unit in Bj (since j ∈ J2), see Lemma 4.6. Note that dBj (f, aj) = dBj (aj , f)−1, see
Lemma 4.4. Hence altogether we are trying to show that

(30.2.1)
∑

j∈J
njdivL|Zj (sj) =

∑
j∈J

(Zj → D)∗divZj (dBj (aj , f))
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as an (n− 2)-cycle.

Consider any codimension 2 integral closed subscheme W ⊂ X with generic point
ζ ∈ X. Set A = OX,ζ . Choose a generator sζ ∈ Lζ . For those j such that ζ ∈ Zj
we may write s̃j = bjsζ with bj ∈ B∗j . We may also write s = aζsζ for some
aζ ∈ A. Then we see that aj = bjaζ . The coefficient of [W ] on the right hand side
of Equation (30.2.1) is ∑

ζ∈Zj
njordA/qj (bj).

where qj ⊂ A is the height one prime corresponding to Zj . Note that Bj = Aqj in
this case. The coefficient of [W ] on the left hand side of Equation (30.2.1) is∑

ζ∈Zj
ordA/qj (dAqj

(bjaζ , f)).

Since bj is a unit, and nj = ordAqj
(f) we see that dAqj

(bjaζ , f) = bj
nj
dAqj

(aζ , f)

by Lemmas 4.4 and 4.6. By additivity of ord we see that it suffices to prove

0 =
∑

ζ∈Zj
ordA/qj (dAqj

(aζ , f))

which is Lemma 6.1. �

Lemma 30.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let i : D → X be an effective Cartier divisor on X. The Gysin homomorphism
factors through rational equivalence to give a map i∗ : Ak+1(X)→ Ak(D).

Proof. Let α ∈ Zk+1(X) and assume that α ∼rat 0. This means there exists a
locally finite collection of integral closed subschemes Wj ⊂ X of δ-dimension k + 2
and fj ∈ R(Wj)

∗ such that α =
∑
ij,∗divWj (fj). By construction of the map i∗

we see that i∗α =
∑
i∗ij,∗divWj (fj) where each cycle i∗ij,∗divWj (fj) is supported

on D ∩Wj . If we can show that each i∗ij,∗divWj
(fj) is rationally equivalent on

Wj ∩D, then we see that i∗α ∼rat 0 (this is clear if the sum is finite, in general see
Remark 19.4).

Pick an index j. If Wj ⊂ D, then we see that i∗ij,∗divWj (fj) is simply equal to

i′j,∗c1(OX(D)|Wj
) ∩ divWj

(fj)

where i′j : Wj → D is the inclusion map. This is rationally equivalent to zero by
Lemma 29.2. If Wj 6⊂ D, then we see that i∗ij,∗divWj (fj) is simply equal to

(i′)∗divWj
(fj)

where i′ : D ∩Wj → Wj is the corresponding closed immersion (see Lemma 28.3).
Hence in this case Lemma 30.2 applies, and we win. �

31. Relative effective Cartier divisors

Lemma 31.1. Let A→ B be a ring map. Let f ∈ B. Assume that

(1) A→ B is flat,
(2) f is a nonzerodivisor, and
(3) A→ B/fB is flat.

Then for every ideal I ⊂ A the map f : B/IB → B/IB is injective.

http://localhost:8080/tag/02TO
http://localhost:8080/tag/02TQ


76 CHOW HOMOLOGY AND CHERN CLASSES

Proof. Note that IB = I ⊗A B and I(B/fB) = I ⊗A B/fB by the flatness of
B and B/fB over A. In particular IB/fIB ∼= I ⊗A B/fB maps injectively into
B/fB. Hence the result follows from the snake lemma applied to the diagram

0 // I ⊗A B //

f

��

B //

f

��

B/IB //

f

��

0

0 // I ⊗A B // B // B/IB // 0

with exact rows. �

Lemma 31.2. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let p : X → Y be a flat morphism of relative dimension r. Let i : D → X
be an effective Cartier divisor with the property that p|D : D → Y is flat of relative
dimension r − 1. Let L = OX(D). For any α ∈ Ak+1(Y ) we have

i∗p∗α = (p|D)∗α

in Ak+r(D) and

c1(L) ∩ p∗α = i∗((p|D)∗α)

in Ak+r(X).

Proof. LetW ⊂ Y be an integral closed subvariety of δ-dimension k+1. By Lemma
31.1 we see that D∩p−1W is an effective Cartier divisor on p−1W . By Lemma 28.4
we see that i∗[p−1W ]k+r+1 = [D ∩W ]k+r = [(p|D)−1(W )]k+r. Since by definition
p∗[W ] = [p−1W ]k+r+1 and (p|D)∗[W ] = [(p|D)−1(W )]k+r we see we have equality of
cycles. Hence if α =

∑
mj [Wj ], then we get i∗α =

∑
mji

∗[Wj ] =
∑
mj(p|D)∗[Wj ]

as cycles. This proves then first equality. To deduce the second from the first apply
Lemma 28.2. �

32. Affine bundles

Lemma 32.1. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let f : X → Y be a flat morphism of relative dimension r. Assume that
for every y ∈ Y , there exists an open neighbourhood U ⊂ Y such that f |f−1(U) :

f−1(U) → U is identified with the morphism U ×Ar → U . Then f∗ : Ak(Y ) →
Ak+r(X) is surjective for all k ∈ Z.

Proof. Let α ∈ Ak+r(X). Write α =
∑
mj [Wj ] with mj 6= 0 and Wj pairwise

distinct integral closed subschemes of δ-dimension k + r. Then the family {Wj} is
locally finite in X. For any quasi-compact open V ⊂ Y we see that f−1(V ) ∩Wj

is nonempty only for finitely many j. Hence the collection Zj = f(Wj) of closures
of images is a locally finite collection of integral closed subschemes of Y .

Consider the fibre product diagrams

f−1(Zj) //

fj

��

X

f

��
Zj // Y

Suppose that [Wj ] ∈ Zk+r(f
−1(Zj)) is rationally equivalent to f∗j βj for some k-

cycle βj ∈ Ak(Zj). Then β =
∑
mjβj will be a k-cycle on Y and f∗β =

∑
mjf

∗
j βj
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will be rationally equivalent to α (see Remark 19.4). This reduces us to the case Y
integral, and α = [W ] for some integral closed subscheme of X dominating Y . In
particular we may assume that d = dimδ(Y ) <∞.

Hence we can use induction on d = dimδ(Y ). If d < k, then Ak+r(X) = 0 and the
lemma holds. By assumption there exists a dense open V ⊂ Y such that f−1(V ) ∼=
V × Ar as schemes over V . Suppose that we can show that α|f−1(V ) = f∗β for
some β ∈ Zk(V ). By Lemma 14.2 we see that β = β′|V for some β′ ∈ Zk(Y ). By
the exact sequence Ak(f−1(Y \V ))→ Ak(X)→ Ak(f−1(V )) of Lemma 19.2 we see
that α − f∗β′ comes from a cycle α′ ∈ Ak+r(f−1(Y \ V )). Since dimδ(Y \ V ) < d
we win by induction on d.

Thus we may assume that X = Y ×Ar. In this case we can factor f as

X = Y ×Ar → Y ×Ar−1 → . . .→ Y ×A1 → Y.

Hence it suffices to do the case r = 1. By the argument in the second paragraph of
the proof we are reduced to the case α = [W ], Y integral, and W → Y dominant.
Again we can do induction on d = dimδ(Y ). If W = Y ×A1, then [W ] = f∗[Y ].
Lastly, W ⊂ Y × A1 is a proper inclusion, then W → Y induces a finite field
extension R(Y ) ⊂ R(W ). Let P (T ) ∈ R(Y )[T ] be the monic irreducible polynomial
such that the generic fibre of W → Y is cut out by P in A1

R(Y ). Let V ⊂ Y be a

nonempty open such that P ∈ Γ(V,OY )[T ], and such that W ∩ f−1(V ) is still cut
out by P . Then we see that α|f−1(V ) ∼rat 0 and hence α ∼rat α′ for some cycle α′

on (Y \ V )×A1. By induction on the dimension we win. �

Remark 32.2. We will see later (Lemma 33.3) that if X is a vectorbundle over
Y then the pullback map Ak(Y ) → Ak+r(X) is an isomorphism. Is this true in
general?

33. Projective space bundle formula

Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Consider
a finite locally free OX -module E of rank r. Our convention is that the projective
bundle associated to E is the morphism

P(E) = Proj
X

(Sym∗(E))
π // X

over X with OP(E)(1) normalized so that π∗(OP(E)(1)) = E . In particular there is
a surjection π∗E → OP(E)(1). We will say informally “let (π : P → X,OP (1)) be
the projective bundle associated to E” to denote the situation where P = P(E) and
OP (1) = OP(E)(1).

Lemma 33.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free OX-module E of rank r. Let (π : P → X,OP (1)) be
the projective bundle associated to E. For any α ∈ Ak(X) the element

π∗ (c1(OP (1))s ∩ π∗α) ∈ Ak+r−1−s(X)

is 0 if s < r − 1 and is equal to α when s = r − 1.

Proof. Let Z ⊂ X be an integral closed subscheme of δ-dimension k. Note that
π∗[Z] = [π−1(Z)] as π−1(Z) is integral of δ-dimension r − 1. If s < r − 1, then by
construction c1(OP (1))s ∩ π∗[Z] is represented by a (k+ r− 1− s)-cycle supported
on π−1(Z). Hence the pushforward of this cycle is zero for dimension reasons.
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Let s = r−1. By the argument given above we see that π∗(c1(OP (1))s∩π∗α) = n[Z]
for some n ∈ Z. We want to show that n = 1. For the same dimension reasons
as above it suffices to prove this result after replacing X by X \ T where T ⊂ Z
is a proper closed subset. Let ξ be the generic point of Z. We can choose el-
ements e1, . . . , er−1 ∈ Eξ which form part of a basis of Eξ. These give rational
sections s1, . . . , sr−1 of OP (1)|π−1(Z) whose common zero set is the closure of the
image a rational section of P(E|Z) → Z union a closed subset whose support
maps to a proper closed subset T of Z. After removing T from X (and corre-
spondingly π−1(T ) from P ), we see that s1, . . . , sn form a sequence of global sec-
tions si ∈ Γ(π−1(Z),Oπ−1(Z)(1)) whose common zero set is the image of a section

Z → π−1(Z). Hence we see successively that

π∗[Z] = [π−1(Z)]

c1(OP (1)) ∩ π∗[Z] = [Z(s1)]

c1(OP (1))2 ∩ π∗[Z] = [Z(s1) ∩ Z(s2)]

. . . = . . .

c1(OP (1))r−1 ∩ π∗[Z] = [Z(s1) ∩ . . . ∩ Z(sr−1)]

by repeated applications of Lemma 25.3. Since the pushforward by π of the image
of a section of π over Z is clearly [Z] we see the result when α = [Z]. We omit
the verification that these arguments imply the result for a general cycle α =∑
nj [Zj ]. �

Lemma 33.2 (Projective space bundle formula). Let (S, δ) be as in Situation 7.1.
Let X be locally of finite type over S. Let E be a finite locally free OX-module E of
rank r. Let (π : P → X,OP (1)) be the projective bundle associated to E. The map⊕r−1

i=0
Ak+i(X) −→ Ak+r−1(P ),

(α0, . . . , αr−1) 7−→ π∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1
is an isomorphism.

Proof. Fix k ∈ Z. We first show the map is injective. Suppose that (α0, . . . , αr−1)
is an element of the left hand side that maps to zero. By Lemma 33.1 we see that

0 = π∗(π
∗α0 + c1(OP (1)) ∩ π∗α1 + . . .+ c1(OP (1))r−1 ∩ π∗αr−1) = αr−1

Next, we see that

0 = π∗(c1(OP (1))∩(π∗α0+c1(OP (1))∩π∗α1+. . .+c1(OP (1))r−2∩π∗αr−2)) = αr−2

and so on. Hence the map is injective.

It remains to show the map is surjective. Let Xi, i ∈ I be the irreducible compo-
nents of X. Then Pi = P(E|Xi), i ∈ I are the irreducible components of P . If the
map is surjective for each of the morphisms Pi → Xi, then the map is surjective
for π : P → X. Details omitted. Hence we may assume X is irreducible. Thus
dimδ(X) <∞ and in particular we may use induction on dimδ(X).

The result is clear if dimδ(X) < k. Let α ∈ Ak+r−1(P ). For any locally closed
subscheme T ⊂ X denote γT :

⊕
Ak+i(T )→ Ak+r−1(π−1(T )) the map

γT (α0, . . . , αr−1) = π∗α0 + . . .+ c1(Oπ−1(T )(1))r−1 ∩ π∗αr−1.
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Suppose for some nonempty open U ⊂ X we have α|π−1(U) = γU (α0, . . . , αr−1).
Then we may choose lifts α′i ∈ Ak+i(X) and we see that α−γX(α′0, . . . , α

′
r−1) is by

Lemma 19.2 rationally equivalent to a k-cycle on PY = P(E|Y ) where Y = X \ U
as a reduced closed subscheme. Note that dimδ(Y ) < dimδ(X). By induction the
result holds for PY → Y and hence the result holds for α. Hence we may replace
X by any nonempty open of X.

In particular we may assume that E ∼= O⊕rX . In this case P(E) = X ×Pr−1. Let us
use the stratification

Pr−1 = Ar−1
∐

Ar−2
∐

. . .
∐

A0

The closure of each stratum is a Pr−1−i which is a representative of c1(O(1))i ∩
[Pr−1]. Hence P has a similar stratification

P = Ur−1
∐

Ur−2
∐

. . .
∐

U0

Let P i be the closure of U i. Let πi : P i → X be the restriction of π to P i. Let
α ∈ Ak+r−1(P ). By Lemma 32.1 we can write α|Ur−1 = π∗α0|Ur−1 for some α0 ∈
Ak(X). Hence the difference α−π∗α0 is the image of some α′ ∈ Ak+r−1(P r−2). By
Lemma 32.1 again we can write α′|Ur−2 = (πr−2)∗α1|Ur−2 for some α1 ∈ Ak+1(X).
By Lemma 31.2 we see that the image of (πr−2)∗α1 represents c1(OP (1))∩π∗α1. We
also see that α−π∗α0−c1(OP (1))∩π∗α1 is the image of some α′′ ∈ Ak+r−1(P r−3).
And so on. �

Lemma 33.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. Let

p : E = Spec(Sym∗(E)) −→ X

be the associated vector bundle over X. Then p∗ : Ak(X) → Ak+r(E) is an iso-
morphism for all k.

Proof. For surjectivity see Lemma 32.1. Let (π : P → X,OP (1)) be the projective
space bundle associated to the finite locally free sheaf E ⊕OX . Let s ∈ Γ(P,OP (1))
correspond to the global section (0, 1) ∈ Γ(X, E ⊕ OX). Let D = Z(s) ⊂ P . Note
that (π|D : D → X,OP (1)|D) is the projective space bundle associated to E . We
denote πD = π|D and OD(1) = OP (1)|D. Moreover, D is an effective Cartier
divisor on P . Hence OP (D) = OP (1) (see Divisors, Lemma 9.20). Also there is an
isomorphism E ∼= P \ D. Denote j : E → P the corresponding open immersion.
For injectivity we use that the kernel of

j∗ : Ak+r(P ) −→ Ak+r(E)

are the cycles supported in the effective Cartier divisor D, see Lemma 19.2. So if
p∗α = 0, then π∗α = i∗β for some β ∈ Ak+r(D). By Lemma 33.2 we may write

β = π∗Dβ0 + . . .+ c1(OD(1))r−1 ∩ π∗Dβr−1.

for some βi ∈ Ak+i(X). By Lemmas 31.2 and 25.6 this implies

π∗α = i∗β = c1(OP (1)) ∩ π∗β0 + . . .+ c1(OD(1))r ∩ π∗βr−1.

Since the rank of E ⊕OX is r + 1 this contradicts Lemma 25.6 unless all α and all
βi are zero. �
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34. The Chern classes of a vector bundle

We can use the projective space bundle formula to define the chern classes of a
rank r vector bundle in terms of the expansion of c1(O(1))r in terms of the lower
powers, see formula (34.1.1). The reason for the signs will be explained later.

Definition 34.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Assume X is integral and n = dimδ(X). Let E be a finite locally free sheaf
of rank r on X. Let (π : P → X,OP (1)) be the projective space bundle associated
to E .

(1) By Lemma 33.2 there are elements ci ∈ An−i(X), i = 0, . . . , r such that
c0 = [X], and

(34.1.1)
∑r

i=0
(−1)ic1(OP (1))i ∩ π∗cr−i = 0.

(2) With notation as above we set ci(E) ∩ [X] = ci as an element of An−i(X).
We call these the chern classes of E on X.

(3) The total chern class of E on X is the combination

c(E) ∩ [X] = c0(E) ∩ [X] + c1(E) ∩ [X] + . . .+ cr(E) ∩ [X]

which is an element of A∗(X) =
⊕

k∈ZAk(X).

Let us check that this does not give a new notion in case the vector bundle has
rank 1.

Lemma 34.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Assume X is integral and n = dimδ(X). Let L be an invertible OX-module. The
first chern class of L on X of Definition 34.1 is equal to the Weil divisor associated
to L by Definition 24.1.

Proof. In this proof we use c1(L)∩[X] to denote the construction of Definition 24.1.
Since L has rank 1 we have P(L) = X and OP(L)(1) = L by our normalizations.
Hence (34.1.1) reads

(−1)1c1(L) ∩ c0 + (−1)0c1 = 0

Since c0 = [X], we conclude c1 = c1(L) ∩ [X] as desired. �

Remark 34.3. We could also rewrite equation 34.1.1 as

(34.3.1)
∑r

i=0
c1(OP (−1))i ∩ π∗cr−i = 0.

but we find it easier to work with the tautological quotient sheaf OP (1) instead of
its dual.

35. Intersecting with chern classes

Definition 35.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. We define, for every
integer k and any 0 ≤ j ≤ r, an operation

cj(E) ∩ − : Zk(X)→ Ak−j(X)

called intersection with the jth chern class of E .

(1) Given an integral closed subscheme i : W → X of δ-dimension k we define

cj(E) ∩ [W ] = i∗(cj(i
∗E) ∩ [W ]) ∈ Ak−j(X)

where cj(i
∗E) ∩ [W ] is as defined in Definition 34.1.
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(2) For a general k-cycle α =
∑
ni[Wi] we set

cj(E) ∩ α =
∑

nicj(E) ∩ [Wi]

Again, if E has rank 1 then this agrees with our previous definition.

Lemma 35.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. Let (π : P → X,OP (1)) be
the projective bundle associated to E. For α ∈ Zk(X) the elements cj(E) ∩ α are
the unique elements αj of Ak−j(X) such that α0 = α and∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

holds in the Chow group of P .

Proof. The uniqueness of α0, . . . , αr such that α0 = α and such that the displayed
equation holds follows from the projective space bundle formula Lemma 33.2. The
identity holds by definition for α = [X]. For a general k-cycle α on X write
α =

∑
na[Wa] with na 6= 0, and ia : Wa → X pairwise distinct integral closed

subschemes. Then the family {Wa} is locally finite on X. Set Pa = π−1(Wa) =
P(E|Wa

). Denote i′a : Pa → P the corresponding closed immersions. Consider the
fibre product diagram

P ′

π′

��

∐
Pa

πa

��

i′a

// P

π

��
X ′

∐
Wa

ia // X

The morphism p : X ′ → X is proper. Moreover π′ : P ′ → X ′ together with
the invertible sheaf OP ′(1) =

∐
OPa(1) which is also the pullback of OP (1) is the

projective bundle associated to E ′ = p∗E . By definition

cj(E) ∩ [α] =
∑

ia,∗(cj(E|Wa
) ∩ [Wa]).

Write βa,j = cj(E|Wa) ∩ [Wa] which is an element of Ak−j(Wa). We have∑r

i=0
(−1)ic1(OPa(1))i ∩ π∗a(βa,r−i) = 0

for each a by definition. Thus clearly we have∑r

i=0
(−1)ic1(OP ′(1))i ∩ (π′)∗(βr−i) = 0

with βj =
∑
naβa,j ∈ Ak−j(X ′). Denote p′ : P ′ → P the morphism

∐
i′a. We have

π∗p∗βj = p′∗(π
′)∗βj by Lemma 15.1. By the projection formula of Lemma 25.6 we

conclude that ∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗βj) = 0

Since p∗βj is a representative of cj(E) ∩ α we win. �

This characterization of chern classes allows us to prove many more properties.

Lemma 35.3. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. If α ∼rat β are rationally
equivalent k-cycles on X then cj(E) ∩ α = cj(E) ∩ β in Ak−j(X).
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Proof. By Lemma 35.2 the elements αj = cj(E)∩α, j ≥ 1 and βj = cj(E)∩β, j ≥ 1
are uniquely determined by the same equation in the chow group of the projective
bundle associated to E . (This of course relies on the fact that flat pullback is
compatible with rational equivalence, see Lemma 20.1.) Hence they are equal. �

In other words capping with chern classes of finite locally free sheaves factors
through rational equivalence to give maps

cj(E) ∩ − : Ak(X)→ Ak−j(X).

Lemma 35.4. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on Y . Let f : X → Y be a flat
morphism of relative dimension r. Let α be a k-cycle on Y . Then

f∗(cj(E) ∩ α) = cj(f
∗E) ∩ f∗α

Proof. Write αj = cj(E) ∩ α, so α0 = α. By Lemma 35.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(αr−i) = 0

in the chow group of the projective bundle (π : P → Y,OP (1)) associated to E .
Consider the fibre product diagram

PX = P(f∗E)
fP

//

πX

��

P

π

��
X

f // Y

Note that OPX (1) = f∗POP (1). By Lemmas 25.4 and 14.3 we see that∑r

i=0
(−1)ic1(OPX (1))i ∩ π∗X(f∗αr−i) = 0

holds in the chow group of PX . Since f∗α0 = f∗α the lemma follows from the
uniqueness in Lemma 35.2. �

Lemma 35.5. Let (S, δ) be as in Situation 7.1. Let X, Y be locally of finite type
over S. Let E be a finite locally free sheaf of rank r on X. Let p : X → Y be a
proper morphism. Let α be a k-cycle on X. Let E be a finite locally free sheaf on
Y . Then

p∗(cj(p
∗E) ∩ α) = cj(E) ∩ p∗α

Proof. Write αj = cj(p
∗E) ∩ α, so α0 = α. By Lemma 35.2 we have∑r

i=0
(−1)ic1(OP (1))i ∩ π∗X(αr−i) = 0

in the chow group of the projective bundle (πX : PX → X,OPX (1)) associated to
p∗E . Let (π : P → Y,OP (1)) be the projective bundle associated to E . Consider
the fibre product diagram

PX = P(p∗E)
pP
//

πX

��

P

π

��
X

p // Y
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Note that OPX (1) = p∗POP (1). Pushing the displayed equality above to P and
using Lemmas 15.1, 25.6 and 14.3 we see that∑r

i=0
(−1)ic1(OP (1))i ∩ π∗(p∗αr−i) = 0

holds in the chow group of P . Since p∗α0 = p∗α the lemma follows from the
uniqueness in Lemma 35.2. �

Lemma 35.6. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E, F be finite locally free sheaves on X of ranks r and s. For any α ∈ Ak(X)
we have

ci(E) ∩ cj(F) ∩ α = cj(F) ∩ ci(E) ∩ α
as elements of Ak−i−j(X).

Proof. Consider

π : P(E)×X P(F) −→ X

with invertible sheaves L = pr∗1OP(E)(1) and N = pr∗2OP(F)(1). Write αi,j for the
left hand side and βi,j for the right hand side. Also write αj = cj(F) ∩ α and
βi = ci(E) ∩ α. In particular this means that α0 = α = β0, and α0,j = αj = β0,j ,
αi,0 = βi = βi,0. From Lemma 35.2 (pulled back to the space above using Lemma
25.4 for the first two) we see that

0 =
∑

j=0,...,s
(−1)jc1(N )j ∩ π∗αs−j

0 =
∑

i=0,...,r
(−1)ic1(L)i ∩ π∗βr−i

0 =
∑

i=0,...,r
(−1)ic1(L)i ∩ π∗αr−i,s−j

0 =
∑

j=0,...,s
(−1)jc1(N )j ∩ π∗βr−i,s−j

We can combine the first and the third of these to get

(−1)r+sc1(L)r ∩ c1(N )s ∩ π∗α

=
∑

j=1,...,s
(−1)r+j−1c1(L)r ∩ c1(N )j ∩ π∗αs−j

=
∑

j=1,...,s
(−1)j−1+rc1(N )j ∩ c1(L)r ∩ π∗α0,s−j

=
∑s

j=1

∑r

i=1
(−1)i+jc1(N )j ∩ c1(L)i ∩ π∗αr−i,s−j

using that capping with c1(L) commutes with capping with c1(N ). In exactly the
same way one shows that

(−1)r+sc1(L)r ∩ c1(N )s ∩ π∗α =
∑s

j=1

∑r

i=1
(−1)i+jc1(N )j ∩ c1(L)i ∩ π∗βr−i,s−j

By the projective space bundle formula Lemma 33.2 applied twice these represen-
tations are unique. Whence the result. �

36. Polynomial relations among chern classes

Definition 36.1. Let P (xi,j) ∈ Z[xi,j ] be a polynomial. We write P as a finite
sum ∑

s

∑
I=((i1,j1),(i2,j2),...,(is,js))

aIxi1,j1 . . . xis,js .
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Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over S. Let Ei be a
finite collection of finite locally free sheaves on X. We say that P is a polynomial
relation among the chern classes and we write P (cj(Ei)) = 0 if for any morphism
f : Y → X of an integral scheme locally of finite type over S the cycle∑

s

∑
I=((i1,j1),(i2,j2),...,(is,js))

aI cj1(f∗Ei1) ∩ . . . ∩ cjs(f∗Eis) ∩ [Y ]

is zero in A∗(Y ).

This is not an elegant definition but it will do for now. It makes sense because
we showed in Lemma 35.6 that capping with chern classes of vector bundles is
commutative. By our definitions and results above this is equivalent with requiring
all the operations∑

s

∑
I
aI cj1(f∗Ei1) ∩ . . . ∩ cjs(f∗Eis) ∩ − : A∗(Y )→ A∗(Y )

to be zero for all morphisms f : Y → X which are locally of finite type.

An example of such a relation is the relation

c1(L ⊗OX N ) = c1(L) + c1(N )

proved in Lemma 25.2. More generally, here is what happens when we tensor an
arbitrary locally free sheaf by an invertible sheaf.

Lemma 36.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf of rank r on X. Let L be an invertible sheaf
on X. Then

(36.2.1) ci(E ⊗ L) =
∑i

j=0

(
r − i+ j

j

)
ci−j(E)c1(L)j

is a valid polynomial relation in the sense described above.

Proof. This should hold for any triple (X, E ,L). In particular it should hold when
X is integral, and in fact by definition of a polynomial relation it is enough to prove
it holds when capping with [X] for such X. Thus assume that X is integral. Let
(π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) be the projective space bundle
associated to E , resp. E ⊗ L. Consider the canonical morphism

P

π   

g
// P ′

π′~~
X

see Constructions, Lemma 20.1. It has the property that g∗OP ′(1) = OP (1)⊗π∗L.
This means that we have∑r

i=0
(−1)i(ξ + x)i ∩ π∗(cr−i(E ⊗ L) ∩ [X]) = 0

in A∗(P ), where ξ represents c1(OP (1)) and x represents c1(π∗L). By simple alge-
bra this is equivalent to∑r

i=0
(−1)iξi

(∑r

j=i
(−1)j−i

(
j

i

)
xj−i ∩ π∗(cr−j(E ⊗ L) ∩ [X])

)
= 0

Comparing with Equation (34.1.1) it follows from this that

cr−i(E) ∩ [X] =
∑r

j=i

(
j

i

)
(−c1(L))j−i ∩ cr−j(E ⊗ L) ∩ [X]
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Reworking this (getting rid of minus signs, and renumbering) we get the desired
relation. �

Some example cases of (36.2.1) are

c1(E ⊗ L) = c1(E) + rc1(L)

c2(E ⊗ L) = c2(E) + (r − 1)c1(E)c1(L) +

(
r

2

)
c1(L)2

c3(E ⊗ L) = c3(E) + (r − 2)c2(E)c1(L) +

(
r − 1

2

)
c1(E)c1(L)2 +

(
r

3

)
c1(L)3

37. Additivity of chern classes

All of the preliminary lemmas follow trivially from the final result.

Lemma 37.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit into a
short exact sequence

0→ OX → E → F → 0

Then
cr(E) = 0, cj(E) = cj(F), j = 0, . . . , r − 1

are valid polynomial relations among chern classes.

Proof. By Definition 36.1 it suffices to show that if X is integral then cj(E)∩ [X] =
cj(F) ∩ [X]. Let (π : P → X,OP (1)), resp. (π′ : P ′ → X,OP ′(1)) denote the
projective space bundle associated to E , resp. F . The surjection E → F gives rise
to a closed immersion

i : P ′ −→ P

over X. Moreover, the element 1 ∈ Γ(X,OX) ⊂ Γ(X, E) gives rise to a global
section s ∈ Γ(P,OP (1)) whose zero set is exactly P ′. Hence P ′ is an effective
Cartier divisor on P such that OP (P ′) ∼= OP (1). Hence we see that

c1(OP (1)) ∩ π∗α = i∗((π
′)∗α)

for any cycle class α on X by Lemma 31.2. By Lemma 35.2 we see that αj =
cj(F) ∩ [X], j = 0, . . . , r − 1 satisfy∑r−1

j=0
(−1)jc1(OP ′(1))j ∩ (π′)∗αj = 0

Pushing this to P and using the remark above as well as Lemma 25.6 we get∑r−1

j=0
(−1)jc1(OP (1))j+1 ∩ π∗αj = 0

By the uniqueness of Lemma 35.2 we conclude that cr(E)∩[X] = 0 and cj(E)∩[X] =
αj = cj(F) ∩ [X] for j = 0, . . . , r − 1. Hence the lemma holds. �

Lemma 37.2. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E, F be finite locally free sheaves on X of ranks r, r − 1 which fit into a
short exact sequence

0→ L → E → F → 0

where L is an invertible sheaf Then

c(E) = c(L)c(F)

is a valid polynomial relation among chern classes.
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Proof. This relation really just says that ci(E) = ci(F)+c1(L)ci−1(F). By Lemma
37.1 we have cj(E ⊗L⊗−1) = cj(E ⊗L⊗−1) for j = 0, . . . , r (were we set cr(F) = 0
by convention). Applying Lemma 36.2 we deduce

i∑
j=0

(
r − i+ j

j

)
(−1)jci−j(E)c1(L)j =

i∑
j=0

(
r − 1− i+ j

j

)
(−1)jci−j(F)c1(L)j

Setting ci(E) = ci(F) + c1(L)ci−1(F) gives a “solution” of this equation. The
lemma follows if we show that this is the only possible solution. We omit the
verification. �

Lemma 37.3. Let (S, δ) be as in Situation 7.1. Let X be a scheme locally of finite
type over S. Suppose that E sits in an exact sequence

0→ E1 → E → E2 → 0

of finite locally free sheaves Ei of rank ri. Then

c(E) = c(E1)c(E2)

is a polynomial relation among chern classes.

Proof. We may assume that X is integral and we have to show the identity when
capping against [X]. By induction on r1. The case r1 = 1 is Lemma 37.2. Assume
r1 > 1. Let (π : P → X,OP (1)) denote the projective space bundle associated to
E1. Note that

(1) π∗ : A∗(X)→ A∗(P ) is injective, and
(2) π∗E1 sits in a short exact sequence 0 → F → π∗E1 → L → 0 where L is

invertible.

The first assertion follows from the projective space bundle formula and the second
follows from the definition of a projective space bundle. (In fact L = OP (1).) Let
Q = π∗E/F , which sits in an exact sequence 0 → L → Q → π∗E2 → 0. By
induction we have

c(π∗E) ∩ [P ] = c(F) ∩ c(π∗E/F) ∩ [P ]

= c(F) ∩ c(L) ∩ c(π∗E2) ∩ [P ]

= c(π∗E1) ∩ c(π∗E2) ∩ [P ]

Since [P ] = π∗[X] we win by Lemma 35.4. �

Lemma 37.4. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let Li, i = 1, . . . , r be invertible OX-modules on X. Let E be a finite locally free
rank r OX-module endowed with a filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ . . . ⊂ Er = E

such that Ei/Ei−1 ∼= Li. Set c1(Li) = xi. Then

c(E) =
∏r

i=1
(1 + xi)

is a valid polynomial relation among chern classes in the sense of Definition 36.1.

Proof. Apply Lemma 37.2 and induction. �
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38. The splitting principle

In our setting it is not so easy to say what the splitting principle exactly says/is.
Here is a possible formulation.

Lemma 38.1. Let (S, δ) be as in Situation 7.1. Let X be locally of finite type over
S. Let E be a finite locally free sheaf E on X of rank r. There exists a projective
flat morphism of relative dimension d π : P → X such that

(1) for any morphism f : Y → X the map π∗Y : A∗(Y ) → A∗+r(Y ×X P ) is
injective, and

(2) π∗E has a filtration with successive quotients L1, . . . ,Lr for some invertible
OP -modules Li.

Proof. Omitted. Hint: Use a composition of projective space bundles, i.e., a flag
variety over X. �

The splitting principle refers to the practice of symbolically writing

c(E) =
∏

(1 + xi)

with xi = c1(Li). The expressions xi are then called the Chern roots of E . In order
to prove polynomial relations among chern classes of vector bundles it is permissible
to do calculations using the chern roots.

For example, let us calculate the chern classes of the dual vector bundle E∧. Note
that if E has a filtration with subquotients invertible sheaves Li then E∧ has a
filtration with subquotients the invertible sheaves L−1i . Hence if xi are the chern
roots of E , then the −xi are the chern roots of E∧. It follows that

cj(E∧) = (−1)jcj(E)

is a valid polynomial relation among chern classes.

In the same vain, let us compute the chern classes of a tensor product of vector
bundles. Namely, suppose that E , F are finite locally free of ranks r, s. Write

c(E) =
∏r

i=1
(1 + xi), c(E) =

∏s

j=1
(1 + yj)

where xi, yj are the chern roots of E , F . Then we see that

c(E ⊗OX F) =
∏

i,j
(1 + xi + yj)

Here are some examples of what this means in terms of chern classes

c1(E ⊗ F) = rc1(F) + sc1(E)

c2(E ⊗ F) = r2c2(F) + rsc1(F)c1(E) + s2c2(E)

39. Chern classes and tensor product

We define the Chern character of a finite locally free sheaf of rank r to be the formal
expression

ch(E) :=
∑r

i=1
exi

if the xi are the chern roots of E . Writing this in terms of chern classes ci = ci(E)
we see that

ch(E) = r+c1+
1

2
(c21−2c2)+

1

6
(c31−3c1c2+3c3)+

1

24
(c41−4c21c2+4c1c3+2c22−4c4)+. . .
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What does it mean that the coefficients are rational numbers? Well this simply
means that we think of these as operations

chj(E) ∩ − : Ak(X) −→ Ak−j(X)⊗Z Q

and we think of polynomial relations among them as relations between these oper-
ations with values in the groups Ak−j(Y ) ⊗Z Q for varying Y . By the above we
have in case of an exact sequence

0→ E1 → E → E2 → 0

that
ch(E) = ch(E1) + ch(E2)

Using the Chern character we can express the compatibility of the chern classes
and tensor product as follows:

ch(E1 ⊗OX E2) = ch(E1)ch(E2)

This follows directly from the discussion of the chern roots of the tensor product
in the previous section.

40. Todd classes

A final class associated to a vector bundle E of rank r is its Todd class Todd(E). In
terms of the chern roots x1, . . . , xr it is defined as

Todd(E) =
∏r

i=1

xi
1− e−xi

In terms of the chern classes ci = ci(E) we have

Todd(E) = 1+
1

2
c1 +

1

12
(c21 + c2)+

1

24
c1c2 +

1

720
(−c41 +4c21c2 +3c22 + c1c3− c4)+ . . .

We have made the appropriate remarks about denominators in the previous section.
It is the case that given an exact sequence

0→ E1 → E → E2 → 0

we have
Todd(E) = Todd(E1)Todd(E2).

41. Grothendieck-Riemann-Roch

Let (S, δ) be as in Situation 7.1. Let X,Y be locally of finite type over S. Let E
be a finite locally free sheaf E on X of rank r. Let f : X → Y be a proper smooth
morphism. Assume that Rif∗E are locally free sheaves on Y of finite rank (for
example if Y is a point). The Grothendieck-Riemann-Roch theorem implies that
in this case we have

f∗(Todd(TX/Y )ch(E)) =
∑

(−1)ich(Rif∗E)

Here
TX/Y = HomOX (ΩX/Y ,OX)

is the relative tangent bundle of X over Y . The theorem is more general and
becomes easier to prove when formulated in correct generality. We will return to
this elsewhere (insert future reference here).
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