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1. Introduction

In this chapter we talk about divided power algebras and what you can do with
them. A reference is the book [Ber74].

2. Divided powers

In this section we collect some results on divided power rings. We will use the
convention 0! = 1 (as empty products should give 1).

Definition 2.1. Let A be a ring. Let I be an ideal of A. A collection of maps
γn : I → I, n > 0 is called a divided power structure on I if for all n ≥ 0, m > 0,
x, y ∈ I, and a ∈ A we have

(1) γ1(x) = x, we also set γ0(x) = 1,

(2) γn(x)γm(x) = (n+m)!
n!m! γn+m(x),

(3) γn(ax) = anγn(x),
(4) γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(5) γn(γm(x)) = (nm)!
n!(m!)n γnm(x).

Note that the rational numbers (n+m)!
n!m! and (nm)!

n!(m!)n occurring in the definition are

in fact integers; the first is the number of ways to choose n out of n + m and the
second counts the number of ways to divide a group of nm objects into n groups
of m. We make some remarks about the definition which show that γn(x) is a
replacement for xn/n! in I.

Lemma 2.2. Let A be a ring. Let I be an ideal of A.

(1) If γ is a divided power structure on I, then n!γn(x) = xn for n ≥ 1, x ∈ I.
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2 DIVIDED POWER ALGEBRA

Assume A is torsion free as a Z-module.

(2) A divided power structure on I, if it exists, is unique.
(3) If γn : I → I are maps then

γ is a divided power structure⇔ n!γn(x) = xn ∀x ∈ I, n ≥ 1.

(4) The ideal I has a divided power structure if and only if there exists a set of
generators xi of I as an ideal such that for all n ≥ 1 we have xni ∈ (n!)I.

Proof. Proof of (1). If γ is a divided power structure, then condition (2) im-
plies that nγn(x) = γ1(x)γn−1(x). Hence by induction and condition (1) we get
n!γn(x) = xn.

Assume A is torsion free as a Z-module. Proof of (2). This is clear from (1).

Proof of (3). Assume that n!γn(x) = xn for all x ∈ I and n ≥ 1. Since A ⊂ A⊗Z Q
it suffices to prove (1) – (5) in case A is a Q-algebra. In this case γn(x) = xn/n!
and it is straightforward to verify (1) – (5), for example (4) corresponds to the
binomial formula

(x+ y)n =
∑ n!

i!(n− i)!
xiyn−i

We encourage the reader to do the verifications to make sure that we have the
coefficients correct.

Proof of (4). Assume we have generators xi of I as an ideal such that xni ∈ (n!)I
for all n ≥ 1. We claim that for all x ∈ I we have xn ∈ (n!)I. If the claim holds
then we can set γn(x) = xn/n! which is a divided power structure by (3). To prove
the claim we note that it holds for x = axi. Hence we see that the claim holds
for a set of generators of I as an abelian group. By induction on the length of an
expression in terms of these, it suffices to prove the claim for x+ y if it holds for x
and y. This follows immediately from the binomial theorem. �

Example 2.3. Let p be a prime number. Let A be a ring such that every integer
n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Then I = pA has a
canonical divided power structure. Namely, given x = pa ∈ A we set

γn(x) =
pn

n!
an

The reader verifies immediately that pn/n! ∈ Z(p) so that the definition makes sense.
It is a straightforward exercise to verify that conditions (1) – (5) of Definition 2.1
are satisfied. Alternatively, it is clear that the definition works for A0 = Z(p) and
then the result follows from Lemma 4.2.

Lemma 2.4. Let A be a ring. Let I be an ideal of A. Let γn : I → I, n ≥ 1 be a
sequence of maps. Assume

(a) (1), (3), and (4) of Definition 2.1 hold for all x, y ∈ I, and
(b) properties (2) and (5) hold for x in set of generators of I as an ideal.

Then γ is a divided power structure on I.

Proof. The numbers (1), (2), (3), (4), (5) in this proof refer to the conditions listed
in Definition 2.1. Applying (3) we see that if (2) and (5) hold for x then (2) and
(5) hold for ax for all a ∈ A. Hence we see (b) implies (2) and (5) hold for a set
of generators of I as an abelian group. Hence, by induction of the length of an
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DIVIDED POWER ALGEBRA 3

expression in terms of these it suffices to prove that, given x, y ∈ I such that (2)
and (5) hold for x and y, then (2) and (5) hold for x+ y.

Proof of (2) for x+ y. By (4) we have

γn(x+ y)γm(x+ y) =
∑

i+j=n, k+l=m
γi(x)γk(x)γj(y)γl(y)

Using (2) for x and y this equals∑ (i+ k)!

i!k!

(j + l)!

j!l!
γi+k(x)γj+l(y)

Comparing this with the expansion

γn+m(x+ y) =
∑

γa(x)γb(y)

we see that we have to prove that given a+ b = n+m we have∑
i+k=a, j+l=b, i+j=n, k+l=m

(i+ k)!

i!k!

(j + l)!

j!l!
=

(n+m)!

n!m!
.

Instead of arguing this directly, we note that the result is true for the ideal I = (x, y)
in the polynomial ring Q[x, y] because γn(f) = fn/n!, f ∈ I defines a divided power
structure on I. Hence the equality of rational numbers above is true.

Proof of (5) for x+ y given that (1) – (4) hold and that (5) holds for x and y. We
will again reduce the proof to an equality of rational numbers. Namely, using (4) we
can write γn(γm(x+y)) = γn(

∑
γi(x)γj(y)). Using (4) we can write γn(γm(x+y))

as a sum of terms which are products of factors of the form γk(γi(x)γj(y)). If i > 0
then

γk(γi(x)γj(y)) = γj(y)kγk(γi(x))

=
(ki)!

k!(i!)k
γj(y)kγki(x)

=
(ki)!

k!(i!)k
(kj)!

k!(j!)k
γik(x)γkj(y)

using (3) in the first equality, (5) for x in the second, and (2) exactly k times in
the third. Using (5) for y we see the same equality holds when i = 0. Continuing
like this using all axioms but (5) we see that we can write

γn(γm(x+ y)) =
∑

i+j=nm
cijγi(x)γj(y)

for certain universal constants cij ∈ Z. Again the fact that the equality is valid
in the polynomial ring Q[x, y] implies that the coefficients cij are all equal to
(nm)!/n!(m!)n as desired. �

Lemma 2.5. Let A be a ring with two ideals I, J ⊂ A. Let γ be a divided power
structure on I and let δ be a divided power structure on J . Then

(1) γ and δ agree on IJ ,
(2) if γ and δ agree on I ∩ J then they are the restriction of a unique divided

power structure ε on I + J .
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4 DIVIDED POWER ALGEBRA

Proof. Let x ∈ I and y ∈ J . Then

γn(xy) = ynγn(x) = n!δn(y)γn(x) = δn(y)xn = δn(xy).

Hence γ and δ agree on a set of (additive) generators of IJ . By property (4) of
Definition 2.1 it follows that they agree on all of IJ .

Let z ∈ I + J . Write z = x+ y with x ∈ I and y ∈ J . Then we set

εn(z) =
∑

γi(x)δn−i(y)

To see that this is well defined, suppose that z = x′ + y′ is another representation
with x′ ∈ I and y′ ∈ J . Then w = x− x′ = y′ − y ∈ I ∩ J . Hence∑

i+j=n
γi(x)δj(y) =

∑
i+j=n

γi(x
′ + w)δj(y)

=
∑

i′+l+j=n
γi′(x

′)γl(w)δj(y)

=
∑

i′+l+j=n
γi′(x

′)δl(w)δj(y)

=
∑

i′+j′=n
γi′(x

′)δj′(y + w)

=
∑

i′+j′=n
γi′(x

′)δj′(y
′)

as desired. Next, we prove conditions (1) – (5) of Definition 2.1. Properties (1) and
(3) are clear. To see (4), suppose that z = x+ y and z′ = x′+ y′ with x, x′ ∈ I and
y, y′ ∈ J and compute

εn(z + z′) =
∑

a+b=n
γi(x+ x′)δj(y + y′)

=
∑

i+i′+j+j′=n
γi(x)γi′(x

′)δj(y)δj′(y
′)

=
∑

k=0,...,n

∑
i+j=k

γi(x)δj(y)
∑

i′+j′=n−k
γi′(x

′)δj′(y
′)

=
∑

k=0,...,n
εk(z)εn−k(z′)

as desired. Now we see that it suffices to prove (2) and (5) for elements of I or J ,
see Lemma 2.4. This is clear because γ and δ are divided power structures. �

Lemma 2.6. Let p be a prime number. Let A be a ring, let I ⊂ A be an ideal, and
let γ be a divided power structure on I. Assume p is nilpotent in A/I. Then I is
locally nilpotent if and only if p is nilpotent in A.

Proof. If pN = 0 in A, then for x ∈ I we have xpN = (pN)!γN (x) = 0 because
(pN)! is divisible by pN . Conversely, assume I is locally nilpotent. We’ve also
assumed that p is nilpotent in A/I, hence pr ∈ I for some r, hence pr nilpotent,
hence p nilpotent. �

3. Divided power rings

There is a category of divided power rings. Here is the definition.

Definition 3.1. A divided power ring is a triple (A, I, γ) where A is a ring, I ⊂ A
is an ideal, and γ = (γn)n≥1 is a divided power structure on I. A homomorphism
of divided power rings ϕ : (A, I, γ)→ (B, J, δ) is a ring homomorphism ϕ : A→ B
such that ϕ(I) ⊂ J and such that δn(ϕ(x)) = ϕ(γn(x)) for all x ∈ I.
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DIVIDED POWER ALGEBRA 5

We sometimes say “let (B, J, δ) be a divided power algebra over (A, I, γ)” to indicate
that (B, J, δ) is a divided power ring which comes equipped with a homomorphism
of divided power rings (A, I, γ)→ (B, J, δ).

Lemma 3.2. The category of divided power rings has all limits and they agree with
limits in the category of rings.

Proof. The empty limit is the zero ring (that’s weird but we need it). The product
of a collection of divided power rings (At, It, γt), t ∈ T is given by (

∏
At,
∏
It, γ)

where γn((xt)) = (γt,n(xt)). The equalizer of α, β : (A, I, γ) → (B, J, δ) is just
C = {a ∈ A | α(a) = β(a)} with ideal C ∩ I and induced divided powers. It follows
that all limits exist, see Categories, Lemma 14.10. �

The following lemma illustrates a very general category theoretic phenomenon in
the case of divided power algebras.

Lemma 3.3. Let C be the category of divided power rings. Let F : C → Sets be a
functor. Assume that

(1) there exists a cardinal κ such that for every f ∈ F (A, I, γ) there exists
a morphism (A′, I ′, γ′) → (A, I, γ) of C such that f is the image of f ′ ∈
F (A′, I ′, γ′) and |A′| ≤ κ, and

(2) F commutes with limits.

Then F is representable, i.e., there exists an object (B, J, δ) of C such that

F (A, I, γ) = HomC((B, J, δ), (A, I, γ))

functorially in (A, I, γ).

Proof. This is a special case of Categories, Lemma 40.1. �

Lemma 3.4. The category of divided power rings has all colimits.

Proof. The empty colimit is Z with divided power ideal (0). Let’s discuss general
colimits. Let C be a category and let c 7→ (Ac, Ic, γc) be a diagram. Consider the
functor

F (B, J, δ) = limc∈C Hom((Ac, Ic, γc), (B, J, δ))

Note that any f = (fc)c∈C ∈ F (B, J, δ) has the property that all the images fc(Ac)
generate a subring B′ of B of bounded cardinality κ and that all the images fc(Ic)
generate a divided power sub ideal J ′ of B′. And we get a factorization of f as a f ′

in F (B′) followed by the inclusion B′ → B. Also, F commutes with limits. Hence
we may apply Lemma 3.3 to see that F is representable and we win. �

Remark 3.5. The forgetful functor (A, I, γ) 7→ A does not commute with colimits.
For example, let

(B, J, δ) // (B′′, J ′′, δ′′)

(A, I, γ) //

OO

(B′, J ′, δ′)

OO

be a pushout in the category of divided power rings. Then in general the map
B⊗AB

′ → B′′ isn’t an isomorphism. (It is always surjective.) An explicit example
is given by (A, I, γ) = (Z, (0), ∅), (B, J, δ) = (Z/4Z, 2Z/4Z, δ), and (B′, J ′, δ′) =
(Z/4Z, 2Z/4Z, δ′) where δ2(2) = 2 and δ′2(2) = 0 and all higher divided powers
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6 DIVIDED POWER ALGEBRA

equal to zero. Then (B′′, J ′′, δ′′) = (F2, (0), ∅) which doesn’t agree with the tensor
product. However, note that it is always true that

B′′/J ′′ = B/J ⊗A/I B
′/J ′

as can be seen from the universal property of the pushout by considering maps into
divided power algebras of the form (C, (0), ∅).

4. Extending divided powers

Here is the definition.

Definition 4.1. Given a divided power ring (A, I, γ) and a ring map A → B we
say γ extends to B if there exists a divided power structure γ̄ on IB such that
(A, I, γ)→ (B, IB, γ̄) is a homomorphism of divided power rings.

Lemma 4.2. Let (A, I, γ) be a divided power ring. Let A → B be a ring map.
If γ extends to B then it extends uniquely. Assume (at least) one of the following
conditions holds

(1) IB = 0,
(2) I is principal, or
(3) A→ B is flat.

Then γ extends to B.

Proof. Any element of IB can be written as a finite sum
∑
bixi with bi ∈ B and

xi ∈ I. If γ extends to γ̄ on IB then γ̄n(xi) = γn(xi). Thus conditions (3) and (4)
imply that

γ̄n(
∑

bixi) =
∑

n1+...+nt=n

∏t

i=1
bni
i γni

(xi)

Thus we see that γ̄ is unique if it exists.

If IB = 0 then setting γ̄n(0) = 0 works. If I = (x) then we define γ̄n(bx) = bnγn(x).
This is well defined: if b′x = bx, i.e., (b− b′)x = 0 then

bnγn(x)− (b′)nγn(x) = (bn − (b′)n)γn(x)

= (bn−1 + . . .+ (b′)n−1)(b− b′)γn(x) = 0

because γn(x) is divisible by x and hence annihilated by b − b′. Next, we prove
conditions (1) – (5) of Definition 2.1. Parts (1), (2), (3), (5) are obvious from
the construction. For (4) suppose that y, z ∈ IB, say y = bx and z = cx. Then
y + z = (b+ c)x hence

γ̄n(y + z) = (b+ c)nγn(x)

=
∑ n!

i!(n− i)!
bicn−iγn(x)

=
∑

bicn−iγi(x)γn−i(x)

=
∑

γ̄i(y)γ̄n−i(z)

as desired.

Assume A→ B is flat. Suppose that b1, . . . , br ∈ B and x1, . . . , xr ∈ I. Then

γ̄n(
∑

bixi) =
∑

be11 . . . berr γe1(x1) . . . γer (xr)
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DIVIDED POWER ALGEBRA 7

where the sum is over e1 + . . . + er = n if γ̄n exists. Next suppose that we have
c1, . . . , cs ∈ B and aij ∈ A such that bi =

∑
aijcj . Setting yj =

∑
aijxi we claim

that ∑
be11 . . . berr γe1(x1) . . . γer (xr) =

∑
cd1
1 . . . cds

s γd1(y1) . . . γds(ys)

in B where on the right hand side we are summing over d1 + . . .+ ds = n. Namely,
using the axioms of a divided power structure we can expand both sides into a sum
with coefficients in Z[aij ] of terms of the form cd1

1 . . . cds
s γe1(x1) . . . γer (xr). To see

that the coefficients agree we note that the result is true in Q[x1, . . . , xr, c1, . . . , cs, aij ]
with γ the unique divided power structure on (x1, . . . , xr). By Lazard’s theorem
(Algebra, Theorem 78.4) we can write B as a directed colimit of finite free A-
modules. In particular, if z ∈ IB is written as z =

∑
xibi and z =

∑
x′i′b

′
i′ ,

then we can find c1, . . . , cs ∈ B and aij , a
′
i′j ∈ A such that bi =

∑
aijcj and

b′i′ =
∑
a′i′jcj such that yj =

∑
xiaij =

∑
x′i′a

′
i′j . Hence the procedure above

gives a well defined map γ̄n on IB. By construction γ̄ satisfies conditions (1), (3),
and (4). Moreover, for x ∈ I we have γ̄n(x) = γn(x). Hence it follows from Lemma
2.4 that γ̄ is a divided power structure on IB. �

Lemma 4.3. Let (A, I, γ) be a divided power ring.

(1) If ϕ : (A, I, γ)→ (B, J, δ) is a homomorphism of divided power rings, then
Ker(ϕ) ∩ I is preserved by γn for all n ≥ 1.

(2) Let a ⊂ A be an ideal and set I ′ = I ∩ a. The following are equivalent
(a) I ′ is preserved by γn for all n > 0,
(b) γ extends to A/a, and
(c) there exist a set of generators xi of I ′ as an ideal such that γn(xi) ∈ I ′

for all n > 0.

Proof. Proof of (1). This is clear. Assume (2)(a). Define γ̄n(x mod I ′) = γn(x) mod
I ′ for x ∈ I. This is well defined since γn(x+ y) = γn(x) mod I ′ for y ∈ I ′ by Def-
inition 2.1 (4) and the fact that γj(y) ∈ I ′ by assumption. It is clear that γ̄ is
a divided power structure as γ is one. Hence (2)(b) holds. Also, (2)(b) implies
(2)(a) by part (1). It is clear that (2)(a) implies (2)(c). Assume (2)(c). Note that
γn(x) = anγn(xi) ∈ I ′ for x = axi. Hence we see that γn(x) ∈ I ′ for a set of
generators of I ′ as an abelian group. By induction on the length of an expression
in terms of these, it suffices to prove ∀n : γn(x + y) ∈ I ′ if ∀n : γn(x), γn(y) ∈ I ′.
This follows immediately from the fourth axiom of a divided power structure. �

Lemma 4.4. Let (A, I, γ) be a divided power ring. Let E ⊂ I be a subset. Then
the smallest ideal J ⊂ I preserved by γ and containing all f ∈ E is the ideal J
generated by γn(f), n ≥ 1, f ∈ E.

Proof. Follows immediately from Lemma 4.3. �

Lemma 4.5. Let (A, I, γ) be a divided power ring. Let p be a prime. If p is
nilpotent in A/I, then

(1) the p-adic completion A∧ = limeA/p
eA surjects onto A/I,

(2) the kernel of this map is the p-adic completion I∧ of I, and
(3) each γn is continuous for the p-adic topology and extends to γ∧n : I∧ → I∧

defining a divided power structure on I∧.

If moreover A is a Z(p)-algebra, then
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8 DIVIDED POWER ALGEBRA

(4) for e large enough the ideal peA ⊂ I is preserved by the divided power
structure γ and

(A∧, I∧, γ∧) = lime(A/p
eA, I/peA, γ̄)

in the category of divided power rings.

Proof. Let t ≥ 1 be an integer such that ptA/I = 0, i.e., ptA ⊂ I. The map
A∧ → A/I is the composition A∧ → A/ptA→ A/I which is surjective (for example
by Algebra, Lemma 93.1). As peI ⊂ peA ∩ I ⊂ pe−tI for e ≥ t we see that the
kernel of the composition A∧ → A/I is the p-adic completion of I. The map γn is
continuous because

γn(x+ pey) =
∑

i+j=n
pjeγi(x)γj(y) = γn(x) mod peI

by the axioms of a divided power structure. It is clear that the axioms for divided
power structures are inherited by the maps γ∧n from the maps γn. Finally, to see
the last statement say e > t. Then peA ⊂ I and γ1(peA) ⊂ peA and for n > 1 we
have

γn(pea) = pnγn(pe−1a) =
pn

n!
pn(e−1)an ∈ peA

as pn/n! ∈ Z(p) and as n ≥ 2 and e ≥ 2 so n(e− 1) ≥ e. This proves that γ extends
to A/peA, see Lemma 4.3. The statement on limits is clear from the construction
of limits in the proof of Lemma 3.2. �

5. Divided power polynomial algebras

A very useful example is the divided power polynomial algebra. Let A be a ring.
Let t ≥ 1. We will denote A〈x1, . . . , xt〉 the following A-algebra: As an A-module
we set

A〈x1, . . . , xt〉 =
⊕

n1,...,nt≥0
Ax

[n1]
1 . . . x

[nt]
t

with multiplication given by

x
[n]
i x

[m]
i =

(n+m)!

n!m!
x
[n+m]
i .

We also set xi = x
[1]
i . Note that 1 = x

[0]
1 . . . x

[0]
t . There is a similar construc-

tion which gives the divided power polynomial algebra in infinitely many variables.

There is an canonical A-algebra map A〈x1, . . . , xt〉 → A sending x
[n]
i to zero for

n > 0. The kernel of this map is denoted A〈x1, . . . , xt〉+.

Lemma 5.1. Let (A, I, γ) be a divided power ring. There exists a unique divided
power structure δ on

J = IA〈x1, . . . , xt〉+A〈x1, . . . , xt〉+
such that

(1) δn(xi) = x
[n]
i , and

(2) (A, I, γ)→ (A〈x1, . . . , xt〉, J, δ) is a homomorphism of divided power rings.

Moreover, (A〈x1, . . . , xt〉, J, δ) has the following universal property: A homomor-
phism of divided power rings ϕ : (A〈x〉, J, δ) → (C,K, ε) is the same thing as a
homomorphism of divided power rings A→ C and elements k1, . . . , kt ∈ K.
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Proof. We will prove the lemma in case of a divided power polynomial algebra in
one variable. The result for the general case can be argued in exactly the same way,
or by noting that A〈x1, . . . , xt〉 is isomorphic to the ring obtained by adjoining the
divided power variables x1, . . . , xt one by one.

Let A〈x〉+ be the ideal generated by x, x[2], x[3], . . .. Note that J = IA〈x〉+A〈x〉+
and that

IA〈x〉 ∩A〈x〉+ = IA〈x〉 ·A〈x〉+
Hence by Lemma 2.5 it suffices to show that there exist divided power structures on
the ideals IA〈x〉 and A〈x〉+. The existence of the first follows from Lemma 4.2 as
A→ A〈x〉 is flat. For the second, note that if A is torsion free, then we can apply
Lemma 2.2 (4) to see that δ exists. Namely, choosing as generators the elements

x[m] we see that (x[m])n = (nm)!
(m!)n x

[nm] and n! divides the integer (nm)!
(m!)n . In general

write A = R/a for some torsion free ring R (e.g., a polynomial ring over Z). The
kernel of R〈x〉 → A〈x〉 is

⊕
ax[m]. Applying criterion (2)(c) of Lemma 4.3 we see

that the divided power structure on R〈x〉+ extends to A〈x〉 as desired.

Proof of the universal property. Given a homomorphism ϕ : A → C of divided
power rings and k1, . . . , kt ∈ K we consider

A〈x1, . . . , xt〉 → C, x
[n1]
1 . . . x

[nt]
t 7−→ εn1

(k1) . . . εnt
(kt)

using ϕ on coefficients. The only thing to check is that this is an A-algebra homo-
morphism (details omitted). The inverse construction is clear. �

Remark 5.2. Let (A, I, γ) be a divided power ring. There is a variant of Lemma
5.1 for infinitely many variables. First note that if s < t then there is a canonical
map

A〈x1, . . . , xs〉 → A〈x1, . . . , xt〉
Hence if W is any set, then we set

A〈xw, w ∈W 〉 = colimE⊂W A〈xe, e ∈ E〉

(colimit over E finite subset of W ) with transition maps as above. By the defini-
tion of a colimit we see that the universal mapping property of A〈xw, w ∈ W 〉 is
completely analogous to the mapping property stated in Lemma 5.1.

The following lemma can be found in [BO83].

Lemma 5.3. Let p be a prime number. Let A be a ring such that every integer
n not divisible by p is invertible, i.e., A is a Z(p)-algebra. Let I ⊂ A be an ideal.
Two divided power structures γ, γ′ on I are equal if and only if γp = γ′p. Moreover,
given a map δ : I → I such that

(1) p!δ(x) = xp for all x ∈ I,
(2) δ(ax) = apδ(x) for all a ∈ A, x ∈ I, and
(3) δ(x+ y) = δ(x) +

∑
i+j=p,i,j≥1

1
i!j!x

iyj + δ(y) for all x, y ∈ I,

then there exists a unique divided power structure γ on I such that γp = δ.

Proof. If n is not divisible by p, then γn(x) = cxγn−1(x) where c is a unit in Z(p).
Moreover,

γpm(x) = cγm(γp(x))
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where c is a unit in Z(p). Thus the first assertion is clear. For the second assertion,
we can, working backwards, use these equalities to define all γn. More precisely, if
n = a0 + a1p+ . . .+ aep

e with ai ∈ {0, . . . , p− 1} then we set

γn(x) = cnx
a0δ(x)a1 . . . δe(x)ae

for cn ∈ Z(p) defined by

cn = (p!)a1+a2(1+p)+...+ae(1+...+pe−1)/n!.

Now we have to show the axioms (1) – (5) of a divided power structure, see Defini-
tion 2.1. We observe that (1) and (3) are immediate. Verification of (2) and (5) is
by a direct calculation which we omit. Let x, y ∈ I. We claim there is a ring map

ϕ : Z(p)〈u, v〉 −→ A

which maps u[n] to γn(x) and v[n] to γn(y). By construction of Z(p)〈u, v〉 this means
we have to check that

γn(x)γm(x) =
(n+m)!

n!m!
γn+m(x)

in A and similarly for y. This is true because (2) holds for γ. Let ε denote the
divided power structure on the ideal Z(p)〈u, v〉+ of Z(p)〈u, v〉. Next, we claim
that ϕ(εn(f)) = γn(ϕ(f)) for f ∈ Z(p)〈u, v〉+ and all n. This is clear for n =
0, 1, . . . , p − 1. For n = p it suffices to prove it for a set of generators of the ideal
Z(p)〈u, v〉+ because both εp and γp = δ satisfy properties (1) and (3) of the lemma.

Hence it suffices to prove that γp(γn(x)) = (pn)!
p!(n!)p γpn(x) and similarly for y, which

follows as (5) holds for γ. Now, if n = a0 + a1p+ . . .+ aep
e is an arbitrary integer

written in p-adic expansion as above, then

εn(f) = cnf
a0γp(f)a1 . . . γep(f)ae

because ε is a divided power structure. Hence we see that ϕ(εn(f)) = γn(ϕ(f))
holds for all n. Applying this for f = u+v we see that axiom (4) for γ follows from
the fact that ε is a divided power structure. �

6. Tate resolutions

In this section we briefly discuss the resolutions constructed in [Tat57] which com-
bine divided power structures with differential graded algebras. In this section
we will use homological notation for differential graded algebras. Our differential
graded algebras will sit in nonnegative homological degrees. Thus our differential
graded algebras (A,d) will be given as chain complexes

. . .→ A2 → A1 → A0 → 0→ . . .

endowed with a multiplication.

Let R be a ring. In this section we will often consider graded R-algebras A =⊕
d≥0Ad whose components are zero in negative degrees. We will set A+ =⊕
d>0Ad. We will write Aeven =

⊕
d≥0A2d and Aodd =

⊕
d≥0A2d+1. Recall

that A is graded commutative if xy = (−1)deg(x) deg(y)yx for homogeneous elements
x, y. Recall that A is strictly graded commutative if in addition x2 = 0 for homo-
geneous elements x of odd degree. Finally, to understand the following definition,
keep in mind that γn(x) = xn/n! if A is a Q-algebra.
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Definition 6.1. Let R be a ring. Let A =
⊕

d≥0Ad be a graded R-algebra which is
strictly graded commutative. A collection of maps γn : Aeven,+ → Aeven,+ defined
for all n > 0 is called a divided power structure on A if we have

(1) γn(x) ∈ A2nd if x ∈ A2d,
(2) γ1(x) = x for any x, we also set γ0(x) = 1,

(3) γn(x)γm(x) = (n+m)!
n!m! γn+m(x),

(4) γn(xy) = xnγn(y) for all x ∈ Aeven and y ∈ Aeven,+,
(5) γn(xy) = 0 if x, y ∈ Aodd homogeneous and n > 1
(6) if x, y ∈ Aeven,+ then γn(x+ y) =

∑
i=0,...,n γi(x)γn−i(y),

(7) γn(γm(x)) = (nm)!
n!(m!)n γnm(x) for x ∈ Aeven,+.

Observe that conditions (2), (3), (4), (6), and (7) imply that γ is a “usual” divided
power structure on the ideal Aeven,+ of the (commutative) ring Aeven, see Sections
2, 3, 4, and 5. In particular, we have γn(x) = n!xn for all x ∈ Aeven,+. Condition
(1) states that γ is compatible with grading and condition (5) tells us γn for n > 1
vanishes on products of homogeneous elements of odd degree. But note that it may
happen that

γ2(z1z2 + z3z4) = z1z2z3z4

is nonzero if z1, z2, z3, z4 are homogeneous elements of odd degree.

Example 6.2 (Adjoining odd variable). Let R be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
in the definition above. Let d > 0 be an odd integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A〈T 〉 = A⊕AT
with grading given by A〈T 〉m = Am ⊕Am−dT . We claim there is a unique divided
power structure on A〈T 〉 compatible with the given divided power structure on A.
Namely, we set

γn(x+ yT ) = γn(x) + γn−1(x)yT

for x ∈ Aeven,+ and y ∈ Aodd.

Example 6.3 (Adjoining even variable). Let R be a ring. Let (A, γ) be a strictly
graded commutative graded R-algebra endowed with a divided power structure as
in the definition above. Let d > 0 be an even integer. In this setting we can adjoin
a variable T of degree d to A. Namely, set

A〈T 〉 = A⊕AT ⊕AT (2) ⊕AT (3) ⊕ . . .
with multiplication given by

T (n)T (m) =
(n+m)!

n!m!
T (n+m)

and with grading given by

A〈T 〉m = Am ⊕Am−dT ⊕Am−2dT
(2) ⊕ . . .

We claim there is a unique divided power structure on A〈T 〉 compatible with the
given divided power structure on A such that γn(T (i)) = T (ni). To define the
divided power structure we first set

γn

(∑
i>0

xiT
(i)
)

=
∑∏

n=
∑

ei
xeii T

(iei)
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if xi is in Aeven. If x0 ∈ Aeven,+ then we take

γn

(∑
i≥0

xiT
(i)
)

=
∑

a+b=n
γa(x0)γb

(∑
i>0

xiT
(i)
)

where γb is as defined above.

At this point we tie in the definition of divided power structures with differentials.
To understand the definition note that d(xn/n!) = d(x)xn−1/(n − 1)! if A is a
Q-algebra and x ∈ Aeven,+.

Definition 6.4. Let R be a ring. Let A =
⊕

d≥0Ad be a differential graded R-
algebra which is strictly graded commutative. A divided power structure γ on A is
compatible with the differential graded structure if d(γn(x)) = d(x)γn−1(x) for all
x ∈ Aeven,+.

Warning: Let (A,d, γ) be as in Definition 6.4. It may not be true that γn(x)
is a boundary, if x is a boundary. Thus γ in general does not induce a divided
power structure on the homology algebra H(A). In some papers the authors put
an additional compatibility condition in order to insure this is the case, but we elect
not to do so.

Lemma 6.5. Let (A, d, γ) and (B, d, γ) be as in Definition 6.4. Let f : A → B
be a map of differential graded algebras compatible with divided power structures.
Assume

(1) Hk(A) = 0 for k > 0, and
(2) f is surjective.

Then γ induces a divided power structure on the graded R-algebra H(B).

Proof. Suppose that x and x′ are homogeneous of the same degree 2d and define
the same cohomology class in H(B). Say x′ − x = d(w). Choose a lift y ∈ A2d of
x and a lift z ∈ A2d+1 of w. Then y′ = y + d(z) is a lift of x′. Hence

γn(y′) =
∑

γi(y)γn−i(d(z)) = γn(y) +
∑

i<n
γi(y)γn−i(d(z))

Since A is acyclic in positive degrees and since d(γj(d(z))) = 0 for all j we can
write this as

γn(y′) = γn(y) +
∑

i<n
γi(y)d(zi)

for some zi in A. Moreover, for 0 < i < n we have

d(γi(y)zi) = d(γi(y))zi + γi(y)d(zi) = d(y)γi−1(y)zi + γi(y)d(zi)

and the first term maps to zero in B as d(y) maps to zero in B. Hence γn(x′)
and γn(x) map to the same element of H(B). Thus we obtain a well defined map
γn : H2d(B)→ H2nd(B) for all d > 0 and n > 0. We omit the verification that this
defines a divided power structure on H(B). �

Lemma 6.6. Let (A, d, γ) is as in Definition 6.4. Let R → R′ be a ring map.
Then d and γ induce similar structures on A′ = A ⊗R R

′ such that (A, d, γ) is as
in Definition 6.4.

Proof. Observe that A′even = Aeven ⊗R R′ and A′even,+ = Aeven,+ ⊗R R′. Hence
we are trying to show that the divided powers γ extend to A′even (terminology as in
Definition 4.1). Once we have shown γ extends it follows easily that this extension
has all the desired properties.
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Choose a polynomial R-algebra P and a surjection of R-algebras P → R′. The ring
map Aeven → Aeven⊗R P is flat, hence the divided powers γ extend to Aeven⊗R P
uniquely by Lemma 4.2. Let J = Ker(P → R′). To show that γ extends to A⊗RR

′

it suffices to show that I ′ = Ker(Aeven,+ ⊗R P → Aeven,+ ⊗R R
′) is generated by

elements z such that γn(z) ∈ I ′ for all n > 0. This is clear as I ′ is generated by
elements of the form x⊗ f with x ∈ Aeven,+ and f ∈ Ker(P → R′). �

Lemma 6.7. Let (A, d, γ) be as in Definition 6.4. Let d ≥ 1 be an integer. Let A〈T 〉
be the graded divided power polynomial algebra on T with deg(T ) = d constructed
in Example 6.2 or 6.3. Let f ∈ Ad−1 be an element with d(f) = 0. There exists
a unique differential d on A〈T 〉 such that d(T ) = f and such that d is compatible
with the divided power structure on A〈T 〉.

Proof. This is proved by a direct computation which is omitted. �

Here is the construction of Tate.

Lemma 6.8. Assume that R is a Noetherian ring and R→ S a ring map of finite
type. There exists a factorization

R→ A→ S

with the following properties

(1) (A, d, γ) is as in Definition 6.4,
(2) A→ S is a quasi-isomorphism (if we endow S with the zero differential),
(3) A is a graded divided power polynomial algebra over R with finitely many

variables in each degree.

The last condition means that A is constructed out of R by successively adjoining
variables T as in Examples 6.2 and 6.3.

Proof. Start of the construction. Let A(0) = R[x1, . . . , xn] be a (usual) polynomial
ring and let A(0) → S be a surjection. As grading we take A(0)0 = A(0) and
A(0)d = 0 for d 6= 0. Thus d = 0 and γn, n > 0 is zero as well.

Choose generators f1, . . . , fm ∈ R[x1, . . . , xm] for the kernel of the given map
A(0) = R[x1, . . . , xm]→ S. We apply Examples 6.2 m times to get

A(1) = A(0)〈T1, . . . , Tm〉

with deg(Ti) = 1 as a graded divided power polynomial algebra. We set d(Ti) = fi.
Since A(1) is a divided power polynomial algebra over A(0) and since d(fi) = 0
this extends uniquely to a differential on A(1) by Lemma 6.7.

Induction hypothesis: Assume we are given factorizations

R→ A(0)→ A(1)→ . . .→ A(m)→ S

where A(0) and A(1) are as above and each R → A(m′) → S for 2 ≤ m′ ≤ m
satisfies properties (1) and (3) of the statement of the lemma and (2) replaced by
the condition that Hi(A(m′)) → Hi(S) is an isomorphism for m′ > i ≥ 0. The
base case is m = 1.

Induction step. Assume we have R → A(m) → S as in the induction hypothesis.
Consider the group Hm(A(m)). This is a module over H0(A(m)) = S. In fact, it is
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a subquotient of A(m)m which is a finite type module over A(m)0 = R[x1, . . . , xn].
Thus we can pick finitely many elements

e1, . . . , et ∈ Ker(d : A(m)m → A(m)m−1)

which map to generators of this module. Applying Example 6.3 or 6.2 t times we
get

A(m+ 1) = A(m)〈T1, . . . , Tt〉
with deg(Ti) = m+ 1 as a graded divided power algebra. We set d(Ti) = ei. Since
A(1) is a divided power polynomial algebra over A(0) and since d(ei) = 0 this
extends uniquely to a differential on A(m+ 1) compatible with the divided power
structure. Since we’ve added only material in degree m+ 1 and higher we see that
Hi(A(m+ 1)) = Hi(A(m)) for i < m. Moreover, it is clear that Hm(A(m+ 1)) = 0
by construction.

To finish the proof we observe that we have shown there exists a sequence of maps

R→ A(0)→ A(1)→ . . .→ A(m)→ A(m+ 1)→ . . .→ S

and to finish the proof we set A = colimA(m). �

Lemma 6.9. Let R be a ring. Suppose that (A, d, γ) and (B, d, γ) are as in Defi-
nition 6.4. Let ϕ : H0(A)→ H0(B) be an R-algebra map. Assume

(1) A is a graded divided power polynomial algebra over R with finitely many
variables in each degree,

(2) Hk(B) = 0 for k > 0.

Then there exists a map ϕ : A → B of differential graded R-algebras compatible
with divided powers lifting ϕ.

Proof. Since A is obtained from R by adjoining divided power variables, we obtain
filtrations R ⊂ A(0) ⊂ A(1) ⊂ . . . such that A(m + 1) is obtained from A(m) by
adjoining finitely many divided power variables of degree m + 1. Then A(0) → S
is a surjection from a (usual) polynomial algebra over R onto S. Thus we can lift
ϕ to an R-algebra map ϕ(0) : A(0)→ B(0).

Write A(1) = A(0)〈T1, . . . , Tm〉 for some divided power variables Tj of degree 1.
Let fj ∈ B0 be fj = ϕ(0)(d(Tj)). Observe that fj maps to zero in H0(B) as dTj
maps to zero in H0(A). Thus we can find bj ∈ B1 with d(bj) = fj . By the universal
property of divided power polynomial algebras we find a lift ϕ(1) : A(1) → B of
ϕ(0) mapping Tj to fj .

Having constructed ϕ(m) for some m ≥ 1 we can construct ϕ(m+1) : A(m+1)→ B
in exactly the same manner. We omit the details. �

Lemma 6.10. Let R be a Noetherian ring. Let R → S and R → T be finite type
ring maps. There exists a canonical structure of a divided power graded R-algebra
on

TorR∗ (S, T )

Proof. Choose a factorization R → A → S as above. Since A → S is a quasi-
isomorphism and since Ad is a free R-module, we see that the differential graded
algebra B = A ⊗R T computes the tor groups displayed in the lemma. Choose
a surjection R[y1, . . . , yk] → T . Then we see that B is a quotient of the differ-
ential graded algebra A[y1, . . . , yk] whose homology sits in degree 0 (it is equal to
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S[y1, . . . , yk]). By Lemma 6.6 the differential graded algebras B and A[y1, . . . , yk]
have divided power structures compatible with the differentials. Hence we obtain
our divided power structure on H(B) by Lemma 6.5.

The divided power algebra structure constructed in this way is independent of the
choice of A. Namely, if A′ is a second choice, then Lemma 6.9 implies there is
a map A → A′ preserving all structure and the augmentations towards S. Then
the induced map B = A ⊗R T → A′ ⊗R T ′ = B′ is likewise and is a quasi-
isomorphism. The induced isomorphism of Tor algebras is therefore compatible
with all multiplication and divided powers. �

7. Application to complete intersections

Let R be a ring. Let (A,d, γ) be as in Definition 6.4. A derivation of degree 2 is
an R-linear map θ : A→ A with the following properties

(1) θ(Ad) ⊂ Ad−2,
(2) θ(xy) = θ(x)y + xθ(y),
(3) θ commutes with d,
(4) θ(γn(x)) = θ(x)γn−1(x) for all x ∈ A2d all d.

In the following lemma we construct a derivation.

Lemma 7.1. Let R be a ring. Let (A, d, γ) be as in Definition 6.4. Let R′ → R be
a surjection of rings whose kernel has square zero and is generated by one element
f . If A is a graded divided power polynomial algebra over R with finitely many
variables in each degree, then we obtain a derivation θ : A/IA→ A/IA where I is
the annihilator of f in R.

Proof. Since A is a divided power polynomial algebra, we can find a divided power
polynomial algebra A′ over R′ such that A = A′ ⊗R R

′. Moreover, we can lift d to
an R-linear operator d on A′ such that

(1) d(xy) = d(x)y + (−1)deg(x)xd(y) for x, y ∈ A′ homogeneous, and
(2) d(γn(x)) = d(x)γn−1(x) for x ∈ A′even,+.

We omit the details (hint: proceed one variable at the time). However, it may not
be the case that d2 is zero on A′. It is clear that d2 maps A′ into fA′ ∼= A/IA.
Hence d2 annihilates fA′ and factors as a map A → A/IA. Since d2 is R-linear
we obtain our map θ : A/IA → A/IA. The verification of the properties of a
derivation is immediate. �

Lemma 7.2. Assumption and notation as in Lemma 7.1. Suppose S = H0(A) is
isomorphic to R[x1, . . . , xn]/(f1, . . . , fm) for some n, m, and fj ∈ R[x1, . . . , xn].
Moreover, suppose given a relation∑

rjfj = 0

with rj ∈ R[x1, . . . , xn]. Choose r′j , f
′
j ∈ R′[x1, . . . , xn] lifting rj , fj. Write

∑
r′jf
′
j =

gf for some g ∈ R/I[x1, . . . , xn]. If H1(A) = 0 and all the coefficients of each rj
are in I, then there exists an element ξ ∈ H2(A/IA) such that θ(ξ) = g in S/IS.

Proof. Let A(0) ⊂ A(1) ⊂ A(2) ⊂ . . . be the filtration of A such that A(m) is
gotten from A(m−1) by adjoining divided power variables of degree m. Then A(0)
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is a polynomial algebra over R equipped with an R-algebra surjection A(0) → S.
Thus we can choose a map

ϕ : R[x1, . . . , xn]→ A(0)

lifting the augmentations to S. Next, A(1) = A(0)〈T1, . . . , Tt〉 for some divided
power variables Ti of degree 1. Since H0(A) = S we can pick ξj ∈

∑
A(0)Ti with

d(ξj) = ϕ(fj). Then

d
(∑

ϕ(rj)ξj

)
=
∑

ϕ(rj)ϕ(fj) =
∑

ϕ(rjfj) = 0

Since H1(A) = 0 we can pick ξ ∈ A2 with d(ξ) =
∑
ϕ(rj)ξj . If the coefficients of

rj are in I, then the same is true for ϕ(rj). In this case d(ξ) dies in A1/IA1 and
hence ξ defines a class in H2(A/IA).

The construction of θ in the proof of Lemma 7.1 proceeds by successively lifting
A(i) to A′(i) and lifting the differential d. We lift ϕ to ϕ′ : R′[x1, . . . , xn]→ A′(0).
Next, we have A′(1) = A′(0)〈T1, . . . , Tt〉. Moreover, we can lift ξj to ξ′j ∈

∑
A′(0)Ti.

Then d(ξ′j) = ϕ′(f ′j) + faj for some aj ∈ A′(0). Consider a lift ξ′ ∈ A′2 of ξ. Then
we know that

d(ξ′) =
∑

ϕ′(r′j)ξ
′
j +

∑
fbiTi

for some bi ∈ A(0). Applying d again we find

θ(ξ) =
∑

ϕ′(r′j)ϕ
′(f ′j) +

∑
fϕ′(r′j)aj +

∑
fbid(Ti)

The first term gives us what we want. The second term is zero because the coeffi-
cients of rj are in I and hence are annihilated by f . The third term maps to zero
in H0 because d(Ti) maps to zero. �

The method of proof of the following lemma is apparantly due to Gulliksen.

Lemma 7.3. Let R′ → R be a surjection of Noetherian rings whose kernel has
square zero and is generated by one element f . Let S = R[x1, . . . , xn]/(f1, . . . , fm).
Let

∑
rjfj = 0 be a relation in R[x1, . . . , xm]. Assume that

(1) each rj has coeffients in the annihilator I of f in R,
(2) for some lifts r′j , f

′
j ∈ R′[x1, . . . , xn] we have

∑
r′jf
′
j = gf where g is not

nilpotent in S.

Then S does not have finite tor dimension over R (i.e., S is not a perfect R-algebra).

Proof. Choose a Tate resolution R→ A→ S as in Lemma 6.8. Let ξ ∈ H2(A/IA)
and θ : A/IA → A/IA be the element and derivation found in Lemmas 7.1 and
7.2. Observe that

θn(γn(ξ)) = gn

Hence if g is not nilpotent, then ξn is nonzero in H2n(A/IA) for all n > 0. Since

H2n(A/IA) = TorR2n(S,R/I) we conclude. �

The following result can be found in [Rod88].

Lemma 7.4. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper ideals.
If A/J has finite tor dimension over A/I, then I/mI → J/mJ is injective.
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Proof. Let f ∈ I be an element mapping to a nonzero element of I/mI which is
mapped to zero in J/mJ . We can choose an ideal I ′ with mI ⊂ I ′ ⊂ I such that I/I ′

is generated by the image of f . Set R = A/I and R′ = A/I ′. Let J = (a1, . . . , am)
for some aj ∈ A. Then f =

∑
bjaj for some bj ∈ m. Let rj , fj ∈ R resp. r′j , f

′
j ∈ R′

be the image of bj , aj . Then we see we are in the situation of Lemma 7.3 (with the
ideal I of that lemma equal to mR) and the lemma is proved. �

Lemma 7.5. Let (A,m) be a Noetherian local ring. Let I ⊂ J ⊂ A be proper ideals.
Assume

(1) A/J has finite tor dimension over A/I, and
(2) J is generated by a regular sequence.

Then I is generated by a regular sequence and J/I is generated by a regular sequence.

Proof. By Lemma 7.4 we see that I/mI → J/mJ is injective. Thus we can find
s ≤ r and a minimal system of generators f1, . . . , fr of J such that f1, . . . , fs are in
I and form a minimal system of generators of I. The lemma follows as any minimal
system of generators of J is a regular sequence by More on Algebra, Lemmas 21.14
and 21.6. �

Lemma 7.6. Let R→ S be a local ring map of Noetherian local rings. Let I ⊂ R
and J ⊂ S be ideals with IS ⊂ J . If R→ S is flat and S/mRS is regular, then the
following are equivalent

(1) J is generated by a regular sequence and S/J has finite tor dimension as a
module over R/I,

(2) J is generated by a regular sequence and TorR/I
p (S/J,R/mR) is nonzero for

only finitely many p,
(3) I is generated by a regular sequence and J/IS is generated by a regular

sequence in S/IS.

Proof. If (3) holds, then J is generated by a regular sequence, see for example
More on Algebra, Lemmas 21.12 and 21.6. Moreover, if (3) holds, then S/J =
(S/I)/(J/I) has finite projective dimension over S/IS because the Koszul complex
will be a finite free resolution of S/J over S/IS. Since R/I → S/IS is flat, it then
follows that S/J has finite tor dimension over R/I by More on Algebra, Lemma
51.9. Thus (3) implies (1).

The implication (1) ⇒ (2) is trivial. Assume (2). By More on Algebra, Lemma
56.20 we find that S/J has finite tor dimension over S/IS. Thus we can apply
Lemma 7.5 to conclude that IS and J/IS are generated by regular sequences. Let
f1, . . . , fr ∈ I be a minimal system of generators of I. Since R → S is flat, we see
that f1, . . . , fr form a minimal system of generators for IS in S. Thus f1, . . . , fr ∈ R
is a sequence of elements whose images in S form a regular sequence by More on
Algebra, Lemmas 21.14 and 21.6. Thus f1, . . . , fr is a regular sequence in R by
Algebra, Lemma 67.7. �

8. Local complete intersection rings

Let (A,m) be a Noetherian complete local ring. By the Cohen structure theorem
(see Algebra, Theorem 149.8) we can write A as the quotient of a regular Noetherian
complete local ring R. Let us say that A is a complete intersection if there exists
some surjection R→ A with R a regular local ring such that the kernel is generated
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by a regular sequence. The following lemma shows this notion is independent of
the choice of the surjection.

Lemma 8.1. Let (A,m) be a Noetherian complete local ring. The following are
equivalent

(1) for every surjection of local rings R → A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence, and

(2) for some surjection of local rings R → A with R a regular local ring, the
kernel of R→ A is generated by a regular sequence.

Proof. Let k be the residue field of A. If the characteristic of k is p > 0, then we
denote Λ a Cohen ring (Algebra, Definition 149.5) with residue field k (Algebra,
Lemma 149.6). If the characteristic of k is 0 we set Λ = k. Recall that Λ[[x1, . . . , xn]]
for any n is formally smooth over Z, resp. Q in the m-adic topology, see More
on Algebra, Lemma 28.1. Fix a surjection Λ[[x1, . . . , xn]] → A as in the Cohen
structure theorem (Algebra, Theorem 149.8).

Let R→ A be a surjection from a regular local ring R. Let f1, . . . , fr be a minimal
sequence of generators of Ker(R → A). We will use without further mention that
an ideal in a Noetherian local ring is generated by a regular sequence if and only
if any minimal set of generators is a regular sequence. Observe that f1, . . . , fr is a
regular sequence in R if and only if f1, . . . , fr is a regular sequence in the completion
R∧ by Algebra, Lemmas 67.7 and 93.3. Moreover, we have

R∧/(f1, . . . , fr)R∧ = (R/(f1, . . . , fn))∧ = A∧ = A

because A is mA-adically complete (first equality by Algebra, Lemma 93.2). Finally,
the ring R∧ is regular since R is regular (More on Algebra, Lemma 32.4). Hence
we may assume R is complete.

If R is complete we can choose a map Λ[[x1, . . . , xn]] → R lifting the given map
Λ[[x1, . . . , xn]] → A, see More on Algebra, Lemma 27.5. By adding some more
variables y1, . . . , ym mapping to generators of the kernel of R→ A we may assume
that Λ[[x1, . . . , xn, y1, . . . , ym]] → R is surjective (some details omitted). Then we
can consider the commutative diagram

Λ[[x1, . . . , xn, y1, . . . , ym]] //

��

R

��
Λ[[x1, . . . , xn]] // A

By Algebra, Lemma 130.6 we see that the condition for R→ A is equivalent to the
condition for the fixed chosen map Λ[[x1, . . . , xn]] → A. This finishes the proof of
the lemma. �

The following two lemmas are sanity checks on the definition given above.

Lemma 8.2. Let R be a regular ring. Let p ⊂ R be a prime. Let f1, . . . , fr ∈ p be
a regular sequence. Then the completion of

A = (R/(f1, . . . , fr))p = Rp/(f1, . . . , fr)Rp

is a complete intersection in the sense defined above.
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Proof. The completion of A is equal to A∧ = R∧p /(f1, . . . , fr)R∧p because com-
pletion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma
93.2). The image of the sequence f1, . . . , fr in Rp is a regular sequence by Algebra,
Lemmas 93.3 and 67.7. Moreover, R∧p is a regular local ring by More on Algebra,
Lemma 32.4. Hence the result holds by our definition of complete intersection for
complete local rings. �

The following lemma is the analogue of Algebra, Lemma 130.4.

Lemma 8.3. Let R be a regular ring. Let p ⊂ R be a prime. Let I ⊂ p be an ideal.
Set A = (R/I)p = Rp/Ip. The following are equivalent

(1) the completion of A is a complete intersection in the sense above,
(2) Ip ⊂ Rp is generated by a regular sequence,
(3) the module (I/I2)p can be generated by dim(Rp)− dim(A) elements,
(4) add more here.

Proof. We may and do replace R by its localization at p. Then p = m is the
maximal ideal of R and A = R/I. Let f1, . . . , fr ∈ I be a minimal sequence
of generators. The completion of A is equal to A∧ = R∧/(f1, . . . , fr)R∧ because
completion for finite modules over the Noetherian ring Rp is exact (Algebra, Lemma
93.2).

If (1) holds, then the image of the sequence f1, . . . , fr in R∧ is a regular sequence
by assumption. Hence it is a regular sequence in R by Algebra, Lemmas 93.3 and
67.7. Thus (1) implies (2).

Assume (3) holds. Set c = dim(R)−dim(A) and let f1, . . . , fc ∈ I map to generators
of I/I2. by Nakayama’s lemme (Algebra, Lemma 19.1) we see that I = (f1, . . . , fc).
Since R is regular and hence Cohen-Macaulay (Algebra, Proposition 99.5) we see
that f1, . . . , fc is a regular sequence by Algebra, Proposition 99.5. Thus (3) implies
(2). Finally, (2) implies (1) by Lemma 8.2. �

The following result is due to Avramov, see [Avr75].

Proposition 8.4. Let A → B be a flat local homomorphism of Noetherian local
rings. Then the following are equivalent

(1) B∧ is a complete intersection,
(2) A∧ and (B/mAB)∧ are complete intersections.

Proof. Consider the diagram

B // B∧

A

OO

// A∧

OO

Since the horizontal maps are faithfully flat (Algebra, Lemma 93.4) we conclude that
the right vertical arrow is flat (for example by Algebra, Lemma 95.14). Moreover,
we have (B/mAB)∧ = B∧/mA∧B

∧ by Algebra, Lemma 93.2. Thus we may assume
A and B are complete local Noetherian rings.
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Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 28.3. Let I = Ker(R → A) and J = Ker(S → B).
Note that since R/I = A→ B = S/J is flat the map J/I⊗RR/mR → J/J∩mRS is
an isomorphism. Hence a minimal system of generators of J/I maps to a minimal
system of generators of Ker(S/mRS → B/mAB). Finally, S/mRS is a regular local
ring.

Assume (1) holds, i.e., J is generated by a regular sequence. Since A = R/I → B =
S/J is flat we see Lemma 7.6 applies and we deduce that I and J/I are generated
by regular sequences. We have dim(B) = dim(A)+dim(B/mAB) and dim(S/IS) =
dim(A) + dim(S/mRS) (Algebra, Lemma 108.7). Thus J/I is generated by

dim(S/J)− dim(S/IS) = dim(S/mRS)− dim(B/mAB)

elements (Algebra, Lemma 59.11). It follows that Ker(S/mRS → B/mAB) is gener-
ated by the same number of elements (see above). Hence Ker(S/mRS → B/mAB)
is generated by a regular sequence, see for example Lemma 8.3. In this way we see
that (2) holds.

If (2) holds, then I and J/J∩mRS are generated by regular sequences. Lifting these
generators (see above), using flatness of R/I → S/IS, and using Grothendieck’s
lemma (Algebra, Lemma 95.3) we find that J/I is generated by a regular sequence
in S/IS. Thus Lemma 7.6 tells us that J is generated by a regular sequence, whence
(1) holds. �

Definition 8.5. Let A be a Noetherian ring.

(1) If A is local, then we say A is a complete intersection if its completion is a
complete intersection in the sense above.

(2) In general we say A is a local complete intersection if all of its local rings
are complete intersections.

We will check below that this does not conflict with the terminology introduced
in Algebra, Definitions 130.1 and 130.5. But first, we show this “makes sense” by
showing that if A is a Noetherian local complete intersection, then A is a local
complete intersection, i.e., all of its local rings are complete intersections.

Lemma 8.6. Let (A,m) be a Noetherian local ring. Let p ⊂ A be a prime ideal. If
A is a complete intersection, then Ap is a complete intersection too.

Proof. Choose a prime q of A∧ lying over p (this is possible as A→ A∧ is faithfully
flat by Algebra, Lemma 93.4). Then Ap → (A∧)q is a flat local ring homomorphism.
Thus by Proposition 8.4 we see that Ap is a complete intersection if and only if
(A∧)q is a complete intersection. Thus it suffices to prove the lemma in case A is
complete (this is the key step of the proof).

Assume A is complete. By definition we may write A = R/(f1, . . . , fr) for some
regular sequence f1, . . . , fr in a regular local ring R. Let q ⊂ R be the prime
corresponding to p. Observe that f1, . . . , fr ∈ q and that Ap = Rq/(f1, . . . , fr)Rq.
Hence Ap is a complete intersection by Lemma 8.2. �
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Lemma 8.7. Let A be a Noetherian ring. Then A is a local complete intersection
if and only if Am is a complete intersection for every maximal ideal m of A.

Proof. This follows immediately from Lemma 8.6 and the definitions. �

Lemma 8.8. Let S be a finite type algebra over a field k.

(1) for a prime q ⊂ S the local ring Sq is a complete intersection in the sense
of Algebra, Definition 130.5 if and only if Sq is acomplete intersection in
the sense of Definition 8.5, and

(2) S is a local complete intersection in the sense of Algebra, Definition 130.1
if and only if S is a local complete intersection in the sense of Definition
8.5.

Proof. Proof of (1). Let k[x1, . . . , xn] → S be a surjection. Let p ⊂ k[x1, . . . , xn]
be the prime ideal corresponding to q. Let I ⊂ k[x1, . . . , xn] be the kernel of our
surjection. Note that k[x1, . . . , xn]p → Sq is surjective with kernel Ip. Observe that
k[x1, . . . , xn] is a regular ring by Algebra, Proposition 110.2. Hence the equivalence
of the two notions in (1) follows by combining Lemma 8.3 with Algebra, Lemma
130.7.

Having proved (1) the equivalence in (2) follows from the definition and Algebra,
Lemma 130.9. �

Lemma 8.9. Let A → B be a flat local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection,
(2) A and B/mAB are complete intersections.

Proof. Now that the definition makes sense this is a trivial reformulation of the
(nontrivial) Proposition 8.4. �

9. Local complete intersection maps

Let A → B be a local homomorphism of Noetherian complete local rings. A
consequence of the Cohen structure theorem is that we can find a commutative
diagram

S // B

A

__ OO

of Noetherian complete local rings with S → B surjective, A→ S flat, and S/mAS
a regular local ring. This follows from More on Algebra, Lemma 28.3. Let us
(temporarily) say A→ S → B is a good factorization of A→ B if S is a Noetherian
local ring, A → S → B are local ring maps, S → B surjective, A → S flat, and
S/mAS regular. Let us say that A → B is a complete intersection homomorphism
if there exists some good factorization A→ S → B such that the kernel of S → B
is generated by a regular sequence. The following lemma shows this notion is
independent of the choice of the diagram.

Lemma 9.1. Let A → B be a local homomorphism of Noetherian complete local
rings. The following are equivalent
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(1) for some good factorization A→ S → B the kernel of S → B is generated
by a regular sequence, and

(2) for every good factorization A→ S → B the kernel of S → B is generated
by a regular sequence.

Proof. Let A → S → B be a good factorization. As B is complete we obtain a
factorization A → S∧ → B where S∧ is the completion of S. Note that this is
also a good factorization: The ring map S → S∧ is flat (Algebra, Lemma 93.3),
hence A → S∧ is flat. The ring S∧/mAS

∧ = (S/mAS)∧ is regular since S/mAS is
regular (More on Algebra, Lemma 32.4). Let f1, . . . , fr be a minimal sequence of
generators of Ker(S → B). We will use without further mention that an ideal in a
Noetherian local ring is generated by a regular sequence if and only if any minimal
set of generators is a regular sequence. Observe that f1, . . . , fr is a regular sequence
in S if and only if f1, . . . , fr is a regular sequence in the completion S∧ by Algebra,
Lemma 67.7. Moreover, we have

S∧/(f1, . . . , fr)R∧ = (S/(f1, . . . , fn))∧ = B∧ = B

because B is mB-adically complete (first equality by Algebra, Lemma 93.2). Thus
the kernel of S → B is generated by a regular sequence if and only if the kernel
of S∧ → B is generated by a regular sequence. Hence it suffices to consider good
factorizations where S is complete.

Assume we have two factorizations A → S → B and A → S′ → B with S and
S′ complete. By More on Algebra, Lemma 28.4 the ring S ×B S′ is a Noetherian
complete local ring. Hence, using More on Algebra, Lemma 28.3 we can choose
a good factorization A → S′′ → S ×B S′ with S′′ complete. Thus it suffices to
show: If A → S′ → S → B are comparable good factorizations, then Ker(S → B)
is generated by a regular sequence if and only if Ker(S′ → B) is generated by a
regular sequence.

Let A→ S′ → S → B be comparable good factorizations. First, since S′/mRS
′ →

S/mRS is a surjection of regular local rings, the kernel is generated by a regular
sequence x1, . . . , xc ∈ mS′/mRS

′ which can be extended to a regular system of
parameters for the regular local ring S′/mRS

′, see (Algebra, Lemma 102.4). Set
I = Ker(S′ → S). By flatness of S over R we have

I/mRI = Ker(S′/mRS
′ → S/mRS) = (x1, . . . , xc).

Choose lifts x1, . . . , xc ∈ I. These lifts form a regular sequence generating I as S′

is flat over R, see Algebra, Lemma 95.3.

We conclude that if also Ker(S → B) is generated by a regular sequence, then so
is Ker(S′ → B), see More on Algebra, Lemmas 21.12 and 21.6.

Conversely, assume that J = Ker(S′ → B) is generated by a regular sequence.
Because the generators x1, . . . , xc of I map to linearly independent elements of
mS′/m

2
S′ we see that I/mS′I → J/mS′J is injective. Hence there exists a minimal

system of generators x1, . . . , xc, y1, . . . , yd for J . Then x1, . . . , xc, y1, . . . , yd is a
regular sequence and it follows that the images of y1, . . . , yd in S form a regular
sequence generating Ker(S → B). This finishes the proof of the lemma. �

In the following proposition observe that the condition on vanishing of Tor’s applies
in particular if B has finite tor dimension over A and thus in particular if B is flat
over A.
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Proposition 9.2. Let A→ B be a local homomorphism of Noetherian local rings.
Then the following are equivalent

(1) B is a complete intersection and TorAp (B,A/mA) is nonzero for only finitely
many p,

(2) A is a complete intersection and A∧ → B∧ is a complete intersection ho-
momorphism in the sense defined above.

Proof. Let F• → A/mA be a resolution by finite free A-modules. Observe that

TorAp (B,A/mA) is the pth homology of the complex F•⊗A B. Let F∧• = F•⊗A A
∧

be the completion. Then F∧• is a resolution of A∧/mA∧ by finite free A∧-modules
(as A→ A∧ is flat and completion on finite modules is exact, see Algebra, Lemmas
93.2 and 93.3). It follows that

F∧• ⊗A∧ B
∧ = F• ⊗A B ⊗B B∧

By flatness of B → B∧ we conclude that

TorA
∧

p (B∧, A∧/mA∧) = TorAp (B,A/mA)⊗B B∧

In this way we see that the condition in (1) on the local ring map A → B is
equivalent to the same condition for the local ring map A∧ → B∧. Thus we may
assume A and B are complete local Noetherian rings (since the other conditions
are formulated in terms of the completions in any case).

Assume A and B are complete local Noetherian rings. Choose a diagram

S // B

R

OO

// A

OO

as in More on Algebra, Lemma 28.3. Let I = Ker(R → A) and J = Ker(S → B).
The proposition now follows from Lemma 7.6. �

Remark 9.3. It appears difficult to define an good notion of “local complete inter-
section homomorphisms” for maps between general Noetherian rings. The reason
is that, for a local Noetherian ring A, the fibres of A→ A∧ are not local complete
intersection rings. Thus, if A → B is a local homomorphism of local Noetherian
rings, and the map of completions A∧ → B∧ is a complete intersection homomor-
phism in the sense defined above, then (Ap)∧ → (Bq)∧ is in general not a complete
intersection homomorphism in the sense defined above. A solution can be had
by working exclusively with excellent Noetherian rings. More generally, one could
work with those Noetherian rings whose formal fibres are complete intersections,
see [Rod87]. We will develop this theory here if we ever need it.

To finish of this section we compare the notion defined above with the notion
introduced in More on Algebra, Section 8.

Lemma 9.4. Consider a commutative diagram

S // B

A

__ OO
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of Noetherian local rings with S → B surjective, A→ S flat, and S/mAS a regular
local ring. The following are equivalent

(1) Ker(S → B) is generated by a regular sequence, and
(2) A∧ → B∧ is a complete intersection homomorphism as defined above.

Proof. Omitted. Hint: the proof is indentical to the argument given in the first
paragraph of the proof of Lemma 9.1. �

Lemma 9.5. Let A be a Noetherian ring. Let A → B be a finite type ring map.
The following are equivalent

(1) A → B is a local complete intersection in the sense of More on Algebra,
Definition 23.2,

(2) for every prime q ⊂ B and with p = A ∩ q the ring map (Ap)∧ → (Bq)∧ is
a complete intersection homomorphism in the sense defined above.

Proof. Choose a surjection R = A[x1, . . . , xn] → B. Observe that A → R is flat
with regular fibres. Let I be the kernel of R → B. Assume (2). Then we see that
I is locally generated by a regular sequence by Lemma 9.4 and Algebra, Lemma
67.8. In other words, (1) holds. Conversely, assume (1). Then after localizing on R
and B we can assume that I is generated by a Koszul regular sequence. By More
on Algebra, Lemma 21.6 we find that I is locally generated by a regular sequence.
Hence (2) hold by Lemma 9.4. Some details omitted. �

Lemma 9.6. Let A be a Noetherian ring. Let A → B be a finite type ring map
such that the image of Spec(B) → Spec(A) contains all closed points of Spec(A).
Then the following are equivalent

(1) B is a complete intersection and A→ B has finite tor dimension,
(2) A is a complete intersection and A → B is a complete intersection in the

sense of More on Algebra, Definition 23.2.

Proof. This is a reformulation of Proposition 9.2 via Lemma 9.5. We omit the
details. �
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