
SHEAVES ON ALGEBRAIC STACKS

Contents

1. Introduction 1
2. Conventions 2
3. Presheaves 2
4. Sheaves 4
5. Computing pushforward 6
6. The structure sheaf 8
7. Sheaves of modules 9
8. Representable categories 10
9. Restriction 11
10. Restriction to algebraic spaces 13
11. Quasi-coherent modules 16
12. Stackification and sheaves 18
13. Quasi-coherent sheaves and presentations 19
14. Quasi-coherent sheaves on algebraic stacks 21
15. Cohomology 23
16. Injective sheaves 23
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1. Introduction

There is a myriad of ways to think about sheaves on algebraic stacks. In this chapter
we discuss one approach, which is particularly well adapted to our foundations for
algebraic stacks. Whenever we introduce a type of sheaves we will indicate the
precise relationship with similar notions in the literature. The goal of this chapter
is to state those results that are either obviously true or straightforward to prove
and leave more intricate constructions till later.

In fact, it turns out that to develop a fully fledged theory of constructible étale
sheaves and/or an adequate discussion of derived categories of complexesO-modules
whose cohomology sheaves are quasi-coherent takes a significant amount of work,
see [Ols07]. We will return to this in Cohomology of Stacks, Section 1.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 SHEAVES ON ALGEBRAIC STACKS

In the literature and in research papers on sheaves on algebraic stacks the lisse-étale
site of an algebraic stack often plays a prominent role. However, it is a problematic
beast, because it turns out that a morphism of algebraic stacks does not induce a
morphism of lisse-étale topoi. We have therefore made the design decision to avoid
any mention of the lisse-étale site as long as possible. Arguments that traditionally
use the lisse-étale site will be replaced by an argument using a Čech covering in the
site Xsmooth defined below.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 1 for an explanation.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 2. For convenience we repeat them
here.

We work in a suitable big fppf site Schfppf as in Topologies, Definition 7.6. So, if
not explicitly stated otherwise all schemes will be objects of Schfppf . We record
what changes if you change the big fppf site elsewhere (insert future reference here).

We will always work relative to a base S contained in Schfppf . And we will then
work with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

3. Presheaves

In this section we define presheaves on categories fibred in groupoids over (Sch/S)fppf ,
but most of the discussion works for categories over any base category. This section
also serves to introduce the notation we will use later on.

Definition 3.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) A presheaf on X is a presheaf on the underlying category of X .
(2) A morphism of presheaves on X is a morphism of presheaves on the under-

lying category of X .

We denote PSh(X ) the category of presheaves on X .

This defines presheaves of sets. Of course we can also talk about presheaves of
pointed sets, abelian groups, groups, monoids, rings, modules over a fixed ring,
and lie algebras over a fixed field, etc. The category of abelian presheaves, i.e.,
presheaves of abelian groups, is denoted PAb(X ).

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Recall that this means just that f is a functor over (Sch/S)fppf . The material in
Sites, Section 18 provides us with a pair of adjoint functors1

(3.1.1) fp : PSh(Y) −→ PSh(X ) and pf : PSh(X ) −→ PSh(Y).

The adjointness is

MorPSh(X )(f
pG,F) = MorPSh(Y)(G, pfF)

1These functors will be denoted f−1 and f∗ after Lemma 4.4 has been proved.

http://localhost:8080/tag/06TJ
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where F ∈ Ob(PSh(X )) and G ∈ Ob(PSh(Y)). We call fpG the pullback of G. It
follows from the definitions that

fpG(x) = G(f(x))

for any x ∈ Ob(X ). The presheaf pfF is called the pushforward of F . It is described
by the formula

(pfF)(y) = limf(x)→y F(x).

The rest of this section should probably be moved to the chapter on sites and in
any case should be skipped on a first reading.

Lemma 3.2. Let f : X → Y and g : Y → Z be 1-morphisms of categories fibred
in groupoids over (Sch/S)fppf . Then (g ◦ f)p = fp ◦ gp and there is a canonical
isomorphism p(g◦f)→ pg◦pf compatible with with adjointness of (fp, pf), (gp, pg),
and ((g ◦ f)p, p(g ◦ f)).

Proof. Let H be a presheaf on Z. Then (g ◦ f)pH = fp(gpH) is given by the
equalities

(g ◦ f)pH(x) = H((g ◦ f)(x)) = H(g(f(x))) = fp(gpH)(x).

We omit the verification that this is compatible with restriction maps.

Next, we define the transformation p(g◦f)→ pg◦pf . Let F be a presheaf on X . If z
is an object of Z then we get a category J of quadruples (x, f(x)→ y, y, g(y)→ z)
and a category I of pairs (x, g(f(x)) → z). There is a canonical functor J → I
sending the object (x, α : f(x)→ y, y, β : g(y)→ z) to (x, β ◦ f(α) : g(f(x))→ z).
This gives the arrow in

(p(g ◦ f)F)(z) = limg(f(x))→z F(x)

= limI F
→ limJ F

= limg(y)→z

(
limf(x)→y F(x)

)
= (pg ◦ pfF)(x)

by Categories, Lemma 14.8. We omit the verification that this is compatible with
restriction maps. An alternative to this direct construction is to define p(g ◦ f) ∼=
pg ◦ pf as the unique map compatible with the adjointness properties. This also
has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf), (gp, pg), and ((g ◦ f)p, p(g ◦ f)) means
that given presheaves H and F as above we have a commutative diagram

MorPSh(X )(f
pgpH,F) MorPSh(Y)(g

pH, pfF) MorPSh(Y)(H, pgpfF)

MorPSh(X )((g ◦ f)pG,F) MorPSh(Y)(G, p(g ◦ f)F)

OO

Proof omitted. �

Lemma 3.3. Let f, g : X → Y be 1-morphisms of categories fibred in groupoids
over (Sch/S)fppf . Let t : f → g be a 2-morphism of categories fibred in groupoids
over (Sch/S)fppf . Assigned to t there are canonical isomorphisms of functors

tp : gp −→ fp and pt : pf −→ pg

http://localhost:8080/tag/06TL
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which compatible with adjointness of (fp, pf) and (gp, pg) and with vertical and
horizontal composition of 2-morphisms.

Proof. Let G be a presheaf on Y. Then tp : gpG → fpG is given by the family of
maps

gpG(x) = G(g(x))
G(tx)−−−→ G(f(x)) = fpG(x)

parametrized by x ∈ Ob(X ). This makes sense as tx : f(x) → g(x) and G is
a contravariant functor. We omit the verification that this is compatible with
restriction mappings.

To define the transformation pt for y ∈ Ob(Y) define fyI, resp. gyI to be the category
of pairs (x, ψ : f(x) → y), resp. (x, ψ : g(x) → y), see Sites, Section 18. Note that
t defines a functor yt : gyI → f

yI given by the rule

(x, g(x)→ y) 7−→ (x, f(x)
tx−→ g(x)→ y).

Note that for F a presheaf on X the composition of yt with F : fyIopp → Sets,
(x, f(x) → y) 7→ F(x) is equal to F : gyIopp → Sets. Hence by Categories, Lemma
14.8 we get for every y ∈ Ob(Y) a canonical map

(pfF)(y) = limf
yI F −→ limg

yI F = (pgF)(y)

We omit the verification that this is compatible with restriction mappings. An
alternative to this direct construction is to define pt as the unique map compatible
with the adjointness properties of the pairs (fp, pf) and (gp, pg) (see below). This
also has the advantage that one does not need to prove the compatibility.

Compatibility with adjointness of (fp, pf) and (gp, pg) means that given presheaves
G and F as above we have a commutative diagram

MorPSh(X )(f
pG,F)

−◦tp

��

MorPSh(Y)(G, pfF)

pt◦−
��

MorPSh(X )(g
pG,F) MorPSh(Y)(G, pgF)

Proof omitted. Hint: Work through the proof of Sites, Lemma 18.2 and observe
the compatibility from the explicit description of the horizontal and vertical maps
in the diagram.

We omit the verification that this is compatible with vertical and horizontal com-
positions. Hint: The proof of this for tp is straightforward and one can conclude
that this holds for the pt maps using compatibility with adjointness. �

4. Sheaves

We first make an observation that is important and trivial (especially for those
readers who do not worry about set theoretical issues).

Consider a big fppf site Schfppf as in Topologies, Definition 7.6 and denote its
underlying category Schα. Besides being the underlying category of a fppf site, the
category Schα can also can serve as the underlying category for a big Zariski site,
a big étale site, a big smooth site, and a big syntomic site, see Topologies, Remark
9.1. We denote these sites SchZar, Schétale, Schsmooth, and Schsyntomic. In this
situation, since we have defined the big Zariski site (Sch/S)Zar of S, the big étale
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site (Sch/S)étale of S, the big smooth site (Sch/S)smooth of S, the big syntomic
site (Sch/S)syntomic of S, and the big fppf site (Sch/S)fppf of S as the localiza-
tions (see Sites, Section 24) SchZar/S, Schétale/S, Schsmooth/S, Schsyntomic/S,
and Schfppf/S of these (absolute) big sites we see that all of these have the same
underlying category, namely Schα/S.

It follows that if we have a category p : X → (Sch/S)fppf fibred in groupoids,
then X inherits a Zariski, étale, smooth, syntomic, and fppf topology, see Stacks,
Definition 10.2.

Definition 4.1. Let X be a category fibred in groupoids over (Sch/S)fppf .

(1) The associated Zariski site, denoted XZar, is the structure of site on X
inherited from (Sch/S)Zar.

(2) The associated étale site, denoted Xétale, is the structure of site on X in-
herited from (Sch/S)étale.

(3) The associated smooth site, denoted Xsmooth, is the structure of site on X
inherited from (Sch/S)smooth.

(4) The associated syntomic site, denoted Xsyntomic, is the structure of site on
X inherited from (Sch/S)syntomic.

(5) The associated fppf site, denoted Xfppf , is the structure of site on X inher-
ited from (Sch/S)fppf .

This definition makes sense by the discussion above. If X is an algebraic stack, the
literature calls Xfppf (or a site equivalent to it) the big fppf site of X and similarly
for the other ones. We may occasionally use this terminology to distinguish this
construction from others.

Remark 4.2. We only use this notation when the symbol X refers to a category
fibred in groupoids, and not a scheme, an algebraic space, etc. In this way we will
avoid confusion with the small étale site of a scheme, or algebraic space which is
denoted Xétale (in which case we use a roman capital instead of a calligraphic one).

Now that we have these topologies defined we can say what it means to have a
sheaf on X , i.e., define the corresponding topoi.

Definition 4.3. Let X be a category fibred in groupoids over (Sch/S)fppf . Let F
be a presheaf on X .

(1) We say F is a Zariski sheaf, or a sheaf for the Zariski topology if F is a
sheaf on the associated Zariski site XZar.

(2) We say F is an étale sheaf, or a sheaf for the étale topology if F is a sheaf
on the associated étale site Xétale.

(3) We say F is a smooth sheaf, or a sheaf for the smooth topology if F is a
sheaf on the associated smooth site Xsmooth.

(4) We say F is a syntomic sheaf, or a sheaf for the syntomic topology if F is a
sheaf on the associated syntomic site Xsyntomic.

(5) We say F is an fppf sheaf, or a sheaf, or a sheaf for the fppf topology if F is
a sheaf on the associated fppf site Xfppf .

A morphism of sheaves is just a morphism of presheaves. We denote these categories
of sheaves Sh(XZar), Sh(Xétale), Sh(Xsmooth), Sh(Xsyntomic), and Sh(Xfppf ).

Of course we can also talk about sheaves of pointed sets, abelian groups, groups,
monoids, rings, modules over a fixed ring, and lie algebras over a fixed field, etc. The
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category of abelian sheaves, i.e., sheaves of abelian groups, is denoted Ab(Xfppf )
and similarly for the other topologies. If X is an algebraic stack, then Sh(Xfppf )
is equivalent (modulo set theoretical problems) to what in the literature would be
termed the category of sheaves on the big fppf site of X . Similar for other topologies.
We may occasionally use this terminology to distinguish this construction from
others.

Since the topologies are listed in increasing order of strength we have the following
strictly full inclusions

Sh(Xfppf ) ⊂ Sh(Xsyntomic) ⊂ Sh(Xsmooth) ⊂ Sh(Xétale) ⊂ Sh(XZar) ⊂ PSh(X )

We sometimes write Sh(Xfppf ) = Sh(X ) and Ab(Xfppf ) = Ab(X ) in accordance
with our terminology that a sheaf on X is an fppf sheaf on X .

With this setup functoriality of these topoi is straightforward, and moreover, is
compatible with the inclusion functors above.

Lemma 4.4. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functors pf and
fp of (3.1.1) transform τ sheaves into τ sheaves and define a morphism of topoi
f : Sh(Xτ )→ Sh(Yτ ).

Proof. This follows immediately from Stacks, Lemma 10.3. �

In other words, pushforward and pullback of presheaves as defined in Section 3 also
produces pushforward and pullback of τ -sheaves. Having said all of the above we
see that we can write fp = f−1 and pf = f∗ without any possibility of confusion.

Definition 4.5. Let f : X → Y be a morphism of categories fibred in groupoids
over (Sch/S)fppf . We denote

f = (f−1, f∗) : Sh(Xfppf ) −→ Sh(Yfppf )

the associated morphism of fppf topoi constructed above. Similarly for the associ-
ated Zariski, étale, smooth, and syntomic topoi.

As discussed in Sites, Section 43 the same formula (on the underlying sheaf of sets)
defines pushforward and pullback for sheaves (for one of our topologies) of pointed
sets, abelian groups, groups, monoids, rings, modules over a fixed ring, and lie
algebras over a fixed field, etc.

5. Computing pushforward

Let f : X → Y be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
Let F be a presheaf on X . Let y ∈ Ob(Y). We can compute f∗F(y) in the following
way. Suppose that y lies over the scheme V and using the 2-Yoneda lemma think
of y as a 1-morphism. Consider the projection

pr : (Sch/V )fppf ×y,Y X −→ X

Then we have a canonical identification

(5.0.1) f∗F(y) = Γ
(

(Sch/V )fppf ×y,Y X , pr−1F
)

Namely, objects of the 2-fibre product are triples (h : U → V, x, f(x) → h∗y).
Dropping the h from the notation we see that this is equivalent to the data of an

http://localhost:8080/tag/06TS
http://localhost:8080/tag/06TT
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object x of X and a morphism α : f(x)→ y of Y. Since f∗F(y) = limf(x)→y F(x)
by definition the equality follows.

As a consequence we have the following “base change” result for pushforwards.
This result is trivial and hinges on the fact that we are using “big” sites.

Lemma 5.1. Let S be a scheme. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′

g // Y
be a 2-cartesian diagram of categories fibred in groupoids over S. Then we have a
canonical isomorphism

g−1f∗F −→ f ′∗(g
′)−1F

functorial in the presheaf F on X .

Proof. Given an object y′ of Y ′ over V there is an equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

Hence by (5.0.1) a bijection g−1f∗F(y′)→ f ′∗(g
′)−1F(y′). We omit the verification

that this is compatible with restriction mappings. �

In the case of a representable morphism of categories fibred in groupoids this for-
mula (5.0.1) simplifies. We suggest the reader skip the rest of this section.

Lemma 5.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The following are equivalent

(1) f is representable, and
(2) for every y ∈ Ob(Y) the functor X opp → Sets, x 7→ MorY(f(x), y) is

representable.

Proof. According to the discussion in Algebraic Stacks, Section 6 we see that f is
representable if and only if for every y ∈ Ob(Y) lying over U the 2-fibre product
(Sch/U)fppf ×y,Y X is representable, i.e., of the form (Sch/Vy)fppf for some scheme
Vy over U . Objects in this 2-fibre products are triples (h : V → U, x, α : f(x) →
h∗y) where α lies over idV . Dropping the h from the notation we see that this is
equivalent to the data of an object x of X and a morphism f(x) → y. Hence the
2-fibre product is representable by Vy and f(xy) → y where xy is an object of X
over Vy if and only if the functor in (2) is representable by xy with universal object
a map f(xy)→ y. �

Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. Assume f is representable.
For every y ∈ Ob(Y) we choose an object u(y) ∈ Ob(X ) representing the functor
x 7→ MorY(f(x), y) of Lemma 5.2 (this is possible by the axiom of choice). The
objects come with canonical morphisms f(u(y)) → y by construction. For every

http://localhost:8080/tag/075B
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morphism β : y′ → y in Y we obtain a unique morphism u(β) : u(y′)→ u(y) in X
such that the diagram

f(u(y′))

��

f(u(β))
// f(u(y))

��
y′ // y

commutes. In other words, u : Y → X is a functor. In fact, we can say a little bit
more. Namely, suppose that V ′ = q(y′), V = q(y), U ′ = p(u(y′)) and U = p(u(y)).
Then

U ′
p(u(β))

//

��

U

��
V ′

q(β) // V

is a fibre product square. This is true because U ′ → U represents the base change
(Sch/V ′)fppf ×y′,Y X → (Sch/V )fppf ×y,Y X of V ′ → V .

Lemma 5.3. Let f : X → Y be a representable 1-morphism of categories fibred in
groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Then
the functor u : Yτ → Xτ is continuous and defines a morphism of sites Xτ → Yτ
which induces the same morphism of topoi Sh(Xτ ) → Sh(Yτ ) as the morphism f
constructed in Lemma 4.4. Moreover, f∗F(y) = F(u(y)) for any presheaf F on X .

Proof. Let {yi → y} be a τ -covering in Y. By definition this simply means that
{q(yi)→ q(y)} is a τ -covering of schemes. By the final remark above the lemma we
see that {p(u(yi)) → p(u(y))} is the base change of the τ -covering {q(yi) → q(y)}
by p(u(y)) → q(y), hence is itself a τ -covering by the axioms of a site. Hence
{u(yi)→ u(y)} is a τ -covering of X . This proves that u is continuous.

Let’s use the notation up, us, u
p, us of Sites, Sections 5 and 14. If we can show the

final assertion of the lemma, then we see that f∗ = up = us (by continuity of u
seen above) and hence by adjointness f−1 = us which will prove us is exact, hence
that u determines a morphism of sites, and the equality will be clear as well. To
see that f∗F(y) = F(u(y)) note that by definition

f∗F(y) = (pfF)(y) = limf(x)→y F(x).

Since u(y) is a final object in the category the limit is taken over we conclude. �

6. The structure sheaf

Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. The 2-category of categories fibred in groupoids over
(Sch/S)fppf has a final object, namely, id : (Sch/S)fppf → (Sch/S)fppf and p is
a 1-morphism from X to this final object. Hence any presheaf G on (Sch/S)fppf
gives a presheaf p−1G on X defined by the rule p−1G(x) = G(p(x)). Moreover, the
discussion in Section 4 shows that p−1G is a τ sheaf whenever G is a τ -sheaf.

Recall that the site (Sch/S)fppf is a ringed site with structure sheaf O defined by
the rule

(Sch/S)opp −→ Rings, U/S 7−→ Γ(U,OU )

see Descent, Definition 7.2.

http://localhost:8080/tag/06W8
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Definition 6.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. The
structure sheaf of X is the sheaf of rings OX = p−1O.

For an object x of X lying over U we have OX (x) = O(U) = Γ(U,OU ). Needless to
say OX is also a Zariski, étale, smooth, and syntomic sheaf, and hence each of the
sites XZar, Xétale, Xsmooth, Xsyntomic, and Xfppf is a ringed site. This construction
is functorial as well.

Lemma 6.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a canonical
identification f−1OX = OY which turns f : Sh(Xτ ) → Sh(Yτ ) into a morphism of
ringed topoi.

Proof. Denote p : X → (Sch/S)fppf and q : Y → (Sch/S)fppf the structural
functors. Then q = p ◦ f , hence q−1 = f−1 ◦ p−1 by Lemma 3.2. The result
follows. �

Remark 6.3. In the situation of Lemma 6.2 the morphism of ringed topoi f :
Sh(Xτ ) → Sh(Yτ ) is flat as is clear from the equality f−1OX = OY . This is a
bit counter intuitive, for example because a closed immersion of algebraic stacks is
typically not flat (as a morphism of algebraic stacks). However, exactly the same
thing happens when taking a closed immersion i : X → Y of schemes: in this case
the associated morphism of big τ -sites i : (Sch/X)τ → (Sch/Y )τ also is flat.

7. Sheaves of modules

Since we have a structure sheaf we have modules.

Definition 7.1. Let X be a category fibred in groupoids over (Sch/S)fppf .

(1) A presheaf of modules on X is a presheaf of OX -modules. The category of
presheaves of modules is denoted PMod(OX ).

(2) We say a presheaf of modules F is an OX -module, or more precisely a
sheaf of OX -modules if F is an fppf sheaf. The category of OX -modules is
denoted Mod(OX ).

These (pre)sheaves of modules occur in the literature as (pre)sheaves of OX -modules
on the big fppf site of X . We will occasionally use this terminology if we want to
distinguish these categories from others. We will also encounter presheaves of mod-
ules which are sheaves in the Zariski, étale, smooth, or syntomic topologies (without
necessarily being sheaves). If need be these will be denoted Mod(Xétale,OX ) and
similarly for the other topologies.

Next, we address functoriality – first for presheaves of modules. Let

X
f

//

p
%%

Y

q
yy

(Sch/S)fppf

be a 1-morphism of categories fibred in groupoids. The functors f−1, f∗ on abelian
presheaves extend to functors

(7.1.1) f−1 : PMod(OY) −→ PMod(OX ) and f∗ : PMod(OY) −→ PMod(OX )

http://localhost:8080/tag/06TV
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This is immediate for f−1 because f−1G(x) = G(f(x)) which is a module over
OY(f(x)) = O(q(f(x))) = O(p(x)) = OX (x). Alternatively it follows because
f−1OY = OX and because f−1 commutes with limits (on presheaves). Since f∗ is
a right adjoint it commutes with all limits (on presheaves) in particular products.
Hence we can extend f∗ to a functor on presheaves of modules as in the proof of
Modules on Sites, Lemma 12.1. We claim that the functors (7.1.1) form an adjoint
pair of functors:

MorPMod(OX )(f
−1G,F) = MorPMod(OY)(G, f∗F).

As f−1OY = OX this follows from Modules on Sites, Lemma 12.3 by endowing X
and Y with the chaotic topology.

Next, we discuss functoriality for modules, i.e., for sheaves of modules in the fppf
topology. Denote by f also the induced morphism of ringed topoi, see Lemma 6.2
(for the fppf topologies right now). Note that the functors f−1 and f∗ of (7.1.1)
preserve the subcategories of sheaves of modules, see Lemma 4.4. Hence it follows
immediately that

(7.1.2) f−1 : Mod(OY) −→ Mod(OX ) and f∗ : Mod(OY) −→ Mod(OX )

form an adjoint pair of functors:

MorMod(OX )(f
−1G,F) = MorMod(OY)(G, f∗F).

By uniqueness of adjoints we conclude that f∗ = f−1 where f∗ is as defined in
Modules on Sites, Section 13 for the morphism of ringed topoi f above. Of course
we could have seen this directly because f∗(−) = f−1(−)⊗f−1OY OX and because

f−1OY = OX .

Similarly for sheaves of modules in the Zariski, étale, smooth, syntomic topology.

8. Representable categories

In this short section we compare our definitions with what happens in case the
algebraic stacks in question are representable.

Lemma 8.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S). Assume X is representable by a scheme X. For τ ∈ {Zar, étale, smooth,
syntomic, fppf} there is a canonical equivalence

(Xτ ,OX ) = ((Sch/X)τ ,OX)

of ringed sites.

Proof. This follows by choosing an equivalence (Sch/X)τ → X of categories fibred
in groupoids over (Sch/S)fppf and using the functoriality of the construction X  
Xτ . �

Lemma 8.2. Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over S. Assume X , Y are representable by schemes X, Y .
Let f : X → Y be the morphism of schemes corresponding to f . For τ ∈ {Zar,
étale, smooth, syntomic, fppf} the morphism of ringed topoi f : (Sh(Xτ ),OX ) →
(Sh(Xτ ),OX ) agrees with the morphisms of ringed topoi f : (Sh((Sch/X)τ ),OX)→
(Sh((Sch/Y )τ ),OY ) via the identifications of Lemma 8.1.

Proof. Follows by unwinding the definitions. �

http://localhost:8080/tag/075I
http://localhost:8080/tag/075J
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9. Restriction

A trivial but useful observation is that the localization of a category fibred in
groupoids at an object is equivalent to the big site of the scheme it lies over.

Lemma 9.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x).
The functor p induces an equivalence of sites Xτ/x→ (Sch/U)τ .

Proof. Note that (Sch/U)τ is the localization of the site (Sch/S)fppf at the object
U . It follows from Categories, Definition 33.1 that the rule x′/x 7→ p(x′)/p(x)
defines an equivalence of categories Xτ/x→ (Sch/U)τ . Whereupon it follows from
Stacks, Definition 10.2 that coverings of x′ in Xτ/x are in bijective correspondence
with coverings of p(x′) in (Sch/U)τ . �

We use the lemma above to talk about the pullback and the restriction of a
(pre)sheaf to a scheme.

Definition 9.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
x ∈ Ob(X ) lying over U = p(x). Let F be a presheaf on X .

(1) The pullback x−1F of F is the restriction F|(X/x) viewed as a presheaf on
(Sch/U)fppf via the equivalence X/x→ (Sch/U)fppf of Lemma 9.1.

(2) The restriction of F to Uétale is x−1F|Uétale , abusively written F|Uétale .

This notation makes sense because to the object x the 2-Yoneda lemma, see Al-
gebraic Stacks, Section 5 associates a 1-morphism x : (Sch/U)fppf → X/x which
is quasi-inverse to p : X/x → (Sch/U)fppf . Hence x−1F truly is the pullback of
F via this 1-morphism. In particular, by the material above, if F is a sheaf (or a
Zariski, étale, smooth, syntomic sheaf), then x−1F is a sheaf on (Sch/U)fppf (or
on (Sch/U)Zar, (Sch/U)étale, (Sch/U)smooth, (Sch/U)syntomic).

Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let ϕ : x → y
be a morphism of X lying over the morphism of schemes a : U → V . Recall
that a induces a morphism of small étale sites asmall : Uétale → Vétale, see Étale
Cohomology, Section 34. Let F be a presheaf on X . Let F|Uétale and F|Vétale be
the restrictions of F via x and y. There is a natural comparison map

(9.2.1) cϕ : F|Vétale −→ asmall,∗(F|Uétale)

of presheaves on Uétale. Namely, if V ′ → V is étale, set U ′ = V ′ ×V U and define
cϕ on sections over V ′ via

asmall,∗(F|Uétale)(V ′) F|Uétale(U ′) F(x′)

F|Vétale(V ′)

cϕ

OO

F(y′)

F(ϕ′)

OO

Here ϕ′ : x′ → y′ is a morphism of X fitting into a commutative diagram

x′ //

ϕ′

��

x

ϕ

��
y′ // y

lying over

U ′ //

��

U

a

��
V ′ // V

http://localhost:8080/tag/06W0
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The existence and uniqueness of ϕ′ follow from the axioms of a category fibred in
groupoids. We omit the verification that cϕ so defined is indeed a map of presheaves
(i.e., compatible with restriction mappings) and that it is functorial in F . In case
F is a sheaf for the étale topology we obtain a comparison map

(9.2.2) cϕ : a−1
small(F|Vétale) −→ F|Uétale

which is also denoted cϕ as indicated (this is the customary abuse of notation in
not distinguishing between adjoint maps).

Lemma 9.3. Let F be an étale sheaf on X → (Sch/S)fppf .

(1) If ϕ : x→ y and ψ : y → z are morphisms of X lying over a : U → V and
b : V →W , then the composition

a−1
small(b

−1
small(F|Wétale

))
a−1
smallcψ−−−−−−→ a−1

small(F|Vétale)
cϕ−→ F|Uétale

is equal to cψ◦ϕ via the identification

(b ◦ a)−1
small(F|Wétale

) = a−1
small(b

−1
small(F|Wétale

)).

(2) If ϕ : x → y lies over an étale morphism of schemes a : U → V , then
(9.2.2) is an isomorphism.

(3) Suppose f : Y → X is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf and y is an object of Y lying over the scheme U with image
x = f(y). Then there is a canonical identification f−1F|Uétale = F|Uétale .

(4) Moreover, given ψ : y′ → y in Y lying over a : U ′ → U the comparison map
cψ : a−1

small(F
−1F|Uétale) → F−1F|U ′étale is equal to the comparison map

cf(ψ) : a−1
smallF|Uétale → F|U ′étale via the identifications in (3).

Proof. The verification of these properties is omitted. �

Next, we turn to the restriction of (pre)sheaves of modules.

Lemma 9.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let τ ∈
{Zar, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) lying over U = p(x). The
equivalence of Lemma 9.1 extends to an equivalence of ringed sites (Xτ/x,OX |x)→
((Sch/U)τ ,O).

Proof. This is immediate from the construction of the structure sheaves. �

Let X be a category fibred in groupoids over (Sch/S)fppf . Let F be a (pre)sheaf
of modules on X as in Definition 7.1. Let x be an object of X lying over U .
Then Lemma 9.4 guarantees that the restriction x−1F is a (pre)sheaf of modules
on (Sch/U)fppf . We will sometimes write x∗F = x−1F in this case. Similarly,
if F is a sheaf for the Zariski, étale, smooth, or syntomic topology, then x−1F
is as well. Moreover, the restriction F|Uétale = x−1F|Uétale to U is a presheaf of
OUétale -modules. If F is a sheaf for the étale topology, then F|Uétale is a sheaf of
modules. Moreover, if ϕ : x→ y is a morphism of X lying over a : U → V then the

comparison map (9.2.2) is compatible with a]small (see Descent, Remark 7.4) and
induces a comparison map

(9.4.1) cϕ : a∗small(F|Vétale) −→ F|Uétale
of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 9.3
hold in the setting of étale sheaves of modules as well. We will use this in the
following without further mention.

http://localhost:8080/tag/075D
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Lemma 9.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
τ ∈ {Zar, étale, smooth, syntomic, fppf}. The site Xτ has enough points.

Proof. By Sites, Lemma 37.5 we have to show that there exists a family of objects
x of X such that Xτ/x has enough points and such that the sheaves h#

x cover

the final object of the category of sheaves. By Lemma 9.1 and Étale Cohomology,
Lemma 30.1 we see that Xτ/x has enough points for every object x and we win. �

10. Restriction to algebraic spaces

In this section we consider sheaves on categories representable by algebraic spaces.
The following lemma is the analogue of Topologies, Lemma 4.13 for algebraic spaces.

Lemma 10.1. Let S be a scheme. Let X → (Sch/S)fppf be a category fibred in
groupoids. Assume X is representably by an algebraic space F . Then there exists a
continuous and cocontinuous functor Fétale → Xétale which induces a morphism of
ringed sites

πF : (Xétale,OX ) −→ (Fétale,OF )

and a morphism of ringed topoi

iF : (Sh(Fétale),OF ) −→ (Sh(Xétale),OX )

such that πF ◦ iF = id. Moreover πF,∗ = i−1
F .

Proof. Choose an equivalence j : SF → X , see Algebraic Stacks, Sections 7 and
8. An object of Fétale is a scheme U together with an étale morphism ϕ : U → F .
Then ϕ is an object of SF over U . Hence j(ϕ) is an object of X over U . In
this way j induces a functor u : Fétale → X . It is clear that u is continuous and
cocontinuous for the étale topology on X . Since j is an equivalence, the functor u
is fully faithful. Also, fibre products and equalizers exist in Fétale and u commutes
with them because these are computed on the level of underlying schemes in Fétale.
Thus Sites, Lemmas 20.5, 20.6, and 20.7 apply. In particular u defines a morphism
of topoi iF : Sh(Fétale)→ Sh(Xétale) and there exists a left adjoint iF,! of i−1

F which
commutes with fibre products and equalizers.

We claim that iF,! is exact. If this is true, then we can define πF by the rules

π−1
F = iF,! and πF,∗ = i−1

F and everything is clear. To prove the claim, note that
we already know that iF,! is right exact and preserves fibre products. Hence it
suffices to show that iF,!∗ = ∗ where ∗ indicates the final object in the category of
sheaves of sets. Let U be a scheme and let ϕ : U → F be surjective and étale. Set
R = U ×F U . Then

hR
//
// hU // ∗

is a coequalizer diagram in Sh(Fétale). Using the right exactness of iF,!, using
iF,! = (up )#, and using Sites, Lemma 5.6 we see that

hu(R)
//
// hu(U)

// iF,!∗

is a coequalizer diagram in Sh(Fétale). Using that j is an equivalence and that
F = U/R it follows that the coequalizer in Sh(Xétale) of the two maps hu(R) →
hu(U) is ∗. We omit the proof that these morphisms are compatible with structure
sheaves. �

http://localhost:8080/tag/06W4
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Assume X is an algebraic stack represented by the algebraic space F . Let j : SF →
X be an equivalence and denote u : Fétale → Xétale the functor of the proof of
Lemma 10.1 above. Given a sheaf F on Xétale we have

πF,∗F(U) = i−1
F F(U) = F(u(U)).

This is why we often think of i−1
F as a restriction functor similarly to Definition 9.2

and to the restriction of a sheaf on the big étale site of a scheme to the small étale
site of a scheme. We often use the notation

(10.1.1) F|Fétale = i−1
F F = πF,∗F

in this situation.

Lemma 10.2. Let S be a scheme. Let f : X → Y be a morphism of categories
fibred in groupoids over (Sch/S)fppf . Assume X , Y are representable by algebraic
spaces F , G. Denote f : F → G the induced morphism of algebraic spaces, and
fsmall : Fétale → Gétale the corresponding morphism of ringed topoi. Then

(Sh(Xétale),OX )

πF

��

f
// (Sh(Yétale),OY)

πG

��
(Sh(Fétale),OF )

fsmall // (Sh(Gétale),OG)

is a commutative diagram of ringed topoi.

Proof. This is similar to Topologies, Lemma 4.16 (3) but there is a small snag due
to the fact that F → G may not be representable by schemes. In particular we
don’t get a commutative diagram of ringed sites, but only a commutative diagram
of ringed topoi.

Before we start the proof proper, we choose equivalences j : SF → X and j′ :
SG → Y which induce functors u : Fétale → X and u′ : Gétale → Y as in the proof
of Lemma 10.1. Because of the 2-functoriality of sheaves on categories fibred in
groupoids over Schfppf (see discussion in Section 3) we may assume that X = SF
and Y = SG and that f : SF → SG is the functor associated to the morphism
f : F → G. Correspondingly we will omit u and u′ from the notation, i.e., given an
object U → F of Fétale we denote U/F the corresponding object of X . Similarly
for G.

Let G be a sheaf on Xétale. To prove (2) we compute πG,∗f∗G and fsmall,∗πF,∗G.
To do this let V → G be an object of Gétale. Then

πG,∗f∗G(V ) = f∗G(V/G) = Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

see (5.0.1). The fibre product in the formula is

(Sch/V )fppf ×Y X = (Sch/V )fppf ×SG SF = SV×GF
i.e., it is the split category fibred in groupoids associated to the algebraic space
V ×G F . And pr−1G is a sheaf on SV×GF for the étale topology.

In particular, if V ×G F is representable, i.e., if it is a scheme, then πG,∗f∗G(V ) =
G(V ×G F/F ) and also

fsmall,∗πF,∗G(V ) = πF,∗G(V ×G F ) = G(V ×G F/F )

which proves the desired equality in this special case.

http://localhost:8080/tag/073N
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In general, choose a scheme U and a surjective étale morphism U → V ×G F . Set
R = U ×V×GF U . Then U/V ×G F and R/V ×G F are objects of the fibre product
category above. Since pr−1G is a sheaf for the étale topology on SV×GF the diagram

Γ
(

(Sch/V )fppf ×Y X , pr−1G
)

// pr−1G(U/V ×G F )
//
// pr−1G(R/V ×G F )

is an equalizer diagram. Note that pr−1G(U/V×GF ) = G(U/F ) and pr−1G(R/V×G
F ) = G(R/F ) by the definition of pullbacks. Moreover, by the material in Proper-
ties of Spaces, Section 15 (especially, Properties of Spaces, Remark 15.4 and Lemma
15.7) we see that there is an equalizer diagram

fsmall,∗πF,∗G(V ) // πF,∗G(U/F )
//
// πF,∗G(R/F )

Since we also have πF,∗G(U/F ) = G(U/F ) and πF,∗G(U/F ) = G(U/F ) we obtain
a canonical identification fsmall,∗πF,∗G(V ) = πG,∗f∗G(V ). We omit the proof that
this is compatible with restriction mappings and that it is functorial in G. �

Let f : X → Y and f : F → G be as in the second part of the lemma above. A
consequence of the lemma, using (10.1.1), is that

(10.2.1) (f∗F)|Gétale = fsmall,∗(F|Fétale)

for any sheaf F on Xétale. Moreover, if F is a sheaf of O-modules, then (10.2.1) is
an isomorphism of OG-modules on Gétale.

Finally, suppose that we have a 2-commutative diagram

U a //

f ��

|� ϕ

V
g

��
X

of 1-morphisms of categories fibred in groupoids over (Sch/S)fppf , that F is a sheaf
on Xétale, and that U ,V are representable by algebraic spaces U, V . Then we obtain
a comparison map

(10.2.2) cϕ : a−1
small(g

−1F|Vétale) −→ f−1F|Uétale
where a : U → V denotes the morphism of algebraic spaces corresponding to a.
This is the analogue of (9.2.2). We define cϕ as the adjoint to the map

g−1F|Vétale −→ asmall,∗(f
−1F|Uétale) = (a∗f

−1F)|Vétale
(equality by (10.2.1)) which is the restriction to V (10.1.1) of the map

g−1F → a∗a
−1g−1F = a∗f

−1F

where the last equality uses the 2-commutativity of the diagram above. In case F
is a sheaf of OX -modules cϕ induces a comparison map

(10.2.3) cϕ : a∗small(g
∗F|Vétale) −→ f∗F|Uétale

of OUétale -modules. Note that the properties (1), (2), (3), and (4) of Lemma 9.3
hold in this setting as well.
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11. Quasi-coherent modules

At this point we can apply the general definition of a quasi-coherent module to the
situation discussed in this chapter.

Definition 11.1. Let p : X → (Sch/S)fppf be a category fibred in groupoids. A
quasi-coherent module on X , or a quasi-coherent OX -module is a quasi-coherent
module on the ringed site (Xfppf ,OX ) as in Modules on Sites, Definition 23.1. The
category of quasi-coherent sheaves on X is denoted QCoh(OX ).

If X is an algebraic stack, then this definition agrees with all definitions in the
literature in the sense that QCoh(OX ) is equivalent (modulo set theoretic issues)
to any variant of this category defined in the literature. For example, we will match
our definition with the definition in [Ols07, Definition 6.1] in Cohomology on Stacks,
Lemma 11.5. We will also see alternative constructions of this category later on.

In general (as is the case for morphisms of schemes) the pushforward of quasi-
coherent sheaf along a 1-morphism is not quasi-coherent. Pullback does preserve
quasi-coherence.

Lemma 11.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(OY) → Mod(OX ) preserves
quasi-coherent sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma 23.4. �

It turns out that quasi-coherent sheaves have a very simple characterization in
terms of their pullbacks. See also Lemma 11.5 for a characterization in terms of
restrictions.

Lemma 11.3. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a sheaf of OX -modules. Then F is quasi-coherent if and only if x∗F is a
quasi-coherent sheaf on (Sch/U)fppf for every object x of X with U = p(x).

Proof. By Lemma 11.2 the condition is necessary. Conversely, since x∗F is just
the restriction to Xfppf/x we see that it is sufficient directly from the definition of
a quasi-coherent sheaf (and the fact that the notion of being quasi-coherent is an
intrinsic property of sheaves of modules, see Modules on Sites, Section 18). �

Although there is a variant for the Zariski topology, it seems that the étale topology
is the natural topology to use in the following definition.

Definition 11.4. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let
F be a presheaf of OX -modules. We say F is locally quasi-coherent2 if F is a sheaf
for the étale topology and for every object x of X the restriction x∗F|Uétale is a
quasi-coherent sheaf. Here U = p(x).

We use LQCoh(OX ) to indicate the category of locally quasi-coherent modules. We
now have the following diagram of categories of modules

QCoh(OX ) //

��

Mod(OX )

��
LQCoh(OX ) // Mod(Xétale,OX )

2This is nonstandard notation.
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where the arrows are strictly full embeddings. It turns out that many results
for quasi-coherent sheaves have a counter part for locally quasi-coherent modules.
Moreover, from many points of view (as we shall see later) this is a natural category
to consider. For example the quasi-coherent sheaves are exactly those locally quasi-
coherent modules that are “cartesian”, i.e., satisfy the second condition of the
lemma below.

Lemma 11.5. Let p : X → (Sch/S)fppf be a category fibred in groupoids. Let F
be a presheaf of OX -modules. Then F is quasi-coherent if and only if the following
two conditions hold

(1) F is locally quasi-coherent, and
(2) for any morphism ϕ : x → y of X lying over f : U → V the comparison

map cϕ : f∗smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.

Proof. Assume F is quasi-coherent. Then F is a sheaf for the fppf topology, hence
a sheaf for the étale topology. Moreover, any pullback of F to a ringed topos is
quasi-coherent, hence the restrictions x∗F|Uétale are quasi-coherent. This proves F
is locally quasi-coherent. Let y be an object of X with V = p(y). We have seen
that X/y = (Sch/V )fppf . By Descent, Proposition 7.11 it follows that y∗F is the
quasi-coherent module associated to a (usual) quasi-coherent module FV on the
scheme V . Hence certainly the comparison maps (9.4.1) are isomorphisms.

Conversely, suppose that F satisfies (1) and (2). Let y be an object of X with
V = p(y). Denote FV the quasi-coherent module on the scheme V corresponding
to the restriction y∗F|Vétale which is quasi-coherent by assumption (1), see Descent,
Proposition 7.11. Condition (2) now signifies that the restrictions x∗F|Uétale for x
over y are each isomorphic to the (étale sheaf associated to the) pullback of FV
via the corresponding morphism of schemes U → V . Hence y∗F is the sheaf on
(Sch/V )fppf associated to FV . Hence it is quasi-coherent (by Descent, Proposition
7.11 again) and we see that F is quasi-coherent on X by Lemma 11.3. �

Lemma 11.6. Let f : X → Y be a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf . The pullback functor f∗ = f−1 : Mod(Yétale,OY)→ Mod(Xétale,OX )
preserves locally quasi-coherent sheaves.

Proof. Let G be locally quasi-coherent on Y. Choose an object x of X lying over
the scheme U . The restriction x∗f∗G|Uétale equals (f ◦ x)∗G|Uétale hence is a quasi-
coherent sheaf by assumption on G. �

Lemma 11.7. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category LQCoh(OX ) has colimits and they agree with colimits in the
category Mod(Xétale,OX ).

(2) The category LQCoh(OX ) is abelian with kernels and cokernels computed
in Mod(Xétale,OX ), in other words the inclusion functor is exact.

(3) Given a short exact sequence 0→ F1 → F2 → F3 → 0 of Mod(Xétale,OX )
if two out of three are locally quasi-coherent so is the third.

(4) Given F ,G in LQCoh(OX ) the tensor product F⊗OX G in Mod(Xétale,OX )
is an object of LQCoh(OX ).

(5) Given F ,G in LQCoh(OX ) with F locally of finite presentation on Xétale
the sheaf HomOX (F ,G) in Mod(Xétale,OX ) is an object of LQCoh(OX ).

http://localhost:8080/tag/06WK
http://localhost:8080/tag/06WL
http://localhost:8080/tag/06WM


18 SHEAVES ON ALGEBRAIC STACKS

Proof. Each of these statements follows from the corresponding statement of De-
scent, Lemma 7.13. For example, suppose that I → LQCoh(OX ), i 7→ Fi is a dia-
gram. Consider the object F = colimi Fi of Mod(Xétale,OX ). For any object x of X
with U = p(x) the pullback functor x∗ commutes with all colimits as it is a left ad-
joint. Hence x∗F = colimi x

∗Fi. Similarly we have x∗F|Uétale = colimi x
∗Fi|Uétale .

Now by assumption each x∗Fi|Uétale is quasi-coherent, hence the colimit is quasi-
coherent by the aforementioned Descent, Lemma 7.13. This proves (1).

It follows from (1) that cokernels exist in LQCoh(OX ) and agree with the cokernels
computed in Mod(Xétale,OX ). Let ϕ : F → G be a morphism of LQCoh(OX ) and
let K = Ker(ϕ) computed in Mod(Xétale,OX ). If we can show that K is a locally
quasi-coherent module, then the proof of (2) is complete. To see this, note that
kernels are computed in the category of presheaves (no sheafification necessary).
Hence K|Uétale is the kernel of the map F|Uétale → G|Uétale , i.e., is the kernel of a
map of quasi-coherent sheaves on Uétale whence quasi-coherent by Descent, Lemma
7.13. This proves (2).

Parts (3), (4), and (5) follow in exactly the same way. Details omitted. �

In the generality discussed here the category of quasi-coherent sheaves is not abelian.
See Examples, Section 12. Here is what we can prove without any further work.

Lemma 11.8. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category QCoh(OX ) has colimits and they agree with colimits in the
category Mod(OX ) as well as with colimits in the category LQCoh(OX ).

(2) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an
object of QCoh(OX ).

(3) Given F ,G in QCoh(OX ) with F locally of finite presentation on Xfppf the
sheaf HomOX (F ,G) in Mod(OX ) is an object of QCoh(OX ).

Proof. Let I → QCoh(OX ), i 7→ Fi be a diagram. Consider the object F =
colimi Fi of Mod(OX ). For any object x of X with U = p(x) the pullback functor
x∗ commutes with all colimits as it is a left adjoint. Hence x∗F = colimi x

∗Fi in
Mod((Sch/U)fppf ,O). We conclude from Descent, Lemma 7.13 that x∗F is quasi-
coherent, hence F is quasi-coherent, see Lemma 11.3. Thus we see that QCoh(OX )
has colimits and they agree with colimits in the category Mod(OX ). In particular
the (fppf) sheaf F is also the colimit of the diagram in Mod(Xétale,OX ), hence F
is also the colimit in LQCoh(OX ). This proves (1).

Parts (2) and (3) are proved in the same way. Details omitted. �

12. Stackification and sheaves

It turns out that the category of sheaves on a category fibred in groupoids only
“knows about” the stackification.

Lemma 12.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then the morphism
of topoi f : Sh(Xfppf )→ Sh(Yfppf ) is an equivalence.

Proof. We may assume Y is the stackification of X . We claim that f : X → Y is a
special cocontinuous functor, see Sites, Definition 28.2 which will prove the lemma.
By Stacks, Lemma 10.3 the functor f is continuous and cocontinuous. By Stacks,
Lemma 8.1 we see that conditions (3), (4), and (5) of Sites, Lemma 28.1 hold. �
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Lemma 12.2. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . If f induces an equivalence of stackifications, then f∗ induces
equivalences Mod(OX )→ Mod(OY) and QCoh(OX )→ QCoh(OY).

Proof. We may assume Y is the stackification of X . The first assertion is clear
from Lemma 12.1 and OX = f−1OY . Pullback of quasi-coherent sheaves are quasi-
coherent, see Lemma 11.2. Hence it suffices to show that if f∗G is quasi-coherent,
then G is. To see this, let y be an object of Y. Translating the condition that Y
is the stackification of X we see there exists an fppf covering {yi → y} in Y such
that yi ∼= f(xi) for some xi object of X . Say xi and yi lie over the scheme Ui.
Then f∗G being quasi-coherent, means that x∗i f

∗G is quasi-coherent. Since x∗i f
∗G

is isomorphic to y∗i G (as sheaves on (Sch/Ui)fppf we see that y∗i G is quasi-coherent.
It follows from Modules on Sites, Lemma 23.3 that the restriction of G to Y/y is
quasi-coherent. Hence G is quasi-coherent by Lemma 11.3. �

13. Quasi-coherent sheaves and presentations

In Groupoids in Spaces, Definition 12.1 we have the defined the notion of a quasi-
coherent module on an arbitrary groupoid. The following (formal) proposition tells
us that we can study quasi-coherent sheaves on quotient stacks in terms of quasi-
coherent modules on presentations.

Proposition 13.1. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Let
X = [U/R] be the quotient stack. The category of quasi-coherent modules on X is
equivalent to the category of quasi-coherent modules on (U,R, s, t, c).

Proof. Denote QCoh(U,R, s, t, c) the category of quasi-coherent modules on the
groupoid (U,R, s, t, c). We will construct quasi-inverse functors

QCoh(OX )←→ QCoh(U,R, s, t, c).

According to Lemma 12.2 the stackification map [U/pR] → [U/R] (see Groupoids
in Spaces, Definition 19.1) induces an equivalence of categories of quasi-coherent
sheaves. Thus it suffices to prove the lemma with X = [U/pR].

Recall that an object x = (T, u) of X = [U/pR] is given by a scheme T and a
morphism u : T → U . A morphism (T, u)→ (T ′, u′) is given by a pair (f, r) where
f : T → T ′ and r : T → R with s ◦ r = u and t ◦ r = u′ ◦ f . Let us call a special
morphism any morphism of the form (f, e ◦ u′ ◦ f) : (T, u′ ◦ f) → (T ′, u′). The
category of (T, u) with special morphisms is just the category of schemes over U .

Let F be a quasi-coherent sheaf on X . Then we obtain for every x = (T, u)
a quasi-coherent sheaf F(T,u) = x∗F|Tétale on T . Moreover, for any morphism
(f, r) : x = (T, u)→ (T ′, u′) = x′ we obtain a comparison isomorphism

c(f,r) : f∗smallF(T ′,u′) −→ F(T,u)

see Lemma 11.5. Moreover, these isomorphisms are compatible with compositions,
see Lemma 9.3. If U , R are schemes, then we can construct the quasi-coherent sheaf
on the groupoid as follows: First the object (U, id) corresponds to a quasi-coherent
sheaf F(U,id) on U . Next, the isomorphism α : t∗smallF(U,id) → s∗smallF(U,id) comes
from

(1) the morphism (R, idR) : (R, s) → (R, t) in the category [U/pR] which pro-
duces an isomorphism F(R,t) → F(R,s),
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(2) the special morphism (R, s) → (U, id) which produces an isomorphism
s∗smallF(U,id) → F(R,s), and

(3) the special morphism (R, t) → (U, id) which produces an isomorphism
t∗smallF(U,id) → F(R,t).

The cocycle condition for α follows from the condition that (U,R, s, t, c) is groupoid,
i.e., that composition is associative (details omitted).

To do this in general, i.e., when U and R are algebraic spaces, it suffices to ex-
plain how to associate to an algebraic space (W,u) over U a quasi-coherent sheaf
F(W,u) and to construct the comparison maps for morphisms between these. We
set F(W,u) = x∗F|Wétale

where x is the 1-morphism SW → SU → [U/pR] and the
comparison maps are explained in (10.2.3).

Conversely, suppose that (G, α) is a quasi-coherent module on (U,R, s, t, c). We are
going to define a presheaf of modules F on X as follows. Given an object (T, u) of
[U/pR] we set

F(T, u) := Γ(T, u∗smallG).

Given a morphism (f, r) : (T, u)→ (T ′, u′) we get a map

F(T ′, u′) = Γ(T ′, (u′)∗smallG)

→ Γ(T, f∗small(u
′)∗smallG) = Γ(T, (u′ ◦ f)∗smallG)

= Γ(T, (t ◦ r)∗smallG) = Γ(T, r∗smallt
∗
smallG)

→ Γ(T, r∗smalls
∗
smallG) = Γ(T, (s ◦ r)∗smallG)

= Γ(T, u∗smallG)

= F(T, u)

where the first arrow is pullback along f and the second arrow is α. Note that if
(T, r) is a special morphism, then this map is just pullback along f as e∗smallα = id
by the axioms of a sheaf of quasi-coherent modules on a groupoid. The cocycle
condition implies that F is a presheaf of modules (details omitted). It is immediate
from the definition that F is quasi-coherent when pulled back to (Sch/T )fppf (by
the simple description of the restriction maps of F in case of a special morphism).

We omit the verification that the functors constructed above are quasi-inverse to
each other. �

We finish this section with a technical lemma on maps out of quasi-coherent sheaves.
It is an analogue of Schemes, Lemma 7.1. We will see later (Criteria for Repre-
sentability, Theorem 17.2) that the assumptions on the groupoid imply that X is
an algebraic stack.

Lemma 13.2. Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. Assume
s, t are flat and locally of finite presentation. Let X = [U/R] be the quotient stack.
Denote π : SU → X the quotient map. Let F be a quasi-coherent OX -module, and
let H be any object of Mod(OX ). The map

HomOX (F ,H) −→ HomOU (x∗F|Uétale , x∗H|Uétale), φ 7−→ x∗φ|Uétale
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is injective and its image consists of exactly those ϕ : x∗F|Uétale → x∗H|Uétale which
give rise to a commutative diagram

s∗small(x
∗F|Uétale) //

s∗smallϕ

��

(x ◦ s)∗F|Rétale = (x ◦ t)∗F|Rétale t∗small(x
∗F|Uétale)oo

t∗smallϕ

��
s∗small(x

∗H|Uétale) // (x ◦ s)∗H|Rétale = (x ◦ t)∗H|Rétale t∗small(x
∗H|Uétale)oo

of modules on Rétale where the horizontal arrows are the comparison maps (10.2.3).

Proof. According to Lemma 12.2 the stackification map [U/pR] → [U/R] (see
Groupoids in Spaces, Definition 19.1) induces an equivalence of categories of quasi-
coherent sheaves and of fppf O-modules. Thus it suffices to prove the lemma with
X = [U/pR]. By Proposition 13.1 and its proof there exists a quasi-coherent module
(G, α) on (U,R, s, t, c) such that F is given by the rule F(T, u) = Γ(T, u∗G). In
particular x∗F|Uétale = G and it is clear that the map of the statement of the
lemma is injective. Moreover, given a map ϕ : G → x∗H|Uétale and given any object
y = (T, u) of [U/pR] we can consider the map

F(y) = Γ(T, u∗G)
u∗smallϕ−−−−−→ Γ(T, u∗smallx

∗H|Uétale)→ Γ(T, y∗H|Tétale) = H(y)

where the second arrow is the comparison map (9.4.1) for the sheaf H. This as-
signment is compatible with the restriction mappings of the sheaves F and G for
morphisms of [U/pR] if the cocycle condition of the lemma is satisfied. Proof omit-
ted. Hint: the restriction maps of F are made explicit in terms of (G, α) in the
proof of Proposition 13.1. �

14. Quasi-coherent sheaves on algebraic stacks

Let X be an algebraic stack over S. By Algebraic Stacks, Lemma 16.2 we can find
an equivalence [U/R] → X where (U,R, s, t, c) is a smooth groupoid in algebraic
spaces. Then

QCoh(OX ) ∼= QCoh(O[U/R]) ∼= QCoh(U,R, s, t, c)

where the second equivalence is Proposition 13.1. Hence the category of quasi-
coherent sheaves on an algebraic stack is equivalent to the category of quasi-coherent
modules on a smooth groupoid in algebraic spaces. In particular, by Groupoids in
Spaces, Lemma 12.5 we see that QCoh(OX ) is abelian!

There is something slightly disconcerting about our current setup. It is that the
fully faithful embedding

QCoh(OX ) −→ Mod(OX )

is in general not exact. However, exactly the same thing happens for schemes: for
most schemes X the embedding

QCoh(OX) ∼= QCoh((Sch/X)fppf ,OX) −→ Mod((Sch/X)fppf ,OX)

isn’t exact, see Descent, Lemma 7.13. Parenthetically, the example in the proof of
Descent, Lemma 7.13 shows that in general the strictly full embedding QCoh(OX )→
LQCoh(OX ) isn’t exact either.

We collect all the positive results obtained so far in a single statement.

Lemma 14.1. Let X be an algebraic stack over S.
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(1) If [U/R] → X is a presentation of X then there is a canonical equivalence
QCoh(OX ) ∼= QCoh(U,R, s, t, c).

(2) The category QCoh(OX ) is abelian.
(3) The category QCoh(OX ) has colimits and they agree with colimits in the

category Mod(OX ).
(4) Given F ,G in QCoh(OX ) the tensor product F ⊗OX G in Mod(OX ) is an

object of QCoh(OX ).
(5) Given F ,G in QCoh(OX ) with F locally of finite presentation on Xfppf the

sheaf HomOX (F ,G) in Mod(OX ) is an object of QCoh(OX ).

Proof. Properties (3), (4), and (5) were proven in Lemma 11.8. Part (1) is Propo-
sition 13.1. Part (2) follows from Groupoids in Spaces, Lemma 12.5 as discussed
above. �

Proposition 14.2. Let X be an algebraic stack over S.

(1) The category QCoh(OX ) is a Grothendieck abelian category. Consequently,
QCoh(OX ) has enough injectives and all limits.

(2) The inclusion functor QCoh(OX )→ Mod(OX ) has a right adjoint3

Q : Mod(OX ) −→ QCoh(OX )

such that for every quasi-coherent sheaf F the adjunction mapping Q(F)→
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Proper-
ties, Proposition 21.4 and the case of algebraic spaces, see Properties of Spaces,
Proposition 30.2. We advise the reader to read either of those proofs first.

Part (1) means QCoh(OX ) (a) has all colimits, (b) filtered colimits are exact, and (c)
has a generator, see Injectives, Section 10. By Lemma 14.1 colimits in QCoh(OX)
exist and agree with colimits in Mod(OX). By Modules on Sites, Lemma 14.2
filtered colimits are exact. Hence (a) and (b) hold.

Choose a presentation X = [U/R] so that (U,R, s, t, c) is a smooth groupoid in
algebraic spaces and in particular s and t are flat morphisms of algebraic spaces.
By Lemma 14.1 above we have QCoh(OX ) = QCoh(U,R, s, t, c). By Groupoids in
Spaces, Lemma 13.2 there exists a set T and a family (Ft)t∈T of quasi-coherent
sheaves on X such that every quasi-coherent sheaf on X is the directed colimit of
its subsheaves which are isomorphic to one of the Ft. Thus

⊕
t Ft is a generator of

QCoh(OX) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem 11.6 and Lemma
13.2.

Proof of (2). To construct Q we use the following general procedure. Given an
object F of Mod(OX ) we consider the functor

QCoh(OX )opp −→ Sets, G 7−→ HomX (G,F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma 13.1. Thus there exists a quasi-coherent sheaf Q(F) and a functorial iso-
morphism HomX (G,F) = HomX (G, Q(F)) for G in QCoh(OX ). By the Yoneda
lemma (Categories, Lemma 3.5) the construction F  Q(F) is functorial in F . By
construction Q is a right adjoint to the inclusion functor. The fact that Q(F)→ F

3This functor is sometimes called the coherator.
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is an isomorphism when F is quasi-coherent is a formal consequence of the fact
that the inclusion functor QCoh(OX )→ Mod(OX ) is fully faithful. �

15. Cohomology

Let S be a scheme and let X be a category fibred in groupoids over (Sch/S)fppf .
For any τ ∈ {Zariski, étale, smooth, syntomic, fppf} the categories Ab(Xτ ) and
Mod(Xτ ,OX ) have enough injectives, see Injectives, Theorems 7.4 and 8.4. Thus we
can use the machinery of Cohomology on Sites, Section 3 to define the cohomology
groups

Hp(Xτ ,F) = Hp
τ (X ,F) and Hp(x,F) = Hp

τ (x,F)

for any x ∈ Ob(X ) and any object F of Ab(Xτ ) or Mod(Xτ ,OX ). Moreover, if
f : X → Y is a 1-morphism of categories fibred in groupoids over (Sch/S)fppf , then
we obtain the higher direct images Rif∗F in Ab(Yτ ) or Mod(Yτ ,OY). Of course,
as explained in Cohomology on Sites, Section 4 there are also derived versions of
Hp(−) and Rif∗.

Lemma 15.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let x ∈ Ob(X ) be
an object lying over the scheme U . Let F be an object of Ab(Xτ ) or Mod(Xτ ,OX ).
Then

Hp
τ (x,F) = Hp((Sch/U)τ , x

−1F)

and if τ = étale, then we also have

Hp
étale(x,F) = Hp(Uétale,F|Uétale).

Proof. The first statement follows from Cohomology on Sites, Lemma 8.1 and the
equivalence of Lemma 9.4. The second statement follows from the first combined
with Étale Cohomology, Lemma 20.5. �

16. Injective sheaves

The pushforward of an injective abelian sheaf or module is injective.

Lemma 16.1. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}.

(1) f∗I is injective in Ab(Yτ ) for I injective in Ab(Xτ ), and
(2) f∗I is injective in Mod(Yτ ,OY) for I injective in Mod(Xτ ,OX ).

Proof. This follows formally from the fact that f−1 is an exact left adjoint of f∗,
see Homology, Lemma 25.1. �

In the rest of this section we prove that pullback f−1 has a left adjoint f! on abelian
sheaves and modules. If f is representable (by schemes or by algebraic spaces), then
it will turn out that f! is exact and f−1 will preserve injectives. We first prove a
few preliminary lemmas about fibre products and equalizers in categories fibred in
groupoids and their behaviour with respect to morphisms.

Lemma 16.2. Let p : X → (Sch/S)fppf be a category fibred in groupoids.

(1) The category X has fibre products.
(2) If the Isom-presheaves of X are representable by algebraic spaces, then X

has equalizers.
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(3) If X is an algebraic stack (or more generally a quotient stack), then X has
equalizers.

Proof. Part (1) follows Categories, Lemma 33.14 as (Sch/S)fppf has fibre prod-
ucts.

Let a, b : x → y be morphisms of X . Set U = p(x) and V = p(y). The category
of schemes has equalizers hence we can let W → U be the equalizer of p(a) and
p(b). Denote c : z → x a morphism of X lying over W → U . The equalizer
of a and b, if it exists, is the equalizer of a ◦ c and b ◦ c. Thus we may assume
that p(a) = p(b) = f : U → V . As X is fibred in groupoids, there exists a unique
automorphism i : x→ x in the fibre category of X over U such that a◦ i = b. Again
the equalizer of a and b is the equalizer of idx and i. Recall that the IsomX (x)
is the presheaf on (Sch/U)fppf which to V/U associates the set of automorphisms
of x|V in the fibre category of X over V , see Stacks, Definition 2.2. If IsomX (x)
is representable by an algebraic space G → U , then we see that idx and i define
morphisms e, i : U → G over U . Set V = U ×e,G,i U , which by Morphisms of
Spaces, Lemma 4.7 is a scheme. Then it is clear that x|V → x is the equalizer of
the maps idx and i in X . This proves (2).

If X = [U/R] for some groupoid in algebraic spaces (U,R, s, t, c) over S, then the
hypothesis of (2) holds by Bootstrap, Lemma 11.5. If X is an algebraic stack, then
we can choose a presentation [U/R] ∼= X by Algebraic Stacks, Lemma 16.2. �

Lemma 16.3. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) The functor f transforms fibre products into fibre products.
(2) If f is faithful, then f transforms equalizers into equalizers.

Proof. By Categories, Lemma 33.14 we see that a fibre product in X is any com-
mutative square lying over a fibre product diagram in (Sch/S)fppf . Similarly for
Y. Hence (1) is clear.

Let x → x′ be the equalizer of two morphisms a, b : x′ → x′′ in X . We will show
that f(x) → f(x′) is the equalizer of f(a) and f(b). Let y → f(x) be a morphism
of Y equalizing f(a) and f(b). Say x, x′, x′′ lie over the schemes U,U ′, U ′′ and y
lies over V . Denote h : V → U ′ the image of y → f(x) in the category of schemes.
The morphism y → f(x) is isomorphic to f(h∗x′)→ f(x′) by the axioms of fibred
categories. Hence, as f is faithful, we see that h∗x′ → x′ equalizes a and b. Thus
we obtain a unique morphism h∗x′ → x whose image y = f(h∗x′) → f(x) is the
desired morphism in Y. �

Lemma 16.4. Let f : X → Y, g : Z → Y be faithful 1-morphisms of categories
fibred in groupoids over (Sch/S)fppf .

(1) the functor X ×Y Z → Y is faithful, and
(2) if X ,Z have equalizers, so does X ×Y Z.

Proof. We think of objects in X ×Y Z as quadruples (U, x, z, α) where α : f(x)→
g(z) is an isomorphism over U , see Categories, Lemma 30.3. A morphism (U, x, z, α)→
(U ′, x′, z′, α′) is a pair of morphisms a : x → x′ and b : z → z′ compatible with α
and α′. Thus it is clear that if f and g are faithful, so is the functor X ×Y Z → Y.
Now, suppose that (a, b), (a′, b′) : (U, x, z, α) → (U ′, x′, z′, α′) are two morphisms
of the 2-fibre product. Then consider the equalizer x′′ → x of a and a′ and the
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equalizer z′′ → z of b and b′. Since f commutes with equalizers (by Lemma 16.3)
we see that f(x′′)→ f(x) is the equalizer of f(a) and f(a′). Similarly, g(z′′)→ g(z)
is the equalizer of g(b) and g(b′). Picture

f(x′′) //

α′′

��

f(x)

α

��

f(a) //
f(a′)

// f(x′)

α′

��
g(z′′) // g(z)

g(b) //
g(b′)

// g(z′)

It is clear that the dotted arrow exists and is an isomorphism. However, it is not
a priori the case that the image of α′′ in the category of schemes is the identity
of its source. On the other hand, the existence of α′′ means that we can assume
that x′′ and z′′ are defined over the same scheme and that the morphisms x′′ → x
and z′′ → z have the same image in the category of schemes. Redoing the diagram
above we see that the dotted arrow now does project to an identity morphism and
we win. Some details omitted. �

As we are working with big sites we have the following somewhat counter intuitive
result (which also holds for morphisms of big sites of schemes). Warning: This
result isn’t true if we drop the hypothesis that f is faithful.

Lemma 16.5. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f−1 :
Ab(Yτ ) → Ab(Xτ ) has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). If f is faithful and X
has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Ab(Xτ ) for I injective in Ab(Yτ ).

Proof. By Stacks, Lemma 10.3 the functor f is continuous and cocontinuous.
Hence by Modules on Sites, Lemma 16.2 the functor f−1 : Ab(Yτ ) → Ab(Xτ )
has a left adjoint f! : Ab(Xτ ) → Ab(Yτ ). To see (1) we apply Modules on Sites,
Lemma 16.3 and to see that the hypotheses of that lemma are satisfied use Lem-
mas 16.2 and 16.3 above. Part (2) follows from this formally, see Homology, Lemma
25.1. �

Lemma 16.6. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. The functor f∗ :
Mod(Yτ ,OY)→ Mod(Xτ ,OX ) has a left adjoint f! : Mod(Xτ ,OX )→ Mod(Yτ ,OY)
which agrees with the functor f! of Lemma 16.5 on underlying abelian sheaves. If
f is faithful and X has equalizers, then

(1) f! is exact, and
(2) f−1I is injective in Mod(Xτ ,OX ) for I injective in Mod(Yτ ,OX ).

Proof. Recall that f is a continuous and cocontinuous functor of sites and that
f−1OY = OX . Hence Modules on Sites, Lemma 40.1 implies f∗ has a left adjoint
fMod

! . Let x be an object of X lying over the scheme U . Then f induces an
equivalence of ringed sites

X/x −→ Y/f(x)

as both sides are equivalent to (Sch/U)τ , see Lemma 9.4. Modules on Sites, Remark
40.2 shows that f! agrees with the functor on abelian sheaves.
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Assume now that X has equalizers and that f is faithful. Lemma 16.5 tells us that
f! is exact. Finally, Homology, Lemma 25.1 implies the statement on pullbacks of
injective modules. �

17. The Čech complex

To compute the cohomology of a sheaf on an algebraic stack we compare it to the
cohomology of the sheaf restricted to coverings of the given algebraic stack.

Throughout this section the situation will be as follows. We are given a 1-morphism
of categories fibred in groupoids

(17.0.1)

U
f

//

q %%

X

pyy
(Sch/S)fppf

We are going to think about U as a “covering” of X . Hence we want to consider
the simplicial object

U ×X U ×X U
////// U ×X U //// U

in the category of categories fibred in groupoids over (Sch/S)fppf . However, since
this is a (2, 1)-category and not a category, we should say explicitly what we mean.
Namely, we let Un be the category with objects (u0, . . . , un, x, α0, . . . , αn) where
αi : f(ui) → x is an isomorphism in X . We denote fn : Un → X the 1-morphism
which assigns to (u0, . . . , un, x, α0, . . . , αn) the object x. Note that U0 = U and
f0 = f . Given a map ϕ : [m] → [n] we consider the 1-morphism Uϕ : Un −→ Un
given by

(u0, . . . , un, x, α0, . . . , αn) 7−→ (uϕ(0), . . . , uϕ(n), x, αϕ(0), . . . , αϕ(n))

on objects. All of these 1-morphisms compose correctly on the nose (no 2-morphisms
required) and all of these 1-morphisms are 1-morphisms over X . We denote U• this
simplicial object. If F is a presheaf of sets on X , then we obtain a cosimplicial set

Γ(U0, f
−1
0 F) //// Γ(U1, f

−1
1 F)

// //// Γ(U2, f
−1
2 F)

Here the arrows are the pullback maps along the given morphisms of the simplicial
object. If F is a presheaf of abelian groups, this is a cosimplicial abelian group.

Let U → X be as above and let F be an abelian presheaf on X . The Čech complex
associated to the situation is denoted Č•(U → X ,F). It is the cochain complex
associated to the cosimplicial abelian group above, see Simplicial, Section 24. It
has terms

Čn(U → X ,F) = Γ(Un, f−1
n F).

The boundary maps are the maps

dn =
∑n+1

i=0
(−1)iδn+1

i : Γ(Un, f−1
n F) −→ Γ(Un+1, f

−1
n+1F)

where δn+1
i corresponds to the map [n] → [n + 1] omitting the index i. Note that

the map Γ(X ,F) → Γ(U0, f
−1
0 F0) is in the kernel of the differential d0. Hence we

define the extended Čech complex to be the complex

. . .→ 0→ Γ(X ,F)→ Γ(U0, f
−1
0 F0)→ Γ(U1, f

−1
1 F1)→ . . .
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with Γ(X ,F) placed in degree −1. The extended Čech complex is acyclic if and
only if the canonical map

Γ(X ,F)[0] −→ Č•(U → X ,F)

is a quasi-isomorphism of complexes.

Lemma 17.1. Generalities on Čech complexes.

(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,

then there is a morphism of Čech complexes

Č•(U → X ,F) −→ Č•(V → Y, e−1F)

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated Čech complexes are

isomorphic,

Proof. In the situation of (1) let t : f ◦ h → e ◦ g be a 2-morphism. The map on
complexes is given in degree n by pullback along the 1-morphisms Vn → Un given
by the rule

(v0, . . . , vn, y, β0, . . . , βn) 7−→ (h(v0), . . . , h(vn), e(y), e(β0) ◦ tv0
, . . . , e(βn) ◦ tvn).

For (2), note that pullback on global sections is an isomorphism for any presheaf
of sets when the pullback is along an equivalence of categories. Part (3) follows on
combining (1) and (2). �

Lemma 17.2. If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended Čech complex is homotopic to zero.

Proof. Set U ′ = U ×X X equal to the fibre product as described in Categories,
Lemma 30.3. Set f ′ : U ′ → X equal to the second projection. Then U → U ′,
u 7→ (u, f(x), 1) is an equivalence over X , hence we may replace (U , f) by (U ′, f ′)
by Lemma 17.1. The advantage of this is that now f ′ has a section s′ such that
f ′ ◦ s′ = idX on the nose. Namely, if t : s ◦ f → idX is a 2-isomorphism then we
can set s′(x) = (s(x), x, tx). Thus we may assume that f ◦ s = idX .

In the case that f ◦ s = idX the result follows from general principles. We give
the homotopy explicitly. Namely, for n ≥ 0 define sn : Un → Un+1 to be the
1-morphism defined by the rule on objects

(u0, . . . , un, x, α0, . . . , αn) 7−→ (u0, . . . , un, s(x), x, α0, . . . , αn, idx).

Define

hn+1 : Γ(Un+1, f
−1
n+1F) −→ Γ(Un, f−1

n F)

as pullback along sn. We also set s−1 = s and h0 : Γ(U0, f
−1
0 F) → Γ(X ,F) equal

to pullback along s−1. Then the family of maps {hn}n≥0 is a homotopy between 1

and 0 on the extended Čech complex. �
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18. The relative Čech complex

Let f : U → X be a 1-morphism of categories fibred in groupoids over (Sch/S)fppf
as in (17.0.1). Consider the associated simplicial object U• and the maps fn : Un →
X . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Finally, suppose that F is a
sheaf (of sets) on Xτ . Then

f0,∗f
−1
0 F

// // f1,∗f
−1
1 F

// //// f2,∗f
−1
2 F

is a cosimplicial sheaf on Xτ where we use the pullback maps introduced in Sites,
Section 44. If F is an abelian sheaf, then fn,∗f

−1
n F form a cosimplicial abelian

sheaf on Xτ . The associated complex (see Simplicial, Section 24)

. . .→ 0→ f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is called the relative Čech complex associated to the situation. We will denote this
complex K•(f,F). The extended relative Čech complex is the complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

with F in degree −1. The extended relative Čech complex is acyclic if and only if
the map F [0]→ K•(f,F) is a quasi-isomorphism of complexes of sheaves.

Remark 18.1. We can define the complex K•(f,F) also if F is a presheaf, only
we cannot use the reference to Sites, Section 44 to define the pullback maps. To
explain the pullback maps, suppose given a commutative diagram

V

g ��

h
// U

f��
X

of categories fibred in groupoids over (Sch/S)fppf and a presheaf G on U we can
define the pullback map f∗G → g∗h

−1G as the composition

f∗G −→ f∗h∗h
−1G = g∗h

−1G
where the map comes from the adjunction map G → h∗h

−1G. This works because
in our situation the functors h∗ and h−1 are adjoint in presheaves (and agree with
their counter parts on sheaves). See Sections 3 and 4.

Lemma 18.2. Generalities on relative Čech complexes.

(1) If

V
g

��

h
// U

f

��
Y e // X

is 2-commutative diagram of categories fibred in groupoids over (Sch/S)fppf ,
then there is a morphism e−1K•(f,F)→ K•(g, e−1F).

(2) if h and e are equivalences, then the map of (1) is an isomorphism,
(3) if f, f ′ : U → X are 2-isomorphic, then the associated relative Čech com-

plexes are isomorphic,

Proof. Literally the same as the proof of Lemma 17.1 using the pullback maps of
Remark 18.1. �
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Lemma 18.3. If there exists a 1-morphism s : X → U such that f ◦ s is 2-
isomorphic to idX then the extended relative Čech complex is homotopic to zero.

Proof. Literally the same as the proof of Lemma 17.2. �

Remark 18.4. Let us “compute” the value of the relative Čech complex on an
object x of X . Say p(x) = U . Consider the 2-fibre product diagram (which serves
to introduce the notation g : V → Y)

V

g

��

(Sch/U)fppf ×x,X U //

��

U

f

��
Y (Sch/U)fppf

x // X

Note that the morphism Vn → Un of the proof of Lemma 17.1 induces an equivalence
Vn = (Sch/U)fppf ×x,X Un. Hence we see from (5.0.1) that

Γ(x,K•(f,F)) = Č•(V → Y, x−1F)

In words: The value of the relative Čech complex on an object x of X is the Čech
complex of the base change of f to X/x ∼= (Sch/U)fppf . This implies for example
that Lemma 17.2 implies Lemma 18.3 and more generally that results on the (usual)
Čech complex imply results for the relative Čech complex.

Lemma 18.5. Let
V
g

��

h
// U

f

��
Y e // X

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf and let F be
an abelian presheaf on X . Then the map e−1K•(f,F) → K•(g, e−1F) of Lemma
18.2 is an isomorphism of complexes of abelian presheaves.

Proof. Let y be an object of Y lying over the scheme T . Set x = e(y). We are
going to show that the map induces an isomorphism on sections over y. Note that

Γ(y, e−1K•(f,F)) = Γ(x,K•(f,F)) = Č•((Sch/T )fppf×x,XU → (Sch/T )fppf , x
−1F)

by Remark 18.4. On the other hand,

Γ(y,K•(g, e−1F)) = Č•((Sch/T )fppf ×y,Y V → (Sch/T )fppf , y
−1e−1F)

also by Remark 18.4. Note that y−1e−1F = x−1F and since the diagram is 2-
cartesian the 1-morphism

(Sch/T )fppf ×y,Y V → (Sch/T )fppf ×x,X U
is an equivalence. Hence the map on sections over y is an isomorphism by Lemma
17.1. �

Exactness can be checked on a “covering”.

Lemma 18.6. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Let

F → G → H
be a complex in Ab(Xτ ). Assume that
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(1) for every object x of X there exists a covering {xi → x} in Xτ such that
each xi is isomorphic to f(ui) for some object ui of U , and

(2) f−1F → f−1G → f−1H is exact.

Then the sequence F → G → H is exact.

Proof. Let x be an object of X lying over the scheme T . Consider the sequence
x−1F → x−1G → x−1H of abelian sheaves on (Sch/T )τ . It suffices to show this
sequence is exact. By assumption there exists a τ -covering {Ti → T} such that x|Ti
is isomorphic to f(ui) for some object ui of U over Ti and moreover the sequence
u−1
i f−1F → u−1

i f−1G → u−1
i f−1H of abelian sheaves on (Sch/Ti)τ is exact. Since

u−1
i f−1F = x−1F|(Sch/Ti)τ we conclude that the sequence x−1F → x−1G → x−1H

become exact after localizing at each of the members of a covering, hence the
sequence is exact. �

Proposition 18.7. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. If

(1) F is an abelian sheaf on Xτ , and
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,

then the extended relative Čech complex

. . .→ 0→ F → f0,∗f
−1
0 F → f1,∗f

−1
1 F → f2,∗f

−1
2 F → . . .

is exact in Ab(Xτ ).

Proof. By Lemma 18.6 it suffices to check exactness after pulling back to U . By
Lemma 18.5 the pullback of the extended relative Čech complex is isomorphic to
the extend relative Čech complex for the morphism U ×X U → U and an abelian
sheaf on Uτ . Since there is a section ∆U/X : U → U ×X U exactness follows from
Lemma 18.3. �

Using this we can construct the Čech-to-cohomology spectral sequence as follows.
We first give a technical, precise version. In the next section we give a version that
applies only to algebraic stacks.

Lemma 18.8. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian groups

Ep,q2 = Hq((Up)τ , f−1
p F)⇒ Hp+q(Xτ ,F)

converging to the cohomology of F in the τ -topology.

Proof. Before we start the proof we make some remarks. By Lemma 16.4 (and
induction) all of the categories fibred in groupoids Up have equalizers and all of the
morphisms fp : Up → X are faithful. Let I be an injective object of Ab(Xτ ). By
Lemma 16.5 we see f−1

p I is an injective object of Ab((Up)τ ). Hence fp,∗f
−1
p I is an
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injective object of Ab(Xτ ) by Lemma 16.1. Hence Proposition 18.7 shows that the
extended relative Čech complex

. . .→ 0→ I → f0,∗f
−1
0 I → f1,∗f

−1
1 I → f2,∗f

−1
2 I → . . .

is an exact complex in Ab(Xτ ) all of whose terms are injective. Taking global
sections of this complex is exact and we see that the Čech complex Č•(U → X , I)
is quasi-isomorphic to Γ(Xτ , I)[0].

With these preliminaries out of the way consider the two spectral sequences asso-
ciated to the double complex (see Homology, Section 22)

Č•(U → X , I•)
where F → I• is an injective resolution in Ab(Xτ ). The discussion above shows
that Homology, Lemma 22.7 applies which shows that Γ(Xτ , I•) is quasi-isomorphic
to the total complex associated to the double complex. By our remarks above the
complex f−1

p I• is an injective resolution of f−1
p F . Hence the other spectral sequence

is as indicated in the lemma. �

To be sure there is a version for modules as well.

Lemma 18.9. Let f : U → X be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic, fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of Γ(OX )-modules

Ep,q2 = Hq((Up)τ , f∗pF)⇒ Hp+q(Xτ ,F)

converging to the cohomology of F in the τ -topology.

Proof. The proof of this lemma is identical to the proof of Lemma 18.8 except
that it uses an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 16.6 instead
of Lemma 16.5. �

Here is a lemma that translates a more usual kind of covering in the kinds of
coverings we have encountered above.

Lemma 18.10. Let f : X → Y be a 1-morphism of categories fibred in groupoids
over (Sch/S)fppf .

(1) Assume that f is representable by algebraic spaces, surjective, flat, and
locally of finite presentation. Then for any object y of Y there exists an
fppf covering {yi → y} and objects xi of X such that f(xi) ∼= yi in Y.

(2) Assume that f is representable by algebraic spaces, surjective, and smooth.
Then for any object y of Y there exists an étale covering {yi → y} and
objects xi of X such that f(xi) ∼= yi in Y.

Proof. Proof of (1). Suppose that y lies over the scheme V . We may think of y as
a morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective,
flat, and locally of finite presentation. Choose a scheme U and a surjective étale
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morphism U → W . Then U → V is also surjective, flat, and locally of finite
presentation (see Morphisms of Spaces, Lemmas 36.7, 36.8, 5.4, 27.2, and 28.3).
Hence {U → V } is an fppf covering. Denote x the object of X over U corresponding
to the 1-morphism (Sch/U)fppf → X . Then {f(x)→ y} is the desired fppf covering
of Y.

Proof of (1). Suppose that y lies over the scheme V . We may think of y as a
morphism (Sch/V )fppf → Y. By definition the 2-fibre product X ×Y (Sch/V )fppf
is representable by an algebraic space W and the morphism W → V is surjective
and smooth. Choose a scheme U and a surjective étale morphism U → W . Then
U → V is also surjective and smooth (see Morphisms of Spaces, Lemmas 36.6, 5.4,
and 34.2). Hence {U → V } is a smooth covering. By More on Morphisms, Lemma
28.7 there exists an étale covering {Vi → V } such that each Vi → V factors through
U . Denote xi the object of X over Vi corresponding to the 1-morphism

(Sch/Vi)fppf → (Sch/U)fppf → X .

Then {f(xi)→ y} is the desired étale covering of Y. �

Lemma 18.11. Let f : U → X and g : X → Y be composable 1-morphisms of cate-
gories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an abelian sheaf on Xτ ,
(2) for every object x of X there exists a covering {xi → x} in Xτ such that

each xi is isomorphic to f(ui) for some object ui of U ,
(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence of abelian sheaves on Yτ
Ep,q2 = Rq(g ◦ fp)∗f−1

p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. Note that the assumptions on f : U → X and F are identical to those in
Lemma 18.8. Hence the preliminary remarks made in the proof of that lemma hold
here also. These remarks imply in particular that

0→ g∗I → (g ◦ f0)∗f
−1
0 I → (g ◦ f1)∗f

−1
1 I → . . .

is exact if I is an injective object of Ab(Xτ ). Having said this, consider the two
spectral sequences of Homology, Section 22 associated to the double complex C•,•
with terms

Cp,q = (g ◦ fp)∗Iq

where F → I• is an injective resolution in Ab(Xτ ). The first spectral sequence
implies, via Homology, Lemma 22.7, that g∗I• is quasi-isomorphic to the total
complex associated to C•,•. Since f−1

p I• is an injective resolution of f−1
p F (see

Lemma 16.5) the second spectral sequence has terms Ep,q2 = Rq(g ◦ fp)∗f−1
p F as in

the statement of the lemma. �

Lemma 18.12. Let f : U → X and g : X → Y be composable 1-morphisms of cate-
gories fibred in groupoids over (Sch/S)fppf . Let τ ∈ {Zar, étale, smooth, syntomic,
fppf}. Assume

(1) F is an object of Mod(Xτ ,OX ),
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(2) for every object x of X there exists a covering {xi → x} in Xτ such that
each xi is isomorphic to f(ui) for some object ui of U ,

(3) the category U has equalizers, and
(4) the functor f is faithful.

Then there is a first quadrant spectral sequence in Mod(Yτ ,OY)

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

where all higher direct images are computed in the τ -topology.

Proof. The proof is identical to the proof of Lemma 18.11 except that it uses
an injective resolution in Mod(Xτ ,OX ) and it uses Lemma 16.6 instead of Lemma
16.5. �

19. Cohomology on algebraic stacks

Let X be an algebraic stack over S. In the sections above we have seen how to
define sheaves for the étale, ..., fppf topologies on X . In fact, we have constructed
a site Xτ for each τ ∈ {Zar, étale, smooth, syntomic, fppf}. There is a notion of
an abelian sheaf F on these sites. In the chapter on cohomology of sites we have
explained how to define cohomology. Putting all of this together, let’s define the
derived global sections

RΓZar(X ,F), RΓétale(X ,F), . . . , RΓfppf (X ,F)

as Γ(Xτ , I•) where F → I• is an injective resolution in Ab(Xτ ). The ith cohomology
group is the ith cohomology of the total derived cohomology. We will denote this

Hi
Zar(X ,F), Hi

étale(X ,F), . . . ,Hi
fppf (X ,F).

It will turn out that Hi
étale = Hi

smooth because of More on Morphisms, Lemma 28.7.
If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we use
injective resolutions in Mod(Xτ ,OX ) to compute total derived global sections and
cohomology groups; of course the end result is quasi-isomorphic resp. isomorphic
by the general fact Cohomology on Sites, Lemma 12.4.

So far our only tool to compute cohomology groups is the result on Čech complexes
proved above. We rephrase it here in the language of algebraic stacks for the étale
and the fppf topology. Let f : U → X be a 1-morphism of algebraic stacks. Recall
that

fp : Up = U ×X . . .×X U −→ X
is the structure morphism where there are (p+ 1)-factors. Also, recall that a sheaf
on X is a sheaf for the fppf topology. Note that if U is an algebraic space, then
f : U → X is representable by algebraic spaces, see Algebraic Stacks, Lemma 10.11.
Thus the proposition applies in particular to a smooth cover of the algebraic stack
X by a scheme.

Proposition 19.1. Let f : U → X be a 1-morphism of algebraic stacks.

(1) Let F be an abelian étale sheaf on X . Assume that f is representable by
algebraic spaces, surjective, and smooth. Then there is a spectral sequence

Ep,q2 = Hq
étale(Up, f

−1
p F)⇒ Hp+q

étale(X ,F)
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(2) Let F be an abelian sheaf on X . Assume that f is representable by algebraic
spaces, surjective, flat, and locally of finite presentation. Then there is a
spectral sequence

Ep,q2 = Hq
fppf (Up, f−1

p F)⇒ Hp+q
fppf (X ,F)

Proof. To see this we will check the hypotheses (1) – (4) of Lemma 18.8. The
1-morphism f is faithful by Algebraic Stacks, Lemma 15.2. This proves (4). Hy-
pothesis (3) follows from the fact that U is an algebraic stack, see Lemma 16.2. To
see (2) apply Lemma 18.10. Condition (1) is satisfied by fiat. �

20. Higher direct images and algebraic stacks

Let g : X → Y be a 1-morphism of algebraic stacks over S. In the sections above
we have constructed a morphism of ringed topoi g : Sh(Xτ ) → Sh(Yτ ) for each
τ ∈ {Zar, étale, smooth, syntomic, fppf}. In the chapter on cohomology of sites
we have explained how to define higher direct images. Hence the derived direct
image Rg∗F is defined as g∗I• where F → I• is an injective resolution in Ab(Xτ ).
The ith higher direct image Rig∗F is the ith cohomology of the derived direct
image. Important: it matters which topology τ is used here!

If F is a presheaf of OX -modules which is a sheaf in the τ -topology, then we use
injective resolutions in Mod(Xτ ,OX ) to compute derived direct image and higher
direct images.

So far our only tool to compute the higher direct images of g∗ is the result on Čech
complexes proved above. This requires the choice of a “covering” f : U → X . If
U is an algebraic space, then f : U → X is representable by algebraic spaces, see
Algebraic Stacks, Lemma 10.11. Thus the proposition applies in particular to a
smooth cover of the algebraic stack X by a scheme.

Proposition 20.1. Let f : U → X and g : X → Y be composable 1-morphisms of
algebraic stacks.

(1) Assume that f is representable by algebraic spaces, surjective and smooth.
(a) If F is in Ab(Xétale) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Ab(Yétale) with higher direct images computed in the étale topology.
(b) If F is in Mod(Xétale,OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Mod(Yétale,OY).
(2) Assume that f is representable by algebraic spaces, surjective, flat, and

locally of finite presentation.
(a) If F is in Ab(X ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Ab(Y) with higher direct images computed in the fppf topology.
(b) If F is in Mod(OX ) then there is a spectral sequence

Ep,q2 = Rq(g ◦ fp)∗f−1
p F ⇒ Rp+qg∗F

in Mod(OY).
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Proof. To see this we will check the hypotheses (1) – (4) of Lemma 18.11 and
Lemma 18.12. The 1-morphism f is faithful by Algebraic Stacks, Lemma 15.2.
This proves (4). Hypothesis (3) follows from the fact that U is an algebraic stack,
see Lemma 16.2. To see (2) apply Lemma 18.10. Condition (1) is satisfied by fiat
in all four cases. �

Here is a description of higher direct images for a morphism of algebraic stacks.

Lemma 20.2. Let S be a scheme. Let f : X → Y be a 1-morphism of algebraic
stacks4 over S. Let τ ∈ {Zariski, étale, smooth, syntomic, fppf}. Let F be an
object of Ab(Xτ ) or Mod(Xτ ,OX ). Then the sheaf Rif∗F is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
Here y is a typical object of Y lying over the scheme V .

Proof. Choose an injective resolution F [0]→ I•. By the formula for pushforward
(5.0.1) we see that Rif∗F is the sheaf associated to the presheaf which associates
to y the cohomology of the complex

Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii−1
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii
)

↓
Γ
(

(Sch/V )fppf ×y,Y X , pr−1Ii+1
)

Since pr−1 is exact, it suffices to show that pr−1 preserves injectives. This follows
from Lemmas 16.5 and 16.6 as well as the fact that pr is a representable morphism
of algebraic stacks (so that pr is faithful by Algebraic Stacks, Lemma 15.2 and that
(Sch/V )fppf ×y,Y X has equalizers by Lemma 16.2). �

Here is a trivial base change result.

Lemma 20.3. Let S be a scheme. Let τ ∈ {Zariski, étale, smooth, syntomic,
fppf}. Let

Y ′ ×Y X
g′

//

f ′

��

X

f

��
Y ′

g // Y
be a 2-cartesian diagram of algebraic stacks over S. Then the base change map is
an isomorphism

g−1Rf∗F −→ Rf ′∗(g
′)−1F

functorial for F in Ab(Xτ ) or F in Mod(Xτ ,OX ).

Proof. The isomorphism g−1f∗F = f ′∗(g
′)−1F is Lemma 5.1 (and it holds for

arbitrary presheaves). For the derived direct images, there is a base change map
because the morphisms g and g′ are flat, see Cohomology on Sites, Section 15. To

4This result should hold for any 1-morphism of categories fibred in groupoids over (Sch/S)fppf .
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see that this map is a quasi-isomorphism we can use that for an object y′ of Y ′ over
a scheme V there is an equivalence

(Sch/V )fppf ×g(y′),Y X = (Sch/V )fppf ×y′,Y′ (Y ′ ×Y X )

We conclude that the induced map g−1Rif∗F → Rif ′∗(g
′)−1F is an isomorphism

by Lemma 20.2. �

21. Comparison

In this section we collect some results on comparing cohomology defined using stacks
and using algebraic spaces.

Lemma 21.1. Let S be a scheme. Let X be an algebraic stack over S representable
by the algebraic space F .

(1) I|Fétale is injective in Ab(Fétale) for I injective in Ab(Xétale), and
(2) I|Fétale is injective in Mod(Fétale,OF ) for I injective in Mod(Xétale,O).

Proof. This follows formally from the fact that the restriction functor πF,∗ = i−1
F

(see Lemma 10.1) is an exact left adjoint of iF,∗, see Homology, Lemma 25.1. �

Lemma 21.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
stacks over S. Assume X , Y are representable by algebraic spaces F , G. Denote
f : F → G the induced morphism of algebraic spaces.

(1) For any F ∈ Ab(Xétale) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(Gétale).
(2) For any object F of Mod(Xétale,OX ) we have

(Rf∗F)|Gétale = Rfsmall,∗(F|Fétale)

in D(OG).

Proof. Follows immediately from Lemma 21.1 and (10.2.1) on choosing an injective
resolution of F . �

Lemma 21.3. Let S be a scheme. Consider a 2-fibre product square

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

of algebraic stacks over S. Assume that f is representable by algebraic spaces and
that Y ′ is representable by an algebraic space G′. Then X ′ is representable by an
algebraic space F ′ and denoting f ′ : F ′ → G′ the induced morphism of algebraic
spaces we have

g−1(Rf∗F)|G′étale = Rf ′small,∗((g
′)−1F|F ′étale)

for any F in Ab(Xétale) or in Mod(Xétale,OX )

Proof. Follows formally on combining Lemmas 20.3 and 21.2. �
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22. Change of topology

Here is a technical lemma which tells us that the fppf cohomology of a locally quasi-
coherent sheaf is equal to its étale cohomology provided the comparison maps are
isomorphisms for morphisms of X lying over flat morphisms.

Lemma 22.1. Let S be a scheme. Let X be an algebraic stack over S. Let F be a
presheaf of OX -modules. Assume

(a) F is locally quasi-coherent, and
(b) for any morphism ϕ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation the comparison
map cϕ : f∗smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.

Then F is a sheaf for the fppf topology.

Proof. Let {xi → x} be an fppf covering of X lying over the fppf covering
{fi : Ui → U} of schemes over S. By assumption the restriction G = F|Uétale is
quasi-coherent and the comparison maps f∗i,smallG → F|Ui,étale are isomorphisms.

Hence the sheaf condition for F and the covering {xi → x} is equivalent to the
sheaf condition for Ga on (Sch/U)fppf and the covering {Ui → U} which holds by
Descent, Lemma 7.1. �

Lemma 22.2. Let S be a scheme. Let X be an algebraic stack over S. Let F be a
presheaf OX -module such that

(a) F is locally quasi-coherent, and
(b) for any morphism ϕ : x → y of X which lies over a morphism of schemes

f : U → V which is flat and locally of finite presentation, the comparison
map cϕ : f∗smallF|Vétale → F|Uétale of (9.4.1) is an isomorphism.

Then F is an OX -module and we have the following

(1) If ε : Xfppf → Xétale is the comparison morphism, then Rε∗F = ε∗F .
(2) The cohomology groups Hp

fppf (X ,F) are equal to the cohomology groups
computed in the étale topology on X . Similarly for the cohomology groups
Hp
fppf (x,F) and the derived versions RΓ(X ,F) and RΓ(x,F).

(3) If f : X → Y is a 1-morphism of categories fibred in groupoids over
(Sch/S)fppf then Rif∗F is equal to the fppf-sheafification of the higher
direct image computed in the étale cohomology. Similarly for derived push-
forward.

Proof. The assertion that F is an OX -module follows from Lemma 22.1. Note
that ε is a morphism of sites given by the identity functor on X . The sheaf Rpε∗F
is therefore the sheaf associated to the presheaf x 7→ Hp

fppf (x,F), see Cohomol-

ogy on Sites, Lemma 8.4. To prove (1) it suffices to show that Hp
fppf (x,F) = 0

for p > 0 whenever x lies over an affine scheme U . By Lemma 15.1 we have
Hp
fppf (x,F) = Hp((Sch/U)fppf , x

−1F). Combining Descent, Lemma 8.4 with Co-
homology of Schemes, Lemma 2.2 we see that these cohomology groups are zero.

We have seen above that ε∗F and F are the sheaves on Xétale and Xfppf corre-
sponding to the same presheaf on X (and this is true more generally for any sheaf
in the fppf topology on X ). We often abusively identify F and ε∗F and this is the
sense in which parts (2) and (3) of the lemma should be understood. Thus part
(2) follows formally from (1) and the Leray spectral sequence, see Cohomology on
Sites, Lemma 14.6.
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Finally we prove (3). The sheaf Rif∗F (resp. Rfétale,∗F) is the sheaf associated to
the presheaf

y 7−→ Hi
τ

(
(Sch/V )fppf ×y,Y X , pr−1F

)
where τ is fppf (resp. étale), see Lemma 20.2. Note that pr−1F satisfies properties
(a) and (b) also (by Lemmas 11.6 and 9.3), hence these two presheaves are equal
by (2). This immediately implies (3). �

We will use the following lemma to compare étale cohomology of sheaves on alge-
braic stacks with cohomology on the lisse-étale topos.

Lemma 22.3. Let S be a scheme. Let X be an algebraic stack over S. Let τ = étale
(resp. τ = fppf). Let X ′ ⊂ X be a full subcategory with the following properties

(1) if x → x′ is a morphism of X which lies over a smooth (resp. flat and
locally finitely presented) morphism of schemes and x′ ∈ Ob(X ′), then x ∈
Ob(X ′), and

(2) there exists an object x ∈ Ob(X ′) lying over a scheme U such that the
associated 1-morphism x : (Sch/U)fppf → X is smooth and surjective.

We get a site X ′τ by declaring a covering of X ′ to be any family of morphisms
{xi → x} in X ′ which is a covering in Xτ . Then the inclusion functor X ′ → Xτ is
fully faithful, cocontinuous, and continuous, whence defines a morphism of topoi

g : Sh(X ′τ ) −→ Sh(Xτ )

and Hp(X ′τ , g−1F) = Hp(Xτ ,F) for all p ≥ 0 and all F ∈ Ab(Xτ ).

Proof. Note that assumption (1) implies that if {xi → x} is a covering of Xτ and
x ∈ Ob(X ′), then we have xi ∈ Ob(X ′). Hence we see that X ′ → X is continuous
and cocontinuous as the coverings of objects of X ′τ agree with their coverings seen
as objects of Xτ . We obtain the morphism g and the functor g−1 is identified with
the restriction functor, see Sites, Lemma 20.5.

In particular, if {xi → x} is a covering in X ′τ , then for any abelian sheaf F on X
then

Ȟp({xi → x}, g−1F) = Ȟp({xi → x},F)

Thus if I is an injective abelian sheaf on Xτ then we see that the higher Čech coho-
mology groups are zero (Cohomology on Sites, Lemma 11.2). Hence Hp(x, g−1I) =
0 for all objects x of X ′ (Cohomology on Sites, Lemma 11.9). In other words injec-
tive abelian sheaves on Xτ are right acyclic for the functor H0(x, g−1−). It follows
that Hp(x, g−1F) = Hp(x,F) for all F ∈ Ab(X ) and all x ∈ Ob(X ′).

Choose an object x ∈ X ′ lying over a scheme U as in assumption (2). In particular
X/x→ X is a morphism of algebraic stacks which representable by algebraic spaces,
surjective, and smooth. (Note that X/x is equivalent to (Sch/U)fppf , see Lemma
9.1.) The map of sheaves

hx −→ ∗
in Sh(Xτ ) is surjective. Namely, for any object x′ of X there exists a τ -covering
{x′i → x′} such that there exist morphisms x′i → x, see Lemma 18.10. Since g is
exact, the map of sheaves

g−1hx −→ ∗ = g−1∗

http://localhost:8080/tag/07AK
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in Sh(X ′τ ) is surjective also. Let hx,n be the (n + 1)-fold product hx × . . . × hx.
Then we have spectral sequences

(22.3.1) Ep,q1 = Hq(hx,p,F)⇒ Hp+q(Xτ ,F)

and

(22.3.2) Ep,q1 = Hq(g−1hx,p, g
−1F)⇒ Hp+q(X ′τ , g−1F)

see Cohomology on Sites, Lemma 13.2.

Case I: X has a final object x which is also an object of X ′. This case follows
immediately from the discussion in the second paragraph above.

Case II: X is representable by an algebraic space F . In this case the sheaves hx,n are
representable by an object xn in X . (Namely, if SF = X and x : U → F is the given
object, then hx,n is representable by the object U×F . . .×FU → F of SF .) It follows
that Hq(hx,p,F) = Hq(xp,F). The morphisms xn → x lie over smooth morphisms
of schemes, hence xn ∈ X ′ for all n. Hence Hq(g−1hx,p, g

−1F) = Hq(xp, g
−1F).

Thus in the two spectral sequences (22.3.1) and (22.3.2) above the Ep,q1 terms agree
by the discussion in the second paragraph. The lemma follows in Case II as well.

Case III: X is an algebraic stack. We claim that in this case the cohomology groups
Hq(hx,p,F) and Hq(g−1hx,n, g

−1F) agree by Case II above. Once we have proved
this the result will follow as before.

Namely, consider the category X/hx,n, see Sites, Lemma 29.3. Since hx,n is the
(n+1)-fold product of hx an object of this category is an (n+2)-tuple (y, s0, . . . , sn)
where y is an object of X and each si : y → x is a morphism of X . This is a category
over (Sch/S)fppf . There is an equivalence

X/hx,n −→ (Sch/U)fppf ×X . . .×X (Sch/U)fppf =: Un
over (Sch/S)fppf . Namely, if x : (Sch/U)fppf → X also denotes the 1-morphism
associated with x and p : X → (Sch/S)fppf the structure functor, then we can think
of (y, s0, . . . , sn) as (y, f0, . . . , fn, α0, . . . , αn) where y is an object of X , fi : p(y)→
p(x) is a morphism of schemes, and αi : y → x(fi) an isomorphism. The category
of 2n+3-tuples (y, f0, . . . , fn, α0, . . . , αn) is an incarnation of the (n+1)-fold fibred
product Un of algebraic stacks displayed above, as we discussed in Section 17. By
Cohomology on Sites, Lemma 13.3 we have

Hp(Un,F|Un) = Hp(X/hx,n,F|X/hx,n) = Hp(hx,n,F).

Finally, we discuss the “primed” analogue of this. Namely, X ′/hx,n corresponds,
via the equivalence above to the full subcategory U ′n ⊂ Un consisting of those
tuples (y, f0, . . . , fn, α0, . . . , αn) with y ∈ X ′. Hence certainly property (1) of the
statement of the lemma holds for the inclusion U ′n ⊂ Un. To see property (2) choose
an object ξ = (y, s0, . . . , sn) which lies over a scheme W such that (Sch/W )fppf →
Un is smooth and surjective (this is possible as Un is an algebraic stack). Then
(Sch/W )fppf → Un → (Sch/U)fppf is smooth as a composition of base changes of
the morphism x : (Sch/U)fppf → X , see Algebraic Stacks, Lemmas 10.6 and 10.5.
Thus axiom (1) for X implies that y is an object of X ′ whence ξ is an object of U ′n.
Using again

Hp(U ′n,F|U ′n) = Hp(X ′/hx,n,F|X ′/hx,n) = Hp(g−1hx,n, g
−1F).

we now can use Case II for U ′n ⊂ Un to conclude. �
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