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1. Introduction

This chapter is devoted to advanced topics on groupoids in algebraic spaces. Even
though the results are stated in terms of groupoids in algebraic spaces, the reader
should keep in mind the 2-cartesian diagram

(1.0.1)

R //

��

U

��
U // [U/R]

where [U/R] is the quotient stack, see Groupoids in Spaces, Remark 19.4. Many
of the results are motivated by thinking about this diagram. See for example the
beautiful paper [KM97] by Keel and Mori.

2. Notation

We continue to abide by the conventions and notation introduced in Groupoids in
Spaces, Section 3.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 MORE ON GROUPOIDS IN SPACES

3. Useful diagrams

We briefly restate the results of Groupoids in Spaces, Lemmas 11.4 and 11.5 for
easy reference in this chapter. Let S be a scheme. Let B be an algebraic space over
S. Let (U,R, s, t, c) be a groupoid in algebraic spaces over B. In the commutative
diagram

(3.0.2)

U

R

s

��

t

::

R×s,U,t Rpr0

oo

pr1

��

c
// R

s

��

t

dd

U R
too s // U

the two lower squares are fibre product squares. Moreover, the triangle on top
(which is really a square) is also cartesian.

The diagram

(3.0.3)

R×t,U,t R
pr1 //

pr0

//

pr0×c◦(i,1)

��

R
t //

idR

��

U

idU

��
R×s,U,t R

c //

pr0

//

pr1

��

R
t //

s

��

U

R
s //

t
// U

is commutative. The two top rows are isomorphic via the vertical maps given. The
two lower left squares are cartesian.

4. Properties of groupoids

This section is the analogue of More on Groupoids, Section 5. The reader is strongly
encouraged to read that section first.

The following lemma is the analogue of More on Groupoids, Lemma 5.4.

Lemma 4.1. Let B → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Let τ ∈ {fppf, étale, smooth, syntomic}. Let P be a
property of morphisms of algebraic spaces which is τ -local on the target (Descent
on Spaces, Definition 9.1). Assume {s : R→ U} and {t : R→ U} are coverings for
the τ -topology. Let W ⊂ U be the maximal open subspace such that s−1(W )→ W
has property P. Then W is R-invariant (Groupoids in Spaces, Definition 17.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 9.3. In Diagram (3.0.2) let W1 ⊂ R be the maximal open
subscheme over which the morphism pr1 : R×s,U,tR→ R has property P. It follows
from the aforementioned Descent on Spaces, Lemma 9.3 and the assumption that
{s : R → U} and {t : R → U} are coverings for the τ -topology that t−1(W ) =
W1 = s−1(W ) as desired. �

http://localhost:8080/tag/044Z
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Lemma 4.2. Let B → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Let G → U be its stabilizer group algebraic space. Let
τ ∈ {fppf, étale, smooth, syntomic}. Let P be a property of morphisms of algebraic
spaces which is τ -local on the target. Assume {s : R → U} and {t : R → U} are
coverings for the τ -topology. Let W ⊂ U be the maximal open subspace such that
GW → W has property P. Then W is R-invariant (see Groupoids in Spaces,
Definition 17.1).

Proof. The existence and properties of the open W ⊂ U are described in Descent
on Spaces, Lemma 9.3. The morphism

G×U,t R −→ R×s,U G, (g, r) 7−→ (r, r−1 ◦ g ◦ r)
is an isomorphism of algebraic spaces over R (where ◦ denotes composition in
the groupoid). Hence s−1(W ) = t−1(W ) by the properties of W proved in the
aforementioned Descent on Spaces, Lemma 9.3. �

5. Comparing fibres

This section is the analogue of More on Groupoids, Section 6. The reader is strongly
encouraged to read that section first.

Lemma 5.1. Let B → S be as in Section 2. Let (U,R, s, t, c) be a groupoid in
algebraic spaces over B. Let K be a field and let r, r′ : Spec(K)→ R be morphisms
such that t ◦ r = t ◦ r′ : Spec(K) → U . Set u = s ◦ r, u′ = s ◦ r′ and denote
Fu = Spec(K) ×u,U,s R and Fu′ = Spec(K) ×u′,U,s R the fibre products. Then
Fu ∼= Fu′ as algebraic spaces over K.

Proof. We use the properties and the existence of Diagram (3.0.2). There exists a
morphism ξ : Spec(K)→ R×s,U,tR with pr0 ◦ ξ = r and c◦ ξ = r′. Let r̃ = pr1 ◦ ξ :
Spec(K) → R. Then looking at the bottom two squares of Diagram (3.0.2) we
see that both Fu and Fu′ are identified with the algebraic space Spec(K) ×r̃,R,pr1

(R×s,U,t R). �

Actually, in the situation of the lemma the morphisms of pairs s : (R, r) → (U, u)
and s : (R, r′)→ (U, u′) are locally isomorphic in the τ -topology, provided {s : R→
U} is a τ -covering. We will insert a precise statement here if needed.

6. Restricting groupoids

In this section we collect a bunch of lemmas on properties of groupoids which are
inherited by restrictions. Most of these lemmas can be proved by contemplating
the defining diagram

(6.0.1)

R′

��

//

t′

%%

s′

**
R×s,U U ′ //

��

U ′

g

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′
g // U

of a restriction. See Groupoids in Spaces, Lemma 16.1.

http://localhost:8080/tag/06R4
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Lemma 6.1. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let g : U ′ → U be a morphism
of algebraic spaces over B. Let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c)
via g.

(1) If s, t are locally of finite type and g is locally of finite type, then s′, t′ are
locally of finite type.

(2) If s, t are locally of finite presentation and g is locally of finite presentation,
then s′, t′ are locally of finite presentation.

(3) If s, t are flat and g is flat, then s′, t′ are flat.
(4) Add more here.

Proof. The property of being locally of finite type is stable under composition and
arbitrary base change, see Morphisms of Spaces, Lemmas 23.2 and 23.3. Hence
(1) is clear from Diagram (6.0.1). For the other cases, see Morphisms of Spaces,
Lemmas 27.2, 27.3, 28.3, and 28.4. �

7. Properties of groups over fields and groupoids on fields

The reader is advised to first look at the corresponding sections for groupoid
schemes, see Groupoids, Section 7 and More on Groupoids, Section 9.

Situation 7.1. Here S is a scheme, k is a field over S, and (G,m) is a group
algebraic spaces over Spec(k).

Situation 7.2. Here S is a scheme, B is an algebraic space, and (U,R, s, t, c) is a
groupoid in algebraic spaces over B with U = Spec(k) for some field k.

Note that in Situation 7.1 we obtain a groupoid in algebraic spaces

(7.2.1) (Spec(k), G, p, p,m)

where p : G → Spec(k) is the structure morphism of G, see Groupoids in Spaces,
Lemma 14.1. This is a situation as in Situation 7.2. We will use this without
further mention in the rest of this section.

Lemma 7.3. In Situation 7.2 the composition morphism c : R×s,U,tR→ R is flat
and universally open. In Situation 7.1 the group law m : G ×k G → G is flat and
universally open.

Proof. The composition is isomorphic to the projection map pr1 : R×t,U,t R→ R
by Diagram (3.0.3). The projection is flat as a base change of the flat morphism
t and open by Morphisms of Spaces, Lemma 6.6. The second assertion follows
immediately from the first because m matches c in (7.2.1). �

Note that the following lemma applies in particular when working with either quasi-
separated or locally separated algebraic spaces (Decent Spaces, Lemma 13.2).

Lemma 7.4. In Situation 7.2 assume R is a decent space. Then R is a separated
algebraic space. In Situation 7.1 assume that G is a decent algebraic space. Then
G is separated algebraic space.

Proof. We first prove the second assertion. By Groupoids in Spaces, Lemma 6.1
we have to show that e : S → G is a closed immersion. This follows from Decent
Spaces, Lemma 12.4.

http://localhost:8080/tag/04RP
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Next, we prove the second assertion. To do this we may replace B by S. By the
paragraph above the stabilizer group scheme G → U is separated. By Groupoids
in Spaces, Lemma 28.2 the morphism j = (t, s) : R → U ×S U is separated. As U
is the spectrum of a field the scheme U ×S U is affine (by the construction of fibre
products in Schemes, Section 17). Hence R is separated, see Morphisms of Spaces,
Lemma 4.9. �

Lemma 7.5. In Situation 7.2. Let k ⊂ k′ be a field extension, U ′ = Spec(k′) and
let (U ′, R′, s′, t′, c′) be the restriction of (U,R, s, t, c) via U ′ → U . In the defining
diagram

R′

��

//

t′

%%

s′

**

&&

R×s,U U ′ //

��

U ′

��
U ′ ×U,t R

��

// R
s //

t

��

U

U ′ // U

all the morphisms are surjective, flat, and universally open. The dotted arrow
R′ → R is in addition affine.

Proof. The morphism U ′ → U equals Spec(k′) → Spec(k), hence is affine, sur-
jective and flat. The morphisms s, t : R → U and the morphism U ′ → U are
universally open by Morphisms, Lemma 24.4. Since R is not empty and U is the
spectrum of a field the morphisms s, t : R → U are surjective and flat. Then you
conclude by using Morphisms of Spaces, Lemmas 5.5, 5.4, 6.4, 20.5, 20.4, 28.4, and
28.3. �

Lemma 7.6. In Situation 7.2. For any point r ∈ |R| there exist

(1) a field extension k ⊂ k′ with k′ algebraically closed,
(2) a point r′ : Spec(k′) → R′ where (U ′, R′, s′, t′, c′) is the restriction of

(U,R, s, t, c) via Spec(k′)→ Spec(k)

such that

(1) the point r′ maps to r under the morphism R′ → R, and
(2) the maps s′ ◦ r′, t′ ◦ r′ : Spec(k′)→ Spec(k′) are automorphisms.

Proof. Let’s represent r by a morphism r : Spec(K) → R for some field K. To
prove the lemma we have to find an algebraically closed field k′ and a commutative
diagram

k′ k′
1

oo

k′

τ

OO

K

σ

``

k
s

oo

i

__

k

i

``

t

OO

where s, t : k → K are the field maps coming from s ◦ r and t ◦ r. In the proof of
More on Groupoids, Lemma 9.5 it is shown how to construct such a diagram. �

http://localhost:8080/tag/06E1
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Lemma 7.7. In Situation 7.2. If r : Spec(k)→ R is a morphism such that s◦r, t◦r
are automorphisms of Spec(k), then the map

R −→ R, x 7−→ c(r, x)

is an automorphism R→ R which maps e to r.

Proof. Proof is identical to the proof of More on Groupoids, Lemma 9.6. �

Lemma 7.8. In Situation 7.2 the algebraic space R is geometrically unibranch. In
Situation 7.1 the algebraic space G is geometrically unibranch.

Proof. Let r ∈ |R|. We have to show that R is geometrically unibranch at r.
Combining Lemma 7.5 with Descent on Spaces, Lemma 8.1 we see that it suffices
to prove this in case k is algebraically closed and r comes from a morphism r :
Spec(k)→ R such that s◦r and t◦r are automorphisms of Spec(k). By Lemma 7.7
we reduce to the case that r = e is the identity of R and k is algebraically closed.

Assume r = e and k is algebraically closed. Let A = OR,e be the étale local ring of
R at e and let C = OR×s,U,tR,(e,e) be the étale local ring of R×s,U,t R at (e, e). By
Spaces over Fields, Lemma 3.1 the minimal prime ideals q of C correspond 1-to-1 to
pairs of minimal primes p, p′ ⊂ A. On the other hand, the composition law induces
a flat ring map

A
c]

// C q

A⊗s],k,t] A

OO

p⊗A+A⊗ p′

_

Note that (c])−1(q) contains both p and p′ as the diagrams

A
c]

// C

A⊗s],k k

OO

A⊗s],k,t] A
1⊗e]oo

OO A
c]

// C

k ⊗k,t] A

OO

A⊗s],k,t] A
e]⊗1oo

OO

commute by (3.0.2). Since c] is flat (as c is a flat morphism by Lemma 7.3), we see
that (c])−1(q) is a minimal prime of A. Hence p = (c])−1(q) = p′. �

In the following lemma we use dimension of algebraic spaces (at a point) as defined
in Properties of Spaces, Section 8. We also use the dimension of the local ring
defined in Properties of Spaces, Section 20 and transcendence degree of points, see
Morphisms of Spaces, Section 31.

Lemma 7.9. In Situation 7.2 assume s, t are locally of finite type. For all r ∈ |R|
(1) dim(R) = dimr(R),
(2) the transcendence degree of r over Spec(k) via s equals the transcendence

degree of r over Spec(k) via t, and
(3) if the transcendence degree mentioned in (2) is 0, then dim(R) = dim(OR,r).

Proof. Let r ∈ |R|. Denote trdeg(r/sk) the transcendence degree of r over Spec(k)
via s. Choose an étale morphism ϕ : V → R where V is a scheme and v ∈ V
mapping to r. Using the definitions mentioned above the lemma we see that

dimr(R) = dimv(V ) = dim(OV,v) + trdegs(k)(κ(v)) = dim(OR,r) + trdeg(r/sk)

http://localhost:8080/tag/06E3
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and similarly for t (the second equality by Morphisms, Lemma 29.1). Hence we see
that trdeg(r/sk) = trdeg(r/tk), i.e., (2) holds.

Let k ⊂ k′ be a field extension. Note that the restriction R′ of R to Spec(k′) (see
Lemma 7.5) is obtained from R by two base changes by morphisms of fields. Thus
Morphisms of Spaces, Lemma 32.3 shows the dimension of R at a point is unchanged
by this operation. Hence in order to prove (1) we may assume, by Lemma 7.6, that
r is represented by a morphism r : Spec(k) → R such that both s ◦ r and t ◦ r
are automorphisms of Spec(k). In this case there exists an automorphism R → R
which maps r to e (Lemma 7.7). Hence we see that dimr(R) = dime(R) for any r.
By definition this means that dimr(R) = dim(R).

Part (3) is a formal consequence of the results obtained in the discussion above. �

Lemma 7.10. In Situation 7.1 assume G locally of finite type. For all g ∈ |G|
(1) dim(G) = dimg(G),
(2) if the transcendence degree of g over k is 0, then dim(G) = dim(OG,g).

Proof. Immediate from Lemma 7.9 via (7.2.1). �

Lemma 7.11. In Situation 7.2 assume s, t are locally of finite type. Let G =
Spec(k) ×∆,Spec(k)×BSpec(k),t×s R be the stabilizer group algebraic space. Then we
have dim(R) = dim(G).

Proof. Since G and R are equidimensional (see Lemmas 7.9 and 7.10) it suffices
to prove that dime(R) = dime(G). Let V be an affine scheme, v ∈ V , and let
ϕ : V → R be an étale morphism of schemes such that ϕ(v) = e. Note that V is a
Noetherian scheme as s ◦ ϕ is locally of finite type as a composition of morphisms
locally of finite type and as V is quasi-compact (use Morphisms of Spaces, Lemmas
23.2, 36.8, and 27.5 and Morphisms, Lemma 16.6). Hence V is locally connected
(see Properties, Lemma 5.5 and Topology, Lemma 8.6). Thus we may replace V by
the connected component containing v (it is still affine as it is an open and closed
subscheme of V ). Set T = Vred equal to the reduction of V . Consider the two
morphisms a, b : T → Spec(k) given by a = s ◦ ϕ|T and b = t ◦ ϕ|T . Note that a, b
induce the same field map k → κ(v) because ϕ(v) = e! Let ka ⊂ Γ(T,OT ) be the
integral closure of a](k) ⊂ Γ(T,OT ). Similarly, let kb ⊂ Γ(T,OT ) be the integral
closure of b](k) ⊂ Γ(T,OT ). By Varieties, Proposition 18.1 we see that ka = kb.
Thus we obtain the following commutative diagram

k

a

"" ++
ka = kb // Γ(T,OT ) // κ(v)

k

b

<< 33

As discussed above the long arrows are equal. Since ka = kb → κ(v) is injective we
conclude that the two morphisms a and b agree. Hence T → R factors through G.
It follows that Rred = Gred in an open neighbourhood of e which certainly implies
that dime(R) = dime(G). �

http://localhost:8080/tag/06FE
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8. No rational curves on groups

In this section we prove that there are no nonconstant morphisms from P1 to a
group scheme.

Lemma 8.1. Let S be a scheme. Let B be an algebraic space over S. Let f : X → Y
and g : X → Z be morphisms of algebraic spaces over B. Assume

(1) Y → B is separated,
(2) g is surjective, flat, and locally of finite presentation,
(3) there is a scheme theoretically dense open V ⊂ Z such that f |g−1(V ) :

g−1(V )→ Y factors through V .

Then f factors through g.

Proof. Set R = X×ZX. By (2) we see that Z = X/R as sheaves. Also (2) implies
that the inverse image of V in R is scheme theoretically dense in R (Morphisms of
Spaces, Lemma 28.11). The we see that the two compositions R → X → Y are
equal by Morphisms of Spaces, Lemma 17.8. The lemma follows. �

Lemma 8.2. Let k be a field. Let n ≥ 1 and let (P1
k)n be the n-fold self product

over Spec(k). Let f : (P1
k)n → Z be a morphism of algebraic spaces over k. If Z is

separated of finite type over k, then f factors as

(P1
k)n

projection−−−−−−−→ (P1
k)m

finite−−−−→ Z.

Proof. We may assume k is algebraically closed (details omitted); we only do this
so we may argue using rational points, but the reader can work around this if she/he
so desires. In the proof products are over k. The automorphism group algebraic
space of (P1

k)n contains G = (GL2,k)n. If C ⊂ (P1
k)n is a closed subvariety (in

particular irreducible over k) which is mapped to a point, then we can apply More
on Morphisms of Spaces, Lemma 24.7 to the morphism

G× C → G× Z, (g, c) 7→ (g, f(g · c))
over G. Hence g(C) is mapped to a point for g ∈ G(k) lying in a Zariski open
U ⊂ G. Suppose x = (x1, . . . , xn), y = (y1, . . . , yn) are k-valued points of (P1

k)n.
Let I ⊂ {1, . . . , n} be the set of indices i such that xi = yi. Then

{g(x) | g(y) = y, g ∈ U(k)}
is Zariski dense in the fibre of the projection πI : (P1

k)n →
∏
i∈I P1

k (exercise).
Hence if x, y ∈ C(k) are distinct, we conclude that f maps the whole fibre of πI
containing x, y to a single point. Moreover, the U(k)-orbit of C meets a Zariski
open set of fibres of πI . By Lemma 8.1 the morphism f factors through πI . After
repeating this process finitely many times we reach the stage where all fibres of f
over k points are finite. In this case f is finite by More on Morphisms of Spaces,
Lemma 24.6 and the fact that k points are dense in Z (Spaces over Fields, Lemma
9.2). �

Lemma 8.3. Let k be a field. Let G be a separated group algebraic space locally of
finite type over k. There does not exist a nonconstant morphism f : P1

k → G over
Spec(k).

Proof. Assume f is nonconstant. Consider the morphisms

P1
k ×Spec(k) . . .×Spec(k) P1

k −→ G, (t1, . . . , tn) 7−→ f(g1) . . . f(gn)

http://localhost:8080/tag/0AEL
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where on the right hand side we use multiplication in the group. By Lemma 8.2
and the assumption that f is nonconstant this morphism is finite onto its image.
Hence dim(G) ≥ n for all n, which is impossible by Lemma 7.10 and the fact that
G is locally of finite type over k. �

9. The finite part of a morphism

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. For
an algebraic space or a scheme T over S consider pairs (a, Z) where

(9.0.1)
a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace
such that pr0|Z : Z → T is finite.

Suppose h : T ′ → T is a morphism of algebraic spaces over S and (a, Z) is a pair
over T . Set a′ = a ◦ h and Z ′ = (h× idX)−1(Z) = T ′ ×T Z. Then the pair (a′, Z ′)
satisfies (1), (2) over T ′. This follows as finite morphisms are preserved under base
change, see Morphisms of Spaces, Lemma 41.5. Thus we obtain a functor

(9.0.2)
(X/Y )fin : (Sch/S)opp −→ Sets

T 7−→ {(a, Z) as above}
For applications we are mainly interested in this functor (X/Y )fin when f is sep-
arated and locally of finite type. To get an idea of what this is all about, take a
look at Remark 9.6.

Lemma 9.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then we have

(1) The presheaf (X/Y )fin satisfies the sheaf condition for the fppf topology.
(2) If T is an algebraic space over S, then there is a canonical bijection

MorSh((Sch/S)fppf )(T, (X/Y )fin) = {(a, Z) satisfying 9.0.1}

Proof. Let T be an algebraic space over S. Let {Ti → T} be an fppf covering (by
algebraic spaces). Let si = (ai, Zi) be pairs over Ti satisfying 9.0.1 such that we
have si|Ti×TTj

= sj |Ti×TTj
. First, this implies in particular that ai and aj define

the same morphism Ti ×T Tj → Y . By Descent on Spaces, Lemma 6.2 we deduce
that there exists a unique morphism a : T → Y such that ai equals the composition
Ti → T → Y . Second, this implies that Zi ⊂ Ti ×Y X are open subspaces whose
inverse images in (Ti ×T Tj) ×Y X are equal. Since {Ti ×Y X → T ×Y X} is an
fppf covering we deduce that there exists a unique open subspace Z ⊂ T ×Y X
which restricts back to Zi over Ti, see Descent on Spaces, Lemma 6.1. We claim
that the projection Z → T is finite. This follows as being finite is local for the fpqc
topology, see Descent on Spaces, Lemma 10.21.

Note that the result of the preceding paragraph in particular implies (1).

Let T be an algebraic space over S. In order to prove (2) we will construct mutually
inverse maps between the displayed sets. In the following when we say “pair” we
mean a pair satisfying conditions 9.0.1.

Let v : T → (X/Y )fin be a natural transformation. Choose a scheme U and a
surjective étale morphism p : U → T . Then v(p) ∈ (X/Y )fin(U) corresponds to a
pair (aU , ZU ) over U . Let R = U ×T U with projections t, s : R → U . As v is a
transformation of functors we see that the pullbacks of (aU , ZU ) by s and t agree.

http://localhost:8080/tag/04PE
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Hence, since {U → T} is an fppf covering, we may apply the result of the first
paragraph that deduce that there exists a unique pair (a, Z) over T .

Conversely, let (a, Z) be a pair over T . Let U → T , R = U ×T U , and t, s : R→ U
be as above. Then the restriction (a, Z)|U gives rise to a transformation of functors
v : hU → (X/Y )fin by the Yoneda lemma (Categories, Lemma 3.5). As the two
pullbacks s∗(a, Z)|U and t∗(a, Z)|U are equal, we see that v coequalizes the two
maps ht, hs : hR → hU . Since T = U/R is the fppf quotient sheaf by Spaces,
Lemma 9.1 and since (X/Y )fin is an fppf sheaf by (1) we conclude that v factors
through a map T → (X/Y )fin.

We omit the verification that the two constructions above are mutually inverse. �

Lemma 9.2. Let S be a scheme. Consider a commutative diagram

X ′
j

//

  

X

~~
Y

of algebraic spaces over S. If j is an open immersion, then there is a canonical
injective map of sheaves j : (X ′/Y )fin → (X/Y )fin.

Proof. If (a, Z) is a pair over T for X ′/Y , then (a, j(Z)) is a pair over T for
X/Y . �

Lemma 9.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S which is locally of finite type. Let X ′ ⊂ X be the maximal open subspace
over which f is locally quasi-finite, see Morphisms of Spaces, Lemma 32.7. Then
(X/Y )fin = (X ′/Y )fin.

Proof. Lemma 9.2 gives us an injective map (X ′/Y )fin → (X/Y )fin. Morphisms
of Spaces, Lemma 32.7 assures us that formation of X ′ commutes with base change.
Hence everything comes down to proving that if Z ⊂ X is a open subspace such
that f |Z : Z → Y is finite, then Z ⊂ X ′. This is true because a finite morphism is
locally quasi-finite, see Morphisms of Spaces, Lemma 41.8. �

Lemma 9.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let T be an algebraic space over S, and let (a, Z) be a pair as in 9.0.1. If
f is separated, then Z is closed in T ×Y X.

Proof. A finite morphism of algebraic spaces is universally closed by Morphisms
of Spaces, Lemma 41.9. Since f is separated so is the morphism T ×Y X → T , see
Morphisms of Spaces, Lemma 4.4. Thus the closedness of Z follows from Morphisms
of Spaces, Lemma 37.6. �

Remark 9.5. Let f : X → Y be a separated morphism of algebraic spaces. The
sheaf (X/Y )fin comes with a natural map (X/Y )fin → Y by mapping the pair
(a, Z) ∈ (X/Y )fin(T ) to the element a ∈ Y (T ). We can use Lemma 9.4 to define
operations

?i : (X/Y )fin ×Y (X/Y )fin −→ (X/Y )fin

http://localhost:8080/tag/04PF
http://localhost:8080/tag/04PG
http://localhost:8080/tag/04PH
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by the rules

?1 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∪ Z2)

?2 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 ∩ Z2)

?3 : ((a, Z1), (a, Z2)) 7−→ (a, Z1 \ Z2)

?4 : ((a, Z1), (a, Z2)) 7−→ (a, Z2 \ Z1).

The reason this works is that Z1 ∩ Z2 is both open and closed inside Z1 and Z2

(which also implies that Z1 ∪ Z2 is the disjoint union of the other three pieces).
Thus we can think of (X/Y )fin as an F2-algebras (without unit) over Y with
multiplication given by ss′ = ?2(s, s′), and addition given by

s+ s′ = ?1(?3(s, s′), ?4(s, s′))

which boils down to taking the symmetric difference. Note that in this sheaf of
algebras 0 = (1Y , ∅) and that indeed s+ s = 0 for any local section s. If f : X → Y
is finite, then this algebra has a unit namely 1 = (1Y , X) and ?3(s, s′) = s(1 + s′),
and ?4(s, s′) = (1 + s)s′.

Remark 9.6. Let f : X → Y be a separated, locally quasi-finite morphism of
schemes. In this case the sheaf (X/Y )fin is closely related to the sheaf f!F2 (insert
future reference here) on Yétale. Namely, if V → Y is étale, and s ∈ Γ(V, f!F2),
then s ∈ Γ(V ×Y X,F2) is a section with proper support Z = Supp(s) over V .
Since f is also locally quasi-finite we see that the projection Z → V is actually
finite. Since the support of a section of a constant abelian sheaf is open we see that
the pair (V → Y,Supp(s)) satisfies 9.0.1. In fact, f!F2

∼= (X/Y )fin|Yétale
in this

case which also explains the F2-algebra structure introduced in Remark 9.5.

Lemma 9.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. The diagonal of (X/Y )fin → Y

(X/Y )fin −→ (X/Y )fin ×Y (X/Y )fin

is representable (by schemes) and an open immersion and the “absolute” diagonal

(X/Y )fin −→ (X/Y )fin × (X/Y )fin

is representable (by schemes).

Proof. The second statement follows from the first as the absolute diagonal is the
composition of the relative diagonal and a base change of the diagonal of Y (which
is representable by schemes), see Spaces, Section 3. To prove the first assertion we
have to show the following: Given a scheme T and two pairs (a, Z1) and (a, Z2)
over T with identical first component satisfying 9.0.1 there is an open subscheme
V ⊂ T with the following property: For any morphism of schemes h : T ′ → T we
have

h(T ′) ⊂ V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
Let us construct V . Note that Z1∩Z2 is open in Z1 and in Z2. Since pr0|Zi : Zi → T
is finite, hence proper (see Morphisms of Spaces, Lemma 41.9) we see that

E = pr0|Z1 (Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2 (Z2 \ Z1 ∩ Z2))

is closed in T . Now it is clear that V = T \ E works. �

http://localhost:8080/tag/04PJ
http://localhost:8080/tag/04PK
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Lemma 9.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Suppose that U is a scheme, U → Y is an étale morphism and Z ⊂ U×Y X
is an open subspace finite over U . Then the induced morphism U → (X/Y )fin is
étale.

Proof. This is formal from the description of the diagonal in Lemma 9.7 but we
write it out since it is an important step in the development of the theory. We
have to check that for any scheme T over S and a morphism T → (X/Y )fin the
projection map

T ×(X/Y )fin
U −→ T

is étale. Note that

T ×(X/Y )fin
U = (X/Y )fin ×((X/Y )fin×Y (X/Y )fin) (T ×Y U)

Applying the result of Lemma 9.7 we see that T ×(X/Y )fin
U is represented by an

open subscheme of T ×Y U . As the projection T ×Y U → T is étale by Morphisms
of Spaces, Lemma 36.4 we conclude. �

Lemma 9.9. Let S be a scheme. Let

X ′

��

// X

��
Y ′ // Y

be a fibre product square of algebraic spaces over S. Then

(X ′/Y ′)fin

��

// (X/Y )fin

��
Y ′ // Y

is a fibre product square of sheaves on (Sch/S)fppf .

Proof. It follows immediately from the definitions that the sheaf (X ′/Y ′)fin is
equal to the sheaf Y ′ ×Y (X/Y )fin. �

Lemma 9.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is separated and locally quasi-finite, then there exists a scheme
U étale over Y and a surjective étale morphism U → (X/Y )fin over Y .

Proof. Note that the assertion makes sense by the result of Lemma 9.7 on the
diagonal of (X/Y )fin, see Spaces, Lemma 5.10. Let V be a scheme and let V → Y
be a surjective étale morphism. By Lemma 9.9 the morphism (V ×Y X/V )fin →
(X/Y )fin is a base change of the map V → Y and hence is surjective and étale,
see Spaces, Lemma 5.5. Hence it suffices to prove the lemma for (V ×Y X/V )fin.
(Here we implicitly use that the composition of representable, surjective, and étale
transformations of functors is again representable, surjective, and étale, see Spaces,
Lemmas 3.2 and 5.4, and Morphisms, Lemmas 11.2 and 37.3.) Note that the prop-
erties of being separated and locally quasi-finite are preserved under base change,
see Morphisms of Spaces, Lemmas 4.4 and 26.4. Hence V ×Y X → V is separated
and locally quasi-finite as well, and by Morphisms of Spaces, Proposition 44.2 we
see that V ×Y X is a scheme as well. Thus we may assume that f : X → Y is a
separated and locally quasi-finite morphism of schemes.

http://localhost:8080/tag/04QE
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Pick a point y ∈ Y . Pick x1, . . . , xn ∈ X points lying over y. Pick an étale
neighbourhood a : (U, u)→ (Y, y) and a decomposition

U ×S X = W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

as in More on Morphisms, Lemma 30.5. Pick any subset

I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}.

Given these choices we obtain a pair (a, Z) with Z =
⋃

(i,j)∈I Vi,j which satisfies

conditions 9.0.1. In other words we obtain a morphism U → (X/Y )fin. The
construction of this morphism depends on all the things we picked above, so we
should really write

U(y, n, x1, . . . , xn, a, I) −→ (X/Y )fin

This morphism is étale by Lemma 9.8.

Claim: The disjoint union of all of these is surjective onto (X/Y )fin. It is clear
that if the claim holds, then the lemma is true.

To show surjectivity we have to show the following (see Spaces, Remark 5.2): Given
a scheme T over S, a point t ∈ T , and a map T → (X/Y )fin we can find a datum
(y, n, x1, . . . , xn, a, I) as above such that t is in the image of the projection map

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin
T −→ T.

To prove this we may clearly replace T by Spec(κ(t)) and T → (X/Y )fin by the

composition Spec(κ(t))→ T → (X/Y )fin. In other words, we may assume that T
is the spectrum of an algebraically closed field.

Let T = Spec(k) be the spectrum of an algebraically closed field k. The morphism
T → (X/Y )fin is given by a pair (T → Y, Z) satisfying conditions 9.0.1. Here is a
picture:

Z

��

// X

��
Spec(k) T // Y

Let y ∈ Y be the image point of T → Y . Since Z is finite over k it has finitely
many points. Thus there exist finitely many points x1, . . . , xn ∈ X such that the
image of Z in X is contained in {x1, . . . , xn}. Choose a : (U, u) → (Y, y) adapted
to y and x1, . . . , xn as above, which gives the diagram

W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
U // Y.

Since k is algebraically closed and κ(y) ⊂ κ(u) is finite separable we may fac-
tor the morphism T = Spec(k) → Y through the morphism u = Spec(κ(u)) →
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Spec(κ(y)) = y ⊂ Y . With this choice we obtain the commutative diagram:

Z

��

// W
∐ ∐

i=1,...,n

∐
j=1,...,mj

Vi,j

��

// X

��
Spec(k) // U // Y

We know that the image of the left upper arrow ends up in
∐
Vi,j . Recall also that

Z is an open subscheme of Spec(k) ×Y X by definition of (X/Y )fin and that the
right hand square is a fibre product square. Thus we see that

Z ⊂
∐

i=1,...,n

∐
j=1,...,mj

Spec(k)×U Vi,j

is an open subscheme. By construction (see More on Morphisms, Lemma 30.5)
each Vi,j has a unique point vi,j lying over u with purely inseparable residue field
extension κ(u) ⊂ κ(vi,j). Hence each scheme Spec(k)×U Vi,j has exactly one point.
Thus we see that

Z =
∐

(i,j)∈I
Spec(k)×U Vi,j

for a unique subset I ⊂ {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ mi}. Unwinding the definitions
this shows that

U(y, n, x1, . . . , xn, a, I)×(X/Y )fin
T

with I as found above is nonempty as desired. �

Proposition 9.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated and locally of finite type. Then (X/Y )fin is an
algebraic space. Moreover, the morphism (X/Y )fin → Y is étale.

Proof. By Lemma 9.3 we may replace X by the open subscheme which is locally
quasi-finite over Y . Hence we may assume that f is separated and locally quasi-
finite. We will check the three conditions of Spaces, Definition 6.1. Condition (1)
follows from Lemma 9.1. Condition (2) follows from Lemma 9.7. Finally, condition
(3) follows from Lemma 9.10. Thus (X/Y )fin is an algebraic space. Moreover, that
lemma shows that there exists a commutative diagram

U //

��

(X/Y )fin

zz
Y

with horizontal arrow surjective and étale and south-east arrow étale. By Properties
of Spaces, Lemma 13.3 this implies that the south-west arrow is étale as well. �

Remark 9.12. The condition that f be separated cannot be dropped from Propo-
sition 9.11. An example is to take X the affine line with zero doubled, see Schemes,
Example 14.3, Y = A1

k the affine line, and X → Y the obvious map. Recall that
over 0 ∈ Y there are two points 01 and 02 in X. Thus (X/Y )fin has four points over
0, namely ∅, {01}, {02}, {01, 02}. Of these four points only three can be lifted to an
open subscheme of U ×Y X finite over U for U → Y étale, namely ∅, {01}, {02}.
This shows that (X/Y )fin if representable by an algebraic space is not étale over
Y . Similar arguments show that (X/Y )fin is really not an algebraic space. Details
omitted.

http://localhost:8080/tag/04QH
http://localhost:8080/tag/04QI
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Remark 9.13. Let Y = A1
R be the affine line over the real numbers, and let

X = Spec(C) mapping to the R-rational point 0 in Y . In this case the morphism
f : X → Y is finite, but it is not the case that (X/Y )fin is a scheme. Namely,
one can show that in this case the algebraic space (X/Y )fin is isomorphic to the
algebraic space of Spaces, Example 14.2 associated to the extension R ⊂ C. Thus
it is really necessary to leave the category of schemes in order to represent the sheaf
(X/Y )fin, even when f is a finite morphism.

Lemma 9.14. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is separated, flat, and locally of finite presentation. In this
case

(1) (X/Y )fin → Y is separated, representable, and étale, and
(2) if Y is a scheme, then (X/Y )fin is (representable by) a scheme.

Proof. Since f is in particular separated and locally of finite type (see Morphisms
of Spaces, Lemma 27.5) we see that (X/Y )fin is an algebraic space by Proposition
9.11. To prove that (X/Y )fin → Y is separated we have to show the following:
Given a scheme T and two pairs (a, Z1) and (a, Z2) over T with identical first
component satisfying 9.0.1 there is a closed subscheme V ⊂ T with the following
property: For any morphism of schemes h : T ′ → T we have

h factors through V ⇔
(
T ′ ×T Z1 = T ′ ×T Z2 as subspaces of T ′ ×Y X

)
In the proof of Lemma 9.7 we have seen that V = T ′ \ E is an open subscheme of
T ′ with closed complement

E = pr0|Z1
(Z1 \ Z1 ∩ Z2)) ∪ pr0|Z2

(Z2 \ Z1 ∩ Z2)) .

Thus everything comes down to showing that E is also open. By Lemma 9.4 we
see that Z1 and Z2 are closed in T ′ ×Y X. Hence Z1 \Z1 ∩Z2 is open in Z1. As f
is flat and locally of finite presentation, so is pr0|Z1

. This is true as Z1 is an open
subspace of the base change T ′×Y X, and Morphisms of Spaces, Lemmas 27.3 and
Lemmas 28.4. Hence pr0|Z1 is open, see Morphisms of Spaces, Lemma 28.6. Thus
pr0|Z1

(Z1 \ Z1 ∩ Z2)) is open and it follows that E is open as desired.

We have already seen that (X/Y )fin → Y is étale, see Proposition 9.11. Hence
now we know it is locally quasi-finite (see Morphisms of Spaces, Lemma 36.5)
and separated, hence representable by Morphisms of Spaces, Lemma 45.1. The
final assertion is clear (if you like you can use Morphisms of Spaces, Proposition
44.2). �

Variant: Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let σ : Y → X be a section of f . For an algebraic space or a scheme T
over S consider pairs (a, Z) where

(9.14.1)

a : T → Y is a morphism over S,
Z ⊂ T ×Y X is an open subspace

such that pr0|Z : Z → T is finite and
(1T , σ ◦ a) : T → T ×Y X factors through Z.

We will denote (X/Y, σ)fin the subfunctor of (X/Y )fin parametrizing these pairs.

http://localhost:8080/tag/04QJ
http://localhost:8080/tag/04RI
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Lemma 9.15. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let σ : Y → X be a section of f . Consider the transformation of
functors

t : (X/Y, σ)fin −→ (X/Y )fin.

defined above. Then

(1) t is representable by open immersions,
(2) if f is separated, then t is representable by open and closed immersions,
(3) if (X/Y )fin is an algebraic space, then (X/Y, σ)fin is an algebraic space

and an open subspace of (X/Y )fin, and
(4) if (X/Y )fin is a scheme, then (X/Y, σ)fin is an open subscheme of it.

Proof. Omitted. Hint: Given a pair (a, Z) over T as in (9.0.1) the inverse image
of Z by (1T , σ◦a) : T → T ×Y X is the open subscheme of T we are looking for. �

10. Finite collections of arrows

Let C be a groupoid, see Categories, Definition 2.5. As discussed in Groupoids,
Section 11 this corresponds to a septuple (Ob,Arrows, s, t, c, e, i).

Using this data we can make another groupoid Cfin as follows:

(1) An object of Cfin consists of a finite subset Z ⊂ Arrows with the following
properties:
(a) s(Z) = {u} is a singleton, and
(b) e(u) ∈ Z.

(2) A morphism of Cfin consists of a pair (Z, z), where Z is an object of Cfin
and z ∈ Z.

(3) The source of (Z, z) is Z.
(4) The target of (Z, z) is t(Z, z) = {z′ ◦ z−1; z′ ∈ Z}.
(5) Given (Z1, z1), (Z2, z2) such that s(Z1, z1) = t(Z2, z2) the composition

(Z1, z1) ◦ (Z2, z2) is (Z2, z1 ◦ z2).

We omit the verification that this defines a groupoid. Pictorially an object of Cfin
can be viewed as a diagram

•

•e ::

??

//

��

•

•
To make a morphism of Cfin you pick one of the arrows and you precompose the
other arrows by its inverse. For example if we pick the middle horizontal arrow
then the target is the picture

•

• •oo

OO

e
zz

��
•

http://localhost:8080/tag/04RR
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Note that the cardinalities of s(Z, z) and t(Z, z) are equal. So Cfin is really a
countable disjoint union of groupoids.

11. The finite part of a groupoid

In this section we are going to use the idea explained in Section 10 to take the finite
part of a groupoid in algebraic spaces.

Let S be a scheme. Let B be an algebraic space over S. Let (U,R, s, t, c, e, i)
be a groupoid in algebraic spaces over B. Assumption: The morphisms s, t are
separated and locally of finite type. This notation and assumption will we be fixed
throughout this section.

Denote Rs the algebraic space R seen as an algebraic space over U via s. Let
U ′ = (Rs/U, e)fin. Since s is separated and locally of finite type, by Proposition
9.11 and Lemma 9.15, we see that U ′ is an algebraic space endowed with an étale
morphism g : U ′ → U . Moreover, by Lemma 9.1 there exists a universal open
subspace Zuniv ⊂ R ×s,U,g U ′ which is finite over U ′ and such that (1U ′ , e ◦ g) :
U ′ → R×s,U,gU ′ factors through Zuniv. Moreover, by Lemma 9.4 the open subspace
Zuniv is also closed in R×s,U ′,g U . Picture so far:

Zuniv

�� %%
R×s,U,g U ′

��

// U ′

g

��
R

s // U

Let T be a scheme over B. We see that a T -valued point of Zuniv may be viewed
as a triple (u, Z, z) where

(1) u : T → U is a T -valued point of U ,
(2) Z ⊂ R ×s,U,u T is an open and closed subspace finite over T such that

(e ◦ u, 1T ) factors through it, and
(3) z : T → R is a T -valued point of R with s ◦ z = u and such that (z, 1T )

factors through Z.

Having said this, it is morally clear from the discussion in Section 10 that we can
turn (Zuniv, U

′) into a groupoid in algebraic spaces over B. To make sure will
define the morphisms s′, t′, c′, e′, i′ one by one using the functorial point of view.
(Please don’t read this before reading and understanding the simple construction
in Section 10.)

The morphism s′ : Zuniv → U ′ corresponds to the rule

s′ : (u, Z, z) 7→ (u, Z).

The morphism t′ : Zuniv → U ′ is given by the rule

t′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z)).
The entry c(Z, i ◦ z) makes sense as the map c(−, i ◦ z) : R×s,U,u T → R×s,U,t◦z T
is an isomorphism with inverse c(−, z). The morphism e′ : U ′ → Zuniv is given by
the rule

e′ : (u, Z) 7→ (u, Z, (e ◦ u, 1T )).
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Note that this makes sense by the requirement that (e ◦ u, 1T ) factors through Z.
The morphism i′ : Zuniv → Zuniv is given by the rule

i′ : (u, Z, z) 7→ (t ◦ z, c(Z, i ◦ z), i ◦ z).
Finally, composition is defined by the rule

c′ : ((u1, Z1, z1), (u2, Z2, z2)) 7→ (u2, Z2, z1 ◦ z2).

We omit the verification that the axioms of a groupoid in algebraic spaces hold for
(U ′, Zuniv, s

′, t′, c′, e′, i′).

A final piece of information is that there is a canonical morphism of groupoids

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

Namely, the morphism U ′ → U is the morphism g : U ′ → U which is defined by
the rule (u, Z) 7→ u. The morphism Zuniv → R is defined by the rule (u, Z, z) 7→ z.
This finishes the construction. Let us summarize our findings as follows.

Lemma 11.1. Let S be a scheme. Let B be an algebraic space over S. Let
(U,R, s, t, c, e, i) be a groupoid in algebraic spaces over B. Assume the morphisms
s, t are separated and locally of finite type. There exists a canonical morphism

(U ′, Zuniv, s
′, t′, c′, e′, i′) −→ (U,R, s, t, c, e, i)

of groupoids in algebraic spaces over B where

(1) g : U ′ → U is identified with (Rs/U, e)fin → U , and
(2) Zuniv ⊂ R×s,U,g U ′ is the universal open (and closed) subspace finite over

U ′ which contains the base change of the unit e.

Proof. See discussion above. �

12. Étale localization of groupoid schemes

In this section we prove results similar to [KM97, Proposition 4.2]. We try to be
a bit more general, and we try to avoid using Hilbert schemes by using the finite
part of a morphism instead. The goal is to ”split” a groupoid in algebraic spaces
over a point after étale localization. Here is the definition (very similar to [KM97,
Definition 4.1]).

Definition 12.1. Let S be a scheme. Let B be an algebraic space over S Let
(U,R, s, t, c) be a groupoid in algebraic spaces over B. Let u ∈ |U | be a point.

(1) We say R is split over u if there exists an open subspace P ⊂ R such that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) {r ∈ |R| : s(r) = u, t(r) = u} ⊂ P .

The choice of such a P will be called a splitting of R over u.
(2) We say R is quasi-split over u if there exists an open subspace P ⊂ R such

that
(a) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid in algebraic spaces over B,
(b) s|P , t|P are finite, and
(c) e(u) ∈ |P |1.

The choice of such a P will be called a quasi-splitting of R over u.

1This condition is implied by (a).

http://localhost:8080/tag/04RU
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Note the similarity of the conditions on P to the conditions on pairs in (9.0.1). In
particular, if s, t are separated, then P is also closed in R (see Lemma 9.4).

Suppose we start with a groupoid in algebraic spaces (U,R, s, t, c) over B and a
point u ∈ |U |. Since the goal is to split the groupoid after étale localization we
may as well replace U by an affine scheme (what we mean is that this is harmless
for any possible application). Moreover, the additional hypotheses we are going
to have to impose will force R to be a scheme at least in a neighbourhood of
{r ∈ |R| : s(r) = u, t(r) = u} or e(u). This is why we start with a groupoid scheme
as described below. However, our technique of proof leads us outside of the category
of schemes, which is why we have formulated a splitting for the case of groupoids
in algebraic spaces above. On the other hand, we know of no applications but the
case where the morphisms s, t are also flat and of finite presentation, in which case
we end up back in the category of schemes.

Situation 12.2. (Assumptions for splitting.) Let S be a scheme. Let (U,R, s, t, c)
be a groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type,
(3) the set {r ∈ R : s(r) = u, t(r) = u} is finite, and
(4) s is quasi-finite at each point of the set in (3).

Note that assumptions (3) and (4) are implied by the assumption that the fibre
s−1({u}) is finite, see Morphisms, Lemma 21.7.

Situation 12.3. (Assumptions for quasi-splitting.) Let S be a scheme. Let
(U,R, s, t, c) be a groupoid scheme over S. Let u ∈ U be a point. Assume that

(1) s, t : R→ U are separated,
(2) s, t are locally of finite type, and
(3) s is quasi-finite at e(u).

It turns out that for applications to the existence theorems for algebraic spaces the
case of quasi-splittings is sufficient. In fact, it is for us somehow a more natural case
to consider, as in the stacks project there are no finiteness conditions on the diagonal
of an algebraic space, hence the assumption that {r ∈ R : s(r) = u, t(r) = u} is
finite need not hold even for a presentation X = U/R of an algebraic space X.

Lemma 12.4. Assumptions and notation as in Situation 12.2. Then there exists
an algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u))→ U ′

lying over u : Spec(κ(u))→ U such that the restriction R′ = R|U ′ of R to U ′ splits
over u′.

Proof. Let f : (U ′, Zuniv, s
′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma

11.1. Recall that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) :
Zuniv → R′ of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Z ⊂ R×s,U,g U ′ is open and R′ → R×s,U,g U ′ is étale (as a base
change of U ′ → U) we see that Zuniv → R′ is an open immersion. By construction
the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u)) → U as in the statement of the lemma.
Set Fu = R ×s,U Spec(κ(u)). The set {r ∈ R : s(r) = u, t(r) = u} is finite by
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assumption and Fu → Spec(κ(u)) is quasi-finite at each of its elements. Hence we
can find a decomposition into open and closed subschemes

Fu = Zu
∐

Rest

for some scheme Zu finite over κ(u) whose support is {r ∈ R : s(r) = u, t(r) = u}.
Note that e(u) ∈ Zu. Hence by the construction of U ′ in Section 11 (u, Zu) defines
a Spec(κ(u))-valued point u′ of U ′.

We still have to show that the set {r′ ∈ |R′| : s′(r′) = u′, t′(r′) = u′} is contained in
|Zuniv|. Pick any point r′ in this set and represent it by a morphism r′ : Spec(k)→
R′. Denote z : Spec(k) → R the composition of r′ with the map R′ → R. Since
κ(u) = κ(u′), and since s′(r′) = u′, t(r′) = u′ no information is lost by considering
the point z rather than the point r′, i.e., we can recover r′ from the point z. For
example z is an element of the set {r ∈ R : s(r) = u, t(r) = u} by our assumption
on r′. The composition s ◦ z : Spec(k)→ U factors through u, so we may think of
s ◦ z as a morphism Spec(k)→ Spec(κ(u)). Hence we can consider the triple

(s ◦ z, Zu ×Spec(κ(u)),s◦z Spec(k), z)

where Zu is as above. This defines a Spec(k)-valued point of Zuniv above whose
image under the map Zuniv → R′ is the point r′ by the relationship between z and
r′ mentioned above. This finishes the proof. �

Lemma 12.5. Assumptions and notation as in Situation 12.3. Then there exists
an algebraic space U ′, an étale morphism U ′ → U , and a point u′ : Spec(κ(u))→ U ′

lying over u : Spec(κ(u)) → U such that the restriction R′ = R|U ′ of R to U ′ is
quasi-split over u′.

Proof. The proof is almost exactly the same as the proof of Lemma 12.4. Let
f : (U ′, Zuniv, s

′, t′, c′) → (U,R, s, t, c) be as constructed in Lemma 11.1. Recall
that R′ = R ×(U×SU) (U ′ ×S U ′). Thus we get a morphism (f, t′, s′) : Zuniv → R′

of groupoids in algebraic spaces

(U ′, Zuniv, s
′, t′, c′)→ (U ′, R′, s′, t′, c′)

(by abuse of notation we indicate the morphisms in the two groupoids by the same
symbols). Now, as Z ⊂ R×s,U,g U ′ is open and R′ → R×s,U,g U ′ is étale (as a base
change of U ′ → U) we see that Zuniv → R′ is an open immersion. By construction
the morphisms s′, t′ : Zuniv → U ′ are finite. It remains to find the point u′ of U ′.

We think of u as a morphism Spec(κ(u))→ U as in the statement of the lemma. Set
Fu = R×s,U Spec(κ(u)). The morphism Fu → Spec(κ(u)) is quasi-finite at e(u) by
assumption. Hence we can find a decomposition into open and closed subschemes

Fu = Zu
∐

Rest

for some scheme Zu finite over κ(u) whose support is e(u). Hence by the construc-
tion of U ′ in Section 11 (u, Zu) defines a Spec(κ(u))-valued point u′ of U ′. To finish
the proof we have to show that e′(u′) ∈ Zuniv which is clear. �

Finally, when we add additional assumptions we obtain schemes.

Lemma 12.6. Assumptions and notation as in Situation 12.2. Assume in addition
that s, t are flat and locally of finite presentation. Then there exists a scheme
U ′, a separated étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with
κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ splits over u′.

http://localhost:8080/tag/04RW
http://localhost:8080/tag/04RX


MORE ON GROUPOIDS IN SPACES 21

Proof. This follows from the construction of U ′ in the proof of Lemma 12.4 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 9.14 and
9.15. �

Lemma 12.7. Assumptions and notation as in Situation 12.3. Assume in addition
that s, t are flat and locally of finite presentation. Then there exists a scheme
U ′, a separated étale morphism U ′ → U , and a point u′ ∈ U ′ lying over u with
κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ is quasi-split over u′.

Proof. This follows from the construction of U ′ in the proof of Lemma 12.5 because
in this case U ′ = (Rs/U, e)fin is a scheme separated over U by Lemmas 9.14 and
9.15. �

In fact we can obtain affine schemes by applying an earlier result on finite locally
free groupoids.

Lemma 12.8. Assumptions and notation as in Situation 12.2. Assume in addition
that s, t are flat and locally of finite presentation and that U is affine. Then there
exists an affine scheme U ′, an étale morphism U ′ → U , and a point u′ ∈ U ′ lying
over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ splits over
u′.

Proof. Let U ′ → U and u′ ∈ U ′ be the étale morphism of schemes we found in
Lemma 12.6. Let P ⊂ R′ be the splitting of R′ over u′. By More on Groupoids,
Lemma 8.1 the morphisms s′, t′ : R′ → U ′ are flat and locally of finite presentation.
They are finite by assumption. Hence s′, t′ are finite locally free, see Morphisms,
Lemma 46.2. In particular t(s−1(u′)) is a finite set of points {u′1, u′2, . . . , u′n} of
U ′. Choose a quasi-compact open W ⊂ U ′ containing each u′i. As U is affine the
morphism W → U is quasi-compact (see Schemes, Lemma 19.2). The morphism
W → U is also locally quasi-finite (see Morphisms, Lemma 37.6) and separated.
Hence by More on Morphisms, Lemma 31.2 (a version of Zariski’s Main Theo-
rem) we conclude that W is quasi-affine. By Properties, Lemma 27.5 we see that
{u′1, . . . , u′n} are contained in an affine open of U ′. Thus we may apply Groupoids,
Lemma 22.1 to conclude that there exists an affine P -invariant open U ′′ ⊂ U ′ which
contains u′.

To finish the proof denote R′′ = R|U ′′ the restriction of R to U ′′. This is the same
as the restriction of R′ to U ′′. As P ⊂ R′ is an open and closed subscheme, so is
P |U ′′ ⊂ R′′. By construction the open subscheme U ′′ ⊂ U ′ is P -invariant which
means that P |U ′′ = (s′|P )−1(U ′′) = (t′|P )−1(U ′′) (see discussion in Groupoids,
Section 17) so the restrictions of s′′ and t′′ to P |U ′′ are still finite. The sub groupoid
scheme P |U ′′ is still a splitting of R′′ over u′′; above we verified (a), (b) and (c)
holds as {r′ ∈ R′ : t′(r′) = u′, s′(r′) = u′} = {r′′ ∈ R′′ : t′′(r′′) = u′, s′′(r′′) = u′}
trivially. The lemma is proved. �

Lemma 12.9. Assumptions and notation as in Situation 12.3. Assume in addition
that s, t are flat and locally of finite presentation and that U is affine. Then there
exists an affine scheme U ′, an étale morphism U ′ → U , and a point u′ ∈ U ′ lying
over u with κ(u) = κ(u′) such that the restriction R′ = R|U ′ of R to U ′ is quasi-split
over u′.

Proof. The proof of this lemma is literally the same as the proof of Lemma 12.8
except that “splitting” needs to be replaced by “quasi-splitting” (2 times) and
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that the reference to Lemma 12.6. needs to be replaced by a reference to Lemma
12.7. �
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