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1. Introduction

In this chapter we put material related to limits of schemes. We mostly study limits
of inverse systems over directed partially ordered sets with affine transition maps.
We discuss absolute Noetherian approximation. We characterize schemes locally of
finite presentation over a base as those whose associated functor of points is limit
preserving. As an application of absolute Noetherian approximation we prove that
the image of an affine under an integral morphism is affine. Moreover, we prove
some very general variants of Chow’s lemma. A basic reference is [DG67].

2. Directed limits of schemes with affine transition maps

In this section we construct the limit.

Lemma 2.1. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. If all the schemes Si are affine, then the limit S = limi Si
exists in the category of schemes. In fact S is affine and S = Spec(colimiRi) with
Ri = Γ(Si,O).

Proof. Just define S = Spec(colimiRi). It follows from Schemes, Lemma 6.4 that
S is the limit even in the category of locally ringed spaces. �

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.

1

http://localhost:8080/tag/01YW


2 LIMITS OF SCHEMES

Lemma 2.2. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. If all the morphisms fii′ : Si → Si′ are affine, then the
limit S = limi Si exists in the category of schemes. Moreover,

(1) each of the morphisms fi : S → Si is affine,
(2) for an element 0 ∈ I and any open subscheme U0 ⊂ S0 we have

f−1
0 (U0) = limi≥0 f

−1
i0 (U0)

in the category of schemes.

Proof. Choose an element 0 ∈ I. Note that I is nonempty as the limit is directed.
For every i ≥ 0 consider the quasi-coherent sheaf of OS0

-algebras Ai = fi0,∗OSi .
Recall that Si = Spec

S0
(Ai), see Morphisms, Lemma 13.3. Set A = colimi≥0Ai.

This is a quasi-coherent sheaf of OS0
-algebras, see Schemes, Section 24. Set S =

Spec
S0

(A). By Morphisms, Lemma 13.5 we get for i ≥ 0 morphisms fi : S → Si
compatible with the transition morphisms. Note that the morphisms fi are affine
by Morphisms, Lemma 13.11 for example. By Lemma 2.1 above we see that for any
affine open U0 ⊂ S0 the inverse image U = f−1

0 (U0) ⊂ S is the limit of the system
of opens Ui = f−1

i0 (U0), i ≥ 0 in the category of schemes.

Let T be a scheme. Let gi : T → Si be a compatible system of morphisms. To
show that S = limi Si we have to prove there is a unique morphism g : T → S
with gi = fi ◦ g for all i ∈ I. For every t ∈ T there exists an affine open U0 ⊂ S0

containing g0(t). Let V ⊂ g−1
0 (U0) be an affine open neighbourhood containing t.

By the remarks above we obtain a unique morphism gV : V → U = f−1
0 (U0) such

that fi ◦ gV = gi|Ui for all i. The open sets V ⊂ T so constructed form a basis for
the topology of T . The morphisms gV glue to a morphism g : T → S because of
the uniqueness property. This gives the desired morphism g : T → S.

The final statement is clear from the construction of the limit above. �

Lemma 2.3. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume all the morphisms fii′ : Si → Si′ are affine, Let
S = limi Si. Let 0 ∈ I. Suppose that T is a scheme over S0. Then

T ×S0
S = limi≥0 T ×S0

Si

Proof. The right hand side is a scheme by Lemma 2.2. The equality is formal, see
Categories, Lemma 14.9. �

3. Descending properties

In this section we work in the following situation.

Situation 3.1. Let S = limi∈I Si be the limit of a directed system of schemes
with affine transition morphisms fi′i : Si′ → Si (Lemma 2.2). We assume that Si
is quasi-compact and quasi-separated for all i ∈ I. We denote fi : S → Si the
projection. We also choose an element 0 ∈ I.

The type of result we are looking for is the following: If we have an object over S,
then for some i there is a similar object over Si.

Lemma 3.2. In Situation 3.1.

(1) We have Sset = limi Si,set where Sset indicates the underlying set of the
scheme S.
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LIMITS OF SCHEMES 3

(2) We have Stop = limi Si,top where Stop indicates the underlying topological
space of the scheme S.

(3) If s, s′ ∈ S and s′ is not a specialization of s then for some i ∈ I the image
s′i ∈ Si of s′ is not a specialization of the image si ∈ Si of s.

(4) Add more easy facts on topology of S here. (Requirement: whatever is added
should be easy in the affine case.)

Proof. Proof of (1). Pick i ∈ I. Take Ui ⊂ Si an affine open. Denote Ui′ = f−1
i′i (Ui)

and U = f−1
i (Ui). Suppose we can show that Uset = limi′≥i Ui′,set. Then assertion

(1) follows by a simple argument using an affine covering of Si. Hence we may
assume all Si and S affine. This reduces us to the following algebra question:
Suppose given a system of rings (Ai, ϕii′) over I. Set A = colimiAi with canonical
maps ϕi : Ai → A. Then

Spec(A) = limi Spec(Ai)

Namely, suppose that we are given primes pi ⊂ Ai such that pi = ϕ−1
ii′ (pi′) for all

i′ ≥ i. Then we simply set

p = {x ∈ A | ∃i, xi ∈ pi with ϕi(xi) = x}

It is clear that this is an ideal and has the property that ϕ−1
i (p) = pi. Then it

follows easily that it is a prime ideal as well. This proves (1).

Proof of (2). Choose an i and a finite affine open covering Si = U1,i ∪ . . . ∪ Un,i.
If we can show the topology on f−1

i (Uk,i) = limi′≥i f
−1
i′i (Uk,i) is the limit topology,

then the same is true for S. Hence we may assume that S and Si are affine. Say
Si = Spec(Ai) and S = Spec(A) with A = colimAi. A basis for the topology of
Spec(A) is given by the standard opens D(g), g ∈ A. Since each g ∈ A is the image
of some gi ∈ Ai for some i we see that D(g) is the inverse image of D(gi) by fi.
The deisred result now follows from the criterion of Topology, Lemma 13.3.

Proof of (3). Pick i ∈ I. Pick an affine open Ui ⊂ Si containing fi(s
′). If fi(s) 6∈ Si

then we are done. Hence reduce to the affine case by considering the inverse images
of Ui as above. This reduces us to the following algebra question: Suppose given a
system of rings (Ai, ϕii′) over I. Set A = colimiAi with canonical maps ϕi : Ai →
A. Suppose given primes p, p′ of A. Suppose that p 6⊂ p′. Then for some i we have
ϕ−1
i (p) 6⊂ ϕ−1

i (p′). This is clear. �

Lemma 3.3. In Situation 3.1. Suppose that F0 is a quasi-coherent sheaf on S0.
Set Fi = f∗i0F0 for i ≥ 0 and set F = f∗0F0. Then

Γ(S,F) = colimi≥0 Γ(Si,Fi)

Proof. Write Aj = fi0,∗OSi . This is a quasi-coherent sheaf of OS0
-algebras (see

Morphisms, Lemma 13.5) and Si is the relative spectrum of Ai over S0. In the
proof of Lemma 2.2 we constructed S as the relative spectrum of A = colimi≥0Ai
over S0. Set

Mi = F0 ⊗OS0 Ai
and

M = F0 ⊗OS0 A.
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4 LIMITS OF SCHEMES

Then we have fi0,∗Fi =Mi and f0,∗F =M. Since A is the colimit of the sheaves
Ai and since tensor product commutes with directed colimits, we conclude that
M = colimi≥0Mi. Since S0 is quasi-compact and quasi-separated we see that

Γ(S,F) = Γ(S0,M)

= Γ(S0, colimi≥0Mi)

= colimi≥0 Γ(S0,Mi)

= colimi≥0 Γ(Si,Fi)
see Sheaves, Lemma 29.1 and Topology, Lemma 26.1 for the middle equality. �

Lemma 3.4. In Situation 3.1. If all the schemes Si are nonempty, then the limit
S = limi Si is nonempty.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =⋃
j=1,...,m Uj . Since I is directed there exists a j ∈ {1, . . . ,m} such that f−1

i0 (Uj) 6= ∅
for all i ≥ 0. Hence limi≥0 f

−1
i0 (Uj) is not empty since a directed colimit of nonzero

rings is nonzero (because 1 6= 0). As limi≥0 f
−1
i0 (Uj) is an open subscheme of the

limit we win. �

Lemma 3.5. In Situation 3.1. Suppose for each i we are given a nonempty closed
subset Zi ⊂ Si with fii′(Zi) ⊂ Zi′ . Then there exists a point s ∈ S with fi(s) ∈ Zi
for all i.

Proof. Let Zi ⊂ Si also denote the reduced closed subscheme associated to Zi, see
Schemes, Definition 12.5. A closed immersion is affine, and a composition of affine
morphisms is affine (see Morphisms, Lemmas 13.9 and 13.7), and hence Zi → Si′

is affine when i ≥ i′. We conclude that the morphism fii′ : Zi → Zi′ is affine by
Morphisms, Lemma 13.11. Each of the schemes Zi is quasi-compact as a closed
subscheme of a quasi-compact scheme. Hence we may apply Lemma 3.4 to see that
Z = limi Zi is nonempty. Since there is a canonical morphism Z → S we win. �

Lemma 3.6. In Situation 3.1. Suppose we are given an i and a morphism T → Si
such that

(1) T ×Si S = ∅, and
(2) T is quasi-compact.

Then T ×Si Si′ = ∅ for all sufficiently large i′.

Proof. By Lemma 2.3 we see that T ×Si S = limi′≥i T ×Si Si′ . Hence the result
follows from Lemma 3.4. �

Lemma 3.7. In Situation 3.1. Suppose we are given an i and a locally constructible
subset E ⊂ Si such that fi(S) ⊂ E. Then fii′(Si′) ⊂ E for all sufficiently large i′.

Proof. Writing Si as a finite union of open affine subschemes reduces the question
to the case that Si is affine and E is constructible, see Lemma 2.2 and Properties,
Lemma 2.1. In this case the complement Si \ E is constructible too. Hence there
exists an affine scheme T and a morphism T → Si whose image is Si\E, see Algebra,
Lemma 28.3. By Lemma 3.6 we see that T ×Si Si′ is empty for all sufficiently large
i′, and hence fii′(Si′) ⊂ E for all sufficiently large i′. �

Lemma 3.8. In Situation 3.1 we have the following:
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(1) Given any quasi-compact open V ⊂ S = limi Si there exists an i ∈ I and a
quasi-compact open Vi ⊂ Si such that f−1

i (Vi) = V .

(2) Given Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact opens such that f−1
i (Vi) =

f−1
i′ (Vi′) there exists an index i′′ ≥ i, i′ such that f−1

i′′i (Vi) = f−1
i′′i′(Vi′).

(3) If V1,i, . . . , Vn,i ⊂ Si are quasi-compact opens and S = f−1
i (V1,i) ∪ . . . ∪

f−1
i (Vn,i) then Si′ = f−1

i′i (V1,i) ∪ . . . ∪ f−1
i′i (Vn,i) for some i′ ≥ i.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Choose an affine open covering S0 =
U1,0 ∪ . . . ∪ Um,0. Denote Uj,i ⊂ Si the inverse image of Uj,0 under the transition
morphism for i ≥ 0. Denote Uj the inverse image of Uj,0 in S. Note that Uj =
limi Uj,i is a limit of affine schemes.

We first prove the uniqueness statement: Let Vi ⊂ Si and Vi′ ⊂ Si′ quasi-compact
opens such that f−1

i (Vi) = f−1
i′ (Vi′). It suffices to show that f−1

i′′i (Vi ∩ Uj,i′′) and

f−1
i′′i′(Vi′ ∩ Uj,i′′) become equal for i′′ large enough. Hence we reduce to the case

of a limit of affine schemes. In this case write S = Spec(R) and Si = Spec(Ri)
for all i ∈ I. We may write Vi = Si \ V (h1, . . . , hm) and Vi′ = Si′ \ V (g1, . . . , gn).
The assumption means that the ideals

∑
gjR and

∑
hjR have the same radical in

R. This means that gNj =
∑
ajj′hj′ and hNj =

∑
bjj′gj′ for some N � 0 and ajj′

and bjj′ in R. Since R = colimiRi we can chose an index i′′ ≥ i such that the
equations gNj =

∑
ajj′hj′ and hNj =

∑
bjj′gj′ hold in Ri′′ for some ajj′ and bjj′ in

Ri′′ . This implies that the ideals
∑
gjRi′′ and

∑
hjRi′′ have the same radical in

Ri′′ as desired.

We prove existence. We may apply the uniqueness statement to the limit of schemes
Uj1 ∩Uj2 = limi Uj1,i ∩Uj2,i since these are still quasi-compact due to the fact that
the Si were assumed quasi-separated. Hence it is enough to prove existence in the
affine case. In this case write S = Spec(R) and Si = Spec(Ri) for all i ∈ I. Then
V = S \ V (g1, . . . , gn) for some g1, . . . , gn ∈ R. Choose any i large enough so that
each of the gj comes from an element gj,i ∈ Ri and take Vi = Si \ V (g1,i, . . . , gn,i).

The statement on coverings follows from the uniqueness statement for the opens
V1,i ∪ . . . ∪ Vn,i and Si of Si. �

Lemma 3.9. In Situation 3.1 if S is quasi-affine, then for some i0 ∈ I the schemes
Si for i ≥ i0 are quasi-affine.

Proof. Choose i0 ∈ I. Note that I is nonempty as the limit is directed. For
convenience we write S0 = Si0 and i0 = 0. Let s ∈ S. We may choose an affine
open U0 ⊂ S0 containing f0(s). Since S is quasi-affine we may choose an element
a ∈ Γ(S,OS) such that s ∈ D(a) ⊂ f−1

0 (U0), and such that D(a) is affine. By
Lemma 3.3 there exists an i ≥ 0 such that a comes from an element ai ∈ Γ(Si,OSi).
For any index j ≥ i we denote aj the image of ai in the global sections of the

structure sheaf of Sj . Consider the opens D(aj) ⊂ Sj and Uj = f−1
j0 (U0). Note

that Uj is affine and D(aj) is a quasi-compact open of Sj , see Properties, Lemma
24.4 for example. Hence we may apply Lemma 3.8 to the opens Uj and Uj ∪D(aj)
to conclude that D(aj) ⊂ Uj for some j ≥ i. For such an index j we see that
D(aj) ⊂ Sj is an affine open (because D(aj) is a standard affine open of the affine
open Uj) containing the image fj(s).
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6 LIMITS OF SCHEMES

We conclude that for every s ∈ S there exist an index i ∈ I, and a global section
a ∈ Γ(Si,OSi) such that D(a) ⊂ Si is an affine open containing fi(s). Because S is
quasi-compact we may choose a single index i ∈ I and global sections a1, . . . , am ∈
Γ(Si,OSi) such that each D(aj) ⊂ Si is affine open and such that fi : S → Si has

image contained in the union Wi =
⋃
j=1,...,mD(aj). For i′ ≥ i set Wi′ = f−1

i′i (Wi).

Since f−1
i (Wi) is all of S we see (by Lemma 3.8 again) that for a suitable i′ ≥ i we

have Si′ = Wi′ . Thus we may replace i by i′ and assume that Si =
⋃
j=1,...,mD(aj).

This implies that OSi is an ample invertible sheaf on Si (see Properties, Definition
24.1) and hence that Si is quasi-affine, see Properties, Lemma 25.1. Hence we
win. �

Lemma 3.10. In Situation 3.1 if S is affine, then for some i0 ∈ I the schemes Si
for i ≥ i0 are affine.

Proof. By Lemma 3.9 we may assume that S0 is quasi-affine for some 0 ∈ I. Set
R0 = Γ(S0,OS0

). Then S0 is a quasi-compact open of T0 = Spec(R0). Denote
j0 : S0 → T0 the corresponding quasi-compact open immersion. For i ≥ 0 set Ai =
f0i,∗OSi . Since f0i is affine we see that Si = Spec

S0
(Ai). Set Ti = Spec

T0
(j0,∗Ai).

Then Ti → T0 is affine, hence Ti is affine. Thus Ti is the spectrum of

Ri = Γ(T0, j0,∗Ai) = Γ(S0,Ai) = Γ(Si,OSi).

Write S = Spec(R). We have R = colimiRi by Lemma 3.3. Hence also S = limi Ti.
As formation of the relative spectrum commutes with base change, the inverse image
of the open S0 ⊂ T0 in Ti is Si. Let Z0 = T0 \ S0 and let Zi ⊂ Ti be the inverse
image of Z0. As Si = Ti\Zi, it suffices to show that Zi is empty for some i. Assume
Zi is nonempty for all i to get a contradiction. By Lemma 3.5 there exists a point
s of S = limTi which maps to a point of Zi for every i. But S = limi Si, and hence
we arrive at a contradiction by Lemma 3.2. �

Lemma 3.11. In Situation 3.1 if S is separated, then for some i0 ∈ I the schemes
Si for i ≥ i0 are separated.

Proof. Choose a finite affine open covering S0 = U0,1∪. . .∪U0,m. Set Ui,j ⊂ Si and
Uj ⊂ S equal to the inverse image of U0,j . Note that Ui,j and Uj are affine. As S is
separated the intersections Uj1 ∩Uj2 are affine. Since Uj1 ∩Uj2 = limi≥0 Ui,j1 ∩Ui,j2
we see that Ui,j1 ∩ Ui,j2 is affine for large i by Lemma 3.10. To show that Si is
separated for large i it now suffices to show that

OSi(Vi,j1)⊗OS(S) OSi(Vi,j2) −→ OSi(Vi,j1 ∩ Vi,j2)

is surjective for large i (Schemes, Lemma 21.8).

To get rid of the annoying indices, assume we have affine opens U, V ⊂ S0 such that
U∩V is affine too. Let Ui, Vi ⊂ Si, resp. U, V ⊂ S be the inverse images. We have to
show that O(Ui)⊗O(Vi)→ O(Ui∩Vi) is surjective for i large enough and we know
that O(U)⊗O(V )→ O(U∩V ) is surjective. Note that O(U0)⊗O(V0)→ O(U0∩V0)
is of finite type, as the diagonal morphism Si → Si×Si is an immersion (Schemes,
Lemma 21.2) hence locally of finite type (Morphisms, Lemmas 16.2 and 16.5). Thus
we can choose elements f0,1, . . . , f0,n ∈ O(U0 ∩ V0) which generate O(U0 ∩ V0) over
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O(U0)⊗O(V0). Observe that for i ≥ 0 the diagram of schemes

Ui ∩ Vi //

��

Ui

��
U0 ∩ V0

// U0

is cartesian. Thus we see that the images fi,1, . . . , fi,n ∈ O(Ui ∩ Vi) generate
O(Ui∩Vi) over O(Ui)⊗O(V0) and a fortiori over O(Ui)⊗O(Vi). By assumption the
images f1, . . . , fn ∈ O(U⊗V ) are in the image of the mapO(U)⊗O(V )→ O(U∩V ).
Since O(U)⊗O(V ) = colimO(Ui)⊗O(Vi) we see that they are in the image of the
map at some finite level and the lemma is proved. �

Lemma 3.12. In Situation 3.1 let L0 be an invertible sheaf of modules on S0. If
the pullback L to S is ample, then for some i ∈ I the pullback Li to Si is ample.

Proof. The assumption means there are finitely many sections s1, . . . , sm ∈ Γ(S,L)
such that Ssj is affine and such that S =

⋃
Ssj , see Properties, Definition 24.1. By

Lemma 3.3 we can find an i ∈ I and sections si,j ∈ Γ(Si,Li) mapping to sj . By
Lemma 3.10 we may, after increasing i, assume that (Si)si,j is affine for j = 1, . . . ,m.
By Lemma 3.8 we may, after increasing i a last time, assume that Si =

⋃
(Si)si,j .

Then Li is ample by definition. �

Lemma 3.13. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Let Y → X be a morphism of schemes
over S.

(1) If Y → X is a closed immersion, Xi quasi-compact, and Y locally of finite
type over S, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → S locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

Proof. Proof of (1). Choose 0 ∈ I and a finite affine open covering X0 = U0,1 ∪
. . . ∪ U0,m with the property that U0,j maps into an affine open Wj ⊂ S. Let
Vj ⊂ Y , resp. Ui,j ⊂ Xi, i ≥ 0, resp. Uj ⊂ X be the inverse image of U0,j . It
suffices to prove that Vj → Ui,j is a closed immersion for i sufficiently large and we
know that Vj → Uj is a closed immersion. Thus we reduce to the following algebra
fact: If A = colimAi is a directed colimit of R-algebras, A → B is a surjection of
R-algebras, and B is a finitely generated R-algebra, then Ai → B is surjective for
i sufficiently large.

Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open X ′0 ⊂ X0 such that
Y → X0 factors through X ′0. After replacing Xi by the inverse image of X ′0 for
i ≥ 0 we may assume all X ′i are quasi-compact and quasi-separated. Let U ⊂ X be
a quasi-compact open such that Y → X factors through a closed immersion Y → U
(U exists as Y is quasi-compact). By Lemma 3.8 we may assume that U = limUi
with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is a closed
immersion for some i. Thus (2) holds. �

Lemma 3.14. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-separated,
(2) Xi quasi-compact and quasi-separated,
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8 LIMITS OF SCHEMES

(3) X → S separated.

Then Xi → S is separated for all i large enough.

Proof. Let 0 ∈ I. Note that I is nonempty as the limit is directed. As X0 is
quasi-compact we can find finitely many affine opens U1, . . . , Un ⊂ S such that
X0 → S maps into U1 ∪ . . . ∪ Un. Denote hi : Xi → S the structure morphism. It
suffices to check that for some i ≥ 0 the morphisms h−1

i (Uj)→ Uj are separated for
j = 1, . . . , n. Since S is quasi-separated the morphisms Uj → S are quasi-compact.

Hence h−1
i (Uj) is quasi-compact and quasi-separated. In this way we reduce to the

case S affine. In this case we have to show that Xi is separated and we know that
X is separated. Thus the lemma follows from Lemma 3.11. �

Lemma 3.15. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → S affine.

Then Xi → S is affine for i large enough.

Proof. Choose a finite affine open covering S =
⋃
j=1,...,n Vj . Denote f : X → S

and fi : Xi → S the structure morphisms. For each j the scheme f−1(Vj) =

limi f
−1
i (Vj) is affine (as a finite morphism is affine by definition). Hence by Lemma

3.10 there exists an i ∈ I such that each f−1
i (Vj) is affine. In other words, fi : Xi →

S is affine for i large enough, see Morphisms, Lemma 13.3. �

Lemma 3.16. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → S locally of finite type
(5) X → S integral.

Then Xi → S is finite for i large enough.

Proof. By Lemma 3.15 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj)

is finite over Vj for j = 1, . . . ,m (Morphisms, Lemma 44.3). Namely, for i′ ≥ i
the composition Xi′ → Xi → S will be finite as a composition of finite morphisms
(Morphisms, Lemma 44.5). This reduces us to the affine case: Let R be a ring and
A = colimAi with R → A integral and Ai → Ai′ finite for all i ≤ i′. Moreover
R → Ai is of finite type for all i. Goal: Show that Ai is finite over R for some
i. To prove this choose an i ∈ I and pick generators x1, . . . , xm ∈ Ai of Ai as an
R-algebra. Since A is integral over R we can find monic polynomials Pj ∈ R[T ]
such that Pj(xj) = 0 in A. Thus there exists an i′ ≥ i such that Pj(xj) = 0 in
Ai′ for j = 1, . . . ,m. Then the image A′i of Ai in Ai′ is finite over R by Algebra,
Lemma 35.5. Since A′i ⊂ Ai′ is finite too we conclude that Ai′ is finite over R by
Algebra, Lemma 7.3. �
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Lemma 3.17. Let S be a scheme. Let X = limXi be a directed limit of schemes
over S with affine transition morphisms. Assume

(1) S quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → S locally of finite type
(5) X → S a closed immersion.

Then Xi → S is a closed immersion for i large enough.

Proof. By Lemma 3.15 we may assume Xi → S is affine for all i. Choose a finite
affine open covering S =

⋃
j=1,...,n Vj . Denote f : X → S and fi : Xi → S the

structure morphisms. It suffices to show that there exists an i such that f−1
i (Vj) is

a closed subscheme of Vj for j = 1, . . . ,m (Morphisms, Lemma 2.1). This reduces
us to the affine case: Let R be a ring and A = colimAi with R→ A surjective and
Ai → Ai′ surjective for all i ≤ i′. Moreover R→ Ai is of finite type for all i. Goal:
Show that R→ Ai is surjective for some i. To prove this choose an i ∈ I and pick
generators x1, . . . , xm ∈ Ai of Ai as an R-algebra. Since R → A is surjective we
can find rj ∈ R such that rj maps to xj in A. Thus there exists an i′ ≥ i such that
rj maps to the image of xj in Ai′ for j = 1, . . . ,m. Since Ai → Ai′ is surjective
this implies that R→ Ai′ is surjective. �

4. Absolute Noetherian Approximation

A nice reference for this section is Appendix C of the article by Thomason and
Trobaugh [TT90]. See Categories, Section 21 for our conventions regarding directed
systems. We will use the existence result and properties of the limit from Section
2 without further mention.

Lemma 4.1. Let W be a quasi-affine scheme of finite type over Z. Suppose W →
Spec(R) is an open immersion into an affine scheme. There exists a finite type
Z-algebra A ⊂ R which induces an open immersion W → Spec(A). Moreover, R
is the directed colimit of such subalgebras.

Proof. Choose an affine open covering W =
⋃
i=1,...,nWi such that each Wi is a

standard affine open in Spec(R). In other words, if we write Wi = Spec(Ri) then
Ri = Rfi for some fi ∈ R. Choose finitely many xij ∈ Ri which generate Ri over Z.
Pick an N � 0 such that each fNi xij comes from an element of R, say yij ∈ R. Set
A equal to the Z-algebra generated by the fi and the yij and (optionally) finitely
many additional elements of R. Then A works. Details omitted. �

Lemma 4.2. Suppose given a cartesian diagram of rings

B
s
// R

B′

OO

// R′

t

OO

Let W ′ ⊂ Spec(R′) be an open of the form W ′ = D(f1) ∪ . . . ∪ D(fn) such that
t(fi) = s(gi) for some gi ∈ B and Bgi

∼= Rs(gi). Then B′ → R′ induces an open
immersion of W ′ into Spec(B′).

Proof. Set hi = (gi, fi) ∈ B′. More on Algebra, Lemma 4.3 shows that (B′)hi
∼=

(R′)fi as desired. �

http://localhost:8080/tag/0A0N
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The following lemma is a precise statement of Noetherian approximation.

Lemma 4.3. Let S be a quasi-compact and quasi-separated scheme. Let V ⊂ S be
a quasi-compact open. Let I be a directed partially ordered set and let (Vi, fii′) be
an inverse system of schemes over I with affine transition maps, with each Vi of
finite type over Z, and with V = limVi. Then there exist

(1) a directed partially ordered set J ,
(2) an inverse system of schemes (Sj , gjj′) over J ,
(3) an order preserving map α : J → I,
(4) open subschemes V ′j ⊂ Sj, and
(5) isomorphisms V ′j → Vα(j)

such that

(1) the transition morphisms gjj′ : Sj → Sj′ are affine,
(2) each Sj is of finite type over Z,

(3) g−1
jj′ (Vj′) = Vj,

(4) S = limSj and V = limVj, and
(5) the diagrams

V

�� !!
V ′j

// Vα(j)

and

Vj //

��

Vα(j)

��
Vj′ // Vα(j′)

are commutative.

Proof. Set Z = S \ V . Choose affine opens U1, . . . , Um ⊂ S such that Z ⊂⋃
l=1,...,m Ul. Consider the opens

V ⊂ V ∪ U1 ⊂ V ∪ U1 ∪ U2 ⊂ . . . ⊂ V ∪
⋃

l=1,...,m
Ul = S

If we can prove the lemma successively for each of the cases

V ∪ U1 ∪ . . . ∪ Ul ⊂ V ∪ U1 ∪ . . . ∪ Ul+1

then the lemma will follow for V ⊂ S. In each case we are adding one affine open.
Thus we may assume

(1) S = U ∪ V ,
(2) U affine open in S,
(3) V quasi-compact open in S, and
(4) V = limi Vi with (Vi, fii′) an inverse system over a directed set I, each fii′

affine and each Vi of finite type over Z.

Set W = U ∩ V . As S is quasi-separated, this is a quasi-compact open of V . By
Lemma 3.8 (and after shrinking I) we may assume that there exist opens Wi ⊂ Vi
such that f−1

ij (Wj) = Wi and such that f−1
i (Wi) = W . Since W is a quasi-compact

open of U it is quasi-affine. Hence we may assume (after shrinking I again) that
Wi is quasi-affine for all i, see Lemma 3.9.

http://localhost:8080/tag/07RN
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Write U = Spec(B). Set R = Γ(W,OW ), and Ri = Γ(Wi,OWi
). By Lemma 3.3 we

have R = colimiRi. Now we have the maps of rings

B
s
// R

Ri

ti

OO

We set Bi = {(b, r) ∈ B ×Ri | s(b) = ti(t)} so that we have a cartesian diagram

B
s
// R

Bi

OO

// Ri

ti

OO

for each i. The transition maps Ri → Ri′ induce maps Bi → Bi′ . It is clear that
B = colimiBi. In the next paragraph we show that for all sufficiently large i the
composition Wi → Spec(Ri)→ Spec(Bi) is an open immersion.

As W is a quasi-compact open of U = Spec(B) we can find a finitely many elements
gl ∈ B, l = 1, . . . ,m such that D(gl) ⊂ W and such that W =

⋃
l=1,...,mD(gl).

Note that this implies D(gl) = Ws(gl) as open subsets of U , where Ws(gl) denotes
the largest open subset of W on which s(gl) is invertible. Hence

Bgl = Γ(D(gl),OU ) = Γ(Ws(gl),OW ) = Rs(gl),

where the last equality is Properties, Lemma 15.2. Since Ws(gl) is affine this also
implies that D(s(gl)) = Ws(gl) as open subsets of Spec(R). Since R = colimiRi we
can (after shrinking I) assume there exist gl,i ∈ Ri for all i ∈ I such that s(gl) =
ti(gl,i). Of course we choose the gl,i such that gl,i maps to gl,i′ under the transition
maps Ri → Ri′ . Then, by Lemma 3.8 we can (after shrinking I again) assume
the corresponding opens D(gl,i) ⊂ Spec(Ri) are contained in Wi, j = 1, . . . ,m and
cover Wi. We conclude that the morphism Wi → Spec(Ri)→ Spec(Bi) is an open
immersion, see Lemma 4.2

By Lemma 4.1 we can write Bi as a directed colimit of subalgebras Ai,p ⊂ Bi, p ∈ Pi
each of finite type over Z and such that Wi is identified with an open subscheme
of Spec(Ai,p). Let Si,p be the scheme obtained by glueing Vi and Spec(Ai,p) along
the open Wi, see Schemes, Section 14. Here is the resulting commutative diagram
of schemes:

V

tt ��

Woo

uu ��
Vi

��

Wi
oo

��

S

tt

U

vv

oo

Si,p Spec(Ai,p)oo

The morphism S → Si,p arises because the upper right square is a pushout in
the category of schemes. Note that Si,p is of finite type over Z since it has a
finite affine open covering whose members are spectra of finite type Z-algebras. We
define a partial ordering on J =

∐
i∈I Pi by the rule (i′, p′) ≥ (i, p) if and only if

i′ ≥ i and the map Bi → Bi′ maps Ai,p into Ai′,p′ . This is exactly the condition
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needed to define a morphism Si′,p′ → Si,p: namely make a commutative diagram as
above using the transition morphisms Vi′ → Vi and Wi′ → Wi and the morphism
Spec(Ai′,p′) → Spec(Ai,p) induced by the ring map Ai,p → Ai′,p′ . The relevant
commutativities have been built into the constructions. We claim that S is the
directed limit of the schemes Si,p. Since by construction the schemes Vi have limit
V this boils down to the fact that B is the limit of the rings Ai,p which is true
by construction. The map α : J → I is given by the rule j = (i, p) 7→ i. The
open subscheme V ′j is just the image of Vi → Si,p above. The commutativity of
the diagrams in (5) is clear from the construction. This finishes the proof of the
lemma. �

Proposition 4.4. Let S be a quasi-compact and quasi-separated scheme. There
exist a directed partially ordered set I and an inverse system of schemes (Si, fii′)
over I such that

(1) the transition morphisms fii′ are affine
(2) each Si is of finite type over Z, and
(3) S = limi Si.

Proof. This is a special case of Lemma 4.3 with V = ∅. �

5. Limits and morphisms of finite presentation

The following is a generalization of Algebra, Lemma 123.2.

Proposition 5.1. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is locally of finite presentation.
(2) For any directed partially ordered set I, and any inverse system (Ti, fii′) of

S-schemes over I with each Ti affine, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

(3) For any directed partially ordered set I, and any inverse system (Ti, fii′)
of S-schemes over I with each fii′ affine and every Ti quasi-compact and
quasi-separated as a scheme, we have

MorS(limi Ti, X) = colimi MorS(Ti, X)

Proof. It is clear that (3) implies (2).

Let us prove that (2) implies (1). Assume (2). Choose any affine opens U ⊂ X
and V ⊂ S such that f(U) ⊂ V . We have to show that OS(V ) → OX(U) is
of finite presentation. Let (Ai, ϕii′) be a directed system of OS(V )-algebras. Set
A = colimiAi. According to Algebra, Lemma 123.2 we have to show that

HomOS(V )(OX(U), A) = colimi HomOS(V )(OX(U), Ai)

Consider the schemes Ti = Spec(Ai). They form an inverse system of V -schemes
over I with transition morphisms fii′ : Ti → Ti′ induced by the OS(V )-algebra
maps ϕi′i. Set T := Spec(A) = limi Ti. The formula above becomes in terms of
morphism sets of schemes

MorV (limi Ti, U) = colimi MorV (Ti, U).

http://localhost:8080/tag/01ZA
http://localhost:8080/tag/01ZC
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We first observe that MorV (Ti, U) = MorS(Ti, U) and MorV (T,U) = MorS(T,U).
Hence we have to show that

MorS(limi Ti, U) = colimi MorS(Ti, U)

and we are given that

MorS(limi Ti, X) = colimi MorS(Ti, X).

Hence it suffices to prove that given a morphism gi : Ti → X over S such that
the composition T → Ti → X ends up in U there exists some i′ ≥ i such that the
composition gi′ : Ti′ → Ti → X ends up in U . Denote Zi′ = g−1

i′ (X \ U). Assume
each Zi′ is nonempty to get a contradiction. By Lemma 3.5 there exists a point t
of T which is mapped into Zi′ for all i′ ≥ i. Such a point is not mapped into U . A
contradiction.

Finally, let us prove that (1) implies (3). Assume (1). Let an inverse directed
system (Ti, fii′) of S-schemes be given. Assume the morphisms fii′ are affine and
each Ti is quasi-compact and quasi-separated as a scheme. Let T = limi Ti. Denote
fi : T → Ti the projection morphisms. We have to show:

(a) Given morphisms gi, g
′
i : Ti → X over S such that gi ◦ fi = g′i ◦ fi, then

there exists an i′ ≥ i such that gi ◦ fi′i = g′i ◦ fi′i.
(b) Given any morphism g : T → X over S there exists an i ∈ I and a morphism

gi : Ti → X such that g = fi ◦ gi.
First let us prove the uniqueness part (a). Let gi, g

′
i : Ti → X be morphisms such

that gi ◦ fi = g′i ◦ fi. For any i′ ≥ i we set gi′ = gi ◦ fi′i and g′i′ = g′i ◦ fi′i. We also
set g = gi ◦ fi = g′i ◦ fi. Consider the morphism (gi, g

′
i) : Ti → X ×S X. Set

W =
⋃

U⊂X affine open,V⊂S affine open,f(U)⊂V
U ×V U.

This is an open in X ×S X, with the property that the morphism ∆X/S factors
through a closed immersion into W , see the proof of Schemes, Lemma 21.2. Note
that the composition (gi, g

′
i) ◦ fi : T → X ×S X is a morphism into W because it

factors through the diagonal by assumption. Set Zi′ = (gi′ , g
′
i′)
−1(X ×S X \W ).

If each Zi′ is nonempty, then by Lemma 3.5 there exists a point t ∈ T which maps
to Zi′ for all i′ ≥ i. This is a contradiction with the fact that T maps into W .
Hence we may increase i and assume that (gi, g

′
i) : Ti → X ×S X is a morphism

into W . By construction of W , and since Ti is quasi-compact we can find a finite
affine open covering Ti = T1,i ∪ . . . ∪ Tn,i such that (gi, g

′
i)|Tj,i is a morphism into

U ×V U for some pair (U, V ) as in the definition of W above. Since it suffices to
prove that gi′ and g′i′ agree on each of the f−1

i′i (Tj,i) this reduces us to the affine
case. The affine case follows from Algebra, Lemma 123.2 and the fact that the ring
map OS(V )→ OX(U) is of finite presentation (see Morphisms, Lemma 22.2).

Finally, we prove the existence part (b). Let g : T → X be a morphism of schemes
over S. We can find a finite affine open covering T = W1 ∪ . . . ∪Wn such that for
each j ∈ {1, . . . , n} there exist affine opens Uj ⊂ X and Vj ⊂ S with f(Uj) ⊂ Vj
and g(Wj) ⊂ Uj . By Lemmas 3.8 and 3.10 (after possibly shrinking I) we may
assume that there exist affine open coverings Ti = W1,i ∪ . . . ∪ Wn,i compatible
with transition maps such that Wj = limiWj,i. We apply Algebra, Lemma 123.2
to the rings corresponding to the affine schemes Uj , Vj , Wj,i and Wj using that
OS(Vj) → OX(Uj) is of finite presentation (see Morphisms, Lemma 22.2). Thus
we can find for each j an index ij ∈ I and a morphism gj,ij : Wj,ij → X such that
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gj,ij ◦ fi|Wj
: Wj → Wj,i → X equals g|Wj

. By part (a) proved above, using the
quasi-compactness of Wj1,i ∩Wj2,i which follows as Ti is quasi-separated, we can
find an index i′ ∈ I larger than all ij such that

gj1,ij1 ◦ fi′ij1 |Wj1,i
′∩Wj2,i

′ = gj2,ij2 ◦ fi′ij2 |Wj1,i
′∩Wj2,i

′

for all j1, j2 ∈ {1, . . . , n}. Hence the morphisms gj,ij ◦ fi′ij |Wj,i′ glue to given the
desired morphism Ti′ → X. �

Remark 5.2. Let S be a scheme. Let us say that a functor F : (Sch/S)opp → Sets
is limit preserving if for every directed inverse system {Ti}i∈I of affine schemes
with limit T we have F (T ) = colimi F (Ti). Let X be a scheme over S, and let
hX : (Sch/S)opp → Sets be its functor of points, see Schemes, Section 15. In this
terminology Proposition 5.1 says that a scheme X is locally of finite presentation
over S if and only if hX is limit preserving.

6. Relative approximation

The title of this section refers to results of the following type.

Lemma 6.1. Let f : X → S be a morphism of schemes. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) S is quasi-separated.

Then X = limXi is a limit of a directed system of schemes Xi of finite presentation
over S with affine transition morphisms over S.

Proof. Since f(X) is quasi-compact we may replace S by a quasi-compact open
containing f(X). Hence we may assume S is quasi-compact as well. Write X =
limXa and S = limSb as in Proposition 4.4, i.e., with Xa and Sb of finite type over
Z and with affine transition morphisms. By Proposition 5.1 we find that for each
b there exists an a and a morphism fa,b : Xa → Sb making the diagram

X

��

// S

��
Xa

// Sb

commute. Moreover the same proposition implies that, given a second triple
(a′, b′, fa′,b′), there exists an a′′ ≥ a′ such that the compositions Xa′′ → Xa → Xb

and Xa′′ → Xa′ → Xb′ → Xb are equal. Consider the set of triples (a, b, fa,b)
endowed with the partial ordering

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b′ ≥ b, and fa′,b′ ◦ ha,a′ = gb′,b ◦ fa,b
where ha,a′ : Xa → Xa′ and gb′,b : Sb′ → Sb are the transition morphisms. The
remarks above show that this system is directed. It follows formally from the
equalities X = limXa and S = limSb that

X = lim(a,b,fa,b)Xa ×fa,b,Sb S.
where the limit is over our directed system above. The transition morphisms Xa×Sb
S → Xa′ ×Sb′ S are affine as the composition

Xa ×Sb S → Xa ×Sb′ S → Xa′ ×Sb′ S
where the first morphism is a closed immersion (by Schemes, Lemma 21.10) and
the second is a base change of an affine morphism (Morphisms, Lemma 13.8) and

http://localhost:8080/tag/05LX
http://localhost:8080/tag/09MV
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the composition of affine morphisms is affine (Morphisms, Lemma 13.7). The mor-
phisms fa,b are of finite presentation (Morphisms, Lemmas 22.9 and 22.11) and
hence the base changes Xa ×fa,b,Sb S → S are of finite presentation (Morphisms,
Lemma 22.4). �

Lemma 6.2. Let X → S be an integral morphism with S quasi-compact and quasi-
separated. Then X = limXi with Xi → S finite and of finite presentation.

Proof. Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OS-
algebras, see Schemes, Lemma 24.1. Combining Properties, Lemma 20.13 we can
write A = colimiAi as a filtered colimit of finite and finitely presented OS-algebras.
Then

Xi = Spec
S

(Ai) −→ S

is a finite and finitely presented morphism of schemes. By construction X = limiXi

which proves the lemma. �

7. Descending properties of morphisms

This section is the analogue of Section 3 for properties of morphisms over S. We
will work in the following situation.

Situation 7.1. Let S = limSi be a limit of a directed system of schemes with affine
transition morphisms (Lemma 2.2). Let 0 ∈ I and let f0 : X0 → Y0 be a morphism
of schemes over S0. Assume S0, X0, Y0 are quasi-compact and quasi-separated.
Let fi : Xi → Yi be the base change of f0 to Si and let f : X → Y be the base
change of f0 to S.

Lemma 7.2. Notation and assumptions as in Situation 7.1. If f is affine, then
there exists an index i ≥ 0 such that fi is affine.

Proof. Let Y0 =
⋃
j=1,...,m Vj,0 be a finite affine open covering. Set Uj,0 =

f−1
0 (Vj,0). For i ≥ 0 we denote Vj,i the inverse image of Vj,0 in Yi and Uj,i =

f−1
i (Vj,i). Similarly we have Uj = f−1(Vj). Then Uj = limi≥0 Uj,i (see Lemma

2.2). Since Uj is affine by assumption we see that each Uj,i is affine for i large
enough, see Lemma 3.10. As there are finitely many j we can pick an i which works
for all j. Thus fi is affine for i large enough, see Morphisms, Lemma 13.3. �

Lemma 7.3. Notation and assumptions as in Situation 7.1. If

(1) f is a finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is finite.

Proof. A finite morphism is affine, see Morphisms, Definition 44.1. Hence by
Lemma 7.2 above after increasing 0 we may assume that f0 is affine. By writing
Y0 as a finite union of affines we reduce to proving the result when X0 and Y0 are
affine and map into a common affine W ⊂ S0. The corresponding algebra statement
follows from Algebra, Lemma 156.3. �

Lemma 7.4. Notation and assumptions as in Situation 7.1. If

(1) f is a closed immersion, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is a closed immersion.

http://localhost:8080/tag/09YZ
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Proof. A closed immersion is affine, see Morphisms, Lemma 13.9. Hence by
Lemma 7.2 above after increasing 0 we may assume that f0 is affine. By writ-
ing Y0 as a finite union of affines we reduce to proving the result when X0 and
Y0 are affine and map into a common affine W ⊂ S0. The corresponding algebra
statement is a consequence of Algebra, Lemma 156.4. �

Lemma 7.5. Notation and assumptions as in Situation 7.1. If f is separated, then
fi is separated for some i ≥ 0.

Proof. Apply Lemma 7.4 to the diagonal morphism ∆X0/S0
: X0 → X0 ×S0

X0.
(This is permissible as diagonal morphisms are locally of finite type and the fibre
product X0 ×S0 X0 is quasi-compact and quasi-separated, see Schemes, Lemma
21.2, Morphisms, Lemma 16.5, and Schemes, Remark 21.18. �

Lemma 7.6. Notation and assumptions as in Situation 7.1. If

(1) f is flat,
(2) f0 is locally of finite presentation,

then fi is flat for some i ≥ 0.

Proof. Choose a finite affine open covering Y0 =
⋃
j=1,...,m Yj,0 such that each Yj,0

maps into an affine open Sj,0 ⊂ S0. For each j let f−1
0 Yj,0 =

⋃
k=1,...,nj

Xk,0 be a

finite affine open covering. Since the property of being flat is local we see that it
suffices to prove the lemma for the morphisms of affines Xk,i → Yj,i → Sj,i which
are the base changes of Xk,0 → Yj,0 → Sj,0 to Si. Thus we reduce to the case that
X0, Y0, S0 are affine

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some 0 ∈ I suppose given an R0-algebra map Ai → Bi of finite
presentation. If R ⊗R0

A0 → R ⊗R0
B0 is flat, then for some i ≥ 0 the map

Ri ⊗R0 A0 → Ri ⊗R0 B0 is flat. This follows from Algebra, Lemma 156.1 part
(3). �

Lemma 7.7. Notation and assumptions as in Situation 7.1. If

(1) f is finite locally free (of degree d),
(2) f0 is locally of finite presentation,

then fi is finite locally free (of degree d) for some i ≥ 0.

Proof. By Lemmas 7.6 and 7.3 we find an i such that fi is flat and finite. On
the other hand, fi is locally of finite presentation. Hence fi is finite locally free by
Morphisms, Lemma 46.2. If moreover f is finite locally free of degree d, then the
image of Y → Yi is contained in the open and closed locus Wd ⊂ Yi over which fi
has degree d. By Lemma 3.7 we see that for some i′ ≥ i the image of Yi′ → Yi is
contained in Wd. Then fi′ will be finite locally free of degree d. �

Lemma 7.8. Notation and assumptions as in Situation 7.1. If

(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Being étale is local on the source and the target (Morphisms, Lemma 37.2)
hence we may assume S0, X0, Y0 affine (details omitted). The corresponding algebra
fact is Algebra, Lemma 156.5. �
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Lemma 7.9. Notation and assumptions as in Situation 7.1. If

(1) f is an isomorphism, and
(2) f0 is locally of finite presentation,

then fi is an isomorphism for some i ≥ 0.

Proof. By Lemmas 7.8 and 7.4 we can find an i such that fi is flat and a closed
immersion. Then fi identifies Xi with an open and closed subscheme of Yi, see
Morphisms, Lemma 27.2. By assumption the image of Y → Yi maps into fi(Xi).
Thus by Lemma 3.7 we find that Yi′ maps into fi(Xi) for some i′ ≥ i. It follows
that Xi′ → Yi′ is surjective and we win. �

Lemma 7.10. Notation and assumptions as in Situation 7.1. If

(1) f is a monomorphism, and
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism of schemes V → W is a monomorphism if and
only if the diagonal V → V ×W V is an isomorphism (Schemes, Lemma 23.2). The
morphism X0 → X0 ×Y0

X0 is locally of finite presentation by Morphisms, Lemma
22.12. Since X0 ×Y0

X0 is quasi-compact and quasi-separated (Schemes, Remark
21.18) we conclude from Lemma 7.9 that ∆i : Xi → Xi ×Yi Xi is an isomorphism
for some i ≥ 0. For this i the morphism fi is a monomorphism. �

Lemma 7.11. Notation and assumptions as in Situation 7.1. If

(1) f is surjective, and
(2) f0 is locally of finite presentation,

then there exists an i ≥ 0 such that fi is surjective.

Proof. The morphism f0 is of finite presentation. Hence E = f0(X0) is a con-
structible subset of Y0, see Morphisms, Lemma 23.2. Since fi is the base change of
f0 by Yi → Y0 we see that the image of fi is the inverse image of E in Yi. Moreover,
we know that Y → Y0 maps into E. Hence we win by Lemma 3.7. �

8. Finite type closed in finite presentation

A result of this type is [Kie72, Satz 2.10]. Another reference is [Con07].

Lemma 8.1. Let f : X → S be a morphism of schemes. Assume:

(1) The morphism f is locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and an immersion
X → X ′ of schemes over S.

Proof. By Proposition 4.4 we can writeX = limiXi with eachXi of finite type over
Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider the commutative
diagram

X //

!!

Xi,S
//

��

Xi

��
S // Spec(Z)

http://localhost:8080/tag/081E
http://localhost:8080/tag/07RQ
http://localhost:8080/tag/07RR
http://localhost:8080/tag/01ZE


18 LIMITS OF SCHEMES

Note that Xi is of finite presentation over Spec(Z), see Morphisms, Lemma 22.9.
Hence the base change Xi,S → S is of finite presentation by Morphisms, Lemma
22.4. Thus it suffices to show that the arrow X → Xi,S is an immersion for i
sufficiently large.

To do this we choose a finite affine open covering X = V1∪. . .∪Vn such that f maps
each Vj into an affine open Uj ⊂ S. Let hj,a ∈ OX(Vj) be a finite set of elements
which generate OX(Vj) as an OS(Uj)-algebra, see Morphisms, Lemma 16.2. By
Lemmas 3.8 and 3.10 (after possibly shrinking I) we may assume that there exist
affine open coverings Xi = V1,i ∪ . . . ∪ Vn,i compatible with transition maps such
that Vj = limi Vj,i. By Lemma 3.3 we can choose i so large that each hj,a comes
from an element hj,a,i ∈ OXi(Vj,i). Thus the arrow in

Vj −→ Uj ×Spec(Z) Vj,i = (Vj,i)Uj ⊂ (Vj,i)S ⊂ Xi,S

is a closed immersion. Since
⋃

(Vj,i)Uj forms an open of Xi,S and since the inverse
image of (Vj,i)Uj in X is Vj it follows that X → Xi,S is an immersion. �

Remark 8.2. We cannot do better than this if we do not assume more on S and
the morphism f : X → S. For example, in general it will not be possible to find a
closed immersion X → X ′ as in the lemma. The reason is that this would imply
that f is quasi-compact which may not be the case. An example is to take S to be
infinite dimensional affine space with 0 doubled and X to be one of the two infinite
dimensional affine spaces.

Lemma 8.3. Let f : X → S be a morphism of schemes. Assume:

(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → S and a closed
immersion X → X ′ of schemes over S.

Proof. By Lemma 8.1 above there exists a morphism Y → S of finite presentation
and an immersion i : X → Y of schemes over S. For every point x ∈ X, there
exists an affine open Vx ⊂ Y such that i−1(Vx)→ Vx is a closed immersion. Since
X is quasi-compact we can find finitely may affine opens V1, . . . , Vn ⊂ Y such
that i(X) ⊂ V1 ∪ . . . ∪ Vn and i−1(Vj) → Vj is a closed immersion. In other
words such that i : X → X ′ = V1 ∪ . . . ∪ Vn is a closed immersion of schemes
over S. Since S is quasi-separated and Y is quasi-separated over S we deduce
that Y is quasi-separated, see Schemes, Lemma 21.13. Hence the open immersion
X ′ = V1 ∪ . . . ∪ Vn → Y is quasi-compact. This implies that X ′ → Y is of finite
presentation, see Morphisms, Lemma 22.6. We conclude since then X ′ → Y → S is
a composition of morphisms of finite presentation, and hence of finite presentation
(see Morphisms, Lemma 22.3). �

Lemma 8.4. Let X → Y be a closed immersion of schemes. Assume Y quasi-
compact and quasi-separated. Then X can be written as a directed limit X = limXi

of schemes over Y where Xi → Y is a closed immersion of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subscheme of Y . By Properties, Lemma 20.3 we can write I as a directed colimit
I = colimi∈I Ii of its quasi-coherent sheaves of ideals of finite type. Let Xi ⊂ Y
be the closed subscheme defined by Ii. These form an inverse system of schemes
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indexed by I. The transition morphisms Xi → Xi′ are affine because they are
closed immersions. Each Xi is quasi-compact and quasi-separated since it is a closed
subscheme of Y and Y is quasi-compact and quasi-separated by our assumptions.
We have X = limiXi as follows directly from the fact that I = colimi∈I Ia. Each of
the morphisms Xi → Y is of finite presentation, see Morphisms, Lemma 22.7. �

Lemma 8.5. Let f : X → S be a morphism of schemes. Assume

(1) The morphism f is of locally of finite type.
(2) The scheme X is quasi-compact and quasi-separated, and
(3) The scheme S is quasi-separated.

Then X = limXi where the Xi → S are of finite presentation, the Xi are quasi-
compact and quasi-separated, and the transition morphisms Xi′ → Xi are closed
immersions (which implies that X → Xi are closed immersions for all i).

Proof. By Lemma 8.3 there is a closed immersion X → Y with Y → S of finite
presentation. Then Y is quasi-separated by Schemes, Lemma 21.13. Since X is
quasi-compact, we may assume Y is quasi-compact by replacing Y with a quasi-
compact open containing X. We see that X = limXi with Xi → Y a closed
immersion of finite presentation by Lemma 8.4. The morphisms Xi → S are of
finite presentation by Morphisms, Lemma 22.3. �

Proposition 8.6. Let f : X → S be a morphism of schemes. Assume

(1) f is of finite type and separated, and
(2) S is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → S and a
closed immersion X → X ′ of schemes over S.

Proof. Apply Lemma 8.5 and note that Xi → S is separated for large i by Lemma
3.14 as we have assumed that X → S is separated. �

Lemma 8.7. Let f : X → S be a morphism of schemes. Assume

(1) f is finite, and
(2) S is quasi-compact and quasi-separated.

Then there exists a morphism which is finite and of finite presentation f ′ : X ′ → S
and a closed immersion X → X ′ of schemes over S.

Proof. We may write X = limXi as in Lemma 8.5. Applying Lemma 3.16 we see
that Xi → S is finite for large enough i. �

Lemma 8.8. Let f : X → S be a morphism of schemes. Assume

(1) f is finite, and
(2) S quasi-compact and quasi-separated.

Then X is a directed limit X = limXi where the transition maps are closed im-
mersions and the objects Xi are finite and of finite presentation over S.

Proof. We may write X = limXi as in Lemma 8.5. Applying Lemma 3.16 we see
that Xi → S is finite for large enough i. �
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9. Descending relative objects

The following lemma is typical of the type of results in this section. We write out
the “standard” proof completely. It may be faster to convince yourself that the
result is true than to read this proof.

Lemma 9.1. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume

(1) the morphisms fii′ : Si → Si′ are affine,
(2) the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:

(1) For any morphism of finite presentation X → S there exists an index i ∈ I
and a morphism of finite presentation Xi → Si such that X ∼= Xi,S as
schemes over S.

(2) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si, and
a morphism ϕ : Xi,S → Yi,S over S, there exists an index i′ ≥ i and a
morphism ϕi′ : Xi,Si′ → Yi,Si′ whose base change to S is ϕ.

(3) Given an index i ∈ I, schemes Xi, Yi of finite presentation over Si and
a pair of morphisms ϕi, ψi : Xi → Yi whose base changes ϕi,S = ψi,S are
equal, there exists an index i′ ≥ i such that ϕi,Si′ = ψi,Si′ .

In other words, the category of schemes of finite presentation over S is the colimit
over I of the categories of schemes of finite presentation over Si.

Proof. In case each of the schemes Si is affine, and we consider only affine schemes
of finite presentation over Si, resp. S this lemma is equivalent to Algebra, Lemma
123.6. We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a pair of morphisms ϕi, ψi : Xi → Yi. Assume that the base changes
are equal: ϕi,S = ψi,S . We will use the notation Xi′ = Xi,Si′ and Yi′ = Yi,Si′ for
i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according to Lemma 2.3
we have X = limi′≥iXi′ and similarly for Y . Additionally we denote ϕi′ and ψi′

(resp. ϕ and ψ) the base change of ϕi and ψi to Si′ (resp. S). So our assumption
means that ϕ = ψ. Since Yi and Xi are of finite presentation over Si, and since Si
is quasi-compact and quasi-separated, also Xi and Yi are quasi-compact and quasi-
separated (see Morphisms, Lemma 22.10). Hence we may choose a finite affine open
covering Yi =

⋃
Vj,i such that each Vj,i maps into an affine open of S. As above,

denote Vj,i′ the inverse image of Vj,i in Yi′ and Vj the inverse image in Y . The

immersions Vj,i′ → Yi′ are quasi-compact, and the inverse images Uj,i′ = ϕ−1
i (Vj,i′)

and U ′j,i′ = ψ−1
i (Vj,i′) are quasi-compact opens of Xi′ . By assumption the inverse

images of Vj under ϕ and ψ in X are equal. Hence by Lemma 3.8 there exists an
index i′ ≥ i such that of Uj,i′ = U ′j,i′ in Xi′ . Choose an finite affine open covering

Uj,i′ = U ′j,i′ =
⋃
Wj,k,i′ which induce coverings Uj,i′′ = U ′j,i′′ =

⋃
Wj,k,i′′ for all

i′′ ≥ i′. By the affine case there exists an index i′′ such that ϕi′′ |Wj,k,i′′ = ψi′′ |Wj,k,i′′

for all j, k. Then i′′ is an index such that ϕi′′ = ψi′′ and (3) is proved.

Let us prove (2). Suppose given an index i ∈ I, schemes Xi, Yi of finite presentation
over Si and a morphism ϕ : Xi,S → Yi,S . We will use the notation Xi′ = Xi,Si′ and
Yi′ = Yi,Si′ for i′ ≥ i. We also set X = Xi,S and Y = Yi,S . Note that according
to Lemma 2.3 we have X = limi′≥iXi′ and similarly for Y . Since Yi and Xi are of
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finite presentation over Si, and since Si is quasi-compact and quasi-separated, also
Xi and Yi are quasi-compact and quasi-separated (see Morphisms, Lemma 22.10).
Hence we may choose a finite affine open covering Yi =

⋃
Vj,i such that each Vj,i

maps into an affine open of S. As above, denote Vj,i′ the inverse image of Vj,i in
Yi′ and Vj the inverse image in Y . The immersions Vj → Y are quasi-compact, and
the inverse images Uj = ϕ−1(Vj) are quasi-compact opens of X. Hence by Lemma
3.8 there exists an index i′ ≥ i and quasi-compact opens Uj,i′ of Xi′ whose inverse
image in X is Uj . Choose an finite affine open covering Uj,i′ =

⋃
Wj,k,i′ which

induce affine open coverings Uj,i′′ =
⋃
Wj,k,i′′ for all i′′ ≥ i′ and an affine open

covering Uj =
⋃
Wj,k. By the affine case there exists an index i′′ and morphisms

ϕj,k,i′′ : Wj,k,i′′ → Vj,i′′ such that ϕ|Wj,k
= ϕj,k,i′′,S for all j, k. By part (3) proved

above, there is a further index i′′′ ≥ i′′ such that

ϕj1,k1,i′′,Si′′′ |Wj1,k1,i
′′′∩Wj2,k2,i

′′′ = ϕj2,k2,i′′,Si′′′ |Wj1,k1,i
′′′∩Wj2,k2,i

′′′

for all j1, j2, k1, k2. Then i′′′ is an index such that there exists a morphism ϕi′′′ :
Xi′′′ → Yi′′′ whose base change to S gives ϕ. Hence (2) holds.

Let us prove (1). Suppose given a scheme X of finite presentation over S. Since X is
of finite presentation over S, and since S is quasi-compact and quasi-separated, also
X is quasi-compact and quasi-separated (see Morphisms, Lemma 22.10). Choose a
finite affine open coveringX =

⋃
Uj such that each Uj maps into an affine open Vj ⊂

S. Denote Uj1j2 = Uj1 ∩Uj2 and Uj1j2j3 = Uj1 ∩Uj2 ∩Uj3 . By Lemmas 3.8 and 3.10
we can find an index i1 and affine opens Vj,i1 ⊂ Si1 such that each Vj is the inverse of
this in S. Let Vj,i be the inverse image of Vj,i1 in Si for i ≥ i1. By the affine case we
may find an index i2 ≥ i1 and affine schemes Uj,i2 → Vj,i2 such that Uj = S×Si2Uj,i2
is the base change. Denote Uj,i = Si ×Si2 Uj,i2 for i ≥ i2. By Lemma 3.8 there
exists an index i3 ≥ i2 and open subschemes Wj1,j2,i3 ⊂ Uj1,i3 whose base change to
S is equal to Uj1j2 . Denote Wj1,j2,i = Si×Si3 Wj1,j2,i3 for i ≥ i3. By part (2) shown
above there exists an index i4 ≥ i3 and morphisms ϕj1,j2,i4 : Wj1,j2,i4 → Wj2,j1,i4

whose base change to S gives the identity morphism Uj1j2 = Uj2j1 for all j1, j2. For
all i ≥ i4 denote ϕj1,j2,i = idS × ϕj1,j2,i4 the base change. We claim that for some
i5 ≥ i4 the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2) forms a glueing datum
as in Schemes, Section 14. In order to see this we have to verify that for i large
enough we have

ϕ−1
j1,j2,i

(Wj1,j2,i ∩Wj1,j3,i) = Wj1,j2,i ∩Wj1,j3,i

and that for large enough i the cocycle condition holds. The first condition follows
from Lemma 3.8 and the fact that Uj2j1j3 = Uj1j2j3 . The second from part (1)
of the lemma proved above and the fact that the cocycle condition holds for the
maps id : Uj1j2 → Uj2j1 . Ok, so now we can use Schemes, Lemma 14.2 to glue
the system ((Uj,i5)j , (Wj1,j2,i5)j1,j2 , (ϕj1,j2,i5)j1,j2) to get a scheme Xi5 → Si5 . By
construction the base change of Xi5 to S is formed by glueing the open affines Uj
along the opens Uj1 ← Uj1j2 → Uj2 . Hence S ×Si5 Xi5

∼= X as desired. �

Lemma 9.2. Let I be a directed partially ordered set. Let (Si, fii′) be an inverse
system of schemes over I. Assume

(1) all the morphisms fii′ : Si → Si′ are affine,
(2) all the schemes Si are quasi-compact and quasi-separated.

Let S = limi Si. Then we have the following:
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(1) For any sheaf of OS-modules F of finite presentation there exists an index
i ∈ I and a sheaf of OSi-modules of finite presentation Fi such that F ∼=
f∗i Ii.

(2) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite pre-
sentation and a morphism ϕ : f∗i Fi → f∗i Gi over S. Then there exists an
index i′ ≥ i and a morphism ϕi′ : f∗i′iFi → f∗i′iGi whose base change to S
is ϕ.

(3) Suppose given an index i ∈ I, sheaves of OSi-modules Fi, Gi of finite pre-
sentation and a pair of morphisms ϕi, ψi : Fi → Gi. Assume that the base
changes are equal: f∗i ϕi = f∗i ψi. Then there exists an index i′ ≥ i such
that f∗i′iϕi = f∗i′iψi.

In other words, the category of modules of finite presentation over S is the colimit
over I of the categories modules of finite presentation over Si.

Proof. Omitted. Since we have written out completely the proof of Lemma 9.1
above it seems wise to use this here and not completely write this proof out also.
For example we can use:

(1) there is an equivalence of categories between quasi-coherent OS-modules
and vector bundles over S, see Constructions, Section 6.

(2) a vector bundle V(F)→ S is of finite presentation over S if and only if F
is an OS-module of finite presentation.

Then you can descend morphisms in terms of morphisms of the associated vector-
bundles. Similarly for objects. �

Lemma 9.3. With notation and assumptions as in Lemma 9.1. Let i ∈ I. Suppose
that ϕi : Xi → Yi is a morphism of schemes of finite presentation over Si and that
Fi is a quasi-coherent OXi-module of finite presentation. If the pullback of Fi to
Xi×Si S is flat over Yi×Si S, then there exists an index i′ ≥ i such that the pullback
of Fi to Xi ×Si Si′ is flat over Yi ×Si Si′ .

Proof. (This lemma is the analogue of Lemma 7.6 for modules.) For i′ ≥ i denote
Xi′ = Si′ ×Si Xi, Fi′ = (Xi′ → Xi)

∗Fi and similarly for Yi′ . Denote ϕi′ the base
change of ϕi to Si′ . Also set X = S ×Si Xi, Y = S ×Si Xi, F = (X → Xi)

∗Fi
and ϕ the base change of ϕi to S. Let Yi =

⋃
j=1,...,m Vj,i be a finite affine open

covering such that each Vj,i maps into some affine open of Si. For each j = 1, . . .m

let ϕ−1
i (Vj,i) =

⋃
k=1,...,m(j) Uk,j,i be a finite affine open covering. For i′ ≥ i we

denote Vj,i′ the inverse image of Vj,i in Yi′ and Uk,j,i′ the inverse image of Uk,j,i
in Xi′ . Similarly we have Uk,j ⊂ X and Vj ⊂ Y . Then Uk,j = limi′≥i Uk,j,i′ and
Vj = limi′≥i Vj (see Lemma 2.2). Since Xi′ =

⋃
k,j Uk,j,i′ is a finite open covering

it suffices to prove the lemma for each of the morphisms Uk,j,i → Vj,i and the sheaf
Fi|Uk,j,i . Hence we see that the lemma reduces to the case that Xi and Yi are affine
and map into an affine open of Si, i.e., we may also assume that S is affine.

In the affine case we reduce to the following algebra result. Suppose that R =
colimi∈I Ri. For some i ∈ I suppose given a map Ai → Bi of finitely presented
Ri-algebras. Let Ni be a finitely presented Bi-module. Then, if R ⊗Ri Ni is flat
over R ⊗Ri Ai, then for some i′ ≥ i the module Ri′ ⊗Ri Ni is flat over Ri′ ⊗Ri A.
This is exactly the result proved in Algebra, Lemma 156.1 part (3). �
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10. Characterizing affine schemes

If f : X → S is a surjective integral morphism of schemes such that X is an affine
scheme then S is affine too. See [Con07, A.2]. Our proof relies on the Noetherian
case which we stated and proved in Cohomology of Schemes, Lemma 13.3. See also
[DG67, II 6.7.1].

Lemma 10.1. Let f : X → S be a morphism of schemes. Assume that f is
surjective and finite, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
44.7), we see that S is separated (Morphisms, Lemma 42.11).

By Lemma 8.8 we can write X = limaXa with Xa → S finite and of finite presen-
tation. By Lemma 3.10 we see that Xa is affine for some a ∈ A. Replacing X by
Xa we may assume that X → S is surjective, finite, of finite presentation and that
X is affine.

By Proposition 4.4 we may write S = limi∈I Si as a directed limits as schemes
of finite type over Z. By Lemma 9.1 we can after shrinking I assume there exist
schemes Xi → Si of finite presentation such that Xi′ = Xi ×S Si′ for i′ ≥ i and
such that X = limiXi. By Lemma 7.3 we may assume that Xi → Si is finite for
all i ∈ I as well. By Lemma 3.10 once again we may assume that Xi is affine for
all i ∈ I. Hence the result follows from the Noetherian case, see Cohomology of
Schemes, Lemma 13.3. �

Proposition 10.2. Let f : X → S be a morphism of schemes. Assume that f is
surjective and integral, and assume that X is affine. Then S is affine.

Proof. Since f is surjective and X is quasi-compact we see that S is quasi-compact.
Since X is separated and f is surjective and universally closed (Morphisms, Lemma
44.7), we see that S is separated (Morphisms, Lemma 42.11).

By Lemma 6.2 we can write X = limiXi with Xi → S finite. By Lemma 3.10 we
see that for i sufficiently large the scheme Xi is affine. Moreover, since X → S
factors through each Xi we see that Xi → S is surjective. Hence we conclude that
S is affine by Lemma 10.1. �

Lemma 10.3. Let X be a scheme which is set theoretically the union of finitely
many affine closed subschemes. Then X is affine.

Proof. Let Zi ⊂ X, i = 1, . . . , n be affine closed subschemes such that X =
⋃
Zi

set theoretically. Then
∐
Zi → X is surjective and integral with affine source.

Hence X is affine by Proposition 10.2. �

Lemma 10.4. Let i : Z → X be a closed immersion of schemes inducing a home-
omorphism of underlying topological spaces. Let L be an invertible sheaf on X. If
i∗L is ample on Z, then L is ample on X.

Proof. Since i∗L is ample we see that Z is quasi-compact (Properties, Definition
24.1) and separated (Properties, Lemma 24.9). Since i is surjective, we see that
X is quasi-compact. Since i is universally closed and surjective, we see that X is
separated (Morphisms, Lemma 42.11).
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By Proposition 4.4 we can writeX = limXi as a directed limit of finite type schemes
over Z with affine transition morphisms. We can find an i and an invertible sheaf
Li on Xi whose pullback to X is isomorphic to L, see Lemma 9.2.

For each i let Zi ⊂ Xi be the scheme theoretic image of the morphism Z → X. If
Spec(Ai) ⊂ Xi is an affine open subscheme with inverse image of Spec(A) in X and
if Z ∩ Spec(A) is defined by the ideal I ⊂ A, then Zi ∩ Spec(Ai) is defined by the
ideal Ii ⊂ Ai which is the inverse image of I in Ai under the ring map Ai → A, see
Morphisms, Example 6.4. Since colimAi/Ii = A/I it follows that limZi = Z. By
Lemma 3.12 we see that Li|Zi is ample for some i. Since Z and hence X maps into
Zi set theoretically, we see that Xi′ → Xi maps into Zi set theoretically for some
i′ ≥ i, see Lemma 3.7. (Observe that since Xi is Noetherian, every closed subset
of Xi is constructible.) Let T ⊂ Xi′ be the scheme theoretic inverse image of Zi in
Xi′ . Observe that Li′ |T is the pullback of Li|Zi and hence ample by Morphisms,
Lemma 38.7 and the fact that T → Zi is an affine morphism. Thus we see that
Li′ is ample on Xi′ by Cohomology of Schemes, Lemma 14.5. Pulling back to X
(using the same lemma as above) we find that L is ample. �

11. Variants of Chow’s Lemma

In this section we prove a number of variants of Chow’s lemma. The most inter-
esting version is probably just the Noetherian case, which we stated and proved in
Cohomology of Schemes, Section 16.

Lemma 11.1. Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a separated morphism of finite type. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Proof. By Proposition 8.6 we can find a closed immersion X → Y where Y is
separated and of finite presentation over S. Clearly, if we prove the assertion for Y ,
then the result follows for X. Hence we may assume that X is of finite presentation
over S.

Write S = limi Si as a directed limit of Noetherian schemes, see Proposition 4.4. By
Lemma 9.1 we can find an index i ∈ I and a scheme Xi → Si of finite presentation
so that X = S ×Si Xi. By Lemma 7.5 we may assume that Xi → Si is separated.
Clearly, if we prove the assertion for Xi over Si, then the assertion holds for X.
The case Xi → Si is treated by Cohomology of Schemes, Lemma 16.1. �

Here is a variant of Chow’s lemma where we assume the scheme on top has finitely
many irreducible components.

Lemma 11.2. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a separated morphism of finite type. Assume that X has finitely many

http://localhost:8080/tag/0202
http://localhost:8080/tag/0203


LIMITS OF SCHEMES 25

irreducible components. Then there exists an n ≥ 0 and a diagram

X

  

X ′

��

π
oo // Pn

S

}}
S

where X ′ → Pn
S is an immersion, and π : X ′ → X is proper and surjective.

Moreover, there exists an open dense subscheme U ⊂ X such that π−1(U) → U is
an isomorphism of schemes.

Proof. Let X = Z1 ∪ . . . ∪ Zn be the decomposition of X into irreducible compo-
nents. Let ηj ∈ Zj be the generic point.

There are (at least) two ways to proceed with the proof. The first is to redo the
proof of Cohomology of Schemes, Lemma 16.1 using the general Properties, Lemma
27.4 to find suitable affine opens in X. (This is the “standard” proof.) The second
is to use absolute Noetherian approximation as in the proof of Lemma 11.1 above.
This is what we will do here.

By Proposition 8.6 we can find a closed immersion X → Y where Y is separated and
of finite presentation over S. Write S = limi Si as a directed limit of Noetherian
schemes, see Proposition 4.4. By Lemma 9.1 we can find an index i ∈ I and a
scheme Yi → Si of finite presentation so that Y = S×Si Yi. By Lemma 7.5 we may
assume that Yi → Si is separated. We have the following diagram

ηj ∈ Zj // X //

��

Y //

��

Yi

��
S // Si

Denote h : X → Yi the composition.

For i′ ≥ i write Yi′ = Si′ ×Si Yi. Then Y = limi′≥i Yi′ , see Lemma 2.3. Choose
j, j′ ∈ {1, . . . , n}, j 6= j′. Note that ηj is not a specialization of ηj′ . By Lemma 3.2
we can replace i by a bigger index and assume that h(ηj) is not a specialization of
h(ηj′) for all pairs (j, j′) as above. For such an index, let Y ′ ⊂ Yi be the scheme
theoretic image of h : X → Yi, see Morphisms, Definition 6.2. The morphism
h is quasi-compact as the composition of the quasi-compact morphisms X → Y
and Y → Yi (which is affine). Hence by Morphisms, Lemma 6.3 the morphism
X → Y ′ is dominant. Thus the generic points of Y ′ are all contained in the
set {h(η1), . . . , h(ηn)}, see Morphisms, Lemma 8.3. Since none of the h(ηj) is the
specialization of another we see that the points h(η1), . . . , h(ηn) are pairwise distinct
and are each a generic point of Y ′.

We apply Cohomology of Schemes, Lemma 16.1 above to the morphism Y ′ → Si.
This gives a diagram

Y ′

  

Y ∗

��

π
oo // Pn

Si

}}
Si
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such that π is proper and surjective and an isomorphism over a dense open sub-
scheme V ⊂ Y ′. By our choice of i above we know that h(η1), . . . , h(ηn) ∈ V .
Consider the commutative diagram

X ′ X ×Y ′ Y ∗ //

��

Y ∗ //

��

Pn
Si

��

X //

��

Y ′

��
S // Si

Note that X ′ → X is an isomorphism over the open subscheme U = h−1(V ) which
contains each of the ηj and hence is dense in X. We conclude X ← X ′ → Pn

S is a
solution to the problem posed in the lemma. �

12. Applications of Chow’s lemma

We can use Chow’s lemma to investigate the notions of proper and separated mor-
phisms. As a first application we have the following.

Lemma 12.1. Let S be a scheme. Let f : X → S be a separated morphism of
finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any morphism S′ → S which is locally of finite type the base change

XS′ → S′ is closed.
(3) For every n ≥ 0 the morphism An ×X → An × S is closed.

Proof. Clearly (1) implies (2), and (2) implies (3), so we just need to show (3)
implies (1). First we reduce to the case when S is affine. Assume that (3) implies
(1) when the base is affine. Now let f : X → S be a separated morphism of
finite type. Being proper is local on the base (see Morphisms, Lemma 42.3), so if
S =

⋃
α Sα is an open affine cover, and if we denote Xα := f−1(Sα), then it is

enough to show that f |Xα : Xα → Sα is proper for all α. Since Sα is affine, if the
map f |Xα satisfies (3), then it will satisfy (1) by assumption, and will be proper.
To finish the reduction to the case S is affine, we must show that if f : X → S is
separated of finite type satisfying (3), then f |Xα : Xα → Sα is separated of finite
type satisfying (3). Separatedness and finite type are clear. To see (3), notice that
An ×Xα is the open preimage of An × Sα under the map 1× f . Fix a closed set
Z ⊂ An × Xα. Let Z̄ denote the closure of Z in An × X. Then for topological
reasons,

1× f(Z̄) ∩An × Sα = 1× f(Z).

Hence 1× f(Z) is closed, and we have reduced the proof of (3) ⇒ (1) to the affine
case.

Assume S affine, and f : X → S separated of finite type. We can apply Chow’s
Lemma 11.1 to get π : X ′ → X proper surjective and X ′ → Pn

S an immersion. If X
is proper over S, then X ′ → S is proper (Morphisms, Lemma 42.4). Since Pn

S → S
is separated, we conclude that X ′ → Pn

S is proper (Morphisms, Lemma 42.7) and
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hence a closed immersion (Schemes, Lemma 10.4). Conversely, assume X ′ → Pn
S

is a closed immersion. Consider the diagram:

(12.1.1) X ′ //

π
����

Pn
S

��
X

f // S

All maps are a priori proper except for X → S. Hence we conclude that X → S
is proper by Morphisms, Lemma 42.8. Therefore, we have shown that X → S is
proper if and only if X ′ → Pn

S is a closed immersion.

Assume S is affine and (3) holds, and let n,X ′, π be as above. Since being a closed
morphism is local on the base, the map X × Pn → S × Pn is closed since by (3)
X × An → S × An is closed and since projective space is covered by copies of
affine n-space, see Constructions, Lemma 13.3. By Morphisms, Lemma 42.5 the
morphism

X ′ ×S Pn
S → X ×S Pn

S = X ×Pn

is proper. Since Pn is separated, the projection

X ′ ×S Pn
S = Pn

X′ → X ′

will be separated as it is just a base change of a separated morphism. Therefore,
the map X ′ → X ′ ×S Pn

S is proper, since it is a section to a separated map (see
Schemes, Lemma 21.12). Composing all these proper morphisms

X ′ → X ′ ×S Pn
S → X ×S Pn

S = X ×Pn → S ×Pn = Pn
S

we see that the map X ′ → Pn
S is proper, and hence a closed immersion. �

If the base is Noetherian we can show that the valuative criterion holds using only
discrete valuation rings. First we state the result concerning separation. We will
often use solid commutative diagrams of morphisms of schemes having the following
shape

(12.1.2) Spec(K) //

��

X

��
Spec(A) //

;;

S

with A a valuation ring and K its field of fractions.

Lemma 12.2. Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of schemes. Assume f is locally of finite type. The following are equivalent:

(1) The morphism f is separated.
(2) For any diagram (12.1.2) there is at most one dotted arrow.
(3) For all diagrams (12.1.2) with A a discrete valuation ring there is at most

one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and any
diagram (12.1.2) such that the morphism Spec(K) → X is the canonical
one (see Schemes, Section 13) there is at most one dotted arrow.

http://localhost:8080/tag/0207
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Proof. Clearly (1) implies (2), (2) implies (3), and (3) implies (4). It remains
to show (4) implies (1). Assume (4). We begin by reducing to S affine. Being
separated is a local on the base (see Schemes, Lemma 21.8). Hence, as in the proof
of Lemma 12.1, if we can show that whenever X → S has (4) that the restriction
Xα → Sα has (4) where Sα ⊂ S is an (affine) open subset and Xα := f−1(Sα), then
we will be done. The generic points of the irreducible components of Xα will be the
generic points of irreducible components of X, since Xα is open in X. Therefore,
any two distinct dotted arrows in the diagram

(12.2.1) Spec(K) //

��

Xα

��
Spec(A) //

;;

Sα

would then give two distinct arrows in diagram (12.1.2) via the maps Xα → X and
Sα → S, which is a contradiction. Thus we have reduced to the case S is affine.
We remark that in the course of this reduction, we prove that if X → S has (4)
then the restriction U → V has (4) for opens U ⊂ X and V ⊂ S with f(U) ⊂ V .

We next wish to reduce to the case X → S is finite type. Assume that we know
(4) implies (1) when X is finite type. Since S is Noetherian and X is locally of
finite type over S we see X is locally Noetherian as well (see Morphisms, Lemma
16.6). Thus, X → S is quasi-separated (see Properties, Lemma 5.4), and therefore
we may apply the valuative criterion to check whether X is separated (see Schemes,
Lemma 22.2). Let X =

⋃
αXα be an affine open cover of X. Given any two dotted

arrows, in a diagram (12.1.2), the image of the closed points of Spec A will fall in
two sets Xα and Xβ . Since Xα∪Xβ is open, for topological reasons it must contain
the image of Spec(A) under both maps. Therefore, the two dotted arrows factor
through Xα∪Xβ → X, which is a scheme of finite type over S. Since Xα∪Xβ is an
open subset of X, by our previous remark, Xα∪Xβ satisfies (4), so by assumption,
is separated. This implies the two given dotted arrows are the same. Therefore, we
have reduced to X → S is finite type.

Assume X → S of finite type and assume (4). Since X → S is finite type, and
S is an affine Noetherian scheme, X is also Noetherian (see Morphisms, Lemma
16.6). Therefore, X → X ×S X will be a quasi-compact immersion of Noetherian
schemes. We proceed by contradiction. Assume that X → X ×S X is not closed.
Then, there is some y ∈ X ×S X in the closure of the image that is not in the
image. As X is Noetherian it has finitely many irreducible components. Therefore,
y is in the closure of the image of one of the irreducible components X0 ⊂ X. Give
X0 the reduced induced structure. The composition X0 → X → X ×S X factors
through the closed subscheme X0 ×S X0 ⊂ X ×S X. Denote the closure of ∆(X0)
in X0 ×S X0 by X̄0 (again as a reduced closed subscheme). Thus y ∈ X̄0. Since
X0 → X0 ×S X0 is an immersion, the image of X0 will be open in X̄0. Hence X0

and X̄0 are birational. Since X̄0 is a closed subscheme of a Noetherian scheme,
it is Noetherian. Thus, the local ring OX̄0,y is a local Noetherian domain with
fraction field K equal to the function field of X0. By the Krull-Akizuki theorem
(see Algebra, Lemma 115.12), there exists a discrete valuation ring A dominating
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OX̄0,y with fraction field K. This allows to to construct a diagram:

(12.2.2) Spec K //

��

X0

∆

��
A //

88

X0 ×S X0

which sends Spec K to the generic point of ∆(X0) and the closed point of A to
y ∈ X0 ×S X0 (use the material in Schemes, Section 13 to construct the arrows).
There cannot even exist a set theoretic dotted arrow, since y is not in the image
of ∆ by our choice of y. By categorical means, the existence of the dotted arrow
in the above diagram is equivalent to the uniqueness of the dotted arrow in the
following diagram:

(12.2.3) Spec K //

��

X0

��
A //

::

S

Therefore, we have non-uniqueness in this latter diagram by the nonexistence in
the first. Therefore, X0 does not satisfy uniqueness for discrete valuation rings, and
since X0 is an irreducible component of X, we have that X → S does not satisfy
(4). Therefore, we have shown (4) implies (1). �

Lemma 12.3. Let S be a locally Noetherian scheme. Let f : X → S be a morphism
of finite type. The following are equivalent:

(1) The morphism f is proper.
(2) For any diagram (12.1.2) there exists exactly one dotted arrow.
(3) For all diagrams (12.1.2) with A a discrete valuation ring there exists ex-

actly one dotted arrow.
(4) For any irreducible component X0 of X with generic point η ∈ X0, for

any discrete valuation ring A ⊂ K = κ(η) with fraction field K and any
diagram (12.1.2) such that the morphism Spec(K) → X is the canonical
one (see Schemes, Section 13) there exists exactly one dotted arrow.

Proof. (1) implies (2) implies (3) implies (4). We will now show (4) implies (1). As
in the proof of Lemma 12.2, we can reduce to the case S is affine, since properness
is local on the base, and if X → S satisfies (4), then Xα → Sα does as well for open
Sα ⊂ S and Xα = f−1(Sα).

Now S is a Noetherian scheme, and so X is as well, since X → S is of finite type.
Now we may use Chow’s lemma (Cohomology of Schemes, Lemma 16.1) to get a
surjective, proper, birational X ′ → X and an immersion X ′ → Pn

S . We wish to
show X → S is universally closed. As in the proof of Lemma 12.1, it is enough to
check that X ′ → Pn

S is a closed immersion. For the sake of contradiction, assume
that X ′ → Pn

S is not a closed immersion. Then there is some y ∈ Pn
S that is in the

closure of the image of X ′, but is not in the image. So y is in the closure of the
image of an irreducible component X ′0 of X ′, but not in the image. Let X̄ ′0 ⊂ Pn

S

be the closure of the image of X ′0. As X ′ → Pn
S is an immersion of Noetherian

schemes, the morphism X ′0 → X̄ ′0 is open and dense. By Algebra, Lemma 115.12
or Properties, Lemma 5.9 we can find a discrete valuation ring A dominating OX̄′

0,y
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and with identical field of fractions K. It is clear that K is the residue field at the
generic point of X ′0. Thus the solid commutative diagram

(12.3.1) Spec K //

��

X ′ //

��

Pn
S

��
Spec A //

;; 66

X // S

Note that the closed point of A maps to y ∈ Pn
S . By construction, there does not

exist a set theoretic lift to X ′. As X ′ → X is birational, the image of X ′0 in X is
an irreducible component X0 of X and K is also identified with the function field
of X0. Hence, as X → S is assumed to satisfy (4), the dotted arrow Spec(A) →
X exists. Since X ′ → X is proper, the dotted arrow lifts to the dotted arrow
Spec(A) → X ′ (use Schemes, Proposition 20.6). We can compose this with the
immersion X ′ → Pn

S to obtain another morphism (not depicted in the diagram)
from Spec(A) → Pn

S . Since Pn
S is proper over S, it satisfies (2), and so these two

morphisms agree. This is a contradiction, for we have constructed the forbidden
lift of our original map Spec(A)→ Pn

S to X ′. �

Here is an application of Chow’s lemma which goes in a slightly different direction.

Lemma 12.4. Assumptions and notation as in Situation 7.1. If

(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. By Lemma 7.5 we see that fi is separated for some i ≥ 0. Replacing 0
by i we may assume that f0 is separated. Observe that f0 is quasi-compact, see
Schemes, Lemma 21.15. By Lemma 11.1 we can choose a diagram

X0

  

X ′0

��

π
oo // Pn

Y0

}}
Y0

where X ′0 → Pn
Y0

is an immersion, and π : X ′0 → X0 is proper and surjective.
Introduce X ′ = X ′0 ×Y0 Y and X ′i = X ′0 ×Y0 Yi. By Morphisms, Lemmas 42.4
and 42.5 we see that X ′ → Y is proper. Hence X ′ → Pn

Y is a closed immersion
(Morphisms, Lemma 42.7). By Morphisms, Lemma 42.8 it suffices to prove that
X ′i → Yi is proper for some i. By Lemma 7.4 we find that X ′i → Pn

Yi
is a closed

immersion for i large enough. Then X ′i → Yi is proper and we win. �

Lemma 12.5. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then X = limXi with Xi → S proper and of finite presentation.

Proof. By Proposition 8.6 we can find a closed immersionX → Y with Y separated
and of finite presentation over S. By Lemma 11.1 we can find a diagram

Y

��

Y ′

��

π
oo // Pn

S

~~
S
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where Y ′ → Pn
S is an immersion, and π : Y ′ → Y is proper and surjective. By

Lemma 8.4 we can write X = limXi with Xi → Y a closed immersion of finite
presentation. Denote X ′i ⊂ Y ′, resp. X ′ ⊂ Y ′ the scheme theoretic inverse image
of Xi ⊂ Y , resp. X ⊂ Y . Then limX ′i = X ′. Since X ′ → S is proper (Morphisms,
Lemmas 42.4), we see that X ′ → Pn

S is a closed immersion (Morphisms, Lemma
42.7). Hence for i large enough we find that X ′i → Pn

S is a closed immersion by
Lemma 3.17. Thus X ′i is proper over S. For such i the morphism Xi → S is proper
by Morphisms, Lemma 42.8. �

Lemma 12.6. Let f : X → S be a proper morphism with S quasi-compact and
quasi-separated. Then (X → S) = lim(Xi → Si) with Si of finite type over Z and
Xi → Si proper and of finite presentation.

Proof. By Lemma 12.5 we can write X = limk∈K Xk with Xk → S proper and
of finite presentation. Next, by absolute Noetherian approximation (Proposition
4.4) we can write S = limj∈J Sj with Sj of finite type over Z. For each k there
exists a j and a morphism Xk,j → Sj of finite presentation with Xk

∼= S ×Sj Xk,j

as schemes over S, see Lemma 9.1. After increasing j we may assume Xk,j → Sj
is proper, see Lemma 12.4. The set I will be consist of these pairs (k, j) and the
corresponding morphism is Xk,j → Sj . For every k′ ≥ k we can find a j′ ≥ j and a
morphism Xj′,k′ → Xj,k over Sj′ → Sj whose base change to S gives the morphism
Xk′ → Xk (follows again from Lemma 9.1). These morphisms form the transition
morphisms of the system. Some details omitted. �

Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms, Definition 5.5.

Lemma 12.7. Assumptions and notation as in Situation 7.1. Let F0 be a quasi-
coherent OX0

-module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms,
Lemma 5.3 this guarantees that Xi is the support of Fi and X is the support of F .
Then, if Z ⊂ X denotes the scheme theoretic support of F , we see that Z → X is
a universal homeomorphism. We conclude that X → Y is proper as this is true for
Z → Y by assumption, see Morphisms, Lemma 42.8. By Lemma 12.4 we see that
Xi → Y is proper for some i. Then it follows that the scheme theoretic support Zi
of Fi is proper over Y by Morphisms, Lemmas 42.6 and 42.4. �

13. Universally closed morphisms

In this section we discuss when a quasi-compact but not necessarily separated
morphism is universally closed. We first prove a lemma which will allow us to check
universal closedness after a base change which is locally of finite presentation.

Lemma 13.1. Let f : X → S be a quasi-compact morphism of schemes. Let
g : T → S be a morphism of schemes. Let t ∈ T be a point and Z ⊂ XT be a closed
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subscheme such that Z ∩Xt = ∅. Then there exists an open neighbourhood V ⊂ T
of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Proof. Let s = g(t). During the proof we may always replace T by an open
neighbourhood of t. Hence we may also replace S by an open neighbourhood of
s. Thus we may and do assume that T and S are affine. Say S = Spec(A),
T = Spec(B), g is given by the ring map A → B, and t correspond to the prime
ideal q ⊂ B.

As X → S is quasi-compact and S is affine we may write X =
⋃
i=1,...,n Ui

as a finite union of affine opens. Write Ui = Spec(Ci). In particular we have
XT =

⋃
i=1,...,n Ui,T =

⋃
i=1,...n Spec(Ci ⊗A B). Let Ii ⊂ Ci ⊗A B be the ideal

corresponding to the closed subscheme Z ∩ Ui,T . The condition that Z ∩ Xt = ∅
signifies that Ii generates the unit ideal in the ring

Ci ⊗A κ(q) = (B \ q)−1 (Ci ⊗A B/qCi ⊗A B)

Since Ii(B \q)−1(Ci⊗AB) = (B \q)−1Ii this means that 1 = xi/gi for some xi ∈ Ii
and gi ∈ B, gi 6∈ q. Thus, clearing denominators we can find a relation of the form

xi +
∑

j
fi,jci,j = gi

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B, and gi ∈ B, gi 6∈ q. After replacing B
by Bg1...gn , i.e., after replacing T by a smaller affine neighbourhood of t, we may
assume the equations read

xi +
∑

j
fi,jci,j = 1

with xi ∈ Ii, fi,j ∈ q, ci,j ∈ Ci ⊗A B.

To finish the argument write B as a colimit of finitely presented A-algebras Bλ
over a directed partially ordered set Λ. For each λ set qλ = (Bλ → B)−1(q). For
sufficiently large λ ∈ Λ we can find

(1) an element xi,λ ∈ Ci ⊗A Bλ which maps to xi,
(2) elements fi,j,λ ∈ qi,λ mapping to fi,j , and
(3) elements ci,j,λ ∈ Ci ⊗A Bλ mapping to ci,j .

After increasing λ a bit more the equation

xi,λ +
∑

j
fi,j,λci,j,λ = 1

will hold. Fix such a λ and set T ′ = Spec(Bλ). Then t′ ∈ T ′ is the point corre-
sponding to the prime qλ. Finally, let Z ′ ⊂ XT ′ be the scheme theoretic closure of
Z → XT → XT ′ . As XT → XT ′ is affine, we can compute Z ′ on the affine open
pieces Ui,T ′ as the closed subscheme associated to Ker(Ci ⊗A Bλ → Ci ⊗A B/Ii),
see Morphisms, Example 6.4. Hence xi,λ is in the ideal defining Z ′. Thus the last
displayed equation shows that Z ′ ∩Xt′ is empty. �
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Lemma 13.2. Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f is universally closed,
(2) for every morphism S′ → S which is locally of finite presentation the base

change XS′ → S′ is closed, and
(3) for every n the morphism An ×X → An × S is closed.

Proof. It is clear that (1) implies (2). Let us prove that (2) implies (1). Suppose
that the base change XT → T is not closed for some scheme T over S. By Schemes,
Lemma 19.8 this means that there exists some specialization t1  t in T and a
point ξ ∈ XT mapping to t1 such that ξ does not specialize to a point in the fibre
over t. Set Z = {ξ} ⊂ XT . Then Z ∩Xt = ∅. Apply Lemma 13.1. We find an open
neighbourhood V ⊂ T of t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) with t′ = a(t) we have Z ′ ∩Xt′ = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

Clearly this means that XT ′ → T ′ maps the closed subset Z ′ to a subset of T ′

which contains a(t1) but not t′ = a(t). Since a(t1)  a(t) = t′ we conclude that
XT ′ → T ′ is not closed. Hence we have shown that X → S not universally closed
implies that XT ′ → T ′ is not closed for some T ′ → S which is locally of finite
presentation. In order words (2) implies (1).

Assume that An × X → An × S is closed for every integer n. We want to prove
that XT → T is closed for every scheme T which is locally of finite presentation
over S. We may of course assume that T is affine and maps into an affine open V
of S (since XT → T being a closed is local on T ). In this case there exists a closed
immersion T → An × V because OT (T ) is a finitely presented OS(V )-algebra, see
Morphisms, Lemma 22.2. Then T → An × S is a locally closed immersion. Hence
we get a cartesian diagram

XT

fT

��

// An ×X

fn

��
T // An × S

of schemes where the horizontal arrows are locally closed immersions. Hence any
closed subset Z ⊂ XT can be written as XT∩Z ′ for some closed subset Z ′ ⊂ An×X.
Then fT (Z) = T ∩fn(Z ′) and we see that if fn is closed, then also fT is closed. �

Lemma 13.3. Let f : X → S be a finite type morphism of schemes. Assume S is
locally Noetherian. Then the following are equivalent

(1) f is universally closed,
(2) for every n the morphism An ×X → An × S is closed,
(3) for any diagram (12.1.2) there exists some dotted arrow,
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(4) for all diagrams (12.1.2) with A a discrete valuation ring there exists some
dotted arrow.

Proof. The equivalence of (1) and (2) is a special case of Lemma 13.2. The equiv-
alence of (1) and (3) is a special case of Schemes, Proposition 20.6. Trivially (3)
implies (4). Thus all we have to do is prove that (4) implies (2). We will prove that
An ×X → An × S is closed by the criterion of Schemes, Lemma 19.8. Pick n and
a specialization z  z′ of points in An × S and a point y ∈ An ×X lying over z.
Note that κ(y) is a finitely generated field extension of κ(z) as An ×X → An × S
is of finite type. Hence by Properties, Lemma 5.9 or Algebra, Lemma 115.12 im-
plies that there exists a discrete valuation ring A ⊂ κ(y) with fraction field κ(z)
dominating the image of OAn×S,z′ in κ(z). This gives a commutative diagram

Spec(κ(y)) //

��

An ×X

��

// X

��
Spec(A) // An × S // S

Now property (4) implies that there exists a morphism Spec(A) → X which fits
into this diagram. Since we already have the morphism Spec(A) → An from the
left lower horizontal arrow we also get a morphism Spec(A)→ An ×X fitting into
the left square. Thus the image y′ ∈ An ×X of the closed point is a specialization
of y lying over z′. This proves that specializations lift along An × X → An × S
and we win. �

14. Limits and dimensions of fibres

The following lemma is most often used in the situation of Lemma 9.1 to assure
that if the fibres of the limit have dimension ≤ d, then the fibres at some finite
stage have dimension ≤ d.

Lemma 14.1. Let I be a directed partially ordered set. Let (fi : Xi → Si) be an
inverse system of morphisms of schemes over I. Assume

(1) all the morphisms Si′ → Si are affine,
(2) all the schemes Si are quasi-compact and quasi-separated,
(3) the morphisms fi are of finite type, and
(4) the morphisms Xi′ → Xi ×Si Si′ are closed immersions.

Let f : X = limiXi → S = limi Si be the limit. Let d ≥ 0. If every fibre of f has
dimension ≤ d, then for some i every fibre of fi has dimension ≤ d.

Proof. For each i let Ui = {x ∈ Xi | dimx((Xi)fi(x)) ≤ d}. This is an open subset
of Xi, see Morphisms, Lemma 29.4. Set Zi = Xi \Ui (with reduced induced scheme
structure). We have to show that Zi = ∅ for some i. If not, then Z = limZi 6= ∅,
see Lemma 3.4. Say z ∈ Z is a point. Note that Z ⊂ X is a closed subscheme. Set
s = f(z). For each i let si ∈ Si be the image of s. We remark that Zs is the limit
of the schemes (Zi)si and Zs is also the limit of the schemes (Zi)si base changed
to κ(s). Moreover, all the morphisms

Zs −→ (Zi′)si′ ×Spec(κ(si′ ))
Spec(κ(s)) −→ (Zi)si ×Spec(κ(si)) Spec(κ(s)) −→ Xs

are closed immersions by assumption (4). Hence Zs is the scheme theoretic inter-
section of the closed subschemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) in Xs. Since all the
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irreducible components of the schemes (Zi)si ×Spec(κ(si)) Spec(κ(s)) have dimen-
sion > d and contain z we conclude that Zs contains an irreducible component of
dimension > d passing through z which contradicts the fact that Zs ⊂ Xs and
dim(Xs) ≤ d. �

Lemma 14.2. Notation and assumptions as in Situation 7.1. If

(1) f is a quasi-finite morphism, and
(2) f0 is locally of finite type,

then there exists an i ≥ 0 such that fi is quasi-finite.

Proof. Follows immediately from Lemma 14.1. �

Lemma 14.3. Let S be a quasi-compact and quasi-separated scheme. Let f : X →
S be a morphism of finite presentation. Let d ≥ 0 be an integer. If Z ⊂ X be a
closed subscheme such that dim(Zs) ≤ d for all s ∈ S, then there exists a closed
subscheme Z ′ ⊂ X such that

(1) Z ⊂ Z ′,
(2) Z ′ → X is of finite presentation, and
(3) dim(Z ′s) ≤ d for all s ∈ S.

Proof. By Proposition 4.4 we can write S = limSi as the limit of a directed inverse
system of Noetherian schemes with affine transition maps. By Lemma 9.1 we may
assume that there exist a system of morphisms fi : Xi → Si of finite presentation
such that Xi′ = Xi ×Si Si′ for all i′ ≥ i and such that X = Xi ×Si S. Let Zi ⊂ Xi

be the scheme theoretic image of Z → X → Xi. Then for i′ ≥ i the morphism
Xi′ → Xi maps Zi′ into Zi and the induced morphism Zi′ → Zi ×Si Si′ is a closed
immersion. By Lemma 14.1 we see that the dimension of the fibres of Zi → Si all
have dimension ≤ d for a suitable i ∈ I. Fix such an i and set Z ′ = Zi ×Si S ⊂ X.
Since Si is Noetherian, we see that Xi is Noetherian, and hence the morphism
Zi → Xi is of finite presentation. Therefore also the base change Z ′ → X is of
finite presentation. Moreover, the fibres of Z ′ → S are base changes of the fibres of
Zi → Si and hence have dimension ≤ d. �
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