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1. Introduction

In this chapter we study some very basic questions related to defining divisors, etc.
A basic reference is [DG67].

2. Associated points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is associated
to M if there exists an element of M whose annihilator is p. See Algebra, Defini-
tion 62.1. Here is the definition of associated points for quasi-coherent sheaves on
schemes as given in [DG67, IV Definition 3.1.1].

Definition 2.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is associated to F if the maximal ideal mx is associated to
the OX,x-module Fx.

(2) We denote Ass(F) or AssX(F) the set of associated points of F .
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2 DIVISORS

(3) The associated points of X are the associated points of OX .

These definitions are most useful when X is locally Noetherian and F of finite type.
For example it may happen that a generic point of an irreducible component of X
is not associated to X, see Example 2.7. In the non-Noetherian case it may be
more convenient to use weakly associated points, see Section 5. Let us link the
scheme theoretic notion with the algebraic notion on affine opens; note that this
correspondence works perfectly only for locally Noetherian schemes.

Lemma 2.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime.

(1) If p is associated to M , then x is associated to F .
(2) If p is finitely generated, then the converse holds as well.

In particular, if X is locally Noetherian, then the equivalence

p ∈ Ass(M)⇔ x ∈ Ass(F)

holds for all pairs (p, x) as above.

Proof. This follows from Algebra, Lemma 62.14. But we can also argue directly
as follows. Suppose p is associated to M . Then there exists an m ∈ M whose
annihilator is p. Since localization is exact we see that pAp is the annihilator of
m/1 ∈Mp. Since Mp = Fx (Schemes, Lemma 5.4) we conclude that x is associated
to F .

Conversely, assume that x is associated to F , and p is finitely generated. As x is
associated to F there exists an element m′ ∈ Mp whose annihilator is pAp. Write
m′ = m/f for some f ∈ A, f 6∈ p. The annihilator I of m is an ideal of A such that
IAp = pAp. Hence I ⊂ p, and (p/I)p = 0. Since p is finitely generated, there exists
a g ∈ A, g 6∈ p such that g(p/I) = 0. Hence the annihilator of gm is p and we win.

If X is locally Noetherian, then A is Noetherian (Properties, Lemma 5.2) and p is
always finitely generated. �

Lemma 2.3. Let X be a scheme. Let F be a quasi-coherent OX-module. Then
Ass(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 2.4. Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then Ass(F2) ⊂ Ass(F1) ∪ Ass(F3) and
Ass(F1) ⊂ Ass(F2).

Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 62.3. �

Lemma 2.5. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then Ass(F) ∩ U is finite for every quasi-compact open U ⊂ X.

Proof. This is true because the set of associated primes of a finite module over
a Noetherian ring is finite, see Algebra, Lemma 62.5. To translate from schemes
to algebra use that U is a finite union of affine opens, each of these opens is the
spectrum of a Noetherian ring (Properties, Lemma 5.2), F corresponds to a finite
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module over this ring (Cohomology of Schemes, Lemma 9.1), and finally use Lemma
2.2. �

Lemma 2.6. Let X be a locally Noetherian scheme. Let F be a quasi-coherent
OX-module. Then

F = 0⇔ Ass(F) = ∅.

Proof. If F = 0, then Ass(F) = ∅ by definition. Conversely, if Ass(F) = ∅, then
F = 0 by Algebra, Lemma 62.7. To translate from schemes to algebra, restrict to
any affine and use Lemma 2.2. �

Example 2.7. Let k be a field. The ring R = R[x1, x2, x3, . . .]/(x
2
i ) is local with

locally nilpotent maximal ideal m. There exists no element of R which has anni-
hilator m. Hence Ass(R) = ∅, and X = Spec(R) is an example of a scheme which
has no associated points.

Lemma 2.8. Let X be a locally Noetherian scheme. Let F be a quasi-coherent OX-
module. Let x ∈ Supp(F) be a point in the support of F which is not a specialization
of another point of Supp(F). Then x ∈ Ass(F). In particular, any generic point of
an irreducible component of X is an associated point of X.

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence Ass(Fx) ⊂ Spec(OX,x)
is nonempty by Algebra, Lemma 62.7. On the other hand, by assumption Supp(Fx) =
{mx}. Since Ass(Fx) ⊂ Supp(Fx) (Algebra, Lemma 62.2) we see that mx is associ-
ated to Fx and we win. �

3. Morphisms and associated points

Lemma 3.1. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X which is flat over S. Let G be a quasi-coherent sheaf on S. Then we
have

AssX(F ⊗OX
f∗G) ⊃

⋃
s∈AssS(G)

AssXs
(Fs)

and equality holds if S is locally Noetherian.

Proof. Let x ∈ X and let s = f(x) ∈ S. Set B = OX,x, A = OS,s, N = Fx, and
M = Gs. Note that the stalk of F ⊗OX

f∗G at x is equal to the B-module M ⊗AN .
Hence x ∈ AssX(F ⊗OX

f∗G) if and only if mB is in AssB(M ⊗A N). Similarly
s ∈ AssS(G) and x ∈ AssXs(Fs) if and only if mA ∈ AssA(M) and mB/mAB ∈
AssB⊗κ(mA)(N ⊗ κ(mA)). Thus the lemma follows from Algebra, Lemma 64.5. �

4. Embedded points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is an
embedded associated to M if it is an associated prime of M which is not minimal
among the associated primes of M . See Algebra, Definition 66.1. Here is the
definition of embedded associated points for quasi-coherent sheaves on schemes as
given in [DG67, IV Definition 3.1.1].

Definition 4.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) An embedded associated point of F is an associated point which is not
maximal among the associated points of F , i.e., it is the specialization of
another associated point of F .
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(2) A point x of X is called an embedded point if x is an embedded associated
point of OX .

(3) An embedded component of X is an irreducible closed subset Z = {x} where
x is an embedded point of X.

In the Noetherian case when F is coherent we have the following.

Lemma 4.2. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module. Then

(1) the generic points of irreducible components of Supp(F) are associated
points of F , and

(2) an associated point of F is embedded if and only if it is not a generic point
of an irreducible component of Supp(F).

In particular an embedded point of X is an associated point of X which is not a
generic point of an irreducible component of X.

Proof. Recall that in this case Z = Supp(F) is closed, see Morphisms, Lemma 5.3
and that the generic points of irreducible components of Z are associated points of
F , see Lemma 2.8. Finally, we have Ass(F) ⊂ Z, by Lemma 2.3. These results,
combined with the fact that Z is a sober topological space and hence every point
of Z is a specialization of a generic point of Z, imply (1) and (2). �

Lemma 4.3. Let X be a locally Noetherian scheme. Let F be a coherent sheaf on
X. Then the following are equivalent:

(1) F has no embedded associated points, and
(2) F has property (S1).

Proof. This is Algebra, Lemma 146.2, combined with Lemma 2.2 above. �

Lemma 4.4. Let X be a locally Noetherian scheme. Let U ⊂ X be an open
subscheme. The following are equivalent

(1) U is scheme theoretically dense in X (Morphisms, Definition 7.1),
(2) U is dense in X and U contains all embedded points of X.

Proof. The question is local on X, hence we may assume that X = Spec(A)
where A is a Noetherian ring. Then U is quasi-compact (Properties, Lemma 5.3)
hence U = D(f1) ∪ . . . ∪ D(fn) (Algebra, Lemma 28.1). In this situation U is
scheme theoretically dense in X if and only if A → Af1 × . . . × Afn is injective,
see Morphisms, Example 7.4. Condition (2) translated into algebra means that for
every associated prime p of A there exists an i with fi 6∈ p.

Assume (1), i.e., A→ Af1 × . . .×Afn is injective. If x ∈ A has annihilator a prime
p, then x maps to a nonzero element of Afi for some i and hence fi 6∈ p. Thus (2)
holds. Assume (2), i.e., every associated prime p of A corresponds to a prime of
Afi for some i. Then A→ Af1 × . . .× Afn is injective because A→

∏
p∈Ass(A)Ap

is injective by Algebra, Lemma 62.18. �

Lemma 4.5. Let X be a locally Noetherian scheme. Let F be a coherent sheaf on
X. The set of coherent subsheaves

{K ⊂ F | Supp(K) is nowhere dense in Supp(F)}
has a maximal element K. Setting F ′ = F/K we have the following

(1) Supp(F ′) = Supp(F),
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(2) F ′ has no embedded associated points, and
(3) there exists a dense open U ⊂ X such that U∩Supp(F) is dense in Supp(F)

and F ′|U ∼= F|U .

Proof. This follows from Algebra, Lemmas 66.2 and 66.3. Note that U can be
taken as the complement of the closure of the set of embedded associated points of
F . �

Lemma 4.6. Let X be a locally Noetherian scheme. Let F be a coherent OX-
module without embedded associated points. Set

I = Ker(OX −→ HomOX
(F ,F)).

This is a coherent sheaf of ideals which defines a closed subscheme Z ⊂ X without
embedded points. Moreover there exists a coherent sheaf G on Z such that (a)
F = (Z → X)∗G, (b) G has no associated embedded points, and (c) Supp(G) = Z
(as sets).

Proof. Some of the statements we have seen in the proof of Cohomology of Schemes,
Lemma 9.7. The others follow from Algebra, Lemma 66.4. �

5. Weakly associated points

Let R be a ring and let M be an R-module. Recall that a prime p ⊂ R is weakly
associated to M if there exists an element m of M such that p is minimal among
the primes containing the annihilator of m. See Algebra, Definition 65.1. If R is
a local ring with maximal ideal m, then m is associated to M if and only if there
exists an element m ∈ M whose annihilator has radical m, see Algebra, Lemma
65.2.

Definition 5.1. Let X be a scheme. Let F be a quasi-coherent sheaf on X.

(1) We say x ∈ X is weakly associated to F if the maximal ideal mx is weakly
associated to the OX,x-module Fx.

(2) We denote WeakAss(F) the set of weakly associated points of F .
(3) The weakly associated points of X are the weakly associated points of OX .

In this case, on any affine open, this corresponds exactly to the weakly associated
primes as defined above. Here is the precise statement.

Lemma 5.2. Let X be a scheme. Let F be a quasi-coherent sheaf on X. Let
Spec(A) = U ⊂ X be an affine open, and set M = Γ(U,F). Let x ∈ U , and let
p ⊂ A be the corresponding prime. The following are equivalent

(1) p is weakly associated to M , and
(2) x is weakly associated to F .

Proof. This follows from Algebra, Lemma 65.2. �

Lemma 5.3. Let X be a scheme. Let F be a quasi-coherent OX-module. Then

Ass(F) ⊂WeakAss(F) ⊂ Supp(F).

Proof. This is immediate from the definitions. �

Lemma 5.4. Let X be a scheme. Let 0 → F1 → F2 → F3 → 0 be a short exact
sequence of quasi-coherent sheaves on X. Then WeakAss(F2) ⊂ WeakAss(F1) ∪
WeakAss(F3) and WeakAss(F1) ⊂WeakAss(F2).
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Proof. For every point x ∈ X the sequence of stalks 0→ F1,x → F2,x → F3,x → 0
is a short exact sequence of OX,x-modules. Hence the lemma follows from Algebra,
Lemma 65.3. �

Lemma 5.5. Let X be a scheme. Let F be a quasi-coherent OX-module. Then

F = (0)⇔WeakAss(F) = ∅

Proof. Follows from Lemma 5.2 and Algebra, Lemma 65.4 �

Lemma 5.6. Let X be a scheme. Let F be a quasi-coherent OX-module. Let
x ∈ Supp(F) be a point in the support of F which is not a specialization of another
point of Supp(F). Then x ∈ WeakAss(F). In particular, any generic point of an
irreducible component of X is weakly associated to OX .

Proof. Since x ∈ Supp(F) the module Fx is not zero. Hence WeakAss(Fx) ⊂
Spec(OX,x) is nonempty by Algebra, Lemma 65.4. On the other hand, by assump-
tion Supp(Fx) = {mx}. Since WeakAss(Fx) ⊂ Supp(Fx) (Algebra, Lemma 65.5)
we see that mx is weakly associated to Fx and we win. �

Lemma 5.7. Let X be a scheme. Let F be a quasi-coherent OX-module. If mx is
a finitely generated ideal of OX,x, then

x ∈ Ass(F)⇔ x ∈WeakAss(F).

In particular, if X is locally Noetherian, then Ass(F) = WeakAss(F).

Proof. See Algebra, Lemma 65.8. �

6. Morphisms and weakly associated points

Lemma 6.1. Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. Then we have

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.

Then F = M̃ for some B-module M . By Lemma 5.2 the weakly associated points of
F correspond exactly to the weakly associated primes of M . Similarly, the weakly
associated points of f∗F correspond exactly to the weakly associated primes of M
as an A-module. Hence the lemma follows from Algebra, Lemma 65.10. �

Lemma 6.2. Let f : X → S be an affine morphism of schemes. Let F be a
quasi-coherent OX-module. If X is locally Noetherian, then we have

f(AssX(F)) = AssS(f∗F) = WeakAssS(f∗F) = f(WeakAssX(F))

Proof. We may assume X and S affine, so X → S comes from a ring map A→ B.
As X is locally Noetherian the ring B is Noetherian, see Properties, Lemma 5.2.

Write F = M̃ for some B-module M . By Lemma 2.2 the associated points of F
correspond exactly to the associated primes of M , and any associated prime of M
as an A-module is an associated points of f∗F . Hence the inclusion

f(AssX(F)) ⊂ AssS(f∗F)

follows from Algebra, Lemma 62.12. We have the inclusion

AssS(f∗F) ⊂WeakAssS(f∗F)
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by Lemma 5.3. We have the inclusion

WeakAssS(f∗F) ⊂ f(WeakAssX(F))

by Lemma 6.1. The outer sets are equal by Lemma 5.7 hence we have equality
everywhere. �

Lemma 6.3. Let f : X → S be a finite morphism of schemes. Let F be a quasi-
coherent OX-module. Then WeakAss(f∗F) = f(WeakAss(F)).

Proof. We may assume X and S affine, so X → S comes from a finite ring map

A→ B. Write F = M̃ for some B-module M . By Lemma 5.2 the weakly associated
points of F correspond exactly to the weakly associated primes of M . Similarly, the
weakly associated points of f∗F correspond exactly to the weakly associated primes
of M as an A-module. Hence the lemma follows from Algebra, Lemma 65.12. �

Lemma 6.4. Let f : X → S be a morphism of schemes. Let G be a quasi-coherent
OS-module. Let x ∈ X with s = f(x). If f is flat at x, the point x is a generic
point of the fibre Xs, and s ∈WeakAssS(G), then x ∈WeakAss(f∗G).

Proof. Let A = OS,s, B = OX,x, and M = Gs. Let m ∈ M be an element whose
annihilator I = {a ∈ A | am = 0} has radical mA. Then m⊗ 1 has annihilator IB

as A → B is faithfully flat. Thus it suffices to see that
√
IB = mB . This follows

from the fact that the maximal ideal of B/mAB is locally nilpotent (see Algebra,

Lemma 24.1) and the assumption that
√
I = mA. Some details omitted. �

7. Relative assassin

Definition 7.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative assassin of F in X over S is the set

AssX/S(F) =
⋃

s∈S
AssXs

(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Again there is a caveat that this is best used when the fibres of f are locally
Noetherian and F is of finite type. In the general case we should probably use the
relative weak assassin (defined in the next section).

Lemma 7.2. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. Let g : S′ → S be a morphism of schemes. Consider the base change
diagram

X ′

��

g′
// X

��
S′

g // S

and set F ′ = (g′)∗F . Let x′ ∈ X ′ be a point with images x ∈ X, s′ ∈ S′ and
s ∈ S. Assume f locally of finite type. Then x′ ∈ AssX′/S′(F ′) if and only if
x ∈ AssX/S(F) and x′ corresponds to a generic point of an irreducible component
of Spec(κ(s′)⊗κ(s) κ(x)).

Proof. Consider the morphism X ′s′ → Xs of fibres. As Xs′ = Xs ×Spec(κ(s))

Spec(κ(s′)) this is a flat morphism. Moreover F ′s′ is the pullback of Fs via this
morphism. As Xs is locally of finite type over the Noetherian scheme Spec(κ(s))

http://localhost:8080/tag/05EZ
http://localhost:8080/tag/05F0
http://localhost:8080/tag/05AT
http://localhost:8080/tag/05DC


8 DIVISORS

we have that Xs is locally Noetherian, see Morphisms, Lemma 16.6. Thus we may
apply Lemma 3.1 and we see that

AssX′
s′

(F ′s′) =
⋃

x∈Ass(Fs)
Ass((X ′s′)x).

Thus to prove the lemma it suffices to show that the associated points of the fibre
(X ′s′)x of the morphism X ′s′ → Xs over x are its generic points. Note that (X ′s′)x =
Spec(κ(s′)⊗κ(s)κ(x)) as schemes. By Algebra, Lemma 155.1 the ring κ(s′)⊗κ(s)κ(x)
is a Noetherian Cohen-Macaulay ring. Hence its associated primes are its minimal
primes, see Algebra, Proposition 62.6 (minimal primes are associated) and Algebra,
Lemma 146.2 (no embedded primes). �

Remark 7.3. With notation and assumptions as in Lemma 7.2 we see that it is
always the case that (g′)−1(AssX/S(F)) ⊃ AssX′/S′(F ′). If the morphism S′ → S
is locally quasi-finite, then we actually have

(g′)−1(AssX/S(F)) = AssX′/S′(F ′)

because in this case the field extensions κ(s) ⊂ κ(s′) are always finite. In fact, this
holds more generally for any morphism g : S′ → S such that all the field extensions
κ(s) ⊂ κ(s′) are algebraic, because in this case all prime ideals of κ(s′) ⊗κ(s) κ(x)
are maximal (and minimal) primes, see Algebra, Lemma 35.17.

8. Relative weak assassin

Definition 8.1. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. The relative weak assassin of F in X over S is the set

WeakAssX/S(F) =
⋃

s∈S
WeakAss(Fs)

where Fs = (Xs → X)∗F is the restriction of F to the fibre of f at s.

Lemma 8.2. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module. Then WeakAssX/S(F) = AssX/S(F).

Proof. This is true bacause the fibres of f are locally Noetherian schemes, and
associated and weakly associated points agree on locally Noetherian schemes, see
Lemma 5.7. �

9. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else.

Definition 9.1. Let S be a scheme.

(1) A locally principal closed subscheme of S is a closed subscheme whose sheaf
of ideals is locally generated by a single element.

(2) An effective Cartier divisor on S is a closed subscheme D ⊂ S such that
the ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subscheme, but the
converse is not always true. Effective Cartier divisors are closed subschemes of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.
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Lemma 9.2. Let S be a scheme. Let D ⊂ S be a closed subscheme. The following
are equivalent:

(1) The subscheme D is an effective Cartier divisor on S.
(2) For every x ∈ D there exists an affine open neighbourhood Spec(A) = U ⊂

S of x such that U ∩D = Spec(A/(f)) with f ∈ A not a zerodivisor.

Proof. Assume (1). For every x ∈ D there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that ID|U ∼= OU . In other words, there exists a section
f ∈ Γ(U, ID) which freely generates the restriction ID|U . Hence f ∈ A, and the
multiplication map f : A→ A is injective. Also, since ID is quasi-coherent we see
that D ∩ U = Spec(A/(f)).

Assume (2). Let x ∈ D. By assumption there exists an affine open neighbourhood
Spec(A) = U ⊂ S of x such that U∩D = Spec(A/(f)) with f ∈ A not a zerodivisor.

Then ID|U ∼= OU since it is equal to (̃f) ∼= Ã ∼= OU . Of course ID restricted to
the open subscheme S \D is isomorphic to OS\D. Hence ID is an invertible OS-
module. �

Lemma 9.3. Let S be a scheme. Let Z ⊂ S be a locally principal closed subscheme.
Let U = S \ Z. Then U → S is an affine morphism.

Proof. The question is local on S, see Morphisms, Lemmas 13.3. Thus we may
assume S = Spec(A) and Z = V (f) for some f ∈ A. In this case U = D(f) =
Spec(Af ) is affine hence U → S is affine. �

Lemma 9.4. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor. Let
U = S \D. Then U → S is an affine morphism and U is scheme theoretically dense
in S.

Proof. Affineness is Lemma 9.3. The density question is local on S, see Mor-
phisms, Lemma 7.5. Thus we may assume S = Spec(A) and D corresponding to
the nonzerodivisor f ∈ A, see Lemma 9.2. Thus A ⊂ Af which implies that U ⊂ S
is scheme theoretically dense, see Morphisms, Example 7.4. �

Lemma 9.5. Let S be a scheme. Let D ⊂ S be an effective Cartier divisor. Let
s ∈ D. If dims(S) <∞, then dims(D) < dims(S).

Proof. Assume dims(S) < ∞. Let U = Spec(A) ⊂ S be an affine open neigh-
bourhood of s such that dim(U) = dims(S) and such that D = V (f) for some
nonzerodivisor f ∈ A (see Lemma 9.2). Recall that dim(U) is the Krull dimension
of the ring A and that dim(U ∩D) is the Krull dimension of the ring A/(f). Then
f is not contained in any minimal prime of A. Hence any maximal chain of primes
in A/(f), viewed as a chain of primes in A, can be extended by adding a minimal
prime. �

Definition 9.6. Let S be a scheme. Given effective Cartier divisors D1, D2 on
S we set D = D1 + D2 equal to the closed subscheme of S corresponding to the
quasi-coherent sheaf of ideals ID1ID2 ⊂ OS . We call this the sum of the effective
Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.
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Lemma 9.7. The sum of two effective Cartier divisors is an effective Cartier
divisor.

Proof. Omitted. Locally f1, f2 ∈ A are nonzerodivisors, then also f1f2 ∈ A is a
nonzerodivisor. �

Lemma 9.8. Let X be a scheme. Let D,D′ be two effective Cartier divisors on
X. If D ⊂ D′ (as closed subschemes of X), then there exists an effective Cartier
divisor D′′ such that D′ = D +D′′.

Proof. Omitted. �

Lemma 9.9. Let X be a scheme. Let Z, Y be two closed subschemes of X with
ideal sheaves I and J . If IJ defines an effective Cartier divisor D ⊂ X, then Z
and Y are effective Cartier divisors and D = Z + Y .

Proof. Applying Lemma 9.2 we obtain the following algebra situation: A is a ring,
I, J ⊂ A ideals and f ∈ A a nonzerodivisor such that IJ = (f). Thus the result
follows from Algebra, Lemma 116.12. �

Recall that we have defined the inverse image of a closed subscheme under any
morphism of schemes in Schemes, Definition 17.7.

Lemma 9.10. Let f : S′ → S be a morphism of schemes. Let Z ⊂ S be a locally
principal closed subscheme. Then the inverse image f−1(Z) is a locally principal
closed subscheme of S′.

Proof. Omitted. �

Definition 9.11. Let f : S′ → S be a morphism of schemes. Let D ⊂ S be an
effective Cartier divisor. We say the pullback of D by f is defined if the closed
subscheme f−1(D) ⊂ S′ is an effective Cartier divisor. In this case we denote it
either f∗D or f−1(D) and we call it the pullback of the effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice. Here is an example lemma.

Lemma 9.12. Let f : X → Y be a morphism of schemes. Let D ⊂ Y be an
effective Cartier divisor. The pullback of D by f is defined in each of the following
cases:

(1) X, Y integral and f dominant,
(2) X reduced, and for any generic point ξ of any irreducible component of X

we have f(ξ) 6∈ D,
(3) X is locally Noetherian and for any associated point x of X we have f(x) 6∈

D,
(4) X is locally Noetherian, has no embedded points, and for any generic point

ξ of any irreducible component of X we have f(ξ) 6∈ D,
(5) f is flat, and
(6) add more here as needed.

Proof. The question is local on X, and hence we reduce to the case where X =
Spec(A), Y = Spec(R), f is given by ϕ : R → A and D = Spec(R/(t)) where
t ∈ R is not a zerodivisor. The goal in each case is to show that ϕ(t) ∈ A is not a
zerodivisor.

http://localhost:8080/tag/01WU
http://localhost:8080/tag/02ON
http://localhost:8080/tag/07ZV
http://localhost:8080/tag/053P
http://localhost:8080/tag/01WV
http://localhost:8080/tag/02OO


DIVISORS 11

In case (2) this follows as the intersection of all minimal primes of a ring is the
nilradical of the ring, see Algebra, Lemma 16.2.

Let us prove (3). By Lemma 2.2 the associated points of X correspond to the
primes p ∈ Ass(A). By Algebra, Lemma 62.9 we have

⋃
p∈Ass(A) p is the set of

zerodivisors of A. The hypothesis of (3) is that ϕ(t) 6∈ p for all p ∈ Ass(A). Hence
ϕ(t) is a nonzerodivisor as desired.

Part (4) follows from (3) and the definitions. �

Lemma 9.13. Let f : S′ → S be a morphism of schemes. Let D1, D2 be effective
Cartier divisors on S. If the pullbacks of D1 and D2 are defined then the pullback
of D = D1 +D2 is defined and f∗D = f∗D1 + f∗D2.

Proof. Omitted. �

Definition 9.14. Let S be a scheme and let D be an effective Cartier divisor. The
invertible sheaf OS(D) associated to D is given by

OS(D) := HomOS
(ID,OS) = I⊗−1D .

The canonical section, usually denoted 1 or 1D, is the global section of OS(D)
corresponding to the inclusion mapping ID → OS .

Lemma 9.15. Let S be a scheme. Let D1, D2 be effective Cartier divisors on S.
Let D = D1 +D2. Then there is a unique isomorphism

OS(D1)⊗OS
OS(D2) −→ OS(D)

which maps 1D1 ⊗ 1D2 to 1D.

Proof. Omitted. �

Definition 9.16. Let (X,OX) be a locally ringed space. Let L be an invertible
sheaf on X. A global section s ∈ Γ(X,L) is called a regular section if the map
OX → L, f 7→ fs is injective.

Lemma 9.17. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The following
are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.

If X is a scheme these are also equivalent to

(3) for any affine open Spec(A) = U ⊂ X the image f ∈ A is not a zerodivisor,
and

(4) there exists an affine open covering X =
⋃

Spec(Ai) such that the image of
f in Ai is not a zerodivisor for all i.

Proof. Omitted. �

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules, Definition 21.3 for the definition of the dual invertible sheaf.)

Definition 9.18. LetX be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).
The zero scheme of s is the closed subscheme Z(s) ⊂ X defined by the quasi-
coherent sheaf of ideals I ⊂ OX which is the image of the map s : L⊗−1 → OX .
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Lemma 9.19. Let X be a scheme. Let L be an invertible sheaf. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of this
ordered set.

(2) For any morphism of schemes f : Y → X we have f∗s = 0 in Γ(Y, f∗L) if
and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subscheme.
(4) The zero scheme Z(s) is an effective Cartier divisor if and only if s is a

regular section of L.

Proof. Omitted. �

Lemma 9.20. Let X be a scheme.

(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique iso-
morphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. �

Lemma 9.21. Let X be a Noetherian scheme. Let D ⊂ X be a closed subscheme
corresponding to the quasi-coherent ideal sheaf I ⊂ OX .

(1) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by one element,
then D is locally principal.

(2) If for every x ∈ D the ideal Ix ⊂ OX,x can be generated by a single nonze-
rodivisor, then D is an effective Cartier divisor.

Proof. Let Spec(A) be an affine neighbourhood of a point x ∈ D. Let p ⊂ A be
the prime corresponding to x. Let I ⊂ A be the ideal defining the trace of D on
Spec(A). Since A is Noetherian (as X is Noetherian) the ideal I is generated by
finitely many elements, say I = (f1, . . . , fr). Under the assumption of (1) we have
Ip = (f) for some f ∈ Ap. Then fi = gif for some gi ∈ Ap. Write gi = ai/hi
and f = f ′/h for some hi, h ∈ A, hi, h 6∈ p. Then Ih1...hrh ⊂ Ah1...hrh is principal,
because it is generated by f ′. This proves (1). For (2) we may assume I = (f).
The assumption implies that the image of f in Ap is a nonzerodivisor. Then f is
a nonzero divisor on a neighbourhood of x by Algebra, Lemma 67.8. This proves
(2). �

Lemma 9.22. Let X be a Noetherian scheme. Let D ⊂ X be an integral closed
subscheme which is also an effective Cartier divisor. Then the local ring of X at
the generic point of D is a discrete valuation ring.

Proof. By Lemma 9.2 we may assume X = Spec(A) and D = Spec(A/(f)) where
A is a Noetherian ring and f ∈ A is a nonzerodivisor. The assumption that D is
integral signifies that (f) is prime. Hence the local ring of X at the generic point
is A(f) which is a Noetherian local ring whose maximal ideal is generated by a
nonzerodivisor. Thus it is a discrete valuation ring by Algebra, Lemma 115.6. �
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Lemma 9.23. Let X be a Noetherian scheme. Let D ⊂ X be a integral closed
subscheme. Assume that

(1) D has codimension 1 in X, and
(2) OX,x is a UFD for all x ∈ D.

Then D is an effective Cartier divisor.

Proof. Let x ∈ D and set A = OX,x. Let p ⊂ A correspond to the generic point of
D. Then Ap has dimension 1 by assumption (1). Thus p is a prime ideal of height
1. Since A is a UFD this implies that p = (f) for some f ∈ A. Of course f is a
nonzerodivisor and we conclude by Lemma 9.21. �

Lemma 9.24. Let X be a Noetherian scheme. Let I ⊂ OX be a quasi-coherent
sheaf of ideals. Assume at least one of the following conditions holds

(1) There exist reduced and irreducible effective Cartier divisors Di ⊂ X, i =
1, . . . , n and a closed subset Z ⊂ X of codimension ≥ 2, such that OX/I is
supported on Z ∪

⋃
Di.

(2) The local ring OX,x is a UFD for every point x of the support of OX/I.
(3) The scheme X is regular.

Then there exists an invertible ideal sheaf I ⊂ J ⊂ OX such that the support of
J /I has codimension ≥ 2. Moreover, in case (1) we have J⊗−1 = OX(

∑
aiDi)

for some ai ≥ 0.

Proof. Case (1). Let ξi ∈ Di be the generic point and let Oi = OX,ξi be the local
ring which is a discrete valuation ring by Lemma 9.22. Let ai ≥ 0 be the minimal
valuation of an element of Ixi ⊂ Oi. We claim that the ideal sheaf J of the effective
Cartier divisor D =

∑
aiDi works.

Namely, suppose that x ∈ D. Let A = OX,x. Let fi ∈ A be a local equation
for Di; we only consider those i such that x ∈ Di. Then fi is a nonzerodivisor
and A/(fi) is a domain and Oi = A(fi). Let I = Ix ⊂ A. We chose ai such
that IA(fi) = faii A(fi). It follows that I ⊂ (

∏
faii ) because (

∏
faii ) is the kernel

of A →
∏
A(fi)/f

ai
i A(fi). This proves that I ⊂ J . Moreover, we also see that

Ixi = Jxi which proves that xi is not in the support of J /I. Hence the support of
I/J has codimension at least 2. This finishes the proof in case (1).

Observe that (3) is a special case of (2) because a regular local ring is a UFD (More
on Algebra, Lemma 70.4). In case (2) let Di be the irreducible components of the
support of OX/I which have codimension 1. By Lemma 9.23 each Di is an effective
Cartier divisor. In this way we reduce to case (1). �

10. Relative effective Cartier divisors

The following lemma shows that an effective Cartier divisor which is flat over the
base is really a “family of effective Cartier divisors” over the base. For example the
restriction to any fibre is an effective Cartier divisor.

Lemma 10.1. Let f : X → S be a morphism of schemes. Let D ⊂ X be a closed
subscheme. Assume

(1) D is an effective Cartier divisor, and
(2) D → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the pullback (g′)−1D is an effective
Cartier divisor on X ′ = S′ ×S X.
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Proof. Using Lemma 9.2 we translate this as follows into algebra. Let A→ B be
a ring map and h ∈ B. Assume h is a nonzerodivisor and that B/hB is flat over
A. Then

0→ B
h−→ B → B/hB → 0

is a short exact sequence of A-modules with B/hB flat over A. By Algebra, Lemma
38.11 this sequence remains exact on tensoring over A with any module, in partic-
ular with any A-algebra A′. �

This lemma is the motivation for the following definition.

Definition 10.2. Let f : X → S be a morphism of schemes. A relative effective
Cartier divisor on X/S is an effective Cartier divisor D ⊂ X such that D → S is a
flat morphism of schemes.

We warn the reader that this may be nonstandard notation. In particular, in [DG67,
IV, Section 21.15] the notion of a relative divisor is discussed only when X → S is
flat and locally of finite presentation. Our definition is a bit more general. However,
it turns out that if x ∈ D then X → S is flat at x in many cases (but not always).

Lemma 10.3. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If x ∈ D and OX,x is Noetherian, then f is flat
at x.

Proof. Set A = OS,f(x) and B = OX,x. Let h ∈ B be an element which generates
the ideal of D. Then h is a nonzerodivisor in B such that B/hB is a flat local
A-algebra. Let I ⊂ A be a finitely generated ideal. Consider the commutative
diagram

0 // B
h

// B // B/hB // 0

0 // B ⊗A I
h //

OO

B ⊗A I //

OO

B/hB ⊗A I //

OO

0

The lower sequence is short exact as B/hB is flat over A, see Algebra, Lemma
38.11. The right vertical arrow is injective as B/hB is flat over A, see Algebra,
Lemma 38.4. Hence multiplication by h is surjective on the kernel K of the middle
vertical arrow. By Nakayama’s lemma, see Algebra, Lemma 19.1 we conclude that
K = 0. Hence B is flat over A, see Algebra, Lemma 38.4. �

The following lemma relies on the algebraic version of openness of the flat locus.
The scheme theoretic version can be found in More on Morphisms, Section 12.

Lemma 10.4. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor. If f is locally of finite presentation, then there exists an
open subscheme U ⊂ X such that D ⊂ U and such that f |U : U → S is flat.

Proof. Pick x ∈ D. It suffices to find an open neighbourhood U ⊂ X of x such
that f |U is flat. Hence the lemma reduces to the case that X = Spec(B) and
S = Spec(A) are affine and that D is given by a nonzerodivisor h ∈ B. By
assumption B is a finitely presented A-algebra and B/hB is a flat A-algebra. We
are going to use absolute Noetherian approximation.
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Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume h is the image of h′ ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials h′, g1, . . . , gm are in A0. Then we can set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)
and h0 the image of h′ in B0. Then B = B0 ⊗A0

A and B/hB = B0/h0B0 ⊗A0
A.

By Algebra, Lemma 156.1 we may, after enlarging A0, assume that B0/h0B0 is flat
over A0. Let K0 = Ker(h0 : B0 → B0). As B0 is of finite type over Z we see
that K0 is a finitely generated ideal. Let A1 ⊂ A be a finite type Z-subalgebra
containing A0 and denote B1, h1, K1 the corresponding objects over A1. By More
on Algebra, Lemma 21.15 the map K0 ⊗A0

A1 → K1 is surjective. On the other
hand, the kernel of h : B → B is zero by assumption. Hence every element of
K0 maps to zero in K1 for sufficiently large subrings A1 ⊂ A. Since K0 is finitely
generated, we conclude that K1 = 0 for a suitable choice of A1.

Set f1 : X1 → S1 equal to Spec of the ring mapA1 → B1. SetD1 = Spec(B1/h1B1).
Since B = B1 ⊗A1 A, i.e., X = X1 ×S1 S, it now suffices to prove the lemma for
X1 → S1 and the relative effective Cartier divisor D1, see Morphisms, Lemma 26.6.
Hence we have reduced to the case where A is a Noetherian ring. In this case
we know that the ring map A → B is flat at every prime q of V (h) by Lemma
10.3. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 125.4 we win. �

There is also the following lemma (whose idea is apparently due to Michael Artin,
see [Nob77]) which needs no finiteness assumptions at all.

Lemma 10.5. Let f : X → S be a morphism of schemes. Let D ⊂ X be a relative
effective Cartier divisor on X/S. If f is flat at all points of X \D, then f is flat.

Proof. This translates into the following algebra fact: Let A → B be a ring map
and h ∈ B. Assume h is a nonzerodivisor, that B/hB is flat over A, and that the
localization Bh is flat over A. Then B is flat over A. The reason is that we have a
short exact sequence

0→ B → Bh → colimn(1/hn)B/B → 0

and that the second and third terms are flat over A, which implies that B is flat over
A (see Algebra, Lemma 38.12). Note that a filtered colimit of flat modules is flat
(see Algebra, Lemma 38.2) and that by induction on n each (1/hn)B/B ∼= B/hnB
is flat over A since it fits into the short exact sequence

0→ B/hn−1B
h−→ B/hnB → B/hB → 0

Some details omitted. �

Example 10.6. Here is an example of a relative effective Cartier divisor D where
the ambient scheme is not flat in a neighbourhood of D. Namely, let A = k[t] and

B = k[t, x, y, x−1y, x−2y, . . .]/(ty, tx−1y, tx−2y, . . .)

Then B is not flat over A but B/xB ∼= A is flat over A. Moreover x is a nonzerodi-
visor and hence defines a relative effective Cartier divisor in Spec(B) over Spec(A).

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative effective Cartier divisor in terms of its fibres. See
also More on Morphisms, Lemma 18.1 for a slightly different take on this lemma.
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Lemma 10.7. Let ϕ : X → S be a flat morphism which is locally of finite presen-
tation. Let Z ⊂ X be a closed subscheme. Let x ∈ Z with image s ∈ S.

(1) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, then there exists
an open U ⊂ X and a relative effective Cartier divisor D ⊂ U such that
Z ∩ U ⊂ D.

(2) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x, the morphism
Z → X is of finite presentation, and Z → S is flat at x, then we can
choose U and D such that Z ∩ U = D.

(3) If Zs ⊂ Xs is a Cartier divisor in a neighbourhood of x and Z is a locally
principal closed subscheme of X in a neighbourhood of x, then we can choose
U and D such that Z ∩ U = D.

In particular, if Z → S is locally of finite presentation and flat and all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.
Similarly, if Z is a locally principal closed subscheme of X such that all fibres
Zs ⊂ Xs are effective Cartier divisors, then Z is a relative effective Cartier divisor.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to Z. By the initial assumption of the lemma we know that A → B is flat and of
finite presentation. The assumption in (1) means that, after shrinking Spec(B), we
may assume I(B⊗Aκ(p)) is generated by a single element which is a nonzerodivisor
in B ⊗A κ(p). Say f ∈ I maps to this generator. We claim that after inverting
an element g ∈ B, g 6∈ q the closed subscheme D = V (f) ⊂ Spec(Bg) is a relative
effective Cartier divisor.

By Algebra, Lemma 156.1 we can find a flat finite type ring map A0 → B0 of
Noetherian rings, an element f0 ∈ B0, a ring map A0 → A and an isomorphism
A⊗A0

B0
∼= B. If p0 = A0 ∩ p then we see that

B ⊗A κ(p) = (B0 ⊗A0
κ(p0))⊗κ(p0)) κ(p)

hence f0 is a nonzerodivisor in B0 ⊗A0
κ(p0). By Algebra, Lemma 95.2 we see

that f0 is a nonzerodivisor in (B0)q0 where q0 = B0 ∩ q and that (B0/f0B0)q0 is
flat over A0. Hence by Algebra, Lemma 67.8 and Algebra, Theorem 125.4 there
exists a g0 ∈ B0, g0 6∈ q0 such that f0 is a nonzerodivisor in (B0)g0 and such that
(B0/f0B0)g0 is flat over A0. Hence we see that D0 = V (f0) ⊂ Spec((B0)g0) is
a relative effective Cartier divisor. Since we know that this property is preserved
under base change, see Lemma 10.1, we obtain the claim mentioned above with g
equal to the image of g0 in B.

At this point we have proved (1). To see (2) consider the closed immersion Z → D.
The surjective ring map u : OD,x → OZ,x is a map of flat local OS,s-algebras which
are essentially of finite presentation, and which becomes an isomorphisms after
dividing by ms. Hence it is an isomorphism, see Algebra, Lemma 124.4. It follows
that Z → D is an isomorphism in a neighbourhood of x, see Algebra, Lemma
122.6. To see (3), after possibly shrinking U we may assume that the ideal of D
is generated by a single nonzerodivisor f and the ideal of Z is generated by an
element g. Then f = gh. But g|Us

and f |Us
cut out the same effective Cartier

divisor in a neighbourhood of x. Hence h|Xs
is a unit in OXs,x, hence h is a unit
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in OX,x hence h is a unit in an open neighbourhood of x. I.e., Z ∩ U = D after
shrinking U .

The final statements of the lemma follow immediately from parts (2) and (3),
combined with the fact that Z → S is locally of finite presentation if and only if
Z → X is of finite presentation, see Morphisms, Lemmas 22.3 and 22.11. �

11. The normal cone of an immersion

Let i : Z → X be a closed immersion. Let I ⊂ OX be the corresponding quasi-
coherent sheaf of ideals. Consider the quasi-coherent sheaf of graded OX -algebras⊕

n≥0 In/In+1. Since the sheaves In/In+1 are each annihilated by I this graded
algebra corresponds to a quasi-coherent sheaf of graded OZ-algebras by Morphisms,
Lemma 4.1. This quasi-coherent graded OZ-algebra is called the conormal algebra
of Z in X and is often simply denoted

⊕
n≥0 In/In+1 by the abuse of notation

mentioned in Morphisms, Section 4.

Let f : Z → X be an immersion. We define the conormal algebra of f as the
conormal sheaf of the closed immersion i : Z → X \ ∂Z, where ∂Z = Z \ Z. It is
often denoted

⊕
n≥0 In/In+1 where I is the ideal sheaf of the closed immersion

i : Z → X \ ∂Z.

Definition 11.1. Let f : Z → X be an immersion. The conormal algebra CZ/X,∗
of Z in X or the conormal algebra of f is the quasi-coherent sheaf of graded OZ-
algebras

⊕
n≥0 In/In+1 described above.

Thus CZ/X,1 = CZ/X is the conormal sheaf of the immersion. Also CZ/X,0 = OZ
and CZ/X,n is a quasi-coherent OZ-module characterized by the property

(11.1.1) i∗CZ/X,n = In/In+1

where i : Z → X \ ∂Z and I is the ideal sheaf of i as above. Finally, note that
there is a canonical surjective map

(11.1.2) Sym∗(CZ/X) −→ CZ/X,∗
of quasi-coherent graded OZ-algebras which is an isomorphism in degrees 0 and 1.

Lemma 11.2. Let i : Z → X be an immersion. The conormal algebra of i has the
following properties:

(1) Let U ⊂ X be any open such that i(Z) is a closed subset of U . Let I ⊂ OU
be the sheaf of ideals corresponding to the closed subscheme i(Z) ⊂ U . Then

CZ/X,∗ = i∗
(⊕

n≥0
In
)

= i−1
(⊕

n≥0
In/In+1

)
(2) For any affine open Spec(R) = U ⊂ X such that Z ∩ U = Spec(R/I) there

is a canonical isomorphism Γ(Z ∩ U, CZ/X,∗) =
⊕

n≥0 I
n/In+1.

Proof. Mostly clear from the definitions. Note that given a ring R and an ideal I
of R we have In/In+1 = In ⊗R R/I. Details omitted. �

Lemma 11.3. Let
Z

i
//

f

��

X

g

��
Z ′

i′ // X ′
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be a commutative diagram in the category of schemes. Assume i, i′ immersions.
There is a canonical map of graded OZ-algebras

f∗CZ′/X′,∗ −→ CZ/X,∗
characterized by the following property: For every pair of affine opens (Spec(R) =
U ⊂ X,Spec(R′) = U ′ ⊂ X ′) with f(U) ⊂ U ′ such that Z ∩ U = Spec(R/I) and
Z ′ ∩ U ′ = Spec(R′/I ′) the induced map

Γ(Z ′ ∩ U ′, CZ′/X′,∗) =
⊕

(I ′)n/(I ′)n+1 −→
⊕

n≥0
In/In+1 = Γ(Z ∩ U, CZ/X,∗)

is the one induced by the ring map f ] : R′ → R which has the property f ](I ′) ⊂ I.

Proof. Let ∂Z ′ = Z ′ \ Z ′ and ∂Z = Z \ Z. These are closed subsets of X ′ and of
X. Replacing X ′ by X ′ \ ∂Z ′ and X by X \

(
g−1(∂Z ′) ∪ ∂Z

)
we see that we may

assume that i and i′ are closed immersions.

The fact that g ◦ i factors through i′ implies that g∗I ′ maps into I under the
canonical map g∗I ′ → OX , see Schemes, Lemmas 4.6 and 4.7. Hence we get an
induced map of quasi-coherent sheaves g∗((I ′)n/(I ′)n+1)→ In/In+1. Pulling back
by i gives i∗g∗((I ′)n/(I ′)n+1) → i∗(In/In+1). Note that i∗(In/In+1) = CZ/X,n.

On the other hand, i∗g∗((I ′)n/(I ′)n+1) = f∗(i′)∗((I ′)n/(I ′)n+1) = f∗CZ′/X′,n.
This gives the desired map.

Checking that the map is locally described as the given map (I ′)n/(I ′)n+1 →
In/In+1 is a matter of unwinding the definitions and is omitted. Another ob-
servation is that given any x ∈ i(Z) there do exist affine open neighbourhoods U ,
U ′ with f(U) ⊂ U ′ and Z ∩ U as well as U ′ ∩ Z ′ closed such that x ∈ U . Proof
omitted. Hence the requirement of the lemma indeed characterizes the map (and
could have been used to define it). �

Lemma 11.4. Let

Z
i
//

f

��

X

g

��
Z ′

i′ // X ′

be a fibre product diagram in the category of schemes with i, i′ immersions. Then
the canonical map f∗CZ′/X′,∗ → CZ/X,∗ of Lemma 11.3 is surjective. If g is flat,
then it is an isomorphism.

Proof. Let R′ → R be a ring map, and I ′ ⊂ R′ an ideal. Set I = I ′R. Then
(I ′)n/(I ′)n+1⊗R′R→ In/In+1 is surjective. If R′ → R is flat, then In = (I ′)n⊗R′R
and we see the map is an isomorphism. �

Definition 11.5. Let i : Z → X be an immersion of schemes. The normal cone
CZX of Z in X is

CZX = Spec
Z

(CZ/X,∗)
see Constructions, Definitions 7.1 and 7.2. The normal bundle of Z in X is the
vector bundle

NZX = Spec
Z

(Sym(CZ/X))

see Constructions, Definitions 6.1 and 6.2.
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Thus CZX → Z is a cone over Z and NZX → Z is a vector bundle over Z (recall
that in our terminology this does not imply that the conormal sheaf is a finite
locally free sheaf). Moreover, the canonical surjection (11.1.2) of graded algebras
defines a canonical closed immersion

(11.5.1) CZX −→ NZX

of cones over Z.

12. Regular ideal sheaves

In this section we generalize the notion of an effective Cartier divisor to higher codi-
mension. Recall that a sequence of elements f1, . . . , fr of a ring R is a regular se-
quence if for each i = 1, . . . , r the element fi is a nonzerodivisor on R/(f1, . . . , fi−1)
and R/(f1, . . . , fr) 6= 0, see Algebra, Definition 67.1. There are three closely re-
lated weaker conditions that we can impose. The first is to assume that f1, . . . , fr
is a Koszul-regular sequence, i.e., that Hi(K•(f1, . . . , fr)) = 0 for i > 0, see
More on Algebra, Definition 21.1. The sequence is called an H1-regular sequence
if H1(K•(f1, . . . , fr)) = 0. Another condition we can impose is that with J =
(f1, . . . , fr), the map

R/J [T1, . . . , Tr] −→
⊕

n≥0
Jn/Jn+1

which maps Ti to fi mod J2 is an isomorphism. In this case we say that f1, . . . , fr
is a quasi-regular sequence, see Algebra, Definition 68.1. Given an R-module M
there is also a notion of M -regular and M -quasi-regular sequence.

We can generalize this to the case of ringed spaces as follows. Let X be a ringed
space and let f1, . . . , fr ∈ Γ(X,OX). We say that f1, . . . , fr is a regular sequence if
for each i = 1, . . . , r the map

(12.0.2) fi : OX/(f1, . . . , fi−1) −→ OX/(f1, . . . , fi−1)

is an injective map of sheaves. We say that f1, . . . , fr is a Koszul-regular sequence
if the Koszul complex

(12.0.3) K•(OX , f•),
see Modules, Definition 20.2, is acyclic in degrees > 0. We say that f1, . . . , fr is a
H1-regular sequence if the Koszul complex K•(OX , f•) is exact in degree 1. Finally,
we say that f1, . . . , fr is a quasi-regular sequence if the map

(12.0.4) OX/J [T1, . . . , Tr] −→
⊕

d≥0
J d/J d+1

is an isomorphism of sheaves where J ⊂ OX is the sheaf of ideals generated by
f1, . . . , fr. (There is also a notion of F-regular and F-quasi-regular sequence for a
given OX -module F which we will introduce here if we ever need it.)

Lemma 12.1. Let X be a ringed space. Let f1, . . . , fr ∈ Γ(X,OX). We have
the following implications f1, . . . , fr is a regular sequence ⇒ f1, . . . , fr is a Koszul-
regular sequence ⇒ f1, . . . , fr is an H1-regular sequence ⇒ f1, . . . , fr is a quasi-
regular sequence.

Proof. Since we may check exactness at stalks, a sequence f1, . . . , fr is a regular
sequence if and only if the maps

fi : OX,x/(f1, . . . , fi−1) −→ OX,x/(f1, . . . , fi−1)
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are injective for all x ∈ X. In other words, the image of the sequence f1, . . . , fr in
the ring OX,x is a regular sequence for all x ∈ X. The other types of regularity can
be checked stalkwise as well (details omitted). Hence the implications follow from
More on Algebra, Lemmas 21.2 and 21.5. �

Definition 12.2. Let X be a ringed space. Let J ⊂ OX be a sheaf of ideals.

(1) We say J is regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(2) We say J is Koszul-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a Koszul-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

(3) We say J is H1-regular if for every x ∈ Supp(OX/J ) there exists an open
neighbourhood x ∈ U ⊂ X and a H1-regular sequence f1, . . . , fr ∈ OX(U)
such that J |U is generated by f1, . . . , fr.

(4) We say J is quasi-regular if for every x ∈ Supp(OX/J ) there exists an
open neighbourhood x ∈ U ⊂ X and a quasi-regular sequence f1, . . . , fr ∈
OX(U) such that J |U is generated by f1, . . . , fr.

Many properties of this notion immediately follow from the corresponding notions
for regular and quasi-regular sequences in rings.

Lemma 12.3. Let X be a ringed space. Let J be a sheaf of ideals. We have the
following implications: J is regular ⇒ J is Koszul-regular ⇒ J is H1-regular ⇒
J is quasi-regular.

Proof. The lemma immediately reduces to Lemma 12.1. �

Lemma 12.4. Let X be a locally ringed space. Let J ⊂ OX be a sheaf of ideals.
Then J is quasi-regular if and only if the following conditions are satisfied:

(1) J is an OX-module of finite type,
(2) J /J 2 is a finite locally free OX/J -module, and
(3) the canonical maps

Symn
OX/J (J /J 2) −→ J n/J n+1

are isomorphisms for all n ≥ 0.

Proof. It is clear that if U ⊂ X is an open such that J |U is generated by a
quasi-regular sequence f1, . . . , fr ∈ OX(U) then J |U is of finite type, J |U/J 2|U is
free with basis f1, . . . , fr, and the maps in (3) are isomorphisms because they are
coordinate free formulation of the degree n part of (12.0.4). Hence it is clear that
being quasi-regular implies conditions (1), (2), and (3).

Conversely, suppose that (1), (2), and (3) hold. Pick a point x ∈ Supp(OX/J ).
Then there exists a neighbourhood U ⊂ X of x such that J |U/J 2|U is free of rank
r over OU/J |U . After possibly shrinking U we may assume there exist f1, . . . , fr ∈
J (U) which map to a basis of J |U/J 2|U as an OU/J |U -module. In particular
we see that the images of f1, . . . , fr in Jx/J 2

x generate. Hence by Nakayama’s
lemma (Algebra, Lemma 19.1) we see that f1, . . . , fr generate the stalk Jx. Hence,
since J is of finite type, by Modules, Lemma 9.4 after shrinking U we may assume
that f1, . . . , fr generate J . Finally, from (3) and the isomorphism J |U/J 2|U =⊕
OU/J |Ufi it is clear that f1, . . . , fr ∈ OX(U) is a quasi-regular sequence. �
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Lemma 12.5. Let (X,OX) be a locally ringed space. Let J ⊂ OX be a sheaf of
ideals. Let x ∈ X and f1, . . . , fr ∈ Jx whose images give a basis for the κ(x)-vector
space Jx/mxJx.

(1) If J is quasi-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form a quasi-regular sequence generating J |U .

(2) If J is H1-regular, then there exists an open neighbourhood such that f1, . . . , fr ∈
OX(U) form an H1-regular sequence generating J |U .

(3) If J is Koszul-regular, then there exists an open neighbourhood such that
f1, . . . , fr ∈ OX(U) form an Koszul-regular sequence generating J |U .

Proof. First assume that J is quasi-regular. We may choose an open neighbour-
hood U ⊂ X of x and a quasi-regular sequence g1, . . . , gs ∈ OX(U) which gen-
erates J |U . Note that this implies that J /J 2 is free of rank s over OU/J |U
(see Lemma 12.4 and its proof) and hence r = s. We may shrink U and assume
f1, . . . , fr ∈ J (U). Thus we may write

fi =
∑

aijgj

for some aij ∈ OX(U). By assumption the matrix A = (aij) maps to an invertible
matrix over κ(x). Hence, after shrinking U once more, we may assume that (aij)
is invertible. Thus we see that f1, . . . , fr give a basis for (J /J 2)|U which proves
that f1, . . . , fr is a quasi-regular sequence over U .

Note that in order to prove (2) and (3) we may, because the assumptions of (2) and
(3) are stronger than the assumption in (1), already assume that f1, . . . , fr ∈ J (U)
and fi =

∑
aijgj with (aij) invertible as above, where now g1, . . . , gr is a H1-regular

or Koszul-regular sequence. Since the Koszul complex on f1, . . . , fr is isomorphic to
the Koszul complex on g1, . . . , gr via the matrix (aij) (see More on Algebra, Lemma
20.4) we conclude that f1, . . . , fr is H1-regular or Koszul-regular as desired. �

Lemma 12.6. Any regular, Koszul-regular, H1-regular, or quasi-regular sheaf of
ideals on a scheme is a finite type quasi-coherent sheaf of ideals.

Proof. This follows as such a sheaf of ideals is locally generated by finitely many
sections. And any sheaf of ideals locally generated by sections on a scheme is
quasi-coherent, see Schemes, Lemma 10.1. �

Lemma 12.7. Let X be a scheme. Let J be a sheaf of ideals. Then J is reg-
ular (resp. Koszul-regular, H1-regular, quasi-regular) if and only if for every x ∈
Supp(OX/J ) there exists an affine open neighbourhood x ∈ U ⊂ X, U = Spec(A)

such that J |U = Ĩ and such that I is generated by a regular (resp. Koszul-regular,
H1-regular, quasi-regular) sequence f1, . . . , fr ∈ A.

Proof. By assumption we can find an open neighbourhood U of x over which J
is generated by a regular (resp. Koszul-regular, H1-regular, quasi-regular) sequence
f1, . . . , fr ∈ OX(U). After shrinking U we may assume that U is affine, say U =

Spec(A). Since J is quasi-coherent by Lemma 12.6 we see that J |U = Ĩ for some
ideal I ⊂ A. Now we can use the fact that˜ : ModA −→ QCoh(OU )

is an equivalence of categories which preserves exactness. For example the fact
that the functions fi generate J means that the fi, seen as elements of A generate
I. The fact that (12.0.2) is injective (resp. (12.0.3) is exact, (12.0.3) is exact in
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degree 1, (12.0.4) is an isomorphism) implies the corresponding property of the
map A/(f1, . . . , fi−1)→ A/(f1, . . . , fi−1) (resp. the complex K•(A, f1, . . . , fr), the
map A/I[T1, . . . , Tr]→

⊕
In/In+1). Thus f1, . . . , fr ∈ A is a regular (resp. Koszul-

regular, H1-regular, quasi-regular) sequence of the ring A. �

Lemma 12.8. Let X be a locally Noetherian scheme. Let J ⊂ OX be a quasi-
coherent sheaf of ideals. Let x be a point of the support of OX/J . The following
are equivalent

(1) Jx is generated by a regular sequence in OX,x,
(2) Jx is generated by a Koszul-regular sequence in OX,x,
(3) Jx is generated by an H1-regular sequence in OX,x,
(4) Jx is generated by a quasi-regular sequence in OX,x,

(5) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a regular sequence in A, and

(6) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a Koszul-regular sequence in A, and

(7) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by an H1-regular sequence in A, and

(8) there exists an affine neighbourhood U = Spec(A) of x such that J |U = Ĩ
and I is generated by a quasi-regular sequence in A,

(9) there exists a neighbourhood U of x such that J |U is regular, and
(10) there exists a neighbourhood U of x such that J |U is Koszul-regular, and
(11) there exists a neighbourhood U of x such that J |U is H1-regular, and
(12) there exists a neighbourhood U of x such that J |U is quasi-regular.

In particular, on a locally Noetherian scheme the notions of regular, Koszul-regular,
H1-regular, or quasi-regular ideal sheaf all agree.

Proof. It follows from Lemma 12.7 that (5) ⇔ (9), (6) ⇔ (10), (7) ⇔ (11), and
(8) ⇔ (12). It is clear that (5) ⇒ (1), (6) ⇒ (2), (7) ⇒ (3), and (8) ⇒ (4). We
have (1) ⇒ (5) by Algebra, Lemma 67.8. We have (9) ⇒ (10) ⇒ (11) ⇒ (12) by
Lemma 12.3. Finally, (4) ⇒ (1) by Algebra, Lemma 68.6. Now all 12 statements
are equivalent. �

13. Regular immersions

Let i : Z → X be an immersion of schemes. By definition this means there exists
an open subscheme U ⊂ X such that Z is identified with a closed subscheme of U .
Let I ⊂ OU be the corresponding quasi-coherent sheaf of ideals. Suppose U ′ ⊂ X
is a second such open subscheme, and denote I ′ ⊂ OU ′ the corresponding quasi-
coherent sheaf of ideals. Then I|U∩U ′ = I ′|U∩U ′ . Moreover, the support of OU/I
is Z which is contained in U ∩U ′ and is also the support of OU ′/I ′. Hence it follows
from Definition 12.2 that I is a regular ideal if and only if I ′ is a regular ideal.
Similarly for being Koszul-regular, H1-regular, or quasi-regular.

Definition 13.1. Let i : Z → X be an immersion of schemes. Choose an open
subscheme U ⊂ X such that i identifies Z with a closed subscheme of U and denote
I ⊂ OU the corresponding quasi-coherent sheaf of ideals.

(1) We say i is a regular immersion if I is regular.
(2) We say i is a Koszul-regular immersion if I is Koszul-regular.
(3) We say i is a H1-regular immersion if I is H1-regular.
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(4) We say i is a quasi-regular immersion if I is quasi-regular.

The discussion above shows that this is independent of the choice of U . The condi-
tions are listed in decreasing order of strength, see Lemma 13.2. A Koszul-regular
closed immersion is smooth locally a regular immersion, see Lemma 13.11. In the
locally Noetherian case all four notions agree, see Lemma 12.8.

Lemma 13.2. Let i : Z → X be an immersion of schemes. We have the following
implications: i is regular ⇒ i is Koszul-regular ⇒ i is H1-regular ⇒ i is quasi-
regular.

Proof. The lemma immediately reduces to Lemma 12.3. �

Lemma 13.3. Let i : Z → X be an immersion of schemes. Assume X is locally
Noetherian. Then i is regular ⇔ i is Koszul-regular ⇔ i is H1-regular ⇔ i is
quasi-regular.

Proof. Follows immediately from Lemma 13.2 and Lemma 12.8. �

Lemma 13.4. Let i : Z → X be a regular (resp. Koszul-regular, H1-regular, quasi-
regular) immersion. Let X ′ → X be a flat morphism. Then the base change
i′ : Z ×X X ′ → X ′ is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion.

Proof. Via Lemma 12.7 this translates into the algebraic statements in Algebra,
Lemmas 67.7 and 68.3 and More on Algebra, Lemma 21.4. �

Lemma 13.5. Let i : Z → X be an immersion of schemes. Then i is a quasi-
regular immersion if and only if the following conditions are satisfied

(1) i is locally of finite presentation,
(2) the conormal sheaf CZ/X is finite locally free, and
(3) the map (11.1.2) is an isomorphism.

Proof. An open immersion is locally of finite presentation. Hence we may replace
X by an open subscheme U ⊂ X such that i identifies Z with a closed subscheme
of U , i.e., we may assume that i is a closed immersion. Let I ⊂ OX be the
corresponding quasi-coherent sheaf of ideals. Recall, see Morphisms, Lemma 22.7
that I is of finite type if and only if i is locally of finite presentation. Hence the
equivalence follows from Lemma 12.4 and unwinding the definitions. �

Lemma 13.6. Let Z → Y → X be immersions of schemes. Assume that Z → Y
is H1-regular. Then the canonical sequence of Morphisms, Lemma 33.5

0→ i∗CY/X → CZ/X → CZ/Y → 0

is exact and locally split.

Proof. Since CZ/Y is finite locally free (see Lemma 13.5 and Lemma 12.3) it suffices
to prove that the sequence is exact. By what was proven in Morphisms, Lemma 33.5
it suffices to show that the first map is injective. Working affine locally this reduces
to the following question: Suppose that we have a ring A and ideals I ⊂ J ⊂ A.
Assume that J/I ⊂ A/I is generated by an H1-regular sequence. Does this imply
that I/I2 ⊗A A/J → J/J2 is injective? Note that I/I2 ⊗A A/J = I/IJ . Hence
we are trying to prove that I ∩ J2 = IJ . This is the result of More on Algebra,
Lemma 21.8. �
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A composition of quasi-regular immersions may not be quasi-regular, see Algebra,
Remark 68.8. The other types of regular immersions are preserved under composi-
tion.

Lemma 13.7. Let i : Z → Y and j : Y → X be immersions of schemes.

(1) If i and j are regular immersions, so is j ◦ i.
(2) If i and j are Koszul-regular immersions, so is j ◦ i.
(3) If i and j are H1-regular immersions, so is j ◦ i.
(4) If i is an H1-regular immersion and j is a quasi-regular immersion, then

j ◦ i is a quasi-regular immersion.

Proof. The algebraic version of (1) is Algebra, Lemma 67.9. The algebraic version
of (2) is More on Algebra, Lemma 21.12. The algebraic version of (3) is More on
Algebra, Lemma 21.10. The algebraic version of (4) is More on Algebra, Lemma
21.9. �

Lemma 13.8. Let i : Z → Y and j : Y → X be immersions of schemes. Assume
that the sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

of Morphisms, Lemma 33.5 is exact and locally split.

(1) If j ◦ i is a quasi-regular immersion, so is i.
(2) If j ◦ i is a H1-regular immersion, so is i.
(3) If both j and j ◦ i are Koszul-regular immersions, so is i.

Proof. After shrinking Y and X we may assume that i and j are closed immersions.
Denote I ⊂ OX the ideal sheaf of Y and J ⊂ OX the ideal sheaf of Z. The conormal
sequence is 0 → I/IJ → J /J 2 → J /(I + J 2) → 0. Let z ∈ Z and set y = i(z),
x = j(y) = j(i(z)). Choose f1, . . . , fn ∈ Ix which map to a basis of Ix/mzIx.
Extend this to f1, . . . , fn, g1, . . . , gm ∈ Jx which map to a basis of Jx/mzJx. This
is possible as we have assumed that the sequence of conormal sheaves is split in a
neighbourhood of z, hence Ix/mxIx → Jx/mxJx is injective.

Proof of (1). By Lemma 12.5 we can find an affine open neighbourhood U of x such
that f1, . . . , fn, g1, . . . , gm forms a quasi-regular sequence generating J . Hence by
Algebra, Lemma 68.5 we see that g1, . . . , gm induces a quasi-regular sequence on
Y ∩ U cutting out Z.

Proof of (2). Exactly the same as the proof of (1) except using More on Algebra,
Lemma 21.11.

Proof of (3). By Lemma 12.5 (applied twice) we can find an affine open neigh-
bourhood U of x such that f1, . . . , fn forms a Koszul-regular sequence generating
I and f1, . . . , fn, g1, . . . , gm forms a Koszul-regular sequence generating J . Hence
by More on Algebra, Lemma 21.13 we see that g1, . . . , gm induces a Koszul-regular
sequence on Y ∩ U cutting out Z. �

Lemma 13.9. Let i : Z → Y and j : Y → X be immersions of schemes. Pick
z ∈ Z and denote y ∈ Y , x ∈ X the corresponding points. Assume X is locally
Noetherian. The following are equivalent

(1) i is a regular immersion in a neighbourhood of z and j is a regular immer-
sion in a neighbourhood of y,

(2) i and j ◦ i are regular immersions in a neighbourhood of z,
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(3) j ◦ i is a regular immersion in a neighbourhood of z and the conormal
sequence

0→ i∗CY/X → CZ/X → CZ/Y → 0

is split exact in a neighbourhood of z.

Proof. Since X (and hence Y ) is locally Noetherian all 4 types of regular immer-
sions agree, and moreover we may check whether a morphism is a regular immersion
on the level of local rings, see Lemma 12.8. The implication (1) ⇒ (2) is Lemma
13.7. The implication (2) ⇒ (3) is Lemma 13.6. Thus it suffices to prove that (3)
implies (1).

Assume (3). Set A = OX,x. Denote I ⊂ A the kernel of the surjective map
OX,x → OY,y and denote J ⊂ A the kernel of the surjective map OX,x → OZ,z.
Note that any minimal sequence of elements generating J in A is a quasi-regular
hence regular sequence, see Lemma 12.5. By assumption the conormal sequence

0→ I/IJ → J/J2 → J/(I + J2)→ 0

is split exact as a sequence of A/J-modules. Hence we can pick a minimal system
of generators f1, . . . , fn, g1, . . . , gm of J with f1, . . . , fn ∈ I a minimal system of
generators of I. As pointed out above f1, . . . , fn, g1, . . . , gm is a regular sequence
in A. It follows directly from the definition of a regular sequence that f1, . . . , fn is
a regular sequence in A and g1, . . . , gm is a regular sequence in A/I. Thus j is a
regular immersion at y and i is a regular immersion at z. �

Remark 13.10. In the situation of Lemma 13.9 parts (1), (2), (3) are not equiv-
alent to “j ◦ i and j are regular immersions at z and y”. An example is X = A1

k =
Spec(k[x]), Y = Spec(k[x]/(x2)) and Z = Spec(k[x]/(x)).

Lemma 13.11. Let i : Z → X be a Koszul regular closed immersion. Then
there exists a surjective smooth morphism X ′ → X such that the base change i′ :
Z ×X X ′ → X ′ of i is a regular immersion.

Proof. We may assume that X is affine and the ideal of Z generated by a Koszul-
regular sequence by replacing X by the members of a suitable affine open covering
(affine opens as in Lemma 12.7). The affine case is More on Algebra, Lemma
21.17. �

14. Relative regular immersions

In this section we consider the base change property for regular immersions. The
following lemma does not hold for regular immersions or for Koszul immersions,
see Examples, Lemma 13.2.

Lemma 14.1. Let f : X → S be a morphism of schemes. Let i : Z ⊂ X be an
immersion. Assume

(1) i is an H1-regular (resp. quasi-regular) immersion, and
(2) Z → S is a flat morphism.

Then for every morphism of schemes g : S′ → S the base change Z ′ = S′ ×S Z →
X ′ = S′ ×S X is an H1-regular (resp. quasi-regular) immersion.
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Proof. Unwinding the definitions and using Lemma 12.7 we translate this into
algebra as follows. Let A → B be a ring map and f1, . . . , fr ∈ B. Assume
B/(f1, . . . , fr)B is flat over A. Consider a ring map A → A′. Set B′ = B ⊗A A′
and J ′ = JB′.

Case I: f1, . . . , fr is quasi-regular. Set J = (f1, . . . , fr). By assumption Jn/Jn+1 is
isomorphic to a direct sum of copies of B/J hence flat over A. By induction and
Algebra, Lemma 38.12 we conclude thatB/Jn is flat over A. The ideal (J ′)n is equal
to Jn ⊗A A′, see Algebra, Lemma 38.11. Hence (J ′)n/(J ′)n+1 = Jn/Jn+1 ⊗A A′
which clearly implies that f1, . . . , fr is a quasi-regular sequence in B′.

Case II: f1, . . . , fr is H1-regular. By More on Algebra, Lemma 21.15 the vanish-
ing of the Koszul homology group H1(K•(B, f1, . . . , fr)) implies the vanishing of
H1(K•(B

′, f ′1, . . . , f
′
r)) and we win. �

This lemma is the motivation for the following definition.

Definition 14.2. Let f : X → S be a morphism of schemes. Let i : Z → X be an
immersion.

(1) We say i is a relative quasi-regular immersion if Z → S is flat and i is a
quasi-regular immersion.

(2) We say i is a relative H1-regular immersion if Z → S is flat and i is an
H1-regular immersion.

We warn the reader that this may be nonstandard notation. Lemma 14.1 guarantees
that relative quasi-regular (resp. H1-regular) immersions are preserved under any
base change. A relative H1-regular immersion is a relative quasi-regular immersion,
see Lemma 13.2. Please take a look at Lemma 14.5 (or Lemma 14.4) which shows
that if Z → X is a relative H1-regular (or quasi-regular) immersion and the ambient
scheme is (flat and) locally of finite presentation over S, then Z → X is actually a
regular immersion and the same remains true after any base change.

Lemma 14.3. Let f : X → S be a morphism of schemes. Let Z → X be a relative
quasi-regular immersion. If x ∈ Z and OX,x is Noetherian, then f is flat at x.

Proof. Let f1, . . . , fr ∈ OX,x be a quasi-regular sequence cutting out the ideal of
Z at x. By Algebra, Lemma 68.6 we know that f1, . . . , fr is a regular sequence.
Hence fr is a nonzerodivisor on OX,x/(f1, . . . , fr−1) such that the quotient is a
flat OS,f(x)-module. By Lemma 10.3 we conclude that OX,x/(f1, . . . , fr−1) is a
flat OS,f(x)-module. Continuing by induction we find that OX,x is a flat OS,s-
module. �

Lemma 14.4. Let X → S be a morphism of schemes. Let Z → X be an immersion.
Assume

(1) X → S is flat and locally of finite presentation,
(2) Z → X is a relative quasi-regular immersion.

Then Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z with image s ∈ S. To prove this it suffices to find an affine
neighbourhood of x contained in U such that the result holds on that affine open.
Hence we may assume that X is affine and there exist a quasi-regular sequence
f1, . . . , fr ∈ Γ(X,OX) such that Z = V (f1, . . . , fr). By Lemma 14.1 and its proof
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the sequence f1|Xs
, . . . , fr|Xs

is a quasi-regular sequence in Γ(Xs,OXs
). Since Xs

is Noetherian, this implies, possibly after shrinking X a bit, that f1|Xs , . . . , fr|Xs is
a regular sequence, see Algebra, Lemmas 68.6 and 67.8. By Lemma 10.7 it follows
that Z1 = V (f1) ⊂ X is a relative effective Cartier divisor, again after possibly
shrinking X a bit. Applying the same lemma again, but now to Z2 = V (f1, f2) ⊂ Z1

we see that Z2 ⊂ Z1 is a relative effective Cartier divisor. And so on until on reaches
Z = Zn = V (f1, . . . , fn). Since being a relative effective Cartier divisor is preserved
under arbitrary base change, see Lemma 10.1, we also see that the final statement
of the lemma holds. �

Lemma 14.5. Let X → S be a morphism of schemes. Let Z → X be a relative
H1-regular immersion. Assume X → S is locally of finite presentation. Then

(1) there exists an open subscheme U ⊂ X such that Z ⊂ U and such that
U → S is flat, and

(2) Z → X is a regular immersion and the same remains true after any base
change.

Proof. Pick x ∈ Z. To prove (1) suffices to find an open neighbourhood U ⊂ X of x
such that U → S is flat. Hence the lemma reduces to the case thatX = Spec(B) and
S = Spec(A) are affine and that Z is given by an H1-regular sequence f1, . . . , fr ∈
B. By assumption B is a finitely presented A-algebra and B/(f1, . . . , fr)B is a flat
A-algebra. We are going to use absolute Noetherian approximation.

Write B = A[x1, . . . , xn]/(g1, . . . , gm). Assume fi is the image of f ′i ∈ A[x1, . . . , xn].
Choose a finite type Z-subalgebra A0 ⊂ A such that all the coefficients of the poly-
nomials f ′1, . . . , f

′
r, g1, . . . , gm are in A0. We set B0 = A0[x1, . . . , xn]/(g1, . . . , gm)

and we denote fi,0 the image of f ′i in B0. Then B = B0 ⊗A0 A and

B/(f1, . . . , fr) = B0/(f0,1, . . . , f0,r)⊗A0 A.

By Algebra, Lemma 156.1 we may, after enlargingA0, assume thatB0/(f0,1, . . . , f0,r)
is flat over A0. It may not be the case at this point that the Koszul cohomology
group H1(K•(B0, f0,1, . . . , f0,r)) is zero. On the other hand, as B0 is Noetherian,
it is a finitely generated B0-module. Let ξ1, . . . , ξn ∈ H1(K•(B0, f0,1, . . . , f0,r)) be
generators. Let A0 ⊂ A1 ⊂ A be a larger finite type Z-subalgebra of A. Denote
f1,i the image of f0,i in B1 = B0 ⊗A0 A1. By More on Algebra, Lemma 21.15 the
map

H1(K•(B0, f0,1, . . . , f0,r))⊗A0
A1 −→ H1(K•(B1, f1,1, . . . , f1,r))

is surjective. Furthermore, it is clear that the colimit (over all choices of A1

as above) of the complexes K•(B1, f1,1, . . . , f1,r) is the complex K•(B, f1, . . . , fr)
which is acyclic in degree 1. Hence

colimA0⊂A1⊂AH1(K•(B1, f1,1, . . . , f1,r)) = 0

by Algebra, Lemma 8.9. Thus we can find a choice of A1 such that ξ1, . . . , ξn all
map to zero in H1(K•(B1, f1,1, . . . , f1,r)). In other words, the Koszul cohomology
group H1(K•(B1, f1,1, . . . , f1,r)) is zero.

Consider the morphism of affine schemes X1 → S1 equal to Spec of the ring map
A1 → B1 and Z1 = Spec(B1/(f1,1, . . . , f1,r)). Since B = B1 ⊗A1

A, i.e., X =
X1×S1

S, and similarly Z = Z1×S S1, it now suffices to prove (1) for X1 → S1 and
the relative H1-regular immersion Z1 → X1, see Morphisms, Lemma 26.6. Hence
we have reduced to the case where X → S is a finite type morphism of Noetherian

http://localhost:8080/tag/063V


28 DIVISORS

schemes. In this case we know that X → S is flat at every point of Z by Lemma
14.3. Combined with the fact that the flat locus is open in this case, see Algebra,
Theorem 125.4 we see that (1) holds. Part (2) then follows from an application of
Lemma 14.4. �

If the ambient scheme is flat and locally of finite presentation over the base, then
we can characterize a relative quasi-regular immersion in terms of its fibres.

Lemma 14.6. Let ϕ : X → S be a flat morphism which is locally of finite presen-
tation. Let T ⊂ X be a closed subscheme. Let x ∈ T with image s ∈ S.

(1) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, then there
exists an open U ⊂ X and a relative quasi-regular immersion Z ⊂ U such
that Zs = Ts ∩ Us and T ∩ U ⊂ Z.

(2) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, the mor-
phism T → X is of finite presentation, and T → S is flat at x, then we can
choose U and Z as in (1) such that T ∩ U = Z.

(3) If Ts ⊂ Xs is a quasi-regular immersion in a neighbourhood of x, and T
is cut out by c equations in a neighbourhood of x, where c = dimx(Xs) −
dimx(Ts), then we can choose U and Z as in (1) such that T ∩ U = Z.

In each case Z → U is a regular immersion by Lemma 14.4. In particular, if
T → S is locally of finite presentation and flat and all fibres Ts ⊂ Xs are quasi-
regular immersions, then T → X is a relative quasi-regular immersion.

Proof. Choose affine open neighbourhoods Spec(A) of s and Spec(B) of x such
that ϕ(Spec(B)) ⊂ Spec(A). Let p ⊂ A be the prime ideal corresponding to s. Let
q ⊂ B be the prime ideal corresponding to x. Let I ⊂ B be the ideal corresponding
to T . By the initial assumption of the lemma we know that A → B is flat and
of finite presentation. The assumption in (1) means that, after shrinking Spec(B),
we may assume I(B⊗A κ(p)) is generated by a quasi-regular sequence of elements.
After possibly localizing B at some g ∈ B, g 6∈ q we may assume there exist
f1, . . . , fr ∈ I which map to a quasi-regular sequence in B⊗A κ(p) which generates
I(B ⊗A κ(p)). By Algebra, Lemmas 68.6 and 67.8 we may assume after another
localization that f1, . . . , fr ∈ I form a regular sequence in B ⊗A κ(p). By Lemma
10.7 it follows that Z1 = V (f1) ⊂ Spec(B) is a relative effective Cartier divisor,
again after possibly localizing B. Applying the same lemma again, but now to
Z2 = V (f1, f2) ⊂ Z1 we see that Z2 ⊂ Z1 is a relative effective Cartier divisor.
And so on until one reaches Z = Zn = V (f1, . . . , fn). Then Z → Spec(B) is a
regular immersion and Z is flat over S, in particular Z → Spec(B) is a relative
quasi-regular immersion over Spec(A). This proves (1).

To see (2) consider the closed immersion Z → D. The surjective ring map u :
OD,x → OZ,x is a map of flat local OS,s-algebras which are essentially of finite
presentation, and which becomes an isomorphisms after dividing by ms. Hence
it is an isomorphism, see Algebra, Lemma 124.4. It follows that Z → D is an
isomorphism in a neighbourhood of x, see Algebra, Lemma 122.6.

To see (3), after possibly shrinking U we may assume that the ideal of Z is generated
by a regular sequence f1, . . . , fr (see our construction of Z above) and the ideal of
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T is generated by g1, . . . , gc. We claim that c = r. Namely,

dimx(Xs) = dim(OXs,x) + trdegκ(s)(κ(x)),

dimx(Ts) = dim(OTs,x) + trdegκ(s)(κ(x)),

dim(OXs,x) = dim(OTs,x) + r

the first two equalities by Algebra, Lemma 112.3 and the second by r times applying
Algebra, Lemma 59.11. As T ⊂ Z we see that fi =

∑
bijgj . But the ideals of Z

and T cut out the same quasi-regular closed subscheme of Xs in a neighbourhood
of x. Hence the matrix (bij) mod mx is invertible (some details omitted). Hence
(bij) is invertible in an open neighbourhood of x. In other words, T ∩ U = Z after
shrinking U .

The final statements of the lemma follow immediately from part (2), combined with
the fact that Z → S is locally of finite presentation if and only if Z → X is of finite
presentation, see Morphisms, Lemmas 22.3 and 22.11. �

The following lemma is an enhancement of Morphisms, Lemma 35.20.

Lemma 14.7. Let f : X → S be a smooth morphism of schemes. Let σ : S → X
be a section of f . Then σ is a regular immersion.

Proof. By Schemes, Lemma 21.11 the morphism σ is an immersion. After re-
placing X by an open neighbourhood of σ(S) we may assume that σ is a closed
immersion. Let T = σ(S) be the corresponding closed subscheme of X. Since
T → S is an isomorphism it is flat and of finite presentation. Also a smooth mor-
phism is flat and locally of finite presentation, see Morphisms, Lemmas 35.9 and
35.8. Thus, according to Lemma 14.6, it suffices to show that Ts ⊂ Xs is a quasi-
regular closed subscheme. This follows immediately from Morphisms, Lemma 35.20
but we can also see it directly as follows. Let k be a field and let A be a smooth
k-algebra. Let m ⊂ A be a maximal ideal whose residue field is k. Then m is
generated by a quasi-regular sequence, possibly after replacing A by Ag for some
g ∈ A, g 6∈ m. In Algebra, Lemma 135.3 we proved that Am is a regular local ring,
hence mAm is generated by a regular sequence. This does indeed imply that m is
generated by a regular sequence (after replacing A by Ag for some g ∈ A, g 6∈ m),
see Algebra, Lemma 67.8. �

The following lemma has a kind of converse, see Lemma 14.11.

Lemma 14.8. Let

Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and
i, j immersions. If j is a regular (resp. Koszul-regular, H1-regular, quasi-regular)
immersion, then so is i.

Proof. We can write i as the composition

Y → Y ×S X → X
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By Lemma 14.7 the first arrow is a regular immersion. The second arrow is a flat
base change of Y → S, hence is a regular (resp. Koszul-regular, H1-regular, quasi-
regular) immersion, see Lemma 13.4. We conclude by an application of Lemma
13.7. �

Lemma 14.9. Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is syn-
tomic, X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. After replacing X by an open neighbourhood of i(Y ) we may assume that
i is a closed immersion. Let T = i(Y ) be the corresponding closed subscheme of X.
Since T ∼= Y the morphism T → S is flat and of finite presentation (Morphisms,
Lemmas 32.6 and 32.7). Also a smooth morphism is flat and locally of finite pre-
sentation (Morphisms, Lemmas 35.9 and 35.8). Thus, according to Lemma 14.6, it
suffices to show that Ts ⊂ Xs is a quasi-regular closed subscheme. As Xs is locally
of finite type over a field, it is Noetherian (Morphisms, Lemma 16.6). Thus we
can check that Ts ⊂ Xs is a quasi-regular immersion at points, see Lemma 12.8.
Take t ∈ Ts. By Morphisms, Lemma 32.9 the local ring OTs,t is a local complete
intersection over κ(s). The local ring OXs,t is regular, see Algebra, Lemma 135.3.
By Algebra, Lemma 130.7 we see that the kernel of the surjection OXs,t → OTs,t

is generated by a regular sequence, which is what we had to show. �

Lemma 14.10. Let
Y

��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume that Y → S is smooth,
X → S smooth, and i an immersion. Then i is a regular immersion.

Proof. This is a special case of Lemma 14.9 because a smooth morphism is syn-
tomic, see Morphisms, Lemma 35.7. �

Lemma 14.11. Let
Y

j ��

i
// X

��
S

be a commutative diagram of morphisms of schemes. Assume X → S smooth, and i,
j immersions. If i is a Koszul-regular (resp. H1-regular, quasi-regular) immersion,
then so is j.

Proof. Let y ∈ Y be any point. Set x = i(y) and set s = j(y). It suffices to prove
the result after replacing X,S by open neighbourhoods U, V of x, s and Y by an
open neighbourhood of y in i−1(U) ∩ j−1(V ). Hence we may assume that Y , X
and S are affine. In this case we can choose a closed immersion h : X → An

S over
S for some n. Note that h is a regular immersion by Lemma 14.10. Hence h ◦ i is a
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Koszul-regular (resp. H1-regular, quasi-regular) immersion, see Lemmas 13.7 and
13.2. In this way we reduce to the case X = An

S and S affine.

After replacing S by an affine open V and replacing Y by j−1(V ) we may assume
that i is a closed immersion and S affine. Write S = Spec(A). Then j : Y → S
defines an isomorphism of Y to the closed subscheme Spec(A/I) for some ideal
I ⊂ A. The map i : Y = Spec(A/I) → An

S = Spec(A[x1, . . . , xn]) corresponds to
an A-algebra homomorphism i] : A[x1, . . . , xn] → A/I. Choose ai ∈ A which map
to i](xi) in A/I. Observe that the ideal of the closed immersion i is

J = (x1 − a1, . . . , xn − an) + IA[x1, . . . , xn].

Set K = (x1 − a1, . . . , xn − an). We claim the sequence

0→ K/KJ → J/J2 → J/(K + J2)→ 0

is split exact. To see this note that K/K2 is free with basis xi − ai over the ring
A[x1, . . . , xn]/K ∼= A. Hence K/KJ is free with the same basis over the ring
A[x1, . . . , xn]/J ∼= A/I. On the other hand, taking derivatives gives a map

dA[x1,...,xn]/A : J/J2 −→ ΩA[x1,...,xn]/A ⊗A[x1,...,xn] A[x1, . . . , xn]/J

which maps the generators xi − ai to the basis elements dxi of the free module on
the right. The claim follows. Moreover, note that x1 − a1, . . . , xn − an is a regular
sequence in A[x1, . . . , xn] with quotient ring A[x1, . . . , xn]/(x1− a1, . . . , xn− an) ∼=
A. Thus we have a factorization

Y → V (x1 − a1, . . . , xn − an)→ An
S

of our closed immersion i where the composition is Koszul-regular (resp. H1-regular,
quasi-regular), the second arrow is a regular immersion, and the associated conor-
mal sequence is split. Now the result follows from Lemma 13.8. �

15. Meromorphic functions and sections

See [Kle79] for some possible pitfalls1.

Let (X,OX) be a locally ringed space. For any open U ⊂ X we have defined the
set S(U) ⊂ OX(U) of regular sections of OX over U , see Definition 9.16. The
restriction of a regular section to a smaller open is regular. Hence S : U 7→ S(U)
is a subsheaf (of sets) of OX . We sometimes denote S = SX if we want to indicate
the dependence on X. Moreover, S(U) is a multiplicative subset of the ring OX(U)
for each U . Hence we may consider the presheaf of rings

U 7−→ S(U)−1OX(U),

see Modules, Lemma 22.1.

Definition 15.1. Let (X,OX) be a locally ringed space. The sheaf of meromorphic
functions on X is the sheaf KX associated to the presheaf displayed above. A
meromorphic function on X is a global section of KX .

Since each element of each S(U) is a nonzerodivisor on OX(U) we see that the
natural map of sheaves of rings OX → KX is injective.

1Danger, Will Robinson!
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Example 15.2. Let A = C[x, {yα}α∈C]/((x − α)yα, yαyβ). Any element of A
can be written uniquely as f(x) +

∑
λαyα with f(x) ∈ C[x] and λα ∈ C. Let

X = Spec(A). In this case OX = KX , since on any affine open D(f) the ring Af
any nonzerodivisor is a unit (proof omitted).

Definition 15.3. Let f : (X,OX) → (Y,OY ) be a morphism of locally ringed
spaces. We say that pullbacks of meromorphic functions are defined for f if for every
pair of open U ⊂ X, V ⊂ Y such that f(U) ⊂ V , and any section s ∈ Γ(V,SY ) the
pullback f ](s) ∈ Γ(U,OX) is an element of Γ(U,SX).

In this case there is an induced map f ] : f−1KY → KX , in other words we obtain
a commutative diagram of morphisms of ringed spaces

(X,KX) //

f

��

(X,OX)

f

��
(Y,KY ) // (Y,OX)

We sometimes denote f∗(s) = f ](s) for a section s ∈ Γ(Y,KY ).

Lemma 15.4. Let f : X → Y be a morphism of schemes. In each of the following
cases pullbacks of meromorphic sections are defined.

(1) X, Y are integral and f is dominant,
(2) X is integral and the generic point of X maps to a generic point of an

irreducible component of Y ,
(3) X is reduced and every generic point of every irreducible component of X

maps to the generic point of an irreducible component of Y ,
(4) X is locally Noetherian, and any associated point of X maps to a generic

point of an irreducible component of Y , and
(5) X is locally Noetherian, has no embedded points and any generic point of

an irreducible component of X maps to the generic point of an irreducible
component of Y .

Proof. Omitted. Hint: Similar to the proof of Lemma 9.12, using the following
fact (on Y ): if an element x ∈ R maps to a nonzerodivisor in Rp for a minimal
prime p of R, then x 6∈ p. See Algebra, Lemma 24.1. �

Let (X,OX) be a locally ringed space. Let F be a sheaf of OX -modules. Consider
the presheaf U 7→ S(U)−1F(U). Its sheafification is the sheaf F ⊗OX

KX , see
Modules, Lemma 22.2.

Definition 15.5. Let X be a locally ringed space. Let F be a sheaf of OX -modules.

(1) We denote KX(F) the sheaf of KX -modules which is the sheafification of
the presheaf U 7→ S(U)−1F(U). Equivalently KX(F) = F ⊗OX

KX (see
above).

(2) A meromorphic section of F is a global section of KX(F).

In particular we have

KX(F)x = Fx ⊗OX,x
KX,x = S−1x Fx

for any point x ∈ X. However, one has to be careful since it may not be the case
that Sx is the set of nonzerodivisors in the local ring OX,x. Namely, there is always
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an injective map
KX,x −→ Q(OX,x)

to the total quotient ring. It is also surjective if and only if Sx is the set of nonzero-
divisors in OX,x. The sheaves of meromorphic sections aren’t quasi-coherent mod-
ules in general, but they do have some properties in common with quasi-coherent
modules.

Lemma 15.6. Let X be a quasi-compact scheme. Let h ∈ Γ(X,OX) and f ∈
Γ(X,KX) such that f restricts to zero on Xh. Then hnf = 0 for some n� 0.

Proof. We can find a covering of X by affine opens U such that f |U = s−1a
with a ∈ OX(U) and s ∈ S(U). Since X is quasi-compact we can cover it by
finitely many affine opens of this form. Thus it suffices to prove the lemma when
X = Spec(A) and f = s−1a. Note that s ∈ A is a nonzerodivisor hence it suffices
to prove the result when f = a. The condition f |Xh

= 0 implies that a maps to
zero in Ah = OX(Xh) as OX ⊂ KX . Thus hna = 0 for some n > 0 as desired. �

Lemma 15.7. Let X be a locally Noetherian scheme.

(1) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors, and hence
KX,x is the total quotient ring of OX,x.

(2) For any affine open U ⊂ X the ring KX(U) equals the total quotient ring
of OX(U).

Proof. To prove this lemma we may assume X is the spectrum of a Noetherian
ring A. Say x ∈ X corresponds to p ⊂ A.

Proof of (1). It is clear that Sx is contained in the set of nonzero divisors of
OX,x = Ap. For the converse, let f, g ∈ A, g 6∈ p and assume f/g is a nonzerodivisor
in Ap. Let I = {a ∈ A | af = 0}. Then we see that Ip = 0 by exactness of
localization. Since A is Noetherian we see that I is finitely generated and hence
that g′I = 0 for some g′ ∈ A, g′ 6∈ p. Hence f is a nonzerodivisor in Ag′ , i.e., in a
Zariski open neighbourhood of p. Thus f/g is an element of Sx.

Proof of (2). Let f ∈ Γ(X,KX) be a meromorphic function. Set I = {a ∈ A | af ∈
A}. Fix a prime p ⊂ A corresponding to the point x ∈ X. By (1) we can write
the image of f in the stalk at p as a/b, a, b ∈ Ap with b ∈ Ap not a zerodivisor.
Write b = c/d with c, d ∈ A, d 6∈ p. Then ad− cf is a section of KX which vanishes
in an open neighbourhood of x. Say it vanishes on D(e) with e ∈ A, e 6∈ p. Then
en(ad − cf) = 0 for some n � 0 by Lemma 15.6. Thus enc ∈ I and enc maps to
a nonzerodivisor in Ap. Let Ass(A) = {q1, . . . , qt} be the associated primes of A.
By looking at IAqi

and using Algebra, Lemma 62.14 the above says that I 6⊂ qi
for each i. By Algebra, Lemma 14.2 there exists an element x ∈ I, x 6∈

⋃
qi. By

Algebra, Lemma 62.9 we see that x is not a zerodivisor on A. Hence f = (xf)/x is
an element of the total ring of fractions of A. This proves (2). �

Lemma 15.8. Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components.

(1) The sheaf KX is a quasi-coherent sheaf of OX-algebras.
(2) For any x ∈ X we have Sx ⊂ OX,x is the set of nonzerodivisors. In

particular KX,x is the total quotient ring of OX,x.
(3) For any affine open Spec(A) = U ⊂ X we have that KX(U) equals the total

quotient ring of A.
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Proof. Let X be as in the lemma. Let X(0) ⊂ X be the set of generic points of
irreducible components of X. Let

f : Y =
∐

η∈X(0)
Spec(κ(η)) −→ X

be the inclusion of the generic points into X using the canonical maps of Schemes,
Section 13. (This morphism was used in Morphisms, Definition 48.12 to define the
normalization of X.) We claim that KX = f∗OY . First note that KY = OY as Y
is a disjoint union of spectra of field. Next, note that pullbacks of meromorphic
functions are defined for f , by Lemma 15.4. This gives a map

KX −→ f∗OY .
Let Spec(A) = U ⊂ X be an affine open. Then A is a reduced ring with finitely
many minimal primes q1, . . . , qt. Then we have Q(A) =

∏
Aqi =

∏
κ(qi) by Al-

gebra, Lemmas 24.4 and 24.1. In other words, already the value of the presheaf
U 7→ S(U)−1OX(U) agrees with f∗OY (U) on our affine open U . Hence the dis-
played map is an isomorphism.

Now we are ready to prove (1), (2) and (3). The morphism f is quasi-compact by
our assumption that the set of irreducible components of X is locally finite. Hence
f is quasi-compact and quasi-separated (as Y is separated). By Schemes, Lemma
24.1 f∗OY is quasi-coherent. This proves (1). Let x ∈ X. Then

(f∗OY )x =
∏

η∈X(0), x∈{η}
κ(η)

On the other hand, OX,x is reduced and has finitely minimal primes qi correspond-

ing exactly to those η ∈ X(0) such that x ∈ {η}κ(η). Hence by Algebra, Lemmas
24.4 and 24.1 again we see that Q(OX,x) =

∏
κ(qi) is the same as (f∗OY )x. This

proves (2). Part (3) we saw during the course of the proof that KX = f∗OY . �

Lemma 15.9. Let X be a scheme. Assume X is reduced and any quasi-compact
open U ⊂ X has a finite number of irreducible components. Then the normalization
morphism ν : Xν → X is the morphism

Spec
X

(O′) −→ X

where O′ ⊂ KX is the integral closure of OX in the sheaf of meromorphic functions.

Proof. Compare the definition of the normalization morphism ν : Xν → X (see
Morphisms, Definition 48.12) with the result KX = f∗OY obtained in the proof of
Lemma 15.8 above. �

Lemma 15.10. Let X be an integral scheme with generic point η. We have

(1) the sheaf of meromorphic functions is isomorphic to the constant sheaf with
value the function field (see Morphisms, Definition 10.5) of X.

(2) for any quasi-coherent sheaf F on X the sheaf KX(F) is isomorphic to the
constant sheaf with value Fη.

Proof. Omitted. �

Definition 15.11. Let X be a locally ringed space. Let L be an invertible OX -
module. A meromorphic section s of L is said to be regular if the induced map
KX → KX(L) is injective. (In other words, this means that s is a regular section
of the invertible KX -module KX(L). See Definition 9.16.)
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First we spell out when (regular) meromorphic sections can be pulled back. After
that we discuss the existence of regular meromorphic sections and consequences.

Lemma 15.12. Let f : X → Y be a morphism of locally ringed spaces. Assume
that pullbacks of meromorphic functions are defined for f (see Definition 15.3).

(1) Let F be a sheaf of OY -modules. There is a canonical pullback map f∗ :
Γ(Y,KY (F))→ Γ(X,KX(f∗F)) for meromorphic sections of F .

(2) Let L be an invertible OX-module. A regular meromorphic section s of L
pulls back to a regular meromorphic section f∗s of f∗L.

Proof. Omitted. �

In some cases we can show regular meromorphic sections exist.

Lemma 15.13. Let X be a scheme. Let L be an invertible OX-module. In each of
the following cases L has a regular meromorphic section:

(1) X is integral,
(2) X is reduced and any quasi-compact open has a finite number of irreducible

components, and
(3) X is locally Noetherian and has no embedded points.

Proof. In case (1) we have seen in Lemma 15.10 that KX(L) is a constant sheaf
with value Lη, and hence the result is clear.

Suppose X is a scheme. Let G ⊂ X be the set of generic points of irreducible
components of X. For each η ∈ G denote jη : η → X the canonical morphism of
η = Spec(κ(η)) into X (see Schemes, Lemma 13.3). Consider the sheaf

GX(L) =
∏

η∈G
jη,∗(Lη).

There is a canonical map

ϕ : KX(L) −→ GX(L)

coming from the maps KX(L)η → Lη and adjunction (see Sheaves, Lemma 27.3).

We claim that in cases (2) and (3) the map ϕ is an isomorphism for any invertible
sheaf L. Before proving this let us show that cases (2) and (3) follow from this.
Namely, we can choose sη ∈ Lη which generate Lη, i.e., such that Lη = OX,ηsη.
Since the claim applied to OX gives KX = GX(OX) it is clear that the global section
s =

∏
η∈G sη is regular as desired.

To prove that ϕ is an isomorphism we may work locally onX. For example it suffices
to show that sections of KX(L) and GX(L) agree over small affine opens U . Say
U = Spec(A) and L|U ∼= OU . By Lemmas 15.7 and 15.8 we see that Γ(U,KX) =
Q(A) is the total ring of fractions of A. On the other hand, Γ(U,GX(OX)) =∏

q⊂A minimalAq. In both cases we see that the set of minimal primes of A is finite,

say q1, . . . , qt, and that the set of zerodivisors of A is equal to q1 ∪ . . . ∪ qt (see
Algebra, Lemma 62.9). Hence the result follows from Algebra, Lemma 24.4. �

Lemma 15.14. Let X be a scheme. Let L be an invertible OX-module. Let s be a
regular meromorphic section of L. Let us denote I ⊂ OX the sheaf of ideals defined
by the rule

I(V ) = {f ∈ OZ(V ) | fs ∈ L(V )}.
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The formula makes sense since L(V ) ⊂ KX(L)(V ). Then I is a quasi-coherent
sheaf of ideals and we have injective maps

1 : I −→ OX , s : I −→ L

whose cokernels are supported on closed nowhere dense subsets of X.

Proof. The question is local on X. Hence we may assume that X = Spec(A), and
L = OX . After shrinking further we may assume that s = x/y with a, b ∈ A both
nonzerodivisors in A. Set I = {x ∈ A | x(a/b) ∈ A}.

To show that I is quasi-coherent we have to show that If = {x ∈ Af | x(a/b) ∈ Af}
for every f ∈ A. If c/fn ∈ Af , (c/fn)(a/b) ∈ Af , then we see that fmc(a/b) ∈ A
for some m, hence c/fn ∈ If . Conversely it is easy to see that If is contained in
{x ∈ Af | x(a/b) ∈ Af}. This proves quasi-coherence.

Let us prove the final statement. It is clear that (b) ⊂ I. Hence V (I) ⊂ V (b) is a
nowhere dense subset as b is a nonzerodivisor. Thus the cokernel of 1 is supported
in a nowhere dense closed set. The same argument works for the cokernel of s since
s(b) = (a) ⊂ sI ⊂ A. �

Definition 15.15. Let X be a scheme. Let L be an invertible OX -module. Let s
be a regular meromorphic section of L. The sheaf of ideals I constructed in Lemma
15.14 is called the ideal sheaf of denominators of s.

Here is a lemma which will be used later.

Lemma 15.16. Suppose given

(1) X a locally Noetherian scheme,
(2) L an invertible OX-module,
(3) s a regular meromorphic section of L, and
(4) F coherent on X without embedded associated points and Supp(F) = X.

Let I ⊂ OX be the ideal of denominators of s. Let T ⊂ X be the union of the
supports of OX/I and L/s(I) which is a nowhere dense closed subset T ⊂ X
according to Lemma 15.14. Then there are canonical injective maps

1 : IF → F , s : IF → F ⊗OX
L

whose cokernels are supported on T .

Proof. Reduce to the affine case with L ∼= OX , and s = a/b with a, b ∈ A both

nonzerodivisors. Proof of reduction step omitted. Write F = M̃ . Let I = {x ∈
A | x(a/b) ∈ A} so that I = Ĩ (see proof of Lemma 15.14). Note that T =
V (I) ∪ V ((a/b)I). For any A-module M consider the map 1 : IM → M ; this is
the map that gives rise to the map 1 of the lemma. Consider on the other hand
the map σ : IM → Mb, x 7→ ax/b. Since b is not a zerodivisor in A, and since M
has support Spec(A) and no embedded primes we see that b is a nonzerodivisor on
M also. Hence M ⊂ Mb. By definition of I we have σ(IM) ⊂ M as submodules
of Mb. Hence we get an A-module map s : IM → M (namely the unique map
such that s(z)/1 = σ(z) in Mb for all z ∈ IM). It is injective because a is a
nonzerodivisor also (on both A and M). It is clear that M/IM is annihilated by I
and that M/s(IM) is annihilated by (a/b)I. Thus the lemma follows. �
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16. Relative Proj

Some results on relative Proj. First some very basic results. Recall that a relative
Proj is always separated over the base, see Constructions, Lemma 16.9.

Lemma 16.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A)→ S be the relative Proj of A. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then p is quasi-compact.

Proof. The question is local on the base, see Schemes, Lemma 19.2. Thus we
may assume S is affine. Say S = Spec(R) and A corresponds to the graded R-
algebra A. Then X = Proj(A), see Constructions, Section 15. In case (1) we may
after possibly localizing more assume that A is generated by homogeneous elements
f1, . . . , fn ∈ A+ over A0. Then A+ = (f1, . . . , fn) by Algebra, Lemma 57.1. In case

(3) we see that F = M̃ for some finite type A0-module M ⊂ A+. Say M =
∑
A0fi.

Say fi =
∑
fi,j is the decomposition into homogeneous pieces. The condition in

(2) signifies that A+ ⊂
√

(fi,j). Thus in both cases we conclude that Proj(A) is
quasi-compact by Constructions, Lemma 8.9. Finally, (2) follows from (1). �

Lemma 16.2. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If A is of finite type as a

sheaf of OS-algebras, then p is of finite type.

Proof. The assumption implies that p is quasi-compact, see Lemma 16.1. Hence
it suffices to show that p is locally of finite type. Thus the question is local on the
base and target, see Morphisms, Lemma 16.2. Say S = Spec(R) and A corresponds
to the graded R-algebra A. After further localizing on S we may assume that A is
a finite type R-algebra. The scheme X is constructed out of glueing the spectra of
the rings A(f) for f ∈ A+ homogeneous. Each of these is of finite type over R by
Algebra, Lemma 55.9. Thus Proj(A) is of finite type over R. �

Lemma 16.3. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. If OS → A0 is an integral

algebra map2 and A is of finite type as an A0-algebra, then p is universally closed.

Proof. The question is local on the base. Thus we may assume thatX = Spec(R) is
affine. Let A be the quasi-coherent OX -algebra associated to the graded R-algebra
A. The assumption is that R → A0 is integral and A is of finite type over A0.
Write X → Spec(R) as the composition X → Spec(A0)→ Spec(R). Since R→ A0

is an integral ring map, we see that Spec(A0) → Spec(R) is universally closed,
see Morphisms, Lemma 44.7. The quasi-compact (see Constructions, Lemma 8.9)
morphism

Proj(A)→ Proj(A0)

satisfies the existence part of the valuative criterion by Constructions, Lemma 8.11
and hence it is universally closed by Schemes, Proposition 20.6. Thus X → Spec(R)
is universally closed as a composition of universally closed morphisms. �

2In other words, the integral closure of OS in A0, see Morphisms, Definition 48.2, equals A0.
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Lemma 16.4. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. The following conditions are

equivalent

(1) A0 is a finite type OS-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OS-module and A is of finite type as an OS-algebra

If these conditions hold, then p is locally projective and in particular proper.

Proof. Assume that A0 is a finite type OS-module. Choose an affine open U =
Spec(R) ⊂ X such that A corresponds to a graded R-algebra A with A0 a finite
R-module. Condition (1) means that (after possibly localizing further on S) that
A is a finite type A0-algebra and condition (2) means that (after possibly localizing
further on S) that A is a finite type R-algebra. Thus these conditions imply each
other by Algebra, Lemma 6.2.

A locally projective morphism is proper, see Morphisms, Lemma 43.5. Thus we may
now assume that S = Spec(R) and X = Proj(A) and that A0 is finite over R and
A of finite type over R. We will show that X = Proj(A) → Spec(R) is projective.
We urge the reader to prove this for themselves, by directly constructing a closed
immersion of X into a projective space over R, instead of reading the argument we
give below.

By Lemma 16.2 we see that X is of finite type over Spec(R). Constructions, Lemma
10.6 tells us that OX(d) is ample on X for some d ≥ 1 (see Properties, Section
24). Hence X → Spec(R) is quasi-projective (by Morphisms, Definition 41.1). By
Morphisms, Lemma 43.12 we conclude that X is isomorphic to an open subscheme
of a scheme projective over Spec(R). Therefore, to finish the proof, it suffices to
show that X → Spec(R) is universally closed (use Morphisms, Lemma 42.7). This
follows from Lemma 16.3. �

17. Closed subschemes of relative proj

Some auxiliary lemmas about closed subschemes of relative proj.

Lemma 17.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Let p : X = Proj

S
(A) → S be the relative Proj of A. Let i : Z → X be a closed

subscheme. Denote I ⊂ A the kernel of the canonical map

A −→
⊕

d≥0
p∗ ((i∗OZ)(d))

If p is quasi-compact, then there is an isomorphism Z = Proj
S

(A/I).

Proof. The morphism p is separated by Constructions, Lemma 16.9. As p is
quasi-compact, p∗ transforms quasi-coherent modules into quasi-coherent modules,
see Schemes, Lemma 24.1. Hence I is a quasi-coherent OS-module. In particu-
lar, B = A/I is a quasi-coherent graded OS-algebra. The functoriality morphism
Z ′ = Proj

S
(B)→ Proj

S
(A) is everywhere defined and a closed immersion, see Con-

structions, Lemma 18.3. Hence it suffices to prove Z = Z ′ as closed subschemes of
X.

Having said this, the question is local on the base and we may assume that S =

Spec(R) and that X = Proj(A) for some graded R-algebra A. Assume I = Ĩ for
I ⊂ A a graded ideal. By Constructions, Lemma 8.9 there exist f0, . . . , fn ∈ A+

such that A+ ⊂
√

(f0, . . . , fn) in other words X =
⋃
D+(fi). Therefore, it suffices
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to check that Z∩D+(fi) = Z ′∩D+(fi) for each i. By renumbering we may assume
i = 0. Say Z∩D+(f0), resp. Z ′∩D+(f0) is cut out by the ideal J , resp. J ′ of A(f0).

The inclusion J ′ ⊂ J . Let d be the least common multiple of deg(f0), . . . ,deg(fn).

Note that each of the twists OX(nd) is invertible, trivialized by f
nd/ deg(fi)
i over

D+(fi), and that for any quasi-coherent module F on X the multiplication maps
OX(nd) ⊗OX

F(m) → F(nd + m) are isomorphisms, see Constructions, Lemma
10.2. Observe that J ′ is the ideal generated by the elements g/fe0 where g ∈ I
is homogeneous of degree edeg(f0) (see proof of Constructions, Lemma 11.3). Of
course, by replacing g by f l0g for suitable l we may always assume that d|e. Then,
since g vanishes as a section of OX(edeg(f0)) restricted to Z we see that g/fd0 is
an element of J . Thus J ′ ⊂ J .

Conversely, suppose that g/fe0 ∈ J . Again we may assume d|e. Pick i ∈ {1, . . . , n}.
Then Z ∩D+(fi) is cut out by some ideal Ji ⊂ A(fi). Moreover,

J ·A(f0fi) = Ji ·A(f0fi)

The right hand side is the localization of Ji with respect to f
deg(fi)
0 /f

deg(f0)
i . It

follows that

fei0 g/f
(ei+e) deg(f0)/ deg(fi)
i ∈ Ji

for some ei � 0 sufficiently divisible. This proves that f
max(ei)
0 g is an element of I,

because its restriction to each affine open D+(fi) vanishes on the closed subscheme
Z ∩D+(fi). Hence g ∈ J ′ and we conclude J ⊂ J ′ as desired. �

In case the closed subscheme is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 17.2. Let S be a quasi-compact and quasi-separated scheme. Let A be
a quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative

Proj of A. Let i : Z → X be a closed subscheme. If p is quasi-compact and i
of finite presentation, then there exists a d > 0 and a quasi-coherent finite type
OS-submodule F ⊂ Ad such that Z = Proj

S
(A/FA).

Proof. By Lemma 17.1 we know there exists a quasi-coherent graded sheaf of ideals
I ⊂ A such that Z = Proj(A/I). Since S is quasi-compact we can choose a finite
affine open covering S = U1 ∪ . . . ∪ Un. Say Ui = Spec(Ri). Let A|Ui

correspond
to the graded Ri-algebra Ai and I|Ui

to the graded ideal Ii ⊂ Ai. Note that
p−1(Ui) = Proj(Ai) as schemes over Ri. Since p is quasi-compact we can choose
finitely many homogeneous elements fi,j ∈ Ai,+ such that p−1(Ui) = D+(fi,j). The
condition on Z → X means that the ideal sheaf of Z in OX is of finite type, see
Morphisms, Lemma 22.7. Hence we can find finitely many homogeneous elements
hi,j,k ∈ Ii ∩ Ai,+ such that the ideal of Z ∩D+(fi,j) is generated by the elements
hi,j,k/f

ei,j,k
i,j . Choose d > 0 to be a common multiple of all the integers deg(fi,j)

and deg(hi,j,k). By Properties, Lemma 20.7 there exists a finite type F ⊂ Id such
that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j

are sections of F . By construction F is a solution. �

The following version of Lemma 17.2 will be used in the proof of Lemma 20.2.
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Lemma 17.3. Let S be a quasi-compact and quasi-separated scheme. Let A be a
quasi-coherent graded OS-algebra. Let p : X = Proj

S
(A) → S be the relative Proj

of A. Let i : Z → X be a closed subscheme. Let U ⊂ X be an open. Assume that

(1) p is quasi-compact,
(2) i of finite presentation,
(3) U ∩ p(i(Z)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OS-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OS-submodule F ⊂ Ad
with (a) Z = Proj

S
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. Let I ⊂ A be the sheaf of quasi-coherent graded ideals constructed in
Lemma 17.1. Let Ui, Ri, Ai, Ii, fi,j , hi,j,k, and d be as constructed in the proof of
Lemma 17.2. Since U∩p(i(Z)) = ∅ we see that Id|U = Ad|U (by our construction of
I as a kernel). Since U is quasi-compact we can choose a finite affine open covering
U = W1 ∪ . . . ∪Wm. Since Ad is of finite type we can find finitely many sections
gt,s ∈ Ad(Wt) which generate Ad|Wt

= Id|Wt
as an OWt

-module. To finish the
proof, note that by Properties, Lemma 20.7 there exists a finite type F ⊂ Id such
that all the local sections

hi,j,kf
(d−deg(hi,j,k))/ deg(fi,j)
i,j and gt,s

are sections of F . By construction F is a solution. �

18. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 18.1. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals, and let Z ⊂ X be the closed subscheme corresponding to I, see Schemes,
Definition 10.2. The blowing up of X along Z, or the blowing up of X in the ideal
sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blow up is the inverse image b−1(Z). Sometimes Z
is called the center of the blowup.

We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” scheme over X such that
the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blow up of X in Z, then we often denote OX′(n) the
twists of the structure sheaf. Note that these are invertible OX′ -modules and that
OX′(n) = OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded
OX -algebra which is generated in degree 1, see Constructions, Lemma 16.11. Note
that OX′(1) is b-relatively very ample, even though b need not be of finite type
or even quasi-compact, because X ′ comes equipped with a closed immersion into
P(I), see Morphisms, Example 39.3.

Lemma 18.2. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
Let U = Spec(A) be an affine open subscheme of X and let I ⊂ A be the ideal
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corresponding to I|U . If b : X ′ → X is the blow up of X in I, then there is a
canonical isomorphism

b−1(U) = Proj(
⊕

d≥0
Id)

of b−1(U) with the homogeneous spectrum of the Rees algebra of I in A. Moreover,
b−1(U) has an affine open covering by spectra of the affine blowup algebras A[ Ia ].

Proof. The first statement is clear from the construction of the relative Proj via
glueing, see Constructions, Section 15. For a ∈ I denote a(1) the element a seen as
an element of degree 1 in the Rees algebra

⊕
n≥0 I

n. Since these elements generate

the Rees algebra over A we see that Proj(
⊕

d≥0 I
d) is covered by the affine opens

D+(a(1)). The affine scheme D+(a(1)) is the spectrum of the affine blowup algebra
A′ = A[ Ia ], see Algebra, Definition 56.1. This finishes the proof. �

Lemma 18.3. Let X1 → X2 be a flat morphism of schemes. Let Z2 ⊂ X2 be a
closed subscheme. Let Z1 be the inverse image of Z2 in X1. Let X ′i be the blow up
of Zi in Xi. Then there exists a cartesian diagram

X ′1 //

��

X ′2

��
X1

// X2

of schemes.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given
morphism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1

(by definition
of the inverse image, see Schemes, Definition 17.7). By Constructions, Lemma 16.10
we see that X1×X2X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat the map

g∗In2 → OX1
is injective with image In1 . Thus we see that X1 ×X2

X ′2 = X ′1. �

Lemma 18.4. Let X be a scheme. Let Z ⊂ X be a closed subscheme. The blowing
up b : X ′ → X of Z in X has the following properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,

(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. As blowing up commutes with restrictions to open subschemes (Lemma
18.3) the first statement just means that X ′ = X if Z = ∅. In this case we are
blowing up in the ideal sheaf I = OX and the result follows from Constructions,
Example 8.14.

The second statement is local on X, hence we may assume X affine. Say X =
Spec(A) and Z = Spec(A/I). By Lemma 18.2 we see that X ′ is covered by the
spectra of the affine blowup algebras A′ = A[ Ia ]. Then IA′ = aA′ and a maps to a
nonzerodivisor in A′ according to Algebra, Lemma 56.2. This proves the lemma as
the inverse image of Z in Spec(A′) corresponds to Spec(A′/IA′) ⊂ Spec(A′).

Consider the canonical map ψuniv,1 : b∗I → OX′(1), see discussion following Con-
structions, Definition 16.7. We claim that this factors through an isomorphism
IE → OX′(1) (which proves the final assertion). Namely, on the affine open corre-
sponding to the blowup algebra A′ = A[ Ia ] mentioned above ψuniv,1 corresponds to
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the A′-module map

I ⊗A A′ −→
((⊕

d≥0
Id
)
a(1)

)
1

where a(1) is as in Algebra, Definition 56.1. We omit the verification that this is
the map I ⊗A A′ → IA′ = aA′. �

Lemma 18.5 (Universal property blowing up). Let X be a scheme. Let Z ⊂ X be
a closed subscheme. Let C be the full subcategory of (Sch/X) consisting of Y → X
such that the inverse image of Z is an effective Cartier divisor on Y . Then the
blowing up b : X ′ → X of Z in X is a final object of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 18.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and
let ID be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible
OY -module. This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras.

(We observe that IdD = I⊗dD as D is an effective Cartier divisor.) By the material in
Constructions, Section 16 the triple (1, f : Y → X,ψ) defines a morphism Y → X ′

over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
9.4. Thus the morphism Y → X ′ is unique by Morphisms, Lemma 7.10 (also b is
separated by Constructions, Lemma 16.9). �

Lemma 18.6. Let X be a scheme. Let Z ⊂ X be an effective Cartier divisor. The
blowup of X in Z is the identity morphism of X.

Proof. Immediate from the universal property of blowups (Lemma 18.5). �

Lemma 18.7. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
If X is integral, then the blow up X ′ of X in I is integral.

Proof. Combine Lemma 18.2 with Algebra, Lemma 56.4. �

Lemma 18.8. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of ideals.
If X is reduced, then the blow up X ′ of X in I is reduced.

Proof. Combine Lemma 18.2 with Algebra, Lemma 56.5. �

Lemma 18.9. Let X be a scheme. Let b : X ′ → X be a blow up of X in a closed
subscheme. For any effective Cartier divisor D on X the pullback b−1D is defined
(see Definition 9.11).

Proof. By Lemmas 18.2 and 9.2 this reduces to the following algebra fact: Let A
be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the image of
x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then
amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an

is zero in A[ Ia ] as desired. �

Lemma 18.10. Let X be a scheme. Let I ⊂ OX and J be quasi-coherent sheaves
of ideals. Let b : X ′ → X be the blowing up of X in I. Let b′ : X ′′ → X ′ be the
blowing up of X ′ in b−1JOX′ . Then X ′′ → X is canonically isomorphic to the
blowing up of X in IJ .
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Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 18.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by
Lemma 18.9. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier
divisor). Consider the effective Cartier divisor E′′ = E′+(b′)−1E. By construction
the ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to Lemma 18.5
there is a canonical morphism from X ′′ to the blowup c : Y → X of X in IJ .
Conversely, as IJ pulls back to an invertible ideal we see that c−1IOY defines an
effective Cartier divisor, see Lemma 9.9. Thus a morphism c′ : Y → X ′ over X
by Lemma 18.5. Then (c′)−1b−1JOY = c−1JOY which also defines an effective
Cartier divisor. Thus a morphism c′′ : Y → X ′′ over X ′. We omit the verification
that this morphism is inverse to the morphism X ′′ → Y constructed earlier. �

Lemma 18.11. Let X be a scheme. Let I ⊂ OX be a quasi-coherent sheaf of
ideals. Let b : X ′ → X be the blowing up of X in the ideal sheaf I If I is of finite
type, then

(1) b : X ′ → X is a projective morphism, and
(2) OX′(1) is a b-relatively ample invertible sheaf.

Proof. The surjection of graded OX -algebras

Sym∗OX
(I) −→

⊕
d≥0
Id

defines via Constructions, Lemma 18.5 a closed immersion

X ′ = Proj
X

(
⊕

d≥0
Id) −→ P(I).

Hence b is projective, see Morphisms, Definition 43.1. The second statement fol-
lows for example from the characterization of relatively ample invertible sheaves in
Morphisms, Lemma 38.4. Some details omitted. �

Lemma 18.12. Let X be a quasi-compact and quasi-separated scheme. Let Z ⊂ X
be a closed subscheme of finite presentation. Let b : X ′ → X be the blowing up with
center Z. Let Z ′ ⊂ X ′ be a closed subscheme of finite presentation. Let X ′′ → X ′

be the blowing up with center Z ′. There exists a closed subscheme Y ⊂ X of finite
presentation, such that

(1) Y = Z ∪ b(Z ′) set theoretically, and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms, Lemma 22.7.
Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z is a quasi-compact

open of X by Properties, Lemma 22.1. Since b−1(X \Z)→ X \Z is an isomorphism
(Lemma 18.4) the same result shows that b−1(X \Z) \Z ′ is quasi-compact open in
X ′. Hence U = X \ (Z ∪ b(Z ′)) is quasi-compact open in X. By Lemma 17.3 there
exist a d > 0 and a finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA)

and such that the support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite type
quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent confusion.
Since Id/J and O/Id are supported on X \ U we see that V (J ) is contained in
X \ U . Conversely, as J ⊂ Id we see that Z ⊂ V (J ). Over X \ Z ∼= X ′ \ b−1(Z)
the sheaf of ideals J cuts out Z ′ (see displayed formula below). Hence V (J ) equals
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Z ∪ b(Z ′). It follows that also V (IJ ) = Z ∪ b(Z ′) set theoretically. Moreover,
IJ is an ideal of finite type as a product of two such. We claim that X ′′ → X is
isomorphic to the blowing up of X in IJ which finishes the proof of the lemma by
setting Y = V (IJ ).

First, recall that the blow up of X in IJ is the same as the blow up of X ′ in
b−1JOX′ , see Lemma 18.10. Hence it suffices to show that the blow up of X ′ in
b−1JOX′ agrees with the blow up of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′
as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 18.6 and 18.10.

To see the displayed equality of the ideals we may work locally. With notation A,
I, a ∈ I as in Lemma 18.2 we see that F corresponds to an R-submodule M ⊂ Id

mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)

means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. �

19. Strict transform

In this section we briefly discuss strict transform under blowing up. Let S be a
scheme and let Z ⊂ S be a closed subscheme. Let b : S′ → S be the blowing up of
S in Z and denote E ⊂ S′ the exceptional divisor E = b−1Z. In the following we
will often consider a scheme X over S and form the cartesian diagram

pr−1S′ E
//

��

X ×S S′ prX
//

prS′

��

X

f

��
E // S′ // S

Since E is an effective Cartier divisor (Lemma 18.4) we see that pr−1S′ E ⊂ X ×S S′
is locally principal (Lemma 9.10). Thus the complement of pr−1S′ E in X ×S S′ is
retrocompact (Lemma 9.3). Consequently, for a quasi-coherent OX×SS′ -module
G the subsheaf of sections supported on pr−1S′ E is a quasi-coherent submodule,
see Properties, Lemma 22.5. If G is a quasi-coherent sheaf of algebras, e.g., G =
OX×SS′ , then this subsheaf is an ideal of G.

Definition 19.1. With Z ⊂ S and f : X → S as above.

(1) Given a quasi-coherent OX -module F the strict transform of F with respect
to the blowup of S in Z is the quotient F ′ of pr∗XF by the submodule of

sections supported on pr−1S′ E.
(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×S S′ cut out

by the quasi-coherent ideal of sections of OX×SS′ supported on pr−1S′ E.

Note that taking the strict transform along a blowup depends on the closed sub-
scheme used for the blowup (and not just on the morphism S′ → S). This notion
is often used for closed subschemes of S. It turns out that the strict transform of
X is a blowup of X.

Lemma 19.2. In the situation of Definition 19.1.
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(1) The strict transform X ′ of X is the blowup of X in the closed subscheme
f−1Z of X.

(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically
isomorphic to the pushforward along X ′ → X ×S S′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 18.5) there exists a commutative diagram

X ′′ //

��

X

��
S′ // S

whence a morphism X ′′ → X ×S S′. Thus the first assertion is that this morphism
is a closed immersion with image X ′. The question is local on X. Thus we may
assume X and S are affine. Say that S = Spec(A), X = Spec(B), and Z is cut
out by the ideal I ⊂ A. Set J = IB. The map B ⊗A

⊕
n≥0 I

n →
⊕

n≥0 J
n defines

a closed immersion X ′′ → X ×S S′, see Constructions, Lemmas 11.6 and 11.5.
We omit the verification that this morphism is the same as the one constructed
above from the universal property. Pick a ∈ I corresponding to the affine open
Spec(A[ Ia ]) ⊂ S′, see Lemma 18.2. The inverse image of Spec(A[ Ia ]) in the strict
transform X ′ of X is the spectrum of

B′ = (B ⊗A A[ Ia ])/a-power-torsion

On the other hand, letting b ∈ J be the image of a we see that Spec(B[Jb ]) is the

inverse image of Spec(A[ Ia ]) in X ′′. The ring map

B ⊗A A[ Ia ] −→ B[Jb ]

see Properties, Lemma 22.5. is surjective and annihilates a-power torsion as b is
a nonzerodivisor in B[Jb ]. Hence we obtain a surjective map B′ → B[Jb ]. To see
that the kernel is trivial, we construct an inverse map. Namely, let z = y/bn be an
element of B[Jb ], i.e., y ∈ Jn. Write y =

∑
xibi with xi ∈ In and bi ∈ B. We map

z to the class of
∑
bi ⊗ xi/an in B′. This is well defined because an element of the

kernel of the map B ⊗A In → Jn is annihilated by an, hence maps to zero in B′.
This shows that the open Spec(B[Jb ]) maps isomorphically to the open subscheme

pr−1S′ (Spec(A[ Ia ])) of X ′. Thus X ′′ → X ′ is an isomorphism.

In the notation above, let F correspond to the B-module N . The strict transform
of F corresponds to the B ⊗A A[ Ia ]-module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 22.5. The strict transform of F relative to the blowup of X
in f−1Z corresponds to the B[Jb ]-module N ⊗B B[Jb ]/b-power-torsion. In exactly
the same way as above one proves that these two modules are isomorphic. Details
omitted. �

Lemma 19.3. In the situation of Definition 19.1.

(1) If X is flat over S at all points lying over Z, then the strict transform of
X is equal to the base change X ×S S′.
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(2) Let F be a quasi-coherent OX-module. If F is flat over S at all points lying
over Z, then the strict transform F ′ of F is equal to the pullback pr∗XF .

Proof. We will prove part (2) as it implies part (1) by the definition of the strict
transform of a scheme over S. The question is local on X. Thus we may assume
that S = Spec(A), X = Spec(B), and that F corresponds to the B-module N .
Then F ′ over the open Spec(B ⊗A A[ Ia ]) of X ×S S′ corresponds to the module

N ′ = (N ⊗A A[ Ia ])/a-power-torsion

see Properties, Lemma 22.5. Thus we have to show that the a-power-torsion of
N ⊗AA[ Ia ] is zero. Let y ∈ N ⊗AA[ Ia ] with any = 0. If q ⊂ B is a prime and a 6∈ q,

then y maps to zero in (N ⊗A A[ Ia ])q. on the other hand, if a ∈ q, then Nq is a flat

A-module and we see that Nq ⊗A A[ Ia ] = (N ⊗A A[ Ia ])q has no a-power torsion (as

A[ Ia ] doesn’t). Hence y maps to zero in this localization as well. We conclude that
y is zero by Algebra, Lemma 23.1. �

Lemma 19.4. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S
be the blowing up of Z in S. Let g : X → Y be an affine morphism of schemes over
S. Let F be a quasi-coherent sheaf on X. Let g′ : X ×S S′ → Y ×S S′ be the base
change of g. Let F ′ be the strict transform of F relative to b. Then g′∗F ′ is the
strict transform of g∗F .

Proof. Observe that g′∗pr∗XF = pr∗Y g∗F by Cohomology of Schemes, Lemma 5.1.
Let K ⊂ pr∗XF be the subsheaf of sections supported in the inverse image of Z
in X ×S S′. By Properties, Lemma 22.7 the pushforward g′∗K is the subsheaf of
sections of pr∗Y g∗F supported in the inverse image of Z in Y ×S S′. As g′ is affine
(Morphisms, Lemma 13.8) we see that g′∗ is exact, hence we conclude. �

Lemma 19.5. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let D ⊂ S
be an effective Cartier divisor. Let Z ′ ⊂ S be the closed subscheme cut out by the
product of the ideal sheaves of Z and D. Let S′ → S be the blowup of S in Z.

(1) The blowup of S in Z ′ is isomorphic to S′ → S.
(2) Let f : X → S be a morphism of schemes and let F be a quasi-coherent
OX-module. If F has no nonzero local sections supported in f−1D, then
the strict transform of F relative to the blowing up in Z agrees with the
strict transform of F relative to the blowing up of S in Z ′.

Proof. The first statement follows on combining Lemmas 18.10 and 18.6. Using
Lemma 18.2 the second statement translates into the following algebra problem.
Let A be a ring, I ⊂ A an ideal, x ∈ A a nonzerodivisor, and a ∈ I. Let M be an
A-module whose x-torsion is zero. To show: the a-power torsion in M ⊗A A[ Ia ] is
equal to the xa-power torsion. The reason for this is that the kernel and cokernel of
the map A → A[ Ia ] is a-power torsion, so this map becomes an isomorphism after

inverting a. Hence the kernel and cokernel of M →M ⊗AA[ Ia ] are a-power torsion
too. This implies the result. �

Lemma 19.6. Let S be a scheme. Let Z ⊂ S be a closed subscheme. Let b : S′ → S
be the blowing up with center Z. Let Z ′ ⊂ S′ be a closed subscheme. Let S′′ → S′

be the blowing up with center Z ′. Let Y ⊂ S be a closed subscheme such that
Y = Z ∪ b(Z ′) set theoretically and the composition S′′ → S is isomorphic to
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the blowing up of S in Y . In this situation, given any scheme X over S and
F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of S in Y is equal to
the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of F with respect to the blowup S′ → S of S in Z, and

(2) the strict transform of X with respect to the blowing up of S in Y is equal
to the strict transform with respect to the blowup S′′ → S′ in Z ′ of the strict
transform of X with respect to the blowup S′ → S of S in Z.

Proof. Let F ′ be the strict transform of F with respect to the blowup S′ → S of
S in Z. Let F ′′ be the strict transform of F ′ with respect to the blowup S′′ → S′

of S′ in Z ′. Let G be the strict transform of F with respect to the blowup S′′ → S
of S in Y . We also label the morphisms

X ×S S′′ q
//

f ′′

��

X ×S S′ p
//

f ′

��

X

f

��
S′′ // S′ // S

By definition there is a surjection p∗F → F ′ and a surjection q∗F ′ → F ′′ which
combine by right exactness of q∗ to a surjection (p ◦ q)∗F → F ′′. Also we have the
surjection (p ◦ q)∗F → G. Thus it suffices to prove that these two surjections have
the same kernel.

The kernel of the surjection p∗F → F ′ is supported on (f ◦ p)−1Z, so this map
is an isomorphism at points in the complement. Hence the kernel of q∗p∗F →
q∗F ′ is supported on (f ◦ p ◦ q)−1Z. The kernel of q∗F ′ → F ′′ is supported on
(f ′ ◦ q)−1Z ′. Combined we see that the kernel of (p ◦ q)∗F → F ′′ is supported
on (f ◦ p ◦ q)−1Z ∪ (f ′ ◦ q)−1Z ′ = (f ◦ p ◦ q)−1Y . By construction of G we see
that we obtain a factorization (p ◦ q)∗F → F ′′ → G. To finish the proof it suffices
to show that F ′′ has no nonzero (local) sections supported on (f ◦ p ◦ q)−1(Y ) =
(f ◦p◦q)−1Z∪(f ′◦q)−1Z ′. This follows from Lemma 19.5 applied to F ′ on X×SS′
over S′, the closed subscheme Z ′ and the effective Cartier divisor b−1Z. �

Lemma 19.7. In the situation of Definition 19.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after any
base change T → S. Then the strict transforms of F ′i relative to any blowup S′ → S
form a short exact sequence 0→ F ′1 → F ′2 → F ′3 → 0 too.

Proof. We may localize on S and X and assume both are affine. Then we may
push Fi to S, see Lemma 19.4. We may assume that our blowup is the morphism
1 : S → S associated to an effective Cartier divisor D ⊂ S. Then the translation
into algebra is the following: Suppose that A is a ring and 0→M1 →M2 →M3 →
0 is a universally exact sequence of A-modules. Let a ∈ A. Then the sequence

0→M1/a-power torsion→M2/a-power torsion→M3/a-power torsion→ 0

is exact too. Namely, surjectivity of the last map and injectivity of the first map are
immediate. The problem is exactness in the middle. Suppose that x ∈ M2 maps
to zero in M3/a-power torsion. Then y = anx ∈ M1 for some n. Then y maps to
zero in M2/a

nM2. Since M1 → M2 is universally injective we see that y maps to
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zero in M1/a
nM1. Thus y = anz for some z ∈ M1. Thus an(x − y) = 0. Hence y

maps to the class of x in M2/a-power torsion as desired. �

20. Admissible blowups

To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 20.1. Let X be a scheme. Let U ⊂ X be an open subscheme. A
morphism X ′ → X is called a U -admissible blowup if there exists a closed immersion
Z → X of finite presentation with Z disjoint from U such that X ′ is isomorphic to
the blow up of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂ OX
is of finite type, see Morphisms, Lemma 22.7. In particular, a U -admissible blowup
is a projective morphism, see Lemma 18.11. Note that there can be multiple centers
which give rise to the same morphism. Hence the requirement is just the existence
of some center disjoint from U which produces X ′. Finally, as the morphism b :
X ′ → X is an isomorphism over U (see Lemma 18.4) we will often abuse notation
and think of U as an open subscheme of X ′ as well.

Lemma 20.2. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let b : X ′ → X be a U -admissible blowup.
Let X ′′ → X ′ be a U -admissible blowup. Then the composition X ′′ → X is a
U -admissible blowup.

Proof. Immediate from the more precise Lemma 18.12. �

Lemma 20.3. Let X be a quasi-compact and quasi-separated scheme. Let U, V ⊂
X be quasi-compact open subschemes. Let b : V ′ → V be a U∩V -admissible blowup.
Then there exists a U -admissible blowup X ′ → X whose restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩V and such that V ′ is isomorphic to the blow up of V in I. Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU and
whose restriction to V is I (see Sheaves, Section 33). By Properties, Lemma 20.2
there exists a finite type quasi-coherent sheaf of ideals J ⊂ OX whose restriction
to U ∪ V is I ′. The lemma follows. �

Lemma 20.4. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open subscheme. Let bi : Xi → X, i = 1, . . . , n be U -admissible
blowups. There exists a U -admissible blowup b : X ′ → X such that (a) b factors
as X ′ → Xi → X for i = 1, . . . , n and (b) each of the morphisms X ′ → Xi is a
U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blow up of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 18.10. �

Lemma 20.5. Let X be a quasi-compact and quasi-separated scheme. Let U, V be
quasi-compact disjoint open subschemes of X. Then there exist a U ∪V -admissible
blowup b : X ′ → X such that X ′ is a disjoint union of open subschemes X ′ =
X ′1 qX ′2 with b−1(U) ⊂ X ′1 and b−1(V ) ⊂ X ′2.
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Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \U = V (I), resp. X \V = V (J ), see Properties, Lemma 22.1. Then V (IJ ) = X
set theoretically, hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I + J . This is U ∪ V -admissible as V (I + J ) = X \ U ∪ V .
We will show that X ′ is a disjoint union of open subschemes X ′ = X ′1 qX ′2 such
that b−1I|X′2 = 0 and b−1J |X′1 = 0 which will prove the lemma.

We will use the description of the blowing up in Lemma 18.2. Suppose that U =
Spec(A) ⊂ X is an affine open such that I|U , resp. J |U corresponds to the finitely
generated ideal I ⊂ A, resp. J ⊂ A. Then

b−1(U) = Proj(A⊕ (I + J)⊕ (I + J)2 ⊕ . . .)
This is covered by the affine open subsets A[ I+Jx ] and A[ I+Jy ] with x ∈ I and y ∈ J .

Since x ∈ I is a nonzerodivisor in A[ I+Jx ] and IJ = 0 we see that JA[ I+Jx ] = 0.

Since y ∈ J is a nonzerodivisor in A[ I+Jy ] and IJ = 0 we see that IA[ I+Jy ] = 0.

Moreover,
Spec(A[ I+Jx ]) ∩ Spec(A[ I+Jy ]) = Spec(A[ I+Jxy ]) = ∅

because xy is both a nonzerodivisor and zero. Thus b−1(U) is the disjoint union of
the open subscheme U1 defined as the union of the standard opens Spec(A[ I+Jx ])
for x ∈ I and the open subscheme U2 which is the union of the affine opens
Spec(A[ I+Jy ]) for y ∈ J . We have seen that b−1IOX′ restricts to zero on U2

and b−1IOX′ restricts to zero on U1. We omit the verification that these open
subschemes glue to global open subschemes X ′1 and X ′2. �
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