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1. Introduction

This chapter develops some theory concerning simplicial topological spaces, simpli-
cial ringed spaces, simplicial schemes, and simplicial algebraic spaces. The theory
of simplicial spaces sometimes allows one to prove local to global principles which
appear difficult to prove in other ways. Some example applications can be found
in the papers [Fal03], [Kie72], and [Del74].

We assume throughout that the reader is familiar with the basic concepts and
results of the chapter Simplical Methods, see Simplicial, Section 1. In particular,
we continue to write X and not X• for a simplicial object.

2. Simplicial topological spaces

A simplicial space is a simplicial object in the category of topological spaces where
morphisms are continuous maps of topological spaces. (We will use “simplicial
algebraic space” to refer to simplicial objects in the category of algebraic spaces.)
We may picture a simplicial space X as follows

X2

//
//
//
X1

//
//oo

oo
X0

oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.
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2 SIMPLICIAL SPACES

Let X be a simplicial space. We associate a site XZar
1 to X as follows.

(1) An object of XZar is an open U of Xn for some n,
(2) a morphism U → V of XZar is given by a ϕ : [m] → [n] where n,m are

such that U ⊂ Xn, V ⊂ Xm and ϕ is such that X(ϕ)(U) ⊂ V , and
(3) a covering {Ui → U} in XZar means that U,Ui ⊂ Xn are open, the maps

Ui → U are given by id : [n]→ [n], and U =
⋃
Ui.

Note that in particular, if U → V is a morphism of XZar give by ϕ, then X(ϕ) :
Xn → Xm does in fact induce a continuous map U → V of topological spaces.
It is clear that the above is a special case of a construction that associates to any
diagram of topological spaces a site. We formulate the obligatory lemma.

Lemma 2.1. Let X be a simplicial space. Then XZar as defined above is a site.

Proof. Omitted. �

Let X be a simplicial space. Let F be a sheaf on XZar. It is clear from the definition
of coverings, that the restriction of F to the opens of Xn defines a sheaf Fn on the
topological space Xn. For every ϕ : [m] → [n] the restriction maps of F for pairs
U ⊂ Xn, V ⊂ Xm with X(ϕ)(U) ⊂ V , define an X(ϕ)-map F(ϕ) : Fm → Fn, see
Sheaves, Definition 21.7. Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] we have

F(ψ) ◦ F(ϕ) = F(ϕ ◦ ψ)

(LHS uses composition of f -maps, see Sheaves, Definition 21.9). Clearly, the con-
verse is true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆)) as above,
satisfying the displayed equalities, then we obtain a sheaf on XZar.

Lemma 2.2. Let X be a simplicial space. There is an equivalence of categories
between

(1) Sh(XZar), and
(2) category of systems (Fn,F(ϕ)) described above.

Proof. See discussion above. �

Lemma 2.3. Let f : Y → X be a morphism of simplicial spaces. Then the functor
u : XZar → YZar which associates to the open U ⊂ Xn the open f−1

n (U) ⊂ Yn
defines a morphism of sites fZar : YZar → XZar.

Proof. It is clear that u is a continuous functor. Hence we obtain functors fZar,∗ =

us and f−1
Zar = us, see Sites, Section 15. To see that we obtain a morphism of sites

we have to show that us is exact. We will use Sites, Lemma 15.5 to see this. Let
V ⊂ Yn be an open subset. The category IuV (see Sites, Section 5) consists of
pairs (U,ϕ) where ϕ : [m] → [n] and U ⊂ Xm open such that Y (ϕ)(V ) ⊂ f−1

m (U).
Moreover, a morphism (U,ϕ) → (U ′, ϕ′) is given by a ψ : [m′] → [m] such that
X(ψ)(U) ⊂ U ′ and ϕ ◦ ψ = ϕ′. It is our task to show that IuV is cofiltered.

We verify the conditions of Categories, Definition 20.1. Condition (1) holds be-
cause (Xn, id[n]) is an object. Let (U,ϕ) be an object. The condition Y (ϕ)(V ) ⊂
f−1
m (U) is equivalent to V ⊂ f−1

n (X(ϕ)−1(U)). Hence we obtain a morphism
(X(ϕ)−1(U), id[n]) → (U,ϕ) given by setting ψ = ϕ. Moreover, given a pair of
objects of the form (U, id[n]) and (U ′, id[n]) we see there exists an object, namely
(U ∩ U ′, id[n]), which maps to both of them. Thus condition (2) holds. To verify

1This notation is similar to the notation in Sites, Example 6.4 and Topologies, Definition 3.7.
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condition (3) suppose given two morphisms a, a′ : (U,ϕ)→ (U ′, ϕ′) given by ψ,ψ′ :
[m′] → [m]. Then precomposing with the morphism (X(ϕ)−1(U), id[n]) → (U,ϕ)
given by ϕ equalizes a, a′ because ϕ ◦ ψ = ϕ′ = ϕ ◦ ψ′. This finishes the proof. �

Lemma 2.4. Let f : Y → X be a morphism of simplicial spaces. In terms of
the description of sheaves in Lemma 2.2 the morphism fZar of Lemma 2.3 can be
described as follows.

(1) If G is a sheaf on Y , then (fZar,∗G)n = fn,∗Gn.

(2) If F is a sheaf on X, then (f−1
ZarF)n = f−1

n Fn.

Proof. The first part is immediate from the definitions. For the second part, note
that in the proof of Lemma 2.3 we have shown that for a V ⊂ Yn open the category
(IuV )opp contains as a cofinal subcategory the category of opens U ⊂ Xn with
f−1
n (U) ⊃ V and morphisms given by inclusions. Hence we see that the restriction of
upF to opens of Yn is the presheaf fn,pFn as defined in Sheaves, Lemma 21.3. Since

f−1
ZarF = usF is the sheafification of upF and since sheafification uses only coverings

and since coverings in YZar use only inclusions between opens on the same Yn, the
result follows from the fact that f−1

n Fn is (correspondingly) the sheafification of
fn,pFn, see Sheaves, Section 21. �

Let X be a topological space. In Sites, Example 6.4 we denoted XZar the site
consisting of opens of X with inclusions as morphisms and coverings given by open
coverings. We identify the topos Sh(XZar) with the category of sheaves on X.

Lemma 2.5. Let X be a simplicial space. The functor Xn,Zar → XZar, U 7→ U
is continuous and cocontinuous. The associated morphism of topoi g : Sh(Xn) →
Sh(XZar) satisfies

(1) g−1 associates to the sheaf F on X the sheaf Fn on Xn,
(2) g−1 has a left adjoint gSh! which commutes with finite connected limits,
(3) g−1 : Ab(XZar) → Ab(Xn) has a left adjoint g! : Ab(Xn) → Ab(XZar)

which is exact.

Proof. Besides the properties of our functor mentioned in the statement, the cate-
gory Xn,Zar has fibre products and equalizers and the functor commutes with them
(beware that XZar does not have all fibre products). Hence the lemma follows from
the discussion in Sites, Sections 19 and 20 and Modules on Sites, Section 16. More
precisely, Sites, Lemmas 20.1, 20.5, and 20.6 and Modules on Sites, Lemmas 16.2
and 16.3. �

Lemma 2.6. Let X be a simplicial space. If I is an injective abelian sheaf on
XZar, then In is an injective abelian sheaf on Xn.

Proof. This follows from Homology, Lemma 25.1 and Lemma 2.5. �

Lemma 2.7. Let f : Y → X be a morphism of simplicial spaces. Then

Sh(Yn)

��

fn

// Sh(Xn)

��
Sh(YZar)

fZar // Sh(XZar)

is a commutative diagram of topoi.
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4 SIMPLICIAL SPACES

Proof. Direct from the description of pullback functors in Lemmas 2.4 and 2.5. �

Let X be a topological space. Denote X• the constant simplicial topological space
with value X. By Lemma 2.2 a sheaf on X•,Zar is the same thing as a cosimplicial
object in the category of sheaves on X.

Lemma 2.8. Let X be a topological space. Let X• be the constant simplical topo-
logical space with value X. The functor

X•,Zar −→ XZar, U 7−→ U

is continuous and cocontinuous and defines a morphism of topoi g : Sh(X•,Zar)→
Sh(X) as well as a left adjoint g! to g−1. We have

(1) g−1 associates to a sheaf on X the constant cosimplicial sheaf on X,
(2) g! associates to a sheaf F on X•,Zar the sheaf F0, and
(3) g∗ associates to a sheaf F on X•,Zar the equalizer of the two maps F0 → F1.

Proof. The statements about the functor are straightforward to verify. The exis-
tence of g and g! follow from Sites, Lemmas 20.1 and 20.5. The description of g−1

is immediate from Sites, Lemma 20.5. The description of g∗ and g! follows as the
functors given are right and left adjoint to g−1. �

Lemma 2.9. Let Y be a simplicial space and X a topological space. Let a : Y → X
be an augmentation (Simplicial, Definition 19.1). There is a canonical morphism
of topoi

a : Sh(YZar)→ Sh(X)

which comes from composing the morphism aZar : Sh(YZar) → Sh(X•,Zar) of
Lemma 2.3 with the morphism g : Sh(X•,Zar)→ Sh(X) of Lemma 2.8.

Proof. This lemma proves itself. �

Lemma 2.10. Let X be a simplicial topological space. The complex of abelian
presheaves on XZar

. . .→ ZX2 → ZX1 → ZX0

with boundary
∑

(−1)idni is a resolution of the constant presheaf Z.

Proof. Let U ⊂ Xm be an object of XZar. Then the value of the complex above
on U is the complex of abelian groups

. . .→ Z[Mor∆([2], [m])]→ Z[Mor∆([1], [m])]→ Z[Mor∆([0], [m])]

In other words, this is the complex associated to the free abelian group on the sim-
plicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy equivalent
to ∆[0], see Simplicial, Example 25.7, and since “taking free abelian groups” is a
functor, we see that the complex above is homotopy equivalent to the free abelian
group on ∆[0] (Simplicial, Remark 25.4 and Lemma 26.2). This complex is acyclic
in positive degrees and equal to Z in degree 0. �

Lemma 2.11. Let X be a simplicial topological space. Let F be an abelian sheaf
on X. There is a spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Xp,Fp)

converging to Hp+q(XZar,F). This spectral sequence is functorial in F .
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Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Iq(Xp)

and first differential given by the alternating sum along the maps dp+1
i -maps Iqp →

Iqp+1, see Lemma 2.2. Note that

Ap,q = Γ(Xp, Iqp) = MorPSh(hXp , Iq) = MorPAb(ZXp , Iq)

Hence it follows from Lemma 2.10 and Cohomology on Sites, Lemma 11.1 that the
rows of the double complex are exact in positive degrees and evaluate to Γ(XZar, Iq)
in degree 0. On the other hand, since restriction is exact (Lemma 2.5) the map

Fp → I•p
is a resolution. The sheaves Iqp are injective abelian sheaves on Xp (Lemma 2.6).
Hence the cohomology of the columns computes the groups Hq(Xp,Fp). We con-
clude by applying Homology, Lemmas 22.6 and 22.7. �

3. Simplicial sites and topoi

It seems natural to define a simplicial site as a simplicial object in the (big) category
whose objects are sites and whose morphisms are morphisms of sites. See Sites,
Definitions 6.2 and 15.1 with composition of morphisms as in Sites, Lemma 15.3.
But here are some variants one might want to consider: (a) we could work with
cocontinuous functors (see Sites, Sections 19 and 20) between sites instead, (b)
we could work in a suitable 2-category of sites where one introduces the notion
of a 2-morphism between morphisms of sites, (c) we could work in a 2-category
constructed out of cocontinuous functors. Instead of picking one of these variants
as a definition we will simply develop theory as needed.

Certainly a simplicial topos should probably be defined as a pseudo-functor from
∆opp into the 2-category of topoi. See Categories, Definition 27.5 and Sites, Section
16 and 35. We will try to avoid working with such a beast if possible.

Let C be a simplicial object in the category whose objects are sites and whose
morphisms are morphisms of sites. This means that for every morphism ϕ : [m]→
[n] of ∆ we have a morphism of sites fϕ : Cn → Cm. This morphism is given by a
continuous functor in the oppsite direction which we will denote uϕ : Cm → Cn.

Lemma 3.1. Let C be a simplicial object in the category of sites. With notation
as above we construct a site Csite as follows.

(1) An object of Csite is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Csite is given by a map ϕ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : U → uϕ(V ) of Cn, and
(3) a covering {(id, fi) : Ui → U} in Csite is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V → W is given by (ϕ ◦
ψ, uϕ(g) ◦ f). This uses that uϕ ◦ uψ = uϕ◦ψ.

Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,uϕ(U),uϕ(fi) uϕ(Ui)

http://localhost:8080/tag/09WC
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in the category Csite. This makes sense as by our definition of morphisms of sites,
the required fibre products in Cm exist since uϕ transforms coverings into coverings.
The same reasoning implies the claim (details omitted). Thus we see that the
collection of coverings is stable under base change. The other axioms of a site are
immediate. �

Let C be a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors. This means that for every morphism ϕ :
[m]→ [n] of ∆ we have a cocontinuous functor denoted uϕ : Cn → Cm.

Lemma 3.2. Let C be a simplicial object in the category whose objects are sites
and whose morphisms are cocontinuous functors. With notation as above, assume
the functors uϕ : Cn → Cm have property P of Sites, Remark 19.5. Then we can
construct a site Csite as follows.

(1) An object of Csite is an object U of Cn for some n,
(2) a morphism (ϕ, f) : U → V of Csite is given by a map ϕ : [m] → [n] with

U ∈ Ob(Cn), V ∈ Ob(Cm) and a morphism f : uϕ(U)→ V of Cm, and
(3) a covering {(id, fi) : Ui → U} in Csite is given by an n and a covering
{fi : Ui → U} of Cn.

Proof. Composition of (ϕ, f) : U → V with (ψ, g) : V →W is given by (ϕ ◦ ψ, g ◦
uψ(f)). This uses that uψ ◦ uϕ = uϕ◦ψ.

Let {(id, fi) : Ui → U} be a covering as in (3) and let (ϕ, g) : W → U be a
morphism with W ∈ Ob(Cm). We claim that

W ×(ϕ,g),U,(id,fi) Ui = W ×g,U,fi Ui
in the category Csite where the right hand side is the object of Cm defined in Sites,
Remark 19.5 which exists by property P . Compatibility of this type of fibre product
with compositions of functors implies the claim (details omitted). Since the family
{W ×g,U,fi Ui →W} is a covering of Cm by property P we see that the collection of
coverings is stable under base change. The other axioms of a site are immediate. �

Situation 3.3. Here we have one of the following two cases

(A) C is a simplicial object in the category whose objects are sites and whose
morphisms are morphisms of sites. For every morphism ϕ : [m]→ [n] of ∆
we have a morphism of sites fϕ : Cn → Cm given by a continuous functor
uϕ : Cm → Cn.

(B) C is a simplicial object in the category whose objects are sites and whose
morphisms are cocontinuous functors having property P of Sites, Remark
19.5. For every morphism ϕ : [m]→ [n] of ∆ we have a cocontinuous functor
uϕ : Cn → Cm which induces a morphism of topoi fϕ : Sh(Cn)→ Sh(Cm).

As usual we will denote f−1
ϕ and fϕ,∗ the pullback and pushforward. We let Csite

denote the site defined in Lemma 3.1 (case A) or Lemma 3.2 (case B).

Let C be as in Situation 3.3. Let F be a sheaf on Csite. It is clear from the definition
of coverings, that the restriction of F to the objects of Cn defines a sheaf Fn on
the site Cn. For every ϕ : [m]→ [n] the restriction maps of F along the morphisms
(ϕ, f) : U → V with U ∈ Ob(Cn) and V ∈ Ob(Cm) define an element F(ϕ) of

MorSh(Cm)(Fm, fϕ,∗Fn) = MorSh(Cn)(f
−1
ϕ Fm,Fn)

http://localhost:8080/tag/09WD
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Moreover, given ϕ : [m]→ [n] and ψ : [l]→ [m] we have

f−1
ϕ F(ψ) ◦ F(ϕ) = F(ϕ ◦ ψ)

Clearly, the converse is true as well: if we have a system ({Fn}n≥0, {F(ϕ)}ϕ∈Arrows(∆))
as above, satisfying the displayed equalities, then we obtain a sheaf on Csite.

Lemma 3.4. In Situation 3.3 there is an equivalence of categories between

(1) Sh(Csite), and
(2) category of systems (Fn,F(ϕ)) described above.

In particular, the topos Sh(Csite) only depends on the topoi Sh(Cn) and the mor-
phisms of topoi fϕ.

Proof. See discussion above. �

Lemma 3.5. In Situation 3.3 the functor Cn → Csite, U 7→ U is continuous and
cocontinuous. The associated morphism of topoi g : Sh(Cn)→ Sh(Csite) satisfies

(1) g−1 associates to the sheaf F on Csite the sheaf Fn on Cn,
(2) g−1 has a left adjoint gSh! which commutes with finite connected limits, and
(3) g−1 : Ab(Csite) → Ab(Cn) has a left adjoint g! : Ab(Cn) → Ab(Csite) which

is exact.

Proof. It is clear that functor Cn → Csite is continuous and cocontinuous. Hence
part (1) and the existence of gSh! and g! follows from Sites, Lemmas 20.1 and 20.5
and Modules on Sites, Lemmas 16.2 and 16.4.

Next, we come to the exactness properties of gSh! and g!. Perhaps the most straight-
forward way to prove this is to give a formula for these functors. If G is a sheaf on
Cn, then we claim H = gSh! G is the sheaf on Csite whose degree m part is the sheaf

Hm =
∐

ϕ:[n]→[m]
f−1
ϕ G

Given a map ψ : [m]→ [m′] the mapH(ψ) : f−1
ψ Hm → Hm′ is given on components

by the identifications
f−1
ψ f−1

ϕ G → f−1
ψ◦ϕG

Observe that given a map a : H → F of sheaves on Csite we obtain a map G → Fn
corresponding to the restriction of an to the component G in Hn. Conversely, given
b : G → Hn we can define a : H → F by letting am be the map which on components

f−1
ϕ G → Fm

uses the maps adjoint to F(ϕ) ◦ f−1
ϕ b. We omit the arguments showing these two

constructions give mutually inverse maps

MorSh(Cn)(G,Fn) = MorSh(Csite)(H,F)

thus verifying the claim above. If G is an abelian sheaf on Cn, then g!G is the abelian
sheaf on Csite whose degree m part is the sheaf⊕

ϕ:[n]→[m]
f−1
ϕ G

with transition maps defined exactly as above. By definition of the site Csite we see
that these functors have the desired exactness properties and we conclude. �

Lemma 3.6. In Situation 3.3. If I is an injective abelian sheaf on Csite, then In
is an injective abelian sheaf on Cn.

http://localhost:8080/tag/09WF
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Proof. This follows from Homology, Lemma 25.1 and Lemma 3.5. �

Let C be as in Situation 3.3. In statement of the following lemmas we will let
gn : Cn → Csite be the functor of Lemma 3.5. If ϕ : [m]→ [n] is a morphism of ∆,
then the diagram of topoi

Sh(Cn)

gn %%

fϕ

// Sh(Cm)

gmyy
Sh(Csite)

is not commutative, but there is a 2-morphism gn → gm ◦fϕ coming from the maps
F(ϕ) : f−1

ϕ Fm → Fn. See Sites, Section 35.

Lemma 3.7. In Situation 3.3 and with notation as above there is a complex

. . .→ g2!Z→ g1!Z→ g0!Z

of abelian sheaves on Csite which forms a resolution of the constant sheaf with value
Z on Csite.

Proof. We will use the description of the functors gn! in the proof of Lemma
3.5 without further mention. As maps of the complex we take

∑
(−1)idni where

dni : gn!Z → gn−1!Z is the adjoint to the map Z →
⊕

[n−1]→[n] Z = g−1
n gn−1!Z

corresponding to the factor labeled with δni : [n − 1] → [n]. Then g−1
m applied to

the complex gives the complex

. . .→
⊕

α∈Mor∆([2],[m])]
Z→

⊕
α∈Mor∆([1],[m])]

Z→
⊕

α∈Mor∆([0],[m])]
Z

on Cm. In other words, this is the complex associated to the free abelian sheaf
on the simplicial set ∆[m], see Simplicial, Example 11.2. Since ∆[m] is homotopy
equivalent to ∆[0], see Simplicial, Example 25.7, and since “taking free abelian
sheaf on” is a functor, we see that the complex above is homotopy equivalent to
the free abelian sheaf on ∆[0] (Simplicial, Remark 25.4 and Lemma 26.2). This
complex is acyclic in positive degrees and equal to Z in degree 0. �

Lemma 3.8. In Situation 3.3. Let F be an abelian sheaf on Csite. There is a
spectral sequence (Er, dr)r≥0 with

Ep,q1 = Hq(Cp,Fp)
converging to Hp+q(Csite,F). This spectral sequence is functorial in F .

Proof. Let F → I• be an injective resolution. Consider the double complex with
terms

Ap,q = Γ(Cp, Iqp)

and first differential given by the alternating sum along the maps dp+1
i -maps Iqp →

Iqp+1, see Lemma 3.4. Note that

Ap,q = Γ(Cp, Iqp) = MorAb(Csite)(gp!Z, I
q)

Hence it follows from Lemma 3.7 that the rows of the double complex are exact in
positive degrees and evaluate to Γ(Csite, Iq) in degree 0. On the other hand, since
restriction is exact (Lemma 3.5) the map

Fp → I•p

http://localhost:8080/tag/09WI
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is a resolution. The sheaves Iqp are injective abelian sheaves on Cp (Lemma 3.6).
Hence the cohomology of the columns computes the groups Hq(Cp,Fp). We con-
clude by applying Homology, Lemmas 22.6 and 22.7. �

4. Simplicial semi-representable objects

Let C be a site. Recall that SR(C) denotes the category of semi-representable
objects of C. See Hypercoverings, Definition 2.1. For an object K = {Ui}i∈I of
SR(C) we will use the notation

C/K =
∐

i∈I
C/Ui

and we will call it the localization of C at K. There is a natural structure of a site
on this category, with coverings inherited from the localizations C/Ui (and whence
from C). If f : K → L is a morphism of SR(C), then we obtain a cocontinuous
functor

f : C/K −→ C/L
by applying the construction of Sites, Lemma 24.7 to the components. More
precisely, if f = (α, fi) where K = {Ui}i∈I , L = {Vj}j∈J , α : I → J , and
fi : Ui → Vα(i) then f maps the component C/Ui into the component C/Vα(i)

via the construction of the aforementioned lemma.

Let K be a simplicial object of SR(C). By the construction above we obtain a
simplicial object n 7→ C/Kn in the category whose objects are sites and whose
morphisms are cocontinuous functors of sites. Since these localization functors
satisfy the assumption of Lemma 3.2 by Sites, Remark 24.10 we obtain a site
(C/K)site.

We can describe this site explicitly as follows. Say Kn = {Un,i}i∈In and that for
ϕ : [m] → [n] the morphism K(ϕ) : Kn → Km is given by a(ϕ) : In → Im and
fϕ,i : Un,i → Um,a(ϕ)(i) for i ∈ In. Then we have

(1) an object of C/K corresponds to an object (U/Un,i) of C/Un,i for some n
and some i ∈ In,

(2) a morphism between U and V is a pair (ϕ, f) where ϕ : [m] → [n] with
U/Un,i and V/Um,a(ϕ)(i) and f : U → V is a morphism of C such that

U
f

//

��

V

��
Un,i

fϕ,i // Um,a(ϕ)(i)

is commutative, and
(3) a covering {(id, fj) : Uj → U} is given by an n and i ∈ In and objects

U/Un,i, Uj/Un,i such that {fj : Uj → U} is a covering of C.

Lemma 4.1. Let C be a site. Let K be a simplicial object of SR(C). If C has fibre
products, then C/K can also be viewed as a simplicial object in the category whose
objects are sites and whose morphisms are morphisms of sites. The construction of
Lemma 3.1 then produces the same site as the construction above.

Proof. Given a morphism of objects U → V of C the localization morphism j :
C/U → C/U is a left adjoint to the base change functor C/V → C/U . The base
change functor is continuous and induces the same morphism of topoi as j. See
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Sites, Lemma 26.3. Argueing as above we can use this to define a morphism of
sites C/A → C/B given any morphism A → B of SR(C). Applying this to the
morphisms of the simplicial object K we obtain simplicial object (C/K)′ in the
category of sites with morphisms of sites. Let (C/K)′site be the site constructed in
Lemma 3.1. Since the base change functors are adjoint to the localization functors,
we find that (C/K)′site is the same as the category (C/K)site. Equality of the sets
of coverings is immediate from the definitions. �

Let C be a site. Let L = {Vi} be an object of SR(C). There is a continuous
and cocontinuous localization functor j : C/K → C which is the product of the
localization functors C/Vi → C. We obtain functors j−1, j∗, j

Sh
! , and j! exactly as

in Sites, Section 24 and Modules on Sites, Section 19. Given a simplicial object K
of SR(C) we obtain a family of localization functors jn : C/Kn → C.

Lemma 4.2. Let C be a site. Let K be a simplicial object of SR(C). The forgetful
functor (C/K)site → C is continuous and cocontinuous and induces a morphism of
topoi

g : Sh((C/K)site) −→ Sh(C)
as well as functors gSh! and g! left adjoint to g−1 on sheaves of sets and abelian
groups with the following properties:

(1) the functor g−1 associates to a sheaf F on C the sheaf on (C/K)site wich
in degree n is equal to j−1

n F ,
(2) the functor g∗ associates to a sheaf G on (C/K)site the equalizer of the two

maps j0,∗G0 → j1,∗G1,

Proof. The functor is continuous and cocontinuous by our choice of coverings and
our description of (certain) fibre products in (C/K)site in the proof of Lemma 3.2.
Details omitted. Thus we obtain a morphism of topoi and functors gSh! and g!,
see Sites, Section 20 and Modules on Sites, Section 16. The description of g−1

is immediate from the definition as the compostion C/Kn → C/K → C is the
localization morphism jn.

Proof of (2). Let F be a sheaf on C and let G be a sheaf on (C/K)site. A map
a : g−1F → G corresponds to a system of maps an : j−1

n F → Gn on C/Kn by
Lemma 3.4. Taking n = 0 we get a map j−1

0 F → G0 which is adjoint to a map
a0 : F → j0,∗G0. Since a0 is compatible with a1 via the two maps j0,∗G0 → j1,∗G1

we see that a0 maps into the equalizer. Conversely, given a map a0 : F → j0,∗G0

into the equalizer we can pick, for any n, one of the maps j0,∗G0 → jn,∗Gn and
compose to get a well defined map an : F → jn,∗Gn. These fit together to define a
map of sheaves g−1F → G. �

Lemma 4.3. Let C be a site with equalizers and fibre products. Let G be a presheaf
of sets on C. Let K be a hypercovering of G, see Hypercoverings, Definition 5.1.
Then we have a canonical isomorphism

RΓ(G, E) = RΓ((C/K)site, g
−1E)

for E ∈ D+(C). If K is a hypercovering, then RΓ(E) = RΓ((C/K)site, g
−1E).

Proof. First, let I be an injective abelian sheaf on C. Then the spectral sequence
of Lemma 3.8 for the sheaf g−1I degenerates as (g−1I)p is the restriction of I
to C/Kp which is injective by Cohomology on Sites, Lemma 8.1 (extended in the
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obvious manner to localization at semi-representable objects of C). Thus we see
that the complex

I(K0)→ I(K1)→ I(K2)→ . . .

computes RΓ((C/K)site, g
−1I). This is exactly the Čech complex of I with respect

to the simplicial object K of SR(C) as defined in Hypercoverings, Section 4. Thus
Hypercoverings, Lemma 5.3 shows that this complex computes RΓ(G, I) (which
has zero higher cohomology groups as I is injective). In other words, we have
H0(G, I) = H0((C/K)site, I) and Hp(G, I) = Hp((C/K)site, I) = 0 for all p > 0.

The lemma now follows formally. Namely, let A ∈ D+(C) be arbitrary. We can
represent A by a bounded below complex I• of injective abelian sheaves. By Leray’s
acyclicity lemma (Derived Categories, Lemma 17.7) RΓ((C/K)site, A) is computed
by the complex Γ((C/K)site, g

−1I•) and RΓ(G, A) is computed by Γ(G, I•). Since
these complexes are the same we obtain the conclusion.

The final statement refers to the special case where G = ∗ is the final object in the
category of presheaves on C. �

Lemma 4.4. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X, see Hypercoverings, Definition 2.6. Then we have a
canonical isomorphism

RΓ(X,E) = RΓ((C/K)site, g
−1E)

for E ∈ D+(C).

Proof. If C also has equalizers, then this is a special case of Lemma 4.3 because a
hypercovering of X is a hypercovering of hX by Hypercoverings, Lemma 2.10. This

also uses that Hq(hX ,F) = Hq(h#
X ,F) = Hq(X,F), see discussion in Hypercover-

ings, Section 5 and Cohomology on Sites, Section 13. In general (when C does not
have equalizers) one proves this using exactly the same argument as in the proof
of Lemma 4.3 but substituting Hypercoverings, Lemma 4.2 for Hypercoverings,
Lemma 5.3. �

5. Hypercovering in a site

In the previous section we worked out, in great generality, how hypercoverings give
rise to simplicial sites and how cohomology of (say) constant sheaves on this site
computes the cohomology of the object the hypercovering is augmented towards.
In this section we explain what this means in a special case.

Let C be a site with fibre products. Let X be an object of C and let X• be a
simplicial object of C. Assume we have an augmentation

a : X• → X

The discussion above turns this into a morphism of topoi

g : (C/X•)site −→ C/X

Here an object of the site (C/X•)site is given by a U/Xn and a morphism (ϕ, f) :
U/Xn → V/Xm is given by a morphism ϕ : [m] → [n] in ∆ and a morphism

http://localhost:8080/tag/09X7
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f : U → V such that the diagram

U
f
//

��

V

��
Xn

ϕ // Xm

is commutative. The morphism of topoi g is given by the cocontinuous functor
U/Xn 7→ U/X. That’s all folks!

Thus we may translate some of the results above to this setting. For example, let
us say that the augmentation is a hypercovering if the following hold

(1) {X0 → X} is a covering of C,
(2) {X1 → X0 ×X X0} is a covering of C,
(3) {Xn+1 → (cosknsknX•)n+1} is a covering of C for n ≥ 1.

The category C/X has all finite limits, hence the coskeleta used in the formulation
above exist.

Lemma 5.1. In the situation above assume that X• is a hypercovering of X. Then
we have a canonical isomorphism

RΓ(X,E) = RΓ((C/X•)site, g−1E)

for E ∈ D+(C/X).

Proof. This is a special case of Lemma 4.4. �

6. Proper hypercoverings in topology

Let’s work in the category LC of Hausdorff and locally quasi-compact topological
spaces and continuous maps, see Cohomology on Sites, Section 23. Let X be
an object of LC and let X• be a simplicial object of LC. Assume we have an
augmentation

a : X• → X

We say that X• is a proper hypercovering of X if

(1) X0 → X is a proper surjective map,
(2) X1 → X0 ×X X0 is a proper surjective map,
(3) Xn+1 → (cosknsknX•)n+1 is a proper surjective map for n ≥ 1.

The category LC has all finite limits, hence the coskeleta used in the formulation
above exist.

Principle: Proper hypercoverings can be used to compute cohomology.

A key idea behind the proof of the principle is to find a topology on LC which
is stronger than the usual one such that (A) a surjective proper map defines a
covering, and (B) cohomology of usual sheaves with respect to this stronger topology
agrees with the usual cohomology. Properties (A) and (B) hold for the qc topology,
see Cohomology on Sites, Section 23. Once we have (A) and (B) we deduce the
principle via a combination of the spectral sequences of Hypercoverings, Lemma
4.3 and Lemma 2.11. The following lemma is just a first step.
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Lemma 6.1. In the situation above, let F be an abelian sheaf on X. Let Fn be the
pullback to Xn. If X• is a proper hypercovering of X, then there exists a canonical
spectral sequence

Ep,q1 = Hq(Xp,Fp)
converging to Hp+q(X,F).

Proof. By Cohomology on Sites, Lemma 23.6 we have

H∗(X,F) = H∗(LCqc/X, ε
−1π−1F).

Since a proper surjective map defines a qc covering (Cohomology on Sites, Lemma
23.7) we see that X• → X is a hypercovering in the site LCqc as in Section 5. Thus
we have

RΓ(X,F) = RΓ(LCqc/X, ε
−1π−1F) = RΓ((LC/X•)site, g

−1ε−1π−1F)

by Lemma 5.1. By Lemma 3.8 there is a spectral sequence with

Ep,q1 = Hq(LCqc/Xp, (g
−1ε−1π−1F)p)

converging to the cohomology of g−1ε−1π−1F . Finally, the restriction (g−1ε−1π−1F)p
is just the restriction to LCqc/Xp of ε−1π−1F which by Cohomology on Sites,
Lemma 23.5 is the pullback of Fp to LCqc/Xp. By Cohomology on Sites, Lemma
23.6 again we conclude that

Hq(LCqc/Xp, (g
−1ε−1π−1F)p) = Hq(Xp,Fp)

and the proof is finished. �

Lemma 6.2. In the situation above, let F be an abelian sheaf on X. Let F• be the
pullback of F via a : X• → X. If X• is a proper hypercovering of X, then

H∗(X,F) = H∗((X•)Zar,F•)

Proof. Consider the continuous functor

(X•)Zar −→ (LCqc/X•)site, U 7−→ U

We obtain a commutative diagram of topoi

Sh((LCqc/X•)site)

g

��

// Sh((X•)Zar)

g

��
Sh(LCqc/X)

π◦ε // Sh(XZar)

Thus our sheaf F gives rise to a compatible collection of abelian sheaves in each
topos. In the proof of Lemma 6.1 we have seen that the sheaf F has the same
cohomology as the sheaf ε−1π−1F and g−1ε−1π−1F . On the other hand, the terms
of the spectral sequence of Lemma 2.11 for F• are the same as those in the statement
and proof of Lemma 6.1. A simple argument with spectral sequences then shows
that the map

RΓ((X•)Zar,F•) −→ RΓ((LCqc/X•)site, g
−1ε−1π−1F)

is an isomorphism. Some details omitted. �

http://localhost:8080/tag/09XB
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Lemma 6.3. In the situation above, assume a : X• → X gives a proper hypercov-
ering of X. Then for all K ∈ D+(X)

K → Ra∗(a
−1K)

is an isomorphism where a : Sh((X•)Zar)→ Sh(X) is as in Lemma 2.9.

Proof. Observe that for any abelian sheaf F on X the sheaf Rqa∗(a
−1F) is the

sheaf associated to the presheaf

U 7→ Hq((U•)Zar, a
−1F) = Hq(U,F)

where U• = a−1(U). The last equality holds by Lemma 6.2. Thus Rqa∗(a
−1F)

is zero for q > 0 and equal to F for q = 0. This proves the result in case K
consists of a single abelian sheaf in a single degree. The general case follows from
this immediately. �

7. Simplicial schemes

A simplicial scheme is a simplicial object in the category of schemes, see Simplicial,
Definition 3.1. Recall that a simplicial scheme looks like

X2

//
//
//
X1

//
//oo

oo
X0

oo

Here there are two morphisms d1
0, d

1
1 : X1 → X0 and a single morphism s0

0 : X0 →
X1, etc. It is important to keep in mind that dni : Xn → Xn−1 should be thought of
as a “projection forgetting the ith coordinate” and snj : Xn → Xn+1 as the diagonal
map repeating the jth coordinate.

8. Descent in terms of simplicial schemes

Cartesian morphisms are defined as follows.

Definition 8.1. Let a : Y → X be a morphism of simplicial schemes. We say a is
cartesian, or that Y is cartesian over X, if for every morphism ϕ : [n]→ [m] of ∆
the corresponding diagram

Ym a
//

Y (ϕ)

��

Xm

X(ϕ)

��
Yn

a // Xn

is a fibre square in the category of schemes.

Cartesian morphisms are related to descent data. First we prove a general lemma
describing the category of cartesian simplicial schemes over a fixed simplicial scheme.
In this lemma we denote f∗ : Sch/X → Sch/Y the base change functor associated
to a morphism of schemes Y → X.

Lemma 8.2. Let X be a simplicial scheme. The category of simplicial schemes
cartesian over X is equivalent to the category of pairs (V, ϕ) where V is a scheme
over X0 and

ϕ : V ×X0,d1
1
X1 −→ X1 ×d1

0,X0
V

is an isomorphism over X1 such that (s0
0)∗ϕ = idV and such that

(d2
1)∗ϕ = (d2

0)∗ϕ ◦ (d2
2)∗ϕ

as morphisms of schemes over X2.
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Proof. The statement of the displayed equality makes sense because d1
1 ◦ d2

2 =
d1

1 ◦ d2
1, d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see

Simplicial, Remark 3.3 hence we can picture these maps as follows

X2 ×d1
1◦d2

0,X0
V

(d2
0)∗ϕ

// X2 ×d1
0◦d2

0,X0
V

X2 ×d1
0◦d2

2,X0
V X2 ×d1

0◦d2
1,X0

V

X2 ×d1
1◦d2

2,X0
V

(d2
2)∗ϕ

hh

X2 ×d1
1◦d2

1,X0
V

(d2
1)∗ϕ

66

and the condition signifies the diagram is commutative. It is clear that given a
simplicial scheme Y cartesian over X we can set V = Y0 and ϕ equal to the
composition

V ×X0,d1
1
X1 = Y0 ×X0,d1

1
X1 = Y1 = X1 ×X0,d1

0
Y0 = X1 ×X0,d1

0
V

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse is
analogous to the construction discussed in Descent, Section 3 from which we borrow
the notation τni : [0]→ [n], 0 7→ i and τnij : [1]→ [n], 0 7→ i, 1 7→ j. Namely, given a
pair (V, ϕ) as in the lemma we set Yn = Xn×X(τnn ),X0

V . Then given β : [n]→ [m]
we define V (β) : Ym → Yn as the pullback by X(τmβ(n)m) of the map ϕ postcomposed

by the projection Xm ×X(β),Xn Yn → Yn. This makes sense because

Xm ×X(τm
β(n)m

),X1
X1 ×d1

1,X0
V = Xm ×X(τmm ),X0

V = Ym

and

Xm ×X(τm
β(n)m

),X1
X1 ×d1

0,X0
V = Xm ×X(τm

β(n)
),X0

V = Xm ×X(β),Xn Yn.

We omit the verification that the commutativity of the displayed diagram above
implies the maps compose correctly. We also omit the verification that the two
functors are quasi-inverse to each other. �

Definition 8.3. Let f : X → S be a morphism of schemes. The simplicial scheme
associated to f , denoted (X/S)•, is the functor ∆opp → Sch, [n] 7→ X ×S . . .×S X
described in Simplicial, Example 3.5.

Thus (X/S)n is the (n + 1)-fold fibre product of X over S. The morphism d1
0 :

X×SX → X is the map (x0, x1) 7→ x1 and the morphism d1
1 is the other projection.

The morphism s0
0 is the diagonal morphism X → X ×S X.

Lemma 8.4. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)• be a
cartesian morphism of simplicial schemes. Set V = Y0 considered as a scheme over
X. The morphisms d1

0, d
1
1 : Y1 → Y0 and the morphism π1 : Y1 → X ×S X induce

isomorphisms

V ×S X Y1

(d1
1,pr1◦π1)oo (pr0◦π1,d

1
0) // X ×S V.

Denote ϕ : V ×S X → X ×S V the resulting isomorphism. Then the pair (V, ϕ) is
a descent datum relative to X → S.

http://localhost:8080/tag/024A
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Proof. This is a special case of (part of) Lemma 8.2 as the displayed equation of
that lemma is equivalent to the cocycle condition of Descent, Definition 30.1. �

Lemma 8.5. Let f : X → S be a morphism of schemes. The construction

category of cartesian
schemes over (X/S)•

−→ category of descent data
relative to X/S

of Lemma 8.4 is an equivalence of categories.

Proof. The functor from left to right is given in Lemma 8.4. Hence this is a special
case of Lemma 8.2. �

We may reinterpret the pullback of Descent, Lemma 30.6 as follows. Suppose
given a morphism of simplicial schemes f : X ′ → X and a cartesian morphism of
simplicial schemes Y → X. Then the fibre product (viewed as a “pullback”)

f∗Y = Y ×X X ′

of simplicial schemes is a simplicial scheme cartesian over X ′. Suppose given a
commutative diagram of morphisms of schemes

X ′
f
//

��

X

��
S′ // S.

This gives rise to a morphism of simplicial schemes

f• : (X ′/S′)• −→ (X/S)•.

We claim that the “pullback” f∗• along the morphism f• : (X ′/S′)• → (X/S)•
corresponds via Lemma 8.5 with the pullback defined in terms of descent data in
the aforementioned Descent, Lemma 30.6.

9. Quasi-coherent modules on simplicial schemes

In the following definition we make use of the description of sheaves on a simplicial
space given in Lemma 2.2.

Definition 9.1. Let S be a scheme. Let U be a simplicial scheme over S.

(1) A quasi-coherent sheaf on U is given by a sheaf of OU -modules F such that
Fn is quasi-coherent for all n ≥ 0.

(2) A quasi-coherent sheaf F on U is cartesian if and only if all the maps
F(ϕ) : Fn → Fm induce isomorphisms U(ϕ)∗Fn → Fm.

The property on pullbacks needs only be checked for the degeneracies.

Lemma 9.2. Let S be a scheme. Let U be a simplicial scheme over S. Let F be a
quasi-coherent module on U . Then F is cartesian if and only if the induced maps
(dnj )∗Fn−1 → Fn are isomorphisms.

Proof. The category ∆ is generated by the morphisms the morphisms δnj and σnj ,
see Simplicial, Lemma 2.2. Hence we only need to check the maps (dnj )∗Fn−1 → Fn
and (snj )∗Fn+1 → Fn are isomorphisms, see Simplicial, Lemma 3.2 for notation.

But dn+1
j ◦ snj = idUn so it the result for dn+1

j implies the result for snj . �
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Lemma 9.3. Let S be a scheme. Let U be a simplicial scheme over S. The
category of cartesian quasi-coherent modules over U is equivalent to the category of
pairs (F , α) where F is a quasi-coherent module over U0 and

α : (d1
1)∗F −→ (d1

0)∗F

is an isomorphism such that (s0
0)∗α = idF and such that

(d2
1)∗α = (d2

0)∗α ◦ (d2
2)∗α

on X2.

Proof. The statement of the displayed equality makes sense because d1
1 ◦ d2

2 =
d1

1 ◦ d2
1, d1

1 ◦ d2
0 = d1

0 ◦ d2
2, and d1

0 ◦ d2
0 = d1

0 ◦ d2
1 as morphisms X2 → X0, see

Simplicial, Remark 3.3 hence we can picture these maps as follows

(d2
0)∗(d1

1)∗F
(d2

0)∗α

// (d2
0)∗(d1

0)∗F

(d2
2)∗(d1

0)∗F (d2
1)∗(d1

0)∗F

(d2
2)∗(d1

1)∗F
(d2

2)∗α

gg

(d2
1)∗(d1

1)∗F
(d2

1)∗α

77

and the condition signifies the diagram is commutative. It is clear that given a
cartesian quasi-coherent sheaf F we can set F = F0 and α equal to the composition

(d0
1)∗F0 = F1 = (d0

0)∗F0

of identifications given by the cartesian structure. To prove this functor is an
equivalence we construct a quasi-inverse. The construction of the quasi-inverse
is analogous to the construction discussed in Descent, Section 3 from which we
borrow the notation τni : [0] → [n], 0 7→ i and τnij : [1] → [n], 0 7→ i, 1 7→ j.
Namely, given a pair (F , α) as in the lemma we set Fn = X(τnn )∗F . Then given
β : [n] → [m] we define F(β) : Fn → Fm as the pullback by X(τmβ(n)m) of the

map α precomposed with the canonical X(β)-map Fn → X(β)∗Fn. We omit the
verification that the commutativity of the displayed diagram above implies the
maps compose correctly. We also omit the verification that the two functors are
quasi-inverse to each other. �

Lemma 9.4. Let f : V → U be a morphism of simplicial schemes. Given a
cartesian quasi-coherent module F on U the pullback f∗F is a cartesian quasi-
coherent module on V .

Proof. This is immediate from the definitions. �

Lemma 9.5. Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un are
quasi-compact and quasi-separated. For a cartesian quasi-coherent module G on V
the pushforward f∗G is a cartesian quasi-coherent module on U .

Proof. If F = f∗G, then Fn = fn,∗Gn and the maps F(ϕ) are defined using the
base change maps, see Cohomology, Section 18. The sheaves Fn are quasi-coherent
by Schemes, Lemma 24.1. The base change maps along the degeneracies dnj are
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isomorphisms by Cohomology of Schemes, Lemma 5.2. Hence we are done by
Lemma 9.2. �

Lemma 9.6. Let f : V → U be a cartesian morphism of simplicial schemes.
Assume the morphisms dnj : Un → Un−1 are flat and the morphisms Vn → Un
are quasi-compact and quasi-separated. Then f∗ and f∗ form an adjoint pair of
functors between the categories of cartesian quasi-coherent modules on U and V .

Proof. We have seen in Lemmas 9.4 and 9.5 that the statement makes sense. The
adjointness property follows immediately from the fact that each f∗n is adjoint to
fn,∗. �

Lemma 9.7. Let f : X → S be a morphism of schemes which has a section2. Let
(X/S)• be the simplicial scheme associated to X → S, see Definition 8.3. Then
pullback defines an equivalence between the category of quasi-coherent OS-modules
and the category of cartesian quasi-coherent modules on (X/S)•.

Proof. Let σ : S → X be a section of f . Let (F , α) be a pair as in Lemma 9.3.
Set G = σ∗F . Consider the diagram

X
(σ◦f,1)

//

f

��

X ×S X
pr0

��

pr1

// X

S
σ // X

Note that pr0 = d1
1 and pr1 = d1

0. Hence we see that (σ ◦ f, 1)∗α defines an
isomorphism

f∗G = (σ ◦ f, 1)∗pr∗0F −→ (σ ◦ f, 1)∗pr∗1F = F
We omit the verification that this isomorphism is compatible with α and the canon-
ical isomorphism pr∗0f

∗G → pr∗1f
∗G. �

10. Groupoids and simplicial schemes

Given a groupoid in schemes we can build a simplicial scheme. It will turn out that
the category of quasi-coherent sheaves on a groupoid is equivalent to the category
of cartesian quasi-coherent sheaves on the associated simplicial scheme.

Lemma 10.1. Let (U,R, s, t, c, e, i) be a groupoid scheme over S. There exists a
simplicial scheme X over S with the following properties

(1) X0 = U , X1 = R, X2 = R×s,U,t R,
(2) s0

0 = e : X0 → X1,
(3) d1

0 = s : X1 → X0, d1
1 = t : X1 → X0,

(4) s1
0 = (e ◦ t, 1) : X1 → X2, s1

1 = (1, e ◦ t) : X1 → X2,
(5) d2

0 = pr1 : X2 → X1, d2
1 = c : X2 → X1, d2

2 = pr0, and
(6) X = cosk2sk2X.

For all n we have Xn = R ×s,U,t . . . ×s,U,t R with n factors. The map dnj : Xn →
Xn−1 is given on functors of points by

(r1, . . . , rn) 7−→ (r1, . . . , c(rj , rj+1), . . . , rn)

for 1 ≤ j ≤ n − 1 whereas dn0 (r1, . . . , rn) = (r2, . . . , rn) and dnn(r1, . . . , rn) =
(r1, . . . , rn−1).

2In fact, it would be enough to assume that f has fpqc locally on S a section, since we have
descent of quasi-coherent modules by Descent, Section 5.
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Proof. We only have to verify that the rules prescribed in (1), (2), (3), (4), (5)
define a 2-truncated simplicial scheme U ′ over S, since then (6) allows us to set
X = cosk2U

′, see Simplicial, Lemma 18.2. Using the functor of points approach,
all we have to verify is that if (Ob,Arrows, s, t, c, e, i) is a groupoid, then

Arrows×s,Ob,t Arrows

pr0

��
c

��
pr1

��
Arrows

t

��
s

��

1,e

OO
e,1

OO

Ob

e

OO

is a 2-truncated simplicial set. We omit the details.

Finally, the description of Xn for n > 2 follows by induction from the description
of X0, X1, X2, and Simplicial, Remark 18.9 and Lemma 18.6. Alternately, one
shows that cosk2 applied to the 2-truncated simplicial set displayed above gives a
simplicial set whose nth term equals Arrows×s,Ob,t . . .×s,Ob,tArrows with n factors
and degeneracy maps as given in the lemma. Some details omitted. �

Lemma 10.2. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over
S. Let X be the simplicial scheme over S constructed in Lemma 10.1. Then the
category of quasi-coherent modules on (U,R, s, t, c) is equivalent to the category of
cartesian quasi-coherent modules on X.

Proof. This is clear from Lemma 9.3 and Groupoids, Definition 12.1. �

In the following lemma we will use the concept of a cartesian morphism V → U of
simplicial schemes as defined in Definition 8.1.

Lemma 10.3. Let (U,R, s, t, c) be a groupoid scheme over a scheme S. Let X be the
simplicial scheme over S constructed in Lemma 10.1. Let (R/U)• be the simplicial
scheme associated to s : R → U , see Definition 8.3. There exists a cartesian
morphism t• : (R/U)• → X of simplicial schemes with low degree morphisms given
by

R×s,U,s R×s,U,s R
pr12

//

pr02

//

pr01

//

(r0,r1,r2) 7→(r0◦r−1
1 ,r1◦r−1

2 )

��

R×s,U,s R pr1

//

pr0

//

(r0,r1)7→r0◦r−1
1

��

R

t

��
R×s,U,t R

pr1

//

c
//

pr0

//
R s

//

t
//
U

Proof. For arbitrary n we define (R/U)• → Xn by the rule

(r0, . . . , rn) −→ (r0 ◦ r−1
1 , . . . , rn−1 ◦ r−1

n )

Compatibility with degeneracy maps is clear from the description of the degenera-
cies in Lemma 10.1. We omit the verification that the maps respect the morphisms
snj . Groupoids, Lemma 11.5 (with the roles of s and t reversed) shows that the two
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right squares are cartesian. In exactly the same manner one shows all the other
squares are cartesian too. Hence the morphism is cartesian. �

11. Descent data give equivalence relations

In Section 8 we saw how descent data relative to X → S can be formulated in
terms of cartesian simplicial schemes over (X/S)•. Here we link this to equivalence
relations as follows.

Lemma 11.1. Let f : X → S be a morphism of schemes. Let π : Y → (X/S)• be
a cartesian morphism of simplicial schemes, see Definitions 8.1 and 8.3. Then the
morphism

j = (d1
1, d

1
0) : Y1 → Y0 ×S Y0

defines an equivalence relation on Y0 over S, see Groupoids, Definition 3.1.

Proof. Note that j is a monomorphism. Namely the composition Y1 → Y0×SY0 →
Y0 ×S X is an isomorphism as π is cartesian.

Consider the morphism

(d2
2, d

2
0) : Y2 → Y1 ×d1

0,Y0,d1
1
Y1.

This works because d0 ◦ d2 = d1 ◦ d0, see Simplicial, Remark 3.3. Also, it is a
morphism over (X/S)2. It is an isomorphism because Y → (X/S)• is cartesian.
Note for example that the right hand side is isomorphic to Y0×π0,X,pr1

(X×SX×S
X) = X ×S Y0 ×S X because π is cartesian. Details omitted.

As in Groupoids, Definition 3.1 we denote t = pr0 ◦ j = d1
1 and s = pr1 ◦ j = d1

0.
The isomorphism above, combined with the morphism d2

1 : Y2 → Y1 give us a
composition morphism

c : Y1 ×s,Y0,t Y1 −→ Y1

over Y0 ×S Y0. This immediately implies that for any scheme T/S the relation
Y1(T ) ⊂ Y0(T )× Y0(T ) is transitive.

Reflexivity follows from the fact that the restriction of the morphism j to the
diagonal ∆ : X → X ×S X is an isomorphism (again use the cartesian property of
π).

To see symmetry we consider the morphism

(d2
2, d

2
1) : Y2 → Y1 ×d1

1,Y0,d1
1
Y1.

This works because d1◦d2 = d1◦d1, see Simplicial, Remark 3.3. It is an isomorphism
because Y → (X/S)• is cartesian. Note for example that the right hand side is
isomorphic to Y0×π0,X,pr0

(X ×S X ×S X) = Y0×S X ×S X because π is cartesian.
Details omitted.

Let T/S be a scheme. Let a ∼ b for a, b ∈ Y0(T ) be synonymous with (a, b) ∈ Y1(T ).
The isomorphism (d2

2, d
2
1) above implies that if a ∼ b and a ∼ c, then b ∼ c.

Combined with reflexivity this shows that ∼ is an equivalence relation. �
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12. An example case

In this section we show that disjoint unions of spectra of Artinian rings can be
descended along a quasi-compact surjective flat morphism of schemes.

Lemma 12.1. Let X → S be a morphism of schemes. Suppose Y → (X/S)• is a
cartesian morphism of simplicial schemes. For y ∈ Y0 a point define

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
as a subset of Y0. Then y ∈ Ty and Ty ∩ Ty′ 6= ∅ ⇒ Ty = Ty′ .

Proof. Combine Lemma 11.1 and Groupoids, Lemma 3.4. �

Lemma 12.2. Let X → S be a morphism of schemes. Suppose Y → (X/S)• is
a cartesian morphism of simplicial schemes. Let y ∈ Y0 be a point. If X → S is
quasi-compact, then

Ty = {y′ ∈ Y0 | ∃ y1 ∈ Y1 : d1
1(y1) = y, d1

0(y1) = y′}
is a quasi-compact subset of Y0.

Proof. Let Fy be the scheme theoretic fibre of d1
1 : Y1 → Y0 at y. Then we see

that Ty is the image of the morphism

Fy //

��

Y1

d1
0 //

d1
1

��

Y0

y // Y0

Note that Fy is quasi-compact. This proves the lemma. �

Lemma 12.3. Let X → S be a quasi-compact flat surjective morphism. Let (V, ϕ)
be a descent datum relative to X → S. If V is a disjoint union of spectra of Artinian
rings, then (V, ϕ) is effective.

Proof. Let Y → (X/S)• be the cartesian morphism of simplicial schemes corre-
sponding to (V, ϕ) by Lemma 8.5. Observe that Y0 = V . Write V =

∐
i∈I Spec(Ai)

with each Ai local Artinian. Moreover, let vi ∈ V be the unique closed point of
Spec(Ai) for all i ∈ I. Write i ∼ j if and only if vi ∈ Tvj with notation as in
Lemma 12.1 above. By Lemmas 12.1 and 12.2 this is an equivalence relation with
finite equivalence classes. Let I = I/ ∼. Then we can write V =

∐
i∈I Vi with

Vi =
∐
i∈i Spec(Ai). By construction we see that ϕ : V ×S X → X ×S V maps the

open and closed subspaces Vi ×S X into the open and closed subspaces X ×S Vi.
In other words, we get descent data (Vi, ϕi), and (V, ϕ) is the coproduct of them
in the category of descent data. Since each of the Vi is a finite union of spectra of
Artinian local rings the morphism Vi → X is affine, see Morphisms, Lemma 13.13.
Since {X → S} is an fpqc covering we see that all the descent data (Vi, ϕi) are
effective by Descent, Lemma 33.1. �

To be sure, the lemma above has very limited applicability!

13. Other chapters
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[Del74] Pierre Deligne, Théorie de Hodge. III, Inst. Hautes Études Sci. Publ. Math. (1974), no. 44,
5–77.

[Fal03] Gerd Faltings, Finiteness of coherent cohomology for proper fppf stacks, J. Algebraic

Geom. 12 (2003), no. 2, 357–366.
[Kie72] Reinhardt Kiehl, Ein “Descente”-Lemma und Grothendiecks Projektionssatz für nicht-

noethersche Schemata, Math. Ann. 198 (1972), 287–316.


	1. Introduction
	2. Simplicial topological spaces
	3. Simplicial sites and topoi
	4. Simplicial semi-representable objects
	5. Hypercovering in a site
	6. Proper hypercoverings in topology
	7. Simplicial schemes
	8. Descent in terms of simplicial schemes
	9. Quasi-coherent modules on simplicial schemes
	10. Groupoids and simplicial schemes
	11. Descent data give equivalence relations
	12. An example case
	13. Other chapters
	References

