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1. Introduction

In this chapter we study divisors on algebraic spaces and related topics. A basic
reference for algebraic spaces is [Knu71].

2. Effective Cartier divisors

For some reason it seem convenient to define the notion of an effective Cartier
divisor before anything else. Note that in Morphisms of Spaces, Section 13 we
discussed the correspondence between closed subspaces and quasi-coherent sheaves
of ideals. Moreover, in Properties of Spaces, Section 28, we discussed properties
of quasi-coherent modules, in particular “locally generated by 1 element”. These
references show that the following definition is compatible with the definition for
schemes.

Definition 2.1. Let S be a scheme. Let X be an algebraic space over S.

(1) A locally principal closed subspace of X is a closed subspace whose sheaf of
ideals is locally generated by 1 element.

(2) An effective Cartier divisor on X is a closed subspace D ⊂ X such that the
ideal sheaf ID ⊂ OX is an invertible OX -module.

Thus an effective Cartier divisor is a locally principal closed subspace, but the
converse is not always true. Effective Cartier divisors are closed subspaces of pure
codimension 1 in the strongest possible sense. Namely they are locally cut out by
a single element which is not a zerodivisor. In particular they are nowhere dense.

Lemma 2.2. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be a closed subspace. The following are equivalent:

(1) The subspace D is an effective Cartier divisor on X.
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2 DIVISORS ON ALGEBRAIC SPACES

(2) For some scheme U and surjective étale morphism U → X the inverse
image D ×X U is an effective Cartier divisor on U .

(3) For every scheme U and every étale morphism U → X the inverse image
D ×X U is an effective Cartier divisor on U .

(4) For every x ∈ |D| there exists an étale morphism (U, u)→ (X,x) of pointed
algebraic spaces such that U = Spec(A) and D ×X U = Spec(A/(f)) with
f ∈ A not a zerodivisor.

Proof. The equivalence of (1) – (3) follows from Definition 2.1 and the references
preceding it. Assume (1) and let x ∈ |D|. Choose a scheme W and a surjective
étale morphism W → X. Choose w ∈ D ×X W mapping to x. By (3) D ×X W is
an effective Cartier divisor on W . Hence we can find affine étale neighbourhood U
by choosing an affine open neighbourhood of w in W as in Divisors, Lemma 9.2.

Assume (2). Then we see that ID|U is invertible by Divisors, Lemma 9.2. Since
we can find an étale covering of X by the collection of all such U and X \ D, we
conclude that ID is an invertible OX -module. �

Lemma 2.3. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a locally principal closed subspace. Let U = X \ Z. Then U → X is an affine
morphism.

Proof. The question is étale local on X, see Morphisms of Spaces, Lemmas 20.3
and Lemma 2.2. Thus this follows from the case of schemes which is Divisors,
Lemma 9.3. �

Lemma 2.4. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Let U = X \D. Then U → X is an affine morphism
and U is scheme theoretically dense in X.

Proof. Affineness is Lemma 2.3. The density question is étale local on X by
Morphisms of Spaces, Definition 17.3. Thus this follows from the case of schemes
which is Divisors, Lemma 9.4. �

Lemma 2.5. Let S be a scheme. Let X be an algebraic space over S. Let D ⊂ X
be an effective Cartier divisor. Let x ∈ |D|. If dimx(X) < ∞, then dimx(D) <
dimx(X).

Proof. Both the definition of an effective Cartier divisor and of the dimension of
an an algebraic space at a point (Properties of Spaces, Definition 8.1) are étale
local. Hence this lemma follows from the case of schemes which is Divisors, Lemma
9.5. �

Definition 2.6. Let S be a scheme. Let X be an algebraic space over S. Given
effective Cartier divisors D1, D2 on X we set D = D1 + D2 equal to the closed
subspace of X corresponding to the quasi-coherent sheaf of ideals ID1

ID2
⊂ OS .

We call this the sum of the effective Cartier divisors D1 and D2.

It is clear that we may define the sum
∑
niDi given finitely many effective Cartier

divisors Di on X and nonnegative integers ni.

Lemma 2.7. The sum of two effective Cartier divisors is an effective Cartier
divisor.
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Proof. Omitted. Étale locally this reduces to the following simple algebra fact: if
f1, f2 ∈ A are nonzerodivisors of a ring A, then f1f2 ∈ A is a nonzerodivisor. �

Lemma 2.8. Let S be a scheme. Let X be an algebraic space over S. Let Z, Y be
two closed subspaces of X with ideal sheaves I and J . If IJ defines an effective
Cartier divisor D ⊂ X, then Z and Y are effective Cartier divisors and D = Z+Y .

Proof. By Lemma 2.2 this reduces to the case of schemes which is Divisors, Lemma
9.9. �

Recall that we have defined the inverse image of a closed subspace under any mor-
phism of algebraic spaces in Morphisms of Spaces, Definition 13.2.

Lemma 2.9. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let Z ⊂ X be a locally principal closed subspace. Then the inverse
image f−1(Z) is a locally principal closed subspace of X ′.

Proof. Omitted. �

Definition 2.10. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D ⊂ X be an effective Cartier divisor. We say the pullback of D
by f is defined if the closed subspace f−1(D) ⊂ X ′ is an effective Cartier divisor.
In this case we denote it either f∗D or f−1(D) and we call it the pullback of the
effective Cartier divisor.

The condition that f−1(D) is an effective Cartier divisor is often satisfied in prac-
tice.

Lemma 2.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let D ⊂ Y be an effective Cartier divisor. The pullback of D by f
is defined in each of the following cases:

(1) f is flat, and
(2) add more here as needed.

Proof. Omitted. �

Lemma 2.12. Let S be a scheme. Let f : X ′ → X be a morphism of algebraic
spaces over S. Let D1, D2 be effective Cartier divisors on X. If the pullbacks of
D1 and D2 are defined then the pullback of D = D1 + D2 is defined and f∗D =
f∗D1 + f∗D2.

Proof. Omitted. �

Definition 2.13. Let S be a scheme. Let X be an algebraic space over S and let
D ⊂ X be an effective Cartier divisor. The invertible sheaf OX(D) associated to D
is given by

OX(D) := HomOX
(ID,OX) = I⊗−1D .

The canonical section, usually denoted 1 or 1D, is the global section of OX(D)
corresponding to the inclusion mapping ID → OX .

Lemma 2.14. Let S be a scheme. Let X be an algebraic space over S. Let D1,
D2 be effective Cartier divisors on X. Let D = D1 + D2. Then there is a unique
isomorphism

OX(D1)⊗OX
OX(D2) −→ OX(D)

which maps 1D1
⊗ 1D2

to 1D.
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Proof. Omitted. �

Definition 2.15. Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible sheaf on X. A global section s ∈ Γ(X,L) is called a regular section
if the map OX → L, f 7→ fs is injective.

Lemma 2.16. Let S be a scheme. Let X be an algebraic space over S. Let
f ∈ Γ(X,OX). The following are equivalent:

(1) f is a regular section, and
(2) for any x ∈ X the image f ∈ OX,x is not a zerodivisor.
(3) for any affine U = Spec(A) étale over X the restriction f |U is a nonzero-

divisor of A, and
(4) there exists a scheme U and a surjective étale morphism U → X such that

f |U is a regular section of OU .

Proof. Omitted. �

Note that a global section s of an invertible OX -module L may be seen as an OX -
module map s : OX → L. Its dual is therefore a map s : L⊗−1 → OX . (See
Modules on Sites, Lemma 31.2 for the dual invertible sheaf.)

Definition 2.17. Let S be a scheme. Let X be an algebraic space over S. Let L
be an invertible sheaf. Let s ∈ Γ(X,L). The zero scheme of s is the closed subspace
Z(s) ⊂ X defined by the quasi-coherent sheaf of ideals I ⊂ OX which is the image
of the map s : L⊗−1 → OX .

Lemma 2.18. Let S be a scheme. Let X be an algebraic space over S. Let L be
an invertible OX-module. Let s ∈ Γ(X,L).

(1) Consider closed immersions i : Z → X such that i∗s ∈ Γ(Z, i∗L)) is zero
ordered by inclusion. The zero scheme Z(s) is the maximal element of this
ordered set.

(2) For any morphism of algebraic spaces f : Y → X over S we have f∗s = 0
in Γ(Y, f∗L) if and only if f factors through Z(s).

(3) The zero scheme Z(s) is a locally principal closed subspace of X.
(4) The zero scheme Z(s) is an effective Cartier divisor on X if and only if s

is a regular section of L.

Proof. Omitted. �

Lemma 2.19. Let S be a scheme. Let X be an algebraic space over S.

(1) If D ⊂ X is an effective Cartier divisor, then the canonical section 1D of
OX(D) is regular.

(2) Conversely, if s is a regular section of the invertible sheaf L, then there
exists a unique effective Cartier divisor D = Z(s) ⊂ X and a unique iso-
morphism OX(D)→ L which maps 1D to s.

The constructions D 7→ (OX(D), 1D) and (L, s) 7→ Z(s) give mutually inverse maps{
effective Cartier divisors on X

}
↔
{

pairs (L, s) consisting of an invertible
OX-module and a regular global section

}
Proof. Omitted. �
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3. Relative Proj

This section revisits the construction of the relative proj in the setting of algebraic
spaces. The material in this section corresponds to the material in Constructions,
Section 16 and Divisors, Section 16 in the case of schemes.

Situation 3.1. Here S is a scheme, X is an algebraic space over S, and A is a
quasi-coherent graded OX -algebra.

In Situation 3.1 we are going to define a functor F : (Sch/S)oppfppf → Sets which will

turn out to be an algebraic space. We will follow (mutatis mutandis) the procedure
of Constructions, Section 16. First, given a scheme T over S we define a quadruple
over T to be a system (d, f : T → S,L, ψ)

(1) d ≥ 1 is an integer,
(2) f : T → X is a morphism over S,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.

We say two quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent1 if and only
if we have f = f ′ and for some positive integer m = ad = a′d′ there exists an
isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and ψ′|f∗A(m)

agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn. Given a quadruple (d, f,L, ψ)

and a morphism h : T ′ → T we have the pullback (d, f ◦ h, h∗L, h∗ψ). Pullback
preserves the equivalence relation. Finally, for a quasi-compact scheme T over S we
set

F (T ) = the set of equivalence classes of quadruples over T

and for an arbitrary scheme T over S we set

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . Thus
we have defined our functor

(3.1.1) F : Schopp −→ Sets

There is a morphism F → X of functors sending the quadruple (d, f,L, ψ) to f .

Lemma 3.2. In Situation 3.1. The functor F above is an algebraic space. For
any morphism g : Z → X where Z is a scheme there is a canonical isomorphism
Proj

Z
(g∗A) = Z ×X F compatible with further base change.

Proof. It suffices to prove the second assertion, see Spaces, Lemma 11.1. Let
g : Z → X be a morphism where Z is a scheme. Let F ′ be the functor of quadru-
ples associated to the graded quasi-coherent OZ-algebra g∗A. Then there is a
canonical isomorphism F ′ = Z ×X F , sending a quadruple (d, f : T → Z,L, ψ) for
F ′ to (d, g ◦ f,L, ψ) (details omitted, see proof of Constructions, Lemma 16.1). By
Constructions, Lemmas 16.4, 16.5, and 16.6 and Definition 16.7 we see that F ′ is
representable by Proj

Z
(g∗A). �

The lemma above tells us the following definition makes sense.

1This definition is motivated by Constructions, Lemma 16.4. The advantage of choosing this
one is that it clearly defines an equivalence relation.
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Definition 3.3. Let S be a scheme. Let X be an algebraic space over S. Let A be a
quasi-coherent sheaf of graded OX -algebras. The relative homogeneous spectrum of
A over X, or the homogeneous spectrum of A over X, or the relative Proj of A over
X is the algebraic space F over X of Lemma 3.2. We denote it π : Proj

X
(A)→ X.

In particular the structure morphism of the relative Proj is representable by con-
struction. We can also think about the relative Proj via glueing. Let ϕ : U → X be
a surjective étale morphism, where U is a scheme. Set R = U×X U with projection
morphisms s, t : R→ U . By Lemma 3.2 there exists a canonical isomorphism

γ : Proj
U

(ϕ∗A) −→ Proj
X

(A)×X U

over U . Let α : t∗ϕ∗A → s∗ϕ∗A be the canonical isomorphism of Properties of
Spaces, Proposition 30.1. Then the diagram

Proj
U

(ϕ∗A)×U,s R Proj
R

(s∗ϕ∗A)

induced by α

��

Proj
X

(A)×X R

s∗γ

55

t∗γ

))
Proj

U
(ϕ∗A)×U,t R Proj

R
(t∗ϕ∗A)

is commutative (the equal signs come from Constructions, Lemma 16.10). Thus,
if we denote AU , AR the pullback of A to U , R, then P = Proj

X
(A) has an

étale covering by the scheme PU = Proj
U

(AU ) and PU ×P PU is equal to PR =

Proj
R

(AR). Using these remarks we can argue in the usual fashion using étale
localization to transfer results on the relative proj from the case of schemes to the
case of algebraic spaces.

Lemma 3.4. In Situation 3.1. The relative Proj comes equipped with a quasi-
coherent sheaf of Z-graded algebras

⊕
n∈ZOProj

X
(A)(n) and a canonical homomor-

phism of graded algebras

ψ : π∗A −→
⊕

n≥0
OProj

X
(A)(n)

whose base change to any scheme over X agrees with Constructions, Lemma 15.5.

Proof. As in the discussion following Definition 3.3 choose a scheme U and a
surjective étale morphism U → X, set R = U ×X U with projections s, t : R→ U ,
AU = A|U , AR = A|R, and π : P = Proj

X
(A) → X, πU : PU = Proj

U
(AU )

and πR : PR = Proj
U

(AR). By the Constructions, Lemma 15.5 we have a quasi-

coherent sheaf of Z-graded OPU
-algebras

⊕
n∈ZOPU

(n) and a canonical map ψU :
π∗UAU →

⊕
n≥0OPU

(n) and similarly for PR. By Constructions, Lemma 16.10 the

pullback of OPU
(n) and ψU by either projection PR → PU is equal to OPR

(n) and
ψR. By Properties of Spaces, Proposition 30.1 we obtain OP (n) and ψ. We omit
the verification of compatibility with pullback to arbitrary schemes over X. �

Having constructed the relative Proj we turn to some basic properties.

Lemma 3.5. Let S be a scheme. Let g : X ′ → X be a morphism of algebraic spaces
over S and let A be a quasi-coherent sheaf of graded OX-algebras. Then there is a
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canonical isomorphism

r : Proj
X′

(g∗A) −→ X ′ ×X Proj
X

(A)

as well as a corresponding isomorphism

θ : r∗pr∗2

(⊕
d∈Z
OProj

X
(A)(d)

)
−→

⊕
d∈Z
OProj

X′
(g∗A)(d)

of Z-graded OProj
X′

(g∗A)-algebras.

Proof. Let F be the functor (3.1.1) and let F ′ be the corresponding functor defined
using g∗A on X ′. We claim there is a canonical isomorphism r : F ′ → X ′ ×X F of
functors (and of course r is the isomorphism of the lemma). It suffices to construct
the bijection r : F ′(T )→ X ′(T )×X(T ) F (T ) for quasi-compact schemes T over S.
First, if ξ = (d′, f ′,L′, ψ′) is a quadruple over T for F ′, then we can set r(ξ) =
(f ′, (d′, g◦f ′,L′, ψ′)). This makes sense as (g◦f ′)∗A(d) = (f ′)∗(g∗A)(d). The inverse
map sends the pair (f ′, (d, f,L, ψ)) to the quadruple (d, f ′,L, ψ). We omit the proof
of the final assertion (hint: reduce to the case of schemes by étale localization and
apply Constructions, Lemma 16.10). �

Lemma 3.6. In Situation 3.1 the morphism π : Proj
X

(A)→ X is separated.

Proof. By Morphisms of Spaces, Lemma 4.12 and the construction of the relative
Proj this follows from the case of schemes which is Constructions, Lemma 16.9. �

Lemma 3.7. In Situation 3.1. If one of the following holds

(1) A is of finite type as a sheaf of A0-algebras,
(2) A is generated by A1 as an A0-algebra and A1 is a finite type A0-module,
(3) there exists a finite type quasi-coherent A0-submodule F ⊂ A+ such that
A+/FA is a locally nilpotent sheaf of ideals of A/FA,

then π : Proj
X

(A)→ X is quasi-compact.

Proof. By Morphisms of Spaces, Lemma 8.7 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 16.1. �

Lemma 3.8. In Situation 3.1. If A is of finite type as a sheaf of OX-algebras,
then π : Proj

X
(A)→ X is of finite type.

Proof. By Morphisms of Spaces, Lemma 23.4 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 16.2. �

Lemma 3.9. In Situation 3.1. If OX → A0 is an integral algebra map2 and A is
of finite type as an A0-algebra, then π : Proj

X
(A)→ X is universally closed.

Proof. By Morphisms of Spaces, Lemma 9.5 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 16.3. �

Lemma 3.10. In Situation 3.1. The following conditions are equivalent

(1) A0 is a finite type OX-module and A is of finite type as an A0-algebra,
(2) A0 is a finite type OX-module and A is of finite type as an OX-algebra.

If these conditions hold, then π : Proj
X

(A)→ X is proper.

2In other words, the integral closure of OX in A0, see Morphisms of Spaces, Definition 43.2,
equals A0.
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Proof. By Morphisms of Spaces, Lemma 37.2 and the construction of the relative
Proj this follows from the case of schemes which is Divisors, Lemma 16.3. �

Lemma 3.11. Let S be a scheme. Let X be an algebraic space over S. Let A
be a quasi-coherent sheaf of graded OX-modules generated as an A0-algebra by A1.
With P = Proj

X
(A) we have

(1) P represents the functor F1 which associates to T over S the set of iso-
morphism classes of triples (f,L, ψ), where f : T → X is a morphism over
S, L is an invertible OT -module, and ψ : f∗A →

⊕
n≥0 L⊗n is a map of

graded OT -algebras inducing a surjection f∗A1 → L,
(2) the canonical map π∗A1 → OP (1) is surjective, and
(3) each OP (n) is invertible and the multiplication maps induce isomorphisms
OP (n)⊗OP

OP (m) = OP (n+m).

Proof. Omitted. See Constructions, Lemma 16.11 for the case of schemes. �

4. Functoriality of relative proj

This section is the analogue of Constructions, Section 18.

Lemma 4.1. Let S be a scheme. Let X be an algebraic space over S. Let ψ : A → B
be a map of quasi-coherent graded OX-algebras. Set P = Proj

X
(A) → X and

Q = Proj
X

(B)→ X. There is a canonical open subspace U(ψ) ⊂ Q and a canonical
morphism of algebraic spaces

rψ : U(ψ) −→ P

over X and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OP (d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any scheme W étale
over X the triple

(U(ψ)×X W, rψ|U(ψ)×XW : U(ψ)×X W → P ×X W, θ|U(ψ)×XW )

is equal to the triple associated to ψ : A|W → B|W of Constructions, Lemma 18.1.

Proof. This lemma follows from étale localization and the case of schemes, see
discussion following Definition 3.3. Details omitted. �

Lemma 4.2. Let S be a scheme. Let X be an algebraic space over S. Let A, B,
and C be quasi-coherent graded OX-algebras. Set P = Proj

X
(A), Q = Proj

X
(B)

and R = Proj
X

(C). Let ϕ : A → B, ψ : B → C be graded OX-algebra maps. Then
we have

U(ψ ◦ ϕ) = r−1ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 4.3. With hypotheses and notation as in Lemma 4.1 above. Assume Ad →
Bd is surjective for d� 0. Then

(1) U(ψ) = Q,
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(2) rψ : Q→ R is a closed immersion, and
(3) the maps θ : r∗ψOP (n) → OQ(n) are surjective but not isomorphisms in

general (even if A → B is surjective).

Proof. Follows from the case of schemes (Constructions, Lemma 18.3) by étale
localization. �

Lemma 4.4. With hypotheses and notation as in Lemma 4.1 above. Assume Ad →
Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is an isomorphism, and
(3) the maps θ : r∗ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 18.4) by étale
localization. �

Lemma 4.5. With hypotheses and notation as in Lemma 4.1 above. Assume Ad →
Bd is surjective for d� 0 and that A is generated by A1 over A0. Then

(1) U(ψ) = Q,
(2) rψ : Q→ P is a closed immersion, and
(3) the maps θ : r∗ψOP (n)→ OQ(n) are isomorphisms.

Proof. Follows from the case of schemes (Constructions, Lemma 18.5) by étale
localization. �

5. Closed subspaces of relative proj

Some auxiliary lemmas about closed subspaces of relative proj. This section is the
analogue of Divisors, Section 17.

Lemma 5.1. Let S be a scheme. Let X be an algebraic space over S. Let A be a
quasi-coherent graded OX-algebra. Let π : P = Proj

X
(A)→ X be the relative Proj

of A. Let i : Z → P be a closed subspace. Denote I ⊂ A the kernel of the canonical
map

A −→
⊕

d≥0
π∗ ((i∗OZ)(d))

If π is quasi-compact, then there is an isomorphism Z = Proj
X

(A/I).

Proof. The morphism π is separated by Lemma 3.6. As π is quasi-compact, π∗
transforms quasi-coherent modules into quasi-coherent modules, see Morphisms
of Spaces, Lemma 11.2. Hence I is a quasi-coherent OX -module. In particular,
B = A/I is a quasi-coherent graded OX -algebra. The functoriality morphism
Z ′ = Proj

X
(B) → Proj

X
(A) is everywhere defined and a closed immersion, see

Lemma 4.3. Hence it suffices to prove Z = Z ′ as closed subspaces of P .

Having said this, the question is étale local on the base and we reduce to the case
of schemes (Divisors, Lemma 17.1) by étale localization. �

In case the closed subspace is locally cut out by finitely many equations we can
define it by a finite type ideal sheaf of A.

Lemma 5.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A) → X be the relative Proj of A. Let i : Z → P be a closed subscheme.
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If π is quasi-compact and i of finite presentation, then there exists a d > 0 and a
quasi-coherent finite type OX-submodule F ⊂ Ad such that Z = Proj

X
(A/FA).

Proof. The reader can redo the arguments used in the case of schemes. However,
we will show the lemma follows from the case of schemes by a trick. Let I ⊂ A
be the quasi-coherent graded ideal cutting out Z of Lemma 5.1. Choose an affine
scheme U and a surjective étale morphism U → X, see Properties of Spaces, Lemma
6.3. By the case of schemes (Divisors, Lemma 17.2) there exists a d > 0 and a quasi-
coherent finite type OU -submodule F ′ ⊂ Id|U ⊂ Ad|U such that Z ×X U is equal
to Proj

U
(A|U/F ′A|U ). By Limits of Spaces, Lemma 9.2 we can find a finite type

quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|U . Let Z ′ = Proj
X

(A/FA).

Then Z ′ → P is a closed immersion (Lemma 4.5) and Z ⊂ Z ′ as FA ⊂ I. On the
other hand, Z ′ ×X U ⊂ Z ×X U by our choice of F . Thus Z = Z ′ as desired. �

Lemma 5.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent graded OX-algebra. Let π : P =
Proj

X
(A)→ X be the relative Proj of A. Let i : Z → X be a closed subspace. Let

U ⊂ X be an open. Assume that

(1) π is quasi-compact,
(2) i of finite presentation,
(3) |U | ∩ |π|(|i|(|Z|)) = ∅,
(4) U is quasi-compact,
(5) An is a finite type OX-module for all n.

Then there exists a d > 0 and a quasi-coherent finite type OX-submodule F ⊂ Ad
with (a) Z = Proj

X
(A/FA) and (b) the support of Ad/F is disjoint from U .

Proof. We use the same trick as in the proof of Lemma 5.2 to reduce to the case of
schemes. Let I ⊂ A be the quasi-coherent graded ideal cutting out Z of Lemma 5.1.
Choose an affine scheme W and a surjective étale morphism W → X, see Properties
of Spaces, Lemma 6.3. By the case of schemes (Divisors, Lemma 17.3) there exists
a d > 0 and a quasi-coherent finite type OW -submodule F ′ ⊂ Id|W ⊂ Ad|W such
that (a) Z×XW is equal to Proj

W
(A|W /F ′A|W ) and (b) the support of Ad|W /F ′

is disjoint from U ×XW . By Limits of Spaces, Lemma 9.2 we can find a finite type
quasi-coherent submodule F ⊂ Id such that F ′ ⊂ F|W . Let Z ′ = Proj

X
(A/FA).

Then Z ′ → P is a closed immersion (Lemma 4.5) and Z ⊂ Z ′ as FA ⊂ I. On the
other hand, Z ′×XW ⊂ Z ×XW by our choice of F . Thus Z = Z ′. Finally, we see
that Ad/F is supported on X \ U as Ad|W /F|W is a quotient of Ad|W /F ′ which
is supported on W \ U ×X W . Thus the lemma follows. �

6. Blowing up

Blowing up is an important tool in algebraic geometry.

Definition 6.1. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals, and let Z ⊂ X be the closed subscheme
corresponding to I (Morphisms of Spaces, Lemma 13.1). The blowing up of X along
Z, or the blowing up of X in the ideal sheaf I is the morphism

b : Proj
X

(⊕
n≥0
In
)
−→ X

The exceptional divisor of the blow up is the inverse image b−1(Z). Sometimes Z
is called the center of the blowup.
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We will see later that the exceptional divisor is an effective Cartier divisor. More-
over, the blowing up is characterized as the “smallest” algebraic space over X such
that the inverse image of Z is an effective Cartier divisor.

If b : X ′ → X is the blow up of X in Z, then we often denote OX′(n) the twists of
the structure sheaf. Note that these are invertible OX′ -modules and that OX′(n) =
OX′(1)⊗n because X ′ is the relative Proj of a quasi-coherent graded OX -algebra
which is generated in degree 1, see Lemma 3.11.

Lemma 6.2. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let U = Spec(A) be an affine scheme étale over
X and let I ⊂ A be the ideal corresponding to I|U . If X ′ → X is the blow up of X
in I, then there is a canonical isomorphism

U ×X X ′ = Proj(
⊕

d≥0
Id)

of schemes over U , where the right hand side is the homogeneous spectrum of the
Rees algebra of I in A. Moreover, U ×X X ′ has an affine open covering by spectra
of the affine blowup algebras A[ Ia ].

Proof. Note that the restriction I|U is equal to the pullback of I via the morphism
U → X, see Properties of Spaces, Section 24. Thus the lemma follows on combining
Lemma 3.2 with Divisors, Lemma 18.2. �

Lemma 6.3. Let S be a scheme. Let X1 → X2 be a flat morphism of algebraic
spaces over S. Let Z2 ⊂ X2 be a closed subspace. Let Z1 be the inverse image of
Z2 in X1. Let X ′i be the blow up of Zi in Xi. Then there exists a cartesian diagram

X ′1 //

��

X ′2

��
X1

// X2

of algebraic spaces over S.

Proof. Let I2 be the ideal sheaf of Z2 in X2. Denote g : X1 → X2 the given mor-
phism. Then the ideal sheaf I1 of Z1 is the image of g∗I2 → OX1

(see Morphisms
of Spaces, Definition 13.2 and discussion following the definition). By Lemma 3.5
we see that X1×X2X

′
2 is the relative Proj of

⊕
n≥0 g

∗In2 . Because g is flat the map

g∗In2 → OX1
is injective with image In1 . Thus we see that X1 ×X2

X ′2 = X ′1. �

Lemma 6.4. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be a closed subspace. The blowing up b : X ′ → X of Z in X has the following
properties:

(1) b|b−1(X\Z) : b−1(X \ Z)→ X \ Z is an isomorphism,

(2) the exceptional divisor E = b−1(Z) is an effective Cartier divisor on X ′,
(3) there is a canonical isomorphism OX′(−1) = OX′(E)

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 6.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 18.4. �
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Lemma 6.5 (Universal property blowing up). Let S be a scheme. Let X be an
algebraic space over S. Let Z ⊂ X be a closed subspace. Let C be the full subcategory
of (Spaces/X) consisting of Y → X such that the inverse image of Z is an effective
Cartier divisor on Y . Then the blowing up b : X ′ → X of Z in X is a final object
of C.

Proof. We see that b : X ′ → X is an object of C according to Lemma 6.4. Let
f : Y → X be an object of C. We have to show there exists a unique morphism
Y → X ′ over X. Let D = f−1(Z). Let I ⊂ OX be the ideal sheaf of Z and let ID
be the ideal sheaf of D. Then f∗I → ID is a surjection to an invertible OY -module.
This extends to a map ψ :

⊕
f∗Id →

⊕
IdD of graded OY -algebras. (We observe

that IdD = I⊗dD as D is an effective Cartier divisor.) By Lemma 3.11. the triple
(f : Y → X, ID, ψ) defines a morphism Y → X ′ over X. The restriction

Y \D −→ X ′ \ b−1(Z) = X \ Z
is unique. The open Y \D is scheme theoretically dense in Y according to Lemma
2.4. Thus the morphism Y → X ′ is unique by Morphisms of Spaces, Lemma 17.8
(also b is separated by Lemma 3.6). �

Lemma 6.6. Let S be a scheme. Let X be an algebraic space over S. Let Z ⊂ X
be an effective Cartier divisor. The blowup of X in Z is the identity morphism of
X.

Proof. Immediate from the universal property of blowups (Lemma 6.5). �

Lemma 6.7. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. If X is reduced, then the blow up X ′ of X in I
is reduced.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 6.3) we can prove each of
these statements after base change to U . This reduces us to the case of schemes.
In this case the result is Divisors, Lemma 18.8. �

Lemma 6.8. Let S be a scheme. Let X be an algebraic space over S. Let b : X ′ →
X be a blow up of X in a closed subspace. For any effective Cartier divisor D on
X the pullback b−1D is defined (see Definition 2.10).

Proof. By Lemmas 6.2 and 2.2 this reduces to the following algebra fact: Let A
be a ring, I ⊂ A an ideal, a ∈ I, and x ∈ A a nonzerodivisor. Then the image of
x in A[ Ia ] is a nonzerodivisor. Namely, suppose that x(y/an) = 0 in A[ Ia ]. Then
amxy = 0 in A for some m. Hence amy = 0 as x is a nonzerodivisor. Whence y/an

is zero in A[ Ia ] as desired. �

Lemma 6.9. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
and J be quasi-coherent sheaves of ideals. Let b : X ′ → X be the blowing up of X
in I. Let b′ : X ′′ → X ′ be the blowing up of X ′ in b−1JOX′ . Then X ′′ → X is
canonically isomorphic to the blowing up of X in IJ .

Proof. Let E ⊂ X ′ be the exceptional divisor of b which is an effective Cartier
divisor by Lemma 6.4. Then (b′)−1E is an effective Cartier divisor on X ′′ by Lemma
6.8. Let E′ ⊂ X ′′ be the exceptional divisor of b′ (also an effective Cartier divisor).
Consider the effective Cartier divisor E′′ = E′ + (b′)−1E. By construction the
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ideal of E′′ is (b ◦ b′)−1I(b ◦ b′)−1JOX′′ . Hence according to Lemma 6.5 there is a
canonical morphism from X ′′ to the blowup c : Y → X of X in IJ . Conversely, as
IJ pulls back to an invertible ideal we see that c−1IOY defines an effective Cartier
divisor, see Lemma 2.8. Thus a morphism c′ : Y → X ′ over X by Lemma 6.5. Then
(c′)−1b−1JOY = c−1JOY which also defines an effective Cartier divisor. Thus a
morphism c′′ : Y → X ′′ over X ′. We omit the verification that this morphism is
inverse to the morphism X ′′ → Y constructed earlier. �

Lemma 6.10. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let b : X ′ → X be the blowing up of X in the
ideal sheaf I. If I is of finite type, then b : X ′ → X is a proper morphism.

Proof. Let U be a scheme and let U → X be a surjective étale morphism. As
blowing up commutes with flat base change (Lemma 6.3) we can prove each of
these statements after base change to U (see Morphisms of Spaces, Lemma 37.2).
This reduces us to the case of schemes. In this case the morphism b is projective
by Divisors, Lemma 18.11 hence proper by Morphisms, Lemma 43.5. �

Lemma 6.11. Let S be a scheme and let X be an algebraic space over S. Assume
X is quasi-compact and quasi-separated. Let Z ⊂ X be a closed subspace of finite
presentation. Let b : X ′ → X be the blowing up with center Z. Let Z ′ ⊂ X ′ be a
closed subspace of finite presentation. Let X ′′ → X ′ be the blowing up with center
Z ′. There exists a closed subspace Y ⊂ X of finite presentation, such that

(1) |Y | = |Z| ∪ |b|(|Z ′|), and
(2) the composition X ′′ → X is isomorphic to the blowing up of X in Y .

Proof. The condition that Z → X is of finite presentation means that Z is cut out
by a finite type quasi-coherent sheaf of ideals I ⊂ OX , see Morphisms of Spaces,
Lemma 27.12. Write A =

⊕
n≥0 In so that X ′ = Proj(A). Note that X \ Z

is a quasi-compact open subspace of X by Limits of Spaces, Lemma 14.1. Since
b−1(X \ Z) → X \ Z is an isomorphism (Lemma 6.4) the same result shows that
b−1(X \Z) \Z ′ is quasi-compact open subspace in X ′. Hence U = X \ (Z ∪ b(Z ′))
is quasi-compact open subspace in X. By Lemma 5.3 there exist a d > 0 and a
finite type OX -submodule F ⊂ Id such that Z ′ = Proj(A/FA) and such that the

support of Id/F is contained in X \ U .

Since F ⊂ Id is an OX -submodule we may think of F ⊂ Id ⊂ OX as a finite
type quasi-coherent sheaf of ideals on X. Let’s denote this J ⊂ OX to prevent
confusion. Since Id/J and O/Id are supported on |X| \ |U | we see that |V (J )|
is contained in |X| \ |U |. Conversely, as J ⊂ Id we see that |Z| ⊂ |V (J )|. Over
X \Z ∼= X ′\b−1(Z) the sheaf of ideals J cuts out Z ′ (see displayed formula below).
Hence |V (J )| equals |Z| ∪ |b|(|Z ′|). It follows that also |V (IJ )| = |Z| ∪ |b|(|Z ′|).
Moreover, IJ is an ideal of finite type as a product of two such. We claim that
X ′′ → X is isomorphic to the blowing up of X in IJ which finishes the proof of
the lemma by setting Y = V (IJ ).

First, recall that the blow up of X in IJ is the same as the blow up of X ′ in
b−1JOX′ , see Lemma 6.9. Hence it suffices to show that the blow up of X ′ in
b−1JOX′ agrees with the blow up of X ′ in Z ′. We will show that

b−1JOX′ = IdEIZ′
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as ideal sheaves on X ′′. This will prove what we want as IdE cuts out the effective
Cartier divisor dE and we can use Lemmas 6.6 and 6.9.

To see the displayed equality of the ideals we may work locally. With notation A,
I, a ∈ I as in Lemma 6.2 we see that F corresponds to an R-submodule M ⊂ Id

mapping isomorphically to an ideal J ⊂ R. The condition Z ′ = Proj(A/FA)

means that Z ′∩Spec(A[ Ia ]) is cut out by the ideal generated by the elements m/ad,
m ∈ M . Say the element m ∈ M corresponds to the function f ∈ J . Then in the
affine blowup algebra A′ = A[ Ia ] we see that f = (adm)/ad = ad(m/ad). Thus the
equality holds. �

7. Strict transform

This section is the analogue of Divisors, Section 19. Let S be a scheme, let B be
an algebraic space over S, and let Z ⊂ B be a closed subspace. Let b : B′ → B be
the blowing up of B in Z and denote E ⊂ B′ the exceptional divisor E = b−1Z.
In the following we will often consider an algebraic space X over B and form the
cartesian diagram

pr−1B′E
//

��

X ×B B′ prX
//

prB′

��

X

f

��
E // B′ // B

Since E is an effective Cartier divisor (Lemma 6.4) we see that pr−1B′E ⊂ X×BB′ is
locally principal (Lemma 2.9). Thus the inclusion morphism of the complement of
pr−1B′E in X ×B B′ is affine and in particular quasi-compact (Lemma 2.3). Conse-
quently, for a quasi-coherent OX×BB′ -module G the subsheaf of sections supported
on |pr−1B′E| is a quasi-coherent submodule, see Limits of Spaces, Lemma 14.5. If G
is a quasi-coherent sheaf of algebras, e.g., G = OX×BB′ , then this subsheaf is an
ideal of G.

Definition 7.1. With Z ⊂ B and f : X → B as above.

(1) Given a quasi-coherent OX -module F the strict transform of F with respect
to the blowup of B in Z is the quotient F ′ of pr∗XF by the submodule of

sections supported on |pr−1B′E|.
(2) The strict transform of X is the closed subscheme X ′ ⊂ X ×B B′ cut out

by the quasi-coherent ideal of sections of OX×BB′ supported on |pr−1B′E|.

Note that taking the strict transform along a blowup depends on the closed subspace
used for the blowup (and not just on the morphism B′ → B).

Lemma 7.2 (Étale localization and strict transform). In the situation of Definition
7.1. Let

U //

��

X

��
V // B

be a commutative diagram of morphisms with U and V schemes and étale horizontal
arrows. Let V ′ → V be the blowup of V in Z ×B V . Then

(1) V ′ = V ×B B′ and the maps V ′ → B′ and U ×V V ′ → X ×B B′ are étale,
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(2) the strict transform U ′ of U relative to V ′ → V is equal to X ′ ×X U where
X ′ is the strict transform of X relative to B′ → B, and

(3) for a quasi-coherent OX-module F the restriction of the strict transform
F ′ to U ×V V ′ is the strict transform of F|U relative to V ′ → V .

Proof. Part (1) follows from the fact that blowup commutes with flat base change
(Lemma 6.3), the fact that étale morphisms are flat, and that the base change of an
étale morphism is étale. Part (3) then follows from the fact that taking the sheaf
of sections supported on a closed commutes with pullback by étale morphisms, see
Limits of Spaces, Lemma 14.5. Part (2) follows from (3) applied to F = OX . �

Lemma 7.3. In the situation of Definition 7.1.

(1) The strict transform X ′ of X is the blowup of X in the closed subspace
f−1Z of X.

(2) For a quasi-coherent OX-module F the strict transform F ′ is canonically
isomorphic to the pushforward along X ′ → X×B B′ of the strict transform
of F relative to the blowing up X ′ → X.

Proof. Let X ′′ → X be the blowup of X in f−1Z. By the universal property of
blowing up (Lemma 6.5) there exists a commutative diagram

X ′′ //

��

X

��
B′ // B

whence a morphism i : X ′′ → X ×B B′. The first assertion of the lemma is that
i is a closed immersion with image X ′. The second assertion of the lemma is that
F ′ = i∗F ′′ where F ′′ is the strict transform of F with respect to the blowing up
X ′′ → X. We can check these assertions étale locally on X, hence we reduce to the
case of schemes (Divisors, Lemma 19.2). Some details omitted. �

Lemma 7.4. In the situation of Definition 7.1.

(1) If X is flat over B at all points lying over Z, then the strict transform of
X is equal to the base change X ×B B′.

(2) Let F be a quasi-coherent OX-module. If F is flat over B at all points lying
over Z, then the strict transform F ′ of F is equal to the pullback pr∗XF .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 19.3)
by étale localization (Lemma 7.2). �

Lemma 7.5. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up of Z in B. Let g : X → Y
be an affine morphism of spaces over B. Let F be a quasi-coherent sheaf on X. Let
g′ : X ×B B′ → Y ×B B′ be the base change of g. Let F ′ be the strict transform of
F relative to b. Then g′∗F ′ is the strict transform of g∗F .

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 19.4)
by étale localization (Lemma 7.2). �

Lemma 7.6. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let D ⊂ B be an effective Cartier divisor. Let Z ′ ⊂ B be the
closed subspace cut out by the product of the ideal sheaves of Z and D. Let B′ → B
be the blowup of B in Z.
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(1) The blowup of B in Z ′ is isomorphic to B′ → B.
(2) Let f : X → B be a morphism of algebraic spaces and let F be a quasi-

coherent OX-module. If the subsheaf of F of sections supported on |f−1D|
is zero, then the strict transform of F relative to the blowing up in Z agrees
with the strict transform of F relative to the blowing up of B in Z ′.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 19.5)
by étale localization (Lemma 7.2). �

Lemma 7.7. Let S be a scheme. Let B be an algebraic space over S. Let Z ⊂ B
be a closed subspace. Let b : B′ → B be the blowing up with center Z. Let Z ′ ⊂ B′
be a closed subspace. Let B′′ → B′ be the blowing up with center Z ′. Let Y ⊂ B
be a closed subscheme such that |Y | = |Z| ∪ |b|(|Z ′|) and the composition B′′ → B
is isomorphic to the blowing up of B in Y . In this situation, given any scheme X
over B and F ∈ QCoh(OX) we have

(1) the strict transform of F with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of F with respect to the blowup B′ → B of B in Z, and

(2) the strict transform of X with respect to the blowing up of B in Y is equal
to the strict transform with respect to the blowup B′′ → B′ in Z ′ of the
strict transform of X with respect to the blowup B′ → B of B in Z.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 19.6)
by étale localization (Lemma 7.2). �

Lemma 7.8. In the situation of Definition 7.1. Suppose that

0→ F1 → F2 → F3 → 0

is an exact sequence of quasi-coherent sheaves on X which remains exact after
any base change T → B. Then the strict transforms of F ′i relative to any blowup
B′ → B form a short exact sequence 0→ F ′1 → F ′2 → F ′3 → 0 too.

Proof. Omitted. Hint: Follows from the case of schemes (Divisors, Lemma 19.7)
by étale localization (Lemma 7.2). �

8. Admissible blowups

To have a bit more control over our blowups we introduce the following standard
terminology.

Definition 8.1. Let S be a scheme. Let X be an algebraic space over S. Let
U ⊂ X be an open subspace. A morphism X ′ → X is called a U -admissible blowup
if there exists a closed immersion Z → X of finite presentation with Z disjoint from
U such that X ′ is isomorphic to the blow up of X in Z.

We recall that Z → X is of finite presentation if and only if the ideal sheaf IZ ⊂
OX is of finite type, see Morphisms of Spaces, Lemma 27.12. In particular, a U -
admissible blowup is a proper morphism, see Lemma 6.10. Note that there can be
multiple centers which give rise to the same morphism. Hence the requirement is
just the existence of some center disjoint from U which produces X ′. Finally, as
the morphism b : X ′ → X is an isomorphism over U (see Lemma 6.4) we will often
abuse notation and think of U as an open subspace of X ′ as well.
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Lemma 8.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let b : X ′ →
X be a U -admissible blowup. Let X ′′ → X ′ be a U -admissible blowup. Then the
composition X ′′ → X is a U -admissible blowup.

Proof. Immediate from the more precise Lemma 6.11. �

Lemma 8.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U, V ⊂ X be quasi-compact open subspaces. Let b : V ′ → V
be a U ∩ V -admissible blowup. Then there exists a U -admissible blowup X ′ → X
whose restriction to V is V ′.

Proof. Let I ⊂ OV be the finite type quasi-coherent sheaf of ideals such that V (I)
is disjoint from U ∩V and such that V ′ is isomorphic to the blow up of V in I. Let
I ′ ⊂ OU∪V be the quasi-coherent sheaf of ideals whose restriction to U is OU and
whose restriction to V is I. By Limits of Spaces, Lemma 9.8 there exists a finite
type quasi-coherent sheaf of ideals J ⊂ OX whose restriction to U ∪ V is I ′. The
lemma follows. �

Lemma 8.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open subspace. Let bi :
Xi → X, i = 1, . . . , n be U -admissible blowups. There exists a U -admissible blowup
b : X ′ → X such that (a) b factors as X ′ → Xi → X for i = 1, . . . , n and (b) each
of the morphisms X ′ → Xi is a U -admissible blowup.

Proof. Let Ii ⊂ OX be the finite type quasi-coherent sheaf of ideals such that
V (Ii) is disjoint from U and such that Xi is isomorphic to the blow up of X in Ii.
Set I = I1 · . . . · In and let X ′ be the blowup of X in I. Then X ′ → X factors
through bi by Lemma 6.9. �

Lemma 8.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U, V be quasi-compact disjoint open subspaces of X.
Then there exist a U ∪ V -admissible blowup b : X ′ → X such that X ′ is a disjoint
union of open subspaces X ′ = X ′1 qX ′2 with b−1(U) ⊂ X ′1 and b−1(V ) ⊂ X ′2.

Proof. Choose a finite type quasi-coherent sheaf of ideals I, resp. J such that
X \ U = V (I), resp. X \ V = V (J ), see Limits of Spaces, Lemma 14.1. Then
|V (IJ )| = |X|. Hence IJ is a locally nilpotent sheaf of ideals. Since I and J are
of finite type and X is quasi-compact there exists an n > 0 such that InJ n = 0.
We may and do replace I by In and J by J n. Whence IJ = 0. Let b : X ′ → X
be the blowing up in I+J . This is U ∪V -admissible as |V (I+J )| = |X|\|U |∪|V |.
We will show that X ′ is a disjoint union of open subspaces X ′ = X ′1qX ′2 as in the
statement of the lemma.

Since |V (I + J )| is the complement of |U ∪ V | we conclude that V ∪ U is scheme
theoretically dense in X ′, see Lemmas 6.4 and 2.4. Thus if such a decomposition
X ′ = X ′1qX ′2 into open and closed subspaces exists, then X ′1 is the scheme theoretic
closure of U in X ′ and similarly X ′2 is the scheme theoretic closure of V in X ′. Since
U → X ′ and V → X ′ are quasi-compact taking scheme theoretic closures commutes
with étale localization (Morphisms of Spaces, Lemma 16.3). Hence to verify the
existence of X ′1 and X ′2 we may work étale locally on X. This reduces us to the
case of schemes which is treated in the proof of Divisors, Lemma 20.5. �
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