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1. Introduction

In this document we work out some topics on cohomology of sheaves. We work
out what happens for sheaves on sites, although often we will simply duplicate the
discussion, the constructions, and the proofs from the topological case in the case.
Basic references are [AGV71], [God73] and [Ive86].

2. Topics

Here are some topics that should be discussed in this chapter, and have not yet
been written.

(1) Cohomology of a sheaf of modules on a site is the same as the cohomology
of the underlying abelian sheaf.

(2) Hypercohomology on a site.
(3) Ext-groups.
(4) Ext sheaves.
(5) Tor functors.
(6) Higher direct images for a morphism of sites.
(7) Derived pullback for morphisms between ringed sites.
(8) Cup-product.
(9) Group cohomology.

(10) Comparison of group cohomology and cohomology on TG.
(11) Cech cohomology on sites.
(12) Cech to cohomology spectral sequence on sites.
(13) Leray Spectral sequence for a morphism between ringed sites.
(14) Etc, etc, etc.

3. Cohomology of sheaves

Let C be a site, see Sites, Definition 6.2. Let F be a abelian sheaf on C. We know
that the category of abelian sheaves on C has enough injectives, see Injectives,
Theorem 7.4. Hence we can choose an injective resolution F [0] → I•. For any
object U of the site C we define

(3.0.1) Hi(U,F) = Hi(Γ(U, I•))

to be the ith cohomology group of the abelian sheaf F over the object U . In other
words, these are the right derived functors of the functor F 7→ F(U). The family
of functors Hi(U,−) forms a universal δ-functor Ab(C)→ Ab.

It sometimes happens that the site C does not have a final object. In this case we
define the global sections of a presheaf of sets F over C to be the set

(3.0.2) Γ(C,F) = MorPSh(C)(e,F)
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where e is a final object in the category of presheaves on C. In this case, given an
abelian sheaf F on C, we define the ith cohomology group of F on C as follows

(3.0.3) Hi(C,F) = Hi(Γ(C, I•))
in other words, it is the ith right derived functor of the global sections functor. The
family of functors Hi(C,−) forms a universal δ-functor Ab(C)→ Ab.

Let f : Sh(C) → Sh(D) be a morphism of topoi, see Sites, Definition 16.1. With
F [0]→ I• as above we define

(3.0.4) Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Ab(C)→ Ab(D).

Let (C,O) be a ringed site, see Modules on Sites, Definition 6.1. Let F be an
O-module. We know that the category of O-modules has enough injectives, see
Injectives, Theorem 8.4. Hence we can choose an injective resolution F [0] → I•.
For any object U of the site C we define

(3.0.5) Hi(U,F) = Hi(Γ(U, I•))
to be the the ith cohomology group of F over U . The family of functors Hi(U,−)
forms a universal δ-functor Mod(O)→ ModO(U). Similarly

(3.0.6) Hi(C,F) = Hi(Γ(C, I•))
it the ith cohomology group of F on C. The family of functors Hi(C,−) forms a
universal δ-functor Mod(C)→ ModΓ(C,O).

Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi, see Modules on
Sites, Definition 7.1. With F [0]→ I• as above we define

(3.0.7) Rif∗F = Hi(f∗I•)
to be the ith higher direct image of F . These are the right derived functors of f∗.
The family of functors Rif∗ forms a universal δ-functor from Mod(O)→ Mod(O′).

4. Derived functors

We briefly explain an approach to right derived functors using resolution functors.
Namely, suppose that (C,O) is a ringed site. In this chapter we will write

K(O) = K(Mod(O)) and D(O) = D(Mod(O))

and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 8.1 and Definition 11.3. By Derived Categories,
Remark 24.3 there exists a resolution functor

j = j(C,O) : K+(Mod(O)) −→ K+(I)

where I is the strictly full additive subcategory of Mod(O) which consists of injective
O-modules. For any left exact functor F : Mod(O)→ B into any abelian category
B we will denote RF the right derived functor of Derived Categories, Section 20
constructed using the resolution functor j just described:

(4.0.8) RF = F ◦ j′ : D+(O) −→ D+(B)

see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF
as defined on Mod(O), Comp+(Mod(O)), or K+(O) depending on the situation.
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According to Derived Categories, Definition 17.2 we obtain the ithe right derived
functor

(4.0.9) RiF = Hi ◦RF : Mod(O) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 20.4.

Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for the bounded versions. For any
object U of C have a left exact functor Γ(U,−) : Mod(O) −→ ModO(U) which gives
rise to

RΓ(U,−) : D+(O) −→ D+(O(U))

by the discussion above. Note that Hi(U,−) = RiΓ(U,−) is compatible with (3.0.5)
above. We similarly have

RΓ(C,−) : D+(O) −→ D+(Γ(C,O))

compatible with (3.0.6). If f : (Sh(C),O) → (Sh(D),O′) is a morphism of ringed
topoi then we get a left exact functor f∗ : Mod(O) → Mod(O′) which gives rise to
derived pushforward

Rf∗ : D+(O)→ D+(O′)
The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (3.0.7). The displayed functors above are exact
functor of derived categories.

5. First cohomology and torsors

Definition 5.1. Let C be a site. Let G be a sheaf of (possibly non-commutative)
groups on C. A pseudo torsor, or more precisely a pseudo G-torsor, is a sheaf of
sets F on C endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive.

A morphism of pseudo G-torsors F → F ′ is simply a morphism of sheaves of sets
compatible with the G-actions. A torsor, or more precisely a G-torsor, is a pseudo
G-torsor such that in addition

(2) for every U ∈ Ob(C) there exists a covering {Ui → U}i∈I of U such that
F(Ui) is nonempty for all i ∈ I.

A morphism of G-torsors is simply a morphism of pseudo G-torsors. The trivial
G-torsor is the sheaf G endowed with the obvious left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 5.2. Let C be a site. Let G be a sheaf of (possibly non-commutative) groups
on C. A G-torsor F is trivial if and only if Γ(C,F) 6= ∅.

Proof. Omitted. �

Lemma 5.3. Let C be a site. Let H be an abelian sheaf on C. There is a canonical
bijection between the set of isomorphism classes of H-torsors and H1(C,H).

http://localhost:8080/tag/03AH
http://localhost:8080/tag/03AI
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Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is
the sheafification of the rule which associates to U ∈ Ob(C) the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

sections of the form [s]− [s′]. There is a canonical map a : Ker(σ)→ H which maps
[s] − [s′] 7→ h where h is the local section of H such that h · s = s′. Consider the
pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(C,H) by applying the boundary operator to 1 ∈ H0(C,Z).

Conversely, given ξ ∈ H1(C,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(C,Q) because H1(C, I) = 0
(see Derived Categories, Lemma 20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a H-torsor.

We omit the verification that the two constructions given above are mutually in-
verse. �

6. First cohomology and extensions

Lemma 6.1. Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
There is a canonical bijection

Ext1Mod(O)(O,F) −→ H1(C,F)

which associates to the extension

0→ F → E → O → 0

the image of 1 ∈ Γ(C,O) in H1(C,F).

Proof. Let us construct the inverse of the map given in the lemma. Let ξ ∈
H1(C,F). Choose an injection F ⊂ I with I injective in Mod(O). Set Q = I/F .
By the long exact sequence of cohomology, we see that ξ is the image of of a section
ξ̃ ∈ Γ(C,Q) = HomO(O,Q). Now, we just form the pullback

0 // F // E //

��

O //

ξ̃
��

0

0 // F // I // Q // 0

see Homology, Section 6. �

http://localhost:8080/tag/03F1
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The following lemma will be superseded by the more general Lemma 12.4.

Lemma 6.2. Let (C,O) be a ringed site. Let F be a sheaf of O-modules on C.
Let Fab denote the underlying sheaf of abelian groups. Then there is a functorial
isomorphism

H1(C,Fab) = H1(C,F)

where the left hand side is cohomology computed in Ab(C) and the right hand side
is cohomology computed in Mod(O).

Proof. Let Z denote the constant sheaf Z. As Ab(C) = Mod(Z) we may apply
Lemma 6.1 twice, and it follows that we have to show

Ext1
Mod(O)(O,F) = Ext1

Mod(Z)(Z,Fab).

Suppose that 0 → F → E → O → 0 is an extension in Mod(O). Then we can use
the obvious map of abelian sheaves 1 : Z→ O and pullback to obtain an extension
Eab, like so:

0 // Fab // Eab //

��

Z //

1

��

0

0 // F // E // O // 0

The converse is a little more fun. Suppose that 0 → Fab → Eab → Z → 0 is an
extension in Mod(Z). Since Z is a flat Z-module we see that the sequence

0→ Fab ⊗Z O → Eab ⊗Z O → Z⊗Z O → 0

is exact, see Modules on Sites, Lemma 28.7. Of course Z⊗ZO = O. Hence we can
form the pushout via the (O-linear) multiplication map µ : F ⊗Z O → F to get an
extension of O by F , like this

0 // Fab ⊗Z O //

µ

��

Eab ⊗Z O //

��

O // 0

0 // F // E // O // 0

which is the desired extension. We omit the verification that these constructions
are mutually inverse. �

7. First cohomology and invertible sheaves

The Picard group of a ringed site is defined in Modules on Sites, Section 31.

Lemma 7.1. Let (C,O) be a ringed site. There is a canonical isomorphism

H1(C,O∗) = Pic(O).

of abelian groups.

Proof. Let L be an invertible O-module. Consider the presheaf L∗ defined by the
rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally

http://localhost:8080/tag/03F2
http://localhost:8080/tag/040E
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by the very definition of an invertible sheaf. In other words we see that L∗ is a
O∗-torsor. Thus we get a map

set of invertible sheaves on (C,O)
up to isomorphism

−→ set of O∗-torsors
up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma
5.3 the right hand side is canonically bijective to H1(C,O∗). Thus we have to show
this map is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 5.2 that L∗ has a global
section. Hence this means exactly that L ∼= O is the neutral element in Pic(O).

Surjective. Let F be an O∗-torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×O(U))/O∗(U)

where the action of f ∈ O∗(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
O-modules by setting (s, g)+(s′, g′) = (s, g+(s′/s)g′) where s′/s is the local section
f of O∗ such that fs = s′, and h(s, g) = (s, hg) for h a local section of O. We omit

the verification that the sheafification L = L#
1 is an invertible O-module whose

associated O∗-torsor L∗ is isomorphic to F . �

8. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an object of the site.

Lemma 8.1. Let (C,O) be a ringed site. Let U be an object of C.

(1) If I is an injective O-module then I|U is an injective OU -module.
(2) For any sheaf of O-modules F we have Hp(U,F) = Hp(C/U,F|U ).

Proof. Recall that the functor j−1
U of restriction to U is a right adjoint to the

functor jU ! of extension by 0, see Modules on Sites, Section 19. Moreover, jU ! is
exact. Hence (1) follows from Homology, Lemma 25.1.

By definition Hp(U,F) = Hp(I•(U)) where F → I• is an injective resolution
in Mod(O). By the above we see that F|U → I•|U is an injective resolution in
Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(I•|U (U)). Of course F(U) = F|U (U)
for any sheaf F on C. Hence the equality in (2). �

The following lemma will be use to see what happens if we change a partial universe,
or to compare cohomology of the small and big étale sites.

Lemma 8.2. Let C and D be sites. Let u : C → D be a functor. Assume u satisfies
the hypotheses of Sites, Lemma 20.8. Let g : Sh(C) → Sh(D) be the associated
morphism of topoi. For any abelian sheaf F on D we have isomorphisms

RΓ(C, g−1F) = RΓ(D,F),

in particular Hp(C, g−1F) = Hp(D,F) and for any U ∈ Ob(C) we have isomor-
phisms

RΓ(U, g−1F) = RΓ(u(U),F),

in particular Hp(U, g−1F) = Hp(u(U),F). All of these isomorphisms are functorial
in F .

http://localhost:8080/tag/03F3
http://localhost:8080/tag/03YU
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Proof. Since it is clear that Γ(C, g−1F) = Γ(D,F) by hypothesis (e), it suffices to
show that g−1 transforms injective abelian sheaves into injective abelian sheaves.
As usual we use Homology, Lemma 25.1 to see this. The left adjoint to g−1 is
g! = f−1 with the notation of Sites, Lemma 20.8 which is an exact functor. Hence
the lemma does indeed apply. �

Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let ϕ : U → V be a
morphism of O. Then there is a canonical restriction mapping

(8.2.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of O-modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 11.5.

The following lemma says that it is possible to kill higher cohomology classes by
going to a covering.

Lemma 8.3. Let (C,O) be a ringed site. Let F be a sheaf of O-modules. Let U
be an object of C. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists a covering
{Ui → U} of C such that ξ|Ui

= 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) =
Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex
I• is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves.

Since ξ̃ is a section of the kernel sheaf over U we conclude there exists a covering
{Ui → U} of the site such that ξ̃|Ui

is the image under d of a section ξi ∈ In−1(Ui).

By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. �

Lemma 8.4. Let f : (C,OC)→ (D,OD) be a morphism of ringed sites correspond-
ing to the continuous functor u : D → C. For any F ∈ Ob(Mod(OC)) the sheaf
Rif∗F is the sheaf associated to the presheaf

V 7−→ Hi(u(V ),F)

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OD-modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))

Im(f∗Ii−1(V )→ f∗Ii(V ))

http://localhost:8080/tag/01FW
http://localhost:8080/tag/072W
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and this is obviously equal to

Ker(Ii(u(V ))→ Ii+1(u(V )))

Im(Ii−1(u(V ))→ Ii(u(V )))

which is equal to Hi(u(V ),F) and we win. �

9. The Cech complex and Cech cohomology

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target, see Sites, Definition 6.1. Assume that all fibre products Ui0 ×U . . . ×U Uip
exist in C. Let F be an abelian presheaf on C. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0 ×U . . .×U Uip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in the factor
F(Ui0 ×U . . .×U Uip). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(9.0.1) d(s)i0...ip+1
=
∑p+1

j=0
(−1)jsi0...̂ij ...ip |Ui0×U ...×UUip+1

where the restriction is via the projection map

Ui0 ×U . . .×U Uip+1 −→ Ui0 ×U . . .×U Ûij ×U . . .×U Uip+1 .

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

Definition 9.1. Let C be a category. Let U = {Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in

C. Let F be an abelian presheaf on C. The complex Č•(U ,F) is the Cech complex
associated to F and the family U . Its cohomology groups Hi(Č•(U ,F)) are called
the Cech cohomology groups of F with respect to U . They are denoted Ȟi(U ,F).

We observe that any covering {Ui → U} of a site C is a family of morphisms with
fixed target to which the definition applies.

Lemma 9.2. Let C be a site. Let F be an abelian presheaf on C. The following are
equivalent

(1) F is an abelian sheaf on C and
(2) for every covering U = {Ui → U}i∈I of the site C the natural map

F(U)→ Ȟ0(U ,F)

(see Sites, Section 10) is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every covering of C. �

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms of C with fixed
target such that all fibre products Ui0×U . . .×UUip exist in C. Let V = {Vj → V }j∈J
be another. Let f : U → V , α : I → J and fi : Ui → Vα(i) be a morphism of families
of morphisms with fixed target, see Sites, Section 8. In this case we get a map of
Cech complexes

(9.2.1) ϕ : Č•(V,F) −→ Č•(U ,F)

http://localhost:8080/tag/03AM
http://localhost:8080/tag/03AN
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which in degree p is given by

ϕ(s)i0...ip = (fi0 × . . .× fip)∗sα(i0)...α(ip)

10. Cech cohomology as a functor on presheaves

Warning: In this section we work exclusively with abelian presheaves on a category.
The results are completely wrong in the setting of sheaves and categories of sheaves!

Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms with fixed
target such that all fibre products Ui0×U . . .×U Uip exist in C. Let F be an abelian
presheaf on C. The construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(10.0.2) Č•(U ,−) : PAb(C) −→ Comp+(Ab)

see Derived Categories, Definition 8.1 for notation. Recall that the category of
bounded below complexes in an abelian category is an abelian category, see Homol-
ogy, Lemma 12.9.

Lemma 10.1. The functor given by Equation (10.0.2) is an exact functor (see
Homology, Lemma 7.1).

Proof. For any object W of C the functor F 7→ F(W ) is an additive exact functor
from PAb(C) to Ab. The terms Čp(U ,F) of the complex are products of these exact
functors and hence exact. Moreover a sequence of complexes is exact if and only if
the sequence of terms in a given degree is exact. Hence the lemma follows. �

Lemma 10.2. Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0×U . . .×UUip exist in C. The functors

F 7→ Ȟn(U ,F) form a δ-functor from the abelian category PAb(C) to the category
of Z-modules (see Homology, Definition 11.1).

Proof. By Lemma 10.1 a short exact sequence of abelian presheaves 0 → F1 →
F2 → F3 → 0 is turned into a short exact sequence of complexes of Z-modules.
Hence we can use Homology, Lemma 12.12 to get the boundary maps δF1→F2→F3

:
Ȟn(U ,F3) → Ȟn+1(U ,F1) and a corresponding long exact sequence. We omit
the verification that these maps are compatible with maps between short exact
sequences of presheaves. �

Lemma 10.3. Let C be a category. Let U = {Ui → U}i∈I be a family of morphisms
with fixed target such that all fibre products Ui0 ×U . . .×U Uip exist in C. Consider
the chain complex ZU,• of abelian presheaves

. . .→
⊕
i0i1i2

ZUi0×UUi1×UUi2
→
⊕
i0i1

ZUi0×UUi1
→
⊕
i0

ZUi0
→ 0→ . . .

where the last nonzero term is placed in degree 0 and where the map

ZUi0
×U ...×uUip+1

−→ Z
Ui0
×U ...Ûij

...×UUip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomPAb(C)(ZU,•,F) = Č•(U ,F)

functorial in F ∈ Ob(PAb(C)).

http://localhost:8080/tag/03AQ
http://localhost:8080/tag/03AR
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Proof. This is a tautology based on the fact that

HomPAb(C)(
⊕
i0...ip

ZUi0
×U ...×UUip

,F) =
∏
i0...ip

HomPAb(C)(ZUi0
×U ...×UUip

,F)

=
∏
i0...ip

F(Ui0 ×U . . .×U Uip)

see Modules on Sites, Lemma 4.2. �

Lemma 10.4. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. The chain complex ZU,• of presheaves of Lemma 10.3 above is exact in positive
degrees, i.e., the homology presheaves Hi(ZU,•) are zero for i > 0.

Proof. Let V be an object of C. We have to show that the chain complex of abelian
groups ZU,•(V ) is exact in degrees > 0. This is the complex

. . .

��⊕
i0i1i2

Z[MorC(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
i0i1

Z[MorC(V,Ui0 ×U Ui1)]

��⊕
i0

Z[MorC(V,Ui0)]

��
0

For any morphism ϕ : V → U denote Morϕ(V,Ui) = {ϕi : V → Ui | fi ◦ ϕi = ϕ}.
We will use a similar notation for Morϕ(V,Ui0×U . . .×U Uip). Note that composing
with the various projection maps between the fibred products Ui0 ×U . . . ×U Uip
preserves these morphism sets. Hence we see that the complex above is the same
as the complex

. . .

��⊕
ϕ

⊕
i0i1i2

Z[Morϕ(V,Ui0 ×U Ui1 ×U Ui2)]

��⊕
ϕ

⊕
i0i1

Z[Morϕ(V,Ui0 ×U Ui1)]

��⊕
ϕ

⊕
i0

Z[Morϕ(V,Ui0)]

��
0
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12 COHOMOLOGY ON SITES

Next, we make the remark that we have

Morϕ(V,Ui0 ×U . . .×U Uip) = Morϕ(V,Ui0)× . . .×Morϕ(V,Uip)

Using this and the fact that Z[A] ⊕ Z[B] = Z[A
∐
B] we see that the complex

becomes

. . .

��⊕
ϕ Z

[∐
i0i1i2

Morϕ(V,Ui0)×Morϕ(V,Ui2)
]

��⊕
ϕ Z

[∐
i0i1

Morϕ(V,Ui0)×Morϕ(V,Ui1)
]

��⊕
ϕ Z

[∐
i0

Morϕ(V,Ui0)
]

��
0

Finally, on setting Sϕ =
∐
i∈I Morϕ(V,Ui) we see that we get⊕

ϕ
(. . .→ Z[Sϕ × Sϕ × Sϕ]→ Z[Sϕ × Sϕ]→ Z[Sϕ]→ 0→ . . .)

Thus we have simplified our task. Namely, it suffices to show that for any nonempty
set S the (extended) complex of free abelian groups

. . .→ Z[S × S × S]→ Z[S × S]→ Z[S]
Σ−→ Z→ 0→ . . .

is exact in all degrees. To see this fix an element s ∈ S, and use the homotopy

n(s0,...,sp) 7−→ n(s,s0,...,sp)

with obvious notations. �

Lemma 10.5. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0 ×U . . . ×U Uip exist in
C. Let O be a presheaf of rings on C. The chain complex

ZU,• ⊗p,Z O

is exact in positive degrees. Here ZU,• is the cochain complex of Lemma 10.3, and
the tensor product is over the constant presheaf of rings with value Z.

Proof. Let V be an object of C. In the proof of Lemma 10.4 we saw that ZU,•(V )
is isomorphic as a complex to a direct sum of complexes which are homotopic to
Z placed in degree zero. Hence also ZU,•(V )⊗Z O(V ) is isomorphic as a complex
to a direct sum of complexes which are homotopic to O(V ) placed in degree zero.
Or you can use Modules on Sites, Lemma 28.9, which applies since the presheaves
ZU,i are flat, and the proof of Lemma 10.4 shows that H0(ZU,•) is a flat presheaf
also. �
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Lemma 10.6. Let C be a category. Let U = {fi : Ui → U}i∈I be a family of
morphisms with fixed target such that all fibre products Ui0×U . . .×U Uip exist in C.

The Cech cohomology functors Ȟp(U ,−) are canonically isomorphic as a δ-functor
to the right derived functors of the functor

Ȟ0(U ,−) : PAb(C) −→ Ab.

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the derived functor

RȞ0(U ,−) : D+(PAb(C)) −→ D+(Z)

of the left exact functor Ȟ0(U ,−).

Proof. Note that the category of abelian presheaves has enough injectives, see
Injectives, Proposition 6.1. Note that Ȟ0(U ,−) is a left exact functor from the
category of abelian presheaves to the category of Z-modules. Hence the derived
functor and the right derived functor exist, see Derived Categories, Section 20.

Let I be a injective abelian presheaf. In this case the functor HomPAb(C)(−, I) is
exact on PAb(C). By Lemma 10.3 we have

HomPAb(C)(ZU,•, I) = Č•(U , I).

By Lemma 10.4 we have that ZU,• is exact in positive degrees. Hence by the

exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0.
Thus the δ-functor (Ȟn, δ) (see Lemma 10.2) satisfies the assumptions of Homology,
Lemma 11.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal
δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma 11.5
we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications
and the reader is suggested to skip the rest of the proof.

Let F be any abelian presheaf on C. Choose an injective resolution F → I• in the
category PAb(C). Consider the double complex A•,• with terms

Ap,q = Čp(U , Iq).

Consider the simple complex sA• associated to this double complex. There is a
map of complexes

Č•(U ,F) −→ sA•

coming from the maps Čp(U ,F)→ Ap,0 = Č•(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ sA•

coming from the maps Ȟ0(U , Iq) → A0,q = Č0(U , Iq). Both of these maps are
quasi-isomorphisms by an application of Homology, Lemma 22.7. Namely, the
columns of the double complex are exact in positive degrees because the Cech
complex as a functor is exact (Lemma 10.1) and the rows of the double complex
are exact in positive degrees since as we just saw the higher Cech cohomology
groups of the injective presheaves Iq are zero. Since quasi-isomorphisms become
invertible in D+(Z) this gives the last displayed morphism of the lemma. We omit
the verification that this morphism is functorial. �
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14 COHOMOLOGY ON SITES

11. Cech cohomology and cohomology

The relationship between cohomology and Cech cohomology comes from the fact
that the Cech cohomology of an injective abelian sheaf is zero. To see this we note
that an injective abelian sheaf is an injective abelian presheaf and then we apply
results in Cech cohomology in the preceding section.

Lemma 11.1. Let C be a site. An injective abelian sheaf is also injective as an
object in the category PAb(C).

Proof. Apply Homology, Lemma 25.1 to the categories A = Ab(C), B = PAb(C),
the inclusion functor and sheafification. (See Modules on Sites, Section 3 to see
that all assumptions of the lemma are satisfied.) �

Lemma 11.2. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. Let I be
an injective abelian sheaf, i.e., an injective object of Ab(C). Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. By Lemma 11.1 we see that I is an injective object in PAb(C). Hence we
can apply Lemma 10.6 (or its proof) to see the vanishing of higher Cech cohomology
group. For the zeroth see Lemma 9.2. �

Lemma 11.3. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. There is
a transformation

Č•(U ,−) −→ RΓ(U,−)

of functors Ab(C) → D+(Z). In particular this gives a transformation of functors
Ȟp(U,F)→ Hp(U,F) for F ranging over Ab(C).

Proof. Let F be an abelian sheaf. Choose an injective resolution F → I•. Con-
sider the double complex A•,• with terms Ap,q = Čp(U , Iq). Moreover, consider the
associated simple complex sA•, see Homology, Definition 22.3. There is a map of
complexes

α : Γ(U, I•) −→ sA•

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ sA•

coming from the map F → I0. We can apply Homology, Lemma 22.7 to see that α
is a quasi-isomorphism. Namely, Lemma 11.2 implies that the qth row of the double
complex A•,• is a resolution of Γ(U, Iq). Hence α becomes invertible in D+(Z) and
the transformation of the lemma is the composition of β followed by the inverse of
α. We omit the verification that this is functorial. �

Lemma 11.4. Let C be a site. Let G be an abelian sheaf on C. Let U = {Ui → U}i∈I
be a covering of C. The map

Ȟ1(U ,G) −→ H1(U,G)

is injective and identifies Ȟ1(U ,G) via the bijection of Lemma 5.3 with the set of
isomorphism classes of G|U -torsors which restrict to trivial torsors over each Ui.

http://localhost:8080/tag/03F6
http://localhost:8080/tag/03AW
http://localhost:8080/tag/03AX
http://localhost:8080/tag/0A6G


COHOMOLOGY ON SITES 15

Proof. To see this we construct an inverse map. Namely, let F be a G|U -torsor
on C/U whose restriction to C/Ui is trivial. By Lemma 5.2 this means there exists
a section si ∈ F(Ui). On Ui0 ×U Ui1 there is a unique section si0i1 of G such that
si0i1 · si0 |Ui0×UUi1

= si1 |Ui0×UUi1
. An easy computation shows that si0i1 is a Čech

cocycle and that its class is well defined (i.e., does not depend on the choice of the
sections si). The inverse maps the isomorphism class of F to the cohomology class
of the cocycle (si0i1).

We omit the verification that this map is indeed an inverse. �

Lemma 11.5. Let C be a site. Consider the functor i : Ab(C) → PAb(C). It is a
left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 8.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

which is the definition of Hp(U,F). �

Lemma 11.6. Let C be a site. Let U = {Ui → U}i∈I be a covering of C. For any
abelian sheaf F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Ab(C)→ PAb(C) and Ȟ0(U ,−) : PAb(C)→ Ab.

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 9.2. We have that i(I) is Cech
acyclic by Lemma 11.2. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on
PAb(C) by Lemma 10.6. Putting everything together gives the lemma. �

Lemma 11.7. Let C be a site. Let U = {Ui → U}i∈I be a covering. Let F ∈
Ob(Ab(C)). Assume that Hi(Ui0 ×U . . .×U Uip ,F) = 0 for all i > 0, all p ≥ 0 and

all i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F).

Proof. We will use the spectral sequence of Lemma 11.6. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at
E2 and the result follows. �

Lemma 11.8. Let C be a site. Let

0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let U be an object of C. If there
exists a cofinal system of coverings U of U such that Ȟ1(U ,F) = 0, then the map
G(U)→ H(U) is surjective.
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16 COHOMOLOGY ON SITES

Proof. Take an element s ∈ H(U). Choose a covering U = {Ui → U}i∈I such that
(a) Ȟ1(U ,F) = 0 and (b) s|Ui

is the image of a section si ∈ G(Ui). Since we can
certainly find a covering such that (b) holds it follows from the assumptions of the
lemma that we can find a covering such that (a) and (b) both hold. Consider the
sections

si0i1 = si1 |Ui0
×UUi1

− si0 |Ui0
×UUi1

.

Since si lifts s we see that si0i1 ∈ F(Ui0 ×U Ui1). By the vanishing of Ȟ1(U ,F) we
can find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0
×UUi1

− ti0 |Ui0
×UUi1

.

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. �

Lemma 11.9. (Variant of Cohomology, Lemma 12.7.) Let C be a site. Let CovC be
the set of coverings of C (see Sites, Definition 6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC
be subsets. Let F be an abelian sheaf on C. Assume that

(1) For every U ∈ Cov, U = {Ui → U}i∈I we have U,Ui ∈ B and every
Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Cech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective abelian sheaf. By Lemma 11.2 I has vanishing higher Cech
cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 11.8 and our assumption (2) this sequence gives rise to an exact sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Cech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Cech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Cech cohomology groups for any covering U ∈ Cov. This implies that Q is also an
abelian sheaf with vanishing higher Cech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .
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for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I)→ H0(U,Q) is surjec-
tive and hence H1(U,F) = 0. Since F was an arbitrary abelian sheaf with vanishing
higher Cech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since
Q is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. �

12. Cohomology of modules

Everything that was said for cohomology of abelian sheaves goes for cohomology of
modules, since the two agree.

Lemma 12.1. Let (C,O) be a ringed site. An injective sheaf of modules is also
injective as an object in the category PMod(O).

Proof. Apply Homology, Lemma 25.1 to the categoriesA = Mod(O), B = PMod(O),
the inclusion functor and sheafification. (See Modules on Sites, Section 11 to see
that all assumptions of the lemma are satisfied.) �

Lemma 12.2. Let (C,O) be a ringed site. Consider the functor i : Mod(C) →
PMod(C). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 8.

Proof. It is clear that i is left exact. Choose an injective resolution F → I• in
Mod(O). By definition Rpi is the pth cohomology presheaf of the complex I•. In
other words, the sections of Rpi(F) over an object U of C are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

which is the definition of Hp(U,F). �

Lemma 12.3. Let (C,O) be a ringed site. Let U = {Ui → U}i∈I be a covering of
C. Let I be an injective O-module, i.e., an injective object of Mod(O). Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. Lemma 10.3 gives the first equality in the following sequence of equalities

Č•(U , I) = MorPAb(C)(ZU,•, I)

= MorPMod(Z)(ZU,•, I)

= MorPMod(O)(ZU,• ⊗p,Z O, I)

The third equality by Modules on Sites, Lemma 9.2. By Lemma 12.1 we see that
I is an injective object in PMod(O). Hence HomPMod(O)(−, I) is an exact functor.
By Lemma 10.5 we see the vanishing of higher Cech cohomology groups. For the
zeroth see Lemma 9.2. �

Lemma 12.4. Let C be a site. Let O be a sheaf of rings on C. Let F be an
O-module, and denote Fab the underlying sheaf of abelian groups. Then we have

Hi(C,Fab) = Hi(C,F)
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18 COHOMOLOGY ON SITES

and for any object U of C we also have

Hi(U,Fab) = Hi(U,F).

Here the left hand side is cohomology computed in Ab(C) and the right hand side is
cohomology computed in Mod(O).

Proof. By Derived Categories, Lemma 20.4 the δ-functor (F 7→ Hp(U,F))p≥0

is universal. The functor Mod(O) → Ab(C), F 7→ Fab is exact. Hence (F 7→
Hp(U,Fab))p≥0 is a δ-functor also. Suppose we show that (F 7→ Hp(U,Fab))p≥0 is
also universal. This will imply the second statement of the lemma by uniqueness
of universal δ-functors, see Homology, Lemma 11.5. Since Mod(O) has enough
injectives, it suffices to show that Hi(U, Iab) = 0 for any injective object I in
Mod(O), see Homology, Lemma 11.4.

Let I be an injective object of Mod(O). Apply Lemma 11.9 with F = I, B = C
and Cov = CovC . Assumption (3) of that lemma holds by Lemma 12.3. Hence we
see that Hi(U, Iab) = 0 for every object U of C.
If C has a final object then this also implies the first equality. If not, then according
to Sites, Lemma 28.5 we see that the ringed topos (Sh(C),O) is equivalent to a
ringed topos where the underlying site does have a final object. Hence the lemma
follows. �

Lemma 12.5. Let C be a site. Let I be a set. For i ∈ I let Fi be an abelian sheaf
on C. Let U ∈ Ob(C). The canonical map

Hp(U,
∏

i∈I
Fi) −→

∏
i∈I

Hp(U,Fi)

is an isomorphism for p = 0 and injective for p = 1.

Proof. The statement for p = 0 is true because the product of sheaves is equal
to the product of the underlying presheaves, see Sites, Lemma 10.1. Proof for
p = 1. Set F =

∏
Fi. Let ξ ∈ H1(U,F) map to zero in

∏
H1(U,Fi). By

locality of cohomology, see Lemma 8.3, there exists a covering U = {Uj → U}
such that ξ|Uj = 0 for all j. By Lemma 11.4 this means ξ comes from an element

ξ̌ ∈ Ȟ1(U ,F). Since the maps Ȟ1(U ,Fi) → H1(U,Fi) are injective for all i (by
Lemma 11.4), and since the image of ξ is zero in

∏
H1(U,Fi) we see that the

image ξ̌i = 0 in Ȟ1(U ,Fi). However, since F =
∏
Fi we see that Č•(U ,F) is the

product of the complexes Č•(U ,Fi), hence by Homology, Lemma 28.1 we conclude
that ξ̌ = 0 as desired. �

Lemma 12.6. Let (C,O) be a ringed site. Let a : U ′ → U be a monomorphism
in C. Then for any injective O-module I the restriction mapping I(U)→ I(U ′) is
surjective.

Proof. Let j : C/U → C and j′ : C/U ′ → C be the localization morphisms (Modules
on Sites, Section 19). Since j! is a left adjoint to restriction we see that for any
sheaf F of O-modules

HomO(j!OU ,F) = HomOU
(OU ,F|U ) = F(U)

Similarly, the sheaf j′!OU ′ represents the functor F 7→ F(U ′). Moreover below we
describe a canonical map of O-modules

j′!OU ′ −→ j!OU
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which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 3.5). It suffices to prove the displayed map of modules is
injective, see Homology, Lemma 23.2.

To construct our map it suffices to construct a map between the presheaves which
assign to an object V of C the O(V )-module⊕

ϕ′∈MorC(V,U ′)
O(V ) and

⊕
ϕ∈MorC(V,U)

O(V )

see Modules on Sites, Lemma 19.2. We take the map which maps the summand
corresponding to ϕ′ to the summand corresponding to ϕ = a ◦ ϕ′ by the identity
map on O(V ). As a is a monomorphism, this map is injective. As sheafification is
exact, the result follows. �

13. Limp sheaves

Let (C,O) be a ringed site. Let K be a sheaf of sets on C (we intentionally use
a roman capital here to distinguish from abelian sheaves). Given an abelian sheaf
F we denote F(K) = MorSh(C)(K,F). The functor F 7→ F(K) is a left exact
functor Mod(O) → Ab hence we have its right derived functors. We will denote
these Hp(K,F) so that H0(K,F) = F(K).

We mention two special cases. The first is the case where K = h#
U for some object

U of C. In this case Hp(K,F) = Hp(U,F), because MorSh(C)(h
#
U ,F) = F(U), see

Sites, Section 13. The second is the case O = Z (the constant sheaf). In this case
the cohomology groups are functors Hp(K,−) : Ab(C)→ Ab. Here is the analogue
of Lemma 12.4.

Lemma 13.1. Let (C,O) be a ringed site. Let K be a sheaf of sets on C. Let
F be an O-module and denote Fab the underlying sheaf of abelian groups. Then
Hp(K,F) = Hp(K,Fab).

Proof. Note that both Hp(K,F) and Hp(K,Fab) depend only on the topos, not
on the underlying site. Hence by Sites, Lemma 28.5 we may replace C by a “larger”
site such that K = hU for some object U of C. In this case the result follows from
Lemma 12.4. �

Lemma 13.2. Let C be a site. Let K ′ → K be a surjective map of sheaves of sets
on C. Set K ′p = K ′ ×K . . .×K K ′ (p+ 1-factors). For every abelian sheaf F there

is a spectral sequence with Ep,q1 = Hq(K ′p,F) converging to Hp+q(K,F).

Proof. After replacing C by a “larger” site as in Sites, Lemma 28.5 we may assume
that K,K ′ are objects of C and that U = {K ′ → K} is a covering. Then we have
the Čech to cohomology spectral sequence of Lemma 11.6 whose E1 page is as
indicated in the statement of the lemma. �

Lemma 13.3. Let C be a site. Let K be a sheaf of sets on C. Consider the mor-
phism of topoi j : Sh(C/K) → Sh(C), see Sites, Lemma 29.3. Then j−1 preserves
injectives and Hp(K,F) = Hp(C/K, j−1F) for any abelian sheaf F on C.

Proof. By Sites, Lemmas 29.1 and 29.3 the morphism of topoi j is equivalent to
a localization. Hence this follows from Lemma 8.1. �

Keeping in mind Lemma 13.1 we see that the following definition is the “correct
one” also for sheaves of modules on ringed sites.
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Definition 13.4. Let C be a site. We say an abelian sheaf F is limp1 if for every
sheaf of sets K we have Hp(K,F) = 0 for all p ≥ 1.

It is clear that being limp is an intrinsic property, i.e., preserved under equivalences
of topoi. A limp sheaf has vanishing higher cohomology on all objects of the site, but
in general the condition of being limp is strictly stronger. Here is a characterization
of limp sheaves which is sometimes useful.

Lemma 13.5. Let C be a site. Let F be an abelian sheaf. If

(1) Hp(U,F) = 0 for p > 0 and U ∈ Ob(C), and
(2) for every surjection K ′ → K of sheaves of sets the extended Čech complex

0→ H0(K,F)→ H0(K ′,F)→ H0(K ′ ×K K ′,F)→ . . .

is exact,

then F is limp (and the converse holds too).

Proof. By assumption (1) we have Hp(h#
U , g

−1I) = 0 for all p > 0 and all objects
U of C. Note that if K =

∐
Ki is a coproduct of sheaves of sets on C then

Hp(K, g−1I) =
∏
Hp(Ki, g

−1I). For any sheaf of sets K there exists a surjection

K ′ =
∐

h#
Ui
−→ K

see Sites, Lemma 13.5. Thus we conclude that: (*) for every sheaf of sets K there
exists a surjection K ′ → K of sheaves of sets such that Hp(K ′,F) = 0 for p > 0.
We claim that (*) and condition (2) imply that F is limp. Note that conditions (*)
and (2) only depend on F as an object of the topos Sh(C) and not on the underlying
site. (We will not use property (1) in the rest of the proof.)

We are going to prove by induction on n ≥ 0 that (*) and (2) imply the following
induction hypothesis IHn: Hp(K,F) = 0 for all 0 < p ≤ n and all sheaves of sets
K. Note that IH0 holds. Assume IHn. Pick a sheaf of sets K. Pick a surjection
K ′ → K such that Hp(K ′,F) = 0 for all p > 0. We have a spectral sequence with

Ep,q1 = Hq(K ′p,F)

covering to Hp+q(K,F), see Lemma 13.2. By IHn we see that Ep,q1 = 0 for 0 <

q ≤ n and by assumption (2) we see that Ep,02 = 0 for p > 0. Finally, we have

E0,q
1 = 0 for q > 0 because Hq(K ′,F) = 0 by choice of K ′. Hence we conclude that

Hn+1(K,F) = 0 because all the terms Ep,q2 with p+ q = n+ 1 are zero. �

14. The Leray spectral sequence

The key to proving the existence of the Leray spectral sequence is the following
lemma.

Lemma 14.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Then for any injective object I in Mod(OC) the pushforward f∗I is limp.

Proof. Let K be a sheaf of sets on D. By Modules on Sites, Lemma 7.2 we may
replace C, D by “larger” sites such that f comes from a morphism of ringed sites
induced by a continuous functor u : D → C such that K = hV for some object V
of D.

1This is probably nonstandard notation. Please email stacks.project@gmail.com if you know
the correct terminology.
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Thus we have to show that Hq(V, f∗I) is zero for q > 0 and all objects V of D when
f is given by a morphism of ringed sites. Let V = {Vj → V } be any covering of D.
Since u is continuous we see that U = {u(Vj)→ u(v)} is a covering of C. Then we

have an equality of Čech complexes

Č•(V, f∗I) = Č•(U , I)

by the definition of f∗. By Lemma 12.3 we see that the cohomology of this complex
is zero in positive degrees. We win by Lemma 11.9. �

For flat morphisms the functor f∗ preserves injective modules. In particular the
functor f∗ : Ab(C)→ Ab(D) always transforms injective abelian sheaves into injec-
tive abelian sheaves.

Lemma 14.2. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
If f is flat, then f∗I is an injective OD-module for any injective OC-module I.

Proof. In this case the functor f∗ is exact, see Modules on Sites, Lemma 30.2.
Hence the result follows from Homology, Lemma 25.1. �

Lemma 14.3. Let (Sh(C),OC) be a ringed topos. A limp sheaf is right acyclic for
the following functors:

(1) the functor H0(U,−) for any object U of C,
(2) the functor F 7→ F(K) for any presheaf of sets K,
(3) the functor Γ(C,−) of global sections,
(4) the functor f∗ for any morphism f : (Sh(C),OC) → (Sh(D),OD) of ringed

topoi.

Proof. Part (2) is the definition of a limp sheaf. Part (1) is a consequence of (2)
as pointed out in the discussion following the definition of limp sheaves. Part (3)
is a special case of (2) where K = e is the final object of Sh(C).

To prove (4) we may assume, by Modules on Sites, Lemma 7.2 that f is given by a
morphism of sites. In this case we see that Rif∗, i > 0 of a limp sheaf are zero by
the description of higher direct images in Lemma 8.4. �

Remark 14.4. As a consequence of the results above we find that Derived Cate-
gories, Lemma 22.1 applies to a number of situations. For example, given a mor-
phism f : (Sh(C),OC)→ (Sh(D),OD) of ringed topoi we have

RΓ(D, Rf∗F) = RΓ(C,F)

for any sheaf of OC-modules F . Namely, for an injective OX -module I the OD-
module f∗I is limp by Lemma 14.1 and a limp sheaf is acyclic for Γ(D,−) by
Lemma 14.3.

Lemma 14.5 (Leray spectral sequence). Let f : (Sh(C),OC) → (Sh(D),OD) be
a morphism of ringed topoi. Let F• be a bounded below complex of OC-modules.
There is a spectral sequence

Ep,q2 = Hp(D, Rqf∗(F•))

converging to Hp+q(C,F•).
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Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γ(C,−) = Γ(D,−) ◦ f∗. To see that
the assumptions of Derived Categories, Lemma 22.2 are satisfied, see Lemmas 14.1
and 14.3. �

Lemma 14.6. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let F be an OC-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(C,F) = Hp(D, f∗F) for all p.
(2) If Hp(D, Rqf∗F) = 0 for all q and p > 0, then Hq(C,F) = H0(D, Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to converge. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. �

Lemma 14.7 (Relative Leray spectral sequence). Let f : (Sh(C),OC)→ (Sh(D),OD)
and g : (Sh(D),OD)→ (Sh(E),OE) be morphisms of ringed topoi. Let F be an OC-
module. There is a spectral sequence with

Ep,q2 = Rpg∗(R
qf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OC-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors, see
Derived Categories, Lemma 22.2 and Lemmas 14.1 and 14.3. �

15. The base change map

In this section we construct the base change map in some cases; the general case is
treated in Remark 19.2. The discussion in this section avoids using derived pullback
by restricting to the case of a base change by a flat morphism of ringed sites. Before
we state the result, let us discuss flat pullback on the derived category. Suppose
g : (Sh(C),OC) → (Sh(D),OD) is a flat morphism of ringed topoi. By Modules on
Sites, Lemma 30.2 the functor g∗ : Mod(OD) → Mod(OC) is exact. Hence it has a
derived functor

g∗ : D(OC)→ D(OD)

which is computed by simply pulling back an representative of a given object in
D(OD), see Derived Categories, Lemma 17.8. It preserved the bounded (above,
below) subcategories. Hence as indicated we indicate this functor by g∗ rather
than Lg∗.

Lemma 15.1. Let
(Sh(C′),OC′)

g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

be a commutative diagram of ringed topoi. Let F• be a bounded below complex of
OC-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g
′)∗F•

in D+(OD′).
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Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 14.2
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g

′)∗F•. Hence
by Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g
′)∗F• // (g′)∗J •

F•
adjunction

OO

// I•
β

OO

exists and is unique up to homotopy. Pushing down to D we get

f∗β : f∗I• −→ f∗(g
′)∗J • = g∗(f

′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. �

16. Cohomology and colimits

Let (C,O) be a ringed site. Let I → Mod(O), i 7→ Fi be a diagram over the
index category I, see Categories, Section 14. For each i there is a canonical map
Fi → colimi Fi which induces a map on cohomology. Hence we get a canonical map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

for every p ≥ 0 and every object U of C. These maps are in general not isomor-
phisms, even for p = 0.

The following lemma is the analogue of Sites, Lemma 11.2 for cohomology.

Lemma 16.1. Let C be a site. Let CovC be the set of coverings of C (see Sites,
Definition 6.2). Let B ⊂ Ob(C), and Cov ⊂ CovC be subsets. Assume that

(1) For every U ∈ Cov we have U = {Ui → U}i∈I with I finite, U,Ui ∈ B and
every Ui0 ×U . . .×U Uip ∈ B.

(2) For every U ∈ B the coverings of U occurring in Cov is a cofinal system of
coverings of U .

Then the map

colimiH
p(U,Fi) −→ Hp(U, colimi Fi)

is an isomorphism for every p ≥ 0, every U ∈ B, and every filtered diagram I →
Ab(C).

Proof. To prove the lemma we will argue by induction on p. Note that we require
in (1) the coverings U ∈ Cov to be finite, so that all the elements of B are quasi-
compact. Hence (2) and (1) imply that any U ∈ B satisfies the hypothesis of Sites,
Lemma 11.2 (4). Thus we see that the result holds for p = 0. Now we assume the
lemma holds for p and prove it for p+ 1.

Choose a filtered diagram F : I → Ab(C), i 7→ Fi. Since Ab(C) has functorial
injective embeddings, see Injectives, Theorem 7.4, we can find a morphism of filtered
diagrams F → I such that each Fi → Ii is an injective map of abelian sheaves
into an injective abelian sheaf. Denote Qi the cokernel so that we have short exact
sequences

0→ Fi → Ii → Qi → 0.
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Since colimits of sheaves are the sheafification of colimits on the level of presheaves,
since sheafification is exact, and since filtered colimits of abelian groups are exact
(see Algebra, Lemma 8.9), we see the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence. We claim that Hq(U, colimi Ii) = 0 for all U ∈ B
and all q ≥ 1. Accepting this claim for the moment consider the diagram

colimiH
p(U, Ii)

��

// colimiH
p(U,Qi)

��

// colimiH
p+1(U,Fi)

��

// 0

��
Hp(U, colimi Ii) // Hp(U, colimiQi) // Hp+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row
is exact by an application of Algebra, Lemma 8.9. Hence by the snake lemma we
deduce the result for p+ 1.

It remains to show that the claim is true. We will use Lemma 11.9. By the result
for p = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)
because all the Uj0×U . . .×U Ujp are in B. By Lemma 11.2 each of the complexes in
the colimit of Cech complexes is acyclic in degree ≥ 1. Hence by Algebra, Lemma
8.9 we see that also the Cech complex Č•(U , colimi Ii) is acyclic in degrees ≥ 1. In
other words we see that Ȟp(U , colimi Ii) = 0 for all p ≥ 1. Thus the assumptions
of Lemma 11.9. are satisfied and the claim follows. �

Let C be a limit of sites Ci as in Sites, Situation 11.3 and Lemmas 11.4, 11.5, and
11.6. In particular, all coverings in C and Ci have finite index sets. Moreover,
assume given

(1) an abelian sheaf Fi on Ci for all i ∈ Ob(I),
(2) for a : j → i a map ϕa : f−1

a Fi → Fj of abelian sheaves on Cj
such that ϕc = ϕb ◦ f−1

b ϕa whenever c = a ◦ b.

Lemma 16.2. In the situation discussed above set F = colim f−1
i Fi. Let i ∈

Ob(I), Xi ∈ Ob(Ci). Then

colima:j→iH
p(ua(Xi),Fj) = Hp(ui(Xi),F)

for all p ≥ 0.

Proof. The case p = 0 is Sites, Lemma 11.6.

In this paragraph we show that we can find a map of systems (γi) : (Fi, ϕa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Ci. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj
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whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j.

Thus we find an injection {γi} : {Fi, ϕa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 14.2 and
Homology, Lemma 23.3. This finishes the construction.

Arguing exactly as in the proof of Lemma 16.1 we see that it suffices to prove that
Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every object of C

we show that the Čech cohomology of G for any covering U of C is zero (Lemma
11.9). The covering U comes from a covering Ui of Ci for some i. We have

Č•(U ,G) = colima:j→i Č•(ua(Ui),Gj)
by the case p = 0. The right hand side is acyclic in positive degrees as a filtered
colimit of acyclic complexes by Lemma 11.2. See Algebra, Lemma 8.9. �

17. Flat resolutions

In this section we redo the arguments of Cohomology, Section 27 in the setting of
ringed sites and ringed topoi.

Lemma 17.1. Let (C,O) be a ringed site. Let G• be a complex of O-modules. The
functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O G•)
is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 45.1 and 45.2. �

Definition 17.2. Let (C,O) be a ringed site. A complex K• of O-modules is called
K-flat if for every acyclic complex F• of O-modules the complex

Tot(F• ⊗O K•)
is acyclic.

Lemma 17.3. Let (C,O) be a ringed site. Let K• be a K-flat complex. Then the
functor

K(Mod(O)) −→ K(Mod(O)), F• 7−→ Tot(F• ⊗O K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 17.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. �

Lemma 17.4. Let (C,O) be a ringed site. If K•, L• are K-flat complexes of O-
modules, then Tot(K• ⊗O L•) is a K-flat complex of O-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗O Tot(K• ⊗O L•)) = Tot(Tot(M• ⊗O K•)⊗O L•)
and the definition. �

Lemma 17.5. Let (C,O) be a ringed site. Let (K•1,K•2,K•3) be a distinguished
triangle in K(Mod(O)). If two out of three of K•i are K-flat, so is the third.

Proof. Follows from Lemma 17.1 and the fact that in a distinguished triangle in
K(Mod(O)) if two out of three are acyclic, so is the third. �
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Lemma 17.6. Let (C,O) be a ringed site. A bounded above complex of flat O-
modules is K-flat.

Proof. Let K• be a bounded above complex of flatO-modules. Let L• be an acyclic
complex of O-modules. Note that L• = colimm τ≤mL• where we take termwise
colimits. Hence also

Tot(K• ⊗O L•) = colimm Tot(K• ⊗O τ≤mL•)

termwise. Hence to prove the complex on the left is acyclic it suffices to show
each of the complexes on the right is acyclic. Since τ≤mL• is acyclic this reduces
us to the case where L• is bounded above. In this case the spectral sequence of
Homology, Lemma 22.6 has

′Ep,q1 = Hp(L• ⊗R Kq)

which is zero as Kq is flat and L• acyclic. Hence we win. �

Lemma 17.7. Let (C,O) be a ringed site. Let K•1 → K•2 → . . . be a system of
K-flat complexes. Then colimiK•i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗O K•i ) = Tot(F• ⊗O colimiK•i )

Hence the lemma follows from the fact that filtered colimits are exact. �

Lemma 17.8. Let (C,O) be a ringed site. For any complex G• of O-modules there
exists a commutative diagram of complexes of O-modules

K•1

��

// K•2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2)
each K•n is a bounded above complex whose terms are direct sums of O-modules of
the form jU !OU , and (3) the maps K•n → K•n+1 are termwise split injections whose
cokernels are direct sums of O-modules of the form jU !OU . Moreover, the map
colimK•n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows immedi-
ately from Modules on Sites, Lemma 28.6 and Derived Categories, Lemma 28.1.
The induced map colimK•n → G• is a quasi-isomorphism because filtered colimits
are exact. �

Lemma 17.9. Let (C,O) be a ringed site. For any complex G• of O-modules there
exists a K-flat complex K• and a quasi-isomorphism K• → G•.

Proof. Choose a diagram as in Lemma 17.8. Each complex K•n is a bounded
above complex of flat modules, see Modules on Sites, Lemma 28.5. Hence K•n is
K-flat by Lemma 17.6. The induced map colimK•n → G• is a quasi-isomorphism
by construction. Since colimK•n is K-flat by Lemma 17.7 we win. �
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Lemma 17.10. Let (C,O) be a ringed site. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of O-modules. For every complex F• of O-modules
the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗O P•) −→ Tot(F• ⊗O Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 17.9. Consider the commutative diagram

Tot(K• ⊗O P•) //

��

Tot(K• ⊗O Q•)

��
Tot(F• ⊗O P•) // Tot(F• ⊗O Q•)

The result follows as by Lemma 17.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. �

Let (C,O) be a ringed site. Let F• be an object of D(O). Choose a K-flat reso-
lution K• → F•, see Lemma 17.9. By Lemma 17.1 we obtain an exact functor of
triangulated categories

K(O) −→ K(O), G• 7−→ Tot(G• ⊗O K•)
By Lemma 17.3 this functor induces a functor D(O)→ D(O) simply because D(O)
is the localization of K(O) at quasi-isomorphisms. By Lemma 17.10 the resulting
functor (up to isomorphism) does not depend on the choice of the K-flat resolution.

Definition 17.11. Let (C,O) be a ringed site. Let F• be an object of D(O). The
derived tensor product

−⊗L
O F• : D(O) −→ D(O)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
O G• ∼= G• ⊗L

O F•

for G• and F• in D(O). Hence when we write F•⊗L
O G• we will usually be agnostic

about which variable we are using to define the derived tensor product with.

Definition 17.12. Let (C,O) be a ringed site. Let F , G be O-modules. The Tor’s
of F and G are define by the formula

TorOp (F ,G) = H−p(F ⊗L
O G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of O-modules 0→ F1 →
F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗O G // F2 ⊗O G // F3 ⊗O G // 0

TorO1 (F1,G) // TorO1 (F2,G) // TorO1 (F3,G)

kk

for every O-module G. This will be called the long exact sequence of Tor associated
to the situation.
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Lemma 17.13. Let (C,O) be a ringed site. Let F be an O-module. The following
are equivalent

(1) F is a flat O-module, and

(2) TorO1 (F ,G) = 0 for every O-module G.

Proof. If F is flat, then F ⊗O − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗O G → F ⊗O H is a quotient of
TorO1 (F ,Q) which is zero by assumption. Hence F is flat. �

18. Derived pullback

Let f : (Sh(C),O)→ (Sh(C′),O′) be a morphism of ringed topoi. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(O′)→ D(O)

However, we have to be a little careful since we haven’t yet proved the pullback of a
flat module is flat in complete generality, see Modules on Sites, Section 38. In this
section, we will use the hypothesis that our sites have enough points, but once we
improve the result of the aforementioned section, all of the results in this section
will hold without the assumption on the existence of points.

Lemma 18.1. Let f : Sh(C) → Sh(C′) be a morphism of topoi. Let O′ be a sheaf
of rings on C′. Assume C has enough points. For any complex of O′-modules G•,
there exists a quasi-isomorphism K• → G• such that K• is a K-flat complex of
O′-modules and f−1K• is a K-flat complex of f−1O′-modules.

Proof. In the proof of Lemma 17.9 we find a quasi-isomorphism K• = colimiK•i →
G• where each K•i is a bounded above complex of flat O′-modules. By Modules
on Sites, Lemma 38.3 applied to the morphism of ringed topoi (Sh(C), f−1O′) →
(Sh(C′),O′) we see that f−1F•i is a bounded above complex of flat f−1O′-modules.
Hence f−1K• = colimi f

−1K•i is K-flat by Lemmas 17.6 and 17.7. �

Remark 18.2. It is straightforward to show that the pullback of a K-flat complex
is K-flat for a morphism of ringed topoi with enough points; this slightly improves
the result of Lemma 18.1. However, in applications it seems rather that the explicit
form of the K-flat complexes constructed in Lemma 17.9 is what is useful (as in
the proof above) and not the plain fact that they are K-flat. Note for example that
the terms of the complex constructed are each direct sums of modules of the form
jU !OU , see Lemma 17.8.

Lemma 18.3. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Assume C has enough points. There exists an exact functor

Lf∗ : D(O′) −→ D(O)

of triangulated categories so that Lf∗K• = f∗K• for any complex as in Lemma 18.1
in particular for any bounded above complex of flat O′-modules.

Proof. To see this we use the general theory developed in Derived Categories,
Section 15. Set D = K(O′) and D′ = D(O). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S be
the set of quasi-isomorphisms in D = K(O′). This gives a situation as in Derived
Categories, Situation 15.1 so that Derived Categories, Definition 15.2 applies. We
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claim that LF is everywhere defined. This follows from Derived Categories, Lemma
15.15 with P ⊂ Ob(D) the collection of complexes K• such that f−1K• is a K-flat
complex of f−1O′-modules: (1) follows from Lemma 18.1 and to see (2) we have
to show that for a quasi-isomorphism K•1 → K•2 between elements of P the map
f∗K•1 → f∗K•2 is a quasi-isomorphism. To see this write this as

f−1K•1 ⊗f−1O′ O −→ f−1K•2 ⊗f−1O′ O

The functor f−1 is exact, hence the map f−1K•1 → f−1K•2 is a quasi-isomorphism.
The complexes f−1K•1 and f−1K•2 are K-flat complexes of f−1O′-modules by our
choice of P. Hence Lemma 17.10 guarantees that the displayed map is a quasi-
isomorphism. Thus we obtain a derived functor

LF : D(O′) = S−1D −→ D′ = D(O)

see Derived Categories, Equation (15.9.1). Finally, Derived Categories, Lemma
15.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is in P. Since the
proof of Lemma 18.1 shows that bounded above complexes of flat modules are in
P we win. �

Lemma 18.4. Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
Assume C has enough points. There is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
O′ G•) = Lf∗F• ⊗L

O Lf
∗G•

for F•,G• ∈ Ob(D(O′)).

Proof. By Lemma 18.1 we may assume that F• and G• are K-flat complexes of
O′-modules such that f∗F• and f∗G• are K-flat complexes of O-modules. In this
case F•⊗L

O′G• is just the total complex associated to the double complex F•⊗O′G•.
By Lemma 17.4 Tot(F•⊗O′ G•) is K-flat also. Hence the isomorphism of the lemma
comes from the isomorphism

Tot(f∗F• ⊗O f∗G•) −→ f∗Tot(F• ⊗O′ G•)

whose constituents are the isomorphisms f∗Fp⊗O f∗Gq → f∗(Fp⊗O′ Gq) of Mod-
ules on Sites, Lemma 26.1. �

Lemma 18.5. Let f : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
There is a canonical bifunctorial isomorphism

F• ⊗L
O Lf

∗G• = F• ⊗L
f−1OY

f−1G•

for F• in D(O) and G• in D(O′).

Proof. Let F be an O-module and let G be an O′-module. Then F ⊗O f∗G =
F ⊗f−1O′ f

−1G because f∗G = O ⊗f−1O′ f
−1G. The lemma follows from this and

the definitions. �

19. Cohomology of unbounded complexes

Let (C,O) be a ringed site. The category Mod(O) is a Grothendieck abelian cate-
gory: it has all colimits, filtered colimits are exact, and it has a generator, namely⊕

U∈Ob(C)
jU !OU ,
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see Modules on Sites, Section 14 and Lemmas 28.5 and 28.6. By Injectives, Theorem
12.6 for every complex F• of O-modules there exists an injective quasi-isomorphism
F• → I• to a K-injective complex of O-modules. Hence we can define

RΓ(C,F•) = Γ(C, I•)

and similarly for any left exact functor, see Derived Categories, Lemma 29.6. For
any morphism of ringed topoi f : (Sh(C),O)→ (Sh(D),O′) we obtain

Rf∗ : D(O) −→ D(O′)

on the unbounded derived categories.

Lemma 19.1. Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
Assume C has enough points. The functor Rf∗ defined above and the functor Lf∗

defined in Lemma 18.3 are adjoint:

HomD(O)(Lf
∗G•,F•) = HomD(O′)(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(O)) and G• ∈ Ob(D(O′)).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 28.4. �

Remark 19.2. The construction of unbounded derived functor Lf∗ and Rf∗ allows
one to construct the base change map in full generality. Namely, suppose that

(Sh(C′),OC′)
g′
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let F• be a complex of OC-modules.
Then there exists a canonical base change map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•

in D(OD′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗F• → L(g′)∗F•
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗F• →
L(g′)∗F• which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗F• → F•.

20. Some properties of K-injective complexes

Let (C,O) be a ringed site. Let U be an object of C. Denote j : (Sh(C/U),OU )→
(Sh(C),O) the corresponding localization morphism. The pullback functor j∗ is
exact as it is just the restriction functor. Thus derived pullback Lj∗ is computed
on any complex by simply restricting the complex. We often simply denote the
corresponding functor

D(O)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU ) → Mod(O) (see Modules on Sites, Defi-
nition 19.1) is an exact functor (Modules on Sites, Lemma 19.3). Thus it induces
a functor

j! : D(OU )→ D(O), F 7→ j!F

by simply applying j! to any complex representing the object F .
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Lemma 20.1. Let (C,O) be a ringed site. Let U be an object of C. The restriction
of a K-injective complex of O-modules to C/U is a K-injective complex of OU -
modules.

Proof. Follows immediately from Derived Categories, Lemma 29.10 and the fact
that the restriction functor has the exact left adjoint j!. See discussion above. �

Lemma 20.2. Let (C,O) be a ringed site. Let U be an object of C. Denote
j : (Sh(C/U),OU ) → (Sh(C),O) the corresponding localization morphism. The
restriction functor D(O) → D(OU ) is a right adjoint to extension by zero j! :
D(OU )→ D(O).

Proof. We have to show that

HomD(O)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 20.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(O)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Modules on Sites, Lemma 19.2) and
Derived Categories, Lemma 29.2. �

Lemma 20.3. Let C be a site. Let O → O′ be a flat map of sheaves of rings. If
I• is a K-injective complex of O′-modules, then I• is K-injective as a complex of
O-modules.

Proof. This is true because HomK(O)(F•, I•) = HomK(O′)(F•⊗OO′, I•) by Mod-
ules on Sites, Lemma 11.3 and the fact that tensoring with O′ is exact. �

Lemma 20.4. Let C be a site. Let O → O′ be a map of sheaves of rings. If I• is a
K-injective complex of O-modules, then HomO(O′, I•) is a K-injective complex of
O′-modules.

Proof. This is true because HomK(O′)(G•,HomO(O′, I•)) = HomK(O)(G•, I•) by
Modules on Sites, Lemma 27.5. �

21. Derived and homotopy limits

Let C be a site. Consider the category C ×N with Mor((U, n), (V,m)) = ∅ if n > m
and Mor((U, n), (V,m)) = Mor(U, V ) else. We endow this with the structure of a
site by letting coverings be families {(Ui, n) → (U, n)} such that {Ui → U} is a
covering of C. Then the reader verifies immediately that sheaves on C ×N are the
same thing as inverse systems of sheaves on C. In particular Ab(C ×N) is inverse
systems of abelian sheaves on C. Consider now the functor

lim : Ab(C ×N)→ Ab(C)
which takes an inverse system to its limit. This is nothing but g∗ where g : Sh(C ×
N)→ Sh(C) is the morphism of topoi associated to the continuous and cocontinuous
functor C ×N → C. (Observe that g−1 assigns to a sheaf on C the corresponding
constant inverse system.)

By the general machinery explained above we obtain a derived functor

R lim = Rg∗ : D(C ×N)→ D(C).
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As indicated this functor is often denoted R lim.

On the other hand, the continuous and cocontinuous functors C → C ×N, U 7→
(U, n) define morphisms of topoi in : Sh(C)→ Sh(C×N). Of course i−1

n is the func-
tor which picks the nth term of the inverse system. Thus there are transformations
of functors i−1

n+1 → i−1
n . Hence given K ∈ D(C ×N) we get Kn = i−1

n K ∈ D(C)
and maps Kn+1 → Kn. In Derived Categories, Definition 32.1 we have defined the
notion of a homotopy limit

R limKn ∈ D(C)

We claim the two notions agree (as far as it makes sense).

Lemma 21.1. Let C be a site. Let K be an object of D(C ×N). Set Kn = i−1
n K

as above. Then

R limK ∼= R limKn

in D(C).

Proof. To calculate R lim on an object K of D(C × N) we choose a K-injective
representative I• whose terms are injective objects of Ab(C × N), see Injectives,
Theorem 12.6. We may and do think of I• as an inverse system of complexes (I•n)
and then we see that

R limK = lim I•n
where the right hand side is the termwise inverse limit.

Let J = (Jn) be an injective object of Ab(C × N). The morphisms (U, n) →
(U, n+ 1) are monomorphisms of C ×N, hence J (U, n+ 1)→ J (U, n) is surjective
(Lemma 12.6). It follows that Jn+1 → Jn is surjective as a map of presheaves.

Note that the functor i−1
n has an exact left adjoint in,!. Namely, in,!F is the inverse

system . . . 0→ 0→ F → . . .→ F . Thus the complexes i−1
n I• = I•n are K-injective

by Derived Categories, Lemma 29.10.

Because we chose our K-injective complex to have injective terms we conclude that

0→ lim I•n →
∏
I•n →

∏
I•n → 0

is a short exact sequence of complexes of abelian sheaves as it is a short exact
sequence of complexes of abelian presheaves. Moreover, the products in the middle
and the right represent the products in D(C), see Injectives, Lemma 13.4 and its
proof (this is where we use that I•n is K-injective). Thus R limK is a homotopy
limit of the inverse system (Kn) by definition of homotopy limits in triangulated
categories. �

Lemma 21.2. Let f : (Sh(C),O) → (Sh(D),O′) be a morphism of ringed topoi.
Then Rf∗ commutes with R lim, i.e., Rf∗ commutes with derived limits.

Proof. Let (Kn) be an inverse system of objects of D(O). By induction on n we
may choose actual complexes K•n of O-modules and maps of complexes K•n+1 → K•n
representing the maps Kn+1 → Kn in D(O). In other words, there exists an object
K in D(C ×N) whose associated inverse system is the given one. Next, consider
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the commutative diagram

Sh(C ×N)
g

//

f×1

��

Sh(C)

f

��
Sh(C′ ×N)

g′ // Sh(C′)

of morphisms of topoi. It follows that R limR(f × 1)∗K = Rf∗R limK. Working
through the definitions and using Lemma 21.1 we obtain that R lim(Rf∗Kn) =
Rf∗(R limKn).

Alternate proof in case C has enough points. Consider the defining distinguished
triangle

R limKn →
∏

Kn →
∏

Kn

in D(O). Applying the exact functor Rf∗ we obtain the distinguished triangle

Rf∗(R limKn)→ Rf∗

(∏
Kn

)
→ Rf∗

(∏
Kn

)
in D(O′). Thus we see that it suffices to prove that Rf∗ commutes with products
in the derived category (which are not just given by products of complexes, see
Injectives, Lemma 13.4). However, since Rf∗ is a right adjoint by Lemma 19.1
this follows formally (see Categories, Lemma 24.4). Caution: Note that we cannot
apply Categories, Lemma 24.4 directly as R limKn is not a limit in D(O). �

22. Producing K-injective resolutions

First a technical lemma about cohomology sheaves of termwise limits of inverse
systems of complexes of modules.

Lemma 22.1. Let (C,O) be a ringed site. Let (F•n) be an inverse system of com-
plexes of O-modules. Let m ∈ Z. Suppose given B ⊂ Ob(C) and an integer n0 such
that

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler property),

(b) the system of abelian groups Hm−1(F•n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler property), and

(c) we have Hm(F•n(U)) = Hm(F•n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•n) → Hm(F•n0
) are isomorphisms of sheaves

where F• = limF•n be the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 61.2 to conclude that

Hm(F•(U)) = limHm(F•n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•n(U))
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for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. �

The following lemma computes the cohomology sheaves of the derived limit in a
special case.

Lemma 22.2. Let (C,O) be a ringed site. Let (Kn) be an inverse system of objects
of D(O). Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) Kn is an object of D−(O) for all n,
(2) for q ∈ Z there exists n(q) such that Hq(Kn+1) → Hq(Kn) is an isomor-

phism for n ≥ n(p),
(3) every object of C has a covering whose members are elements of B,
(4) for every U ∈ B we have Hp(U,Hq(Kn)) = 0 for p > d and all q.

Then we have Hm(R limKn) = limHm(Kn) for all m ∈ Z.

Proof. Set K = R limKn. Let U ∈ B. For each n there is a spectral sequence

Hp(U,Hq(Kn))⇒ Hp+q(U,Kn)

which converges as Kn is bounded below, see Derived Categories, Lemma 21.3.
If we fix m ∈ Z, then we see from our assumption (4) that only Hp(U,Hq(Kn))
contribute to Hm(U,Kn) for 0 ≤ p ≤ d and m − d ≤ q ≤ m. By assumption
(2) this implies that Hm(U,Kn+1) → Hm(U,Kn) is an isomorphism as soon as
n ≥ maxn(m), . . . , n(m− d). The functor RΓ(U,−) commutes with derived limits
by Injectives, Lemma 13.6. Thus we have

Hm(U,K) = Hm(R limRΓ(U,Kn))

On the other hand we have just seen that the complexes RΓ(U,Kn) have eventually
constant cohomology groups. Thus by More on Algebra, Remark 61.16 we find
that Hm(U,K) is equal to Hm(U,Kn) for all n � 0 for some bound independent
of U ∈ B. Pick such an n. Finally, recall that Hm(K) is the sheafification of
the presheaf U 7→ Hm(U,K) and Hm(Kn) is the sheafification of the presheaf
U 7→ Hm(U,Kn). On the elements of B these presheaves have the same values.
Therefore assumption (3) guarantees that the sheafifications are the same too. The
lemma follows. �

Let (C,O) be a ringed site. Let F• be a complex of O-modules. The category
Mod(O) has enough injectives, hence we can use Derived Categories, Lemma 28.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•2 // I•1

in the category of complexes of O-modules such that

(1) the vertical arrows are quasi-isomorphisms,
(2) I•n is a bounded below complex of injectives,
(3) the arrows I•n+1 → I•n are termwise split surjections.
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The category ofO-modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•n. By Derived Categories, Lem-
mas 29.4 and 29.7 this is a K-injective complex. In general the canonical map

(22.2.1) F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 22.3. In the situation described above. Denote Hi = Hi(F•) the ith
cohomology sheaf. Let B ⊂ Ob(C) be a subset. Let d ∈ N. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d2.

Then (22.2.1) is a quasi-isomorphism.

Proof. Let m ∈ Z. We have to show that the map F• → I• induces an isomor-
phism Hm → Hm(I•). Since I•n is quasi-isomorphic to τ≥−nF• it suffices to show
that Hm(I•)→ Hm(I•n) is an isomorphism for n large enough. To do this we will
verify the hypotheses (1), (2)(a), (2)(b), (2)(c) of Lemma 22.1.

Hypothesis (1) is assumption (1) above. Hypothesis (2)(a) follows from the fact
that the maps Ikn+1 → Ikn are split surjections. We will prove hypothesis (2)(b) and
(2)(c) simultaneously by proving that for U ∈ B the system Hm(I•n(U)) becomes
constant for n ≥ −m+d. Namely, recalling that I•n is quasi-isomorphic to τ≥−nF•
we obtain for all n a distinguished triangle

H−n[n]→ I•n → I•n−1 → H−n[n+ 1]

(Derived Categories, Remark 12.4) in D(O). By assumption (2) we see that if
m > d− n then

Hm(U,H−n[n]) = 0 and Hm(U,H−n[n+ 1]) = 0.

Observe that Hm(I•n(U)) = Hm(U, I•n) as I•n is a bounded below complex of injec-
tives. Unwinding the long exact sequence of cohomology associated to the distin-
guished triangle above this implies that

Hm(I•n(U))→ Hm(I•n−1(U))

is an isomorphism for m > d− n, i.e., n > d−m and we win. �

Lemma 22.4. With assumptions and notation as in Lemma 22.3. Let K denote
the object of D(O) represented by the complex F•. Then K = R lim τ≥−nK, i.e.,
K is the derived limit of its canonical truncations.

Proof. First proof. Injectives, Lemma 13.4 shows that
∏
τ≥−nK is represented

by the complex
∏
I•n. Because the transition maps I•n+1 → I•n are termwise split

surjections, we have a short exact sequence of complexes

0→ I• →
∏
I•n →

∏
I•n → 0

Since I• represents K by Lemma 22.3 the distinguished triangle of the lemma is
the distinguished triangle associated to the short exact sequence above (Derived
Categories, Lemma 12.1).

2In fact, analyzing the proof we see that it suffices if there exists a function d : Z→ Z∪{+∞}
such that Hp(U,Hq) = 0 for p > d(q) where q + d(q)→ −∞ as q → −∞
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Second proof. Apply Lemma 22.2 to see that the cohomology sheaves ofR lim τ≥−nK
are isomorphic to the cohomology sheaves of K. �

Here is another case where we can describe the derived limit.

Lemma 22.5. Let (C,O) be a ringed site. Let (Kn) be an inverse system of objects
of D(O). Let B ⊂ Ob(C) be a subset. Assume

(1) every object of C has a covering whose members are elements of B,
(2) for all U ∈ B and all q ∈ Z we have

(a) Hp(U,Hq(Kn)) = 0 for p > 0,
(b) the inverse system H0(U,Hq(Kn)) has vanishing R1 lim.

Then Hq(R limKn) = limHq(Kn) for q ∈ Z and Rt limHq(Kn) = 0 for t > 0.

Proof. Observe that Kn = R limm τ≥−mKn by Lemma 22.4. Let U ∈ B. Then
we get Hq(U,Kn) = Hq(R limmRΓ(U, τ≥−mKn)) because RΓ(U,−) commutes
with derived limits by Injectives, Lemma 13.6. For each m condition (2)(a) im-
ply Hq(U, τ≥−mKn) = H0(U,Hq(τ≥−mKn)) for all q, n by using the spectral se-
quence of Derived Categories, Lemma 21.3. The spectral sequence converges be-
cause τ≥−mKn is bounded below (and so this argument simplifies considerably
when Kn is bounded below). This value is constant and equal to H0(U,Hq(Kn))
for m > |q|. We conclude that Hq(U,Kn) = H0(U,Hq(Kn)).

Using again that the functor RΓ(U,−) commutes with derived limits we have

Hq(U,K) = Hq(R limRΓ(U,Kn)) = limH0(U,Hq(Kn))

where the final equality follows from More on Algebra, Remark 61.16 and assump-
tion (2)(b). Thus Hq(U,K) is the inverse limit the sections of the sheaves Hq(Kn)
over U . Since limHq(Kn) is a sheaf we find using assumption (1) that Hq(K),
which is the sheafification of the presheaf U 7→ Hq(U,K), is equal to limHq(Kn).
This proves the first statement. Applying this to the inverse system (Hq(Kn)[0])
the second assertion follows also. �

The construction above can be used in the following setting. Let C be a category.
Let Cov(C) ⊃ Cov′(C) be two ways to endow C with the structure of a site. Denote τ
the topology corresponding to Cov(C) and τ ′ the topology corresponding to Cov′(C).
Then the identity functor on C defines a morphism of sites

ε : Cτ −→ Cτ ′
where ε∗ is the identity functor on underlying presheaves and where ε−1 is the τ -
sheafification of a τ ′-sheaf (hence clearly exact). Let O be a sheaf of rings for the
τ -topology. Then O is also a sheaf for the τ ′-topology and ε becomes a morphism
of ringed sites

ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′)
In this situation we can sometimes point out subcategories of D(Oτ ) and D(Oτ ′)
which are identified by the functors ε∗ and Rε∗.

Lemma 22.6. With ε : (Cτ ,Oτ ) −→ (Cτ ′ ,Oτ ′) as above. Let B ⊂ Ob(C) be a
subset. Let A ⊂ PMod(O) be a full subcategory. Assume

(1) every object of A is a sheaf for the τ -topology,
(2) A is a weak Serre subcategory of Mod(Oτ ),
(3) every object of C has a τ ′-covering whose members are elements of B, and
(4) for every U ∈ B we have Hp

τ (U,F) = 0, p > 0 for all F ∈ A.
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Then A is a weak Serre subcategory of Mod(Oτ ) and there is an equivalence of
triangulated categories DA(Oτ ) = DA(Oτ ′) given by ε∗ and Rε∗.

Proof. Note that for A ∈ A we can think of A as a sheaf in either topology and
(abusing notation) that ε∗A = A and ε∗A = A. Consider an exact sequence

A0 → A1 → A2 → A3 → A4

in Mod(Oτ ′) with A0, A1, A3, A4 in A. We have to show that A2 is an element of
A, see Homology, Definition 9.1. Apply the exact functor ε∗ = ε−1 to conclude that
ε∗A2 is an object of A. Consider the map of sequences

A0
//

��

A1
//

��

A2
//

��

A3
//

��

A4

��
A0

// A1
// ε∗ε∗A2

// A3
// A4

to conclude that A2 = ε∗ε
∗A2 is an object of A. At this point it makes sense to

talk about the derived categories DA(Oτ ) and DA(Oτ ′), see Derived Categories,
Section 13.

Since ε∗ is exact and preservesA, it is clear that we obtain a functor ε∗ : DA(Oτ ′)→
DA(Oτ ). We claim that Rε∗ is a quasi-inverse. Namely, let F• be an object of
DA(Oτ ). Construct a map F• → I• = lim I•n as in (22.2.1). By Lemma 22.3 and
assumption (4) we see that F• → I• is a quasi-isomorphism. Then

Rε∗F• = ε∗I• = limn ε∗I•n

For every U ∈ B we have

Hm(ε∗I•n(U)) = Hm(I•n(U)) =

{
Hm(F•)(U) if m ≥ −n

0 if m < n

by the assumed vanishing of (4), the spectral sequence Derived Categories, Lemma
21.3, and the fact that τ≥−nF• → I•n is a quasi-isomorphism. The maps ε∗I•n+1 →
ε∗I•n are termwise split surjections as ε∗ is a functor. Hence we can apply Homology,
Lemma 27.7 to the sequence of complexes

limn ε∗Im−2
n (U)→ limn ε∗Im−1

n (U)→ limn ε∗Imn (U)→ limn ε∗Im+1
n (U)

to conclude that Hm(ε∗I•(U)) = Hm(F•)(U) for U ∈ B. Sheafifying and using
property (3) this proves that Hm(ε∗I•) is isomorphic to ε∗H

m(F•), i.e., is an object
of A. Thus Rε∗ indeed gives rise to a functor

Rε∗ : DA(Oτ ) −→ DA(Oτ ′)

For F• ∈ DA(Oτ ) the adjunction map ε∗Rε∗F• → F• is a quasi-isomorphism
as we’ve seen above that the cohomology sheaves of Rε∗F• are ε∗H

m(F•). For
G• ∈ DA(Oτ ′) the adjunction map G• → Rε∗ε

∗G• is a quasi-isomorphism for the
same reason, i.e., because the cohomology sheaves of Rε∗ε

∗G• are isomorphic to
ε∗H

m(ε∗G) = Hm(G•). �
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23. Cohomology on Hausdorff and locally quasi-compact spaces

We continue our convention to say “Hausdorff and locally quasi-compact” instead
of saying “locally compact” as is often done in the literature. Let LC denote the
category whose objects are Hausdorff and locally quasi-compact topological spaces
and whose morphisms are continuous maps.

Lemma 23.1. The category LC has fibre products and a final object and hence has
arbitrary finite limits. Given morphisms X → Z and Y → Z in LC with X and Y
quasi-compact, then X ×Z Y is quasi-compact.

Proof. The final object is the singleton space. Given morphisms X → Z and
Y → Z of LC the fibre product X ×Z Y is a subspace of X × Y . Hence X ×Z Y is
Hausdorff as X × Y is Hausdorff by Topology, Section 3.

If X and Y are quasi-compact, then X×Y is quasi-compact by Topology, Theorem
13.4. Since X ×Z Y is a closed subset of X × Y (Topology, Lemma 3.4) we find
that X ×Z Y is quasi-compact by Topology, Lemma 11.3.

Finally, returning to the general case, if x ∈ X and y ∈ Y we can pick quasi-
compact neighbourhoods x ∈ E ⊂ X and y ∈ F ⊂ Y and we find that E ×Z F is
a quasi-compact neighbourhood of (x, y) by the result above. Thus X ×Z Y is an
object of LC by Topology, Lemma 12.2. �

We can endow LC with a stronger topology than the usual one.

Definition 23.2. Let {fi : Xi → X} be a family of morphisms with fixed target
in the category LC. We say this family is a qc covering3 if for every x ∈ X there
exist i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a

neighbourhood of x.

Observe that an open covering X =
⋃
Ui of an object of LC gives a qc covering

{Ui → X} because X is locally quasi-compact. We start with the obligatory lemma.

Lemma 23.3. Let X be a Hausdorff and locally quasi-compact space, in other
words, an object of LC.

(1) If X ′ → X is an isomorphism in LC then {X ′ → X} is a qc covering.
(2) If {fi : Xi → X}i∈I is a qc covering and for each i we have a qc covering
{gij : Xij → Xi}j∈Ji , then {Xij → X}i∈I,j∈Ji is a qc covering.

(3) If {Xi → X}i∈I is a qc covering and X ′ → X is a morphism of LC then
{X ′ ×X Xi → X ′}i∈I is a qc covering.

Proof. Part (1) holds by the remark above that open coverings are qc coverings.

Proof of (2). Let x ∈ X. Choose i1, . . . , in ∈ I and Ea ⊂ Xia quasi-compact such
that

⋃
fia(Ea) is a neighbourhood of x. For every e ∈ Ea we can find a finite

subset Je ⊂ Jia and quasi-compact Fe,j ⊂ Xij , j ∈ Je such that
⋃
gij(Fe,j) is a

neighbourhood of e. Since Ea is quasi-compact we find a finite collection e1, . . . , ema

such that
Ea ⊂

⋃
k=1,...,ma

⋃
j∈Jek

gij(Fek,j)

Then we find that ⋃
a=1,...,n

⋃
k=1,...,ma

⋃
j∈Jek

fi(gij(Fek,j))

3This is nonstandard notation. We chose it to remind the reader of fpqc coverings of schemes.
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is a neighbourhood of x.

Proof of (3). Let x′ ∈ X ′ be a point. Let x ∈ X be its image. Choose i1, . . . , in ∈ I
and quasi-compact subsets Ej ⊂ Xij such that

⋃
fij (Ej) is a neighbourhood of

x. Choose a quasi-compact neighbourhood F ⊂ X ′ of x′ which maps into the
quasi-compact neighbourhood

⋃
fij (Ej) of x. Then F ×X Ej ⊂ X ′ ×X Xij is a

quasi-compact subset and F is the image of the map
∐
F ×X Ej → F . Hence the

base change is a qc covering and the proof is finished. �

Besides some set theoretic issues the lemma above shows that LC with the collection
of qc coverings forms a site. We will denote this site (suitably modified to overcome
the set theoretical issues) LCqc.

Remark 23.4 (Set theoretic issues). The category LC is a “big” category as its
objects form a proper class. Similarly, the coverings form a proper class. Let us
define the size of a topological space X to be the cardinality of the set of points
of X. Choose a function Bound on cardinals, for example as in Sets, Equation
(9.1.1). Finally, let S0 be an initial set of objects objects of LC, for example
S0 = {(R, euclidean topology)}. Exactly as in Sets, Lemma 9.2 we can choose a
limit ordinal α such that LCα = LC ∩ Vα contains S0 and is preserved under all
countable limits and colimits which exist in LC. Moreover, if X ∈ LCα and if
Y ∈ LC and size(Y ) ≤ Bound(size(X)), then Y is isomorphic to an object of LCα.
Next, we apply Sets, Lemma 11.1 to choose set Cov of qc covering on LCα such
that every qc covering in LCα is combinatorially equivalent to a covering this set.
In this way we obtain a site (LCα,Cov) which we will denote LCqc.

There is a second topology on the site LCqc of Remark 23.4. Namely, given an
object X we can consider all coverings {Xi → X} of LCqc such that Xi → X is an
open immersion. We denote this site LCZar. The identity functor LCZar → LCqc
is continuous and defines a morphism of sites

ε : LCqc → LCZar

by an application of Sites, Proposition 15.6.

Consider an object X of the site LCqc constructed in Remark 23.4. (Translation
for those not worried about set theoretic issues: Let X be a Hausdorff and locally
quasi-compact space.) Let XZar be the site whose objects are opens of X, see Sites,
Example 6.4. There is a morphism of sites

π : LCZar/X → XZar

given by the continuous functor

XZar −→ LCZar/X, U 7−→ U

Namely, XZar has fibre products and a final object and the functor above commutes
with these and Sites, Proposition 15.6 applies.

Lemma 23.5. Let X be an object of LCqc. Let F be a sheaf on XZar. Then the
sheaf π−1F on LCZar/X is given by the rule

π−1F(Y ) = Γ(YZar, f
−1F)

for f : Y → X in LCqc. Moreover π−1F is a sheaf for the qc topology, i.e., the
sheaf ε−1π−1F on LCqc is given by the same formula.
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Proof. Of course the pullback f−1 on the right hand side indicates usual pullback
of sheaves on topological spaces (Sites, Example 15.2). The equality of the lemma
follows directly from the defintions.

Let V = {gi : Yi → Y }i∈I be a covering of LCqc/X. It suffices to show that
π−1F(Y )→ H0(V, π−1F) is an isomorphism, see Sites, Section 10. We first point
out that the map is injective as a qc covering is surjective and we can detect
equality of sections at stalks (use Sheaves, Lemmas 11.1 and 21.4). Thus we see
that π−1F is a separated presheaf on LCqc hence it suffices to show that any element
(si) ∈ H0(V, π−1F) maps to an element in the image of π−1F(Y ) after replacing
V by a refinement (Sites, Theorem 10.10).

Observe that π−1F|Yi,Zar
is the pullback of f−1F = π−1F|YZar

under the continu-
ous map gi : Yi → Y . Thus we can choose an open covering Yi =

⋃
Vij such that

for each j there is an open Wij ⊂ Y and a section tij ∈ π−1F(Wij) such that s|Uij

is the pullback of tij . In other words, after refining the covering {Yi → Y } we may
assume there are opens Wi ⊂ Y such that Yi → Y factors through Wi and sections
ti of π−1F over Wi which restrict to the given sections si. Moreover, if y ∈ Y is in
the image of both Yi → Y and Yj → Y , then the images ti,y and tj,y in the stalk
f−1Fy agree (because si and sj agree over Yi ×Y Yj). Thus for y ∈ Y there is a
well defined element ty of f−1Fy agreeing with ti,y whenever y ∈ Yi. We will show
that the element (ty) comes from a global section of f−1F over Y which will finish
the proof of the lemma.

It suffices to show that this is true locally on Y , see Sheaves, Section 17. Let y0 ∈ Y .
Pick i1, . . . , in ∈ I and quasi-compact subsets Ej ⊂ Yij such that

⋃
gij (Ej) is a

neighbourhood of y0. Then we can find an open neighbourhood V ⊂ Y of y0

contained in Wi1 ∩ . . .∩Win such that the sections tij |V , j = 1, . . . , n agree. Hence
we see that (ty)y∈V comes from this section and the proof is finished. �

Lemma 23.6. Let X be an object of LCqc. Let F be an abelian sheaf on XZar.
Then we have

Hq(XZar,F) = Hq(LCqc/X, ε
−1π−1F)

In particular, if A is an abelian group, then we have Hq(X,A) = Hq(LCqc/X,A).

Proof. The statement is more precisely that the canonical map

Hq(XZar,F) −→ Hq(LCqc/X, ε
−1π−1F)

is an isomorphism for all q. The result holds for q = 0 by Lemma 23.5. We argue
by induction on q. Pick q0 > 0. We will assume the result holds for q < q0 and
prove it for q0.

Injective. Let ξ ∈ Hq0(X,F). We may choose an open covering U : X =
⋃
Ui such

that ξ|Ui
is zero for all i (Cohomology, Lemma 7.2). Then U is also a covering for

the qc topology. Hence we obtain a map

Ep,q2 = Ȟp(U , Hq(F)) −→ Ep,q2 = Ȟp(U , Hq(ε−1π−1F))

between the spectral sequences of Cohomology, Lemma 12.4 and Lemma 11.6. Since
the maps Hq(F)(Ui0...ip) → Hq(ε−1π−1F))(Ui0...ip) are isomorphisms for q < q0

we see that

Ker(Hq0(X,F)→
∏

Hq0(Ui,F))
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maps isomorphically to the corresponding subgroup of Hq0(LCqc/X, ε
−1π−1F). In

this way we conclude that our map is injective for q0.

Surjective. Let ξ ∈ Hq0(LCqc/X, ε
−1π−1F). If for every x ∈ X we can find a

neighbourhood x ∈ U ⊂ X such that ξ|U = 0, then we can use the Čech complex
argument of the previous paragraph to conclude that ξ is in the image of our
map. Fix x ∈ X. We can find a qc covering {fi : Xi → X}i∈I such that ξ|Xi

is zero (Lemma 8.3). Pick i1, . . . , in ∈ I and Ej ⊂ Xij such that
⋃
fij (Ej) is a

neighbourhood of x. We may replace X by
⋃
fij (Ej) and set Y =

∐
Eij . Then

Y → X is a surjective continuous map of Hausdorff and quasi-compact topological
spaces, ξ ∈ Hq0(LCqc/X, ε

−1π−1F), and ξ|Y = 0. Set Yp = Y ×X . . .×X Y (p+ 1-
factors) and denote Fp the pullback of F to Yp. Then the spectral sequence

Ep,q1 = Čp({Y → X}, Hq(ε−1π−1F))

of Lemma 11.6 has rows for q < q0 which are (by induction) the complexes

Hq(Y0,F0)→ Hq(Y1,F1)→ Hq(Y2,F2)→ . . .

If these complexes were exact in degree p = q0 − q, then the spectral sequence
would collapse and ξ would be zero. This is not true in general, but we don’t need
to show ξ is zero, we just need to show ξ becomes zero after restricting X to a
neighbourhood of x. Thus it suffices to show that the complexes

colimx∈U⊂X (Hq(Y0 ×X U,F0)→ Hq(Y1 ×X U,F1)→ Hq(Y2 ×X U,F2)→ . . .)

are exact (some details omitted). By the proper base change theorem in topology
(for example Cohomology, Lemma 19.1) the colimit is equal to

Hq(Yx,Fx)→ Hq(Y 2
x ,Fx)→ Hq(Y 3

x ,Fx)→ . . .

where Yx ⊂ Y is the fibre of Y → X over x and where Fx denotes the constant sheaf
with value Fx. But the simplicial topological space (Y nx ) is homotopy equivalent
to the constant simplicial space on the singleton {x}, see Simplicial, Lemma 25.9.
Since Hq(−,Fx) is a functor on the category of topological spaces, we conclude
that the cosimplicial abelian group with values Hq(Y nx ,Fx) is homotopy equivalent
to the constant cosimplicial abelian group with value

Hq({x},Fx) =

{
Fx if q = 0
0 else

As the complex associated to a constant cosimplicial group has the required exact-
ness properties this finishes the proof of the lemma. �

Lemma 23.7. Let f : X → Y be a morphism of LC. If f is proper and surjective,
then {f : X → Y } is a qc covering.

Proof. Let y ∈ Y be a point. For each x ∈ Xy choose a quasi-compact neigh-
bourhood Ex ⊂ X. Choose x ∈ Ux ⊂ Ex open. Since f is proper the fibre Xy

is quasi-compact and we find x1, . . . , xn ∈ Xy such that Xy ⊂ Ux1 ∪ . . . ∪ Uxn .
We claim that f(Ex1

) ∪ . . . ∪ f(Exn
) is a neighbourhood of y. Namely, as f is

closed (Topology, Theorem 16.5) we see that Z = f(X \Ux1
∪ . . .∪Uxn

) is a closed
subset of Y not containing y. As f is surjective we see that Y \ Z is contained in
f(Ex1) ∪ . . . ∪ f(Exn) as desired. �
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24. Spectral sequences for Ext

In this section we collect various spectral sequences that come up when considering
the Ext functors. For any pair of complexes G•,F• of complexes of modules on a
ringed site (C,O) we denote

ExtnO(G•,F•) = HomD(O)(G•,F•[n])

according to our general conventions in Derived Categories, Section 27.

Example 24.1. Let (C,O) be a ringed site. Let K• be a bounded above complex
of O-modules. Let F be an O-module. Then there is a spectral sequence with
E2-page

Ei,j2 = ExtiO(H−j(K•),F)⇒ Exti+jO (K•,F)

and another spectral sequence with E1-page

Ei,j1 = ExtjO(K−i,F)⇒ Exti+jO (K•,F).

To construct these spectral sequences choose an injective resolution F → I• and
consider the two spectral sequences coming from the double complex HomO(K•, I•),
see Homology, Section 22.

25. Hom complexes

Let (C,O) be a ringed site. Let L• and M• be two complexes of O-modules. We
construct a complex of O-modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomO(L−q,Mp)

It is a good idea to think of Homn as the sheaf of O-modules of all O-linear maps
from L• to M• (viewed as graded O-modules) which are homogenous of degree n.
In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
O(L•,M•). We omit the verification that d2 = 0. This construction is

a special case of Differential Graded Algebra, Example 19.6. It follows immediately
from the construction that we have

(25.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])

for all n ∈ Z and every U ∈ Ob(C). Similarly, we have

(25.0.2) Hn(Γ(C,Hom•(L•,M•))) = HomK(O)(L•,M•[n])

for the complex of global sections.

Lemma 25.1. Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗O L•),M•)

of complexes of O-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.1. �
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Lemma 25.2. Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗O Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes of O-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.2. �

Lemma 25.3. Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗O K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes of O-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.3. �

Lemma 25.4. Let (C,O) be a ringed site. Given complexes K•,L•,M• of O-
modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗O L•))
of complexes of O-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.5. �

Lemma 25.5. Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a complex of O-modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ∈ Ob(C). Similarly, H0(Γ(C,Hom•(L•, I•))) = HomD(OU )(L,M).

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (25.0.1). The second equality is true because I•|U is K-injective
by Lemma 20.1. The proof of the last equation is similar except that it uses
(25.0.2). �

Lemma 25.6. Let (C,O) be a ringed site. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of O-modules. Let (L′)• → L• be a quasi-isomorphism of
complexes of O-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.

Proof. Let M be the object of D(O) represented by I• and (I ′)•. Let L be the
object of D(O) represented by L• and (L′)•. By Lemma 25.5 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )
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Thus the map is a quasi-isomorphism. �

Lemma 25.7. Let (C,O) be a ringed site. Let I• be a K-injective complex of
O-modules. Let L• be a K-flat complex of O-modules. Then Hom•(L•, I•) is a
K-injective complex of O-modules.

Proof. Namely, if K• is an acyclic complex of O-modules, then

HomK(O)(K•,Hom•(L•, I•)) = H0(Γ(C,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(C,Hom•(Tot(K• ⊗O L•), I•)))
= HomK(O)(Tot(K• ⊗O L•), I•)
= 0

The first equality by (25.0.2). The second equality by Lemma 25.1. The third
equality by (25.0.2). The final equality because Tot(K• ⊗O L•) is acyclic because
L• is K-flat (Definition 17.2) and because I• is K-injective. �

26. Internal hom in the derived category

Let (C,O) be a ringed site. Let L,M be objects of D(O). We would like to construct
an object RHom(L,M) of D(O) such that for every third object K of D(O) there
exists a canonical bijection

(26.0.1) HomD(O)(K,RHom(L,M)) = HomD(O)(K ⊗L
O L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 3.5).

To construct such an object, choose a K-injective complex of O-modules I• repre-
senting M and any complex of O-modules L• representing L. Then we set Then
we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of O-modules constructed in Section 25.
This is well defined by Lemma 25.6. We get a functor

D(O)opp ×D(O) −→ D(O), (K,L) 7−→ RHom(K,L)

As a prelude to proving (26.0.1) we compute the cohomology groups ofRHom(K,L).

Lemma 26.1. Let (C,O) be a ringed site. Let K,L be objects of D(O). For every
object U of C we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )

and we have H0(C, RHom(L,M) = HomD(O)(L,M).

Proof. Choose a K-injective complex I• of O-modules representing M and a K-
flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma 25.7.
Hence we can compute cohomology over U by simply taking sections over U and
the result follows from Lemma 25.5. �

Lemma 26.2. Let (C,O) be a ringed site. Let K,L,M be objects of D(O). With
the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
O L,M)

in D(O) functorial in K,L,M which recovers (26.0.1) on taking H0(C,−).
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Proof. Choose a K-injective complex I• representing M and a K-flat complex of
O-modules L• representing L. Let H• be the complex described above. For any
complex of O-modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗O L•), I•)

by Lemma 25.1. Note that the left hand side represents RHom(K,RHom(L,M))
(use Lemma 25.7) and that the right hand side represents RHom(K ⊗L

O L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 26.1 we obtain (26.0.1). �

Lemma 26.3. Let (C,O) be a ringed site. Let K,L be objects of D(O). The
construction of RHom(K,L) commutes with restrictions, i.e., for every object U
of C we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 20.1. �

Lemma 26.4. Let (C,O) be a ringed site. The bifunctor RHom(−,−) transforms
distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. �

Lemma 26.5. Let (C,O) be a ringed site. Let K,L,M be objects of D(O). There
is a canonical morphism

RHom(L,M)⊗L
O K −→ RHom(RHom(K,L),M)

in D(O) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•)⊗O K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 25.3. By our particular choice of complexes the left hand side represents
RHom(L,M)⊗L

O K and the right hand side represents RHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(O). �

Lemma 26.6. Let (C,O) be a ringed site. Given K,L,M in D(O) there is a
canonical morphism

RHom(L,M)⊗L
O RHom(K,L) −→ RHom(K,M)

in D(O).
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Proof. In general (without suitable finiteness conditions) we do not see how to get
this map from Lemma 25.2. Instead, we use the maps

RHom(L,M)⊗L
O RHom(K,L)⊗L

O K

��
RHom(RHom(K,L),M)⊗L

O RHom(K,L)

��
M

gotten by applying Lemma 26.5 twice. Finally, we use Lemma 26.2 to translate the
composition

RHom(L,M)⊗L
O RHom(K,L)⊗L

O K −→M

into a map as in the statement of the lemma. �

Lemma 26.7. Let (C,O) be a ringed site. Given K,L in D(O) there is a canonical
morphism

K −→ RHom(L,K ⊗L
O L)

in D(O) functorial in both K and L.

Proof. Choose K-flat complexes K• and L• represeting K and L. Choose a K-
injective complex I• and a quasi-isomorphism Tot(K• ⊗O L•) → I•. Then we
use

K• → Hom•(L•,Tot(K• ⊗O L•))→ Hom•(L•, I•)
where the first map comes from Lemma 25.4. �

Lemma 26.8. Let (C,O) be a ringed site. Let L be an object of D(O). Set L∧ =
RHom(L,O). For M in D(O) there is a canonical map

(26.8.1) L∧ ⊗L
O M −→ RHom(L,M)

which induces a canonical map

H0(C, L∧ ⊗L
O M) −→ HomD(O)(L,M)

functorial in M in D(O).

Proof. The map (26.8.1) is a special case of Lemma 26.6 using the identification
M = RHom(O,M). �

Remark 26.9. Let h : (Sh(C),O) → (Sh(C′),O′) be a morphism of ringed topoi.
Let K,L be objects of D(O′). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(O). Namely, by (26.0.1) proved in Lemma 26.2 such a map is the same thing
as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L)⊗LK) by Lemma 18.4 hence it suffices
to construct a canonical map

RHom(K,L)⊗L K −→ L.

For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)
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via (26.0.1).

Remark 26.10. Suppose that

(Sh(C′),OC′)
h
//

f ′

��

(Sh(C),OC)

f

��
(Sh(D′),OD′)

g // (Sh(D),OD)

is a commutative diagram of ringed topoi. Let K,L be objects of D(OC). We claim
there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OD′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)

→ Lh∗RHom(K,L)

→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 26.9.

27. Derived lower shriek

In this section we study some situations where besides Lf∗ and Rf∗ there also a
derived functor Lf!.

Lemma 27.1. Let u : C → D be a continuous and cocontinuous functor of sites
which induces a morphism of topoi g : Sh(C)→ Sh(D). Let OD be a sheaf of rings
and set OC = g−1OD. The functor g! : Mod(OC) → Mod(OD) (see Modules on
Sites, Lemma 40.1) has a left derived functor

Lg! : D(OC) −→ D(OD)

which is left adjoint to g∗. Moreover, for U ∈ Ob(C) we have

Lg!(jU !OU ) = g!jU !OU = ju(U)!Ou(U).

where jU ! and ju(U)! are extension by zero associated to the localization morphism
jU : C/U → C and ju(U) : D/u(U)→ D.

Proof. We are going to use Derived Categories, Proposition 28.2 to construct
Lg!. To do this we have to verify assumptions (1), (2), (3), (4), and (5) of that
proposition. First, since g! is a left adjoint we see that it is right exact and commutes
with all colimits, so (5) holds. Conditions (3) and (4) hold because the category of
modules on a ringed site is a Grothendieck abelian category. Let P ⊂ Ob(Mod(OC))
be the collection of OC-modules which are direct sums of modules of the form
jU !OU . Note that g!jU !OU = ju(U)!Ou(U), see proof of Modules on Sites, Lemma
40.1. Every OC-module is a quotient of an object of P, see Modules on Sites,
Lemma 28.6. Thus (1) holds. Finally, we have to prove (2). Let K• be a bounded
above acyclic complex of OC-modules with Kn ∈ P for all n. We have to show that
g!K• is exact. To do this it suffices to show, for every injective OD-module I that

HomD(OD)(g!K•, I[n]) = 0
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for all n ∈ Z. Since I is injective we have

HomD(OD)(g!K•, I[n]) = HomK(OD)(g!K•, I[n])

= Hn(HomOD (g!K•, I))

= Hn(HomOC (K•, g−1I))

the last equality by the adjointness of g! and g−1.

The vanishing of this group would be clear if g−1I were an injective OC-module.
But g−1I isn’t necessarily an injective OC-module as g! isn’t exact in general. We
do know that

ExtpOC (jU !OU , g−1I) = Hp(U, g−1I) = 0 for p ≥ 1

Namely, the first equality follows from HomOC (jU !OU ,H) = H(U) and taking de-
rived functors. The vanishing of Hp(U, g−1I) for all U ∈ Ob(C) comes from the van-
ishing of all higher Čech cohomology groups Ȟp(U , g−1I) via Lemma 11.9. Namely,
for a covering U = {Ui → U}i∈I in C we have Ȟp(U , g−1I) = Ȟp(u(U), I). Since
I is an injective O-module these Čech cohomology groups vanish, see Lemma 12.3.
Since each K−q is a direct sum of modules of the form jU !OU we see that

ExtpOC (K
−q, g−1I) = 0 for p ≥ 1 and all q

Let us use the spectral sequence (see Example 24.1)

Ep,q1 = ExtpOC (K
−q, g−1I)⇒ Extp+qOC (K•, g−1I) = 0.

Note that the spectral sequence abuts to zero as K• is acyclic (hence vanishes in
the derived category, hence produces vanishing ext groups). By the vanishing of
higher exts proved above the only nonzero terms on the E1 page are the terms
E0,q

1 = HomOC (K−q, g−1I). We conclude that the complex HomOC (K•, g−1I) is
acyclic as desired.

Thus the left derived functor Lg! exists. We still have to show that it is left adjoint
to g−1 = g∗ = Rg∗ = Lg∗, i.e., that we have

(27.1.1) HomD(OC)(H•, g−1E•) = HomD(OD)(Lg!H•, E•)
This is actually a formal consequence of the discussion above. Choose a quasi-
isomorphism K• → H• such that K• computes Lg!. Moreover, choose a quasi-
isomorphism E• → I• into a K-injective complex of OD-modules I•. Then the
RHS of (27.1.1) is

HomK(OD)(g!K•, I•)
On the other hand, by the definition of morphisms in the derived category the LHS
of (27.1.1) is

HomD(OC)(K•, g−1I•) = colims:L•→K• HomK(OC)(L•, g−1I•)
= colims:L•→K• HomK(OD)(g!L•, I•)

by the adjointness of g! and g∗ on the level of sheaves of modules. The colimit is
over all quasi-isomorphisms with target K•. Since for every complex L• there exists
a quasi-isomorphism (K′)• → L• such that (K′)• computes Lg! we see that we may
as well take the colimit over quasi-isomorphisms of the form s : (K′)• → K• where
(K′)• computes Lg!. In this case

HomK(OD)(g!K•, I•) −→ HomK(OD)(g!(K′)•, I•)
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is an isomorphism as g!(K′)• → g!K• is a quasi-isomorphism and I• is K-injective.
This finishes the proof. �

Remark 27.2. Warning! Let u : C → D, g, OD, and OC be as in Lemma 27.1. In
general it is not the case that the diagram

D(OC)
Lg!

//

forget

��

D(OD)

forget

��
D(C)

LgAb
! // D(D)

commutes where the functor LgAb! is the one constructed in Lemma 27.1 but using
the constant sheaf Z as the structure sheaf on both C and D. In general it isn’t even
the case that g! = gAb! (see Modules on Sites, Remark 40.2), but this phenomenon
can occur even if g! = gAb! ! Namely, the construction of Lg! in the proof of
Lemma 27.1 shows that Lg! agrees with LgAb

! if and only if the canonical maps

LgAb! jU !OU −→ ju(U)!Ou(U)

are isomorphisms in D(D) for all objects U in C. In general all we can say is that
there exists a natural transformation

LgAb! ◦ forget −→ forget ◦ Lg!

28. Derived lower shriek for fibred categories

In this section we work out some special cases of the situation discussed in Section
27. We make sure that we have equality between lower shriek on modules and
sheaves of abelian groups. We encourage the reader to skip this section on a first
reading.

Situation 28.1. Here (D,OD) be a ringed site and p : C → D is a fibred category.
We endow C with the topology inherited from D (Stacks, Section 10). We denote
π : Sh(C) → Sh(D) the morphism of topoi associated to p (Stacks, Lemma 10.3).
We set OC = π−1OD so that we obtain a morphism of ringed topoi

π : (Sh(C),OC) −→ (Sh(D),OD)

Lemma 28.2. Assumptions and notation as in Situation 28.1. For U ∈ Ob(C)
consider the induced morphism of topoi

πU : Sh(C/U) −→ Sh(D/p(U))

Then there exists a morphism of topoi

σ : Sh(D/p(U))→ Sh(C/U)

such that πU ◦ σ = id and σ−1 = πU,∗.

Proof. Observe that πU is the restriction of π to the localizations, see Sites, Lemma
27.4. For an object V → p(U) of D/p(U) denote V ×p(U) U → U the strongly
cartesian morphism of C over D which exists as p is a fibred category. The functor

v : D/p(U)→ C/U, V/p(U) 7→ V ×p(U) U/U

is continuous by the definition of the topology on C. Moreover, it is a right adjoint to
p by the definition of strongly cartesian morphisms. Hence we are in the situation
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discussed in Sites, Section 21 and we see that the sheaf πU,∗F is equal to V 7→
F(V ×p(U) U) (see especially Sites, Lemma 21.2).

But here we have more. Namely, the functor v is also cocontinuous (as all mor-
phisms in coverings of C are strongly cartesian). Hence v defines a morphism σ
as indicated in the lemma. The equality σ−1 = πU,∗ is immediate from the def-

inition. Since π−1
U G is given by the rule U ′/U 7→ G(p(U ′)/p(U)) it follows that

σ−1 ◦ π−1
U = id which proves the equality πU ◦ σ = id. �

Situation 28.3. Let (D,OD) be a ringed site. Let u : C′ → C be a 1-morphism
of fibred categories over D (Categories, Definition 31.9). Endow C and C′ with
their inherited topologies (Stacks, Definition 10.2) and let π : Sh(C) → Sh(D),
π′ : Sh(C′) → Sh(D), and g : Sh(C′) → Sh(C) be the corresponding morphisms of
topoi (Stacks, Lemma 10.3). Set OC = π−1OD and OC′ = (π′)−1OD. Observe that
g−1OC = OC′ so that

(Sh(C′),OC′)

π′ ''

g
// (Sh(C),OC)

π
ww

(Sh(D),OD)

is a commutative diagram of morphisms of ringed topoi.

Lemma 28.4. Assumptions and notation as in Situation 28.3. For U ′ ∈ Ob(C′)
set U = u(U ′) and V = p′(U ′) and consider the induced morphisms of ringed topoi

(Sh(C′/U ′),OU ′)

π′
U′ ))

g′
// (Sh(C),OU )

πUvv
(Sh(D/V ),OV )

Then there exists a morphism of topoi

σ′ : Sh(D/V )→ Sh(C′/U ′),
such that setting σ = g′ ◦ σ′ we have π′U ′ ◦ σ′ = id, πU ◦ σ = id, (σ′)−1 = π′U ′,∗, and

σ−1 = πU,∗.

Proof. Let v′ : D/V → C′/U ′ be the functor constructed in the proof of Lemma
28.2 starting with p′ : C′ → D′ and the object U ′. Since u is a 1-morphism of fibred
categories over D it transforms strongly cartesian morphisms into strongly cartesian
morphisms, hence the functor v = u ◦ v′ is the functor of the proof of Lemma 28.2
relative to p : C → D and U . Thus our lemma follows from that lemma. �

Lemma 28.5. Assumption and notation as in Situation 28.3.

(1) There are left adjoints g! : Mod(OC′)→ Mod(OC) and gAb
! : Ab(C′)→ Ab(C)

to g∗ = g−1 on modules and on abelian sheaves.
(2) The diagram

Mod(OC′)

��

g!
// Mod(OC)

��
Ab(C′)

gAb
! // Ab(C)

commutes.
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(3) There are left adjoints Lg! : D(OC′) → D(OC) and LgAb
! : D(C′) → D(C)

to g∗ = g−1 on derived categories of modules and abelian sheaves.
(4) The diagram

D(OC′)

��

Lg!

// D(OC)

��
D(C′)

LgAb
! // D(C)

commutes.

Proof. The functor u is continuous and cocontinuous Stacks, Lemma 10.3. Hence
the existence of the functors g!, g

Ab
! , Lg!, and LgAb

! can be found in Modules on
Sites, Sections 16 and 40 and Section 27.

To prove (2) it suffices to show that the canonical map

gAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism for all objects U ′ of C′, see Modules on Sites, Remark 40.2.
Similarly, to prove (4) it suffices to show that the canonical map

LgAb
! jU ′!OU ′ → ju(U ′)!Ou(U ′)

is an isomorphism in D(C) for all objects U ′ of C′, see Remark 27.2. This will also
imply the previous formula hence this is what we will show.

We will use that for a localization morphism j the functors j! and jAb
! agree (see

Modules on Sites, Remark 19.5) and that j! is exact (Modules on Sites, Lemma
19.3). Let us adopt the notation of Lemma 28.4. Since LgAb

! ◦ jU ′! = jU ! ◦ L(g′)Ab
!

(by commutativity of Sites, Lemma 27.4 and uniqueness of adjoint functors) it
suffices to prove that L(g′)Ab

! OU ′ = OU . Using the results of Lemma 28.4 we have
for any object E of D(C/u(U ′)) the following sequence of equalities

HomD(C/U)(L(g′)Ab
! OU ′ , E) = HomD(C′/U ′)(OU ′ , (g′)−1E)

= HomD(C′/U ′)((π
′
U ′)
−1OV , (g′)−1E)

= HomD(D/V )(OV , Rπ′U ′,∗(g′)−1E)

= HomD(D/V )(OV , (σ′)−1(g′)−1E)

= HomD(D/V )(OV , σ−1E)

= HomD(D/V )(OV , πU,∗E)

= HomD(C/U)(π
−1
U OV , E)

= HomD(C/U)(OU , E)

By Yoneda’s lemma we conclude. �

Remark 28.6. Assumptions and notation as in Situation 28.1. Note that setting
C′ = D and u equal to the structure functor of C gives a situation as in Situation
28.3. Hence Lemma 28.5 tells us we have functors π!, π

Ab
! , Lπ!, and LπAb

! such that
forget ◦ π! = πAb

! ◦ forget and forget ◦ Lπ! = LπAb
! ◦ forget.

Remark 28.7. Assumptions and notation as in Situation 28.3. Let F be an abelian
sheaf on C, let F ′ be an abelian sheaf on C′, and let t : F ′ → g−1F be a map. Then
we obtain a canonical map

Lπ′!(F ′) −→ Lπ!(F)

http://localhost:8080/tag/09CY
http://localhost:8080/tag/08PD


52 COHOMOLOGY ON SITES

by using the adjoint g!F ′ → F of t, the map Lg!(F ′) → g!F ′, and the equality
Lπ′! = Lπ! ◦ Lg!.

Lemma 28.8. Assumptions and notation as in Situation 28.1. For F in Ab(C)
the sheaf π!F is the sheaf associated to the presheaf

V 7−→ colimCoppV
F|CV

with restriction maps as indicated in the proof.

Proof. Denote H be the rule of the lemma. For a morphism h : V ′ → V of D there
is a pullback functor h∗ : CV → CV ′ of fibre categories (Categories, Definition 31.6).
Moreover for U ∈ Ob(CV ) there is a strongly cartesian morphism h∗U → U covering
h. Restriction along these strongly cartesian morphisms defines a transformation
of functors

F|CV −→ F|CV ′ ◦ h
∗.

Hence a map H(V )→ H(V ′) between colimits, see Categories, Lemma 14.7.

To prove the lemma we show that

MorPSh(D)(H,G) = MorSh(C)(F , π−1G)

for every sheaf G on C. An element of the left hand side is a compatible system of
maps F(U) → G(p(U)) for all U in C. Since π−1G(U) = G(p(U)) by our choice of
topology on C we see the same thing is true for the right hand side and we win. �

29. Homology on a category

In the case of a category over a point we will baptize the left derived lower shriek
functors the homology functors.

Example 29.1 (Category over point). Let C be a category. Endow C with the
chaotic topology (Sites, Example 6.6). Thus presheaves and sheaves agree on C. The
functor p : C → ∗ where ∗ is the category with a single object and a single morphism
is cocontinuous and continuous. Let π : Sh(C) → Sh(∗) be the corresponding
morphism of topoi. Let B be a ring. We endow ∗ with the sheaf of rings B and C
with OC = π−1B which we will denote B. In this way

π : (Sh(C), B)→ (∗, B)

is an example of Situation 28.1. By Remark 28.6 we do not need to distinguish
between π! on modules or abelian sheaves. By Lemma 28.8 we see that π!F =
colimCopp F . Thus Lnπ! is the nth left derived functor of taking colimits. In the
following, we write

Hn(C,F) = Lnπ!(F)

and we will name this the nth homology group of F on C.

Example 29.2 (Computing homology). In Example 29.1 we can compute the
functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the chain complex

K•(F) : . . .→
⊕

U2→U1→U0

F(U0)→
⊕

U1→U0

F(U0)→
⊕

U0

F(U0)

where the transition maps are given by

(U2 → U1 → U0, s) 7−→ (U1 → U0, s)− (U2 → U0, s) + (U2 → U1, s|U1
)
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and similarly in other degrees. By construction

H0(C,F) = colimCopp F = H0(K•(F)),

see Categories, Lemma 14.11. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 11.1 and Lemma 12.12. For F = jU !ZU the complex K•(F) is the
complex associated to the free Z-module on the simplicial set X• with terms

Xn =
∐

Un→...→U1→U0

MorC(U0, U)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 25.2) defining the homotopy between the two maps X• → X•
are given by the rule

hn,i : (Un → . . .→ U0, f) 7−→ (Un → . . .→ Ui → U → . . .→ U, id)

for i > 0 and hn,0 = id. Verifications omitted. This implies that K•(jU !ZU ) has
trivial cohomology in negative degrees (by the functoriality of Simplicial, Remark
25.4 and the result of Simplicial, Lemma 26.1). Thus K•(F) computes the left
derived functors Hn(C,−) of H0(C,−) for example by (the duals of) Homology,
Lemma 11.4 and Derived Categories, Lemma 17.6.

Example 29.3. Let u : C′ → C be a functor. Endow C′ and C with the chaotic
topology as in Example 29.1. The functors u, C′ → ∗, and C → ∗ where ∗ is
the category with a single object and a single morphism are cocontinuous and
continuous. Let g : Sh(C′) → Sh(C), π′ : Sh(C′) → Sh(∗), and π : Sh(C) → Sh(∗),
be the corresponding morphisms of topoi. Let B be a ring. We endow ∗ with the
sheaf of rings B and C′, C with the constant sheaf B. In this way

(Sh(C′), B)

π′ ''

g
// (Sh(C), B)

π
xx

(Sh(∗), B)

is an example of Situation 28.3. Thus Lemma 28.5 applies to g so we do not need
to distinguish between g! on modules or abelian sheaves. In particular Remark 28.7
produces canonical maps

Hn(C′,F ′) −→ Hn(C,F)

whenever we have F in Ab(C), F ′ in Ab(C′), and a map t : F ′ → g−1F . In terms of
the computation of homology given in Example 29.2 we see that these maps come
from a map of complexes

K•(F ′) −→ K•(F)

given by the rule

(U ′n → . . .→ U ′0, s
′) 7−→ (u(U ′n)→ . . .→ u(U ′0), t(s′))

with obvious notation.
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Remark 29.4. Notation and assumptions as in Example 29.1. Let F• be a
bounded complex of abelian sheaves on C. For any object U of C there is a canonical
map

F•(U) −→ Lπ!(F•)
in D(Ab). If F• is a complex of B-modules then this map is in D(B). To prove
this, note that we compute Lπ!(F•) by taking a quasi-isomorphism P• → F• where
P• is a complex of projectives. However, since the topology is chaotic this means
that P•(U) → F•(U) is a quasi-isomorphism hence can be inverted in D(Ab),
resp. D(B). Composing with the canonical map P•(U)→ π!(P•) coming from the
computation of π! as a colimit we obtain the desired arrow.

Lemma 29.5. Notation and assumptions as in Example 29.1. If C has either an
initial or a final object, then Lπ! ◦ π−1 = id on D(Ab), resp. D(B).

Proof. If C has an initial object, then π! is computed by evaluating on this object
and the statement is clear. If C has a final object, then Rπ∗ is computed by
evaluating on this object, hence Rπ∗ ◦ π−1 ∼= id on D(Ab), resp. D(B). This
implies that π−1 : D(Ab) → D(C), resp. π−1 : D(B) → D(B) is fully faithful, see
Categories, Lemma 24.3. Then the same lemma implies that Lπ! ◦ π−1 = id as
desired. �

Lemma 29.6. Notation and assumptions as in Example 29.1. Let B → B′ be a
ring map. Consider the commutative diagram of ringed topoi

(Sh(C), B)

π

��

(Sh(C), B′)

π′

��

h
oo

(∗, B) (∗, B′)
foo

Then Lπ! ◦ Lh∗ = Lf∗ ◦ Lπ′!.

Proof. Both functors are right adjoint to the obvious functor D(B′)→ D(B). �

Lemma 29.7. Notation and assumptions as in Example 29.1. Let U• be a cosim-
plicial object in C such that for every U ∈ Ob(C) the simplicial set MorC(U•, U) is
homotopy equivalent to the constant simplicial set on a singleton. Then

Lπ!(F) = F(U•)

in D(Ab), resp. D(B) functorially in F in Ab(C), resp. Mod(B).

Proof. As Lπ! agrees for modules and abelian sheaves by Lemma 28.5 it suffices
to prove this when F is an abelian sheaf. For U ∈ Ob(C) the abelian sheaf jU !ZU
is a projective object of Ab(C) since Hom(jU !ZU ,F) = F(U) and taking sections
is an exact functor as the topology is chaotic. Every abelian sheaf is a quotient of
a direct sum of jU !ZU by Modules on Sites, Lemma 28.6. Thus we can compute
Lπ!(F) by choosing a resolution

. . .→ G−1 → G0 → F → 0

whose terms are direct sums of sheaves of the form above and taking Lπ!(F) =
π!(G•). Consider the double complex A•,• = G•(U•). The map G0 → F gives a
map of complexes A0,• → F(U•). Since π! is computed by taking the colimit over
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Copp (Lemma 28.8) we see that the two compositions Gm(U1) → Gm(U0) → π!Gm
are equal. Thus we obtain a canonical map of complexes

Tot(A•,•) −→ π!(G•) = Lπ!(F)

To prove the lemma it suffices to show that the complexes

. . .→ Gm(U1)→ Gm(U0)→ π!Gm → 0

are exact, see Homology, Lemma 22.7. Since the sheaves Gm are direct sums of the
sheaves jU !ZU we reduce to G = jU !ZU . The complex jU !ZU (U•) is the complex of
abelian groups associated to the free Z-module on the simplicial set MorC(U•, U)
which we assumed to be homotopy equivalent to a singleton. We conclude that

jU !ZU (U•)→ Z

is a homotopy equivalence of abelian groups hence a quasi-isomorphism (Simplicial,
Remark 25.4 and Lemma 26.1). This finishes the proof since π!jU !ZU = Z as was
shown in the proof of Lemma 28.5. �

Lemma 29.8. Notation and assumptions as in Example 29.3. If there exists a
cosimplicial object U ′• of C′ such that Lemma 29.7 applies to both U ′• in C′ and
u(U ′•) in C, then we have Lπ′! ◦ g−1 = Lπ! as functors D(C) → D(Ab), resp.
D(C, B)→ D(B).

Proof. Follows immediately from Lemma 29.7 and the fact that g−1 is given by
precomposing with u. �

Lemma 29.9. Let Ci, i = 1, 2 be categories. Let ui : C1 × C2 → Ci be the pro-
jection functors. Let B be a ring. Let gi : (Sh(C1 × C2), B) → (Sh(Ci), B) be the
corresponding morphisms of ringed topoi, see Example 29.3. For Ki ∈ D(Ci, B) we
have

L(π1 × π2)!(g
−1
1 K1 ⊗L

B g
−1
2 K2) = Lπ1,!(K1)⊗L

B Lπ2,!(K2)

in D(B) with obvious notation.

Proof. As both sides commute with colimits, it suffices to prove this for K1 =
jU !BU and K2 = jV !BV for U ∈ Ob(C1) and V ∈ Ob(C2). See construction of Lπ!

in Lemma 27.1. In this case

g−1
1 K1 ⊗L

B g
−1
2 K2 = g−1

1 K1 ⊗B g−1
2 K2 = j(U,V )!B(U,V )

Verification omitted. Hence the result follows as both the left and the right hand
side of the formula of the lemma evaluate to B, see construction of Lπ! in Lemma
27.1. �

Lemma 29.10. Notation and assumptions as in Example 29.1. If there exists a
cosimplicial object U• of C such that Lemma 29.7 applies, then

Lπ!(K1 ⊗L
B K2) = Lπ!(K1)⊗L

B Lπ!(K2)

for all Ki ∈ D(B).
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Proof. Consider the diagram of categories and functors

C

C u // C × C
u2

""

u1

<<

C

where u is the diagonal functor and ui are the projection functors. This gives
morphisms of ringed topoi g, g1, g2. For any object (U1, U2) of C we have

MorC×C(u(U•), (U1, U2)) = MorC(U•, U1)×MorC(U•, U2)

which is homotopy equivalent to a point by Simplicial, Lemma 25.10. Thus Lemma
29.8 gives Lπ!(g

−1K) = L(π × π)!(K) for any K in D(C × C, B). Take K =
g−1

1 K1 ⊗L
B g
−1
2 K2. Then g−1K = K1 ⊗L

B K2 because g−1 = g∗ = Lg∗ commutes

with derived tensor product (Lemma 18.4 – a site with chaotic topology has enough
points). To finish we apply Lemma 29.9. �

Remark 29.11 (Simplicial modules). Let C = ∆ and let B be any ring. This is a
special case of Example 29.1 where the assumptions of Lemma 29.7 hold. Namely,
let U• be the cosimplicial object of ∆ given by the identity functor. To verify the
condition we have to show that for [m] ∈ Ob(∆) the simplicial set ∆[m] : n 7→
Mor∆([n], [m]) is homotopy equivalent to a point. This is explained in Simplicial,
Example 25.7.

In this situation the category Mod(B) is just the category of simplicial B-modules
and the functor Lπ! sends a simplicial B-moduleM• to its associated complex s(M•)
of B-modules. Thus the results above can be reinterpreted in terms of results on
simplicial modules. For example a special case of Lemma 29.10 is: if M•, M

′
• are

flat simplicial B-modules, then the complex s(M• ⊗B M ′•) is quasi-isomorphic to
the total complex associated to the double complex s(M•) ⊗B s(M ′•). (Hint: use
flatness to convert from derived tensor products to usual tensor products.) This is
a special case of the Eilenberg-Zilber theorem which can be found in [EZ53].

Lemma 29.12. Let C be a category (endowed with chaotic topology). Let O → O′
be a map of sheaves of rings on C. Assume

(1) there exists a cosimplicial object U• in C as in Lemma 29.7, and
(2) Lπ!O → Lπ!O′ is an isomorphism.

For K in D(O) we have

Lπ!(K) = Lπ!(K ⊗L
O O′)

in D(Ab).

Proof. Note: in this proof Lπ! denotes the left derived functor of π! on abelian
sheaves. Since Lπ! commutes with colimits, it suffices to prove this for bounded
above complexes of O-modules (compare with argument of Derived Categories,
Proposition 28.2 or just stick to bounded above complexes). Every such complex
is quasi-isomorphic to a bounded above complex whose terms are direct sums of
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jU !OU with U ∈ Ob(C), see Modules on Sites, Lemma 28.6. Thus it suffices to
prove the lemma for jU !OU . By assumption

S• = MorC(U•, U)

is a simplicial set homotopy equivalent to the constant simplicial set on a singleton.
Set Pn = O(Un) and P ′n = O′(Un). Observe that the complex associated to the
simplicial abelian group

X• : n 7−→
⊕

s∈Sn

Pn

computes Lπ!(jU !OU ) by Lemma 29.7. Since jU !OU is a flat O-module we have
jU !OU ⊗L

O O′ = jU !O′U and Lπ! of this is computed by the complex associated to
the simplicial abelian group

X ′• : n 7−→
⊕

s∈Sn

P ′n

As the rule which to a simplicial set T• associated the simplicial abelian group with
terms

⊕
t∈Tn

Pn is a functor, we see that X• → P• is a homotopy equivalence of
simplicial abelian groups. Similarly, the rule which to a simplicial set T• associates
the simplicial abelian group with terms

⊕
t∈Tn

P ′n is a functor. Hence X ′• → P ′• is

a homotopy equivalence of simplicial abelian groups. By assumption P• → P ′• is
a quasi-isomorphism (since P•, resp. P ′• computes Lπ!O, resp. Lπ!O′ by Lemma
29.7). We conclude that X• and X ′• are quasi-isomorphic as desired. �

Remark 29.13. Let C and B be as in Example 29.1. Assume there exists a
cosimplicial object as in Lemma 29.7. Let O → B be a map sheaf of rings on C
which induces an isomorphism Lπ!O → Lπ!B. In this case we obtain an exact
functor of triangulated categories

Lπ! : D(O) −→ D(B)

Namely, for any object K of D(O) we have LπAb
! (K) = LπAb

! (K ⊗L
O B) by Lemma

29.12. Thus we can define the displayed functor as the composition of −⊗L
OB with

the functor Lπ! : D(B)→ D(B). In other words, we obtain a B-module structure
on Lπ!(K) coming from the (canonical, functorial) identification of Lπ!(K) with
Lπ!(K ⊗L

O B) of the lemma.

30. Calculating derived lower shriek

In this section we apply the results from Section 29 to compute Lπ! in Situation
28.1 and Lg! in Situation 28.3.

Lemma 30.1. Assumptions and notation as in Situation 28.1. For F in PAb(C)
and n ≥ 0 consider the abelian sheaf Ln(F) on D which is the sheaf associated to
the presheaf

V 7−→ Hn(CV ,F|CV )

with restriction maps as indicated in the proof. Then Ln(F) = Ln(F#).

Proof. For a morphism h : V ′ → V of D there is a pullback functor h∗ : CV → CV ′
of fibre categories (Categories, Definition 31.6). Moreover for U ∈ Ob(CV ) there
is a strongly cartesian morphism h∗U → U covering h. Restriction along these
strongly cartesian morphisms defines a transformation of functors

F|CV −→ F|CV ′ ◦ h
∗.
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By Example 29.3 we obtain the desired restriction map

Hn(CV ,F|CV ) −→ Hn(CV ′ ,F|CV ′ )

Let us denote Ln,p(F) this presheaf, so that Ln(F) = Ln,p(F)#. The canonical map
γ : F → F+ (Sites, Theorem 10.10) defines a canonical map Ln,p(F)→ Ln,p(F+).
We have to prove this map becomes an isomorphism after sheafification.

Let us use the computation of homology given in Example 29.2. Denote K•(F|CV )
the complex associated to the restriction of F to the fibre category CV . By the
remarks above we obtain a presheaf K•(F) of complexes

V 7−→ K•(F|CV )

whose cohomology presheaves are the presheaves Ln,p(F). Thus it suffices to show
that

K•(F) −→ K•(F+)

becomes an isomorphism on sheafification.

Injectivity. Let V be an object of D and let ξ ∈ Kn(F)(V ) be an element which
maps to zero in Kn(F+)(V ). We have to show there exists a covering {Vj → V }
such that ξ|Vj

is zero in Kn(F)(Vj). We write

ξ =
∑

(Ui,n+1 → . . .→ Ui,0, σi)

with σi ∈ F(Ui,0). We arrange it so that each sequence of morphisms Un →
. . . → U0 of CV occurs are most once. Since the sums in the definition of the
complex K• are direct sums, the only way this can map to zero in K•(F+)(V )
is if all σi map to zero in F+(Ui,0). By construction of F+ there exist coverings
{Ui,0,j → Ui,0} such that σi|Ui,0,j is zero. By our construction of the topology
on C we can write Ui,0,j → Ui,0 as the pullback (Categories, Definition 31.6) of
some morphisms Vi,j → V and moreover each {Vi,j → V } is a covering. Choose a
covering {Vj → V } dominating each of the coverings {Vi,j → V }. Then it is clear
that ξ|Vj

= 0.

Surjectivity. Proof omitted. Hint: Argue as in the proof of injectivity. �

Lemma 30.2. Assumptions and notation as in Situation 28.1. For F in Ab(C)
and n ≥ 0 the sheaf Lnπ!(F) is equal to the sheaf Ln(F) constructed in Lemma
30.1.

Proof. Consider the sequence of functors F 7→ Ln(F) from PAb(C) → Ab(C).
Since for each V ∈ Ob(D) the sequence of functors Hn(CV ,−) forms a δ-functor so
do the functors F 7→ Ln(F). Our goal is to show these form a universal δ-functor.
In order to do this we construct some abelian presheaves on which these functors
vanish.

For U ′ ∈ Ob(C) consider the abelian presheaf FU ′ = jPAb
U ′! ZU ′ (Modules on Sites,

Remark 19.6). Recall that

FU ′(U) =
⊕

MorC(U,U ′)
Z

If U lies over V = p(U) in D) and U ′ lies over V ′ = p(U ′) then any morphism
a : U → U ′ factors uniquely as U → h∗U ′ → U ′ where h = p(a) : V → V ′ (see
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Categories, Definition 31.6). Hence we see that

FU ′ |CV =
⊕

h∈MorD(V,V ′)
jh∗U ′!Zh∗U ′

where jh∗U ′ : Sh(CV /h∗U ′) → Sh(CV ) is the localization morphism. The sheaves
jh∗U ′!Zh∗U ′ have vanishing higher homology groups (see Example 29.2). We con-
clude that Ln(FU ′) = 0 for all n > 0 and all U ′. It follows that any abelian presheaf
F is a quotient of an abelian presheaf G with Ln(G) = 0 for all n > 0 (Modules on
Sites, Lemma 28.6). Since Ln(F) = Ln(F#) we see that the same thing is true for
abelian sheaves. Thus the sequence of functors Ln(−) is a universal delta functor on
Ab(C) (Homology, Lemma 11.4). Since we have agreement with H−n(Lπ!(−)) for
n = 0 by Lemma 28.8 we conclude by uniqueness of universal δ-functors (Homology,
Lemma 11.5) and Derived Categories, Lemma 17.6. �

Lemma 30.3. Assumptions and notation as in Situation 28.3. For an abelian
sheaf F ′ on C′ the sheaf Lng!(F ′) is the sheaf associated to the presheaf

U 7−→ Hn(IU ,F ′U )

For notation and restriction maps see proof.

Proof. Say p(U) = V . The category IU is the category of pairs (U ′, ϕ) where
ϕ : U → u(U ′) is a morphism of C with p(ϕ) = idV , i.e., ϕ is a morphism of
the fibre category CV . Morphisms (U ′1, ϕ1) → (U ′2, ϕ2) are given by morphisms
a : U ′1 → U ′2 of the fibre category C′V such that ϕ2 = u(a) ◦ ϕ1. The presheaf F ′U
sends (U ′, ϕ) to F ′(U ′). We will construct the restriction mappings below.

Choose a factorization

C′
u′ // C′′ u′′ //
w
oo C

of u as in Categories, Lemma 31.14. Then g! = g′′! ◦ g′! and similarly for derived
functors. On the other hand, the functor g′! is exact, see Modules on Sites, Lemma
16.6. Thus we get Lg!(F ′) = Lg′′! (F ′′) where F ′′ = g′!F ′. Note that F ′′ = h−1F ′
where h : Sh(C′′) → Sh(C′) is the morphism of topoi associated to w, see Sites,
Lemma 22.1. The functor u′′ turns C′′ into a fibred category over C, hence Lemma
30.2 applies to the computation of Lng

′′
! . The result follows as the construction

of C′′ in the proof of Categories, Lemma 31.14 shows that the fibre category C′′U
is equal to IU . Moreover, h−1F ′|C′′U is given by the rule described above (as w is
continuous and cocontinuous by Stacks, Lemma 10.3 so we may apply Sites, Lemma
20.5). �

31. Simplicial modules

Let A• be a simplicial ring. Recall that we may think of A• as a sheaf on ∆
(endowed with the chaotic topology), see Simplicial, Section 4. Then a simplicial
module M• over A• is just a sheaf of A•-modules on ∆. In other words, for every
n ≥ 0 we have an An-module Mn and for every map ϕ : [n] → [m] we have a
corresponding map

M•(ϕ) : Mm −→Mn

which is A•(ϕ)-linear such that these maps compose in the usual manner.

Let C be a site. A simplicial sheaf of rings A• on C is a simplicial object in the
category of sheaves of rings on C. In this case the assignment U 7→ A•(U) is a sheaf
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of simplicial rings and in fact the two notions are equivalent. A similar discussion
holds for simplicial abelian sheaves, simplicial sheaves of Lie algebras, and so on.

However, as in the case of simplicial rings above, there is another way to think
about simplicial sheaves. Namely, consider the projection

p : ∆× C −→ C
This defines a fibred category with strongly cartesian morphisms exactly the mor-
phisms of the form ([n], U) → ([n], V ). We endow the category ∆ × C with the
topology inherited from C (see Stacks, Section 10). The simple description of the
coverings in ∆×C (Stacks, Lemma 10.1) immediately implies that a simplicial sheaf
of rings on C is the same thing as a sheaf of rings on ∆× C.
By analogy with the case of simplicial modules over a simplicial ring, we define
simplicial modules over simplicial sheaves of rings as follows.

Definition 31.1. Let C be a site. Let A• be a simplicial sheaf of rings on C. A
simplicial A•-module F• (sometimes called a simplicial sheaf of A•-modules) is a
sheaf of modules over the sheaf of rings on ∆× C associated to A•.

We obtain a category Mod(A•) of simplicial modules and a corresponding derived
category D(A•). Given a map A• → B• of simplicial sheaves of rings we obtain a
functor

−⊗L
A• B• : D(A•) −→ D(B•)

Moreover, the material of the preceding sections determines a functor

Lπ! : D(A•) −→ D(C)
Given a simplicial module F• the object Lπ!(F•) is represented by the associated
chain complex s(F•) (Simplicial, Section 22). This follows from Lemmas 30.2 and
29.7.

Lemma 31.2. Let C be a site. Let A• → B• be a homomorphism of simplicial
sheaves of rings on C. If Lπ!A• → Lπ!B• is an isomorphism in D(C), then we have

Lπ!(K) = Lπ!(K ⊗L
A• B•)

for all K in D(A•).

Proof. Let ([n], U) be an object of ∆ × C. Since Lπ! commutes with colimits, it
suffices to prove this for bounded above complexes of O-modules (compare with
argument of Derived Categories, Proposition 28.2 or just stick to bounded above
complexes). Every such complex is quasi-isomorphic to a bounded above complex
whose terms are flat modules, see Modules on Sites, Lemma 28.6. Thus it suffices
to prove the lemma for a flat A•-module F . In this case the derived tensor product
is the usual tensor product and is a sheaf also. Hence by Lemma 30.2 we can
compute the cohomology sheaves of both sides of the equation by the procedure of
Lemma 30.1. Thus it suffices to prove the result for the restriction of F to the fibre
categories (i.e., to ∆× U). In this case the result follows from Lemma 29.12. �

Remark 31.3. Let C be a site. Let ε : A• → O be an augmentation (Simplicial,
Definition 19.1) in the category of sheaves of rings. Assume ε induces a quasi-
isomorphism s(A•) → O. In this case we obtain an exact functor of triangulated
categories

Lπ! : D(A•) −→ D(O)
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Namely, for any object K of D(A•) we have Lπ!(K) = Lπ!(K ⊗L
A• O) by Lemma

31.2. Thus we can define the displayed functor as the composition of −⊗L
A•O with

the functor Lπ! : D(∆ × C, π−1O) → D(O) of Remark 28.6. In other words, we
obtain a O-module structure on Lπ!(K) coming from the (canonical, functorial)
identification of Lπ!(K) with Lπ!(K ⊗L

A• O) of the lemma.

32. Cohomology on a category

In the situation of Example 29.1 in addition to the derived functor Lπ!, we also have
the functor Rπ∗. For an abelian sheaf F on C we have Hn(C,F) = H−n(Lπ!F) and
Hn(C,F) = Hn(Rπ∗F).

Example 32.1 (Computing cohomology). In Example 29.1 we can compute the
functors Hn(C,−) as follows. Let F ∈ Ob(Ab(C)). Consider the cochain complex

K•(F) :
∏

U0

F(U0)→
∏

U0→U1

F(U0)→
∏

U0→U1→U2

F(U0)→ . . .

where the transition maps are given by

(sU0→U1
) 7−→ ((U0 → U1 → U2) 7→ sU0→U1

− sU0→U2
+ sU1→U2

|U0
)

and similarly in other degrees. By construction

H0(C,F) = limCopp F = H0(K•(F)),

see Categories, Lemma 14.10. The construction of K•(F) is functorial in F and
transforms short exact sequences of Ab(C) into short exact sequences of complexes.
Thus the sequence of functors F 7→ Hn(K•(F)) forms a δ-functor, see Homology,
Definition 11.1 and Lemma 12.12. For an object U of C denote pU : Sh(∗)→ Sh(C)
the corresponding point with p−1

U equal to evaluation at U , see Sites, Example 32.7.
Let A be an abelian group and set F = pU,∗A. In this case the complex K•(F) is
the complex with terms Map(Xn, A) where

Xn =
∐

U0→...→Un−1→Un

MorC(U,U0)

This simplicial set is homotopy equivalent to the constant simplicial set on a sin-
gleton {∗}. Namely, the map X• → {∗} is obvious, the map {∗} → Xn is given by
mapping ∗ to (U → . . .→ U, idU ), and the maps

hn,i : Xn −→ Xn

(Simplicial, Lemma 25.2) defining the homotopy between the two maps X• → X•
are given by the rule

hn,i : (U0 → . . .→ Un, f) 7−→ (U → . . .→ U → Ui → . . .→ Un, id)

for i > 0 and hn,0 = id. Verifications omitted. Since Map(−, A) is a contravariant
functor, implies that K•(pU,∗A) has trivial cohomology in positive degrees (by the
functoriality of Simplicial, Remark 25.4 and the result of Simplicial, Lemma 27.5).
This implies that K•(F) is acyclic in positive degrees also if F is a product of
sheaves of the form pU,∗A. As every abelian sheaf on C embeds into such a product
we conclude that K•(F) computes the left derived functors Hn(C,−) of H0(C,−)
for example by Homology, Lemma 11.4 and Derived Categories, Lemma 17.6.
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Example 32.2 (Computing Exts). In Example 29.1 assume we are moreover given
a sheaf of rings O on C. Let F , G be O-modules. Consider the complex K•(G,F)
with degree n term ∏

U0→U1→...→Un

HomO(Un)(G(Un),F(U0))

and transition map given by

(ϕU0→U1
) 7−→ ((U0 → U1 → U2) 7→ ϕU0→U1

◦ ρU2

U1
− ϕU0→U2

+ ρU1

U0
◦ ϕU1→U2

and similarly in other degrees. Here the ρ’s indicate restriction maps. By construc-
tion

HomO(G,F) = H0(K•(G,F))

for all pairs of O-modules F ,G. The assignment (G,F) 7→ K•(G,F) is a bifunctor
which transforms direct sums in the first variable into products and commutes with
products in the second variable. We claim that

ExtiO(G,F) = Hi(K•(G,F))

for i ≥ 0 provided either

(1) G(U) is a projective O(U)-module for all U ∈ Ob(C), or
(2) F(U) is an injective O(U)-module for all U ∈ Ob(C).

Namely, case (1) the functor K•(G,−) is an exact functor from the category of
O-modules to the category of cochain complexes of abelian groups. Thus, arguing
as in Example 32.1, it suffices to show that K•(G,F) is acyclic in positive degrees
when F is pU,∗A for an O(U)-module A. Choose a short exact sequence

(32.2.1) 0→ G′ →
⊕

jUi!OUi
→ G → 0

see Modules on Sites, Lemma 28.6. Since (1) holds for the middle and right sheaves,
it also holds for G′ and evaluating (32.2.1) on an object of C gives a split exact
sequence of modules. We obtain a short exact sequence of complexes

0→ K•(G,F)→
∏

K•(jUi!OUi
,F)→ K•(G′,F)→ 0

for any F , in particular F = pU,∗A. On H0 we obtain

0→ Hom(G, pU,∗A)→ Hom(
∏

jUi!OUi
, pU,∗A)→ Hom(G′, pU,∗A)→ 0

which is exact as Hom(H, pU,∗A) = HomO(U)(H(U), A) and the sequence of sections
of (32.2.1) over U is split exact. Thus we can use dimension shifting to see that
it suffices to prove K•(jU ′!OU ′ , pU,∗A) is acyclic in positive degrees for all U,U ′ ∈
Ob(C). In this case Kn(jU ′!OU ′ , pU,∗A) is equal to∏

U→U0→U1→...→Un→U ′
A

In other words, K•(jU ′!OU ′ , pU,∗A) is the complex with terms Map(X•, A) where

Xn =
∐

U0→...→Un−1→Un

MorC(U,U0)×MorC(Un, U
′)

This simplicial set is homotopy equivalent to the constant simplicial set on a single-
ton {∗} as can be proved in exactly the same way as the corresponding statement
in Example 32.1. This finishes the proof of the claim.

The argument in case (2) is similar (but dual).
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33. Strictly perfect complexes

This section is the analogue of Cohomology, Section 35.

Definition 33.1. Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is strictly perfect if E i is zero for all but finitely many i and E i is a direct
summand of a finite free O-module for all i.

Let U be an object of C. We will often say “Let E• be a strictly perfect complex
of OU -modules” to mean E• is a strictly perfect complex of modules on the ringed
site (C/U,OU ), see Modules on Sites, Definition 19.1.

Lemma 33.2. The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. �

Lemma 33.3. The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. �

Lemma 33.4. Let (f, f ]) : (C,OC)→ (D,OD) be a morphism of ringed sites. If F•
is a strictly perfect complex of OD-modules, then f∗F• is a strictly perfect complex
of OC-modules.

Proof. We have seen in Modules on Sites, Lemma 17.2 that the pullback of a finite
free module is finite free. The functor f∗ is additive functor hence preserves direct
summands. The lemma follows. �

Lemma 33.5. Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of OU -modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OU -module and p surjective, then there
exists a covering {Ui → U} such that a dotted arrow making the diagram commute
exists over each Ui.

Proof. We may assume E = O⊕nU for some n. In this case finding the dotted
arrow is equivalent to lifting the images of the basis elements in Γ(U,F). This is
locally possible by the characterization of surjective maps of sheaves (Sites, Section
12). �

Lemma 33.6. Let (C,O) be a ringed site. Let U be an object of C.

(1) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly
perfect and F• acyclic. Then there exists a covering {Ui → U} such that
each α|Ui

is homotopic to zero.
(2) Let α : E• → F• be a morphism of complexes of OU -modules with E• strictly

perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then there exists a
covering {Ui → U} such that each α|Ui

is homotopic to zero.
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Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free O-module and integer n ≥ a, then the result
follows from Lemma 33.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is surjective
by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b], then we
have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0

which determines a distinguished triangle in K(OU ). Hence an exact sequence

HomK(OU )(σ≤b−1E•,F•)→ HomK(OU )(E•,F•)→ HomK(OU )(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is homo-
topic to zero on the members of a covering of U by the above, whence we may
assume our map comes from an element in the left hand side of the displayed ex-
act sequence above. This element is zero on the members of a covering of U by
induction hypothesis. �

Lemma 33.7. Let (C,O) be a ringed site. Let U be an object of C. Given a solid
diagram of complexes of OU -modules

E•

!!

α
// F•

G•
f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a and
surjective for j = a, then there exists a covering {Ui → U} and for each i a dotted
arrow over Ui making the diagram commute up to homotopy.

Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 33.6 guarantees there is a covering {Ui → U}
such that the composition E• → F• → C(f)• is homotopic to zero over Ui. Since

G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi
) we see that we can lift α|Ui

up to
homotopy to a map αi : E•|Ui

→ G•|Ui
as desired. �

Lemma 33.8. Let (C,O) be a ringed site. Let U be an object of C. Let E•, F• be
complexes of OU -modules with E• strictly perfect.

(1) For any element α ∈ HomD(OU )(E•,F•) there exists a covering {Ui → U}
such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OU )(E•,F•) is zero, there exists a covering {Ui → U} such that α|Ui

is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 33.7. We omit the proof of (2). �
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Lemma 33.9. Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with E• strictly perfect. Then the internal hom RHom(E•,F•) is represented by
the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 26.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomO(L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 26. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an object U of C we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 33.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification
of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology
sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. �

Lemma 33.10. Let (C,O) be a ringed site. Let E•, F• be complexes of O-modules
with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite free O-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomO(E−q,Fp)

and differential as described in Section 26.

Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 29.4).
Hence the construction in Section 26 shows that RHom(E•,F•) is represented by
the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomO(E−q, Ip) =

⊕
n=p+q

HomO(E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomO(E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 22.6)

′Ep,q1 = Hp(HomO(E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomO(E ,F•)) −→ Hp(HomO(E , I•))
on cohomology sheaves whenever E is a direct summand of a finite free O-module.
Since this is clear when E is finite free the result follows. �
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34. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 34.1. Let (C,O) be a ringed site. Let E• be a complex of O-modules.
Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if for every object U of C there exists a
covering {Ui → U} and for each i a morphism of complexes αi : E•i → E•|Ui

where Ei is a strictly perfect complex of OUi-modules and Hj(αi) is an
isomorphism for j > m and Hm(αi) is surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(O) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of O-modules.

If C has a final object X which is quasi-compact (i.e., every covering of X can
be refined by a finite covering), then an m-pseudo-coherent object of D(O) is in
D−(O). But this need not be the case in general.

Lemma 34.2. Let (C,O) be a ringed site. Let E be an object of D(O).

(1) If C has a final object X and if there exist a covering {Ui → X}, strictly
perfect complexes E•i of OUi-modules, and maps αi : E•i → E|Ui in D(OUi)
with Hj(αi) an isomorphism for j > m and Hm(αi) surjective, then E is
m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex of O-modules representing E
is m-pseudo-coherent.

(3) If for every object U of C there exists a covering {Ui → U} such that E|Ui

is m-pseudo-coherent, then E is m-pseudo-coherent.

Proof. Let F• be any complex representing E and let X, {Ui → X}, and αi :
Ei → E|Ui be as in (1). We will show that F• is m-pseudo-coherent as a complex,
which will prove (1) and (2) in case C has a final object. By Lemma 33.8 we can
after refining the covering {Ui → X} represent the maps αi by maps of complexes
αi : E•i → F•|Ui

. By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi)
is surjective whence F• is m-pseudo-coherent.

Proof of (2). By the above we see that F•|U is m-pseudo-coherent as a complex
of OU -modules for all objects U of C. It is a formal consequence of the definitions
that F• is m-pseudo-coherent.

Proof of (3). Follows from the definitions and Sites, Definition 6.2 part (2). �

Lemma 34.3. Let (f, f ]) : (C,OC)→ (D,OD) be a morphism of ringed sites. Let
E be an object of D(OC). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Say f is given by the functor u : D → C. Let U be an object of C. By
Sites, Lemma 15.9 we can find a covering {Ui → U} and for each i a morphism
Ui → u(Vi) for some object Vi of D. By Lemma 34.2 it suffices to show that
Lf∗E|Ui

is m-pseudo-coherent. To do this it is enough to show that Lf∗E|u(Vi)

is m-pseudo-coherent, since Lf∗E|Ui is the restriction of Lf∗E|u(Vi) to C/Ui (via
Modules on Sites, Lemma 19.4). By the commutative diagram of Modules on
Sites, Lemma 20.1 it suffices to prove the lemma for the morphism of ringed sites
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(C/u(Vi),Ou(Vi))→ (D/Vi,OVi
). Thus we may assume D has a final object Y such

that X = u(Y ) is a final object of C.
Let {Vi → Y } be a covering such that for each i there exists a strictly perfect
complex F•i of OVi

-modules and a morphism αi : F•i → E|Vi
of D(OVi

) such
that Hj(αi) is an isomorphism for j > m and Hm(αi) is surjective. Arguing as
above it suffices to prove the result for (C/u(Vi),Ou(Vi))→ (D/Vi,OVi). Hence we
may assume that there exists a strictly perfect complex F• of OD-modules and a
morphism α : F• → E of D(OD) such that Hj(α) is an isomorphism for j > m
and Hm(α) is surjective. In this case, choose a distinguished triangle

F• → E → C → F•[1]

The assumption on α means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Applying Lf∗ we obtain the distinguished triangle

Lf∗F• → Lf∗E → Lf∗C → Lf∗F•[1]

By the construction of Lf∗ as a left derived functor we see that Hj(Lf∗C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 17.1). Hence Hj(Lf∗α) is
an isomorphism for j > m and Hm(Lf∗α) is surjective. On the other hand, since
F• is a bounded above complex of flat OD-modules we see that Lf∗F• = f∗F•.
Applying Lemma 33.4 we conclude. �

Lemma 34.4. Let (C,O) be a ringed site and m ∈ Z. Let (K,L,M, f, g, h) be a
distinguished triangle in D(O).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K anf M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. Choose a covering {Ui → U} and
maps αi : K•i → K|Ui

in D(OUi
) with K•i strictly perfect and Hj(αi) isomorphisms

for j > m + 1 and surjective for j = m + 1. We may replace K•i by σ≥m+1K•i
and hence we may assume that Kji = 0 for j < m + 1. After refining the covering
we may choose maps βi : L•i → L|Ui in D(OUi) with L•i strictly perfect such that
Hj(β) is an isomorphism for j > m and surjective for j = m. By Lemma 33.7 we
can, after refining the covering, find maps of complexes γi : K• → L• such that the
diagrams

K|Ui
// L|Ui

K•i

αi

OO

γi // L•i

βi

OO

are commutative in D(OUi
) (this requires representing the maps αi, βi and K|Ui

→
L|Ui

by actual maps of complexes; some details omitted). The cone C(γi)
• is strictly

perfect (Lemma 33.2). The commutativity of the diagram implies that there exists
a morphism of distinguished triangles

(K•i ,L•i , C(γi)
•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)

• →M |Ui
induces an isomorphism on cohomology
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in degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by
Lemma 34.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �

Lemma 34.5. Let (C,O) be a ringed site. Let K,L be objects of D(O).

(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-
coherent and Hj(L) = 0 for j > b, then K ⊗L

O L is t-pseudo-coherent with
t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
O L is pseudo-coherent.

Proof. Proof of (1). Let U be an object of C. By replacing U by the members
of a covering and replacing C by the localization C/U we may assume there exist
strictly perfect complexes K• and L• and maps α : K• → K and β : L• → L with
Hi(α) and isomorphism for i > n and surjective for i = n and with Hi(β) and
isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗O L•)→ K ⊗L
O L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). Let U be an object of C. We may first replace U by the members of
a covering and C by the localization C/U to reduce to the case that K and L are
bounded above. Then the statement follows immediately from case (1). �

Lemma 34.6. Let (C,O) be a ringed site. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(O) so are K and L.

Proof. Assume that K ⊕ L is m-pseudo-coherent. Let U be an object of C. After
replacing U by the members of a covering we may assume K⊕L ∈ D−(OU ), hence
L ∈ D−(OU ). Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 4.9. By Lemma 34.4 we see that L ⊕ L[1] is m-
pseudo-coherent. Hence also L[1]⊕L[2] is m-pseudo-coherent. By induction L[n]⊕
L[n + 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is m-
pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 34.7. Let (C,O) be a ringed site. Let K be an object of D(O). Let m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type O-module.

(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m + 1, then Hm+1(K)
is a finitely presented O-module.

Proof. Proof of (1). Let U be an object of C. We have to show that Hm(K) is can
be generated by finitely many sections over the members of a covering of U (see
Modules on Sites, Definition 23.1). Thus during the proof we may (finitely often)
choose a covering {Ui → U} and replace C by C/Ui and U by Ui. In particular,
by our definitions we may assume there exists a strictly perfect complex E• and a
map α : E• → K which induces an isomorphism on cohomology in degrees > m
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and a surjection in degree m. It suffices to prove the result for E•. Let n be the
largest integer such that En 6= 0. If n = m, then Hm(E•) is a quotient of En and
the result is clear. If n > m, then En−1 → En is surjective as Hn(E•) = 0. By
Lemma 33.5 we can (after replacing U by the members of a covering) find a section
of this surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result
for the complex (E ′)• which is the same as E• except has E ′ in degree n− 1 and 0
in degree n. We win by induction on n.

Proof of (2). Pick an object U of C. As in the proof of (1) we may work locally
on U . Hence we may assume there exists a strictly perfect complex E• and a map
α : E• → K which induces an isomorphism on cohomology in degrees > m and a
surjection in degree m. As in the proof of (1) we can reduce to the case that E i = 0
for i > m + 1. Then we see that Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1)
which is of finite presentation. �

35. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 35.1. Let (C,O) be a ringed site. Let E be an object of D(O). Let
a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E ⊗L
O F) = 0 for all O-modules

F and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if for any object U of C there

exists a covering {Ui → U} such that E|Ui
has finite tor dimension for all

i.

Note that if E has finite tor dimension, then E is an object of Db(O) as can be
seen by taking F = O in the definition above.

Lemma 35.2. Let (C,O) be a ringed site. Let E• be a bounded above complex of
flat O-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat O-module.

Proof. As E• is a bounded above complex of flat modules we see that E• ⊗O F =
E• ⊗L

O F for any O-module F . Hence for every O-module F the sequence

Ea−2 ⊗O F → Ea−1 ⊗O F → Ea ⊗O F
is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat

resolution this implies that TorO1 (Coker(da−1),F) = 0 for all O-modules F . This
means that Coker(da−1) is flat, see Lemma 17.13. �

Lemma 35.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let a, b ∈ Z
with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat O-modules with E i = 0 for i 6∈ [a, b].

Proof. If (2) holds, then we may compute E ⊗L
O F = E• ⊗O F and it is clear that

(1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
O-modules K•, see Section 17. Let n be the largest integer such that Kn 6= 0. If
n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
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Ker(Kn−1 → Kn) is flat (Modules on Sites, Lemma 28.8). Hence we may replace
K• by τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a
complex of flat O-modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 35.2 and the definitions. �

Lemma 35.4. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
Assume C has enough points. Let E be an object of D(OD). If E has tor amplitude
in [a, b], then Lf∗E has tor amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 35.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules on Sites, Lemma 38.3 the module f∗E i are flat
(this is where we need the assumption on the existence of points). Thus by Lemma
35.3 we conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 35.5. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].

(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that − ⊗L

O F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. �

Lemma 35.6. Let (C,O) be a ringed site. Let K,L be objects of D(O). If K
has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

O L has tor
amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 35.7. Let (C,O) be a ringed site. Let a, b ∈ Z. For K, L objects of D(O)
if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

Lemma 35.8. Let (C,O) be a ringed site. Let I ⊂ O be a sheaf of ideals. Let K
be an object of D(O).

(1) If K⊗L
OO/I is bounded above, then K⊗L

OO/In is uniformly bounded above
for all n.

(2) If K ⊗L
O O/I as an object of D(O/I) has tor amplitude in [a, b], then

K ⊗L
O O/In as an object of D(O/In) has tor amplitude in [a, b] for all n.

Proof. Proof of (1). Assume that K ⊗L
O O/I is bounded above, say Hi(K ⊗L

O
O/I) = 0 for i > b. Note that we have distinguished triangles

K ⊗L
O In/In+1 → K ⊗L

O O/In+1 → K ⊗L
O O/In → K ⊗L

O In/In+1[1]

and that
K ⊗L

O In/In+1 =
(
K ⊗L

O O/I
)
⊗L
O/I I

n/In+1
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By induction we conclude that Hi(K ⊗L
O O/In) = 0 for i > b for all n.

Proof of (2). Assume K⊗L
OO/I as an object of D(O/I) has tor amplitude in [a, b].

Let F be a sheaf of O/In-modules. Then we have a finite filtration

0 ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
whose successive quotients are sheaves of O/I-modules. Thus to prove that K ⊗L

O
O/In has tor amplitude in [a, b] it suffices to show Hi(K⊗L

OO/In⊗L
O/In G) is zero

for i 6∈ [a, b] for all O/I-modules G. Since(
K ⊗L

O O/In
)
⊗L
O/In G =

(
K ⊗L

O O/I
)
⊗L
O/I G

for every sheaf of O/I-modules G the result follows. �

36. Perfect complexes

In this section we discuss properties of perfect complexes on ringed sites.

Definition 36.1. Let (C,O) be a ringed site. Let E• be a complex of O-modules.
We say E• is perfect if for every object U of C there exists a covering {Ui → U}
such that for each i there exists a morphism of complexes E•i → E•|Ui

which is a
quasi-isomorphism with E•i strictly perfect. An object E of of D(O) is perfect if it
can be represented by a perfect complex of O-modules.

Lemma 36.2. Let (C,O) be a ringed site. Let E be an object of D(O).

(1) If C has a final object X and there exist a covering {Ui → X}, strictly
perfect complexes E•i of OUi

-modules, and isomorphisms αi : E•i → E|Ui
in

D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 34.2. �

Lemma 36.3. Let (C,O) be a ringed site. Let E be an object of D(O). Let a ≤ b
be integers. If E has tor amplitude in [a, b] and is (a− 1)-pseudo-coherent, then E
is perfect.

Proof. Let U be an object of C. After replacing U by the members of a covering
and C by the localization C/U we may assume there exists a strictly perfect complex
E• and a map α : E• → E such that Hi(α) is an isomorphism for i ≥ a. We may
and do replace E• by σ≥a−1E•. Choose a distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on α we
obtain C ∼= K[a− 2] with K = Ker(Ea−1 → Ea). Let F be an O-module. Applying
− ⊗L

O F the assumption that E has tor amplitude in [a, b] implies K ⊗O F →
Ea−1⊗OF has image Ker(Ea−1⊗OF → Ea⊗OF). It follows that TorO1 (E ′,F) = 0
where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 17.13). Thus there exists
a covering {Ui → U} such that E ′|Ui

is a direct summand of a finite free module
by Modules on Sites, Lemma 28.12. Thus the complex

E ′|Ui → Ea−1|Ui → . . .→ Eb|Ui

is quasi-isomorphic to E|Ui
and E is perfect. �

Lemma 36.4. Let (C,O) be a ringed site. Let E be an object of D(O). The
following are equivalent
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(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). Let U be an object of C. By definition there exists a covering
{Ui → U} such that E|Ui is represented by a strictly perfect complex. Thus E is
pseudo-coherent (i.e., m-pseudo-coherent for all m) by Lemma 34.2. Moreover, a
direct summand of a finite free module is flat, hence E|Ui

has finite Tor dimension
by Lemma 35.3. Thus (2) holds.

Assume (2). Let U be an object of C. After replacing U by the members of a
covering we may assume there exist integers a ≤ b such that E|U has tor amplitude
in [a, b]. Since E|U is m-pseudo-coherent for all m we conclude using Lemma
36.3. �

Lemma 36.5. Let (f, f ]) : (C,OC) → (D,OD) be a morphism of ringed sites.
Assume C has enough points. Let E be an object of D(OD). If E is perfect in
D(OD), then Lf∗E is perfect in D(OC).

Proof. This follows from Lemma 36.4, 35.4, and 34.3. (An alternative proof is to
copy the proof of Lemma 34.3. This gives a proof of the result without assuming
the site C has enough points.) �

Lemma 36.6. Let (C,O) be a ringed site. Let (K,L,M, f, g, h) be a distinguished
triangle in D(O). If two out of three of K,L,M are perfect then the third is also
perfect.

Proof. First proof: Combine Lemmas 36.4, 34.4, and 35.5. Second proof (sketch):
Say K and L are perfect. Let U be an object of C. After replacing U by the members
of a covering we may assume that K|U and L|U are represented by strictly perfect
complexes K• and L•. After replacing U by the members of a covering we may
assume the map K|U → L|U is given by a map of complexes α : K• → L•, see
Lemma 33.8. Then M |U is isomorphic to the cone of α which is strictly perfect by
Lemma 33.2. �

Lemma 36.7. Let (C,O) be a ringed site. If K,L are perfect objects of D(O), then
so is K ⊗L

O L.

Proof. Follows from Lemmas 36.4, 34.5, and 35.6. �

Lemma 36.8. Let (C,O) be a ringed site. If K ⊕ L is a perfect object of D(O),
then so are K and L.

Proof. Follows from Lemmas 36.4, 34.6, and 35.7. �

Lemma 36.9. Let (C,O) be a ringed site. Let K be a perfect object of D(O). Then
K∧ = RHom(K,O) is a perfect object too and (K∧)∧ = K. There are functorial
isomorphisms

K∧ ⊗L
O M = RHomO(K,M)

and

H0(C,K∧ ⊗L
O M) = HomD(O)(K,M)

for M in D(O).
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Proof. We will us without further mention that formation of internal hom com-
mutes with restriction (Lemma 26.3). In particular we may check the first two
statements locally, i.e., given any object U of C it suffices to prove there is a cover-
ing {Ui → U} such that the statement is true after restricting to C/Ui for each i.
By Lemma 26.8 to see the final statement it suffices to check that the map (26.8.1)

K∧ ⊗L
O M −→ RHom(K,M)

is an isomorphism. This is a local question as well. Hence it suffices to prove the
lemma when K is represented by a strictly perfect complex.

Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 33.9 that K∧ is represented by the complex whose terms are (En)∧ =
HomO(En,O) in degree −n. Since En is a direct summand of a finite free O-
module, so is (En)∧. Hence K∧ is represented by a strictly perfect complex too. It
is also clear that (K∧)∧ = K as we have ((En)∧)∧ = En. To see that (26.8.1) is an
isomorphism, represent M by a K-flat complex F•. By Lemma 33.9 the complex
RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomO(E−q,Fp)

On the other hand, the object K∧⊗LM is represented by the complex with terms⊕
n=p+q

Fp ⊗O (E−q)∧

Thus the assertion that (26.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗O HomO(E ,O) −→ HomO(E ,F)

is an isomorphism when E is a direct summand of a finite free O-module and F is
any O-module. This follows immediately from the corresponding statement when
E is finite free. �

Lemma 36.10. Let (C,O) be a ringed site. Let (Kn)n∈N be a system of perfect
objects of D(O). Let K = hocolimKn be the derived colimit (Derived Categories,
Definition 31.1). Then for any object E of D(O) we have

RHom(K,E) = R limE ⊗L
O K

∧
n

where (K∧n ) is the inverse system of dual perfect complexes.

Proof. By Lemma 36.9 we have R limE ⊗L
O K

∧
n = R limRHom(Kn, E) which fits

into the distinguished triangle

R limRHom(Kn, E)→
∏

RHom(Kn, E)→
∏

RHom(Kn, E)

Because K similarly fits into the distinguished triangle
⊕
Kn →

⊕
Kn → K

it suffices to show that
∏
RHom(Kn, E) = RHom(

⊕
Kn, E). This is a formal

consequence of (26.0.1) and the fact that derived tensor product commutes with
direct sums. �
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37. Projection formula

A general version of the projection formula is the following.

Lemma 37.1. Let f : (Sh(C),OC) → (Sh(D),OD) be a morphism of ringed topoi.
Let E ∈ D(OC) and K ∈ D(OD). If K is perfect, then

Rf∗E ⊗L
OD K = Rf∗(E ⊗L

OC Lf
∗K)

in D(OD).

Proof. Without any assumptions there is a map Rf∗(E)⊗LK → Rf∗(E⊗LLf∗K).
Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L K) = Lf∗(Rf∗(E))⊗L Lf∗K −→ E ⊗L Lf∗K

coming from the map Lf∗Rf∗E → E. See Lemmas 18.4 and 19.1. To check it
is an isomorphism we may work locally on D, i.e., for any object V of D we have
to find a covering {Vj → V } such that the map restricts to an isomorphism on
Vj . By definition of perfect objects, this means we may assume K is represented
by a strictly perfect complex of OD-modules. Note that, completely generally, the
statement is true for K = K1 ⊕K2, if and only if the statement is true for K1 and
K2. Hence we may assume K is a finite complex of finite free OD-modules. In this
case a simple argument involving stupid truncations reduces the statement to the
case where K is represented by a finite free OD-module. Since the statement is
invariant under finite direct summands in the K variable, we conclude it suffices to
prove it for K = OD[n] in which case it is trivial. �

38. Weakly contractible objects

An object U of a site is weakly contractible if every surjection F → G of sheaves of
sets gives rise to a surjection F(U)→ G(U), see Sites, Definition 39.2.

Lemma 38.1. Let C be a site. Let U be a weakly contractible object of C. Then

(1) the functor F 7→ F(U) is an exact functor Ab(C)→ Ab,
(2) Hp(U,F) = 0 for every abelian sheaf F and all p ≥ 1, and
(3) for any sheaf of groups G any G-torsor has a section over U .

Proof. The first statement follows immediately from the definition (see also Ho-
mology, Section 7). The higher derived functors vanish by Derived Categories,
Lemma 17.8. Let F be a G-torsor. Then F → ∗ is a surjective map of sheaves.
Hence (3) follows from the definition as well. �

It is convenient to list some consequences of having enough weakly contractible
objects here.

Proposition 38.2. Let C be a site. Let B ⊂ Ob(C) such that every U ∈ B is weakly
contractible and every object of C has a covering by elements of B. Let O be a sheaf
of rings on C. Then

(1) A complex F1 → F2 → F3 of O-modules is exact, if and only if F1(U) →
F2(U)→ F3(U) is exact for all U ∈ B.

(2) Every object K of D(O) is a derived limit of its canonical truncations:
K = R lim τ≥−nK.

(3) Given an inverse system . . . → F3 → F2 → F1 with surjective transition
maps, the projection limFn → F1 is surjective.
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(4) Products are exact on Mod(O).
(5) Products on D(O) can be computed by taking products of any representative

complexes.
(6) If (Fn) is an inverse system of O-modules, then Rp limFn = 0 for all p > 1

and

R1 limFn = Coker(
∏
Fn →

∏
Fn)

where the map is (xn) 7→ (xn − f(xn+1)).
(7) If (Kn) is an inverse system of objects of D(O), then there are short exact

sequences

0→ R1 limHp−1(Kn)→ Hp(R limKn)→ limHp(Kn)→ 0

Proof. Proof of (1). If the sequence is exact, then evaluating at any weakly con-
tractible element of C gives an exact sequence by Lemma 38.1. Conversely, assume
that F1(U) → F2(U) → F3(U) is exact for all U ∈ B. Let V be an object of C
and let s ∈ F2(V ) be an element of the kernel of F2 → F3. By assumption there
exists a covering {Ui → V } with Ui ∈ B. Then s|Ui lifts to a section si ∈ F1(Ui).
Thus s is a section of the image sheaf Im(F1 → F2). In other words, the sequence
F1 → F2 → F3 is exact.

Proof of (2). Lemma 22.3 applies to every complex of sheaves on C. Thus (1) holds
by Lemma 22.4.

Proof of (3). Let (Fn) be a system as in (2) and set F = limFn. If U ∈ B,
then F(U) = limFn(U) surjects onto F1(U) as all the transition maps Fn+1(U)→
Fn(U) are surjective. Thus F → F1 is surjective by Sites, Definition 12.1 and the
assumption that every object has a covering by elements of B.

Proof of (4). Let Fi,1 → Fi,2 → Fi,3 be a family of exact sequences of O-modules.
We want to show that

∏
Fi,1 →

∏
Fi,2 →

∏
Fi,3 is exact. We use the criterion of

(1). Let U ∈ B. Then

(
∏
Fi,1)(U)→ (

∏
Fi,2)(U)→ (

∏
Fi,3)(U)

is the same as ∏
Fi,1(U)→

∏
Fi,2(U)→

∏
Fi,3(U)

Each of the sequences Fi,1(U) → Fi,2(U) → Fi,3(U) are exact by (1). Thus the
displayed sequences are exact by Homology, Lemma 28.1. We conclude by (1) again.

Proof of (5). Follows from (4) and (slightly generalized) Derived Categories, Lemma
32.2.

Proof of (6) and (7). We refer to Section 21 for a discussion of derived and homotopy
limits and their relationship. By Derived Categories, Definition 32.1 we have a
distinguished triangle

R limKn →
∏

Kn →
∏

Kn → R limKn[1]

Taking the long exact sequence of cohomology sheaves we obtain

Hp−1(
∏

Kn)→ Hp−1(
∏

Kn)→ Hp(R limKn)→ Hp(
∏

Kn)→ Hp(
∏

Kn)

Since products are exact by (4) this becomes∏
Hp−1(Kn)→

∏
Hp−1(Kn)→ Hp(R limKn)→

∏
Hp(Kn)→

∏
Hp(Kn)
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Now we first apply this to the case Kn = Fn[0] where (Fn) is as in (6). We conclude
that (6) holds. Next we apply it to (Kn) as in (7) and we conclude (7) holds. �

39. Compact objects

In this section we study compact objects in the derived category of modules on
a ringed site. We recall that compact objects are defined in Derived Categories,
Definition 34.1.

Lemma 39.1. Let (C,O) be a ringed site. Assume C has the following properties

(1) C has a quasi-compact final object X,
(2) every object of C can be covered by quasi-compact objects,
(3) for a finite covering {Ui → U}i∈I with U , Ui quasi-compact the fibre prod-

ucts Ui ×U Uj are quasi-compact.

Then any perfect object of D(O) is compact.

Proof. Let K be a perfect object and let K∧ be its dual, see Lemma 36.9. Then
we have

HomD(OX)(K,M) = H0(X,K∧ ⊗L
OX

M)

functorially in M in D(OX). Since K∧ ⊗L
OX
− commutes with direct sums (by

construction) and H0 does by Lemma 16.1 and the construction of direct sums in
Injectives, Lemma 13.4 we obtain the result of the lemma. �

Lemma 39.2. Let A be a Grothendieck abelian category. Let S ⊂ Ob(A) be a set
of objects such that

(1) any object of A is a quotient of a direct sum of elements of S, and
(2) for any E ∈ S the functor HomA(E,−) commutes with direct sums.

Then every compact object of D(A) is a direct summand in D(A) of a finite complex
of finite direct sums of elements of S.

Proof. Assume K ∈ D(A) is a compact object. Represent K by a complex K•

and consider the map

K• −→
⊕

n≥0
τ≥nK

•

where we have used the canonical truncations, see Homology, Section 13. This
makes sense as in each degree the direct sum on the right is finite. By assumption
this map factors through a finite direct sum. We conclude that K → τ≥nK is zero
for at least one n, i.e., K is in D−(R).

We may represent K by a bounded above complex K• each of whose terms is a
direct sum of objects from S, see Derived Categories, Lemma 16.5. Note that we
have

K• =
⋃

n≤0
σ≥nK

•

where we have used the stupid truncations, see Homology, Section 13. Hence by
Derived Categories, Lemmas 31.4 and 31.5 we see that 1 : K• → K• factors through
σ≥nK

• → K• in D(R). Thus we see that 1 : K• → K• factors as

K•
ϕ−→ L•

ψ−→ K•

in D(A) for some complex L• which is bounded and whose terms are direct sums
of elements of S. Say Li is zero for i 6∈ [a, b]. Let c be the largest integer ≤ b + 1
such that Li a finite direct sum of elements of S for i < c. Claim: if c < b + 1,
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then we can modify L• to increase c. By induction this claim will show we have a
factorization of 1K as

K
ϕ−→ L

ψ−→ K

in D(A) where L can be represented by a finite complex of finite direct sums of
elements of S. Note that e = ϕ ◦ ψ ∈ EndD(A)(L) is an idempotent. By Derived
Categories, Lemma 4.12 we see that L = Ker(e)⊕Ker(1− e). The map ϕ : K → L
induces an isomorphism with Ker(1− e) in D(R) and we conclude.

Proof of the claim. Write Lc =
⊕

λ∈ΛEλ. Since Lc−1 is a finite direct sum of
elements of S we can by assumption (2) find a finite subset Λ′ ⊂ Λ such that
Lc−1 → Lc factors through

⊕
λ∈Λ′ Eλ ⊂ Lc. Consider the map of complexes

π : L• −→ (
⊕

λ∈Λ\Λ′
Eλ)[−i]

given by the projection onto the factors corresponding to Λ\Λ′ in degree i. By our
assumption on K we see that, after possibly replacing Λ′ by a larger finite subset,
we may assume that π ◦ϕ = 0 in D(A). Let (L′)• ⊂ L• be the kernel of π. Since π
is surjective we get a short exact sequence of complexes, which gives a distinguished
triangle in D(A) (see Derived Categories, Lemma 12.1). Since HomD(A)(K,−) is
homological (see Derived Categories, Lemma 4.2) and π ◦ ϕ = 0, we can find a
morphism ϕ′ : K• → (L′)• in D(A) whose composition with (L′)• → L• gives
ϕ. Setting ψ′ equal to the composition of ψ with (L′)• → L• we obtain a new
factorization. Since (L′)• agrees with L• except in degree c and since (L′)c =⊕

λ∈Λ′ Eλ the claim is proved. �

Lemma 39.3. Let (C,O) be a ringed site. Assume every object of C has a covering
by quasi-compact objects. Then every compact object of D(O) is a direct summand
in D(O) of a finite complex whose terms are finite direct sums of O-modules of the
form j!OU where U is a quasi-compact object of C.

Proof. Apply Lemma 39.2 where S ⊂ Ob(Mod(O)) is the set of modules of the
form j!OU with U ∈ Ob(C) quasi-compact. Assumption (1) holds by Modules
on Sites, Lemma 28.6 and the assumption that every U can be covered by quasi-
compact objects. Assumption (2) follows as

HomO(j!OU ,F) = F(U)

which commutes with direct sums by Sites, Lemma 11.2. �

In the situation of the lemma above it is not always true that the modules j!OU
are compact objects of D(O) (even if U is a quasi-compact object of C). Here is a
criterion.

Lemma 39.4. Let (C,O) be a ringed site. Let U be an object of C. The O-module
j!OU is a compact object of D(O) if there exists an integer d such that

(1) Hp(U,F) = 0 for all p > d, and
(2) the functors F 7→ Hp(U,F) commute with direct sums.

Proof. Assume (1) and (2). The first means that the functor F = H0(U,−) has
finite cohomological dimension. Moreover, any direct sum of injective modules is
acyclic for F by (2). Since we may compute RF by applying F to any complex of
acyclics (Derived Categories, Lemma 30.2). Thus, if Ki be a family of objects of
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D(O), then we can choose K-injective representatives I•i and we see that
⊕
Ki is

represented by
⊕
I•i . Thus H0(U,−) commutes with direct sums. �

Lemma 39.5. Let (C,O) be a ringed site. Let U be an object of C which is quasi-
compact and weakly contractible. Then j!OU is a compact object of D(O).

Proof. Combine Lemmas 39.4 and 38.1 with Modules on Sites, Lemma 29.2. �

40. Complexes with locally constant cohomology sheaves

Locally constant sheaves are introduced in Modules on Sites, Section 42. Let C be
a site. Let Λ be a ring. We denote D(C,Λ) the derived category of the abelian
category of Λ-modules on C.

Lemma 40.1. Let C be a site with final object X. Let Λ be a Noetherian ring.
Let K ∈ Db(C,Λ) with Hi(K) locally constant sheaves of Λ-modules of finite type.
Then there exists a covering {Ui → X} such that each K|Ui is represented by a
complex of locally constant sheaves of Λ-modules of finite type.

Proof. Let a ≤ b be such that Hi(K) = 0 for i 6∈ [a, b]. By induction on b− a we
will prove there exists a covering {Ui → X} such that K|Ui can be represented by a
complex M•Ui

with Mp a finite type Λ-module and Mp = 0 for p 6∈ [a, b]. If b = a,
then this is clear. In general, we may replace X by the members of a covering and
assume that Hb(K) is constant, say Hb(K) = M . By Modules on Sites, Lemma
41.5 the module M is a finite Λ-module. Choose a surjection Λ⊕r → M given by
generators x1, . . . , xr of M .

By a slight generalization of Lemma 8.3 (details omitted) there exists a covering
{Ui → X} such that xi ∈ H0(X,Hb(K)) lifts to an element of Hb(Ui,K). Thus,
after replacing X by the Ui we reach the situation where there is a map Λ⊕r[−b]→
K inducing a surjection on cohomology sheaves in degree b. Choose a distinguished
triangle

Λ⊕r[−b]→ K → L→ Λ⊕r[−b+ 1]

Now the cohomology sheaves of L are nonzero only in the interval [a, b− 1], agree
with the cohomology sheaves of K in the interval [a, b−2] and there is a short exact
sequence

0→ Hb−1(K)→ Hb−1(L)→ Ker(Λ⊕r →M)→ 0

in degree b − 1. By Modules on Sites, Lemma 42.5 we see that Hb−1(L) is locally
constant of finite type. By induction hypothesis we obtain an isomorphism M• → L
in D(C,Λ) with Mp a finite Λ-module and Mp = 0 for p 6∈ [a, b − 1]. The map
L→ Λ⊕r[−b+ 1] gives a map M b−1 → Λ⊕r which locally is constant (Modules on
Sites, Lemma 42.3). Thus we may assume it is given by a map M b−1 → Λ⊕r. The
distinguished triangle shows that the composition M b−2 → M b−1 → Λ⊕r is zero
and the axioms of triangulated categories produce an isomorphism

Ma → . . .→M b−1 → Λ⊕r −→ K

in D(C,Λ). �

Let C be a site. Let Λ be a ring. Using the morphism Sh(C)→ Sh(pt) we see that
there is a functor D(Λ)→ D(C,Λ), K 7→ K.

Lemma 40.2. Let C be a site with final object X. Let Λ be a ring. Let

(1) K a perfect object of D(Λ),
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(2) a finite complex K• of finite projective Λ-modules representing K,
(3) L• a complex of sheaves of Λ-modules, and
(4) ϕ : K → L• a map in D(C,Λ).

Then there exists a covering {Ui → X} and maps of complexes αi : K•|Ui
→ L•|Ui

representing ϕ|Ui
.

Proof. Follows immediately from Lemma 33.8. �

Lemma 40.3. Let C be a site with final object X. Let Λ be a ring. Let K,L be
objects of D(Λ) with K perfect. Let ϕ : K → L be map in D(C,Λ). There exists
a covering {Ui → X} such that ϕ|Ui

is equal to αi for some map αi : K → L in
D(Λ).

Proof. Follows from Lemma 40.2 and Modules on Sites, Lemma 42.3. �

Lemma 40.4. Let C be a site. Let Λ be a Noetherian ring. Let K,L ∈ D−(C,Λ).
If the cohomology sheaves of K and L are locally constant sheaves of Λ-modules of
finite type, then the cohomology sheaves of K ⊗L

Λ L are locally constant sheaves of
Λ-modules of finite type.

Proof. We’ll prove this as an application of Lemma 40.1. Note that Hi(K⊗L
ΛL) is

the same as Hi(τ≥i−1K ⊗L
Λ τ≥i−1L). Thus we may assume K and L are bounded.

By Lemma 40.1 we may assume that K and L are represented by complexes of
locally constant sheaves of Λ-modules of finite type. Then we can replace these
complexes by bounded above complexes of finite free Λ-modules. In this case the
result is clear. �

Lemma 40.5. Let C be a site. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal.
Let K ∈ D−(C,Λ). If the cohomology sheaves of K ⊗L

Λ Λ/I are locally constant

sheaves of Λ/I-modules of finite type, then the cohomology sheaves of K ⊗L
Λ Λ/In

are locally constant sheaves of Λ/In-modules of finite type for all n ≥ 1.

Proof. Recall that the locally constant sheaves of Λ-modules of finite type form a
weak Serre subcategory of all Λ-modules, see Modules on Sites, Lemma 42.5. Thus
the subcategory of D(C,Λ) consisting of complexes whose cohomology sheaves are
locally constant sheaves of Λ-modules of finite type forms a strictly full, saturated
triangulated subcategory of D(C,Λ), see Derived Categories, Lemma 13.1. Next,
consider the distinguished triangles

K ⊗L
Λ I

n/In+1 → K ⊗L
Λ Λ/In+1 → K ⊗L

Λ Λ/In → K ⊗L
Λ I

n/In+1[1]

and the isomorphisms

K ⊗L
Λ I

n/In+1 =
(
K ⊗L

Λ Λ/I
)
⊗L

Λ/I I
n/In+1

Combined with Lemma 40.4 we obtain the result. �
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l’Université de Strasbourg, XIII, Actualités Scientifiques et Industrielles, No. 1252.

[Ive86] Birger Iversen, Cohomology of sheaves, Universitext, Springer-Verlag, Berlin, 1986.


	1. Introduction
	2. Topics
	3. Cohomology of sheaves
	4. Derived functors
	5. First cohomology and torsors
	6. First cohomology and extensions
	7. First cohomology and invertible sheaves
	8. Locality of cohomology
	9. The Cech complex and Cech cohomology
	10. Cech cohomology as a functor on presheaves
	11. Cech cohomology and cohomology
	12. Cohomology of modules
	13. Limp sheaves
	14. The Leray spectral sequence
	15. The base change map
	16. Cohomology and colimits
	17. Flat resolutions
	18. Derived pullback
	19. Cohomology of unbounded complexes
	20. Some properties of K-injective complexes
	21. Derived and homotopy limits
	22. Producing K-injective resolutions
	23. Cohomology on Hausdorff and locally quasi-compact spaces
	24. Spectral sequences for Ext
	25. Hom complexes
	26. Internal hom in the derived category
	27. Derived lower shriek
	28. Derived lower shriek for fibred categories
	29. Homology on a category
	30. Calculating derived lower shriek
	31. Simplicial modules
	32. Cohomology on a category
	33. Strictly perfect complexes
	34. Pseudo-coherent modules
	35. Tor dimension
	36. Perfect complexes
	37. Projection formula
	38. Weakly contractible objects
	39. Compact objects
	40. Complexes with locally constant cohomology sheaves
	41. Other chapters
	References

