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1. Introduction

In this chapter we discuss algebras topologically of finite type over pre-adic topo-
logical rings and their homomorphisms. Many of the results discussed here can be
found in the paper [Elk73]. Other general references for this chapter are [DG67],
[Abb10], and [FK].

2. Restricted power series

Let A be a topological ring complete with respect to a linear topology (More on
Algebra, Definition 26.1). Let Iλ be a fundamental system of open ideals. Let r ≥ 0
be an integer. In this setting one often denotes

A{x1, . . . , xr} = limλA/Iλ[x1, . . . , xr] = limλ(A[x1, . . . , xr]/IλA[x1, . . . , xr])

endowed with the limit topology. In other words, this is the completion of the poly-
nomial ring with respect to the ideals Iλ. We can think of elements of A{x1, . . . , xr}
as power series

f =
∑

E=(e1,...,er)
aEx

e1
1 . . . xerr

in x1, . . . , xr with coefficients aE ∈ A which tend to zero in the topology of A. In
other words, for any λ all but a finite number of aE are in Iλ. For this reason
elements of A{x1, . . . , xr} are sometimes called restricted power series. Sometimes
this ring is denoted A〈x1, . . . , xr〉; we will refrain from using this notation.
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Remark 2.1 (Universal property restricted power series). Let A → C be a con-
tinuous map of complete linearly topologized rings. Then any A-algebra map
A[x1, . . . xr] → C extends uniquely to a continuous map A{x1, . . . , xr} → C on
restricted power series.

Remark 2.2. Let A be a ring and let I ⊂ A be an ideal. If A is I-adically complete,
then the I-adic completion A[x1, . . . , xr]

∧ of A[x1, . . . , xr] is the restricted power
series ring over A as a ring. However, it is not clear that A[x1, . . . , xr]

∧ is I-adically
complete. We think of the topology on A{x1, . . . , xr} as the limit topology (which is
always complete) whereas we often think of the topology on A[x1, . . . , xr]

∧ as the I-
adic topology (not always complete). If I is finitely generated, then A{x1, . . . , xr} =
A[x1, . . . , xr]

∧ as topological rings, see Algebra, Lemmas 93.6 and 93.7.

3. Algebras topologically of finite type

Here is our definition. This definition is not generally agreed upon. Many authors
impose further conditions, often because they are only interested in specific types
of rings and not the most general case.

Definition 3.1. Let A → B be a continuous map of topological rings (More on
Algebra, Definition 26.1). We say B is topologically of finite type over A if there
exists an A-algebra map A[x1, . . . , xn]→ B whose image is dense in B.

If A is a complete, linearly topologized ring, then the restricted power series ring
A{x1, . . . , xr} is topologically of finite type over A. For continuous taut maps of
weakly admissible topological rings, this notion corresponds exactly to morphisms
of finite type between the associated affine formal algebraic spaces.

Lemma 3.2. Let S be a scheme. Let ϕ : A → B be a continuous map of weakly
admissible topological rings over S. The following are equivalent

(1) Spf(ϕ) : Spf(B)→ Spf(A) is of finite type,
(2) ϕ is taut and B is topologically of finite type over A.

Proof. We can use Formal Spaces, Lemma 14.10 to relate tautness of ϕ to repre-
sentability of Spf(ϕ). We will use this without further mention below. Note that
X = colim Spec(A/I) and Y = colim Spec(B/J(I)) where I ⊂ A runs over the
weak ideals of definition of A and J(I) is the closure of IB in B.

Assume (2). Choose a ring map A[x1, . . . , xr] → B whose image is dense. Then
A[x1, . . . , xr]→ B → B/J(I) has dense image too which means that it is surjective.
Therefore B/J(I) is of finite type over A/I. Let T → X be a morphism with T
a quasi-compact scheme. Then T → X factors through Spec(B/I) for some I
(Formal Spaces, Lemma 5.4). Then T ×X Y = T ×Spec(A/I) Spec(B/J(I)), see
proof of Formal Spaces, Lemma 14.10. Henc T ×Y X → T is of finite type as the
base change of the morphism Spec(B/J(I)) → Spec(A/I) which is of finite type.
Thus (1) is true.

Assume (1). Pick any I ⊂ A as above. Since Spec(A/I) ×X Y = Spec(B/J(I))
we see that A/I → B/J(I) is of finite type. Choose b1, . . . , br ∈ B mapping
to generators of B/J(I) over A/I. We claim that the image of the ring map
A[x1, . . . , xr] → B sending xi to bi is dense. To prove this, let I ′ ⊂ I be a second
weak ideal of definition. Then we have

B/(J(I ′) + IB) = B/J(I)
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because J(I) is the closure of IB and because J(I ′) is open. Hence we may apply
Algebra, Lemma 122.8 to see that A/I ′[x1, . . . , xr] → B/J(I ′) is surjective Thus
(2) is true, concluding the proof. �

Let A be a topological ring complete with respect to a linear topology. Let Iλ be a
fundamental system of open ideals. Let C be the category of systems (Bλ) where

(1) Bλ is a finite type A/Iλ-algebra, and
(2) Bµ → Bλ is an A/Iµ-algebra homomorphism which induces an isomorphism

Bµ/IλBµ → Bλ.

Morphisms in C are given by systems of homomorphisms.

Lemma 3.3. Let S be a scheme. Let X be an affine formal scheme over S. Assume
X is McQuillan and let A be the weakly admissible topological ring associated to X.
Then there is an anti-equivalence of categories between

(1) the category C introduced above, and
(2) the category of maps Y → X of finite type of affine formal algebraic spaces.

Proof. Let Iλ be a fundamental system of weakly admissible ideals of definition
in A. Then Y ×X Spec(A/Iλ) is affine (Formal Spaces, Definition 18.1 and Lemma
14.7). Say Y ×X Spec(A/Iλ) = Spec(Bλ). Then (Bλ) is an object of C. Conversely,
given a system (Bλ) we can set Y = colim Spec(Bλ). Some details omitted. �

Remark 3.4. Let A be a weakly admissible topological ring and let Iλ be a fun-
damental system of weak ideals of definition. Let X = Spf(A), in other words, X is
a McQuillan affine formal algebraic space. Let f : Y → X be a morphism of affine
formal algebraic spaces. In general it will not be true that Y is McQuillan. More
specifically, we can ask the following questions:

(1) Assume that f : Y → X is a closed immersion. Then Y is McQuillan
and f corresponds to a continuous map ϕ : A → B of weakly admissible
topological rings which is taut, whose kernel K ⊂ A is a closed ideal, and
whose image ϕ(A) is dense in B, see Formal Spaces, Lemma 20.2. What
conditions on A guarantee that B = (A/K)∧ as in Formal Spaces, Example
20.3?

(2) What conditions on A guarantee that closed immersions f : Y → X cor-
respond to quotients A/K of A by closed ideals, in other words, the corre-
sponding continuous map ϕ is surjective and open?

(3) Suppose that f : Y → X is of finite type. Then we get Y = colim Spec(Bλ)
where (Bλ) is an object of C by Lemma 3.3. In this case it is true that
there exists a fixed integer r such that Bλ is generated by r elements over
A/Iλ for all λ (hint: use Algebra, Lemma 122.8). However, it is not clear
that the projections limBλ → Bλ are surjective, i.e., it is not clear that Y
is McQuillan. Is there an example where Y is not McQuillan?

(4) Suppose that f : Y → X is of finite type and Y is McQuillan. Then f
corresponds to a continuous map ϕ : A→ B of weakly admissible topolog-
ical rings. In fact ϕ is taut and B is topologically of finite type over A, see
Lemma 3.2. In other words, f factors as

Y −→ Ar
X −→ X

where the first arrow is a closed immersion of McQuillan affine formal alge-
braic spaces. However, then questions (1) and (2) are in force for Y → Ar

X .
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Below we will answer these questions when X is countably indexed, i.e., when
A has a countable fundamental system of open ideals. If you have answers to
these questions in greater generality, or if you have counter examples, please email
stacks.project@gmail.com.

Lemma 3.5. Let S be a scheme. Let X be a countably indexed affine formal
algebraic space over S. Let f : Y → X be a closed immersion of formal algebraic
spaces over S. Then Y is a countably indexed affine formal algebraic space and
f corresponds to A → A/K where A is an object of WAdmcount and K ⊂ A is a
closed ideal.

Proof. we can use Formal Spaces, Lemmas 6.4, 14.8, and 20.2 to reduce to a
morphism A→ B of WAdmcount which is taut and has dense image. To finish the
proof we apply Formal Spaces, Lemma 4.12. �

Lemma 3.6. Let B → A be an arrow of WAdmcount, see Formal Spaces, Section
16. The following are equivalent

(a) B → A is taut and B/J → A/I is of finite type for every weak ideal of
definition J ⊂ B where I ⊂ A is the closure of JA,

(b) B → A is taut and B/J → A/I is of finite type for some weak ideal of
definition J ⊂ B with I ⊂ A the closure of JA,

(c) B → A is taut and A is topologically of finite type over B,
(d) A is isomorphic to a quotient of B{x1, . . . , xn} by a closed ideal.

Moreover, these equivalent conditions define a local property, i.e., they satisfy For-
mal Spaces, Axioms (1), (2), (3).

Proof. The implications (a) ⇒ (b), (c) ⇒ (a), (d) ⇒ (c) are straightforward from
the definitions. Assume (b) holds and let J ⊂ B and I ⊂ A be as in (b). Choose a
commutative diagram

A // . . . // A3
// A2

// A1

B //

OO

. . . // B/J3 //

OO

B/J2 //

OO

B/J1

OO

such that An+1/JnAn+1 = An and such that A = limAn as in Formal Spaces,
Lemma 16.5. We may assume J = J1 by replacing J1 by J1 + J if necessary. Let
α1, . . . , αn ∈ A1 be generators of A1 over B/J1 = B/J . Since A is a countable limit
of a system with surjective transition maps, we can find a1, . . . , an ∈ A mapping
to α1, . . . , αn in A1. By Remark 2.1 we find a continuous map B{x1, . . . , xn} →
A mapping xi to ai. This map induces surjections B/Jm[x1, . . . , xn] → Am by
Algebra, Lemma 122.8. For m ≥ 1 we obtain a short exact sequence

0→ Km → B/Jm[x1, . . . , xn]→ Am → 0

The induced transition mapsKm+1 → Km are surjective because Am+1/JmAm+1 =
Am. Hence the inverse limit of these short exact sequences is exact, see Algebra,
Lemma 83.4. Since B{x1, . . . , xn} = limB/Jm[x1, . . . , xn] and A = limAm we
conclude that B{x1, . . . , xn} → A is surjective. As A is complete the kernel is a
closed ideal. In this way we see that (a), (b), (c), and (d) are equivalent.

Let a diagram as in Formal Spaces, Diagram (16.1.1) be given. By Formal Spaces,
Example 18.7 the maps A → (A′)∧ and B → (B′)∧ satisfy (a), (b), (c), and (d).

mailto:stacks.project@gmail.com
http://localhost:8080/tag/0AQI
http://localhost:8080/tag/0ANU


RESTRICTED POWER SERIES 5

Moreover, by Formal Spaces, Lemma 16.5 in order to prove Formal Spaces, Axioms
(1) and (2) we may assume both A → B and (B′)∧ → (A′)∧ are taut. Now pick
a weak ideal of definition J ⊂ B. Let J ′ ⊂ (B′)∧, I ⊂ A, I ′ ⊂ (A′)∧ be the
closure of J(B′)∧, JA, J(A′)∧. By what was said above, it suffices to consider the
commutative diagram

A/I // (A′)∧/I ′

B/J //

ϕ

OO

(B′)∧/J ′

ϕ′

OO

and to show (1) ϕ finite type ⇒ ϕ′ finite type, and (2) if A → A′ is faithfully
flat, then ϕ′ finite type ⇒ ϕ finite type. Note that (B′)∧/J ′ = B′/JB′ and
(A′)∧/I ′ = A′/IA′ by the construction of the topologies on (B′)∧ and (A′)∧. In
particular the horizontal maps in the diagram are étale. Part (1) now follows from
Algebra, Lemma 6.2 and part (2) from Descent, Lemma 10.2 as the ring map
A/I → (A′)∧/I ′ = A′/IA′ is faithfully flat and étale.

We omit the proof of Formal Spaces, Axiom (3). �

Lemma 3.7. Let S be a scheme. Let f : X → Y be a morphism of affine formal
algebraic spaces. Assume Y countably indexed. The following are equivalent

(1) f is locally of finite type,
(2) f is of finite type,
(3) f corresponds to a morphism B → A of WAdmcount satisfying the equivalent

conditions of Lemma 3.6.

Proof. Since X and Y are affine it is clear that conditions (1) and (2) are equiv-
alent. In cases (1) and (2) we see that X is countably indexed as well by Formal
Spaces, Lemma 14.8. Write X = Spf(A) and Y = Spf(B) for topological S-algebras
A and B in WAdmcount, see Formal Spaces, Lemma 6.4. By Formal Spaces, Lemma
5.10 we see that f corresponds to a continuous map B → A. Hence now the result
follows from Lemma 3.2. �

Lemma 3.8. Let P be the property of morphisms of WAdmcount defined by the
equivalent conditions (a), (b), (c), and (d) of Lemma 3.6. Then under the assump-
tions of Formal Spaces, Lemma 16.2 the equivalent conditions (1), (2), and (3) are
also equivalent to the condition

(4) f is locally of finite type.

Proof. By Lemma 3.7 the condition on morphisms of WAdmcount translates into
morphisms of countably indexed, affine formal algebraic spaces being of finite type.
Thus the lemma follows from Formal Spaces, Lemma 18.6. �

4. Two categories

Let A be a ring and let I ⊂ A be an ideal. In this section ∧ will mean I-adic
completion. Set An = A/In so that the I-adic completion of A is A∧ = limAn.
Let C be the category

(4.0.1) C =


systems (Bn, Bn+1 → Bn)n∈N where

Bn is a finite type An-algebra,
Bn+1 → Bn is an An+1-algebra map
which induces Bn+1/I

nBn+1
∼= Bn



http://localhost:8080/tag/0ANV
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Morphisms in C are given by systems of homomorphisms. Let C′ be the category

(4.0.2) C′ =

{
A-algebras B which are I-adically complete
such that B/IB is of finite type over A/I

}
Morphisms in C′ are A-algebra maps. There is a functor

(4.0.3) C′ −→ C, B 7−→ (B/InB)

Indeed, since B/IB is of finite type over A/I the ring maps An = A/In → B/InB
are of finite type (apply Algebra, Lemma 19.1 to a ring map A/In[x1, . . . , xr] →
B/InB such that the images of x1, . . . , xr generate B/IB over A/I).

Lemma 4.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor

C −→ C′, (Bn) 7−→ B = limBn

is a quasi-inverse to (4.0.3). The completions A[x1, . . . , xr]
∧ are in C′ and any

object of C′ is of the form
B = A[x1, . . . , xr]

∧/J

for some ideal J ⊂ A[x1, . . . , xr]
∧.

Proof. Let (Bn) be an object of C. By Algebra, Lemma 94.1 we see that B =
limBn is I-adically complete and B/InB = Bn. Hence we see that B is an object
of C′ and that we can recover the object (Bn) by taking the quotients. Conversely,
if B is an object of C′, then B = limB/InB by assumption. Thus B 7→ (B/InB)
is a quasi-inverse to the functor of the lemma.

Since A[x1, . . . , xr]
∧ = limAn[x1, . . . , xr] it is an object of C′ by the first statement

of the lemma. Finally, let B be an object of C′. Choose b1, . . . , br ∈ B whose
images in B/IB generate B/IB as an algebra over A/I. Since B is I-adically
complete, the A-algebra map A[x1, . . . , xr] → B, xi 7→ bi extends to an A-algebra
map A[x1, . . . , xr]

∧ → B. To finish the proof we have to show this map is surjective
which follows from Algebra, Lemma 93.1 as our map A[x1, . . . , xr]→ B is surjective
modulo I and as B = B∧. �

We warn the reader that, in case A is not Noetherian, the quotient of an object of
C′ may not be an object of C′. See Examples, Lemma 7.1. Next we show this does
not happen when A is Noetherian.

Lemma 4.2. Let A be a Noetherian ring and let I ⊂ A be an ideal. Then

(1) every object of the category C′, in particular the completion A[x1, . . . , xr]
∧,

is Noetherian,
(2) if B is an object of C′ and J ⊂ B is an ideal, then B/J is an object of C′.

Proof. To see (1) by Lemma 4.1 we reduce to the case of the completion of the
polynomial ring. This case follows from Algebra, Lemma 93.10 as A[x1, . . . , xr] is
Noetherian (Algebra, Lemma 30.1). Part (2) follows from Algebra, Lemma 93.2
which tells us that ever finite B-module is IB-adically complete. �

Remark 4.3 (Base change). Let ϕ : A1 → A2 be a ring map and let Ii ⊂ Ai
be ideals such that ϕ(Ic1) ⊂ I2 for some c ≥ 1. This induces ring maps A1,cn =
A1/I

cn
1 → A2/I

n
2 = A2,n for all n ≥ 1. Let Ci be the category (4.0.1) for (Ai, Ii).

There is a base change functor

(4.3.1) C1 −→ C2, (Bn) 7−→ (Bcn ⊗A1,cn
A2,n)
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Let C′i be the category (4.0.2) for (Ai, Ii). If I2 is finitely generated, then there is
a base change functor

(4.3.2) C′1 −→ C′2, B 7−→ (B ⊗A1
A2)∧

because in this case the completion is complete (Algebra, Lemma 93.7). If both
I1 and I2 are finitely generated, then the two base change functors agree via the
functors (4.0.3) which are equivalences by Lemma 4.1.

Remark 4.4 (Base change by closed immersion). Let A be a Noetherian ring and
I ⊂ A an ideal. Let a ⊂ A be an ideal. Denote Ā = A/a. Let Ī ⊂ Ā be an ideal
such that IcĀ ⊂ Ī and Īd ⊂ IĀ for some c, d ≥ 1. In this case the base change
functor (4.3.2) for (A, I) to (Ā, Ī) is given by B 7→ B̄ = B/aB. Namely, we have

(4.4.1) B̄ = (B ⊗A Ā)∧ = (B/aB)∧ = B/aB

the last equality because any finite B-module is I-adically complete by Algebra,
Lemma 93.2 and if annihilated by a also Ī-adically complete by Algebra, Lemma
93.14.

5. A naive cotangent complex

Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an A-algebra which
is I-adically complete such that A/I → B/IB is of finite type, i.e., an object of
(4.0.2). By Lemma 4.2 we can write

B = A[x1, . . . , xr]
∧/J

for some finitely generated ideal J . For a choice of presentation as above we define
the naive cotangent complex in this setting by the formula

(5.0.2) NL∧B/A = (J/J2 −→
⊕

Bdxi)

with terms sitting in degrees −1 and 0 where the map sends the residue class of
g ∈ J to the differential dg =

∑
(∂g/∂xi)dxi. Here the partial derivative is taken

by thinking of g as a power series. The following lemma shows that NL∧B/A is well

defined in D(B), i.e., independent of the chosen presentation, although this could
be shown directly by comparing presentations as in Algebra, Section 129.

Lemma 5.1. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B be an
object of (4.0.2). Then NL∧B/A = R limNLBn/An

in D(B).

Proof. In fact, the presentation B = A[x1, . . . , xr]
∧/J defines presentations

Bn = B/InB = An[x1, . . . , xr]/Jn

where

Jn = JAn[x1, . . . , xr] = J/(J ∩ InA[x1, . . . , xr]
∧)

By Artin-Rees (Algebra, Lemma 49.2) in the Noetherian ringA[x1, . . . , xr]
∧ (Lemma

4.2) we see that we have canonical surjections

J/InJ → Jn → J/In−cJ, n ≥ c

for some c ≥ 0. It follows that lim Jn/J
2
n = J/J2 as any finite A[x1, . . . , xr]

∧-
module is I-adically complete (Algebra, Lemma 93.2). Thus

NL∧B/A = lim(Jn/J
2
n −→

⊕
Bndxi)

http://localhost:8080/tag/0AL6
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(termwise limit) and the transition maps in the system are termwise surjective. The
two term complex Jn/J

2
n −→

⊕
Bndxi represents NLBn/An

by Algebra, Section

129. It follows that NL∧B/A represents R limNLBn/An
in the derived category by

More on Algebra, Lemma 61.9. �

Lemma 5.2. Let A be a Noetherian ring and let I ⊂ A be a ideal. Let B → C be
morphism of (4.0.2). Then there is an exact sequence

C ⊗B H0(NL∧B/A) // H0(NL∧C/A) // H0(NL∧C/B) // 0

H−1(NL∧B/A⊗BC) // H−1(NL∧C/A) // H−1(NL∧C/B)

kk

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Note that (B, IB) is a pair

consisting of a Noetherian ring and an ideal, and C is in the corresponding category
(4.0.2) for this pair. Hence we can choose a presentation C = B[y1, . . . , ys]

∧/J ′.
Combinging these presentations gives a presentation

C = A[x1, . . . , xr, y1, . . . , ys]
∧/K

Then the reader verifies that we obtain a commutative diagram

0 //⊕Cdxi //⊕Cdxi ⊕
⊕
Cdyj //⊕Cdyj // 0

J/J2 ⊗B C //

OO

K/K2 //

OO

J ′/(J ′)2 //

OO

0

with exact rows. Note that the vertical arrow on the left hand side is the tensor
product of the arrow defining NL∧B/A with idC . The lemma follows by applying the

snake lemma (Algebra, Lemma 4.1). �

Lemma 5.3. With assumptions as in Lemma 5.2 assume that B/InB → C/InC is
a local complete intersection homomorphism for all n. Then H−1(NL∧B/A⊗BC)→
H−1(NL∧C/A) is injective.

Proof. By More on Algebra, Lemma 23.6 we see that this holds for the map
between naive cotangent complexes of the situation modulo In for all n. In other
words, we obtain a distinguished triangle in D(C/InC) for every n. Using Lemma
5.1 this implies the lemma; details omitted. �

Maps in the derived category out of a complex such as (5.0.2) are easy to understand
by the result of the following lemma.

Lemma 5.4. Let R be a ring. Let M• be a complex of modules over R with M i = 0
for i > 0 and M0 a projective R-module. Let K• be a second complex.

(1) If Ki = 0 for i ≤ −2, then HomD(R)(M
•,K•) = HomK(R)(M

•,K•),

(2) If Ki = 0 for i ≤ −3 and α ∈ HomD(R)(M
•,K•) composed with K• →

K−2[2] comes from an R-module map a : M−2 → K−2 with a ◦ d−3M = 0,
then α can be represented by a map of complexes a• : M• → K• with
a−2 = a.

http://localhost:8080/tag/0ALM
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(3) In (2) for any second map of complexes (a′)• : M• → K• representing α
with a = (a′)−2 there exist h′ : M0 → K−1 and h : M−1 → K−2 such that

h ◦ d−2M = 0, (a′)−1 = a−1 + d−2K ◦ h+ h′ ◦ d−1M , (a′)0 = a0 + d−1K ◦ h
′

Proof. Set F 0 = M0. Choose a free R-module F−1 and a surjection F−1 →
M−1. Choose a free R-module F−2 and a surjection F−2 → M−2 ×M−1 F−1.
Continuing in this way we obtain a quasi-isomorphism p• : F • → M• which is
termwise surjective and with F i free for all i.

Proof of (1). By Derived Categories, Lemma 19.8 we have

HomD(R)(M
•,K•) = HomK(R)(F

•,K•)

If Ki = 0 for i ≤ −2, then any morphism of complexes F • → K• factors through
p•. Similarly, any homotopy {hi : F i → Ki−1} factors through p•. Thus (1) holds.

Proof of (2). Choose b• : F • → K• representing α. The composition of α with
K• → K−2[2] is represented by b−2 : F−2 → K−2. As this is homotopic to
a ◦ p−2 : F−2 → M−2 → K−2, there is a map h : F−1 → K−2 such that b−2 =
a ◦ p−2 + h ◦ d−2F . Adjusting b• by h viewed as a homotopy from F • to K•, we
find that b−2 = a ◦ p−2. Hence b−2 factors through p−2. Since F 0 = M0 the kernel
of p−2 surjects onto the kernel of p−1 (for example because the kernel of p• is an
acyclic complex or by a diagram chase). Hence b−1 necessarily factors through p−1

as well and we see that (2) holds for these factorizations and a0 = b0.

Proof of (3) is omitted. Hint: There is a homotopy between a• ◦ p• and (a′)• ◦ p•
and we argue as before that this homotopy factors through p•. �

Lemma 5.5. Let R be a ring. Let M• be a two term complex M−1 →M0 over R.
If ϕ,ψ ∈ EndD(R)(M

•) are zero on Hi(M•), then ϕ ◦ ψ = 0.

Proof. Apply Derived Categories, Lemma 12.5 to see that ϕ ◦ ψ factors through
τ≤−2M

• = 0. �

6. Rig-étale homomorphisms

In this and some of the later sections we will study ring maps as in Lemma 6.1.
Condition (4) is one of the conditions used in [Art70] to define modifications. Ring
maps like this are sometimes called rig-étale or rigid-étale ring maps in the liter-
ature. These and the analogously defined rig-smooth ring maps were studied in
[Elk73]. A detailed exposition can also be found in [Abb10]. Our main goal will
be to show that rig-étale ring maps are completions of finite type algebras, a result
very similar to results found in Elkik’s paper [Elk73].

Lemma 6.1. Let A be a Noetherian ring and let I ⊂ A be an ideal. Let B be an
object of (4.0.2). The following are equivalent

(1) there exists a c ≥ 0 such that multiplication by a on NL∧B/A is zero in D(B)
for all a ∈ Ic,

(2) there exits a c ≥ 0 such that Hi(NL∧B/A), i = −1, 0 is annihilated by Ic,

(3) there exists a c ≥ 0 such that Hi(NLBn/An
), i = −1, 0 is annihlated by Ic

for all n ≥ 1,
(4) B = A[x1, . . . , xr]

∧/J and for every a ∈ I there exists a c ≥ 0 such that
(a) ac annihilates H0(NL∧B/A), and

(b) there exist f1, . . . , fr ∈ J such that acJ ⊂ (f1, . . . , fr) + J2.
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Proof. The equivalence of (1) and (2) follows from Lemma 5.5. The equivalence
of (1) + (2) and (3) follows from Lemma 5.1. Some details omitted.

Assume the equivalent conditions (1), (2), (3) holds and let B = A[x1, . . . , xr]
∧/J

be a presentation (see Lemma 4.1). Let a ∈ I. Let c be such that multplication
by ac is zero on NL∧B/A which exists by (1). By Lemma 5.4 there exists a map

α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication by ac. Let

fi ∈ J be an element whose class modulo J2 is equal to α(dxi). Then we see that
(4)(a), (b) hold.

Assume (4) holds. Say I = (a1, . . . , at). Let ci ≥ 0 be the integer such that
(4)(a), (b) hold for acii . Then we see that I

∑
ci annihilates H0(NL∧B/A). Let

fi,1, . . . , fi,r ∈ J be as in (4)(b) for ai. Consider the composition

B⊕r → J/J2 →
⊕

Bdxi

where the jth basis vector is mapped to the class of fi,j in J/J2. By (4)(a) and (b)

the cokernel of the composition is annihilated by a2cii . Thus this map is surjective
after inverting acii , and hence an isomorphism (Algebra, Lemma 15.4). Thus the ker-
nel of B⊕r →

⊕
Bdxi is ai-power torsion, and hence H−1(NL∧B/A) = Ker(J/J2 →⊕

Bdxi) is ai-power torsion. Since B is Noetherian (Lemma 4.2), all modules in-

cluding H−1(NL∧B/A) are finite. Thus adii annihilates H−1(NL∧B/A) for some di ≥ 0.

It follows that I
∑
di annihilates H−1(NL∧B/A) and we see that (2) holds. �

Lemma 6.2. Let A be a Noetherian ring and let I be an ideal. Let B be a finite
type A-algebra.

(1) If Spec(B) → Spec(A) is étale over Spec(A) \ V (I), then B∧ satisfies the
equivalent conditions of Lemma 6.1.

(2) If B∧ satisfies the equivalent conditions of Lemma 6.1, then there exists
g ∈ 1 + IB such that Spec(Bg) is étale over Spec(A) \ V (I).

Proof. Assume B∧ satisfies the equivalent conditions of Lemma 6.1. The naive
cotangent complex NLB/A is a complex of finite type B-modules and hence H−1

and H0 are finite B-modules. Completion is an exact functor on finite B-modules
(Algebra, Lemma 93.3) and NL∧B∧/A is the completion of the complex NLB/A (this

is easy to see by choosing presentations). Hence the assumption implies there exists
a c ≥ 0 such that H−1/InH−1 and H0/InH0 are annihilated by Ic for all n. By
Nakayama’s lemma (Algebra, Lemma 19.1) this means that IcH−1 and IcH0 are
annihilated by an element of the form g = 1 + x with x ∈ IB. After inverting g
(which does not change the quotients B/InB) we see that NLB/A has cohomology
annihilated by Ic. Thus A→ B is étale at any prime of B not lying over V (I) by
the definition of étale ring maps, see Algebra, Definition 138.1.

Conversely, assume that Spec(B) → Spec(A) is étale over Spec(A) \ V (I). Then
for every a ∈ I there exists a c ≥ 0 such that multiplication by ac is zero NLB/A.

Since NL∧B∧/A is the derived completion of NLB/A (see Lemma 5.1) it follows that

B∧ satisfies the equivalent conditions of Lemma 6.1. �

Lemma 6.3. Assume the map (A1, I1) → (A2, I2) is as in Remark 4.3 with A1

and A2 Noetherian. Let B1 be in (4.0.2) for (A1, I1). Let B2 be the base change of
B1. If multiplication by f1 ∈ B1 on NL∧B1/A1

is zero in D(B1), then multiplication

by the image f2 ∈ B2 on NL∧B2/A2
is zero in D(B2).
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http://localhost:8080/tag/0AK2


RESTRICTED POWER SERIES 11

Proof. Choose a presentation B1 = A1[x1, . . . , xr]
∧/J1. Since A2/I

n
2 [x1, . . . , xr] =

A1/I
cn
1 [x1, . . . , xr]⊗A1/Icn1

A2/I
n
2 we have

A2[x1, . . . , xr]
∧ = (A1[x1, . . . , xr]

∧ ⊗A1 A2)∧

where we use I2-adic completion on both sides (but of course I1-adic completion
for A1[x1, . . . , xr]

∧). Set J2 = J1A2[x1, . . . , xr]
∧. Arguing similarly we get the

presentation

B2 = (B1 ⊗A1
A2)∧

= lim
A1/I

cn
1 [x1, . . . , xr]

J1(A1/Icn1 [x1, . . . , xr])
⊗A1/Icn1

A2/I
n
2

= lim
A2/I

n
2 [x1, . . . , xr]

J2(A2/In2 [x1, . . . , xr])

= A2[x1, . . . , xr]
∧/J2

for B2 over A2. Consider the commutative diagram

NL∧B1/A1
:

��

J1/J
2
1 d

//

��

⊕
B1dxi

��
NL∧B2/A2

: J2/J
2
2

//⊕B2dxi

The induced arrow J1/J
2
1 ⊗B1

B2 → J2/J
2
2 is surjective because J2 is generated by

the image of J1. By Lemma 5.4 there is a map α1 :
⊕
Bdxi → J1/J

2
1 such that

f1id⊕
B1dxi

= d ◦ α1 and f1idJ1/J2
1

= α1 ◦ d. We define α2 :
⊕
B1dxi → J2/J

2
2 by

mapping dxi to the image of α1(dxi) in J2/J
2
2 . Because the image of the vertical

arrows contains generators of the modules J2/J
2
2 and

⊕
B2dxi it follows that α2

also defines a homotopy between multiplication by f2 and the zero map. �

Lemma 6.4. Let A be a Noetherian ring and I an ideal. Let B be a finite type A-
algebra. Let B∧ → C be a surjective ring map with kernel J . If J/J2 is annihilated
by Ic for some c ≥ 0, then C is isomorphic to the completion of a finite type
A-algebra.

Proof. Since B∧ is Noetherian (Lemma 4.2), we see that J is a finitely generated
ideal. Hence we conclude from Algebra, Lemma 20.5 that

Spec(C) \ V (IC) −→ Spec(B∧) \ V (IB∧)

is an open and closed immersion. Let V ⊂ Spec(B∧) \ V (IB∧) be the complement
of the image viewed as an open and closed subscheme. Let Z ⊂ Spec(B∧) be the
scheme theoretic closure of V . Write Z = Spec(C ′). Then

Spec(C × C ′) = Spec(C)q Z −→ Spec(B∧)

is a finite morphism of schemes which is an isomorphism away from V (IB∧). Hence
the corresponding ring map B∧ → C×C ′ is finite and becomes an isomorphism on
inverting any element of I. By More on Algebra, Proposition 63.15 and Remark
63.19 applied to B → B∧ and the finitely generated ideal IB, we conclude that
C×C ′ is isomorphic to D⊗BB∧ for some finite B-algebra D. (The reader can also
prove this using Pushouts of Spaces, Lemma 4.1.) Then D/ID ∼= C/IC ×C ′/IC ′.
Let e ∈ D/ID be the idempotent corresponding to the factor C/IC. By More
on Algebra, Lemma 6.9 there exists an étale ring map B → B′ which induces an
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isomorphism B/IB → B′/IB′ such that D′ = D ⊗B B′ contains an idempotent
e lifting e. Since C × C ′ is I-adically complete the pair (C × C ′, IC × IC ′) is
henselian (More on Algebra, Lemma 7.3). Thus we can factor the map B → C×C ′
through B′. DOing so we may replace B by B′ and D by D′. Then we find that
D = De×D1−e = D/(1− e)×D/(e) is a product of finite type A-algebras and the
completion of the first part is C and the completion of the second part is C ′. �

Lemma 6.5. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be a finite
type A-algebra such that Spec(B)→ Spec(A) is étale over Spec(A)\V (I). Let C be
a Noetherian A-algebra. Then any A-algebra map B∧ → C∧ of I-adic completions
comes from a unique A-algebra map

B −→ Ch

where Ch is the henselization of the pair (C, IC) as in More on Algebra, Lemma
7.12. Moreover, any A-algebra homomorphism B → Ch factors through some étale
C-algebra C ′ such that C/IC → C ′/IC ′ is an isomorphism.

Proof. Uniqueness follows from the fact that Ch is a subring of C∧, see for example
More on Algebra, Lemma 7.15. The final assertion follows from the fact that Ch is
the filtered colimit of these C-algebras C ′, see proof of More on Algebra, Lemma
7.12. Having said this we now turn to the proof of existence.

Let ϕ : B∧ → C∧ be the given map. This defines a section

σ : (B ⊗A C)∧ −→ C∧

of the completion of the map C → B ⊗A C. We may replace (A, I,B,C, ϕ) by
(C, IC,B ⊗A C,C, σ). In this way we see that we may assume that A = C.

Proof of existence in the case A = C. In this case the map ϕ : B∧ → A∧ is
necessarily surjective. By Lemmas 6.2 and 5.2 we see that the cohomology groups
of NL∧A∧/ϕB∧ are annihilated by a power of I. Since ϕ is surjective, this implies

that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of I. Hence ϕ : B∧ → A∧ is the
completion of a finite type B-algebra B → D, see Lemma 6.4. Hence A → D is a
finite type algebra map which induces an isomorphism A∧ → D∧. By Lemma 6.2
we may replace D by a localization and assume that A → D is étale away from
V (I). Since A∧ → D∧ is an isomorphism, we see that Spec(D) → Spec(A) is also
étale in a neighbourhood of V (ID) (for example by More on Morphisms, Lemma
10.3). Thus Spec(D)→ Spec(A) is étale. Therefore D maps to Ah and the lemma
is proved. �

7. Rig-étale morphisms

We can use the notion introduced in the previous section to define a new type of
morphism of locally Noetherian formal algebraic spaces. Before we do so, we have
to check it is a local property.

Lemma 7.1. For morphisms A → B of the category WAdmNoeth consider the
condition P =“for some ideal of definition I of A the topology on B is the I-
adic topology, the ring map A/I → B/IB is of finite type and A → B satisfies
the equivalent conditions of Lemma 6.1”. Then P is a local property, see Formal
Spaces, Remark 16.4.
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Proof. We have to show that Formal Spaces, Axioms (1), (2), and (3) hold for
maps between Noetherian adic rings. For a Noetherian adic ring A with ideal of
definition I we have A{x1, . . . , xr} = A[x1, . . . , xr]

∧ as topological A-algebras (see
Remark 2.2). We will use without further mention that we know the axioms hold
for the property “B is a quotient of A[x1, . . . , xr]

∧”, see Lemma 3.6.

Let a diagram as in Formal Spaces, Diagram (16.1.1) be given with A and B in

the category WAdmNoeth. Pick an ideal of definition I ⊂ A. By the remarks above
the topology on each ring in the diagram is the I-adic topology. Since A→ A′ and
B → B′ are étale we see that NL∧(A′)∧/A and NL∧(B′)∧/B are zero. By Lemmas 5.2
and 5.3 we get

Hi(NL∧(B′)∧/(A′)∧) ∼= Hi(NL∧(B′)∧/A) and Hi(NL∧B/A⊗B(B′)∧) ∼= Hi(NL∧(B′)∧/A)

for i = −1, 0. Since B is Noetherian the ring map B → B′ → (B′)∧ is flat
(Algebra, Lemma 93.3) hence the tensor product comes out. Moreover, as B is
I-adically complete, then if B → B′ is faithfully flat, so is B → (B′)∧. From these
observations Formal Spaces, Axioms (1) and (2) follow immediately.

We omit the proof of Formal Spaces, Axiom (3). �

Definition 7.2. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces over S. We say f is rig-étale if f satisfies the
equivalent conditions of Formal Spaces, Lemma 16.2 (in the setting of locally Noe-
therian formal algebraic spaces, see Formal Spaces, Remark 16.3) for the property
P of Lemma 7.1.

To be sure, a rig-étale morphism is locally of finite type.

Lemma 7.3. A rig-étale morphism of locally Noetherian formal algebraic spaces is
locally of finite type.

Proof. The property P in Lemma 7.1 implies the equivalent conditions (a), (b),
(c), and (d) in Lemma 3.6. Hence this follows from Lemma 3.8. �

8. Glueing rings along a principal ideal

In this situation we prove some results about the categories C and C′ of Section 4
in case A is a Noetherian ring and I = (a) is a principal ideal.

Remark 8.1 (Linear approximation). Let A be a ring and I ⊂ A be a finitely gener-
ated ideal. Let C be an I-adically complete A-algebra. Let ψ : A[x1, . . . , xr]

∧ → C
be a continuous A-algebra map. Suppose given δi ∈ C, i = 1, . . . , r. Then we can
consider

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δi

see Remark 2.1. Then we have

ψ′(g) = ψ(g) +
∑

ψ(∂g/∂xi)δi + ξ

with error term ξ ∈ (δiδj). This follows by writing g as a power series and working
term by term. Convergence is automatic as the coefficients of g tend to zero. Details
omitted.
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Lemma 8.2. Let A be a Noetherian ring and I = (a) a principal ideal. Let B be an
objects of (4.0.2). Assume given an integer c ≥ 0 such that multiplication by ac on
NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra such that a is a

nonzerodivisor on C. Let n > 2c. For any An-algebra map ψn : B/anB → C/anC
there exists an A-algebra map ϕ : B → C such that ψn mod an−c = ϕ mod an−c.

Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose a lift

ψ : A[x1, . . . , xr]
∧ → C

of ψn. Then ψ(J) ⊂ anC and ψ(J2) ⊂ a2nC which determines a linear map

J/J2 −→ anC/a2nC, g 7−→ ψ(g)

By assumption and Lemma 5.4 there is a B-module map
⊕
Bdxi → anC/a2nC,

dxi 7→ δi such that acψ(g) =
∑
ψ(∂g/∂xi)δi for all g ∈ J . Write δi = −acδ′i

for some δ′i ∈ an−cC. Since a is a nonzerodivisor on C we see that ψ(g) =
−
∑
ψ(∂g/∂xi)δ

′
i in C/a2n−cC. Then we look at the map

ψ′ : A[x1, . . . , xr]
∧ → C, xi 7−→ ψ(xi) + δ′i

A computation with power series (see Remark 8.1) shows that ψ′(J) ⊂ a2n−2cC.
Since n > 2c we see that n′ = 2n − 2c = n + (n − 2c) > n. Thus we obtain a

morphism ψn′ : B/an
′
B → C/an

′
C agreeing with ψn modulo an−c. Continuing in

this fashion and taking the limit into C = limC/atC we obtain the lemma. �

Lemma 8.3. Let A be a Noetherian ring and I = (a) a principal ideal. Let B be
an object of (4.0.2). Assume given an integer c ≥ 0 such that multiplication by ac

on NL∧B/A is zero in D(B). Let C be an I-adically complete A-algebra. Assume

given an integer d ≥ 0 such that C[a∞]∩adC = 0. Let n > max(2c, c+d). For any
An-algebra map ψn : B/anB → C/anC there exists an A-algebra map ϕ : B → C
such that ψn mod an−c = ϕ mod an−c.

If C is Noetherian we have C[a∞] = C[ae] for some e ≥ 0. By Artin-Rees (Algebra,
Lemma 49.2) there exists an integer f such that anC ∩C[a∞] ⊂ an−fC[a∞] for all
n ≥ f . Then d = e + f is an integer as in the lemma. This argument works in
particular if C is an object of (4.0.2) by Lemma 4.2.

Proof. Let C → C ′ be the quotient of C by C[a∞]. The A-algebra C ′ is I-adically
complete by Algebra, Lemma 93.15 and the fact that

⋂
(C[a∞] + anC) = C[a∞]

because for n ≥ d the sum C[a∞] + anC is direct. For m ≥ d the diagram

0 // C[a∞] //

��

C //

��

C ′ //

��

0

0 // C[a∞] // C/amC // C ′/amC ′ // 0

has exact rows. Thus C is the fibre product of C ′ and C/amC over C ′/amC ′. Thus
the lemma now follows formally from the lifting result of Lemma 8.2. �

Lemma 8.4. Let A be a Noetherian ring and I = (a) a principal ideal. Let B
be an object of (4.0.2). Assume given an integer c ≥ 0 such that multiplication by
ac on NL∧B/A is zero in D(B). Then there exists a finite type A-algebra C and an

isomorphism B ∼= C∧.
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Proof. Choose a presentation B = A[x1, . . . , xr]
∧/J . By Lemma 5.4 we can find

a map α :
⊕
Bdxi → J/J2 such that d ◦ α and α ◦ d are both multiplication by

ac. Pick an element fi ∈ J whose class modulo J2 is equal to α(dxi). Then we see
that dfi = acdxi in

⊕
dxi. In particular we have a ring map

A[x1, . . . , xr]
∧/(f1, . . . , fr,∆(f1, . . . , fr)− arc) −→ B

where ∆(f1, . . . , fr) ∈ A[x1, . . . , xr]
∧ is the determinant of the matrix of partial

derivatives of the fi.

Pick a large integer N . Pick F1, . . . , Fr ∈ A[x1, . . . , xr] such that Fi − fi ∈
INA[x1, . . . , xr]

∧. Set

C = A[x1, . . . , xr, z]/(F1, . . . , Fr, z∆(F1, . . . , Fr)− arc)

We claim that multplication by a2rc is zero on NLC/A in D(C). Namely, the
determinant of the matrix of the partial derivatives of the r + 1 generators of the
ideal of C with respect to the variables x1, . . . , xr+1, z is ∆(F1, . . . , Fr)

2. Since
∆(F1, . . . , Fr) divides arc we in C the claim follows for example from Algebra,
Lemma 14.4. Let C∧ be the I-adic completion of C. Since NL∧C∧/A is the I-adic

completion of NLC/A we conclude that multiplication by a2rc is zero on NL∧C∧/A
as well.

By construction there is a (surjective) map ψN : C/INC → B/INB sending xi to
xi and z to 1. By Lemma 8.3 (with the roles of B and C reversed) for N large
enough we get a map ϕ : C∧ → B which agrees with ψN modulo IN−2rc.

Since ϕ : C∧ → B is surjective modulo I we see that it is surjective (for example
use Algebra, Lemma 93.1). By construction and assumption the naive cotangent
complexes NL∧C∧/A and NL∧B/A have cohomology annihilated by a fixed power of

a. Thus the same thing is true for NL∧B/C∧ by Lemma 5.2. Since ϕ is surjective

we conclude that Ker(ϕ)/Ker(ϕ)2 is annihilated by a power of a. The result of the
lemma now follows from Lemma 6.4. �

9. Glueing rings along an ideal

Let A be a Noetherian ring. Let I ⊂ A be an ideal. In this section we study
I-adically complete A-algebras which are, in some vague sense, étale over the com-
plement of V (I) in Spec(A).

Lemma 9.1. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let t be the
minimal number of generators for I. Let C be a Noetherian I-adically complete
A-algebra. There exists an integer d ≥ 0 depending only on I ⊂ A → C with the
following property: given

(1) c ≥ 0 and B in (4.0.2) such that for a ∈ Ic multiplication by a on NL∧B/A
is zero in D(B),

(2) an integer n > 2tmax(c, d),
(3) an A/In-algebra map ψn : B/InB → C/InC,

there exists a map ϕ : B → C of A-algebras such that ψn mod Im−c = ϕ mod Im−c

with m = bnt c.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
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the lemma follows from Lemma 8.3 because 2 max(c, d) ≥ max(2c, c+ d). Assume
t > 1.

Set m = bnt c as in the lemma. Set Ā = A/(amt ). Consider the ideal Ī =

(ā1, . . . , āt−1) in Ā. Set C̄ = C/(amt ). Note that C̄ is a Ī-adically complete Noe-
therian Ā-algebra (use Algebra, Lemmas 93.2 and 93.14). Let d̄ be the integer for
Ī ⊂ Ā→ C̄ which exists by induction hypothesis.

Let d1 ≥ 0 be an integer such that C[a∞t ]∩ad1t C = 0 as in Lemma 8.3 (see discussion
following the lemma and before the proof).

We claim the lemma holds with d = max(d̄, d1). To see this, let c,B, n, ψn be as in
the lemma.

Note that Ī ⊂ IĀ. Hence by Lemma 6.3 multiplication by an element of Īc on the
cotangent complex of B̄ = B/(amt ) is zero in D(B̄). Also, we have

Īn−m+1 ⊃ InĀ

Thus ψn gives rise to a map

ψ̄n−m+1 : B̄/Īn−m+1B̄ −→ C̄/Īn−m+1C̄

Since n > 2tmax(c, d) and d ≥ d̄ we see that

n−m+ 1 ≥ (t− 1)n/t > 2(t− 1) max(c, d) ≥ 2(t− 1) max(c, d̄)

Hence we can find a morphism ϕm : B̄ → C̄ agreeing with ψ̄n−m+1 modulo the

ideal Īm
′−c where m′ = bn−m+1

t−1 c.

Since m ≥ n/t > 2 max(c, d) ≥ 2 max(c, d1) ≥ max(2c, c+d1), we can apply Lemma
8.3 for the ring map A → B and the ideal (at) to find a morphism ϕ : B → C
agreeing modulo am−ct with ϕm.

All in all we find ϕ : B → C which agrees with ψn modulo

(am−ct ) + (a1, . . . , at−1)m
′−c ⊂ Imin(m−c,m′−c)

We leave it to the reader to see that min(m − c,m′ − c) = m − c. This concludes
the proof. �

Lemma 9.2. Let A be a Noetherian ring and I ⊂ A an ideal. Let J ⊂ A be a
nilpotent ideal. Consider a diagram

C // C/JC

B0

OO

A //

OO

A/J

OO

whose vertical arrows are of finite type such that

(1) Spec(C)→ Spec(A) is étale over Spec(A) \ V (I),
(2) Spec(B0)→ Spec(A/J) is étale over Spec(A/J) \ V ((I + J)/J), and
(3) B0 → C/JC is étale and induces an isomorphism B0/IB0 = C/(I + J)C.

http://localhost:8080/tag/0ALT
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Then we can fill in the diagram

C // C/JC

B

OO

// B0

OO

A //

OO

A/J

OO

with A → B of finite type, B/JB = B0, B → C étale, and Spec(B) → Spec(A)
étale over Spec(A) \ V (I).

Proof. By induction on the smallest n such that Jn = 0 we reduce to the case
J2 = 0. Denote by a subscript zero the base change of objects to A0 = A/J . Since
J2 = 0 we see that JC is a C0-module.

Consider the canonical map

γ : J ⊗A0
C0 −→ JC

Since Spec(C)→ Spec(A) is étale over the complement of V (I) (and hence flat) we
see that γ is an isomorphism away from V (IC0), see More on Morphisms, Lemma
8.1. In particular, the kernel and cokernel of γ are annihilated by a power of I (use
that C0 is Noetherian and that the modules in question are finite). Observe that
J ⊗A0

C0 = (J ⊗A0
B0) ⊗B0

C0. Hence by More on Algebra, Lemma 63.16 there
exists a unique B0-module homomorphism

c : J ⊗A0
B0 → N

with c⊗ idC0 = γ and Ker(γ) = Ker(c) and Coker(γ) = Coker(c). Moreover, N is
a finite B0-module, see More on Algebra, Remark 63.19.

Choose a presentation B0 = A[x1, . . . , xr]/K. To construct B we try to find the
dotted arrow m fitting into the following pushout diagram

0 // N // B // B0
// 0

0 // K/K2 //

m

OO

A[x1, . . . , xr]/K
2 //

OO

A[x1, . . . , xr]/K // 0

J ⊗A0
B0

OO

>>

where the curved arrow is the map c constructed above and the map J ⊗A0
B0 →

K/K2 is the obvious one.

As B0 → C0 is étale we can write C0 = B0[y1, . . . , yr]/(g0,1, . . . , g0,r) such that the
determinant of the partial derivatives of the g0,j is invertible in C0, see Algebra,
Lemma 138.2. We combine this with the chosen presentation of B0 to get a pre-
sentation C0 = A[x1, . . . , xr, y1, . . . , ys]/L. Choose a lift ψ : A[xi, yj ] → C of the



18 RESTRICTED POWER SERIES

map to C0. Then it is the case that C fits into the diagram

0 // JC // C // C0
// 0

0 // L/L2 //

µ

OO

A[xi, yj ]/L
2 //

OO

A[xi, yj ]/L // 0

J ⊗A0 C0

OO

??

where the curved arrow is the map γ constructed above and the map J ⊗A0
C0 →

L/L2 is the obvious one. By our choice of presentations and the fact that C0 is a
complete intersection over B0 we have

L/L2 = K/K2 ⊗B0 C0 ⊕
⊕

C0gj

where gj ∈ L is any lift of g0,j , see More on Algebra, Lemma 23.6.

Consider the three term complex

K• : J ⊗A0
B0 → K/K2 →

⊕
B0dxi

where the second arrow is the differential in the naive cotangent complex of B0

over A for the given presentation and the last term is placed in degree 0. Since
Spec(B0) → Spec(A0) is étale away from V (I) the cohomology modules of this
complex are supported on V (IB0). Namely, for a ∈ I after inverting a we can
apply More on Algebra, Lemma 23.6 for the ring maps Aa → A0,a → B0,a and
use that NLA0,a/Aa

= Ja and NLB0,a/A0,a
= 0 (some details omitted). Hence these

cohomology groups are annihilated by a power of I.

Similarly, consider the three term complex

L• : J ⊗A0
C0 → L/L2 →

⊕
C0dxi ⊕

⊕
C0dyj

By our direct sum decomposition of L/L2 above and the fact that the the determi-
nant of the partial derivatives of the g0,j is invertible in C0 we see that the natural
map K• → L• induces a quasi-isomorphism

K• ⊗B0
C0 −→ L•

Applying Dualizing Complexes, Lemma 8.14 we find that

(9.2.1) HomD(B0)(K
•, E) = HomD(C0)(L

•, E ⊗B0
C0)

for any object E ∈ D(B0).

The maps idJ⊗A0
C0

and µ define an element in

HomD(C0)(L
•, (J ⊗A0

C0 → JC))

(the target two term complex is placed in degree −2 and −1) such that the com-
position with the map to J ⊗A0

C0[2] is the element in HomD(C0)(L
•, J ⊗A0

C0[2])
corresponding to idJ⊗A0

C0
. Picture

J ⊗A0 C0
//

idJ⊗A0
C0

��

L/L2 //

µ

��

⊕
C0dxi ⊕

⊕
C0dyj

J ⊗A0 C0
γ // JC
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Applying (9.2.1) we obtain a unique element

ξ ∈ HomD(B0)(K
•, (J ⊗A0 B0 → N))

Its composition with the map to J⊗A0
B0[2] is the element in HomD(C0)(K

•, J⊗A0

B0[2]) corresponding to idJ⊗A0
B0 . By Lemma 5.4 we can find a map of complexes

K• → (J⊗A0 B0 → N) representing ξ and equal to idJ⊗A0
B0 in degree −2. Denote

m : K/K2 → N the degree −1 part of this map. Picture

J ⊗A0 B0
//

idJ⊗A0
B0

��

K/K2 //

m

��

⊕
B0dxi

J ⊗A0 B0
c // N

Thus we can use m to create an algebra B by push out as explained above. However,
we may still have to change m a bit to make sure that B maps to C in the correct
manner.

Denote m ⊗ idC0 ⊕ 0 : L/L2 → JC the map coming from the direct sum de-
composition of L/L2 (see above), using that N ⊗B0 C0 = JC, and using 0 on the
second factor. By our choice of m above the maps of complexes (idJ⊗A0

C0
, µ, 0) and

(idJ⊗A0
C0 ,m⊗ idC0 ⊕ 0, 0) define the same element of HomD(C0)(L

•, (J ⊗A0
C0 →

JC)). By Lemma 5.4 there exist maps h : L−1 → J ⊗A0
C0 and h′ : L0 → JC

which define a homotopy between (idJ⊗A0
C0 , µ, 0) and (idJ⊗A0

C0 ,m⊗ idC0 ⊕ 0, 0).
Picture

J ⊗A0 C0
//

idJ⊗A0
C0

��

K/K2 ⊗B0
C0 ⊕

⊕
C0gj

h

uu

//

µ

��
m⊗idC0

⊕0
��

⊕
C0dxi ⊕

⊕
C0dyj

h′

tt
J ⊗A0

C0
γ // JC

Since h precomposed with d−2L is zero it defines an element in HomD(C0)(L
•, J ⊗A0

C0[1]) which comes from a unique element χ of HomD(B0)(K
•, J ⊗A0 B0[1]) by

(9.2.1). Applying Lemma 5.4 again we represent χ by a map g : K/K2 → J⊗A0
B0.

Then the base change g ⊗ idC0
and h differ by a homotopy h′′ : L0 → J ⊗A0

C.
Hence if we modify m into m + c ◦ g, then we find that m ⊗ idC0

⊕ 0 and µ just
differ by a map h′ : L0 → JC.

Changing our choice of the map ψ : A[xi, yj ]→ C by sending xi to ψ(xi) + h′(dxi)
and sending yj to ψ(yj) + h′(dyj), we find a commutative diagram

N // JC

K/K2 //

m

OO

L/L2

µ

OO

J ⊗A0
B0

OO
c

>>

// J ⊗A0
C0

OO
γ

``

At this point we can define B as the pushout in the first commutative diagram of
the proof. The commutativity of the diagram just displayed, shows that there is
an A-algebra map B → C compatible with the given map N = JB → JC. As
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N ⊗B0
C0 = JC it follows from More on Morphisms, Lemma 8.1 that B → C is

flat. From this it easily follows that it is étale. We omit the proof of the other
properties as they are mostly self evident at this point. �

Lemma 9.3. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be an object
of (4.0.2). Assume there is an integer c ≥ 0 such that for a ∈ Ic multiplication by
a on NL∧B/A is zero in D(B). Then there exists a finite type A-algebra C and an

isomorphism B ∼= C∧.

In Section 10 we will give a simpler proof of this result in case A is a G-ring.

Proof. We prove this lemma by induction on the number of generators of I. Say
I = (a1, . . . , at). If t = 0, then I = 0 and there is nothing to prove. If t = 1, then
the lemma follows from Lemma 8.4. Assume t > 1.

For any m ≥ 1 set Ām = A/(amt ). Consider the ideal Īm = (ā1, . . . , āt−1) in Ām.
Let Bm = B/(amt ) be the base change of B for the map (A, I) → (Ām, Īm), see
(4.4.1). By Lemma 6.3 the assumption of the lemma holds for Īm ⊂ Ām → Bm.

By induction hypothesis (on t) we can find a finite type Ām-algebra Cm and a map
Cm → Bm which induces an isomorphism C∧m

∼= Bm where the completion is with
respect to Īm. By Lemma 6.2 we may assume that Spec(Cm)→ Spec(Ām) is étale
over Spec(Ām) \ V (Īm).

We claim that we may choose Am → Cm → Bm as in the previous paragraph such
that moreover there are isomorphisms Cm/(a

m−1
t ) → Cm−1 compatible with the

given A-algebra structure and the maps to Bm−1 = Bm/(a
m−1
t ). Namely, first fix a

choice of A1 → C1 → B1. Suppose we have found Cm−1 → Cm−2 → . . .→ C1 with
the desired properties. Note that Cm/(a

m−1
t ) is étale over Spec(Ām−1) \ V (Īm−1).

Hence by Lemma 6.5 there exists an étale extension Cm−1 → C ′m−1 which in-

duces an isomorphism modulo Īm−1 and an Ām−1-algebra map Cm/(a
m−1
t ) →

C ′m−1 inducing the isomorphism Bm/(a
m−1
t ) → Bm−1 on completions. Note that

Cm/(a
m−1
t ) → C ′m−1 is étale over the complement of V (Īm−1) by Morphisms,

Lemma 37.18 and over V (Īm−1) induces an isomorphism on completions hence is
étale there too (for example by More on Morphisms, Lemma 10.3). Thus Cm/(a

m−1
t )→

C ′m−1 is étale. By the topological invariance of étale morphisms (Étale Morphisms,

Theorem 15.2) there exists an étale ring map Cm → C ′m such that Cm/(a
m−1
t ) →

C ′m−1 is isomorphic to Cm/(a
m−1
t )→ C ′m/(a

m−1
t ). Observe that the Īm-adic com-

pletion of C ′m is equal to the Īm-adic completion of Cm, i.e., to Bm (details omitted).
We apply Lemma 9.2 to the diagram

C ′m // C ′m/(a
m−1
t )

C ′′m

==

// Cm−1

OO

Ām //

OO

aa

Ām−1

OO

to see that there exists a “lift” of C ′′m of Cm−1 to an algebra over Ām with all the
desired properties.

http://localhost:8080/tag/0AKA
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By construction (Cm) is an object of the category (4.0.1) for the principal ideal
(at). Thus the inverse limit B′ = limCm is an (at)-adically complete A-algebra
such that B′/atB

′ is of finite type over A/(at), see Lemma 4.1. By construction
the I-adic completion of B′ is isomorphic to B (details omitted). Consider the
complex NL∧B′/A constructed using the (at)-adic topology. Choosing a presentation

for B′ (which induces a similar presentation for B) the reader immediately sees that
NL∧B′/A⊗B′B = NL∧B/A. Since at ∈ I and since the cohomology modules of NL∧B′/A
are finite B′-modules (hence complete for the at-adic topology), we conclude that
act acts as zero on these cohomologies as the same thing is true by assumption for
NL∧B/A. Thus multiplication by a2ct is zero on NL∧B′/A by Lemma 5.5. Hence finally,

we may apply Lemma 8.4 to (at) ⊂ A→ B′ to finish the proof. �

Lemma 9.4. Let A be a Noetherian ring. Let I ⊂ A be an ideal. Let B be an
I-adically complete A-algebra with A/I → B/IB of finite type. The equivalent
conditions of Lemma 6.1 are also equivalent to

(5) there exists a finite type A-algebra C with Spec(C)→ Spec(A) is étale over
Spec(A) \ V (I) such that B ∼= C∧.

Proof. First, assume conditions (1) – (4) hold. Then there exists a finite type
A-algebra C with such that B ∼= C∧ by Lemma 9.3. In other words, Bn = C/InC.
The naive cotangent complex NLC/A is a complex of finite type C-modules and

hence H−1 and H0 are finite C-modules. By assumption there exists a c ≥ 0 such
that H−1/InH−1 and H0/InH0 are annihilated by Ic for some n. By Nakayama’s
lemma this means that IcH−1 and IcH0 are annihilated by an element of the form
f = 1 + x with x ∈ IC. After inverting f (which does not change the quotients
Bn = C/InC) we see that NLC/A has cohomology annihilated by Ic. Thus A→ C
is étale at any prime of C not lying over V (I) by the definition of étale ring maps,
see Algebra, Definition 138.1.

Conversely, assume that A→ C of finite type is given such that Spec(C)→ Spec(A)
is étale over Spec(A) \ V (I). Then for every a ∈ I there exists an c ≥ 0 such that
multiplication by ac is zero NLC/A. Since NL∧C∧/A is the derived completion of

NLC/A (see Lemma 5.1) it follows that B = C∧ satisfies the equivalent conditions
of Lemma 6.1. �

10. In case the base ring is a G-ring

If the base ring A is a Noetherian G-ring, then some of the material above simplifies
somewhat and we obtain some additional results.

Proof of Lemma 9.3 in case A is a G-ring. This proof is easier in that it does
not depend on the somewhat delicate deformation theory argument given in the
proof of Lemma 9.2, but of course it requires a very strong assumption on the
Noetherian ring A.

Choose a presentation B = A[x1, . . . , xr]
∧/J . Choose generators g1, . . . , gm ∈ J .

Choose generators k1, . . . , kt of the module of relations between g1, . . . , gm, i.e.,
such that

(A[x1, . . . , xr]
∧)⊕t

k1,...,kt−−−−−→ (A[x1, . . . , xr]
∧)⊕m

g1,...,gm−−−−−→ A[x1, . . . , xr]
∧

http://localhost:8080/tag/0AKG
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is exact in the middle. Write ki = (ki1, . . . , kim) so that we have

(10.0.1)
∑

kijgj = 0

for i = 1, . . . , t. Let Ic = (a1, . . . , as). For each l ∈ {1, . . . , s} we know that
multiplication by al on NL∧B/A is zero in D(B). By Lemma 5.4 we can find a map

αl :
⊕
Bdxi → J/J2 such that d ◦αl and αl ◦d are both multiplication by al. Pick

an element fl,i ∈ J whose class modulo J2 is equal to αl(dxi). Then we have for
all l = 1, . . . , s and i = 1, . . . , r that

(10.0.2)
∑

i′
(∂fl,i/∂xi′)dxi′ = aldxi +

∑
hj
′,i′

l,i gj′dxi′

for some hj
′,i′

l,i ∈ A[x1, . . . , xr]
∧. We also have for j = 1, . . . ,m and l = 1, . . . , s

that

(10.0.3) algj =
∑

hil,jfl,i +
∑

hj
′,j′′

l,j gj′gj′′

for some hil,j and hj
′,j′′

l,j in A[x1, . . . , xr]
∧. Of course, since fl,i ∈ J we can write for

l = 1, . . . , s and i = 1, . . . , r

(10.0.4) fl,i =
∑

hjl,igj

for some hjl,i in A[x1, . . . , xr]
∧.

Let A[x1, . . . , xr]
h be the henselization of the pair (A[x1, . . . , xr], IA[x1, . . . , xr]), see

More on Algebra, Lemma 7.12. Since A is a Noetherian G-ring, so is A[x1, . . . , xr],
see More on Algebra, Proposition 39.10. Hence we have approximation for the
map A[x1, . . . , xr]

h → A[x1, . . . , xr]
∧ with respect to the ideal generated by I, see

Smoothing Ring Maps, Lemma 14.1. Choose a large integer M . Choose

Gj ,Kij , Fl,i, H
i
l,j , H

j′,j′′

l,j , Hj
l,i ∈ A[x1, . . . , xr]

h

such that analogues of equations (10.0.1), (10.0.3), and (10.0.4) hold for these
elements in A[x1, . . . , xr]

h, i.e.,∑
KijGj = 0, alGj =

∑
Hi
l,jFl,i +

∑
Hj′,j′′

l,j Gj′Gj′′ , Fl,i =
∑

Hj
l,iGj

and such that we have

Gj−gj ,Kij−kij , Fl,i−fl,i, Hi
l,j−hil,j , H

j′,j′′

l,j −hj
′,j′′

l,j , Hj
l,i−h

j
l,i ∈ I

MA[x1, . . . , xr]
h

where we take liberty of thinking of A[x1, . . . , xr]
h as a subring of A[x1, . . . , xr]

∧.
Note that we cannot guarantee that the analogue of (10.0.2) holds in A[x1, . . . , xr]

h,
because it is not a polynomial equation. But since taking partial derivatives is A-
linear, we do get the analogue modulo IM . More precisely, we see that

(10.0.5)
∑

i′
(∂Fl,i/∂xi′)dxi′ − aldxi −

∑
hj
′,i′

l,i Gj′dxi′ ∈ IMA[x1, . . . , xr]
∧

for l = 1, . . . , s and i = 1, . . . , r.

With these choices, consider the ring

Ch = A[x1, . . . , xr]
h/(G1, . . . , Gr)

and denote C∧ its I-adic completion, namely

C∧ = A[x1, . . . , xr]
∧/J ′, J ′ = (G1, . . . , Gr)A[x1, . . . , xr]

∧
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In the following paragraphs we esthablish the fact that C∧ is isomorphic to B.
Then in the final paragraph we deal with show that Ch comes from a finite type
algebra over A as in the statement of the lemma.

First consider the cokernel

Ω = Coker(J ′/(J ′)2 −→
⊕

C∧dxi)

This C∧ module is generated by the images of the elements dxi. Since Fl,i ∈ J ′
by the analogue of (10.0.4) we see from (10.0.5) we see that aldxi ∈ IMΩ. As
Ic = (al) we see that IcΩ ⊂ IMΩ. Since M > c we conclude that IcΩ = 0 by
Algebra, Lemma 19.1.

Next, consider the kernel

H1 = Ker(J ′/(J ′)2 −→
⊕

C∧dxi)

By the analogue of (10.0.3) we see that alJ
′ ⊂ (Fl,i) + (J ′)2. On the other hand,

the determinant ∆l of the matrix (∂Fl,i/∂xi′) satisfies ∆l = arl mod IMC∧ by

(10.0.5). It follows that ar+1
l H1 ⊂ IMH1 (some details omitted; use Algebra,

Lemma 14.4). Now (ar+1
1 , . . . , ar+1

s ) ⊃ I(sr+1)c. Hence I(sr+1)cH1 ⊂ IMH1 and

since M > (sr + 1)c we conclude that I(sr+1)cH1 = 0.

By Lemma 5.5 we conclude that multiplication by an element of I2(sr+1)c on
NL∧C∧/A is zero (note that the bound does not depend on M or the choice of

the approximation, as long as M is large enough). Since Gj − gj is in the ideal
generated by IM we see that there is an isomorphism

ψM : C∧/IMC∧ → B/IMB

As M is large enough we can use Lemma 9.1 with d = d(I ⊂ A → B), with C∧

playing the role of B, with 2(rs+ 1)c instead of c, to find a morphism

ψ : C∧ −→ B

which agrees with ψM modulo Iq−2(rs+1)c where q is the quotent of M by the
number of generators of I. We claim ψ is an isomorphism. Since C∧ and B are
I-adically complete the map ψ is surjective because it is surjective modulo I (see
Algebra, Lemma 93.1). On the other hand, as M is large enough we see that

GrI(C
∧) ∼= GrI(B)

as graded GrI(A[x1, . . . , xr]
∧)-modules by More on Algebra, Lemma 3.2. Since ψ

is compatible with this isomorphism as it agrees with ψM modulo I, this means
that GrI(ψ) is an isomorphism. As C∧ and B are I-adically complete, it follows
that ψ is an isomorphism.

This paragraph serves to deal with the issue that Ch is not of finite type over
A. Namely, the ring A[x1, . . . , xr]

h is a filtered colimit of étale A[x1, . . . , xr] alge-
bras A′ such that A/I[x1, . . . , xr] → A′/IA′ is an isomorphism (see proof of More
on Algebra, Lemma 7.12). Pick an A′ such that G1, . . . , Gm are the images of
G′1, . . . , G

′
m ∈ A′. Setting C = A′/(G′1, . . . , G

′
m) we get the finite type algebra we

were looking for. �
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The following lemma isn’t true in general if A is not a G-ring but just Noetherian.
Namely, if (A,m) is local and I = m, then the lemma is equivalent to Artin approx-
imation for Ah (as in Smoothing Ring Maps, Theorem 13.1) which does not hold
for every Noetherian local ring.

Lemma 10.1. Let A be a Noetherian G-ring. Let I ⊂ A be an ideal. Let B,C be
finite type A-algebras. For any A-algebra map ϕ : B∧ → C∧ of I-adic completions
and any N ≥ 1 there exist

(1) an étale ring map C → C ′ which induces an isomorphism C/IC → C ′/IC ′,
(2) an A-algebra map ϕ : B → C ′

such that ϕ and ψ agree modulo IN into C∧ = (C ′)∧.

Proof. The statement of the lemma makes sense as C → C ′ is flat (Algebra,
Lemma 138.3) hence induces an isomorphism C/InC → C ′/InC ′ for all n (More
on Algebra, Lemma 63.2) and hence an isomorphism on completions. Let Ch be the
henselization of the pair (C, IC), see More on Algebra, Lemma 7.12. Then Ch is the
filtered colimit of the algebras C ′ and the maps C → C ′ → Ch induce isomorphism
on completions (More on Algebra, Lemma 7.15). Thus it suffices to prove there
exists an A-algebra map B → Ch which is congruent to ψ modulo IN . Write B =
A[x1, . . . , xn]/(f1, . . . , fm). The ring map ψ corresponds to elements ĉ1, . . . , ĉn ∈
C∧ with fj(ĉ1, . . . , ĉn) = 0 for j = 1, . . . ,m. Namely, as A is a Noetherian G-ring,
so is C, see More on Algebra, Proposition 39.10. Thus Smoothing Ring Maps,
Lemma 14.1 applies to give elements c1, . . . , cn ∈ Ch such that fj(c1, . . . , cn) = 0
for j = 1, . . . ,m and such that ĉi − ci ∈ INCh. This determines the map B → Ch

as desired. �

11. Rig-surjective morphisms

For morphisms locally of finite type between locally Noetherian formal algebraic
spaces a definition borrowed from [Art70] can be used. See Remark 11.10 for a
discussion of what to do in more general cases.

Definition 11.1. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces over S. Assume that X and Y are locally Noetherian and that f
is locally of finite type. We say f is rig-surjective if for every solid diagram

Spf(R′) //

��

X

f

��
Spf(R)

p // Y

where R is a complete discrete valuation ring and where p is an adic morphism there
exists an extension of complete discrete valuation rings R ⊂ R′ and a morphism
Spf(R′)→ X making the displayed diagram commute.

We prove a few lemmas to explain what this means.

Lemma 11.2. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f
and g locally of finite type. Then if f and g are rig-surjective, so is g ◦ f .

Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemma 18.3). �
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Lemma 11.3. Let S be a scheme. Let f : X → Y and Z → Y be morphisms of
formal algebraic spaces over S. Assume X, Y , Z are locally Noetherian and f and
g locally of finite type. If f is rig-surjective, then the base change Z ×Y X → Z is
too.

Proof. Follows in a straightforward manner from the definitions (and Formal
Spaces, Lemmas 18.9 and 18.4). �

Lemma 11.4. Let S be a scheme. Let f : X → Y and g : Y → Z be morphisms
of formal algebraic spaces over S. Assume X, Y , Z locally Noetherian and f and
g locally of finite type. If g ◦ f : X → Z is rig-surjective, so is g : Y → Z.

Proof. Immediate from the definition. �

Lemma 11.5. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces which is representable by algebraic spaces, étale, and surjective.
Assume X and Y locally Noetherian. Then f is rig-surjective.

Proof. Let p : Spf(R) → Y be an adic morphism where R is a complete discrete
valuation ring. Let Z = Spf(R) ×Y X. Then Z → Spf(R) is representable by
algebraic spaces, étale, and surjective. Hence Z is nonempty. Pick a nonempty
affine formal algebraic space V and an étale morphism V → Z (possible by our
definitions). Then V → Spf(R) corresponds to R → A∧ where R → A is an étale
ring map, see Formal Spaces, Lemma 14.13. Since A∧ 6= 0 (as V 6= ∅) we can find
a maximal ideal m of A lying over mR. Then Am is a discrete valuation ring (More
on Algebra, Lemma 33.4). Then R′ = A∧m is a complete discrete valuation ring
(More on Algebra, Lemma 32.5). Applying Formal Spaces, Lemma 5.10. we find
the desired morphism Spf(R′)→ V → Z → X. �

Remark 11.6. Let S be a scheme. Let f : X → Y be a morphism of locally
Noetherian formal algebraic spaces which is locally of finite type. The upshot of
the lemmas above is that we may check whether f : X → Y is rig-surjective, étale
locally on Y . For example, suppose that {Yi → Y } is a covering as in Formal
Spaces, Definition 7.1. Then f is rig-surjective if and only if fi : X ×Y Yi → Yi is
rig-surjective. Namely, if f is rig-surjective, so is any base change (Lemma 11.3).
Conversely, if all fi are rig-surjective, so is

∐
fi :

∐
X ×Y Yi →

∐
Yi. By Lemma

11.5 the morphism
∐
Yi → Y is rig-surjective. Hence

∐
X ×Y Yi → Y is rig-

surjective (Lemma 11.2). Since this morphism factors through X → Y we see that
X → Y is rig-surjective by Lemma 11.4.

Lemma 11.7. Let S be a scheme. Let f : X → Y be a proper surjective morphism
of locally Noetherian algebraic spaces over S. Let T ⊂ |Y | be a closed subset and
let T ′ = |f |−1(T ) ⊂ |X|. Then X/T ′ → Y/T is rig-surjective.

Proof. The statement makes sense by Formal Spaces, Lemmas 15.6 and 18.10.
Let Yj → Y be a jointly surjective family of étale morphism where Yj is an affine
scheme for each j. Denote Tj ⊂ Yj the inverse image of T . Then {(Yj)/Tj

→ Y/T }
is a covering as in Formal Spaces, Definition 7.1. Moreover, setting Xj = Yj ×Y X
and T ′j ⊂ |Xj | the inverse image of T , we have

(Xj)/T ′j = (Yj)/Tj
×(Y/T ) X/T ′

By the discussion in Remark 11.6 we reduce to the case where Y is an affine Noe-
therian scheme treated in the next paragraph.

http://localhost:8080/tag/0AQS
http://localhost:8080/tag/0AQT
http://localhost:8080/tag/0AQU
http://localhost:8080/tag/0AQV
http://localhost:8080/tag/0AQW


26 RESTRICTED POWER SERIES

Assume Y = Spec(A) where A is a Noetherian ring. This implies that Y/T =
Spf(A∧) where A∧ is the I-adic completion of A for some ideal I ⊂ A. Let p :
Spf(R) → Spf(A∧) be an adic morphism where R is a complete discrete valuation
ring. Let K be the field of fractions of R. Consider the composition A→ A∧ → R.
Since X → Y is surjective, the fibre XK = Spec(K) ×Y X is nonempty. Thus we
may choose an affine scheme U and an étale morphism U → X such that UK is
nonempty. Let u ∈ UK be a closed point (possible as UK is affine). By Morphisms,
Lemma 21.3 the residue field L = κ(u) is a finite extension of K. Let R′ ⊂ L be the
integral closure of R in L. By More on Algebra, Remark 68.5 we see that R′ is a
discrete valuation ring. Because X → Y is proper we see that the given morphism
Spec(L) = u → UK → XK → X extends to a morphism Spec(R′) → X over the
given morphism Spec(R) → Y (Decent Spaces, Lemma 14.5). By commutativity
of the diagram the induced morphisms Spec(R′/mnR′)→ X are points of X/T ′ and
we find

Spf((R′)∧) = colim Spec(R′/mnR′) −→ X/T ′

as desired (note that (R′)∧ is a complete discrete valuation ring by More on Algebra,
Lemma 32.5; in fact in the current situation R′ = (R′)∧ but we do not need
this). �

Lemma 11.8. Let A be a Noetherian ring complete with respect to an ideal I. Let
B be an I-adically complete A-algebra. If A/In → B/InB is of finite type and flat
for all n and faithfully flat for n = 1, then Spf(B)→ Spf(A) is rig-surjective.

Proof. We will use without further mention that morphisms between formal spec-
tra are given by continuous maps between the corresponding topological rings, see
Formal Spaces, Lemma 5.10. Let ϕ : A→ R be a continuous map into a complete
discrete valuation ring A. This implies that ϕ(I) ⊂ mR. On the other hand, since
we only need to produce the lift ϕ′ : B′ → R′ in the case that ϕ corresponds to
an adic morphism, we may assume that ϕ(I) 6= 0. Thus we may consider the base
change C = B⊗̂AR, see Remark 4.3 for example. Then C is an mR-adically com-
plete R-algebra such that C/mnRC is of finite type and flat over R/mnR and such
that C/mRC is nonzero. Pick any maximal ideal m ⊂ C lying over mR. By flat-
ness (which implies going down) we see that Spec(Cm) \ V (mRCm) is a nonempty
open. Hence We can pick a prime q ⊂ m such that q defines a closed point of
Spec(Cm) \ {m} and such that q 6∈ V (ICm), see Properties, Lemma 6.4. Then C/q
is a dimension 1-local domain and we can find C/q ⊂ R′ with R′ a discrete valua-
tion ring (Algebra, Lemma 115.12). By construction mRR

′ ⊂ mR′ and we see that
C → R′ extends to a continuous map C → (R′)∧ (in fact we can pick R′ such that
R′ = (R′)∧ in our current situation but we do not need this). Since the completion
of a discrete valuation ring is a discrete valuation ring, we see that the assumption
gives a commutative diagram of rings

(R′)∧ Coo Boo

R

OO

Roo

OO

Aoo

OO

which gives the desired lift. �

Lemma 11.9. Let A be a Noetherian ring complete with respect to an ideal I. Let
B be an I-adically complete A-algebra. Assume that
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(1) the I-torsion in A is 0,
(2) A/In → B/InB is flat and of finite type for all n.

Then Spf(B) → Spf(A) is rig-surjective if and only if A/I → B/IB is faithfully
flat.

Proof. Faithful flatness implies rig-surjectivity by Lemma 11.8. To prove the con-
verse we will use without further mention that the vanishing of I-torsion is equiva-
lent to the vanising of I-power torsion (More on Algebra, Lemma 62.3). We will also
use without further mention that morphisms between formal spectra are given by
continuous maps between the corresponding topological rings, see Formal Spaces,
Lemma 5.10.

Assume Spf(B) → Spf(A) is rig-surjective. Choose a maximal ideal I ⊂ m ⊂ A.
The open U = Spec(Am) \ V (Im) of Spec(A) is nonempty as the Im-torsion of Am

is zero (use Algebra, Lemma 61.4). Thus we can find a prime q ⊂ m which defines
a point of U (i.e., I 6⊂ q) and which corresponds to a closed point of Spec(A) \ m,
see Properties, Lemma 6.4. Then A/q is a dimension 1-local domain and we can
find A/q ⊂ R with R a discrete valuation ring (Algebra, Lemma 115.12). By
construction IR ⊂ mR and we see that A → R extends to a continuous map
A → R∧ (in fact R = R∧ in our situation but we do not need this). Since the
completion of a discrete valuation ring is a discrete valuation ring, we see that the
assumption gives a commutative diagram of rings

R′ Boo

R∧

OO

Aoo

OO

Thus we find a prime ideal of B lying over m. It follows that Spec(B/IB) →
Spec(A/I) is surjective, whence A/I → B/IB is faithfully flat (Algebra, Lemma
38.15). �

Remark 11.10. The condition as formulated in Definition 11.1 is not right for mor-
phisms of locally adic* formal algebraic spaces. For example, if A = (

⋃
n≥1 k[t1/n])∧

where the completion is the t-adic completion, then there are no adic morphisms
Spf(R) → Spf(A) where R is a complete discrete valuation ring. Thus any mor-
phism X → Spf(A) would be rig-surjective, but since A is a domain and t ∈ A is not
zero, we want to think of A as having at least one “rig-point”, and we do not want
to allow X = ∅. To cover this particular case, one can consider adic morphisms

Spf(R) −→ Y

where R is a valuation ring complete with respect to a principal ideal J whose
radical is mR =

√
J . In this case the value group of R can be embedded into (R,+)

and one obtains the point of view used by Berkovich in defining an analytic space
associated to Y , see [Ber90]. Another approach is championed by Huber. In his
theory, one drops the hypothesis that Spec(R/J) is a singleton, see [Hub93].

Lemma 11.11. Let S be a scheme. Let f : X → Y be a morphism of formal
algebraic spaces. Assume X and Y are locally Noetherian, f locally of finite type,
and f a monomorphism. Then f is rig surjective if and only if every adic morphism
Spf(R)→ Y where R is a complete discrete valuation ring factors through X.
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Proof. One direction is trivial. For the other, suppose that Spf(R)→ Y is an adic
morphism such that there exists an extension of complete discrete valuation rings
R ⊂ R′ with Spf(R′)→ Spf(R)→ X factoring through Y . Then Spec(R′/mnRR

′)→
Spec(R/mnR) is surjective and flat, hence the morphisms Spec(R/mnR) → X factor
through X as X satisfies the sheaf condition for fpqc coverings, see Formal Spaces,
Lemma 23.1. In other words, Spf(R)→ Y factors through X. �

12. Algebraization

In this section we prove a generalization of the result on dilatations from the paper
of Artin [Art70]. We first reformulate the algebra results proved above into the
language of formal algebraic spaces.

Let S be a scheme. Let V be a locally Noetherian formal algebraic space over
S. We denote CV the category of formal algebraic spaces W over V such that the
structure morphism W → V is rig-étale.

Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. Recall that X/T denotes the formal completion of X along T , see Formal
Spaces, Section 9. More generally, for any algebraic space Y over X we denote Y/T
the completion of Y along the inverse image of T in |Y |, so that Y/T is a formal
algebraic space over X/T .

Lemma 12.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. If Y → X is morphism of algebraic spaces
which is locally of finite type and étale over X \ T , then Y/T → X/T is rig-étale,
i.e., Y/T is an object of CX/T

defined above.

Proof. Choose a surjective étale morphism U → X with U =
∐
Ui a disjoint

union of affine schemes, see Properties of Spaces, Lemma 6.1. For each i choose
a surjective étale morphism Vi → Y ×X Ui where Vi =

∐
Vij is a disjoint union

of affines. Write Ui = Spec(Ai) and Vij = Spec(Bij). Let Ii ⊂ Ai be an ideal
cutting out the inverse image of T in Ui. Then we may apply Lemma 6.2 to see
that the map of Ii-adic completions A∧i → B∧ij has the property P of Lemma 7.1.
Since {Spf(A∧i )→ X/T } and {Spf(Bij)→ Y/T } are coverings as in Formal Spaces,
Definition 7.1 we see that Y/T → X/T is rig-étale by definition. �

Lemma 12.2. Let X be a Noetherian affine scheme. Let T ⊂ X be a closed subset.
Let U be an affine scheme and let U → X a finite type morphism étale over X \T .
Let V be a Noetherian affine scheme over X. For any morphism c′ : V/T → U/T
over X/T there exists an étale morphism b : V ′ → V of affine schemes which
induces an isomorphism b/T : V ′/T → V/T and a morphism a : V ′ → U such that

c′ = a/T ◦ b−1/T .

Proof. This is a reformulation of Lemma 6.5. �

Lemma 12.3. Let X be a Noetherian affine scheme. Let T ⊂ X be a closed
subset. Let W → X/T be a rig-étale morphism of formal algebraic spaces with W
an affine formal algebraic space. Then there exists an afffine scheme U , a finite type
morphism U → X étale over X \ T such that W ∼= U/T . Moreover, if W → X/T is
étale, then U → X is étale.
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Proof. The existence of U is a restatement of Lemma 9.4. The final statement
follows from More on Morphisms, Lemma 10.3. �

Let S be a scheme. Let X be a locally Noetherian algebraic space over S and let
T ⊂ |X| be a closed subset. Let us denote CX,T the category of algebraic spaces Y
over X such that the structure morphism f : Y → X is locally of finite type and
an isomorphism over the complement of T . Formal completion defines a functor

(12.3.1) FX,T : CX,T −→ CX/T
, (f : Y → X) 7−→ (f/T : Y/T → X/T )

see Lemma 12.1.

Lemma 12.4. Let S be a scheme. Let f : X → Y and g : Z → Y be morphisms
of algebraic spaces. Let T ⊂ |X| be closed. Assume that

(1) X is locally Noetherian,
(2) g is a monomorphism and locally of finite type,
(3) f |X\T : X \ T → Y factors through g, and
(4) f/T : X/T → Y factors trough g,

then f factors through g.

Proof. Consider the fibre product E = X ×Y Z → X. By assumption the the
open immersion X \T → X factors through E and any morphism ϕ : X ′ → X with
|ϕ|(|X ′|) ⊂ T factors through E as well, see Formal Spaces, Section 9. By More on
Morphisms of Spaces, Lemma 17.3 this implies that E → X is étale at every point
of E mapping to a point of T . Hence E → X is an étale monomorphism, hence an
open immersion (Morphisms of Spaces, Lemma 45.2). Then it follows that E = X
since our assumptions imply that |X| = |E|. �

Lemma 12.5. Let S be a scheme. Let X, Y be locally Noetherian algebraic spaces
over S. Let T ⊂ |X| and T ′ ⊂ |Y | be closed subsets. Let a, b : X → Y be morphisms
of algebraic spaces over S such that a|X\T = b|X\T , such that |a|(T ) ⊂ T ′ and
|b|(T ) ⊂ T ′, and such that a/T = b/T as morphisms X/T → Y/T ′ . Then a = b.

Proof. Let E be the equalizer of a and b. Then E is an algebraic space and E → X
is locally of finite type and a monomorphism, see Morphisms of Spaces, Lemma
4.1. Our assumptions imply we can apply Lemma 12.4 to the two morphisms
f = id : X → X and g : E → X and the closed subset T of |X|. �

Lemma 12.6. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let s, t : R → U be two morphisms of
algebraic spaces over X. Assume

(1) R, U are locally of finite type over X,
(2) the base change of s and t to X \ T is an étale equivalence relation, and
(3) the formal completion (t/T , s/T ) : R/T → U/T ×X/T

U/T is an equivalence
relation too.

Then (t, s) : R→ U ×X U is an étale equivalence relation.

Proof. The morphisms s, t : R→ U are étale over X \T by assumption. Since the
formal completions of the maps s, t : R→ U are étale, we see that s and t are étale
for example by More on Morphisms, Lemma 10.3. Applying Lemma 12.4 to the
morphisms id : R×U×XU R→ R×U×XU R and ∆ : R→ R×U×XU R we conclude
that (t, s) is a monomorphism. Applying it again to (t ◦ pr0, s ◦ pr1) : R×s,U,t R→
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U ×X U and (t, s) : R → U ×X U we find that “transitivity” holds. We omit the
proof of the other two axioms of an equivalence relation. �

Remark 12.7. Let S, X, and T ⊂ |X| be as in (12.3.1). Let U → X be an
algebraic space over X such that U → X is locally of finite type and étale outside
of T . We will construct a factorization

U −→ Y −→ X

with Y in CX,T such that U/T → Y/T is an isomorphism. We may assume the image
of U → X contains X \T , otherwise we replace U by U q (X \T ). For an algebraic
space Z over X, let us denote Z◦ the open subspace which is the inverse image of
X \ T . Let

R = U qU◦ (U ×X U)◦

be the pushout of U◦ → U and the diagonal morphism U◦ → U◦ ×X U◦ = (U ×X
U)◦. Since U◦ → X is étale, the diagonal is an open immersion and we see that
R is an algebraic space (this follows for example from Spaces, Lemma 8.4). The
two projections (U ×X U)◦ → U extend to R and we obtain two étale morphisms
s, t : R → U . Checking on each piece separatedly we find that R is an étale
equivalence relation on U . Set Y = U/R which is an algebraic space by Bootstrap,
Theorem 10.1. Since U◦ → X \ T is a surjective étale morphism and since R◦ =
U◦×X\TU◦ we see that Y ◦ → X\T is an isomorphism. In other words, Y → X is an
object of CX,T . On the other hand, the morphism U → Y induces an isomorphism
U/T → Y/T . Namely, the formal completion of R along the inverse image of T is
equal to the formal completion of U along the inverse image of T by our choice of
R. By our construction of the formal completion in Formal Spaces, Section 9 we
conclude that U/T = Y/T .

Lemma 12.8. Let S be a scheme. Let X be a Noetherian affine algebraic space
over S. Let T ⊂ |X| be a closed subset. Then the functor FX,T is an equivalence.

Before we prove this lemma let us discuss an example. Suppose that S = Spec(k),
X = A1

k, and T = {0}. Then X/T = Spf(k[[x]]). Let W = Spf(k[[x]] × k[[x]]).
Then the corresponding Y is the affine line with zero doubled (Schemes, Example
14.3). Moreover, this is the output of the construction in Remark 12.7 starting with
U = X qX.

Proof. For any scheme or algebraic space Z over X, let us denote Z0 ⊂ Z the in-
verse image of T with the induced reduced closed subscheme or subspace structure.
Note that Z0 = (Z/T )red is the reduction of the formal completion.

The functor FX,T is faithful by Lemma 12.5.

Let Y, Y ′ be objects of CX,T and let a′ : Y/T → Y ′/T be a morphism in CX/T
. To

prove FX,T is fully faithful, we will construct a morphism a : Y → Y ′ in CX,T such
that a′ = a/T .

Let U be an affine scheme and let U → Y be an étale morphism. Because U is
affine, U0 is affine and the image of U0 → Y0 → Y ′0 is a quasi-compact subspace
of |Y ′0 |. Thus we can choose an affine scheme V and an étale morphism V → Y ′

such that the image of |V0| → |Y ′0 | contains this quasi-compact subset. Consider
the formal algebraic space

W = U/T ×Y ′
/T
V/T
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By our choice of V the above, the map W → U/T is surjective. Thus there exists
an affine formal algebraic space W ′ and an étale morphism W ′ → W such that
W ′ →W → U/T is surjective. Then W ′ → U/T is étale. By Lemma 12.3 W ′ = U ′/T
for U ′ → U étale and U ′ affine. Write V = Spec(C). By Lemma 12.2 there exists an
étale morphism U ′′ → U ′ of affines which is an isomorphism on completions and a
morphism U ′′ → V whose completion is the composition U ′′/T → U ′/T →W → V/T .

Thus we get

Y ←− U ′′ −→ Y ′

over X agreeing with the given map on formal completions such that the image of
U ′′0 → Y0 is the same as the image of U0 → Y0.

Taking a disjoint union of U ′′ as constructed in the previous paragraph, we find a
scheme U , an étale morphism U → Y , and a morphism b : U → Y ′ over X, such
that the diagram

U/T

��

b/T

!!
Y/T

a′ // Y ′/T

is commutative and such that U0 → Y0 is surjective. Taking a disjoint union with
the open X \T (which is also open in Y and Y ′), we find that we may even assume
that U → Y is a surjective étale morphism. Let R = U ×Y U . Then the two
compositions R → U → Y ′ agree both over X \ T and after formal completion
along T , whence are equal by Lemma 12.5. This means exactly that b factors as
U → Y → Y ′ to give us our desired morphism a : Y → Y ′.

Essential surjectivity. Let W be an object of CX/T
. We prove W is in the essential

image in a number of steps.

Step 1: W is an affine formal algebraic space. Then we can find U → X of finite
type and étale over X \T such that U/T is isomorphic to W , see Lemma 12.3. Thus
we see that W is in the essential image by the construction in Remark 12.7.

Step 2: W is separated. Choose {Wi →W} as in Formal Spaces, Definition 7.1. By
Step 1 the formal algebraic spaces Wi and Wi×WWj are in the essential image. Say
Wi = (Yi)/T and Wi ×W Wj = (Yij)/T . By fully faithfulness we obtain morphisms
tij : Yij → Yi and sij : Yij → Yj matching the projections Wi ×W Wj → Wi and
Wi ×W Wj → Wj . Set R =

∐
Yij and U =

∐
Yi and denote s =

∐
sij : R → U

and t =
∐
tij : R → U . Applying Lemma 12.6 we find that (t, s) : R → U ×X U

is an étale equivalence relation. Thus we can take the quotient Y = U/R and it is
an algebraic space, see Bootstrap, Theorem 10.1. Since completion commutes with
fibre products and taking quotient sheaves, we find that Y/T ∼= W in CX/T

.

Step 3: W is general. Choose {Wi →W} as in Formal Spaces, Definition 7.1. The
formal algebraic spaces Wi and Wi ×W Wj are separated. Hence by Step 2 the
formal algebraic spaces Wi and Wi ×W Wj are in the essential image. Then we
argue exactly as in the previous paragraph to see that W is in the essential image
as well. This concludes the proof. �

Theorem 12.9. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. The functor FX,T (12.3.1) is an equivalence.
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Proof. The theorem is essentially a formal consequence of Lemma 12.8. We give
the details but we encourage the reader to think it through for themselves. Let
g : U → X be a surjective étale morphism with U =

∐
Ui and each Ui affine.

Denote FU,T the functor for U and the inverse image of T in |U |.
Since U =

∐
Ui both the category CU,T and the category CU/T

decompose as a
product of categories, one for each i. Since the functors FUi,T are equivalences for
all i by the lemma we find that the same is true for FU,T .

Since FU,T is faithful, it follows that FX,T is faithful too. Namely, if a, b : Y → Y ′

are morphisms in CX,T such that a/T = b/T , then we find on pulling back that
the base changes aU , bU : U ×X Y → U ×X Y ′ are equal. Since U ×X Y → Y is
surjective étale, this implies that a = b.

At this point we know that FX,T is faithful for every situation as in the theorem.
Let R = U ×X U where U is as above. Let t, s : R → U be the projections. Since
X is Noetherian, so is R. Thus the functor FR,T (defined in the obvious manner)
is faithful. Let Y → X and Y ′ → X be objects of CX,T . Let a′ : Y/T → Y ′/T be a

morphism in the category CX/T
. Taking the base change to U we obtain a morphism

a′U : (U ×X Y )/T → (U ×X Y ′)/T in the category CU/T
. Since the functor FU,T is

fully faithful we obtain a morphism aU : U ×X Y → U ×X Y ′ with FU,T (aU ) = a′U .
Since s∗(a′U ) = t∗(a′U ) and since FR,T is faithful, we find that s∗(aU ) = t∗(aU ).
Since

R×X Y
//
// U ×X Y // Y

is an equalizer diagram of sheaves, we find that aU descends to a morphism a :
Y → Y ′. We omit the proof that FX,T (a) = a′.

At this point we know that FX,T is faithful for every situation as in the theorem.
To finish the proof we show that FX,T is essentially surjective. Let W → X/T be
an object of CX/T

. Then U ×X W is an object of CU/T
. By the affine case we

find an object V → U of CU,T and an isomorphism α : FU,T (V ) → U ×X W in
CU/T

. By fully faithfulness of FR,T we find a unique morphism h : s∗V → t∗V in

the category CR,T such that FR,T (h) corresponds, via the isomorphism α, to the
canonical descent datum on U ×X W in the category CR/T

. Using faithfulness of
our functor on R×s,U,tR we see that h satisfies the cocycle condition. We conclude,
for example by the much more general Bootstrap, Lemma 11.2, that there exists an
object Y → X of CX,T and an isomorphism β : U ×X Y → V such that the descent
datum h corresponds, via β, to the canonical descent datum on U ×X Y . We omit
the verification that FX,T (Y ) is isomorphic to W ; hint: in the category of formal
algebraic spaces there is descent for morphisms along étale coverings. �

We are often interested as to whether the output of the construction of Theorem
12.9 is a separated algebraic space. In the next few lemmas we match properties of
Y → X and the corresponding completion Y/T → X/T .

Lemma 12.10. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 12.9. Then
Y → X is quasi-compact if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
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of Spaces, Lemma 8.7 as well as Formal Spaces, Lemma 12.3. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union of

affines. Then V/T → Y/T = W is a surjective étale morphism. Thus if Y is quasi-
compact, we can choose J is finite, and we conclude that W is quasi-compact.
Conversely, if W is quasi-compact, then we can find a finite subset J ′ ⊂ J such
that

∐
j∈J′(Vj)/T →W is surjective. Then it follows that

(X \ T )q
∐

j∈J′
Vj −→ Y

is surjective. This either follows from the construction of Y in the proof of Lemma
12.8 or it follows since we have

|Y | = |X \ T | q |Wred|
as Y/T = W . �

Lemma 12.11. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 12.9. Then
Y → X is quasi-separated if and only if W → X/T is so.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 4.12 as well as Formal Spaces, Lemma 21.5, If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine.

Let V → Y be a surjective étale morphism where V =
∐
j∈J Vj is a disjoint union

of affines. Then Y is quasi-separated if and only if Vj ×Y Vj′ is quasi-compact
for all j, j′ ∈ J . Similarly, W is quasi-separated if and only if (Vj ×Y Vj′)/T =
(Vj)/T ×Y/T

(Vj′)/T is quasi-compact for all j, j′ ∈ J . Since X is Noetherian affine,
we see that

(Vj ×Y Vj′)×X (X \ T )

is quasi-compact. Hence we conclude the equvalence holds by the equality

|Vj ×Y Vj′ | = |(Vj ×Y Vj′)×X (X \ T )| q |(Vj ×Y Vj′)/T |
and the fact that the second summand is closed in the left hand side. �

Lemma 12.12. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 12.9. Then
Y → X is separated if and only if W → X/T is separated and ∆ : W →W ×X/T

W
is rig-surjective.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 4.12 as well as Formal Spaces, Lemma 21.5. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
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and do assume X is affine. In the proof of both directions we may assume that
Y → X and W → X/T are quasi-separated by Lemma 12.11.

Proof of easy direction. Assume Y → X is separated. Then Y → Y ×X Y is a
closed immersion and it follows that W → W ×X/T

W is a closed immersion too,
i.e., we see that W → X/T is separated. Let

p : Spf(R) −→W ×X/T
W = (Y ×X Y )/T

be an adic morphism whereR is a complete discrete valuation ring with fraction field
K. The composition into Y×XY corresponds to a morphism g : Spec(R)→ Y×XY ,
see Formal Spaces, Lemma 24.3. Since p is an adic morphism, so is the composition
Spf(R)→ X. Thus we see that g(Spec(K)) is a point of

(Y ×X Y )×X (X \ T ) ∼= X \ T ∼= Y ×X (X \ T )

(small detail omitted). Hence this lifts to a K-point of Y and we obtain a commu-
taive diagram

Spec(K) //

��

Y

��
Spec(R) //

99

Y ×X Y

Since Y → X was assumed separated we find the dotted arrow exists (Cohomology
of Spaces, Lemma 18.1). Applying the functor completion along T we find that p
can be lifted to a morphism into W , i.e., W →W ×X/T

W is rig-surjective.

Proof of hard direction. Assume W → X/T separated and W → W ×X/T
W rig-

surjective. By Cohomology of Spaces, Lemma 18.1 and Remark 18.3 it suffices to
show that given any commtutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

99

Y ×X Y

where R is a complete discrete valuation ring with fraction field K, there is at most
one dotted arrow making the diagram commute. Let h : Spec(R) → X be the
composition of g with the morphism Y ×X Y → X. There are three cases: Case I:
h(Spec(R)) ⊂ (X \T ). This case is trivial because Y ×X (X \T ) = X \T . Case II:
h maps Spec(R) into T . This case follows from our assumption that W → X/T is
separated. Namely, if T denotes the reduced induced closed subspace structure on
T , then h factors through T and

W ×X/T
T = Y ×X T −→ T

is separated by assumption (and for example Formal Spaces, Lemma 21.5) which
implies we get the lifting property by Cohomology of Spaces, Lemma 18.1 applied
to the displayed arrow. Case III: h(Spec(K)) is not in T but h maps the closed
point of Spec(R) into T . In this case the corresponding morphism

g/T : Spf(R) −→ (Y ×X Y )/T = W ×X/T
W

is an adic morphism (detail omitted). Hence our assumption that W →W ×X/T
W

be rig-surjective implies we can lift g/T to a morphism e : Spf(R)→W = Y/T (see
Lemma 11.11 for why we do not need to extend R). Algebraizing the composition
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Spf(R) → Y using Formal Spaces, Lemma 24.3 we find a morphism Spec(R) → Y
lifing g as desired. �

Lemma 12.13. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let T ⊂ |X| be a closed subset. Let W → X/T be an object of the category
CX/T

and let Y → X be the object corresponding to W via Theorem 12.9. Then
Y → X is proper if and only if the following conditions hold

(1) W → X/T is proper,
(2) W → X/T is rig-surjective, and
(3) ∆ : W →W ×X/T

W is rig-surjective.

Proof. These conditions may be checked after base change to an affine scheme
étale over X, resp. a formal affine algebraic space étale over X/T , see Morphisms
of Spaces, Lemma 37.2 as well as Formal Spaces, Lemma 22.2. If U → X ranges
over étale morphisms wtih U affine, then the formal completions U/T → X/T give a
family of formal affine coverings as in Formal Spaces, Definition 7.1. Thus we may
and do assume X is affine. In the proof of both directions we may assume that
Y → X and W → X/T are separated and quasi-compact and that W →W×X/T

W
is rig-surjective by Lemmas 12.10 and 12.12.

Proof of the easy direction. Assume Y → X is proper. Then Y/T = Y ×X X/T →
X/T is proper too. Let

p : Spf(R) −→ X/T

be an adic morphism where R is a complete discrete valuation ring with fraction
field K. Then p corresponds to a morphism g : Spec(R) → X, see Formal Spaces,
Lemma 24.3. Since p is an adic morphism, we have p(Spec(K)) 6∈ T . Since Y → X
is an isomorphism over X \ T we can lift to X and obtain a commutative diagram

Spec(K) //

��

Y

��
Spec(R) //

;;

X

Since Y → X was assumed proper we find the dotted arrow exists. (Cohomology
of Spaces, Lemma 18.2). Applying the functor completion along T we find that p
can be lifted to a morphism into W , i.e., W → X/T is rig-surjective.

Proof of hard direction. Assume W → X/T proper, W →W×X/T
W rig-surjective,

and W → X/T rig-surjective. By Cohomology of Spaces, Lemma 18.2 and Remark
18.3 it suffices to show that given any commtutative diagram

Spec(K) //

��

Y

��
Spec(R)

g //

;;

X

where R is a complete discrete valuation ring with fraction field K, there is a dotted
arrow making the diagram commute. Let h : Spec(R) → X be the composition of
g with the morphism Y ×X Y → X. There are three cases: Case I: h(Spec(R)) ⊂
(X \ T ). This case is trivial because Y ×X (X \ T ) = X \ T . Case II: h maps
Spec(R) into T . This case follows from our assumption that W → X/T is proper.
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Namely, if T denotes the reduced induced closed subspace structure on T , then h
factors through T and

W ×X/T
T = Y ×X T −→ T

is proper by assumption which implies we get the lifting property by Cohomology
of Spaces, Lemma 18.2 applied to the displayed arrow. Case III: h(Spec(K)) is not
in T but h maps the closed point of Spec(R) into T . In this case the corresponding
morphism

g/T : Spf(R) −→ Y/T = W

is an adic morphism (detail omitted). Hence our assumption that W → X/T be
rig-surjective implies we can lift g/T to a morphism e : Spf(R′) → W = Y/T for
some extension of complete discrete valuation rings R ⊂ R′. Algebraizing the
composition Spf(R′) → Y using Formal Spaces, Lemma 24.3 we find a morphism
Spec(R′) → Y lifing g. By the discussion in Cohomology of Spaces, Remark 18.3
this is sufficient to conclude that Y → X is proper. �

13. Application to modifications

Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(13.0.1)

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X → X ′

compatible with the structure morphisms over S.

Let A → B be a local homomorphism of local Noetherian rings such that mB =√
mAB. Then base change along the morphism Spec(B)→ Spec(A) gives a functor

from the category (13.0.1) for A to the category (13.0.1) for B.

Lemma 13.1. Let (A,m, κ) be a Noetherian local ring with m-adic completion A∧.
Then base change defines an equivalence of categories between the category (13.0.1)
for A with the category (13.0.1) for the completion A∧.

Proof. Set S = Spec(A) as in (13.0.1) and T = V (m). Similarly, Write S′ =
Spec(A∧) and T ′ = V (m∧). The morphism S′ → S defines an isomorphism S′/T ′ →
S/T of formal completions. Let CS,T , CS/T

, CS′
/T ′

, and CS′,T ′ be the corresponding

categories as used in (12.3.1). By Theorem 12.9 (in fact we only need the affine
case treated in Lemma 12.8) we see that

CS,T = CS/T
= CS′

/T ′
= CS′,T ′

Note that f : X → S is an object of (13.0.1) if and only if f : X → S is an object
of CS,T and f is proper. Hence, to finish the proof we have to show that an object
f : X → S of CS,T is proper over S if and only if the base change f ′ : X ′ → S′ is
proper over S′. This you can deduce from Lemma 12.13 (translating the properness
into properties of the formal completion which lives in CS/T

= CS′
/T ′

), or you can

deduce it from Descent on Spaces, Lemma 10.17. �

Lemma 13.2. Let A→ B be a local map of local Noetherian rings such that

(1) A→ B is flat,
(2) mB = mAB, and

http://localhost:8080/tag/0AE5
http://localhost:8080/tag/0AF7


RESTRICTED POWER SERIES 37

(3) κ(mA) = κ(mB)

(equivalently, A→ B induces an isomorphism on completions, see More on Algebra,
Lemma 32.7). Then the base change functor from the category (13.0.1) for A to
the category (13.0.1) for B is an equivalence.

Proof. This follows immediately from Lemma 13.1. �

Lemma 13.3. Let (A,m, κ) be a Noetherian local ring. Let f : X → S be an object
of (13.0.1). Then there exists a U -admissible blowup S′ → S which dominates X.

Proof. Special case of More on Morphisms of Spaces, Lemma 28.3. �

Let (A,m, κ) be a Noetherian local ring. Let A∧ be the completion of A. Set
S∧ = Spec(A∧), S = Spec(A) and let U∧ ⊂ S∧, U ⊂ S be the complement of the
closed point. Picture

U∧ //

��

S∧

��
U // S

This is a cartesian square of schemes.

Lemma 13.4. With assumption and notation as above. If Y → S∧ is a U∧-
admissible blowup, then there exists a U -admissible blowup X → S such that Y =
X ×S S∧.

Proof. By definition there exists an ideal J ⊂ A∧ such that V (J) = {mA∧} and
such that Y is the blowup of S∧ in the closed subscheme defined by J , see Divisors,
Definition 20.1. Since A∧ is Noetherian this implies mnA∧ ⊂ J for some n. Since
A∧/mnA∧ = A/mn we find an ideal mn ⊂ I ⊂ A such that J = IA∧. Let X → S
be the blowup in I. Since A→ A∧ is flat we conclude that the base change of X is
Y by Divisors, Lemma 18.3. �
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