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2 SHEAVES ON SPACES

1. Introduction

Basic properties of sheaves on topological spaces will be explained in this document.
A reference is [God73].

This will be superseded by the discussion of sheaves over sites later in the docu-
ments. But perhaps it makes sense to briefly define some of the notions here.

2. Basic notions

The following notions are considered basic and will not be defined, and or proved.
This does not mean they are all necessarily easy or well known.

(1) Let X be a topological space. The phrase: “Let U =
⋃
i∈I Ui be an open

covering” means the following: I is a set, and for each i ∈ I we are given an
open subset Ui ⊂ X. Furthermore U is the union of the Ui. It is allowed
to have I = ∅ in which case there are no Ui and U = ∅. It is also allowed,
in case I 6= ∅ to have any or all of the Ui be empty.

(2) etc, etc.

3. Presheaves

Definition 3.1. Let X be a topological space.

(1) A presheaf F of sets on X is a rule which assigns to each open U ⊂ X a
set F(U) and to each inclusion V ⊂ U a map ρUV : F(U)→ F(V ) such that
ρUU = idF(U) and whenever W ⊂ V ⊂ U we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on X is a rule which assigns
to each open U ⊂ X a map of sets ϕ : F(U) → G(U) compatible with
restriction maps, i.e., whenever V ⊂ U ⊂ X are open the diagram

F(U)
ϕ //

ρUV
��

G(U)

ρUV
��

F(V )
ϕ // G(V )

commutes.
(3) The category of presheaves of sets on X will be denoted PSh(X).

The elements of the set F(U) are called the sections of F over U . For every V ⊂ U
the map ρUV : F(U)→ F(V ) is called the restriction map. We will use the notation
s|V := ρUV (s) if s ∈ F(U). This notation is consistent with the notion of restriction
of functions from topology because if W ⊂ V ⊂ U and s is a section of F over
U then s|W = (s|V )|W by the property of the restriction maps expressed in the
definition above.

Another notation that is often used is to indicate sections over an open U by
the symbol Γ(U,−) or by H0(U,−). In other words, the following equalities are
tautological

Γ(U,F) = F(U) = H0(U,F).

In this chapter we will not use this notation, but in others we will.

Definition 3.2. Let X be a topological space. Let A be a set. The constant
presheaf with value A is the presheaf that assigns the set A to every open U ⊂ X,
and such that all restriction mappings are idA.
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4. Abelian presheaves

In this section we briefly point out some features of the category of presheaves that
allow one to define presheaves of abelian groups.

Example 4.1. Let X be a topological space X. Consider a rule F that associates
to every open subset a singleton set. Since every set has a unique map into a
singleton set, there exist unique restriction maps ρUV . The resulting structure is a
presheaf of sets. It is a final object in the category of presheaves of sets, by the
property of singleton sets mentioned above. Hence it is also unique up to unique
isomorphism. We will sometimes write ∗ for this presheaf.

Lemma 4.2. Let X be a topological space. The category of presheaves of sets on
X has products (see Categories, Definition 14.5). Moreover, the set of sections of
the product F ×G over an open U is the product of the sets of sections of F and G
over U .

Proof. Namely, suppose F and G are presheaves of sets on the topological space
X. Consider the rule U 7→ F(U)× G(U), denoted F × G. If V ⊂ U ⊂ X are open
then define the restriction mapping

(F × G)(U) −→ (F × G)(V )

by mapping (s, t) 7→ (s|V , t|V ). Then it is immediately clear that F×G is a presheaf.
Also, there are projection maps p : F × G → F and q : F × G → G. We leave it
to the reader to show that for any third presheaf H we have Mor(H,F × G) =
Mor(H,F)×Mor(H,G). �

Recall that if (A,+ : A× A→ A,− : A→ A, 0 ∈ A) is an abelian group, then the
zero and the negation maps are uniquely determined by the addition law. In other
words, it makes sense to say “let (A,+) be an abelian group”.

Lemma 4.3. Let X be a topological space. Let F be a presheaf of sets. Consider
the following types of structure on F :

(1) For every open U the structure of an abelian group on F(U) such that all
restriction maps are abelian group homomorphisms.

(2) A map of presheaves + : F ×F → F , a map of presheaves − : F → F and
a map 0 : ∗ → F (see Example 4.1) satisfying all the axioms of +,−, 0 in
a usual abelian group.

(3) A map of presheaves + : F×F → F , a map of presheaves − : F → F and a
map 0 : ∗ → F such that for each open U ⊂ X the quadruple (F(U),+,−, 0)
is an abelian group,

(4) A map of presheaves + : F × F → F such that for every open U ⊂ X the
map + : F(U)×F(U)→ F(U) defines the structure of an abelian group.

There are natural bijections between the collections of types of data (1) - (4) above.

Proof. Omitted. �

The lemma says that to give an abelian group object F in the category of presheaves
is the same as giving a presheaf of sets F such that all the sets F(U) are endowed
with the structure of an abelian group and such that all the restriction mappings
are group homomorphisms. For most algebra structures we will take this approach
to (pre)sheaves of such objects, i.e., we will define a (pre)sheaf of such objects to
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4 SHEAVES ON SPACES

be a (pre)sheaf F of sets all of whose sets of sections F(U) are endowed with this
structure compatibly with the restriction mappings.

Definition 4.4. Let X be a topological space.

(1) A presheaf of abelian groups on X or an abelian presheaf over X is a presheaf
of sets F such that for each open U ⊂ X the set F(U) is endowed with the
structure of an abelian group, and such that all restriction maps ρUV are
homomorphisms of abelian groups, see Lemma 4.3 above.

(2) A morphism of abelian presheaves over X ϕ : F → G is a morphism
of presheaves of sets which induces a homomorphism of abelian groups
F(U)→ G(U) for every open U ⊂ X.

(3) The category of presheaves of abelian groups on X is denoted PAb(X).

Example 4.5. Let X be a topological space. For each x ∈ X suppose given an
abelian group Mx. For U ⊂ X open we set

F(U) =
⊕

x∈U
Mx.

We denote a typical element in this abelian group by
∑n
i=1mxi , where xi ∈ U

and mxi ∈ Mxi . (Of course we may always choose our representation such that
x1, . . . , xn are pairwise distinct.) We define for V ⊂ U ⊂ X open a restriction
mapping F(U) → F(V ) by mapping an element s =

∑n
i=1mxi to the element

s|V =
∑
xi∈V mxi . We leave it to the reader to verify that this is a presheaf of

abelian groups.

5. Presheaves of algebraic structures

Let us clarify the definition of presheaves of algebraic structures. Suppose that
C is a category and that F : C → Sets is a faithful functor. Typically F is a
“forgetful” functor. For an object M ∈ Ob(C) we often call F (M) the underlying
set of the object M . If M → M ′ is a morphism in C we call F (M) → F (M ′) the
underlying map of sets. In fact, we will often not distinguish between an object
and its underlying set, and similarly for morphisms. So we will say a map of sets
F (M) → F (M ′) is a morphism of algebraic structures, if it is equal to F (f) for
some morphism f : M →M ′ in C.
In analogy with Definition 4.4 above a “presheaf of objects of C” could be defined
by the following data:

(1) a presheaf of sets F , and
(2) for every open U ⊂ X a choice of an object A(U) ∈ Ob(C)

subject to the following conditions (using the phraseology above)

(1) for every open U ⊂ X the set F(U) is the underlying set of A(U), and
(2) for every V ⊂ U ⊂ X open the map of sets ρUV : F(U) → F(V ) is a

morphism of algebraic structures.

In other words, for every V ⊂ U open in X the restriction mappings ρUV is the
image F (αUV ) for some unique morphism αUV : A(U) → A(V ) in the category C.
The uniqueness is forced by the condition that F is faithful; it also implies that
αUW = αVW ◦ αUV whenever W ⊂ V ⊂ U are open in X. The system (A(−), αUV ) is
what we will define as a presheaf with values in C on X, compare Sites, Definition
2.2. We recover our presheaf of sets (F , ρUV ) via the rules F(U) = F (A(U)) and
ρUV = F (αUV ).

http://localhost:8080/tag/006K
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Definition 5.1. Let X be a topological space. Let C be a category.

(1) A presheaf F on X with values in C is given by a rule which assigns to
every open U ⊂ X an object F(U) of C and to each inclusion V ⊂ U a
morphism ρUV : F(U) → F(V ) in C such that whenever W ⊂ V ⊂ U we
have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with value in C is given by a morphism
ϕ : F(U)→ G(U) in C compatible with restriction morphisms.

Definition 5.2. Let X be a topological space. Let C be a category. Let F : C →
Sets be a faithful functor. Let F be a presheaf on X with values in C. The presheaf
of sets U 7→ F (F(U)) is called the underlying presheaf of sets of F .

It is customary to use the same letter F to denote the underlying presheaf of
sets, and this makes sense according to our discussion preceding Definition 5.1. In
particular, the phrase “let s ∈ F(U)” or “let s be a section of F over U” signifies
that s ∈ F (F(U)).

This notation and these definitions apply in particular to: Presheaves of (not nec-
essarily abelian) groups, rings, modules over a fixed ring, vector spaces over a fixed
field, etc and morphisms between these.

6. Presheaves of modules

Suppose that O is a presheaf of rings on X. We would like to define the notion of
a presheaf of O-modules over X. In analogy with Definition 4.4 we are tempted to
define this as a sheaf of sets F such that for every open U ⊂ X the set F(U) is
endowed with the structure of an O(U)-module compatible with restriction map-
pings (of F and O). However, it is customary (and equivalent) to define it as in
the following definition.

Definition 6.1. Let X be a topological space, and let O be a presheaf of rings on
X.

(1) A presheaf of O-modules is given by an abelian presheaf F together with a
map of presheaves of sets

O ×F −→ F

such that for every open U ⊂ X the map O(U) × F(U) → F(U) defines
the structure of an O(U)-module structure on the abelian group F(U).

(2) A morphism ϕ : F → G of presheaves of O-modules is a morphism of
abelian presheaves ϕ : F → G such that the diagram

O ×F //

id×ϕ
��

F

ϕ

��
O × G // G

commutes.
(3) The set of O-module morphisms as above is denoted HomO(F ,G).
(4) The category of presheaves of O-modules is denoted PMod(O).

http://localhost:8080/tag/006N
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6 SHEAVES ON SPACES

Suppose that O1 → O2 is a morphism of presheaves of rings on X. In this case, if
F is a presheaf of O2-modules then we can think of F as a presheaf of O1-modules
by using the composition

O1 ×F → O2 ×F → F .
We sometimes denote this by FO1 to indicate the restriction of rings. We call this
the restriction of F . We obtain the restriction functor

PMod(O2) −→ PMod(O1)

On the other hand, given a presheaf of O1-modules G we can construct a presheaf
of O2-modules O2 ⊗p,O1

G by the rule

(O2 ⊗p,O1 G) (U) = O2(U)⊗O1(U) G(U)

The index p stands for “presheaf” and not “point”. This presheaf is called the
tensor product presheaf. We obtain the change of rings functor

PMod(O1) −→ PMod(O2)

Lemma 6.2. With X, O1, O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗p,O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from the fact that for a ring map A→ B the restriction functor
and the change of ring functor are adjoint to each other. �

7. Sheaves

In this section we explain the sheaf condition.

Definition 7.1. Let X be a topological space.

(1) A sheaf F of sets on X is a presheaf of sets which satisfies the following ad-
ditional property: Given any open covering U =

⋃
i∈I Ui and any collection

of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I
si|Ui∩Uj = sj |Ui∩Uj

there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I.
(2) A morphism of sheaves of sets is simply a morphism of presheaves of sets.
(3) The category of sheaves of sets on X is denoted Sh(X).

Remark 7.2. There is always a bit of confusion as to whether it is necessary to
say something about the set of sections of a sheaf over the empty set ∅ ⊂ X. It is
necessary, and we already did if you read the definition right. Namely, note that
the empty set is covered by the empty open covering, and hence the “collection of
section si” from the definition above actually form an element of the empty product
which is the final object of the category the sheaf has values in. In other words, if
you read the definition right you automatically deduce that F(∅) = a final object,
which in the case of a sheaf of sets is a singleton. If you do not like this argument,
then you can just require that F(∅) = {∗}.
In particular, this condition will then ensure that if U, V ⊂ X are open and disjoint
then

F(U ∪ V ) = F(U)×F(V ).

http://localhost:8080/tag/006R
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(Because the fibre product over a final object is a product.)

Example 7.3. Let X, Y be topological spaces. Consider the rule F wich associates
to the open U ⊂ X the set

F(U) = {f : U → Y | f is continuous}
with the obvious restriction mappings. We claim that F is a sheaf. To see this
suppose that U =

⋃
i∈I Ui is an open covering, and fi ∈ F(Ui), i ∈ I with fi|Ui∩Uj =

fj |Ui∩Uj for all i, j ∈ I. In this case define f : U → Y by setting f(u) equal to the
value of fi(u) for any i ∈ I such that u ∈ Ui. This is well defined by assumption.
Moreover, f : U → Y is a map such that its restriction to Ui agrees with the
continuous map Ui. Hence clearly f is continuous!

We can use the result of the example to define constant sheaves. Namely, suppose
that A is a set. Endow A with the discrete topology. Let U ⊂ X be an open subset.
Then we have

{f : U → A | f continuous} = {f : U → A | f locally constant}.
Thus the rule which assigns to an open all locally constant maps into A is a sheaf.

Definition 7.4. Let X be a topological space. Let A be a set. The constant sheaf
with value A denoted A, or AX is the sheaf that assigns to an open U ⊂ X the set
of all locally constant maps U → A with restriction mappings given by restrictions
of functions.

Example 7.5. Let X be a topological space. Let (Ax)x∈X be a family of sets Ax
indexed by points x ∈ X. We are going to construct a sheaf of sets Π from this
data. For U ⊂ X open set

Π(U) =
∏

x∈U
Ax.

For V ⊂ U ⊂ X open define a restriction mapping by the following rule: An
element s = (ax)x∈U ∈ Π(U) restricts to s|V = (ax)x∈V . It is obvious that this
defines a presheaf of sets. We claim this is a sheaf. Namely, let U =

⋃
Ui be an

open covering. Suppose that si ∈ Π(Ui) are such that si and sj agree over Ui ∩Uj .
Write si = (ai,x)x∈Ui . The compatibility condition implies that ai,x = aj,x in the
set Ax whenever x ∈ Ui ∩ Uj . Hence there exists a unique element s = (ax)x∈U in
Π(U) =

∏
x∈U Ax with the property that ax = ai,x whenever x ∈ Ui for some i. Of

course this element s has the property that s|Ui = si for all i.

Example 7.6. Let X be a topological space. Suppose for each x ∈ X we are given
an abelian group Mx. Consider the presheaf F : U 7→

⊕
x∈U Mx defined in Example

4.5. This is not a sheaf in general. For example, if X is an infinite set with the
discrete topology, then the sheaf condition would imply that F(X) =

∏
x∈X F({x})

but by definition we have F(X) =
⊕

x∈XMx =
⊕

x∈X F({x}). And an infinite
direct sum is in general different from an infinite direct product.

However, if X is a topological space such that every open of X is quasi-compact,
then F is a sheaf. This is left as an exercise to the reader.

8. Abelian sheaves

Definition 8.1. Let X be a topological space.

(1) An abelian sheaf on X or sheaf of abelian groups on X is an abelian presheaf
on X such that the underlying presheaf of sets is a sheaf.

http://localhost:8080/tag/006V
http://localhost:8080/tag/006W
http://localhost:8080/tag/006X
http://localhost:8080/tag/006Y
http://localhost:8080/tag/0070


8 SHEAVES ON SPACES

(2) The category of sheaves of abelian groups is denoted Ab(X).

Let X be a topological space. In the case of an abelian presheaf F the sheaf
condition with regards to an open covering U =

⋃
Ui is often expressed by saying

that the complex of abelian groups

0→ F(U)→
∏

i
F(Ui)→

∏
(i0,i1)

F(Ui0 ∩ Ui1)

is exact. The first map is the usual one, whereas the second maps the element
(si)i∈I to the element

(si0 |Ui0∩Ui1 − si1 |Ui0∩Ui1 )(i0,i1) ∈
∏

(i0,i1)
F(Ui0 ∩ Ui1)

9. Sheaves of algebraic structures

Let us clarify the definition of sheaves of certain types of structures. First, let us
reformulate the sheaf condition. Namely, suppose that F is a presheaf of sets on
the topological space X. The sheaf condition can be reformulated as follows. Let
U =

⋃
i∈I Ui be an open covering. Consider the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

Here the left map is defined by the rule s 7→
∏
i∈I s|Ui . The two maps on the right

are the maps∏
i
si 7→

∏
(i0,i1)

si0 |Ui0∩Ui1 resp.
∏

i
si 7→

∏
(i0,i1)

si1 |Ui0∩Ui1 .

The sheaf condition exactly says that the left arrow is the equalizer of the right two.
This generalizes immediately to the case of presheaves with values in a category as
long as the category has products.

Definition 9.1. Let X be a topological space. Let C be a category with products.
A presheaf F with values in C on X is a sheaf if for every open covering the diagram

F(U) // ∏
i∈I F(Ui)

//
//
∏

(i0,i1)∈I×I F(Ui0 ∩ Ui1)

is an equalizer diagram in the category C.

Suppose that C is a category and that F : C → Sets is a faithful functor. A good
example to keep in mind is the case where C is the category of abelian groups and
F is the forgetful functor. Consider a presheaf F with values in C on X. We would
like to reformulate the condition above in terms of the underlying presheaf of sets
(Definition 5.2). Note that the underlying presheaf of sets is a sheaf of sets if and
only if all the diagrams

F (F(U)) // ∏
i∈I F (F(Ui))

//
//
∏

(i0,i1)∈I×I F (F(Ui0 ∩ Ui1))

of sets – after applying the forgetful functor F – are equalizer diagrams! Thus we
would like C to have products and equalizers and we would like F to commute with
them. This is equivalent to the condition that C has limits and that F commutes
with them, see Categories, Lemma 14.10. But this is not yet good enough (see
Example 9.4); we also need F to reflect isomorphisms. This property means that
given a morphism f : A→ A′ in C, then f is an isomorphism if (and only if) F (f)
is a bijection.

http://localhost:8080/tag/0072
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Lemma 9.2. Suppose the category C and the functor F : C → Sets have the
following properties:

(1) F is faithful,
(2) C has limits and F commutes with them, and
(3) the functor F reflects isomorphisms.

Let X be a topological space. Let F be a presheaf with values in C. Then F is a
sheaf if and only if the underlying presheaf of sets is a sheaf.

Proof. Assume that F is a sheaf. Then F(U) is the equalizer of the diagram above
and by assumption we see F (F(U)) is the equalizer of the corresponding diagram
of sets. Hence F (F) is a sheaf of sets.

Assume that F (F) is a sheaf. Let E ∈ Ob(C) be the equalizer of the two parallel
arrows in Definition 9.1. We get a canonical morphism F(U)→ E, simply because
F is a presheaf. By assumption, the induced map F (F(U))→ F (E) is an isomor-
phism, because F (E) is the equalizer of the corresponding diagram of sets. Hence
we see F(U)→ E is an isomorphism by condition (3) of the lemma. �

The lemma in particular applies to sheaves of groups, rings, algebras over a fixed
ring, modules over a fixed ring, vector spaces over a fixed field, etc. In other words,
these are presheaves of groups, rings, modules over a fixed ring, vector spaces over
a fixed field, etc such that the underlying presheaf of sets is a sheaf.

Example 9.3. Let X be a topological space. For each open U ⊂ X consider the
R-algebra C0(U) = {f : U → R | f is continuous}. There are obvious restriction
mappings that turn this into a presheaf of R-algebras over X. By Example 7.3 it
is a sheaf of sets. Hence by the Lemma 9.2 it is a sheaf of R-algebras over X.

Example 9.4. Consider the category of topological spaces Top. There is a natural
faithful functor Top→ Sets which commutes with products and equalizers. But it
does not reflect isomorphisms. And, in fact it turns out that the analogue of Lemma
9.2 is wrong. Namely, suppose X = N with the discrete topology. Let Ai, for i ∈ N
be a discrete topological space. For any subset U ⊂ N define F(U) =

∏
i∈U Ai with

the discrete topology. Then this is a presheaf of topological spaces whose underlying
presheaf of sets is a sheaf, see Example 7.5. However, if each Ai has at least two
elements, then this is not a sheaf of topological spaces according to Definition 9.1.
The reader may check that putting the product topology on each F(U) =

∏
i∈U Ai

does lead to a sheaf of topological spaces over X.

10. Sheaves of modules

Definition 10.1. Let X be a topological space. Let O be a sheaf of rings on X.

(1) A sheaf of O-modules is a presheaf of O-modules F , see Definition 6.1, such
that the underlying presheaf of abelian groups F is a sheaf.

(2) A morphism of sheaves of O-modules is a morphism of presheaves of O-
modules.

(3) Given sheaves of O-modules F and G we denote HomO(F ,G) the set of
morphism of sheaves of O-modules.

(4) The category of sheaves of O-modules is denoted Mod(O).

This definition kind of makes sense even if O is just a presheaf of rings, although
we do not know any examples where this is useful, and we will avoid using the
terminology “sheaves of O-modules” in case O is not a sheaf of rings.
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11. Stalks

Let X be a topological space. Let x ∈ X be a point. Let F be a presheaf of sets
on X. The stalk of F at x is the set

Fx = colimx∈U F(U)

where the colimit is over the set of open neighbourhoods U of x in X. The set
of open neighbourhoods is (partially) ordered by (reverse) inclusion: We say U ≥
U ′ ⇔ U ⊂ U ′. The transition maps in the system are given by the restriction maps
of F . See Categories, Section 21 for notation and terminology regarding (co)limits
over systems. Note that the colimit is a directed colimit. Thus it is easy to describe
Fx. Namely,

Fx = {(U, s) | x ∈ U, s ∈ F(U)}/ ∼
with equivalence relation given by (U, s) ∼ (U ′, s′) if and only if there exists an
open U ′′ ⊂ U ∩ U ′ with x ∈ U ′′ and s|U ′′ = s′|U ′′ . By abuse of notation we will
often denote (U, s), sx, or even s the corresponding element in Fx. Also we will say
s = s′ in Fx for two local sections of F defined in an open neighbourhood of x to
denote that they have the same image in Fx.

An obvious consequence of this definition is that for any open U ⊂ X there is a
canonical map

F(U) −→
∏

x∈U
Fx

defined by s 7→
∏
x∈U (U, s). Think about it!

Lemma 11.1. Let F be a sheaf of sets on the topological space X. For every open
U ⊂ X the map

F(U) −→
∏

x∈U
Fx

is injective.

Proof. Suppose that s, s′ ∈ F(U) map to the same element in every stalk Fx for
all x ∈ U . This means that for every x ∈ U , there exists an open V x ⊂ U , x ∈ V x
such that s|V x = s′|V x . But then U =

⋃
x∈U V

x is an open covering. Thus by the
uniqueness in the sheaf condition we see that s = s′. �

Definition 11.2. Let X be a topological space. A presheaf of sets F on X is
separated if for every open U ⊂ X the map F(U)→

∏
x∈U Fx is injective.

Another observation is that the construction of the stalk Fx is functorial in the
presheaf F . In other words, it gives a functor

PSh(X) −→ Sets, F 7−→ Fx.
This functor is called the stalk functor. Namely, if ϕ : F → G is a morphism
of presheaves, then we define ϕx : Fx → Gx by the rule (U, s) 7→ (U,ϕ(s)). To
see that this works we have to check that if (U, s) = (U ′, s′) in Fx then also
(U,ϕ(s)) = (U ′, ϕ(s′)) in Gx. This is clear since ϕ is compatible with the restriction
mappings.

Example 11.3. Let X be a topological space. Let A be a set. Denote temporarily
Ap the constant presheaf with value A (p for presheaf – not for point). There is
a canonical map of presheaves Ap → A into the constant sheaf with value A. For
every point we have canonical bijections A = (Ap)x = Ax, where the second map
is induced by functoriality from the map Ap → A.
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Example 11.4. Suppose X = Rn with the Euclidean topology. Consider the
presheaf of C∞ functions on X, denoted C∞Rn . In other words, C∞Rn(U) is the set of
C∞-functions f : U → R. As in Example 7.3 it is easy to show that this is a sheaf.
In fact it is a sheaf of R-vector spaces.

Next, let x ∈ X = Rn be a point. How do we think of an element in the stalk
C∞Rn,x? Such an element is given by a C∞-function f whose domain contains x. And
a pair of such functions f , g determine the same element of the stalk if they agree
in a neighbourhood of x. In other words, an element if C∞Rn,x is the same thing as
what is sometimes called a germ of a C∞-function at x.

Example 11.5. Let X be a topological space. Let Ax be a set for each x ∈ X.
Consider the sheaf F : U 7→

∏
x∈U Ax of Example 7.5. We would just like to point

out here that the stalk Fx of F at x is in general not equal to the set Ax. Of course
there is a map Fx → Ax, but that is in general the best you can say. For example,
suppose x = limxn with xn 6= xm for all n 6= m and suppose that Ay = {0, 1}
for all y ∈ X. Then Fx maps onto the (infinite) set of tails of sequences of 0s and
1s. Namely, every open neighbourhood of x contains almost all of the xn. On the
other hand, if every neighbourhood of x contains a point y such that Ay = ∅, then
Fx = ∅.

12. Stalks of abelian presheaves

We first deal with the case of abelian groups as a model for the general case.

Lemma 12.1. Let X be a topological space. Let F be a presheaf of abelian groups
on X. There exists a unique structure of an abelian group on Fx such that for every
U ⊂ X open, x ∈ U the map F(U)→ Fx is a group homomorphism. Moreover,

Fx = colimx∈U F(U)

holds in the category of abelian groups.

Proof. We define addition of a pair of elements (U, s) and (V, t) as the pair (U ∩
V, s|U∩V + t|U∩V ). The rest is easy to check. �

What is crucial in the proof above is that the partially ordered set of open neigh-
bourhoods is a directed system (compare Categories, Definition 21.2). Namely, the
coproduct of two abelian groups A,B is the direct sum A⊕B, whereas the coprod-
uct in the category of sets is the disjoint union A

∐
B, showing that colimits in

the category of abelian groups do not agree with colimits in the category of sets in
general.

13. Stalks of presheaves of algebraic structures

The proof of Lemma 12.1 will work for any type of algebraic structure such that
directed colimits commute with the forgetful functor.

Lemma 13.1. Let C be a category. Let F : C → Sets be a functor. Assume that

(1) F is faithful, and
(2) directed colimits exist in C and F commutes with them.

Let X be a topological space. Let x ∈ X. Let F be a presheaf with values in C.
Then

Fx = colimx∈U F(U)
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exists in C. Its underlying set is equal to the stalk of the underlying presheaf of
sets of F . Furthermore, the construction F 7→ Fx is a functor from the category of
presheaves with values in C to C.

Proof. Omitted. �

By the very definition, all the morphisms F(U)→ Fx are morphisms in the category
C which (after applying the forgetful functor F ) turn into the corresponding maps
for the underlying sheaf of sets. As usual we will not distinguish between the
morphism in C and the underlying map of sets, which is permitted since F is
faithful.

This lemma applies in particular to: Presheaves of (not necessarily abelian) groups,
rings, modules over a fixed ring, vector spaces over a fixed field.

14. Stalks of presheaves of modules

Lemma 14.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf of O-modules. Let x ∈ X. The canonical map Ox × Fx → Fx
coming from the multiplication map O×F → F defines a Ox-module structure on
the abelian group Fx.

Proof. Omitted. �

Lemma 14.2. Let X be a topological space. Let O → O′ be a morphism of
presheaves of rings on X. Let F be a presheaf of O-modules. Let x ∈ X. We
have

Fx ⊗Ox O′x = (F ⊗p,O O′)x
as O′x-modules.

Proof. Omitted. �

15. Algebraic structures

In this section we mildly formalize the notions we have encountered in the sections
above.

Definition 15.1. A type of algebraic structure is given by a category C and a
functor F : C → Sets with the following properties

(1) F is faithful,
(2) C has limits and F commutes with limits,
(3) C has filtered colimits and F commutes with them, and
(4) F reflects isomorphisms.

We make this definition to point out the properties we will use in a number of
arguments below. But we will not actually study this notion in any great detail,
since we are prohibited from studying “big” categories by convention, except for
those listed in Categories, Remark 2.2. Among those the following have the required
properties.

Lemma 15.2. The following categories, endowed with the obvious forgetful functor,
define types of algebraic structures:

(1) The category of pointed sets.
(2) The category of abelian groups.
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(3) The category of groups.
(4) The category of monoids.
(5) The category of rings.
(6) The category of R-modules for a fixed ring R.
(7) The category of Lie algebras over a fixed field.

Proof. Omitted. �

From now on we will think of a (pre)sheaf of algebraic structures and their stalks,
in terms of the underlying (pre)sheaf of sets. This is allowable by Lemmas 9.2 and
13.1.

In the rest of this section we point out some results on algebraic structures that
will be useful in the future.

Lemma 15.3. Let (C, F ) be a type of algebraic structure.

(1) C has a final object 0 and F (0) = {∗}.
(2) C has products and F (

∏
Ai) =

∏
F (Ai).

(3) C has fibre products and F (A×B C) = F (A)×F (B) F (C).
(4) C has equalizers, and if E → A is the equalizer of a, b : A → B, then

F (E)→ F (A) is the equalizer of F (a), F (b) : F (A)→ F (B).
(5) A→ B is a monomorphism if and only if F (A)→ F (B) is injective.
(6) if F (a) : F (A)→ F (B) is surjective, then a is an epimorphism.
(7) given A1 → A2 → A3 → . . ., then colimAi exists and F (colimAi) =

colimF (Ai), and more generally for any filtered colimit.

Proof. Omitted. The only interesting statement is (5) which follows because A→
B is a monomorphism if and only if A → A ×B A is an isomorphism, and then
applying the fact that F reflects isomorphisms. �

Lemma 15.4. Let (C, F ) be a type of algebraic structure. Suppose that A,B,C ∈
Ob(C). Let f : A→ B and g : C → B be morphisms of C. If F (g) is injective, and
Im(F (f)) ⊂ Im(F (g)), then f factors as f = g ◦ t for some morphism t : A→ C.

Proof. Consider A×B C. The assumptions imply that F (A×B C) = F (A)×F (B)

F (C) = F (A). Hence A = A ×B C because F reflects isomorphisms. The result
follows. �

Example 15.5. The lemma will be applied often to the following situation. Sup-
pose that we have a diagram

A // B

��
C // D

in C. Suppose C → D is injective on underlying sets, and suppose that the compo-
sition A→ B → D has image on underlying sets in the image of C → D. Then we
get a commutative diagram

A //

��

B

��
C // D

in C.
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Example 15.6. Let F : C → Sets be a type of algebraic structures. Let X
be a topological space. Suppose that for every x ∈ X we are given an object
Ax ∈ ob(C). Consider the presheaf Π with values in C on X defined by the rule
Π(U) =

∏
x∈U Ax (with obvious restriction mappings). Note that the associated

presheaf of sets U 7→ F (Π(U)) =
∏
x∈U F (Ax) is a sheaf by Example 7.5. Hence

Π is a sheaf of algebraic structures of type (C, F ). This gives many examples of
sheaves of abelian groups, groups, rings, etc.

16. Exactness and points

In any category we have the notion of epimorphism, monomorphism, isomorphism,
etc.

Lemma 16.1. Let X be a topological space. Let ϕ : F → G be a morphism of
sheaves of sets on X.

(1) The map ϕ is a monomorphism in the category of sheaves if and only if for
all x ∈ X the map ϕx : Fx → Gx is injective.

(2) The map ϕ is an epimorphism in the category of sheaves if and only if for
all x ∈ X the map ϕx : Fx → Gx is surjective.

(3) The map ϕ is an isomorphism in the category of sheaves if and only if for
all x ∈ X the map ϕx : Fx → Gx is bijective.

Proof. Omitted. �

It follows that in the category of sheaves of sets the notions epimorphism and
monomorphism can be described as follows.

Definition 16.2. Let X be a topological space.

(1) A presheaf F is called a subpresheaf of a presheaf G if F(U) ⊂ G(U) for
all open U ⊂ X such that the restriction maps of G induce the restriction
maps of F . If F and G are sheaves, then F is called a subsheaf of G. We
sometimes indicate this by the notation F ⊂ G.

(2) A morphism of presheaves of sets ϕ : F → G on X is called injective if and
only if F(U)→ G(U) is injective for all U open in X.

(3) A morphism of presheaves of sets ϕ : F → G on X is called surjective if
and only if F(U)→ G(U) is surjective for all U open in X.

(4) A morphism of sheaves of sets ϕ : F → G on X is called injective if and
only if F(U)→ G(U) is injective for all U open in X.

(5) A morphism of sheaves of sets ϕ : F → G on X is called surjective if and
only if for every open U of X and every section s of G(U) there exists an
open covering U =

⋃
Ui such that s|Ui is in the image of F(Ui) → G(U)

for all i.

Lemma 16.3. Let X be a topological space.

(1) Epimorphisms (resp. monomorphisms) in the category of presheaves are
exactly the surjective (resp. injective) maps of presheaves.

(2) Epimorphisms (resp. monomorphisms) in the category of sheaves are exactly
the surjective (resp. injective) maps of sheaves, and are exactly those maps
with are surjective (resp. injective) on all the stalks.

(3) The sheafification of a surjective (resp. injective) morphism of presheaves
of sets is surjective (resp. injective).
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Proof. Omitted. �

Lemma 16.4. let X be a topological space. Let (C, F ) be a type of algebraic struc-
ture. Suppose that F , G are sheaves on X with values in C. Let ϕ : F → G be a
map of the underlying sheaves of sets. If for all points x ∈ X the map Fx → Gx is
a morphism of algebraic structures, then ϕ is a morphism of sheaves of algebraic
structures.

Proof. Let U be an open subset of X. Consider the diagram of (underlying) sets

F(U) //

��

∏
x∈U Fx

��
G(U) // ∏

x∈U Gx

By assumption, and previous results, all but the left vertical arrow are morphisms
of algebraic structures. In addition the bottom horizontal arrow is injective, see
Lemma 11.1. Hence we conclude by Lemma 15.4, see also Example 15.5 �

Short exact sequences of abelian sheaves, etc will be discussed in the chapter on
sheaves of modules. See Modules, Section 3.

17. Sheafification

In this section we explain how to get the sheafification of a presheaf on a topological
space. We will use stalks to describe the sheafification in this case. This is different
from the general procedure described in Sites, Section 10, and perhaps somewhat
easier to understand.

The basic construction is the following. Let F be a presheaf of sets F on a topo-
logical space X. For every open U ⊂ X we define

F#(U) = {(su) ∈
∏

u∈U
Fu such that (∗)}

where (∗) is the property:

(∗) For every u ∈ U , there exists an open neighbourhood u ∈ V ⊂ U , and a
section σ ∈ F(V ) such that for all v ∈ V we have sv = (V, σ) in Fv.

Note that (∗) is a condition for each u ∈ U , and that given u ∈ U the truth of
this condition depends only on the values sv for v in any open neighbourhood of u.
Thus it is clear that, if V ⊂ U ⊂ X are open, the projection maps∏

u∈U
Fu −→

∏
v∈V
Fv

maps elements of F#(U) into F#(V ). In other words, we get the structure of a
presheaf of sets on F#.

Furthermore, the map F(U)→
∏
u∈U Fu described in Section 11 clearly has image

in F#(U). In addition, if V ⊂ U ⊂ X are open then we have the following
commutative diagram

F(U) //

��

F#(U) //

��

∏
u∈U Fu

��
F(V ) // F#(V ) // ∏

v∈V Fv
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where the vertical maps are induced from the restriction mappings. Thus we see
that there is a canonical morphism of presheaves F → F#.

In Example 7.5 we saw that the rule Π(F) : U 7→
∏
u∈U Fu is a sheaf, with obvious

restriction mappings. And by construction F# is a subpresheaf of this. In other
words, we have morphisms of presheaves

F → F# → Π(F).

In addition the rule that associates to F the sequence above is clearly functorial in
the presheaf F . This notation will be used in the proofs of the lemmas below.

Lemma 17.1. The presheaf F# is a sheaf.

Proof. It is probably better for the reader to find their own explanation of this
than to read the proof here. In fact the lemma is true for the same reason as why
the presheaf of continuous function is a sheaf, see Example 7.3 (and this analogy
can be made precise using the “espace étalé”).

Anyway, let U =
⋃
Ui be an open covering. Suppose that si = (si,u)u∈Ui ∈ F#(Ui)

such that si and sj agree over Ui∩Uj . Because Π(F) is a sheaf, we find an element
s = (su)u∈U in

∏
u∈U Fu restricting to si on Ui. We have to check property (∗).

Pick u ∈ U . Then u ∈ Ui for some i. Hence by (∗) for si, there exists a V open,
u ∈ V ⊂ Ui and a σ ∈ F(V ) such that si,v = (V, σ) in Fv for all v ∈ V . Since
si,v = sv we get (∗) for s. �

Lemma 17.2. Let X be a topological space. Let F be a presheaf of sets on X. Let
x ∈ X. Then Fx = F#

x .

Proof. The map Fx → F#
x is injective, since already the map Fx → Π(F)x is

injective. Namely, there is a canonical map Π(F)x → Fx which is a left inverse to
the map Fx → Π(F)x, see Example 11.5. To show that it is surjective, suppose that
s ∈ F#

x . We can find an open neighbourhood U of x such that s is the equivalence
class of (U, s) with s ∈ F#(U). By definition, this means there exists an open
neighbourhood V ⊂ U of x and a section σ ∈ F(V ) such that s|V is the image of σ
in Π(F)(V ). Clearly the class of (V, σ) defines an element of Fx mapping to s. �

Lemma 17.3. Let F be a presheaf of sets on X. Any map F → G into a sheaf of
sets factors uniquely as F → F# → G.

Proof. Clearly, there is a commutative diagram

F //

��

F# //

��

Π(F)

��
G // G# // Π(G)

So it suffices to prove that G = G#. To see this it suffices to prove, for every point
x ∈ X the map Gx → G#x is bijective, by Lemma 16.1. And this is Lemma 17.2
above. �

This lemma really says that there is an adjoint pair of functors: i : Sh(X)→ PSh(X)
(inclusion) and # : PSh(X)→ Sh(X) (sheafification). The formula is that

MorPSh(X)(F , i(G)) = MorSh(X)(F#,G)
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which says that sheafification is a left adjoint of the inclusion functor. See Cate-
gories, Section 24.

Example 17.4. See Example 11.3 for notation. The map Ap → A induces a map
A#
p → A. It is easy to see that this is an isomorphism. In words: The sheafification

of the constant presheaf with value A is the constant sheaf with value A.

Lemma 17.5. Let X be a topological space. A presheaf F is separated (see Defi-
nition 11.2) if and only if the canonical map F → F# is injective.

Proof. This is clear from the construction of F# in this section. �

18. Sheafification of abelian presheaves

The following strange looking lemma is likely unnecessary, but very convenient to
deal with sheafification of presheaves of algebraic structures.

Lemma 18.1. Let X be a topological space. Let F be a presheaf of sets on X. Let
U ⊂ X be open. There is a canonical fibre product diagram

F#(U)

��

// Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

where the maps are the following:

(1) The left vertical map has components F#(U)→ F#
x = Fx where the equal-

ity is Lemma 17.2.
(2) The top horizontal map comes from the map of presheaves F → Π(F)

described in Section 17.
(3) The right vertical map has obvious component maps Π(F)(U)→ Π(F)x.
(4) The bottom horizontal map has components Fx → Π(F)x which come from

the map of presheaves F → Π(F) described in Section 17.

Proof. It is clear that the diagram commutes. We have to show it is a fibre product
diagram. The bottom horizontal arrow is injective since all the maps Fx → Π(F)x
are injective (see beginning proof of Lemma 17.2). A section s ∈ Π(F)(U) is in F#

if and only if (∗) holds. But (∗) says that around every point the section s comes
from a section of F . By definition of the stalk functors, this is equivalent to saying
that the value of s in every stalk Π(F)x comes from an element of the stalk Fx.
Hence the lemma. �

Lemma 18.2. Let X be a topological space. Let F be an abelian presheaf on X.
Then there exists a unique structure of abelian sheaf on F# such that F → F#

is a morphism of abelian presheaves. Moreover, the following adjointness property
holds

MorPAb(X)(F , i(G)) = MorAb(X)(F#,G).

Proof. Recall the sheaf of sets Π(F) defined in Section 17. All the stalks Fx
are abelian groups, see Lemma 12.1. Hence Π(F) is a sheaf of abelian groups
by Example 15.6. Also, it is clear that the map F → Π(F) is a morphism of
abelian presheaves. If we show that condition (∗) of Section 17 defines a subgroup
of Π(F)(U) for all open subsets U ⊂ X, then F# canonically inherits the structure
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of abelian sheaf. This is quite easy to do by hand, and we leave it to the reader
to find a good simple argument. The argument we use here, which generalizes to
presheaves of algebraic structures is the following: Lemma 18.1 show that F#(U) is
the fibre product of a diagram of abelian groups. Thus F# is an abelian subgroup
as desired.

Note that at this point F#
x is an abelian group by Lemma 12.1 and that Fx → F#

x is
a bijection (Lemma 17.2) and a homomorphism of abelian groups. Hence Fx → F#

x

is an isomorphism of abelian groups. This will be used below without further
mention.

To prove the adjointness property we use the adjointness property of sheafification
of presheaves of sets. For example if ψ : F → i(G) is morphism of presheaves then
we obtain a morphism of sheaves ψ′ : F# → G. What we have to do is to check
that this is a morphism of abelian sheaves. We may do this for example by noting
that it is true on stalks, by Lemma 17.2, and then using Lemma 16.4 above. �

19. Sheafification of presheaves of algebraic structures

Lemma 19.1. Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let F be a presheaf with values in C on X. Then there exists a sheaf F#

with values in C and a morphism F → F# of presheaves with values in C with the
following properties:

(1) The map F → F# identifies the underlying sheaf of sets of F# with the
sheafification of the underlying presheaf of sets of F .

(2) For any morphism F → G, where G is a sheaf with values in C there exists
a unique factorization F → F# → G.

Proof. The proof is the same as the proof of Lemma 18.2, with repeated application
of Lemma 15.4 (see also Example 15.5). The main idea however, is to define F#(U)
as the fibre product in C of the diagram

Π(F)(U)

��∏
x∈U Fx // ∏

x∈U Π(F)x

compare Lemma 18.1. �

20. Sheafification of presheaves of modules

Lemma 20.1. Let X be a topological space. Let O be a presheaf of rings on X.
Let F be a presheaf O-modules. Let O# be the sheafification of O. Let F# be the
sheafification of F as a presheaf of abelian groups. There exists a map of sheaves
of sets

O# ×F# −→ F#

which makes the diagram

O ×F //

��

F

��
O# ×F# // F#
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commute and which makes F# into a sheaf of O#-modules. In addition, if G is
a sheaf of O#-modules, then any morphism of presheaves of O-modules F → G
(into the restriction of G to a O-module) factors uniquely as F → F# → G where
F# → G is a morphism of O#-modules.

Proof. Omitted. �

This actually means that the functor i : Mod(O#)→ PMod(O) (combining restric-
tion and including sheaves into presheaves) and the sheafification functor of the
lemma # : PMod(O)→ Mod(O#) are adjoint. In a formula

MorPMod(O)(F , iG) = MorMod(O#)(F#,G)

Let X be a topological space. Let O1 → O2 be a morphism of sheaves of rings on
X. In Section 6 we defined a restriction functor and a change of rings functor on
presheaves of modules associated to this situation.

If F is a sheaf of O2-modules then the restriction FO1 of F is clearly a sheaf of
O1-modules. We obtain the restriction functor

Mod(O2) −→ Mod(O1)

On the other hand, given a sheaf of O1-modules G the presheaf of O2-modules
O2 ⊗p,O1

G is in general not a sheaf. Hence we define the tensor product sheaf
O2 ⊗O1

G by the formula

O2 ⊗O1 G = (O2 ⊗p,O1 G)#

as the sheafification of our construction for presheaves. We obtain the change of
rings functor

Mod(O1) −→ Mod(O2)

Lemma 20.2. With X, O1, O2, F and G as above there exists a canonical bijection

HomO1(G,FO1) = HomO2(O2 ⊗O1 G,F)

In other words, the restriction and change of rings functors are adjoint to each
other.

Proof. This follows from Lemma 6.2 and the fact that HomO2(O2 ⊗O1 G,F) =
HomO2

(O2 ⊗p,O1
G,F) because F is a sheaf. �

Lemma 20.3. Let X be a topological space. Let O → O′ be a morphism of sheaves
of rings on X. Let F be a sheaf O-modules. Let x ∈ X. We have

Fx ⊗Ox O′x = (F ⊗O O′)x

as O′x-modules.

Proof. Follows directly from Lemma 14.2 and the fact that taking stalks commutes
with sheafification. �
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21. Continuous maps and sheaves

Let f : X → Y be a continuous map of topological spaces. We will define the
pushforward and pullback functors for presheaves and sheaves.

Let F be a presheaf of sets on X. We define the pushforward of F by the rule

f∗F(V ) = F(f−1(V ))

for any open V ⊂ Y . Given V1 ⊂ V2 ⊂ Y open the restriction map is given by the
commutativity of the diagram

f∗F(V2)

��

F(f−1(V2))

restriction for F
��

f∗F(V1) F(f−1(V1))

It is clear that this defines a presheaf of sets. The construction is clearly functorial
in the presheaf F and hence we obtain a functor

f∗ : PSh(X) −→ PSh(Y ).

Lemma 21.1. Let f : X → Y be a continuous map. Let F be a sheaf of sets on
X. Then f∗F is a sheaf on Y .

Proof. This immediately follows from the fact that if V =
⋃
Vj is an open covering

in Y , then f−1(V ) =
⋃
f−1(Vj) is an open covering in X. �

As a consequence we obtain a functor

f∗ : Sh(X) −→ Sh(Y ).

This is compatible with composition in the following strong sense.

Lemma 21.2. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal (on both presheaves and sheaves
of sets).

Proof. This is because (g ◦ f)∗F(W ) = F((g ◦ f)−1W ) and (g∗ ◦ f∗)F(W ) =
F(f−1g−1W ) and (g ◦ f)−1W = f−1g−1W . �

Let G be a presheaf of sets on Y . The pullback presheaf fpG of a given presheaf G
is defined as the left adjoint of the pushforward f∗ on presheaves. In other words
it should be a presheaf fpG on X such that

MorPSh(X)(fpG,F) = MorPSh(Y )(G, f∗F).

By the Yoneda lemma this determines the pullback uniquely. It turns out that it
actually exists.

Lemma 21.3. Let f : X → Y be a continuous map. There exists a functor
fp : PSh(Y )→ PSh(X) which is left adjoint to f∗. For a presheaf G it is determined
by the rule

fpG(U) = colimf(U)⊂V G(V )

where the colimit is over the collection of open neighbourhoods V of f(U) in Y .
The colimits are over directed partially ordered sets. (The restriction mappings of
fpG are explained in the proof.)

http://localhost:8080/tag/008D
http://localhost:8080/tag/008E
http://localhost:8080/tag/008F


SHEAVES ON SPACES 21

Proof. The colimit is over the partially ordered set consisting of open subset V ⊂ Y
which contain f(U) with ordering by reverse inclusion. This is a directed partially
ordered set, since if V, V ′ are in it then so is V ∩V ′. Furthermore, if U1 ⊂ U2, then
every open neighbourhood of f(U2) is an open neighbourhood of f(U1). Hence the
system defining fpG(U2) is a subsystem of the one defining fpG(U1) and we obtain
a restriction map (for example by applying the generalities in Categories, Lemma
14.7).

Note that the construction of the colimit is clearly functorial in G, and similarly for
the restriction mappings. Hence we have defined fp as a functor.

A small useful remark is that there exists a canonical map G(U) → fpG(f−1(U)),
because the system of open neighbourhoods of f(f−1(U)) contains the element U .
This is compatible with restriction mappings. In other words, there is a canonical
map iG : G → f∗fpG.

Let F be a presheaf of sets on X. Suppose that ψ : fpG → F is a map of presheaves
of sets. The corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F .

Another small useful remark is that there exists a canonical map cF : fpf∗F → F .
Namely, let U ⊂ X open. For every open neighbourhood V ⊃ f(U) in Y there exists
a map f∗F(V ) = F(f−1(V ))→ F(U), namely the restriction map on F . And this
is compatible with the restriction mappings between values of F on f−1 of varying
opens containing f(U). Thus we obtain a canonical map fpf∗F(U) → F(U).
Another trivial verification shows that these maps are compatible with restriction
maps and define a map cF of presheaves of sets.

Suppose that ϕ : G → f∗F is a map of presheaves of sets. Consider fpϕ : fpG →
fpf∗F . Postcomposing with cF gives the desired map cF ◦ fpϕ : fpG → F . We
omit the verification that this construction is inverse to the construction in the
other direction given above. �

Lemma 21.4. Let f : X → Y be a continuous map. Let x ∈ X. Let G be a
presheaf of sets on Y . There is a canonical bijection of stalks (fpG)x = Gf(x).

Proof. This you can see as follows

(fpG)x = colimx∈U fpG(U)

= colimx∈U colimf(U)⊂V G(V )

= colimf(x)∈V G(V )

= Gf(x)
Here we have used Categories, Lemma 14.9, and the fact that any V open in Y
containing f(x) occurs in the third description above. Details omitted. �

Let G be a sheaf of sets on Y . The pullback sheaf f−1G is defined by the formula

f−1G = (fpG)#.

Sheafification is a left adjoint to the inclusion of sheaves in presheaves, and fp is a
left adjoint to f∗ on presheaves. As a formal consequence we obtain that f−1 is a
left adjoint of pushforward on sheaves. In other words,

MorSh(X)(f
−1G,F) = MorSh(Y )(G, f∗F).

The formal argument is given in the setting of abelian sheaves in the next section.
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Lemma 21.5. Let x ∈ X. Let G be a sheaf of sets on Y . There is a canonical
bijection of stalks (f−1G)x = Gf(x).

Proof. This is a combination of Lemmas 17.2 and 21.4. �

Lemma 21.6. Let f : X → Y and g : Y → Z be continuous maps of topological
spaces. The functors (g ◦ f)−1 and f−1 ◦ g−1 are canonically isomorphic. Similarly
(g ◦ f)p ∼= fp ◦ gp on presheaves.

Proof. To see this use that adjoint functors are unique up to unique isomorphism,
and Lemma 21.2. �

Definition 21.7. Let f : X → Y be a continuous map. Let F be a sheaf of sets
on X and let G be a sheaf of sets on Y . An f -map ξ : G → F is a collection of
maps ξV : G(V )→ F(f−1(V )) indexed by open subsets V ⊂ Y such that

G(V )
ξV

//

restriction of G
��

F(f−1V )

restriction of F
��

G(V ′)
ξV ′ // F(f−1V ′)

commutes for all V ′ ⊂ V ⊂ Y open.

Lemma 21.8. Let f : X → Y be a continuous map. Let F be a sheaf of sets on
X and let G be a sheaf of sets on Y . There are canonical bijections between the
following three sets:

(1) The set of maps G → f∗F .
(2) The set of maps f−1G → F .
(3) The set of f -maps ξ : G → F .

Proof. We leave the easy verification to the reader. �

It is sometimes convenient to think about f -maps instead of maps between sheaves
either on X or on Y . We define composition of f -maps as follows.

Definition 21.9. Suppose that f : X → Y and g : Y → Z are continuous maps
of topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H
is a sheaf on Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. The
composition of ϕ and ψ is the (g ◦ f)-map ϕ ◦ ψ defined by the commutativity of
the diagrams

H(W )
(ϕ◦ψ)W

//

ψW %%

F(f−1g−1W )

G(g−1W )

ϕg−1W

77

We leave it to the reader to verify that this works. Another way to think about
this is to think of ϕ ◦ ψ as the composition

H ψ−→ g∗G
g∗ϕ−−→ g∗f∗F = (g ◦ f)∗F

Now, doesn’t it seem that thinking about f -maps is somehow easier?

Finally, given a continuous map f : X → Y , and an f -map ϕ : G → F there is a
natural map on stalks

ϕx : Gf(x) −→ Fx
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for all x ∈ X. The image of a representative (V, s) of an element in Gf(x) is mapped

to the element in Fx with representative (f−1V, ϕV (s)). We leave it to the reader
to see that this is well defined. Another way to state it is that it is the unique map
such that all diagrams

F(f−1V ) // Fx

G(V ) //

ϕV

OO

Gf(x)

ϕx

OO

(for x ∈ V ⊂ Y open) commute.

Lemma 21.10. Suppose that f : X → Y and g : Y → Z are continuous maps of
topological spaces. Suppose that F is a sheaf on X, G is a sheaf on Y , and H is a
sheaf on Z. Let ϕ : G → F be an f -map. Let ψ : H → G be an g-map. Let x ∈ X
be a point. The map on stalks (ϕ ◦ ψ)x : Hg(f(x)) → Fx is the composition

Hg(f(x))
ψf(x)−−−→ Gf(x)

ϕx−−→ Fx
Proof. Immediate from Definition 21.9 and the definition of the map on stalks
above. �

22. Continuous maps and abelian sheaves

Let f : X → Y be a continuous map. We claim there are functors

f∗ : PAb(X) −→ PAb(Y )

f∗ : Ab(X) −→ Ab(Y )

fp : PAb(Y ) −→ PAb(X)

f−1 : Ab(Y ) −→ Ab(X)

with similar properties to their counterparts in Section 21. To see this we argue in
the following way.

Each of the functors will be constructed in the same way as the corresponding
functor in Section 21. This works because all the colimits in that section are
directed colimits (but we will work through it below).

First off, given an abelian presheaf F on X and an abelian presheaf G on Y we
define

f∗F(V ) = F(f−1(V ))

fpG(U) = colimf(U)⊂V G(V )

as abelian groups. The restriction mappings are the same as the restriction map-
pings for presheaves of sets (and they are all homomorphisms of abelian groups).

The assignments F 7→ f∗F and G → fpG are functors on the categories of presheaves
of abelian groups. This is clear, as (for example) a map of abelian presheaves
G1 → G2 gives rise to a map of directed systems {G1(V )}f(U)⊂V → {G2(V )}f(U)⊂V
all of whose maps are homomorphisms and hence gives rise to a homomorphism of
abelian groups fpG1(U)→ fpG2(U).

The functors f∗ and fp are adjoint on the category of presheaves of abelian groups,
i.e., we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).
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To prove this, note that the map iG : G → f∗fpG from the proof of Lemma 21.3 is
a map of abelian presheaves. Hence if ψ : fpG → F is a map of abelian presheaves,
then the corresponding map G → f∗F is the map f∗ψ ◦ iG : G → f∗fpG → f∗F is
also a map of abelian presheaves. For the other direction we point out that the map
cF : fpf∗F → F from the proof of Lemma 21.3 is a map of abelian presheaves as well
(since it is made out of restriction mappings of F which are all homomorphisms).
Hence given a map of abelian presheaves ϕ : G → f∗F the map cF ◦ fpϕ : fpG → F
is a map of abelian presheaves as well. Since these constructions ψ 7→ f∗ψ and
ϕ 7→ cF ◦ fpϕ are inverse to each other as constructions on maps of presheaves of
sets we see they are also inverse to each other on maps of abelian presheaves.

If F is an abelian sheaf on Y , then f∗F is an abelian sheaf on X. This is true
because of the definition of an abelian sheaf and because this is true for sheaves
of sets, see Lemma 21.1. This defines the functor f∗ on the category of abelian
sheaves.

We define f−1G = (fpG)# as before. Adjointness of f∗ and f−1 follows formally as
in the case of presheaves of sets. Here is the argument:

MorAb(X)(f
−1G,F) = MorPAb(X)(fpG,F)

= MorPAb(Y )(G, f∗F)

= MorAb(Y )(G, f∗F)

Lemma 22.1. Let f : X → Y be a continuous map.

(1) Let G be an abelian presheaf on Y . Let x ∈ X. The bijection Gf(x) → (fpG)x
of Lemma 21.4 is an isomorphism of abelian groups.

(2) Let G be an abelian sheaf on Y . Let x ∈ X. The bijection Gf(x) → (f−1G)x
of Lemma 21.5 is an isomorphism of abelian groups.

Proof. Omitted. �

Given a continuous map f : X → Y and sheaves of abelian groups F on X, G
on Y , the notion of an f -map G → F of sheaves of abelian groups makes sense.
We can just define it exactly as in Definition 21.7 (replacing maps of sets with
homomorphisms of abelian groups) or we can simply say that it is the same as a
map of abelian sheaves G → f∗F . We will use this notion freely in the following.
The group of f -maps between G and F will be in canonical bijection with the groups
MorAb(X)(f

−1G,F) and MorAb(Y )(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced
maps on stalks

ϕx : Gf(x) −→ Fx
are abelian group homomorphisms.

23. Continuous maps and sheaves of algebraic structures

Let (C, F ) be a type of algebraic structure. For a topological space X let us intro-
duce the notation:

(1) PSh(X, C) will be the category of presheaves with values in C.
(2) Sh(X, C) will be the category of sheaves with values in C.
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Let f : X → Y be a continuous map of topological spaces. The same arguments as
in the previous section show there are functors

f∗ : PSh(X, C) −→ PSh(Y, C)
f∗ : Sh(X, C) −→ Sh(Y, C)
fp : PSh(Y, C) −→ PSh(X, C)
f−1 : Sh(Y, C) −→ Sh(X, C)

constructed in the same manner and with the same properties as the functors
constructed for abelian (pre)sheaves. In particular there are commutative diagrams

PSh(X, C)
f∗ //

F

��

PSh(Y, C)

F

��

Sh(X, C)
f∗ //

F

��

Sh(Y, C)

F

��
PSh(X)

f∗ // PSh(Y ) Sh(X)
f∗ // Sh(Y )

PSh(Y, C)
fp //

F

��

PSh(X, C)

F

��

Sh(Y, C)
f−1

//

F

��

Sh(X, C)

F

��
PSh(Y )

fp // PSh(X) Sh(Y )
f−1

// Sh(X)

The main formulas to keep in mind are the following

f∗F(V ) = F(f−1(V ))

fpG(U) = colimf(U)⊂V G(V )

f−1G = (fpG)#

(fpG)x = Gf(x)
(f−1G)x = Gf(x)

Each of these formulas has the property that they hold in the category C and that
upon taking underlying sets we get the corresponding formula for presheaves of
sets. In addition we have the adjointness properties

MorPSh(X,C)(fpG,F) = MorPSh(Y,C)(G, f∗F)

MorSh(X,C)(f
−1G,F) = MorSh(Y,C)(G, f∗F).

To prove these, the main step is to construct the maps

iG : G −→ f∗fpG
and

cF : fpf∗F −→ F
which occur in the proof of Lemma 21.3 as morphisms of presheaves with values
in C. This may be safely left to the reader since the constructions are exactly the
same as in the case of presheaves of sets.

Given a continuous map f : X → Y and sheaves of algebraic structures F on X,
G on Y , the notion of an f -map G → F of sheaves of algebraic structures makes
sense. We can just define it exactly as in Definition 21.7 (replacing maps of sets
with morphisms in C) or we can simply say that it is the same as a map of sheaves
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of algebraic structures G → f∗F . We will use this notion freely in the following.
The set of f -maps between G and F will be in canonical bijection with the sets
MorSh(X,C)(f

−1G,F) and MorSh(Y,C)(G, f∗F).

Composition of f -maps is defined in exactly the same manner as in the case of f -
maps of sheaves of sets. In addition, given an f -map G → F as above, the induced
maps on stalks

ϕx : Gf(x) −→ Fx
are homomorphisms of algebraic structures.

Lemma 23.1. Let f : X → Y be a continuous map of topological spaces. Suppose
given sheaves of algebraic structures F on X, G on Y . Let ϕ : G → F be an
f -map of underlying sheaves of sets. If for every V ⊂ Y open the map of sets
ϕV : G(V )→ F(f−1V ) is the effect of a morphism in C on underlying sets, then ϕ
comes from a unique f -morphism between sheaves of algebraic structures.

Proof. Omitted. �

24. Continuous maps and sheaves of modules

The case of sheaves of modules is more complicated. The reason is that the natural
setting for defining the pullback and pushforward functors, is the setting of ringed
spaces, which we will define below. First we state a few obvious lemmas.

Lemma 24.1. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on X. Let F be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

f∗O × f∗F −→ f∗F
which turns f∗F into a presheaf of f∗O-modules. This construction is functorial in
F .

Proof. Let V ⊂ Y is open. We define the map of the lemma to be the map

f∗O(V )× f∗F(V ) = O(f−1V )×F(f−1V )→ F(f−1V ) = f∗F(V ).

Here the arrow in the middle is the multiplication map on X. We leave it to the
reader to see this is compatible with restriction mappings and defines a structure
of f∗O-module on f∗F . �

Lemma 24.2. Let f : X → Y be a continuous map of topological spaces. Let O
be a presheaf of rings on Y . Let G be a presheaf of O-modules. There is a natural
map of underlying presheaves of sets

fpO × fpG −→ fpG
which turns fpG into a presheaf of fpO-modules. This construction is functorial in
G.

Proof. Let U ⊂ X is open. We define the map of the lemma to be the map

fpO(U)× fpG(U) = colimf(U)⊂V O(V )× colimf(U)⊂V G(V )

= colimf(U)⊂V (O(V )× G(V ))

→ colimf(U)⊂V G(V )

= fpG(U).
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Here the arrow in the middle is the multiplication map on Y . The second equality
holds because directed colimits commute with finite limits, see Categories, Lemma
19.2. We leave it to the reader to see this is compatible with restriction mappings
and defines a structure of fpO-module on fpG. �

Let f : X → Y be a continuous map. Let OX be a presheaf of rings on X and let
OY be a presheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)

fp : PMod(OY ) −→ PMod(fpOY )

These satisfy some compatibilities as follows.

Lemma 24.3. Let f : X → Y be a continuous map of topological spaces. Let O be
a presheaf of rings on Y . Let G be a presheaf of O-modules. Let F be a presheaf of
fpO-modules. Then

MorPMod(fpO)(fpG,F) = MorPMod(O)(G, f∗F).

Here we use Lemmas 24.2 and 24.1, and we think of f∗F as an O-module via the
map iO : O → f∗fpO (defined first in the proof of Lemma 21.3).

Proof. Note that we have

MorPAb(X)(fpG,F) = MorPAb(Y )(G, f∗F).

according to Section 22. So what we have to prove is that under this correspon-
dence, the subsets of module maps correspond. In addition, the correspondence is
determined by the rule

(ψ : fpG → F) 7−→ (f∗ψ ◦ iG : G → f∗F)

and in the other direction by the rule

(ϕ : G → f∗F) 7−→ (cF ◦ fpϕ : fpG → F)

where iG and cF are as in Section 22. Hence, using the functoriality of f∗ and fp
we see that it suffices to check that the maps iG : G → f∗fpG and cF : fpf∗F → F
are compatible with module structures, which we leave to the reader. �

Lemma 24.4. Let f : X → Y be a continuous map of topological spaces. Let O be
a presheaf of rings on X. Let F be a presheaf of O-modules. Let G be a presheaf
of f∗O-modules. Then

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(f∗O)(G, f∗F).

Here we use Lemmas 24.2 and 24.1, and we use the map cO : fpf∗O → O in the
definition of the tensor product.

Proof. This follows from the equalities

MorPMod(O)(O ⊗p,fpf∗O fpG,F) = MorPMod(fpf∗O)(fpG,Ffpf∗O)

= MorPMod(f∗O)(G, f∗(Ffpf∗O))

= MorPMod(f∗O)(G, f∗F).

The first equality is Lemma 6.2. The second equality is Lemma 24.3. The third
equality is given by the equality f∗(Ffpf∗O) = f∗F of abelian sheaves which is
f∗O-linear. Namely, idf∗O corresponds to cO under the adjunction described in the
proof of Lemma 21.3 and thus idf∗O = f∗cO ◦ if∗O. �
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Lemma 24.5. Let f : X → Y be a continuous map of topological spaces. Let O be
a sheaf of rings on X. Let F be a sheaf of O-modules. The pushforward f∗F , as
defined in Lemma 24.1 is a sheaf of f∗O-modules.

Proof. Obvious from the definition and Lemma 21.1. �

Lemma 24.6. Let f : X → Y be a continuous map of topological spaces. Let O be
a sheaf of rings on Y . Let G be a sheaf of O-modules. There is a natural map of
underlying presheaves of sets

f−1O × f−1G −→ f−1G

which turns f−1G into a sheaf of f−1O-modules.

Proof. Recall that f−1 is defined as the composition of the functor fp and sheafi-
fication. Thus the lemma is a combination of Lemma 24.2 and Lemma 20.1. �

Let f : X → Y be a continuous map. Let OX be a sheaf of rings on X and let OY
be a sheaf of rings on Y . So now we have defined functors

f∗ : Mod(OX) −→ Mod(f∗OX)

f−1 : Mod(OY ) −→ Mod(f−1OY )

These satisfy some compatibilities as follows.

Lemma 24.7. Let f : X → Y be a continuous map of topological spaces. Let
O be a sheaf of rings on Y . Let G be a sheaf of O-modules. Let F be a sheaf of
f−1O-modules. Then

MorMod(f−1O)(f
−1G,F) = MorMod(O)(G, f∗F).

Here we use Lemmas 24.6 and 24.5, and we think of f∗F as an O-module by
restriction via O → f∗f

−1O.

Proof. Argue by the equalities

MorMod(f−1O)(f
−1G,F) = MorMod(fpO)(fpG,F)

= MorMod(O)(G, f∗F).

where the second is Lemmas 24.3 and the first is by Lemma 20.1. �

Lemma 24.8. Let f : X → Y be a continuous map of topological spaces. Let O
be a sheaf of rings on X. Let F be a sheaf of O-modules. Let G be a sheaf of
f∗O-modules. Then

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f∗O)(G, f∗F).

Here we use Lemmas 24.6 and 24.5, and we use the canonical map f−1f∗O → O
in the definition of the tensor product.

Proof. This follows from the equalities

MorMod(O)(O ⊗f−1f∗O f
−1G,F) = MorMod(f−1f∗O)(f

−1G,Ff−1f∗O)

= MorMod(f∗O)(G, f∗F).

which are a combination of Lemma 20.2 and 24.7. �
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Let f : X → Y be a continuous map. Let OX be a (pre)sheaf of rings on X and
let OY be a (pre)sheaf of rings on Y . So at the moment we have defined functors

f∗ : PMod(OX) −→ PMod(f∗OX)

f∗ : Mod(OX) −→ Mod(f∗OX)

fp : PMod(OY ) −→ PMod(fpOY )

f−1 : Mod(OY ) −→ Mod(f−1OY )

Clearly, usually the pair of functors (f∗, f
−1) on sheaves of modules are not adjoint,

because their target categories do not match. Namely, as we saw above, it works
only if by some miracle the sheaves of rings OX ,OY satisfy the relations OX =
f−1OY and OY = f∗OX . This is almost never true in practice. We interrupt the
discussion to define the correct notion of morphism for which a suitable adjoint pair
of functors on sheaves of modules exists.

25. Ringed spaces

Let X be a topological space and let OX be a sheaf of rings on X. We are supposed
to think of the sheaf of rings OX as a sheaf of functions on X. And if f : X → Y is
a “suitable” map, then by composition a function on Y turns into a function on X.
Thus there should be a natural f -map from OY to OX See Definition 21.7, and the
remarks in previous sections for terminology. For a precise example, see Example
25.2 below. Here is the relevant abstract definition.

Definition 25.1. A ringed space is a pair (X,OX) consisting of a topological space
X and a sheaf of rings OX on X. A morphism of ringed spaces (X,OX)→ (Y,OY )
is a pair consisting of a continuous map f : X → Y and an f -map of sheaves of
rings f ] : OY → OX .

Example 25.2. Let f : X → Y be a continuous map of topological spaces. Con-
sider the sheaves of continuous real valued functions C0X on X and C0Y on Y , see
Example 9.3. We claim that there is a natural f -map f ] : C0Y → C0X associated to
f . Namely, we simply define it by the rule

C0Y (V ) −→ C0X(f−1V )

h 7−→ h ◦ f
Strictly speaking we should write f ](h) = h ◦ f |f−1(V ). It is clear that this is a
family of maps as in Definition 21.7 and compatible with the R-algebra structures.
Hence it is an f -map of sheaves of R-algebras, see Lemma 23.1.

Of course there are lots of other situations where there is a canonical morphism of
ringed spaces associated to a geometrical type of morphism. For example, if M , N
are C∞-manifolds and f : M → N is a infinitely differentiable map, then f induces a
canonical morphism of ringed spaces (M, C∞M )→ (N, C∞N ). The construction (which
is identical to the above) is left to the reader.

It may not be completely obvious how to compose morphisms of ringed spaces hence
we spell it out here.

Definition 25.3. Let (f, f ]) : (X,OX)→ (Y,OY ) and (g, g]) : (Y,OY )→ (Z,OZ)
be morphisms of ringed spaces. Then we define the composition of morphisms of
ringed spaces by the rule

(g, g]) ◦ (f, f ]) = (g ◦ f, f ] ◦ g]).
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Here we use composition of f -maps defined in Definition 21.9.

26. Morphisms of ringed spaces and modules

We have now introduced enough notation so that we are able to define the pullback
and pushforward of modules along a morphism of ringed spaces.

Definition 26.1. Let (f, f ]) : (X,OX)→ (Y,OY ) be a morphism of ringed spaces.

(1) Let F be a sheaf of OX -modules. We define the pushforward of F as the
sheaf of OY -modules which as a sheaf of abelian groups equals f∗F and
with module structure given by the restriction via f ] : OY → f∗OX of the
module structure given in Lemma 24.5.

(2) Let G be a sheaf of OY -modules. We define the pullback f∗G to be the sheaf
of OX -modules defined by the formula

f∗G = OX ⊗f−1OY f
−1G

where the ring map f−1OY → OX is the map corresponding to f ], and
where the module structure is given by Lemma 24.6.

Thus we have defined functors

f∗ : Mod(OX) −→ Mod(OY )

f∗ : Mod(OY ) −→ Mod(OX)

The final result on these functors is that they are indeed adjoint as expected.

Lemma 26.2. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. There is a
canonical bijection

HomOX (f∗G,F) = HomOY (G, f∗F).

In other words: the functor f∗ is the left adjoint to f∗.

Proof. This follows from the work we did before:

HomOX (f∗G,F) = MorMod(OX)(OX ⊗f−1OY f
−1G,F)

= MorMod(f−1OY )(f
−1G,Ff−1OY )

= HomOY (G, f∗F).

Here we use Lemmas 20.2 and 24.7. �

Lemma 26.3. Let f : X → Y and g : Y → Z be morphisms of ringed spaces.
The functors (g ◦ f)∗ and g∗ ◦ f∗ are equal. There is a canonical isomorphism of
functors (g ◦ f)∗ ∼= f∗ ◦ g∗.

Proof. The result on pushforwards is a consequence of Lemma 21.2 and our defi-
nitions. The result on pullbacks follows from this by the same argument as in the
proof of Lemma 21.6. �

Given a morphism of ringed spaces (f, f ]) : (X,OX) → (Y,OY ), and a sheaf of
OX -modules F , a sheaf of OY -modules G on Y , the notion of an f -map ϕ : G → F
of sheaves of modules makes sense. We can just define it as an f -map ϕ : G → F
of abelian sheaves such that for all open V ⊂ Y the map

G(V ) −→ F(f−1V )
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is an OY (V )-module map. Here we think of F(f−1V ) as an OY (V )-module via

the map f ]V : OY (V ) → OX(f−1V ). The set of f -maps between G and F will be
in canonical bijection with the sets MorMod(OX)(f

∗G,F) and MorMod(OY )(G, f∗F).
See above.

Composition of f -maps is defined in exactly the same manner as in the case of
f -maps of sheaves of sets. In addition, given an f -map G → F as above, and x ∈ X
the induced map on stalks

ϕx : Gf(x) −→ Fx

is an OY,f(x)-module map where the OY,f(x)-module structure on Fx comes from

the OX,x-module structure via the map f ]x : OY,f(x) → OX,x. Here is a related
lemma.

Lemma 26.4. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let G be a sheaf of OY -modules. Let x ∈ X. Then

(f∗G)x = Gf(x) ⊗OY,f(x) OX,x

as OX,x-modules where the tensor product on the right uses f ]x : OY,f(x) → OX,x.

Proof. This follows from Lemma 20.3 and the identification of the stalks of pull-
back sheaves at x with the corresponding stalks at f(x). See the formulae in Section
23 for example. �

27. Skyscraper sheaves and stalks

Definition 27.1. Let X be a topological space.

(1) Let x ∈ X be a point. Denote ix : {x} → X the inclusion map. Let A be
a set and think of A as a sheaf on the one point space {x}. We call ix,∗A
the skyscraper sheaf at x with value A.

(2) If in (1) above A is an abelian group then we think of ix,∗A as a sheaf of
abelian groups on X.

(3) If in (1) above A is an algebraic structure then we think of ix,∗A as a sheaf
of algebraic structures.

(4) If (X,OX) is a ringed space, then we think of ix : {x} → X as a morphism
of ringed spaces ({x},OX,x) → (X,OX) and if A is a OX,x-module, then
we think of ix,∗A as a sheaf of OX -modules.

(5) We say a sheaf of sets F is a skyscraper sheaf if there exists an point x of
X and a set A such that F ∼= ix,∗A.

(6) We say a sheaf of abelian groups F is a skyscraper sheaf if there exists an
point x of X and an abelian group A such that F ∼= ix,∗A as sheaves of
abelian groups.

(7) We say a sheaf of algebraic structures F is a skyscraper sheaf if there exists
an point x of X and an algebraic structure A such that F ∼= ix,∗A as sheaves
of algebraic structures.

(8) If (X,OX) is a ringed space and F is a sheaf of OX -modules, then we say
F is a skyscraper sheaf if there exists a point x ∈ X and a OX,x-module A
such that F ∼= ix,∗A as sheaves of OX -modules.
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Lemma 27.2. Let X be a topological space, x ∈ X a point, and A a set. For any
point x′ ∈ X the stalk of the skyscraper sheaf at x with value A at x′ is

(ix,∗A)x′ =

{
A if x′ ∈ {x}
{∗} if x′ 6∈ {x}

A similar description holds for the case of abelian groups, algebraic structures and
sheaves of modules.

Proof. Omitted. �

Lemma 27.3. Let X be a topological space, and let x ∈ X a point. The functors
F 7→ Fx and A 7→ ix,∗A are adjoint. In a formula

MorSets(Fx, A) = MorSh(X)(F , ix,∗A).

A similar statement holds for the case of abelian groups, algebraic structures. In
the case of sheaves of modules we have

HomOX,x(Fx, A) = HomOX (F , ix,∗A).

Proof. Omitted. Hint: The stalk functor can be seen as the pullback functor for
the morphism ix : {x} → X. Then the adjointness follows from adjointness of i−1x
and ix,∗ (resp. i∗x and ix,∗ in the case of sheaves of modules). �

28. Limits and colimits of presheaves

Let X be a topological space. Let I → PSh(X), i 7→ Fi be a diagram.

(1) Both limi Fi and colimi Fi exist.
(2) For any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U)

and

(colimi Fi)(U) = colimi Fi(U).

(3) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to the
limit of the stalks. But if the diagram category is finite then it is the case.
In other words, the stalk functor is left exact (see Categories, Definition
23.1).

(4) Let x ∈ X. We always have

(colimi Fi)x = colimi Fi,x.

The proofs are all easy.

29. Limits and colimits of sheaves

Let X be a topological space. Let I → Sh(X), i 7→ Fi be a diagram.

(1) Both limi Fi and colimi Fi exist.
(2) The inclusion functor i : Sh(X)→ PSh(X) commutes with limits. In other

words, we may compute the limit in the category of sheaves as the limit in
the category of presheaves. In particular, for any open U ⊂ X we have

(limi Fi)(U) = limi Fi(U).
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(3) The inclusion functor i : Sh(X)→ PSh(X) does not commute with colimits
in general (not even with finite colimits – think surjections). The colimit is
computed as the sheafification of the colimit in the category of presheaves:

colimi Fi =
(
U 7→ colimi Fi(U)

)#
.

(4) Let x ∈ X be a point. In general the stalk of limi Fi at x is not equal to
the limit of the stalks. But if the diagram category is finite then it is the
case. In other words, the stalk functor is left exact.

(5) Let x ∈ X. We always have

(colimi Fi)x = colimi Fi,x.

(6) The sheafification functor # : PSh(X)→ Sh(X) commutes with all colimits,
and with finite limits. But it does not commute with all limits.

The proofs are all easy. Here is an example of what is true for directed colimits of
sheaves.

Lemma 29.1. Let X be a topological space. Let I be a directed partially ordered
set. Let (Fi, ϕii′) be a system of sheaves of sets over I, see Categories, Section 21.
Let U ⊂ X be an open subset. Consider the canonical map

Ψ : colimi Fi(U) −→ (colimi Fi) (U)

(1) If all the transition maps are injective then Ψ is injective for any open U .
(2) If U is quasi-compact, then Ψ is injective.
(3) If U is quasi-compact and all the transition maps are injective then Ψ is an

isomorphism.
(4) If U has a cofinal system of open coverings U : U =

⋃
j∈J Uj with J finite

and Uj ∩ Uj′ quasi-compact for all j, j′ ∈ J , then Ψ is bijective.

Proof. Assume all the transition maps are injective. In this case the presheaf
F ′ : V 7→ colimi Fi(V ) is separated (see Definition 11.2). By the discussion above
we have (F ′)# = colimi Fi. By Lemma 17.5 we see that F ′ → (F ′)# is injective.
This proves (1).

Assume U is quasi-compact. Suppose that s ∈ Fi(U) and s′ ∈ Fi′(U) give rise to
elements on the left hand side which have the same image under Ψ. Since U is
quasi-compact this means there exists a finite open covering U =

⋃
j=1,...,m Uj and

for each j an index ij ∈ I, ij ≥ i, ij ≥ i′ such that ϕiij (s) = ϕi′ij (s
′). Let i′′ ∈ I

be ≥ than all of the ij . We conclude that ϕii′′(s) and ϕi′i′′(s) agree on the opens
Uj for all j and hence that ϕii′′(s) = ϕi′i′′(s). This proves (2).

Assume U is quasi-compact and all transition maps injective. Let s be an element
of the target of Ψ. Since U is quasi-compact there exists a finite open covering
U =

⋃
j=1,...,m Uj , for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj comes

from sj for all j. Pick i ∈ I which is ≥ than all of the ij . By (1) the sections
ϕiji(sj) agree over the overlaps Uj ∩ Uj′ . Hence they glue to a section s′ ∈ Fi(U)
which maps to s under Ψ. This proves (3).

Assume the hypothesis of (4). Let s be an element of the target of Ψ. By assumption
there exists a finite open covering U =

⋃
j=1,...,m Uj , with Uj ∩ Uj′ quasi-compact

for all j, j′ ∈ J and for each j an index ij ∈ I and sj ∈ Fij (Uj) such that s|Uj
is the image of sj for all j. Since Uj ∩ Uj′ is quasi-compact we can apply (2) and
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we see that there exists an ijj′ ∈ I, ijj′ ≥ ij , ijj′ ≥ ij′ such that ϕijijj′ (sj) and

ϕij′ ijj′ (sj′) agree over Uj ∩Uj′ . Choose an index i ∈ I wich is bigger or equal than

all the ijj′ . Then we see that the sections ϕiji(sj) of Fi glue to a section of Fi over
U . This section is mapped to the element s as desired. �

Example 29.2. Let X = {s1, s2, ξ1, ξ2, ξ3, . . .} as a set. Declare a subset U ⊂ X to
be open if s1 ∈ U or s2 ∈ U implies U contains all of the ξi. Let Un = {ξn, ξn+1, . . .},
and let jn : Un → X be the inclusion map. Set Fn = jn,∗Z. There are transition
maps Fn → Fn+1. Let F = colimFn. Note that Fn,ξm = 0 if m < n because {ξm}
is an open subset of X which misses Un. Hence we see that Fξn = 0 for all n. On
the other hand the stalk Fsi , i = 1, 2 is the colimit

M = colimn

∏
m≥n

Z

which is not zero. We conclude that the sheaf F is the direct sum of the skyscraper
sheaves with value M at the closed points s1 and s2. Hence Γ(X,F) = M ⊕M .
On the other hand, the reader can verify that colimn Γ(X,Fn) = M . Hence some
condition is necessary in part (4) of Lemma 29.1 above.

There is a version of the previous lemma dealing with sheaves on a diagram of
spectral spaces. To state it we introduce some notation. Let I be a cofiltered index
category. Let i 7→ Xi be a diagram of spectral spaces over I such that for a : j → i
in I the corresponding map fa : Xj → Xi is spectral. Set X = limXi and denote
pi : X → Xi the projection.

Lemma 29.3. In the situation described above, let i ∈ Ob(I) and let G be a sheaf
on Xi. For Ui ⊂ Xi quasi-compact open we have

p−1i G(p−1i (Ui)) = colima:j→i f
−1
a G(f−1a (Ui))

Proof. Let us prove the canonical map colima:j→i f
−1
a G(f−1a (Ui))→ p−1i G(p−1i (Ui))

is injective. Let s, s′ be sections of f−1a G over f−1a (Ui) for some a : j → i. For
b : k → j let Zk ⊂ f−1a◦b(Ui) be the closed subset of points x such that the image

of s and s′ in the stalk (f−1a◦bG)x are different. If Zk is nonempty for all b : k → j,
then by Topology, Lemma 23.2 we see that limb:k→j Zk is nonempty too. Then for
x ∈ limb:k→j Zk ⊂ X (observe that I/j → I is initial) we see that the image of s

and s′ in the stalk of p−1i G at x are different too since (p−1i G)x = (f−1b◦aG)pk(x) for

all b : k → j as above. Thus if the images of s and s′ in p−1i G(p−1i (Ui)) are the
same, then Zk is empty for some b : k → j. This proves injectivity.

Surjectivity. Let s be a section of p−1i G over p−1i (Ui). By Topology, Lemma 23.5 the

set p−1i (Ui) is a quasi-compact open of the spectral space X. By construction of the

pullback sheaf, we can find an open covering p−1i (Ui) =
⋃
l∈LWl, opens Vl,i ⊂ Xi,

sections sl,i ∈ G(Vl,i) such that pi(Wl) ⊂ Vl,i and p−1i sl,i|Wl
= s|Wl

. Because X and

Xi are spectral and p−1i (Ui) is quasi-compact open, we may assume L is finite and
Wl and Vl,i quasi-compact open for all l. Then we can apply Topology, Lemma 23.6
to find a : j → i and open covering f−1a (Ui) =

⋃
l∈LWl,j by quasi-compact opens

whose pullback to X is the covering p−1i (Ui) =
⋃
l∈LWl and such that moreover

Wl,j ⊂ f−1a (Vl,i). Write sl,j the restriction of the pullback of sl,i by fa to Wl,j .
Then we see that sl,j and sl′,j restrict to elements of (f−1a G)(Wl,j ∩Wl′,j) which

pullback to the same element (p−1i G)(Wl∩Wl′), namely, the restriction of s. Hence
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by injectivity, we can find b : k → j such that the sections f−1b sl,j glue to a section

over f−1a◦b(Ui) as desired. �

Next, in addition to the cofiltered system Xi of spectral spaces, assume given

(1) a sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map ϕa : Fi → Fj

such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1i Fi on X.

Lemma 29.4. In the situation described above, let i ∈ Ob(I) and let Ui ⊂ Xi be
a quasi-compact open. Then

colima:j→i Fj(f−1a (Ui)) = F(p−1i (Ui))

Proof. Recall that p−1i (Ui) is a quasi-compact open of the spectral space X, see
Topology, Lemma 23.5. Hence Lemma 29.1 applies and we have

F(p−1i (Ui)) = colima:j→i p
−1
j Fj(p

−1
i (Ui)).

A formal argument shows that

colima:j→i Fj(f−1a (Ui)) = colima:j→i colimb:k→j f
−1
b Fj(f

−1
a◦b(Ui))

Thus it suffices to show that

p−1j Fj(p
−1
i (Ui)) = colimb:k→j f

−1
b Fj(f

−1
a◦b(Ui))

This is Lemma 29.3 applied to Fj and the quasi-compact open f−1a (Ui). �

30. Bases and sheaves

Sometimes there exists a basis for the topology consisting of opens that are easier
to work with than general opens. For convenience we give here some definitions and
simple lemmas in order to facilitate working with (pre)sheaves in such a situation.

Definition 30.1. Let X be a topological space. Let B be a basis for the topology
on X.

(1) A presheaf F of sets on B is a rule which assigns to each U ∈ B a set F(U)
and to each inclusion V ⊂ U of elements of B a map ρUV : F(U) → F(V )
such that whenever W ⊂ V ⊂ U in B we have ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves of sets on B is a rule which assigns
to each element U ∈ B a map of sets ϕ : F(U) → G(U) compatible with
restriction maps.

As in the case of usual presheaves we use the terminology of sections, restrictions
of sections, etc. In particular, we may define the stalk of F at a point x ∈ X by
the colimit

Fx = colimU∈B,x∈U F(U).

As in the case of the stalk of a presheaf on X this limit is directed. The reason is
that the collection of U ∈ B, x ∈ U is a fundamental system of open neighbourhoods
of x.

It is easy to make examples to show that the notion of a presheaf on X is very
different from the notion of a presheaf on a basis for the topology on X. This does
not happen in the case of sheaves. A much more useful notion therefore, is the
following.
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Definition 30.2. Let X be a topological space. Let B be a basis for the topology
on X.

(1) A sheaf F of sets on B is a presheaf of sets on B which satisfies the following
additional property: Given any U ∈ B, and any covering U =

⋃
i∈I Ui with

Ui ∈ B, and any coverings Ui ∩ Uj =
⋃
k∈Iij Uijk with Uijk ∈ B the sheaf

condition holds:
(∗∗) For any collection of sections si ∈ F(Ui), i ∈ I such that ∀i, j ∈ I,

∀k ∈ Iij
si|Uijk = sj |Uijk

there exists a unique section s ∈ F(U) such that si = s|Ui for all i ∈ I.
(2) A morphism of sheaves of sets on B is simply a morphism of presheaves of

sets.

First we explain that it suffices to check the sheaf condition (∗∗) on a cofinal system
of coverings. In the situation of the definition, suppose U ∈ B. Let us temporarily
denote CovB(U) the set of all coverings of U by elements of B. Note that CovB(U)
is partially ordered by refinement. A subset C ⊂ CovB(U) is a cofinal system, if
for every U ∈ CovB(U) there exists a covering V ∈ C which refines U .

Lemma 30.3. With notation as above. For each U ∈ B, let C(U) ⊂ CovB(U) be
a cofinal system. For each U ∈ B, and each U : U =

⋃
Ui in C(U), let coverings

Uij : Ui ∩ Uj =
⋃
Uijk, Uijk ∈ B be given. Let F be a presheaf of sets on B. The

following are equivalent

(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) the sheaf

condition (∗∗) holds (for the given coverings Uij).

Proof. We have to show that (2) implies (1). Suppose that U ∈ B, and that
U : U =

⋃
i∈I Ui is an arbitrary covering by elements of B. Because the system

C(U) is cofinal we can find an element V : U =
⋃
j∈J Vj in C(U) which refines U .

This means there exists a map α : J → I such that Vj ⊂ Uα(i).

Note that if s, s′ ∈ F(U) are sections such that s|Ui = s′|Ui , then

s|Vj = (s|Uα(j)
)|Vj = (s′|Uα(j)

)|Vj = s′|Vj
for all j. Hence by the uniqueness in (∗∗) for the covering V we conclude that
s = s′. Thus we have proved the uniqueness part of (∗∗) for our arbitrary covering
U .

Suppose furthermore that Ui∩Ui′ =
⋃
k∈Iii′

Uii′k are arbitrary coverings by Uii′k ∈
B. Let us try to prove the existence part of (∗∗) for the system (U ,Uij). Thus let
si ∈ F(Ui) and suppose we have

si|Uijk = si′ |Uii′k
for all i, i′, k. Set tj = sα(i)|Vj , where V and α are as above.

There is one small kink in the argument here. Namely, let Vjj′ : Vj ∩ Vj′ =⋃
l∈Jjj′

Vjj′l be the covering given to us by the statement of the lemma. It is not a

priori clear that

tj |Vjj′l = tj′ |Vjj′l
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for all j, j′, l. To see this, note that we do have

tj |W = tj′ |W for all W ∈ B,W ⊂ Vjj′l ∩ Uα(j)α(j′)k
for all k ∈ Iα(j)α(j′), by our assumption on the family of elements si. And since
Vj ∩ Vj′ ⊂ Uα(j) ∩Uα(j′) we see that tj |Vjj′l and tj′ |Vjj′l agree on the members of a
covering of Vjj′l by elements of B. Hence by the uniqueness part proved above we
finally deduce the desired equality of tj |Vjj′l and tj′ |Vjj′l . Then we get the existence

of an element t ∈ F(U) by property (∗∗) for (V,Vjj′).

Again there is a small snag. We know that t restricts to tj on Vj but we do not yet
know that t restricts to si on Ui. To conclude this note that the sets Ui ∩Vj , j ∈ J
cover Ui. Hence also the sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j) cover Ui. We leave it
to the reader to see that t and si restrict to the same section of F on any W ∈ B
which is contained in one of the open sets Uiα(j)k ∩ Vj , j ∈ J , k ∈ Iiα(j). Hence by
the uniqueness part seen above we win. �

Lemma 30.4. Let X be a topological space. Let B be a basis for the topology on
X. Assume that for every pair U,U ′ ∈ B we have U ∩ U ′ ∈ B. For each U ∈ B,
let C(U) ⊂ CovB(U) be a cofinal system. Let F be a presheaf of sets on B. The
following are equivalent

(1) The presheaf F is a sheaf on B.
(2) For every U ∈ B and every covering U : U =

⋃
Ui in C(U) and for every

family of sections si ∈ F(Ui) such that si|Ui∩Uj = sj |Ui∩Uj there exists a
unique section s ∈ F(U) which restricts to si on Ui.

Proof. This is a reformulation of Lemma 30.3 above in the special case where the
coverings Uij each consist of a single element. But also this case is much easier and
is an easy exercise to do directly. �

Lemma 30.5. Let X be a topological space. Let B be a basis for the topology on
X. Let U ∈ B. Let F be a sheaf of sets on B. The map

F(U)→
∏

x∈U
Fx

identifies F(U) with the elements (sx)x∈U with the property

(∗) For any x ∈ U there exists a V ∈ B, x ∈ V and a section σ ∈ F(V ) such
that for all y ∈ V we have sy = (V, σ) in Fy.

Proof. First note that the map F(U) →
∏
x∈U Fx is injective by the uniqueness

in the sheaf condition of Definition 30.2. Let (sx) be any element on the right
hand side which satisfies (∗). Clearly this means we can find a covering U =

⋃
Ui,

Ui ∈ B such that (sx)x∈Ui comes from certain σi ∈ F(Ui). For every y ∈ Ui∩Uj the
sections σi and σj agree in the stalk Fy. Hence there exists an element Vijy ∈ B,
y ∈ Vijy such that σi|Vijy = σj |Vijy . Thus the sheaf condition (∗∗) of Definition
30.2 applies to the system of σi and we obtain a section s ∈ F(U) with the desired
property. �

Let X be a topological space. Let B be a basis for the topology on X. There is a
natural restriction functor from the category of sheaves of sets on X to the category
of sheaves of sets on B. It turns out that this is an equivalence of categories. In
down to earth terms this means the following.

http://localhost:8080/tag/009L
http://localhost:8080/tag/009M


38 SHEAVES ON SPACES

Lemma 30.6. Let X be a topological space. Let B be a basis for the topology on
X. Let F be a sheaf of sets on B. There exists a unique sheaf of sets Fext on X
such that Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. We first construct a presheaf Fext with the desired property. Namely, for
an arbitrary open U ⊂ X we define Fext(U) as the set of elements (sx)x∈U such
that (∗) of Lemma 30.5 holds. It is clear that there are restriction mappings that
turn Fext into a presheaf of sets. Also, by Lemma 30.5 we see that F(U) = Fext(U)
whenever U is an element of the basis B. To see Fext is a sheaf one may argue as
in the proof of Lemma 17.1. �

Note that we have
Fx = Fextx

in the situation of the lemma. This is so because the collection of elements of B
containing x forms a fundamental system of open neighbourhoods of x.

Lemma 30.7. Let X be a topological space. Let B be a basis for the topology on X.
Denote Sh(B) the category of sheaves on B. There is an equivalence of categories

Sh(X) −→ Sh(B)

which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.6 above. Checking the obvious
functorialities is left to the reader. �

This ends the discussion of sheaves of sets on a basis B. Let (C, F ) be a type of
algebraic structure. At the end of this section we would like to point out that the
constructions above work for sheaves with values in C. Let us briefly define the
relevant notions.

Definition 30.8. Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure.

(1) A presheaf F with values in C on B is a rule which assigns to each U ∈ B an
object F(U) of C and to each inclusion V ⊂ U of elements of B a morphism
ρUV : F(U) → F(V ) in C such that whenever W ⊂ V ⊂ U in B we have
ρUW = ρVW ◦ ρUV .

(2) A morphism ϕ : F → G of presheaves with values in C on B is a rule
which assigns to each element U ∈ B a morphism of algebraic structures
ϕ : F(U)→ G(U) compatible with restriction maps.

(3) Given a presheaf F with values in C on B we say that U 7→ F (F(U)) is the
underlying presheaf of sets.

(4) A sheaf F with values in C on B is a presheaf with values in C on B whose
underlying presheaf of sets is a sheaf.

At this point we can define the stalk at x ∈ X of a presheaf with values in C on B
as the directed colimit

Fx = colimU∈B,x∈U F(U).

It exists as an object of C because of our assumptions on C. Also, we see that the
underlying set of Fx is the stalk of the underlying presheaf of sets on B.

Note that Lemmas 30.3, 30.4 and 30.5 refer to the sheaf property which we have
defined in terms of the associated presheaf of sets. Hence they generalize without
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change to the notion of a presheaf with values in C. The analogue of Lemma 30.6
need some care. Here it is.

Lemma 30.9. Let X be a topological space. Let (C, F ) be a type of algebraic
structure. Let B be a basis for the topology on X. Let F be a sheaf with values
in C on B. There exists a unique sheaf Fext with values in C on X such that
Fext(U) = F(U) for all U ∈ B compatibly with the restriction mappings.

Proof. By the conditions imposed on the pair (C, F ) it suffices to come up with
a presheaf Fext which does the correct thing on the level of underlying presheaves
of sets. Thus our first task is to construct a suitable object Fext(U) for all open
U ⊂ X. We could do this by imitating Lemma 18.1 in the setting of presheaves on
B. However, a slightly different method (but basically equivalent) is the following:
Define it as the directed colimit

Fext(U) := colimU FIB(U)

over all coverings U : U =
⋃
i∈I Ui by Ui ∈ B of the fibre product

FIB(U) //

��

∏
x∈U Fx

��∏
i∈I F(Ui) // ∏

i∈I
∏
x∈Ui Fx

By the usual arguments, see Lemma 15.4 and Example 15.5 it suffices to show that
this construction on underlying sets is the same as the definition using (∗∗) above.
Details left to the reader. �

Note that we have
Fx = Fextx

as objects in C in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x.

Lemma 30.10. Let X be a topological space. Let B be a basis for the topology
on X. Let (C, F ) be a type of algebraic structure. Denote Sh(B, C) the category of
sheaves with values in C on B. There is an equivalence of categories

Sh(X, C) −→ Sh(B, C)
which assigns to a sheaf on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.9 above. Checking the obvious
functorialities is left to the reader. �

Finally we come to the case of (pre)sheaves of modules on a basis. We will use the
easy fact that the category of presheaves of sets on a basis has products and that
they are described by taking products of values on elements of the bases.

Definition 30.11. Let X be a topological space. Let B be a basis for the topology
on X. Let O be a presheaf of rings on B.

(1) A presheaf of O-modules F on B is a presheaf of abelian groups on B
together with a morphism of presheaves of sets O × F → F such that for
all U ∈ B the map O(U) × F(U) → F(U) turns the group F(U) into an
O(U)-module.
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(2) A morphism ϕ : F → G of presheaves of O-modules on B is a morphism
of abelian presheaves on B which induces an O(U)-module homomorphism
F(U)→ G(U) for every U ∈ B.

(3) Suppose that O is a sheaf of rings on B. A sheaf F of O-modules on B is
a presheaf of O-modules on B whose underlying presheaf of abelian groups
is a sheaf.

We can define the stalk at x ∈ X of a presheaf of O-modules on B as the directed
colimit

Fx = colimU∈B,x∈U F(U).

It is a Ox-module.

Note that Lemmas 30.3, 30.4 and 30.5 refer to the sheaf property which we have
defined in terms of the associated presheaf of sets. Hence they generalize without
change to the notion of a presheaf of O-modules. The analogue of Lemma 30.6 is
as follows.

Lemma 30.12. Let X be a topological space. Let O be a sheaf of rings on B. Let
B be a basis for the topology on X. Let F be a sheaf with values in C on B. Let
Oext be the sheaf of rings on X extending O and let Fext be the abelian sheaf on
X extending F , see Lemma 30.9. There exists a canonical map

Oext ×Fext −→ Fext

which agrees with the given map over elements of B and which endows Fext with
the structure of an Oext-module.

Proof. It suffices to construct the multiplication map on the level of presheaves of
sets. Perhaps the easiest way to see this is to prove directly that if (fx)x∈U , fx ∈ Ox
and (mx)x∈U , mx ∈ Fx satisfy (∗), then the element (fxmx)x∈U also satisfies (∗).
Then we get the desired result, because in the proof of Lemma 30.6 we construct
the extension in terms of families of elements of stalks satisfying (∗). �

Note that we have

Fx = Fextx

as Ox-modules in the situation of the lemma. This is so because the collection of
elements of B containing x forms a fundamental system of open neighbourhoods of
x, or simply because it is true on the underlying sets.

Lemma 30.13. Let X be a topological space. Let B be a basis for the topology on
X. Let O be a sheaf of rings on X. Denote Mod(O|B) the category of sheaves of
O|B-modules on B. There is an equivalence of categories

Mod(O) −→ Mod(O|B)

which assigns to a sheaf of O-modules on X its restriction to the members of B.

Proof. The inverse functor in given in Lemma 30.12 above. Checking the obvious
functorialities is left to the reader. �

Finally, we address the question of the relationship of this with continuous maps.
This is now very easy thanks to the work above. First we do the case where there
is a basis on the target given.
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Lemma 30.14. Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X.
Let G be a sheaf with values in C on Y . Let B be a basis for the topology on Y .
Suppose given for every V ∈ B a morphism

ϕV : G(V ) −→ F(f−1V )

of C compatible with restriction mappings. Then there is a unique f -map (see
Definition 21.7 and discussion of f -maps in Section 23) ϕ : G → F recovering ϕV
for V ∈ B.

Proof. This is trivial because the collection of maps amounts to a morphism be-
tween the restrictions of G and f∗F to B. By Lemma 30.10 this is the same as
giving a morphism from G to f∗F , which by Lemma 21.8 is the same as an f -map.
See also Lemma 23.1 and the discussion preceding it for how to deal with the case
of sheaves of algebraic structures. �

Here is the analogue for ringed spaces.

Lemma 30.15. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. Let B be a basis
for the topology on Y . Suppose given for every V ∈ B a OY (V )-module map

ϕV : G(V ) −→ F(f−1V )

(where F(f−1V ) has a module structure using f ]V : OY (V ) → OX(f−1V )) com-
patible with restriction mappings. Then there is a unique f -map (see discussion of
f -maps in Section 26) ϕ : G → F recovering ϕV for V ∈ B.

Proof. Same as the proof of the corresponding lemma for sheaves of algebraic
structures above. �

Lemma 30.16. Let f : X → Y be a continuous map of topological spaces. Let
(C, F ) be a type of algebraic structures. Let F be a sheaf with values in C on X. Let
G be a sheaf with values in C on Y . Let BY be a basis for the topology on Y . Let
BX be a basis for the topology on X. Suppose given for every V ∈ BY , and U ∈ BX
such that f(U) ⊂ V a morphism

ϕUV : G(V ) −→ F(U)

of C compatible with restriction mappings. Then there is a unique f -map (see
Definition 21.7 and the discussion of f -maps in Section 23) ϕ : G → F recovering
ϕUV as the composition

G(V )
ϕV−−→ F(f−1(V ))

restr.−−−→ F(U)

for every pair (U, V ) as above.

Proof. Let us first proves this for sheaves of sets. Fix V ⊂ Y open. Pick s ∈ G(V ).
We are going to construct an element ϕV (s) ∈ F(f−1V ). We can define a value
ϕ(s)x in the stalk Fx for every x ∈ f−1V by picking a U ∈ BX with x ∈ U ⊂ f−1V
and setting ϕ(s)x equal to the equivalence class of (U,ϕUV (s)) in the stalk. Clearly,
the family (ϕ(s)x)x∈f−1V satisfies condition (∗) because the maps ϕUV for varying
U are compatible with restrictions in the sheaf F . Thus, by the proof of Lemma
30.6 we see that (ϕ(s)x)x∈f−1V corresponds to a unique element ϕV (s) of F(f−1V ).
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Thus we have defined a set map ϕV : G(V )→ F(f−1V ). The compatibility between
ϕV and ϕUV follows from Lemma 30.5.

We leave it to the reader to show that the construction of ϕV is compatible with
restriction mappings as we vary v ∈ BY . Thus we may apply Lemma 30.14 above
to “glue” them to the desired f -map.

Finally, we note that the map of sheaves of sets so constructed satisfies the property
that the map on stalks

Gf(x) −→ Fx
is the colimit of the system of maps ϕUV as V ∈ BY varies over those elements that
contain f(x) and U ∈ BX varies over those elements that contain x. In particular,
if G and F are the underlying sheaves of sets of sheaves of algebraic structures, then
we see that the maps on stalks is a morphism of algebraic structures. Hence we
conclude that the associated map of sheaves of underlying sets f−1G → F satisfies
the assumptions of Lemma 23.1. We conclude that f−1G → F is a morphism of
sheaves with values in C. And by adjointness this means that ϕ is an f -map of
sheaves of algebraic structures. �

Lemma 30.17. Let (f, f ]) : (X,OX) → (Y,OY ) be a morphism of ringed spaces.
Let F be a sheaf of OX-modules. Let G be a sheaf of OY -modules. Let BY be a
basis for the topology on Y . Let BX be a basis for the topology on X. Suppose given
for every V ∈ BY , and U ∈ BX such that f(U) ⊂ V a OY (V )-module map

ϕUV : G(V ) −→ F(U)

compatible with restriction mappings. Here the OY (V )-module structure on F(U)

comes from the OX(U)-module structure via the map f ]V : OY (V )→ OX(f−1V )→
OX(U). Then there is a unique f -map of sheaves of modules (see Definition 21.7
and the discussion of f -maps in Section 26) ϕ : G → F recovering ϕUV as the
composition

G(V )
ϕV−−→ F(f−1(V ))

restrc.−−−−→ F(U)

for every pair (U, V ) as above.

Proof. Similar to the above and omitted. �

31. Open immersions and (pre)sheaves

Let X be a topological space. Let j : U → X be the inclusion of an open subset
U into X. In Section 21 we have defined functors j∗ and j−1 such that j∗ is right
adjoint to j−1. It turns out that for an open immersion there is a left adjoint for
j−1, which we will denote j!. First we point out that j−1 has a particularly simple
description in the case of an open immersion.

Lemma 31.1. Let X be a topological space. Let j : U → X be the inclusion of an
open subset U into X.

(1) Let G be a presheaf of sets on X. The presheaf jpG (see Section 21) is given
by the rule V 7→ G(V ) for V ⊂ U open.

(2) Let G be a sheaf of sets on X. The sheaf j−1G is given by the rule V 7→ G(V )
for V ⊂ U open.
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(3) For any point u ∈ U and any sheaf G on X we have a canonical identifica-
tion of stalks

j−1Gu = (G|U )u = Gu.
(4) On the category of presheaves of U we have jpj∗ = id.
(5) On the category of sheaves of U we have j−1j∗ = id.

The same description holds for (pre)sheaves of abelian groups, (pre)sheaves of al-
gebraic structures, and (pre)sheaves of modules.

Proof. The colimit in the definition of jpG(V ) is over collection of all W ⊂ X open
such that V ⊂ W ordered by reverse inclusion. Hence this has a largest element,
namely V . This proves (1). And (2) follows because the assignment V 7→ G(V ) for
V ⊂ U open is clearly a sheaf if G is a sheaf. Assertion (3) follows from (2) since
the collection of open neighbourhoods of u which are contained in U is cofinal in
the collection of all open neighbourhoods of u in X. Parts (4) and (5) follow by
computing j−1j∗F(V ) = j∗F(V ) = F(V ).

The exact same arguments work for (pre)sheaves of abelian groups and (pre)sheaves
of algebraic structures. �

Definition 31.2. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let G be a presheaf of sets, abelian groups or algebraic structures on X.
The presheaf jpG described in Lemma 31.1 is called the restriction of G to
U and denoted G|U .

(2) Let G be a sheaf of sets on X, abelian groups or algebraic structures on X.
The sheaf j−1G is called the restriction of G to U and denoted G|U .

(3) If (X,O) is a ringed space, then the pair (U,O|U ) is called the open subspace
of (X,O) associated to U .

(4) If G is a presheaf of O-modules then G|U together with the multiplication
map O|U × G|U → G|U (see Lemma 24.6) is called the restriction of G to
U .

We leave a definition of the restriction of presheaves of modules to the reader. Ok,
so in this section we will discuss a left adjoint to the restriction functor. Here is
the definition in the case of (pre)sheaves of sets.

Definition 31.3. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be a presheaf of sets on U . We define the extension of F by the
empty set jp!F to be the presheaf of sets on X defined by the rule

jp!F(V ) =

{
∅ if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be a sheaf of sets on U . We define the extension of F by the empty

set j!F to be the sheafification of the presheaf jp!F .

Lemma 31.4. Let X be a topological space. Let j : U → X be the inclusion of an
open subset.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
31.1).
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(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X)(j!F ,G) = MorSh(U)(F , j−1G) = MorSh(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf of sets on U . The stalks of the sheaf j!F are described as

follows

j!Fx =

{
∅ if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of U we have jpjp! = id.
(5) On the category of sheaves of U we have j−1j! = id.

Proof. To map jp!F into G it is enough to map F(V ) → G(V ) whenever V ⊂ U
compatibly with restriction mappings. And by Lemma 31.1 the same description
holds for maps F → G|U . The adjointness of j! and restriction follows from this
and the properties of sheafification. The identification of stalks is obvious from the
definition of the extension by the empty set and the definition of a stalk. Statements
(4) and (5) follow by computing the value of the sheaf on any open of U . �

Note that if F is a sheaf of abelian groups on U , then in general j!F as defined
above, is not a sheaf of abelian groups, for example because some of its stalks are
empty (hence not abelian groups for sure). Thus we need to modify the definition
of j! depending on the type of sheaves we consider. The reason for choosing the
empty set in the definition of the extension by the empty set, is that it is the initial
object in the category of sets. Thus in the case of abelian groups we use 0 (and
more generally for sheaves with values in any abelian category).

Definition 31.5. Let X be a topological space. Let j : U → X be the inclusion
of an open subset.

(1) Let F be an abelian presheaf on U . We define the extension jp!F of F by
0 to be the abelian presheaf on X defined by the rule

jp!F(V ) =

{
0 if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(2) Let F be an abelian sheaf on U . We define the extension j!F of F by 0 to

be the sheafification of the abelian presheaf jp!F .
(3) Let C be a category having an initial object e. Let F be a presheaf on U

with values in C. We define the extension jp!F of F by e to be the presheaf
on X with values in C defined by the rule

jp!F(V ) =

{
e if V 6⊂ U
F(V ) if V ⊂ U

with obvious restriction mappings.
(4) Let (C, F ) be a type of algebraic structure such that C has an initial object

e. Let F be a sheaf of algebraic structures on U (of the give type). We
define the extension j!F of F by e to be the sheafification of the presheaf
jp!F defined above.

(5) Let O be a presheaf of rings on X. Let F be a presheaf of O|U -modules. In
this case we define the extension by 0 to be the presheaf of O-modules which
is equal to jp!F as an abelian presheaf endowed with the multiplication map
O × jp!F → jp!F .
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(6) Let O be a sheaf of rings on X. Let F be a sheaf of O|U -modules. In this
case we define the extension by 0 to be the O-module which is equal to j!F
as an abelian sheaf endowed with the multiplication map O × j!F → j!F .

It is true that one can define j! in the setting of sheaves of algebraic structures (see
below). However, it depends on the type of algebraic structures involved what the
resulting object is. For example, if O is a sheaf of rings on U , then j!,ringsO 6=
j!,abelianO since the initial object in the category of rings is Z and the initial object
in the category of abelian groups is 0. In particular the functor j! does not commute
with taking underlying sheaves of sets, in contrast to what we have seen so far! We
separate out the case of (pre)sheaves of abelian groups, (pre)sheaves of algebraic
structures and (pre)sheaves of modules as usual.

Lemma 31.6. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. Consider the functors of restriction and extension by 0 for abelian
(pre)sheaves.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorAb(X)(j!F ,G) = MorAb(U)(F , j−1G) = MorAb(U)(F ,G|U )

bifunctorially in F and G.
(3) Let F be an abelian sheaf on U . The stalks of the sheaf j!F are described

as follows

j!Fx =

{
0 if x 6∈ U
Fx if x ∈ U

(4) On the category of abelian presheaves of U we have jpjp! = id.
(5) On the category of abelian sheaves of U we have j−1j! = id.

Proof. Omitted. �

Lemma 31.7. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. Let (C, F ) be a type of algebraic structure such that C has an initial
object e. Consider the functors of restriction and extension by e for (pre)sheaves
of algebraic structure defined above.

(1) The functor jp! is a left adjoint to the restriction functor jp (see Lemma
31.1).

(2) The functor j! is a left adjoint to restriction, in a formula

MorSh(X,C)(j!F ,G) = MorSh(U,C)(F , j−1G) = MorSh(U,C)(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf on U . The stalks of the sheaf j!F are described as follows

j!Fx =

{
e if x 6∈ U
Fx if x ∈ U

(4) On the category of presheaves of algebraic structures on U we have jpjp! =
id.

(5) On the category of sheaves of algebraic structures on U we have j−1j! = id.

Proof. Omitted. �
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Lemma 31.8. Let (X,O) be a ringed space. Let j : (U,O|U )→ (X,O) be an open
subspace. Consider the functors of restriction and extension by 0 for (pre)sheaves
of modules defined above.

(1) The functor jp! is a left adjoint to restriction, in a formula

MorPMod(O)(jp!F ,G) = MorPMod(O|U )(F ,G|U )

bifunctorially in F and G.
(2) The functor j! is a left adjoint to restriction, in a formula

MorMod(O)(j!F ,G) = MorMod(O|U )(F ,G|U )

bifunctorially in F and G.
(3) Let F be a sheaf of O-modules on U . The stalks of the sheaf j!F are

described as follows

j!Fx =

{
0 if x 6∈ U
Fx if x ∈ U

(4) On the category of sheaves of O|U -modules on U we have j−1j! = id.

Proof. Omitted. �

Note that by the lemmas above, both the functors j∗ and j! are fully faithful
embeddings of the category of sheaves on U into the category of sheaves on X. It
is only true for the functor j! that one can easily describe the essential image of
this functor.

Lemma 31.9. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. The functor

j! : Sh(U) −→ Sh(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = ∅ for all x ∈ X \ U .

Proof. Fully faithfulness follows formally from j−1j! = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

j!j
−1G → G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 31.10. Let X be a topological space. Let j : U → X be the inclusion of
an open subset. The functor

j! : Ab(U) −→ Ab(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. �

Lemma 31.11. Let X be a topological space. Let j : U → X be the inclusion of an
open subset. Let (C, F ) be a type of algebraic structure such that C has an initial
object e. The functor

j! : Sh(U, C) −→ Sh(X, C)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = e for all x ∈ X \ U .
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Proof. Omitted. �

Lemma 31.12. Let (X,O) be a ringed space. Let j : (U,O|U ) → (X,O) be an
open subspace. The functor

j! : Mod(O|U ) −→ Mod(O)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ U .

Proof. Omitted. �

Remark 31.13. Let j : U → X be an open immersion of topological spaces as
above. Let x ∈ X, x 6∈ U . Let F be a sheaf of sets on U . Then Fx = ∅ by
Lemma 31.4. Hence j! does not transform a final object of Sh(U) into a final object
of Sh(X) unless U = X. According to our conventions in Categories, Section 23
this means that the functor j! is not left exact as a functor between the categories
of sheaves of sets. It will be shown later that j! on abelian sheaves is exact, see
Modules, Lemma 3.4.

32. Closed immersions and (pre)sheaves

Let X be a topological space. Let i : Z → X be the inclusion of a closed subset
Z into X. In Section 21 we have defined functors i∗ and i−1 such that i∗ is right
adjoint to i−1.

Lemma 32.1. Let X be a topological space. Let i : Z → X be the inclusion of
a closed subset Z into X. Let F be a sheaf of sets on Z. The stalks of i∗F are
described as follows

i∗Fx =

{
{∗} if x 6∈ Z
Fx if x ∈ Z

where {∗} denotes a singleton set. Moreover, i−1i∗ = id on the category of sheaves
of sets on Z. Moreover, the same holds for abelian sheaves on Z, resp. sheaves of
algebraic structures on Z where {∗} has to be replaced by 0, resp. a final object of
the category of algebraic structures.

Proof. If x 6∈ Z, then there exist arbitrarily small open neighbourhoods U of x
which do not meet Z. Because F is a sheaf we have F(i−1(U)) = {∗} for any such
U , see Remark 7.2. This proves the first case. The second case comes from the fact
that for z ∈ Z any open neighbourhood of z is of the form Z ∩ U for some open U
of X. For the statement that i−1i∗ = id consider the canonical map i−1i∗F → F .
This is an isomorphism on stalks (see above) and hence an isomorphism.

For sheaves of abelian groups, and sheaves of algebraic structures you argue in the
same manner. �

Lemma 32.2. Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Sh(Z) −→ Sh(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = {∗} for all x ∈ X \ Z.

http://localhost:8080/tag/00AB
http://localhost:8080/tag/00AC
http://localhost:8080/tag/00AE
http://localhost:8080/tag/00AF


48 SHEAVES ON SPACES

Proof. Fully faithfulness follows formally from i−1i∗ = id. We have seen that any
sheaf in the image of the functor has the property on the stalks mentioned in the
lemma. Conversely, suppose that G has the indicated property. Then it is easy to
check that

G → i∗i
−1G

is an isomorphism on all stalks and hence an isomorphism. �

Lemma 32.3. Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. The functor

i∗ : Ab(Z) −→ Ab(X)

is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. �

Lemma 32.4. Let X be a topological space. Let i : Z → X be the inclusion of a
closed subset. Let (C, F ) be a type of algebraic structure with final object 0. The
functor

i∗ : Sh(Z, C) −→ Sh(X, C)
is fully faithful. Its essential image consists exactly of those sheaves G such that
Gx = 0 for all x ∈ X \ Z.

Proof. Omitted. �

Remark 32.5. Let i : Z → X be a closed immersion of topological spaces as
above. Let x ∈ X, x 6∈ Z. Let F be a sheaf of sets on Z. Then (i∗F)x = {∗} by
Lemma 32.1. Hence if F = ∗q∗, where ∗ is the singleton sheaf, then i∗Fx = {∗} 6=
i∗(∗)x q i∗(∗)x because the latter is a two point set. According to our conventions
in Categories, Section 23 this means that the functor i∗ is not right exact as a
functor between the categories of sheaves of sets. In particular, it cannot have a
right adjoint, see Categories, Lemma 24.5.

On the other hand, we will see later (see Modules, Lemma 6.3) that i∗ on abelian
sheaves is exact, and does have a right adjoint, namely the functor that associates
to an abelian sheaf on X the sheaf of sections supported in Z.

Remark 32.6. We have not discussed the relationship between closed immersions
and ringed spaces. This is because the notion of a closed immersion of ringed spaces
is best discussed in the setting of quasi-coherent sheaves, see Modules, Section 13.

33. Glueing sheaves

In this section we glue sheaves defined on the members of a covering of X. We first
deal with maps.

Lemma 33.1. Let X be a topological space. Let X =
⋃
Ui be an open covering.

Let F , G be sheaves of sets on X. Given a collection

ϕi : F|Ui −→ G|Ui
of maps of sheaves such that for all i, j ∈ I the maps ϕi, ϕj restrict to the same
map F|Ui∩Uj → G|Ui∩Uj then there exists a unique map of sheaves

ϕ : F −→ G
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whose restriction to each Ui agrees with ϕi.

Proof. Omitted. �

The previous lemma implies that given two sheaves F , G on the topological space
X the rule

U 7−→ MorSh(U)(F|U ,G|U )

defines a sheaf. This is a kind of internal hom sheaf. It is seldom used in the
setting of sheaves of sets, and more usually in the setting of sheaves of modules,
see Modules, Section 19.

Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering. For each i ∈ I

let Fi be a sheaf of sets on Ui. For each pair i, j ∈ I, let

ϕij : Fi|Ui∩Uj −→ Fj |Ui∩Uj
be an isomorphism of sheaves of sets. Assume in addition that for every triple of
indices i, j, k ∈ I the following diagram is commutative

Fi|Ui∩Uj∩Uk ϕik
//

ϕij
''

Fk|Ui∩Uj∩Uk

Fj |Ui∩Uj∩Uk

ϕjk

77

We will call such a collection of data (Fi, ϕij) a glueing data for sheaves of sets with
respect to the covering X =

⋃
Ui.

Lemma 33.2. Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering.

Given any glueing data (Fi, ϕij) for sheaves of sets with respect to the covering
X =

⋃
Ui there exists a sheaf of sets F on X together with isomorphisms

ϕi : F|Ui → Fi
such that the diagrams

F|Ui∩Uj ϕi
//

id

��

Fi|Ui∩Uj
ϕij

��
F|Ui∩Uj

ϕj // Fj |Ui∩Uj
are commutative.

Proof. Actually we can write a formula for the set of sections of F over an open
W ⊂ X. Namely, we define

F(W ) = {(si)i∈I | si ∈ Fi(W ∩ Ui), ϕij(si|W∩Ui∩Uj ) = sj |W∩Ui∩Uj}.
Restriction mappings for W ′ ⊂ W are defined by the restricting each of the si to
W ′ ∩ Ui. The sheaf condition for F follows immediately from the sheaf condition
for each of the Fi.
We still have to prove that F|Ui maps isomorphically to Fi. Let W ⊂ Ui. In this
case the condition in the definition of F(W ) implies that sj = ϕij(si|W∩Uj ). And
the commutativity of the diagrams in the definition of a glueing data assures that
we may start with any section s ∈ Fi(W ) and obtain a compatible collection by
setting si = s and sj = ϕij(si|W∩Uj ). Thus the lemma follows. �
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Lemma 33.3. Let X be a topological space. Let X =
⋃
Ui be an open covering. Let

(Fi, ϕij) be a glueing data of sheaves of abelian groups, resp. sheaves of algebraic
structures, resp. sheaves of O-modules for some sheaf of rings O on X. Then the
construction in the proof of Lemma 33.2 above leads to a sheaf of abelian groups,
resp. sheaf of algebraic structures, resp. sheaf of O-modules.

Proof. This is true because in the construction the set of sections F(W ) over an
open W is given as the equalizer of the maps∏

i∈I Fi(W ∩ Ui)
//
//
∏
i,j∈I Fi(W ∩ Ui ∩ Uj)

And in each of the cases envisioned this equalizer gives an object in the relevant
category whose underlying set is the object considered in the cited lemma. �

Lemma 33.4. Let X be a topological space. Let X =
⋃
i∈I Ui be an open covering.

The functor which associates to a sheaf of sets F the following collection of glueing
data

(F|Ui , (F|Ui)|Ui∩Uj → (F|Uj )|Ui∩Uj )
with respect to the covering X =

⋃
Ui defines an equivalence of categories between

Sh(X) and the category of glueing data. A similar statement holds for abelian
sheaves, resp. sheaves of algebraic structures, resp. sheaves of O-modules.

Proof. The functor is fully faithful by Lemma 33.1 and essentially surjective (via
an explicitly given quasi-inverse functor) by Lemma 33.2. �

This lemma means that if the sheaf F was constructed from the glueing data
(Fi, ϕij) and if G is a sheaf on X, then a morphism f : F → G is given by a
collection of morphisms of sheaves

fi : Fi −→ G|Ui
compatible with the glueing maps ϕij . Similarly, to give a morphism of sheaves
g : G → F is the same as giving a collection of morphisms of sheaves

gi : G|Ui −→ Fi
compatible with the glueing maps ϕij .
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