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1. Introduction

In this chapter we discuss Artin’s axioms for the representability of functors by
algebraic spaces. As references we suggest the papers [Art69], [Art70], [Art74].

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 1 for an explanation.

2. Conventions

The conventions we use in this chapter are the same as those in the chapter on
algebraic stacks, see Algebraic Stacks, Section 2. In this chapter the base scheme

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 ARTIN’S AXIOMS

S will often be locally Noetherian (although we will always reiterate this condition
when stating results).

3. Predeformation categories

Let S be a locally Noetherian base scheme. Let

p : X −→ (Sch/S)fppf

be a category fibred in groupoids. Let k be a field and let Spec(k) → S be a
morphism of finite type (see Morphisms, Lemma 17.1). We will sometimes simply
say that k is a field of finite type over S. Let x0 be an object of X lying over
Spec(k). Given S, X , k, and x0 we will construct a predeformation category,
as defined in Formal Deformation Theory, Definition 6.2. The construction will
resemble to construction of Formal Deformation Theory, Remark 6.4.

First, by Morphisms, Lemma 17.1 we may pick an affine open Spec(Λ) ⊂ S such
that Spec(k) → S factors through Spec(Λ) and the associated ring map Λ → k
is finite. This provides us with the category CΛ, see Formal Deformation Theory,
Definition 3.1. The category CΛ, up to canonical equivalence, does not depend on
the choice of the affine open Spec(Λ) of S. Namely, CΛ is equivalent to the opposite
of the category of factorizations

(3.0.1) Spec(k)→ Spec(A)→ S

of the structure morphism such that A is an Artinian local ring and such that
Spec(k) → Spec(A) corresponds to a ring map A → k which identifies k with the
residue field of A.

We let F = FX ,k,x0 be the category whose

(1) objects are morphisms x0 → x of X where p(x) = Spec(A) with A an
Artinian local ring and p(x0)→ p(x)→ S a factorization as in (3.0.1), and

(2) morphisms (x0 → x)→ (x0 → x′) are commutative diagrams

x x′oo

x0

`` >>

in X . (Note the reversal of arrows.)

If x0 → x is an object of F then writing p(x) = Spec(A) we obtain an object A of
CΛ. We often say that x0 → x or x lies over A. A morphism of F between objects
x0 → x lying over A and x0 → x′ lying over A′ corresponds to a morphism x′ → x
of X , hence a morphism p(x′ → x) : Spec(A′)→ Spec(A) which in turn corresponds
to a ring map A→ A′. As X is a category over the category of schemes over S we
see that A→ A′ is Λ-algebra homomorphism. Thus we obtain a functor

(3.0.2) p : F = FX ,k,x0 −→ CΛ.

We will use the notation F(A) to denote the fibre category over an object A of CΛ.
An object of F(A) is simply a morphism x0 → x of X such that x lies over Spec(A)
and x0 → x lies over Spec(k)→ Spec(A).

Lemma 3.1. The functor p : F → CΛ defined above is a predeformation category.

http://localhost:8080/tag/07T5
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Proof. We have to show that F is (a) cofibred in groupoids over CΛ and (b)
that F(k) is a category equivalent to a category with a single object and a single
morphism.

Proof of (a). The fibre categories of F over CΛ are groupoids as the fibre categories
of X are groupoids. Let A→ A′ be a morphism of CΛ and let x0 → x be an object of
F(A). Because X is fibred in groupoids, we can find a morphism x′ → x lying over
Spec(A′) → Spec(A). Since the composition A → A′ → k is equal the given map
A → k we see (by uniqueness of pullbacks up to isomorphism) that the pullback
via Spec(k)→ Spec(A′) of x′ is x0, i.e., that there exists a morphism x0 → x′ lying
over Spec(k)→ Spec(A′) compatible with x0 → x and x′ → x. This proves that F
has pushforwards. We conclude by (the dual of) Categories, Lemma 33.2.

Proof of (b). If A = k, then Spec(k) = Spec(A) and since X is fibred in groupoids
over (Sch/S)fppf we see that given any object x0 → x in F(k) the morphism x0 → x
is an isomorphism. Hence every object of F(k) is isomorphic to x0 → x0. Clearly
the only self morphism of x0 → x0 in F is the identity. �

Let S be a locally Noetherian base scheme. Let F : X → Y be a 1-morphism
between categories fibred in groupoids over (Sch/S)fppf . Let k is a field of finite
type over S. Let x0 be an object of X lying over Spec(k). Set y0 = F (x0) which is
an object of Y lying over Spec(k). Then F induces a functor

(3.1.1) F : FX ,k,x0
−→ FY,k,y0

of categories cofibred over CΛ. Namely, to the object x0 → x of FX ,k,x0
(A) we

associate the object F (x0)→ F (x) of FY,k,y0
(A).

Lemma 3.2. Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf which is formally
smooth on objects (see Criteria for Representability, Section 6). Then for every
finite type field k over S and for every object x0 of X over k the functor (3.1.1) is
smooth in the sense of Formal Deformation Theory, Definition 8.1.

Proof. This is a matter of unwinding the definitions. Details omitted. �

Lemma 3.3. Let S be a locally Noetherian scheme. Let

W

��

// Z

��
X // Y

be a 2-fibre product of categories fibred in groupoids over (Sch/S)fppf . Let k be a
finite type field over S and w0 an object of W over k. Let x0, z0, y0 be the images
of w0 under the morphisms in the diagram. Then

FW,k,w0

��

// FZ,k,z0

��
FX ,k,x0

// FY,k,y0

is a fibre product of predeformation categories.

Proof. This is a matter of unwinding the definitions. Details omitted. �

http://localhost:8080/tag/07WK
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4. Pushouts and stacks

In this section we show that algebraic stacks behave well with respect to certain
pushouts. The results in this section hold over any base scheme.

The following lemma is also correct when Y , X ′, X, Y ′ are algebraic spaces, see
(insert future reference here).

Lemma 4.1. Let S be a scheme. Let

X //

��

X ′

��
Y // Y ′

be a pushout in the category of schemes over S where X → X ′ is a thickening and
X → Y is affine, see More on Morphisms, Lemma 11.1. Let Z be an algebraic
stack over S. Then the functor of fibre categories

ZY ′ −→ ZY ×ZX
ZX′

is an equivalence of categories.

Proof. Let y′ be an object of left hand side. The sheaf Isom(y′, y′) on the category
of schemes over Y ′ is representable by an algebraic space I over Y ′, see Algebraic
Stacks, Lemma 10.11. We conclude that the functor of the lemma is fully faithful
as Y ′ is the pushout in the category of algebraic spaces as well as the category of
schemes, see Pushouts of Spaces, Lemma 2.2.

Let (y, x′, f) be an object of the right hand side. Here f : y|X → x′|X is an
isomorphism. To finish the proof we have to construct an object y′ of ZY ′ whose
restrictions to Y and X ′ agree with y and x′ in a manner compatible with ϕ. In
fact, it suffices to construct y′ fppf locally on Y ′, see Stacks, Lemma 4.8. Choose a
representable algebraic stack W and a surjective smooth morphism W → Z. Then

(Sch/Y )fppf ×y,Z W and (Sch/X ′)fppf ×x′,Z W

are algebraic stacks representable by algebraic spaces V and U ′ smooth over Y
and X ′. The isomorphism f induces an isomorphism ϕ : V ×Y X → U ′ ×X′ X
over X. By Pushouts of Spaces, Lemmas 2.3 and 2.8 we see that the pushout
V ′ = V qV×YX U ′ is an algebraic space smooth over Y ′ whose base change to Y
and X ′ recovers V and U ′ in a manner compatible with ϕ.

Let W be the algebraic space representing W. The projections V → W and U ′ →
W agree as morphisms over V ×Y X ∼= U ′ ×X′ X hence the universal property of
the pushout determines a morphism of algebraic spaces V ′ →W . Choose a scheme
Y ′1 and a surjective étale morphism Y ′1 → V ′. Set Y1 = Y ×Y ′ Y ′1 , X ′1 = X ′ ×Y ′ Y ′1 ,
X1 = X ×Y ′ Y ′1 . The composition

(Sch/Y ′1)→ (Sch/V ′)→ (Sch/W ) =W → Z

corresponds by the 2-Yoneda lemma to an object y′1 of Z over Y ′1 whose restriction
to Y1 and X ′1 agrees with y|Y1

and x′|X′1 in a manner compatible with f |X1
. Thus

we have constructed our desired object smooth locally over Y ′ and we win. �

http://localhost:8080/tag/07WN
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5. The Rim-Schlessinger condition

The motivation for the following definition comes from Lemma 4.1 and Formal
Deformation Theory, Definition 15.1 and Lemma 15.4.

Definition 5.1. Let S be a locally Noetherian scheme. Let Z be a category fibred
in groupoids over (Sch/S)fppf . We say Z satisfies condition (RS) if for every
pushout

X //

��

X ′

��
Y // Y ′ = Y qX X ′

in the category of schemes over S where

(1) X, X ′, Y , Y ′ are spectra of local Artinian rings,
(2) X, X ′, Y , Y ′ are of finite type over S, and
(3) X → X ′ (and hence Y → Y ′) is a closed immersion

the functor of fibre categories

ZY ′ −→ ZY ×ZX
ZX′

is an equivalence of categories.

If A is an Artinian local ring with residue field k, then any morphism Spec(A)→ S
is affine and of finite type if and only if the induced morphism Spec(k) → S is of
finite type, see Morphisms, Lemmas 13.13 and 17.2.

Lemma 5.2. Let X be an algebraic stack over a locally Noetherian base S. Then
X satisfies (RS).

Proof. Immediate from the definitions and Lemma 4.1. �

Lemma 5.3. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms of
categories fibred in groupoids over (Sch/S)fppf . If X , Y, and Z satisfy (RS), then
so does X ×Y Z.

Proof. This is formal. Let

X //

��

X ′

��
Y // Y ′ = Y qX X ′

be a diagram as in Definition 5.1. We have to show that

(X ×Y Z)Y ′ −→ (X ×Y Z)Y ×(X×YZ)X (X ×Y Z)X′

is an equivalence. Using the definition of the 2-fibre product this becomes

(5.3.1) XY ′ ×YY ′ ZY ′ −→ (XY ×YY
ZY )×(XX×YXZX) (XX′ ×YX′ ZX′).

We are given that each of the functors

XY ′ → XY ×YY
ZY , YY ′ → XX ×YX

ZX , ZY ′ → XX′ ×YX′ ZX′

are equivalences. An object of the right hand side of (5.3.1) is a system

((xY , zY , φY ), (xX′ , zX′ , φX′), (α, β)).

http://localhost:8080/tag/07WP
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Then (xY , xY ′ , α) is isomorphic to the image of an object xY ′ in XY ′ and (zY , zY ′ , β)
is isomorphic to the image of an object zY ′ of ZY ′ . The pair of morphisms (φY , φX′)
corresponds to a morphism ψ between the images of xY ′ and zY ′ in YY ′ . Then
(xY ′ , zY ′ , ψ) is an object of the left hand side of (5.3.1) mapping to the given
object of the right hand side. This proves that (5.3.1) is essentially surjective. We
omit the proof that it is fully faithful. �

6. Deformation categories

We match the notation introduced above with the notation from the chapter “For-
mal Deformation Theory”.

Lemma 6.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS). For any field k of finite type over S
and any object x0 of X lying over k the predeformation category p : FX ,k,x0

→ CΛ
(3.0.2) is a deformation category, see Formal Deformation Theory, Definition 15.8.

Proof. Set F = FX ,k,x0 . Let f1 : A1 → A and f2 : A2 → A be ring maps in CΛ
with f2 surjective. We have to show that the functor

F(A1 ×A A2) −→ F(A1)×F(A) F(A2)

is an equivalence, see Formal Deformation Theory, Lemma 15.4. Set X = Spec(A),
X ′ = Spec(A2), Y = Spec(A1) and Y ′ = Spec(A1×AA2). Note that Y ′ = Y qXX ′
in the category of schemes, see More on Morphisms, Lemma 11.1. We know that
in the diagram of functors of fibre categories

XY ′ //

��

XY ×XX
XX′

��
XSpec(k) XSpec(k)

the top horizontal arrow is an equivalence by Definition 5.1. Since F(B) is the
category of objects of XSpec(B) with an identification with x0 over k we win. �

Remark 6.2. Let S be a locally Noetherian scheme. Let X be fibred in groupoids
over (Sch/S)fppf . Let k be a field of finite type over S and x0 an object of X over
k. Let p : F → CΛ be as in (3.0.2). If F is a deformation category, i.e., if F satisfies
the Rim-Schlessinger condition (RS), then we see that F satisfies Schlessingers
conditions (S1) and (S2) by Formal Deformation Theory, Lemma 15.6. Let F be
the functor of isomorphism classes, see Formal Deformation Theory, Remarks 5.2
(10). Then F satisfies (S1) and (S2) as well, see Formal Deformation Theory,
Lemma 9.5. This holds in particular in the situation of Lemma 6.1.

7. Change of field

This section is the analogue of Formal Deformation Theory, Section 26. As pointed
out there, to discuss what happens under change of field we need to write CΛ,k
instead of CΛ. In the following lemma we use the notation Fl/k introduced in
Formal Deformation Theory, Situation 26.1.

Lemma 7.1. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Let k be a field of finite type over S and let k ⊂ l be

http://localhost:8080/tag/07WU
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a finite extension. Let x0 be an object of F lying over Spec(k). Denote xl,0 the
restriction of x0 to Spec(l). Then there is a canonical functor

(FX ,k,x0
)l/k −→ FX ,l,xl,0

of categories cofibred in groupoids over CΛ,l. If X satisfies (RS), then this functor
is an equivalence.

Proof. Consider a factorization

Spec(l)→ Spec(B)→ S

as in (3.0.1). By definition we have

(FX ,k,x0
)l/k(B) = FX ,k,x0

(B ×l k)

see Formal Deformation Theory, Situation 26.1. Thus an object of this is a mor-
phism x0 → x of X lying over the morphism Spec(k) → Spec(B ×l k). Choosing
pullback functor for X we can associate to x0 → x the morphism xl,0 → xB where
xB is the restriction of x to Spec(B) (via the morphism Spec(B) → Spec(B ×l k)
coming from B×l k ⊂ B). This construction is functorial in B and compatible with
morphisms.

Next, assume X satisfies (RS). Consider the diagrams

l Boo

k

OO

B ×l koo

OO

and

Spec(l)

��

// Spec(B)

��
Spec(k) // Spec(B ×l k)

The diagram on the left is a fibre product of rings. The diagram on the right is a
pushout in the category of schemes, see More on Morphisms, Lemma 11.1. These
schemes are all of finite type over S (see remarks following Definition 5.1). Hence
(RS) kicks in to give an equivalence of fibre categories

XSpec(B×lk) −→ XSpec(k) ×XSpec(l)
XSpec(B)

This implies that the functor defined above gives an equivalence of fibre categories.
Hence the functor is an equivalence on categories cofibred in groupoids by (the dual
of) Categories, Lemma 33.8. �

8. Tangent spaces

Let S be a locally Noetherian scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . Let k be a field of finite type over S and let x0 be an object of X over
k. In Formal Deformation Theory, Section 11 we have defined the tangent space

(8.0.1) TFX ,k,x0
=

{
isomorphism classes of morphisms
x0 → x over Spec(k)→ Spec(k[ε])

}
of the predeformation category FX ,k,x0 . In Formal Deformation Theory, Section 18
we have defined

(8.0.2) Infx0
(FX ,k,x0

) = Ker
(
AutSpec(k[ε])(x

′
0)→ AutSpec(k)(x0)

)
where x′0 is the pullback of x0 to Spec(k[ε]). If X satisfies the Rim-Schlessinger
condition (RS), then TFX ,k,x0 comes equipped with a natural k-vector space struc-
ture by Formal Deformation Theory, Lemma 11.2 (assumptions hold by Lemma 6.1
and Remark 6.2). Moreover, Formal Deformation Theory, Lemma 18.9 shows that
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Infx0
(FX ,k,x0

) has a natural k-vector space structure such that addition agrees with
composition of automorphisms. A natural condition is to ask these vector spaces
to have finite dimension.

The following lemma tells us this is true if X is locally of finite type over S (see
Morphisms of Stacks, Section 13).

Lemma 8.1. Let S be a locally Noetherian scheme. Assume

(1) X is an algebraic stack,
(2) U is a scheme locally of finite type over S, and
(3) (Sch/U)fppf → X is a smooth surjective morphism.

Then, for any F = FX ,k,x0 as in Section 3 the tangent space TF and infinitesimal
automorphism space Infx0

(F) have finite dimension over k

Proof. Let us write U = (Sch/U)fppf . By our definition of algebraic stacks the
1-morphism U → X is representable by algebraic spaces. Hence in particular the
2-fibre product

Ux0
= (Sch/ Spec(k))fppf ×X U

is representable by an algebraic space Ux0
over Spec(k). Then Ux0

→ Spec(k)
is smooth and surjective (in particular Ux0

is nonempty). By Spaces over Fields,
Lemma 9.2 we can find a finite extension l ⊃ k and a point Spec(l)→ Ux0

over k.
We have

(FX ,k,x0
)l/k = FX ,l,xl,0

by Lemma 7.1 and the fact that X satisfies (RS). Thus we see that

TF ⊗k l ∼= TFX ,l,xl,0
and Infx0

(F)⊗k l ∼= Infxl,0
(FX ,l,xl,0

)

by Formal Deformation Theory, Lemmas 26.3 and 26.4 (these are applicable by
Lemmas 5.2 and 6.1 and Remark 6.2). Hence it suffices to prove that TFX ,l,xl,0

and Infxl,0
(FX ,l,xl,0

) have finite dimension over l. Note that xl,0 comes from a point
u0 of U over l.

We interrupt the flow of the argument to show that the lemma for infinitesimal
automorphisms follows from the lemma for tangent spaces. Namely, letR = U×XU .
Let r0 be the l-valued point (u0, u0, idx0

) of R. Combining Lemma 3.3 and Formal
Deformation Theory, Lemma 24.2 we see that

Infxl,0
(FX ,l,xl,0

) ⊂ TFR,k,r0
Note that R is an algebraic stack, see Algebraic Stacks, Lemma 14.2. Also, R is
representably by an algebraic space R smooth over U (via either projection, see
Algebraic Stacks, Lemma 16.2). Hence, choose an scheme U ′ and a surjective étale
morphism U ′ → R we see that U ′ is smooth over U , hence locally of finite type over
S. As (Sch/U ′)fppf → R is surjective and smooth, we have reduced the question
to the case of tangent spaces.

The functor (3.1.1)
FU,l,u0 −→ FX ,l,xl,0

is smooth by Lemma 3.2 and Criteria for Representability, Lemma 6.3. The induced
map on tangent spaces

TFU,l,u0
−→ TFX ,l,xl,0

is l-linear (by Formal Deformation Theory, Lemma 11.4) and surjective (as smooth
maps of predeformation categories induce surjective maps on tangent spaces by

http://localhost:8080/tag/07X1
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Formal Deformation Theory, Lemma 8.8). Hence it suffices to prove that the tan-
gent space of the deformation space associated to the representable algebraic stack
U at the point u0 is finite dimensional. Let Spec(R) ⊂ U be an affine open such
that u0 : Spec(l)→ U factors through Spec(R) and such that Spec(R)→ S factors
through Spec(Λ) ⊂ S. Let mR ⊂ R be the kernel of the Λ-algebra map ϕ0 : R→ l
corresponding to u0. Note that R, being of finite type over the Noetherian ring
Λ, is a Noetherian ring. Hence mR = (f1, . . . , fn) is a finitely generated ideal. We
have

TFU,l,u0
= {ϕ : R→ l[ε] | ϕ is a Λ-algebra map and ϕ mod ε = ϕ0}

An element of the right hand side is determined by its values on f1, . . . , fn hence
the dimension is at most n and we win. Some details omitted. �

Lemma 8.2. Let S be a locally Noetherian scheme. Let p : X → Y and q : Z → Y
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . Assume X , Y,
Z satisfy (RS). Let k be a field of finite type over S and let w0 be an object of
W = X ×Y Z over k. Denote x0, y0, z0 the objects of X ,Y,Z you get from w0.
Then there is a 6-term exact sequence

0 // Infw0
(FW,k,W0) // Infx0

(FX ,k,x0)⊕ Infz0(FZ,k,z0) // Infy0
(FY,k,y0)

rr
TFW,k,w0

// TFX ,k,x0
⊕ TFZ,k,z0 // TFY,k,y0

of k-vector spaces.

Proof. Apply Lemmas 3.3 and 6.1 and Formal Deformation Theory, Lemma 18.14.
�

9. Formal objects

In this section we transfer some of the notions already defined in the chapter “For-
mal Deformation Theory” to the current setting. In the following we will say “R
is an S-algebra” to indicate that R is a ring endowed with a morphism of schemes
Spec(R)→ S.

Definition 9.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf
be a category fibred in groupoids.

(1) A formal object ξ = (R, ξn, fn) of X consists of a Noetherian complete
local S-algebra R, objects ξn of X lying over Spec(R/mnR), and morphisms
ξn → ξn+1 of X lying over Spec(R/mn) → Spec(R/mn+1) such that R/m
is a field of finite type over S.

(2) A morphism of formal objects a : ξ = (R, ξn, fn)→ η = (T, ηn, gn) is given
by morphisms an : ξn → ηn such that for every n the diagram

ξn+1
fn

//

an+1

��

ξn

an

��
ηn+1

gn // ηn

is commutative. Applying the functor p we obtain a compatible collection
of morphisms Spec(R/mnR) → Spec(T/mnT ) and hence a morphism a0 :
Spec(R)→ Spec(T ) over S. We say that a lies over a0.

http://localhost:8080/tag/07X2
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Thus we obtain a category of formal object of X . If F : X → Y is a 1-morphism of
categories fibred in groupoids over (Sch/S)fppf , then F induces a functor between
categories of formal objects as well.

Given a formal object ξ = (R, ξn, fn), set k = R/m and x0 = ξ1. Then the formal
object ξ defines a formal object ξ of FX ,k,x0

as defined in Formal Deformation
Theory, Definition 7.1. We will use the terminology introduced in that chapter. In
particular, we will say that ξ is versal if ξ (as a formal object of F) is versal in
the sense of Formal Deformation Theory, Definition 8.13. We briefly spell out here
what this means. Suppose given a morphism x0 → y lying over a closed immersion
Spec(k) → Spec(A) where A is an Artinian local ring with residue field k. Then
versality implies there exists an n ≥ 1 and a commutative diagram

y

{{
ξn ξ1 = x0

OO

oo

lying over

Spec(A)

xx
Spec(R/mn) Spec(k)

OO

oo

Please compare with Formal Deformation Theory, Remark 8.14.

Lemma 9.2. Let S be a locally Noetherian scheme. Let F : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Let η = (R, ηn, gn) be
a formal object of Y and let ξ1 be an object of X with F (ξ1) ∼= η1. If F is formally
smooth on objects (see Criteria for Representability, Section 6), then there exists a
formal object ξ = (R, ξn, fn) of X such that F (ξ) ∼= η.

Proof. Note that each of the morphisms Spec(R/mn) → Spec(R/mn+1) is a first
order thickening of affine schemes over S. Hence the assumption on F means
that we can successively lift ξ1 to objects ξ2, ξ3, . . . of X endowed with compatible
isomorphisms ηn|Spec(R/mn−1)

∼= ηn−1 and F (ηn) ∼= ξn. �

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Suppose that x is an object of X over R, where R is a Noe-
therian complete local S-algebra with residue field of finite type over S. Then
we can consider the system of restrictions ξn = x|Spec(R/mn) endowed with the
natural morphisms ξ1 → ξ2 → . . . coming from transitivity of restriction. Thus
ξ = (R, ξn, ξn → ξn+1) is a formal object of X . This construction is functorial in
the object x. Thus we obtain a functor

(9.2.1)

objects x of X such that p(x) = Spec(R)
where R is Noetherian complete local

with R/m of finite type over S

 −→ {
formal objects of X

}
To be precise the left hand side is the full subcategory of X consisting of objects
as indicated and the right hand side is the category of formal objects of X as in
Definition 9.1.

Definition 9.3. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . A formal object ξ = (R, ξn, fn) of X is called
effective if it is in the essential image of the functor (9.2.1).

If the category fibred in groupoids is an algebraic stack, then every formal object
is effective as follows from the next lemma.

http://localhost:8080/tag/07X5
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Lemma 9.4. Let S be a locally Noetherian scheme. Let X be an algebraic stack
over S. The functor (9.2.1) is an equivalence.

Proof. Case I: X is representable (by a scheme). Say X = (Sch/X)fppf for some
scheme X over S. Unwinding the definitions we have to prove the following: Given
a Noetherian complete local S-algebra R with R/m of finite type over S we have

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective. This follows from Formal Spaces, Lemma 24.2.

Case II. X is representable by an algebraic space. Say X is representable by X.
Again we have to show that

MorS(Spec(R), X) −→ lim MorS(Spec(R/mn), X)

is bijective for R as above. This is Formal Spaces, Lemma 24.3.

Case III: General case of an algebraic stack. A general remark is that the left and
right hand side of (9.2.1) are categories fibred in groupoids over the category of
affine schemes over S which are spectra of Noetherian complete local rings with
residue field of finite type over S. We will also see in the proof below that they
form stacks for a certain topology on this category.

We first prove fully faithfulness. Let R be a Noetherian complete local S-algebra
with k = R/m of finite type over S. Let x, x′ be objects of X over R. As X is an
algebraic stack Isom(x, x′) is representable by an algebraic space I over Spec(R),
see Algebraic Stacks, Lemma 10.11. Applying Case II to I over Spec(R) implies
immediately that (9.2.1) is fully faithful on fibre categories over Spec(R). Hence
the functor is fully faithful by Categories, Lemma 33.8.

Essential surjectivity. Let ξ = (R, ξn, fn) be a formal object of X . Choose a scheme
U over S and a surjective smooth morphism f : (Sch/U)fppf → X . For every n
consider the fibre product

(Sch/Spec(R/mn))fppf ×ξn,X ,f (Sch/U)fppf

By assumption this is representable by an algebraic space Vn surjective and smooth
over Spec(R/mn). The morphisms fn : ξn → ξn+1 induce cartesian squares

Vn+1

��

Vn

��

oo

Spec(R/mn+1) Spec(R/mn)oo

of algebraic spaces. By Spaces over Fields, Lemma 9.2 we can find a finite separable
extension k ⊂ k′ and a point v′1 : Spec(k′) → V1 over k. Let R ⊂ R′ be the finite
étale extension whose residue field extension is k ⊂ k′ (exists and is unique by Alge-
bra, Lemmas 145.8 and 145.10). By the infinitesimal lifting criterion of smoothness
(see More on Morphisms of Spaces, Lemma 16.6) applied to Vn → Spec(R/mn) for
n = 2, 3, 4, . . . we can successively find morphisms v′n : Spec(R′/(m′)n) → Vn over
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Spec(R/mn) fitting into commutive diagrams

Spec(R′/(m′)n+1)

v′n+1

��

Spec(R′/(m′)n)

v′n
��

oo

Vn+1 Vnoo

Composing with the projection morphisms Vn → U we obtain a compatible system
of morphisms u′n : Spec(R′/(m′)n) → U . By Case I the family (u′n) comes from a
unique morphism u′ : Spec(R′) → U . Denote x′ the object of X over Spec(R′) we
get by applying the 1-morphism f to u′. By construction, there exists a morphism
of formal objects

(9.2.1)(x′) = (R′, x′|Spec(R′/(m′)n), . . .) −→ (R, ξn, fn)

lying over Spec(R′) → Spec(R). Note that R′ ⊗R R′ is a finite product of spectra
of Noetherian complete local rings to which our current discussion applies. Denote
p0, p1 : Spec(R′ ⊗R R′) → Spec(R′) the two projections. By the fully faithfulness
shown above there exists a canonical isomorphism ϕ : p∗0x

′ → p∗1x
′ because we

have such isomorphisms over Spec((R′ ⊗R R′)/mn(R′ ⊗R R′)). We omit the proof
that the isomorphism ϕ satisfies the cocycle condition (see Stacks, Definition 3.1).
Since {Spec(R′) → Spec(R)} is an fppf covering we conclude that x′ descends to
an object x of X over Spec(R). We omit the proof that xn is the restriction of x
to Spec(R/mn). �

Lemma 9.5. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf . If the functor (9.2.1) is an
equivalence for X , Y, and Z, then it is and equivalence for X ×Y Z.

Proof. The left and the right hand side of (9.2.1) for X ×Y Z are simply the
2-fibre products of the left and the right hand side of (9.2.1) for X , Z over Y.
Hence the result follows as taking 2-fibre products is compatible with equivalences
of categories, see Categories, Lemma 29.7. �

10. Approximation

A fundamental insight of Michael Artin is that you can approximate objects of a
limit preserving stack. Namely, given an object x of the stack over a Noetherian
complete local ring, you can find an object xA over an algebraic ring which is “close
to” x. Here an algebraic ring means a finite type S-algebra and close means adically
close. In this section we present this in a simple, yet general form.

To formulate the result we need to pull together some definitions from differ-
ent places in the stacks project. First, in Criteria for Representability, Section
5 we introduced limit preserving on objects for 1-morphisms of categories fibred in
groupoids over the category of schemes. In More on Algebra, Definition 39.1 we
defined the notion of a G-ring. Let S be a locally Noetherian scheme. Let A be
an S-algebra. We say that A is of finite type over S or is a finite type S-algebra if
Spec(A)→ S is of finite type. In this case A is a Noetherian ring. Finally, given a
ring A and ideal I we denote GrI(A) =

⊕
In/In+1.

Lemma 10.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let x be an object of X lying over Spec(R) where
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R is a Noetherian complete local ring with residue field k of finite type over S. Let
s ∈ S be the image of Spec(k)→ S. Assume that (a) OS,s is a G-ring and (b) p is
limit preserving on objects. Then for every integer N ≥ 1 there exist

(1) a finite type S-algebra A,
(2) a maximal ideal mA ⊂ A,
(3) an object xA of X over Spec(A),
(4) an S-isomorphism R/mNR

∼= A/mNA ,
(5) an isomorphism x|Spec(R/mN

R )
∼= xA|Spec(A/mN

A ) compatible with (4), and

(6) an isomorphism GrmR
(R) ∼= GrmA

(A) of graded k-algebras.

Proof. Choose an affine open Spec(Λ) ⊂ S such that k is a finite Λ-algebra, see
Morphisms, Lemma 17.1. We may and do replace S by Spec(Λ).

We may write R as a directed colimit R = colimCj where each Cj is a finite type Λ-
algebra (see Algebra, Lemma 123.1). By assumption (b) the object x is isomorphic
to the restriction of an object over one of the Cj . Hence we may choose a finite
type Λ-algebra C, a Λ-algebra map C → R, and an object xC of X over Spec(C)
such that x = xC |Spec(R). The choice of C is a bookkeeping device and could be
avoided. For later use, let us write C = Λ[y1, . . . , yu]/(f1, . . . , fv) and we denote
ai ∈ R the image of yi under the map C → R. Set mC = C ∩mR.

Choose a Λ-algebra surjection Λ[x1, . . . , xs] → k and denote m′ the kernel. By
the universal property of polynomial rings we may lift this to a Λ-algebra map
Λ[x1, . . . , xs] → R. We add some variables (i.e., we increase s a bit) mapping to
generators of mR. Having done this we see that Λ[x1, . . . , xs]→ R/m2

R is surjective.
Then we see that

(10.1.1) P = Λ[x1, . . . , xs]
∧
m′ −→ R

is a surjective map of Noetherian complete local rings, see for example Formal
Deformation Theory, Lemma 4.2.

Choose lifts ai ∈ P of ai we found above. Choose generators b1, . . . , br ∈ P for the
kernel of (10.1.1). Choose cji ∈ P such that

fj(a1, . . . , au) =
∑

cjibi

in P which is possible by the choices made so far. Choose generators

k1, . . . , kt ∈ Ker(P⊕r
(b1,...,br)−−−−−−→ P )

and write ki = (ki1, . . . , kir) and K = (kij) so that

P⊕t
K−→ P⊕r

(b1,...,br)−−−−−−→ P → R→ 0

is an exact sequence of P -modules. In particular we have
∑
kijbj = 0. After

possibly increasing N we may assume N − 1 works in the Artin-Rees lemma for
the first two maps of this exact sequence (see More on Algebra, Section 3 for
terminology).

By assumption OS,s = ΛΛ∩m′ is a G-ring. Hence by More on Algebra, Proposition
39.10 the ring Λ[x1, . . . , xs]m′ is aG-ring. Hence by Smoothing Ring Maps, Theorem
13.2 there exist an étale ring map

Λ[x1, . . . , xs]m′ → B,

a maximal ideal mB of B lying over m′, and elements a′i, b
′
i, c
′
ij , k

′
ij ∈ B′ such that
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(1) κ(m′) = κ(mB) which implies that Λ[x1, . . . , xs]m′ ⊂ BmB
⊂ P and P is

identified with the completion of B at mB , see remark preceding Smoothing
Ring Maps, Theorem 13.2,

(2) ai − a′i, bi − b′i, cij − c′ij , kij − k′ij ∈ (m′)NP , and
(3) fj(a

′
1, . . . , a

′
u) =

∑
c′jib
′
i and

∑
k′ijb

′
j = 0.

Set A = B/(b′1, . . . , b
′
r) and denote mA the image of mB in A. (Note that A is

essentially of finite type over Λ; at the end of the proof we will show how to obtain
an A which is of finite type over Λ.) There is a ring map C → A sending yi 7→ a′i
because the a′i satisfy the desired equations modulo (b′1, . . . , b

′
r). Note that A/mNA =

R/mNR as quotients of P = B∧ by property (2) above. Set xA = xC |Spec(A). Since
the maps

C → A→ A/mNA
∼= R/mNR and C → R→ R/mNR

are equal we see that xA and x agree modulo mNR via the isomorphism A/mNA =
R/mNR . At this point we have shown properties (1) – (5) of the statement of the
lemma. To see (6) note that

P⊕t
K−→ P⊕r

(b1,...,br)−−−−−−→ P and P⊕t
K′−−→ P⊕r

(b′1,...,b
′
r)−−−−−−→ P

are two complexes of P -modules which are congruent modulo (m′)N with the first
one being exact. By our choice of N above we see from More on Algebra, Lemma 3.2
that R = P/(b1, . . . , br) and P/(b′1, . . . , b

′
r) = B∧/(b′1, . . . , b

′
r) = A∧ have isomorphic

associated graded algebras, which is what we wanted to show.

This last paragraph of the proof serves to clean up the issue that A is essentially
of finite type over S and not yet of finite type. The construction above gives
A = B/(b′1, . . . , b

′
r) and mA ⊂ A with B étale over Λ[x1, . . . , xs]m′ . Hence A is

of finite type over the Noetherian ring Λ[x1, . . . , xs]m′ . Thus we can write A =
(A0)m′ for some finite type Λ[x1, . . . , xn] algebra A0. Then A = colim(A0)f where
f ∈ Λ[x1, . . . , xn] \ m′, see Algebra, Lemma 9.9. Because p : X → (Sch/S)fppf is
limit preserving on objects, we see that xA comes from some object x(A0)f over
Spec((A0)f ) for an f as above. After replacing A by (A0)f and xA by x(A0)f and
mA by (A0)f ∩mA the proof is finished. �

11. Versality

In the previous section we explained how to approximate objects over complete
local rings by algebraic objects. But in order to show that a stack X is an algebraic
stack, we need to find smooth 1-morphisms from schemes towards X . Since we are
not going to assume a priori that X has a representable diagonal, we cannot even
speak about smooth morphisms towards X . Instead, borrowing terminology from
deformation theory, we will introduce versal objects.

Let S be a locally Noetherian scheme. Let U be a scheme over S with structure
morphism U → S locally of finite type. Let u0 ∈ U be a finite type point of U , see
Morphisms, Definition 17.3. Set k = κ(u0). Note that the composition Spec(k)→ S
is also of finite type, see Morphisms, Lemma 16.3. Let p : X → (Sch/S)fppf be a
category fibred in groupoids. Let x be an object of X which lies over U . Denote x0

the pullback of x by u0. By the 2-Yoneda lemma x corresponds to a 1-morphism

x : (Sch/U)fppf −→ X ,
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see Algebraic Stacks, Section 5. We obtain a morphism of predeformation cate-
gories

(11.0.2) x̂ : F(Sch/U)fppf ,k,u0
−→ FX ,k,x0

,

over CΛ see (3.1.1).

Definition 11.1. Let S be a locally Noetherian scheme. Let X be fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let
x be an object of X lying over U . Let u0 be finite type point of U . We say x is
versal at u0 if the morphism x̂ (11.0.2) is smooth, see Formal Deformation Theory,
Definition 8.1.

This definition matches our notion of versality for formal objects of X in the fol-
lowing way. Observe that OU,u0

is a Noetherian local S-algebra with residue field
k. Hence R = O∧U,u0

is an object of C∧Λ , see Formal Deformation Theory, Definition
4.1. There is an identification of predeformation categories

R|CΛ = F(Sch/U)fppf ,k,u0
,

see Formal Deformation Theory, Remark 7.12 for notation. Namely, given an Ar-
tinian local S-algebra A with residue field identified with k we have

MorC∧Λ (R,A) = {ϕ ∈ MorS(Spec(A), U) | ϕ|Spec(k) = u0}
Let ξ be the formal object of X over R associated to x|Spec(R), see (9.2.1). Then

R|CΛ = F(Sch/U)fppf ,k,u0

x̂−→ FX ,k,x0 ,

corresponds to ξ via the correspondence between formal objects and morphisms of
Formal Deformation Theory, Equation (7.12.1). In other words, we see that

x is versal at u0 ⇔ ξ is versal

It turns out that this notion is well behaved with respect to field extensions.

Lemma 11.2. Let S, X , U , x, u0 be as in Definition 11.1. Let l be a field and let
ul,0 : Spec(l) → U be a morphism with image u0 such that k = κ(u0) ⊂ l is finite.
Set xl,0 = x0|Spec(l). If X satisfies (RS) and x is versal at u0, then

F(Sch/U)fppf ,l,ul,0
−→ FX ,l,xl,0

is smooth.

Proof. Note that (Sch/U)fppf satisfies (RS) by Lemma 5.2. Hence the functor of
the lemma is the functor

(F(Sch/U)fppf ,k,u0
)l/k −→ (FX ,k,x0

)l/k

associated to x̂, see Lemma 7.1. Hence the lemma follows from Formal Deformation
Theory, Lemma 26.5. �

We restate the approximation result in terms of versal objects.

Lemma 11.3. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let ξ = (R, ξn, fn) be a formal object of X with ξ1
lying over Spec(k)→ S with image s ∈ S. Assume

(1) ξ is versal,
(2) ξ is effective,
(3) OS,s is a G-ring, and

http://localhost:8080/tag/07XF
http://localhost:8080/tag/07XG
http://localhost:8080/tag/07XH


16 ARTIN’S AXIOMS

(4) p : X → (Sch/S)fppf is limit preserving on objects.

Then there exist a morphism of finite type U → S, a finite type point u0 ∈ U with
residue field k, and an object x of X over U such that x is versal at u0 and such
that x|Spec(k)

∼= ξ1.

Proof. Choose an object xR of X lying over Spec(R) whose associated formal
object is ξ. Let N = 2 and apply Lemma 10.1. We obtain A,mA, ξA, . . .. Let
η = (A∧, ηn, gn) be the formal object associated to ξA|Spec(A∧). We have a diagram

η

��
ξ //

;;

ξ2 = η2

lying over

A∧

��
R //

88

R/m2
R = A/m2

A

The versality of ξ means exactly that we can find the dotted arrows in the dia-
grams, because we can successively find morphisms ξ → η3, ξ → η4, and so on by
Formal Deformation Theory, Remark 8.14. The corresponding ring map R → A∧

is surjective by Formal Deformation Theory, Lemma 4.2. On the other hand, we
have dimk m

n
R/m

n+1
R = dimk m

n
A/m

n+1
A for all n by construction. Hence R/mnR

and A/mnA have the same (finite) length as Λ-modules by additivity of length and
Formal Deformation Theory, Lemma 3.4. It follows that R/mnR → A/mnA is an
isomorphism for all n, hence R → A∧ is an isomorphism. Thus η is isomorphic to
a versal object, hence versal itself. �

Example 11.4. In this example we show that the local ring OS,s has to be a G-ring
in order for the result of Lemma 11.3 to be true. Namely, let Λ be a Noetherian
ring and let m be a maximal ideal of Λ. Set R = Λ∧m. Let Λ → C → R be a
factorization with C of finite type over Λ. Set S = Spec(Λ), U = S \ {m}, and
S′ = U q Spec(C). Consider the functor F : (Sch/S)oppfppf → Sets defined by the
rule

F (T ) =

{
∗ if T → S factors through S′

∅ else

Let X = SF is the category fibred in sets associated to F , see Algebraic Stacks,
Section 7. Then X → (Sch/S)fppf is limit preserving on objects and there exists
an effective, versal formal object ξ over R. Hence if the conclusion of Lemma 11.3
holds for X , then there exists a finite type ring map Λ → A and a maximal ideal
mA lying over m such that

(1) κ(m) = κ(mA),
(2) Λ→ A and mA satisfy condition (4) of Algebra, Lemma 136.2, and
(3) there exists a Λ-algebra map C → A.

Thus Λ → A is smooth at mA by the lemma cited. Slicing A we may assume
that Λ → A is étale at mA, see for example More on Morphisms, Lemma 28.5 or
argue directly. Write C = Λ[y1, . . . , yn]/(f1, . . . , fm). Then C → R corresponds
to a solution in R of the system of equations f1 = . . . = fm = 0, see Smoothing
Ring Maps, Section 13. Thus if the conclusion of Lemma 11.3 holds for every X
as above, then a system of equations which has a solution in R has a solution in
the henselization of Λm. In other words, the approximation property holds for Λhm.
This implies that Λhm is a G-ring (insert future reference here; see also discussion in
Smoothing Ring Maps, Section 1) which in turn implies that Λm is a G-ring.
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12. Axioms

Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be a category
fibred in groupoids. Here are the axioms we will consider on X .

[-1] a set theoretic condition1 to be ignored by readers who are not interested
in set theoretical issues,

[0] X is a stack in groupoids for the étale topology,
[1] X is limit preserving,
[2] X satisfies the Rim-Schlessinger condition (RS),
[3] the spaces TFX ,k,x0 and Infx0(FX ,k,x0) are finite dimensional for every k

and x0, see (8.0.1) and (8.0.2),
[4] the functor (9.2.1) is an equivalence,
[5] X and ∆ : X → X ×X satisfy openness of versality.

We still have to define the meaning of “limit preserving” and “openness of versality”.

13. Limit preserving

The morphism p : X → (Sch/S)fppf is limit preserving on objects, as defined in
Criteria for Representability, Section 5, if the functor of the definition below is
essentially surjective. However, the example in Examples, Section 45 shows that
this isn’t equivalent to being limit preserving.

Definition 13.1. Let S be a scheme. Let X be a category fibred in groupoids over
(Sch/S)fppf . We say X is limit preserving if for every affine scheme T over S which
is a limit T = limTi of a directed inverse system of affine schemes Ti over S, we
have an equivalence

colimXTi
−→ XT

of fibre categories.

We spell out what this means. First, given objects x, y of X over Ti we should have

MorXT
(x|T , y|T ) = colimi′≥i MorXT ′

i
(x|T ′i , y|T ′i )

and second every object of XT is isomorphic to the restriction of an object over Ti
for some i. Note that the first condition means that the presheaves IsomX (x, y)
(see Stacks, Definition 2.2) are limit preserving.

Lemma 13.2. Let S be a scheme. Let p : X → Y and q : Z → Y be 1-morphisms
of categories fibred in groupoids over (Sch/S)fppf .

(1) If X → (Sch/S)fppf and Z → (Sch/S)fppf are limit preserving on objects
and Y is limit preserving, then X ×Y Z → (Sch/S)fppf is limit preserving
on objects.

(2) If X , Y, and Z are limit preserving, then so is X ×Y Z.

Proof. This is formal. Proof of (1). Let T = limi∈I Ti be the directed limit of
affine schemes Ti over S. We will prove that the functor colimXTi

→ XT is essen-
tially surjective. Recall that an object of the fibre product over T is a quadruple
(T, x, z, α) where x is an object of X lying over T , z is an object of Z lying over T ,
and α : p(x)→ q(z) is a morphism in the fibre category of Y over T . By assumption

1The condition is the following: the supremum of all the cardinalities |Ob(XSpec(k))/ ∼= | and

|Arrows(XSpec(k))| where k runs over the finite type fields over S is ≤ than the size of some object

of (Sch/S)fppf .
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on X and Z we can find an i and objects xi and zi over Ti such that xi|T ∼= T and
zi|T ∼= z. Then α corresponds to an isomorphism p(xi)|T → q(zi)|T which comes
from an isomorphism αi′ : p(xi)|Ti′ → q(zi)|Ti′ by our assumption on Y. After
replacing i by i′, xi by xi|Ti′ , and zi by zi|Ti′ we see that (Ti, xi, zi, αi) is an object
of the fibre product over Ti which restricts to an object isomorphic to (T, x, z, α)
over T as desired.

We omit the arguments showing that colimXTi
→ XT is fully faithful in (2). �

Lemma 13.3. Let S be a scheme. Let X be an algebraic stack over S. Then the
following are equivalent

(1) X is a stack in setoids and X → (Sch/S)fppf is limit preserving on objects,
(2) X is a stack in setoids and limit preserving,
(3) X is representable by an algebraic space locally of finite presentation.

Proof. Under each of the three assumptions X is representable by an algebraic
space X over S, see Algebraic Stacks, Proposition 13.3. It is clear that (1) and
(2) are equivalent as a functor between setoids is an equivalence if and only if it is
surjective on isomorphism classes. Finally, (1) and (3) are equivalent by Limits of
Spaces, Proposition 3.9. �

14. Openness of versality

Next, we come to openness of versality.

Definition 14.1. Let S be a locally Noetherian scheme.

(1) Let X be a category fibred in groupoids over (Sch/S)fppf . We say X
satisfies openness of versality if given a scheme U locally of finite type over
S, an object x of X over U , and a finite type point u0 ∈ U such that x is
versal at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such
that x is versal at every finite type point of U ′.

(2) Let f : Y → X be a 1-morphism of categories fibred in groupoids. We say
f satisfies openness of versality if given a morphism of schemes V → U
locally of finite type over S, an object x of X over U , an object y of Y over
V , a morphism α : f(y) → x of X over V → U , and a finite type point v0

of V such that (y, α) is versal at v0 as an object of Y ×X (Sch/U)fppf , then
there exists an open neighbourhood v0 ∈ V ′ ⊂ V such that (y, α) is versal
at every finite type point of V ′.

Openness of versality is often the hardest to check. The following example shows
that requiring this is necessary however.

Example 14.2. Let k be a field and set Λ = k[s, t]. Consider the functor F :
Λ-algebras −→ Sets defined by the rule

F (A) =

∗ if there exist f1, . . . , fn ∈ A such that
A = (s, t, f1, . . . , fn) and fis = 0 ∀i

∅ else

Geometrically F (A) = ∗ means there exists a quasi-compact open neighbourhood
W of V (s, t) ⊂ Spec(A) such that s|W = 0. Let X ⊂ (Sch/ Spec(Λ))fppf be
the full subcategory consisting of schemes T which have an affine open covering
T =

⋃
Spec(Aj) with F (Aj) = ∗ for all j. Then X satisfies [0], [1], [2], [3], and [4]
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but not [5]. Namely, over U = Spec(k[s, t]/(s)) there exists an object x which is
versal at u0 = (s, t) but not at any other point. Details omitted.

Let S be a locally Noetherian scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . In the following two lemmas we will use the
following property

(14.2.1)
for all fields k of finite type over S and all x0 ∈ Ob(XSpec(k)) the
map FX ,k,x0

→ FY,k,f(x0) of predeformation categories is smooth

We formulate some lemmas around this concept. First we link it with (openness
of) versality.

Lemma 14.3. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf . Let U be a scheme locally of finite type over S. Let x
be an object of X over U . Assume that x is versal at every finite type point of U
and that X satisfies (RS). Then x : (Sch/U)fppf → X satisfies (14.2.1).

Proof. Let Spec(l) → U be a morphism with l of finite type over S. Then the
image u0 ∈ U is a finite type point of U and κ(u0) ⊂ l is a finite extension, see
discussion in Morphisms, Section 17. Hence we see that FX ,k,ul,0

→ FY,k,xl,0
is

smooth by Lemma 11.2. �

Lemma 14.4. Let S be a locally Noetherian scheme. Let f : X → Y and g : Y → Z
be composable 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f
and g satisfy (14.2.1) so does g ◦ f .

Proof. This is formal. �

Lemma 14.5. Let S be a locally Noetherian scheme. Let f : X → Y and Z → Y
be 1-morphisms of categories fibred in groupoids over (Sch/S)fppf . If f satisfies
(14.2.1) so does the projection X ×Y Z → Z.

Proof. Follows immediately from Lemma 3.3 and Formal Deformation Theory,
Lemma 8.7. �

Lemma 14.6. Let S be a locally Noetherian scheme. Let f : X → Y be a 1-
morphisms of categories fibred in groupoids over (Sch/S)fppf . If f is formally
smooth on objects, then f satisfies (14.2.1). If f is representable by algebraic spaces
and smooth, then f satisfies (14.2.1).

Proof. The first statement is equivalent to Lemma 3.2. The second follows from
this and Criteria for Representability, Lemma 6.3. �

Lemma 14.7. Let S be a locally Noetherian scheme. Let f : X → Y be a 1-
morphism of categories fibred in groupoids over (Sch/S)fppf . Assume

(1) f is representable by algebraic spaces,
(2) f satisfies (14.2.1),
(3) X → (Sch/S)fppf is limit preserving on objects, and
(4) Y is limit preserving.

Then f is smooth.

Proof. The key ingredient of the proof is More on Morphisms, Lemma 10.1 which
(almost) says that a morphism of schemes of finite type over S satisfying (14.2.1) is
a smooth morphism. The other arguments of the proof are essentially bookkeeping.
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Let V be a scheme over S and let y be an object of Y over V . Let Z be an
algebraic space representing the 2-fibre product Z = X ×f,X ,y (Sch/V )fppf . We
have to show that the projection morphism Z → V is smooth, see Algebraic Stacks,
Definition 10.1. In fact, it suffices to do this when V is an affine scheme locally
of finite presentation over S, see Criteria for Representability, Lemma 5.6. Then
(Sch/V )fppf is limit preserving by Lemma 13.3. Hence Z → S is locally of finite
presentation by Lemmas 13.2 and 13.3. Choose a scheme W and a surjective étale
morphism W → Z. Then W is locally of finite presentation over S.

Since f satisfies (14.2.1) we see that so does Z → (Sch/V )fppf , see Lemma 14.5.
Next, we see that (Sch/W )fppf → Z satisfies (14.2.1) by Lemma 14.6. Thus the
composition

(Sch/W )fppf → Z → (Sch/V )fppf

satisfies (14.2.1) by Lemma 14.4. More on Morphisms, Lemma 10.1 shows that the
composition W → Z → V is smooth at every finite type point w0 of W . Since the
smooth locus is open we conclude that W → V is a smooth morphism of schemes
by Morphisms, Lemma 17.7. Thus we conclude that Z → V is a smooth morphism
of algebraic spaces by definition. �

The lemma below is how we will use openness of versality.

Lemma 14.8. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)fppf be
a category fibred in groupoids. Let k be a finite type field over S and let x0 be an
object of X over Spec(k) with image s ∈ S. Assume

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [1], [2], [3], [4], and openness of versality, and
(3) OS,s is a G-ring.

Then there exist a morphism of finite type U → S and an object x of X over U
such that

x : (Sch/U)fppf −→ X
is smooth and such that there exists a finite type point u0 ∈ U whose residue field
is k and such that x|u0

∼= x0.

Proof. By axiom [2], Lemma 6.1, and Remark 6.2 we see that FX ,k,x0
satisfies

(S1) and (S2). Since also the tangent space has finite dimension by axiom [3] we
deduce from Formal Deformation Theory, Lemma 12.4 that FX ,k,x0 has a versal
formal object ξ. By axiom [4] ξ is effective. By axiom [1] and Lemma 11.3 there
exists a morphism of finite type U → S, an object x of X over U , and a finite
type point u0 of U with residue field k such that x is versal at u0 and such that
x|Spec(k)

∼= x0. By openness of versality we may shrink U and assume that x is
versal at every finite type point u0 of U . We claim that

x : (Sch/U)fppf −→ X

is smooth which proves the lemma. Namely, by Lemma 14.3 x satisfies (14.2.1)
whereupon Lemma 14.7 finishes the proof. �

15. Axioms for functors

Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Denote X = SF
the category fibred in sets associated to F , see Algebraic Stacks, Section 7. In this
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section we provide a translation between the material above as it applies to X , to
statements about F .

Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sets be a functor.

Let k be a field of finite type over S. Let x0 ∈ F (Spec(k)). The associated
predeformation category (3.0.2) corresponds to the functor

Fk,x0 : CΛ −→ Sets, A 7−→ {x ∈ F (Spec(A)) | x|Spec(k) = x0}.
Recall that we do not distinguish between categories cofibred in sets over CΛ and
functor CΛ → Sets, see Formal Deformation Theory, Remarks 5.2 (11). Given a
transformation of functors a : F → G, setting y0 = a(x0) we obtain a morphism

Fk,x0 −→ Gk,y0

see (3.1.1). Lemma 3.2 tells us that if a : F → G is formally smooth (in the sense
of More on Morphisms of Spaces, Definition 10.1), then Fk,x0

−→ Gk,y0
is smooth

as in Formal Deformation Theory, Remark 8.4.

Lemma 4.1 says that if Y ′ = Y qX X ′ in the category of schemes over S where
X → X ′ is a thickening and X → Y is affine, then the map

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection, provided that F is an algebraic space. We say a general functor
F satisfies the Rim-Schlessinger condition or we say F satisfies (RS) if given any
pushout Y ′ = Y qX X ′ where Y,X,X ′ are spectra of Artinian local rings of finite
type over S, then

F (Y qX X ′)→ F (Y )×F (X) F (X ′)

is a bijection. Thus every algebraic space satisfies (RS).

Lemma 6.1 says that given a functor F which satisfies (RS), then all Fk,x0
are

deformation functors as in Formal Deformation Theory, Definition 15.8, i.e., they
satisfy (RS) as in Formal Deformation Theory, Remark 15.5. In particular the
tangent space

TFk,x0 = {x ∈ F (Spec(k[ε])) | x|Spec(k) = x0}
has the structure of a k-vector space by Formal Deformation Theory, Lemma 11.2.

Lemma 8.1 says that an algebraic space F locally of finite type over S gives rise to
deformation functors Fk,x0

with finite dimensional tangent spaces TFk,x0
.

A formal object2 ξ = (R, ξn) of F consists of a Noetherian complete local S-
algebra R whose residue field is of finite type over S, together with elements
ξn ∈ F (Spec(R/mn)) such that ξn+1|Spec(R/mn) = ξn. A formal object ξ defines
a formal object ξ of FR/m,ξ1 . We say ξ is versal if and only if it is versal in the
sense of Formal Deformation Theory, Definition 8.13. A formal object ξ = (R, ξn)
is called effective if there exists an x ∈ F (Spec(R)) such that ξn = x|Spec(R/mn) for
all n ≥ 1. Lemma 9.4 says that if F is an algebraic space, then every formal object
is effective.

Let U be a scheme locally of finite type over S and let x ∈ F (U). Let u0 ∈
U be a finite type point. We say that x is versal at u0 if and only if ξ =
(O∧U,u0

, x|Spec(OU,u0
/mn

u0
)) is a versal formal object in the sense described above.

2This is what Artin calls a formal deformation.
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Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf → Sch be a functor.
Here are the axioms we will consider on F .

[-1] a set theoretic condition3 to be ignored by readers who are not interested
in set theoretical issues,

[0] F is a sheaf for the étale topology,
[1] F is limit preserving,
[2] F satisfies the Rim-Schlessinger condition (RS),
[3] every tangent space TFk,x0

is finite dimensional,
[4] every formal object is effective,
[5] F satisfies openness of versality.

Here limit preserving is the notion defined in Limits of Spaces, Definition 3.1 and
openness of versality means the following: Given a scheme U locally of finite type
over S, given x ∈ F (U), and given a finite type point u0 ∈ U such that x is versal
at u0, then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal
at every finite type point of U ′.

16. Algebraic spaces

The following is our first main result on algebraic spaces.

Proposition 16.1. Let S be a locally Noetherian scheme. Let F : (Sch/S)oppfppf →
Sets be a functor. Assume that

(1) ∆ : F → F × F is representable by algebraic spaces,
(2) F satisfies axioms [-1], [0], [1], [2], [3], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S.

Then F is an algebraic space.

Proof. Lemma 14.8 applies to F . Using this we choose, for every finite type field
k over S and x0 ∈ F (Spec(k)), an affine scheme Uk,x0

of finite type over S and a
smooth morphism Uk,x0

→ F such that there exists a finite type point uk,x0
∈ Uk,x0

with residue field k such that x0 is the image of uk,x0 . Then

U =
∐

k,x0

Uk,x0 −→ F

is smooth4. To finish the proof it suffices to show this map is surjective, see Boot-
strap, Lemma 12.2 (this is where we use axiom [0]). By Criteria for Representability,
Lemma 5.6 it suffices to show that U×F V → V is surjective for those V → F where
V is an affine scheme locally of finite presentation over S. Since U ×F V → V is
smooth the image is open. Hence it suffices to show that the image of U ×F V → V
contains all finite type points of V , see Morphisms, Lemma 17.7. Let v0 ∈ V be
a finite type point. Then k = κ(v0) is a finite type field over S. Denote x0 the

composition Spec(k)
v0−→ V → F . Then (uk,x0

, v0) : Spec(k) → U ×F V is a point
mapping to v0 and we win. �

Lemma 16.2. Let S be a locally Noetherian scheme. Let a : F → G be a transfor-
mation of functors F,G : (Sch/S)oppfppf → Sets. Assume that

3The condition is the following: the supremum of all the cardinalities |F (Spec(k))| where k
runs over the finite type fields over S is ≤ than the size of some object of (Sch/S)fppf .

4Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we

have a bound on the index set by axiom [-1], see Sets, Lemma 9.9.
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(1) a is injective,
(2) F satisfies axioms [0], [1], [2], [4], and [5],
(3) OS,s is a G-ring for all finite type points s of S,
(4) G is an algebraic space locally of finite type over S,

Then F is an algebraic space.

Proof. By Lemma 8.1 the functor G satisfies [3]. As F → G is injective, we
conclude that F also satisfies [3]. Moreover, as F → G is injective, we see that given
schemes U , V and morphisms U → F and V → F , then U ×F V = U ×G V . Hence
∆ : F → F × F is representable (by schemes) as this holds for G by assumption.
Thus Proposition 16.1 applies5. �

17. Algebraic stacks

Proposition 17.2 is our first main result on algebraic stacks.

Lemma 17.1. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf be
a category fibred in groupoids. Assume that

(1) ∆ : X → X ×X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4] (see Section 12),
(3) X satisfies openness of versality, and
(4) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. Lemma 14.8 applies to X . Using this we choose, for every finite type field
k over S and every isomorphism class of object x0 ∈ Ob(XSpec(k)), an affine scheme
Uk,x0

of finite type over S and a smooth morphism (Sch/Uk,x0
)fppf → X such that

there exists a finite type point uk,x0
∈ Uk,x0

with residue field k such that x0 is the
image of uk,x0 . Then

(Sch/U)fppf → X , with U =
∐

k,x0

Uk,x0

is smooth6. To finish the proof it suffices to show this map is surjective, see Criteria
for Representability, Lemma 19.1 (this is where we use axiom [0]). By Criteria for
Representability, Lemma 5.6 it suffices to show that (Sch/U)fppf×X (Sch/V )fppf →
(Sch/V )fppf is surjective for those y : (Sch/V )fppf → X where V is an affine
scheme locally of finite presentation over S. By assumption (1) the fibre product
(Sch/U)fppf ×X (Sch/V )fppf is representable by an algebraic space W . Then W →
V is smooth, hence the image is open. Hence it suffices to show that the image
of W → V contains all finite type points of V , see Morphisms, Lemma 17.7. Let
v0 ∈ V be a finite type point. Then k = κ(v0) is a finite type field over S. Denote
x0 = y|Spec(k) the pullback of y by v0. Then (uk,x0

, v0) will give a morphism
Spec(k)→W whose composition with W → V is v0 and we win. �

Proposition 17.2. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that

(1) ∆∆ : X → X ×X×X X is representable by algebraic spaces,
(2) X satisfies axioms [-1], [0], [1], [2], [3], [4], and [5] (see Section 12),

5The set theoretic condition [-1] holds for F as it holds for G. Details omitted.
6Set theoretical remark: This coproduct is (isomorphic) to an object of (Sch/S)fppf as we

have a bound on the index set by axiom [-1], see Sets, Lemma 9.9.
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(3) OS,s is a G-ring for all finite type points s of S.

Then X is an algebraic stack.

Proof. We first prove that ∆ : X → X × X is representable by algebraic spaces.
To do this it suffices to show that

Y = X ×∆,X×X ,y (Sch/V )fppf

is representable by an algebraic space for any affine scheme V locally of finite
presentation over S and object y of X ×X over V , see Criteria for Representability,
Lemma 5.57. Observe that Y is fibred in setoids (Stacks, Lemma 2.5) and let
Y : (Sch/S)oppfppf → Sets, T 7→ Ob(YT )/ ∼= be the functor of isomorphism classes.
We will apply Proposition 16.1 to see that Y is an algebraic space.

Note that ∆Y : Y → Y × Y (and hence also Y → Y × Y ) is representably by
algebraic spaces by condition (1) and Criteria for Representability, Lemma 4.4.
Observe that Y is a sheaf for the étale topology by Stacks, Lemmas 6.3 and 6.7,
i.e., property [0] holds. Also Y is limit preserving by Lemma 13.2, i.e., we have [1].
Note that Y has (RS), i.e., axiom [2] holds, by Lemmas 5.2 and 5.3. Axiom [3] for
Y follows from Lemmas 8.1 and 8.2. Axiom [4] follows from Lemmas 9.4 and 9.5.
Axiom [5] for Y follows directly from openness of versality for ∆X which is part of
axiom [5] for X . Thus all the assumptions of Proposition 16.1 are satisfied and Y
is an algebraic space.

At this point it follows from Lemma 17.1 that X is an algebraic stack. �

18. Infinitesimal deformations

In this section we discuss a generalization of the notion of the tangent space intro-
duced in Section 8. To do this intelligently, we borrow some notation from Formal
Deformation Theory, Sections 10, 16, and 18.

Let S be a scheme. Let X be a category fibred in groupoids over (Sch/S)fppf . Given
a homomorphism A′ → A of S-algebras and an object x of X over Spec(A) we write
Lift(x,A′) for the category of lifts of x to Spec(A′). An object of Lift(x,A′) is a
morphism x→ x′ of X lying over Spec(A)→ Spec(A′) and morphisms of Lift(x,A′)
are defined as commutative diagrams. The set of isomorphism classes of Lift(x,A′)
is denoted Lift(x,A′). See Formal Deformation Theory, Definition 16.1 and Remark
16.2. If A′ → A is surjective with locally nilpotent kernel we call an element x′ of
Lift(x,A′) a (infinitesimal) deformation of x. In this case the group of infinitesimal
automorphisms of x′ over x is the kernel

Inf(x′/x) = Ker
(

AutXSpec(A′)(x
′)→ AutXSpec(A)

(x)
)

Note that an element of Inf(x′/x) is the same thing as a lift of idx over Spec(A′)
for (the category fibred in sets associated to) AutX (x′). Compare with Formal
Deformation Theory, Definition 18.1 and Formal Deformation Theory, Remark 18.8.

If M is an A-module we denote A[M ] the A-algebra whose underlying A-module
is A⊕M and whose multiplication is given by (a,m) · (a′,m′) = (aa′, am′ + a′m).
When M = A this is the ring of dual numbers over A, which we denote A[ε]

7The set theoretic condition in Criteria for Representability, Lemma 5.5 will hold: the size of
the algebraic space Y representing Y is suitably bounded. Namely, Y → S will be locally of finite

type and Y will satisfy axiom [-1]. Details omitted.
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as is customary. There is an A-algebra map A[M ] → A. The pullback of x to
Spec(A[M ]) is called the trivial deformation of x to Spec(A[M ]).

Lemma 18.1. Let S be a scheme. Let f : X → Y be a 1-morphism of categories
fibred in groupoids over (Sch/S)fppf . Let

B′ // B

A′

OO

// A

OO

be a commutative diagram of S-algebras. Let x be an object of X over Spec(A), let
y be an object of Y over Spec(B), and let φ : f(x)|Spec(B) → y be a morphism of Y
over Spec(B). Then there is a canonical functor

Lift(x,A′) −→ Lift(y,B′)

of categories of lifts induced by f and φ. The construction is compatible with com-
positions of 1-morphisms of categories fibred in groupoids in an obvious manner.

Proof. This lemma proves itself. �

In the rest of this chapter the following strictly stronger version of the Rim-
Schlessinger conditions will play an important role.

Definition 18.2. Let S be a locally Noetherian scheme. Let X be a category
fibred in groupoids over (Sch/S)fppf . We say X satisfies condition (RS*) if given
an affine open Spec(Λ) ⊂ S and a fibre product diagram

B′ // B

A′ = A×B B′

OO

// A

OO

of Λ-algebras, with B′ → B surjective with square zero kernel, the functor of fibre
categories

XSpec(A′) −→ XSpec(A) ×XSpec(B)
XSpec(B′)

is an equivalence of categories.

We make some observations: with A→ B ← B′ as in Definition 18.2

(1) if A, B, B′ are of finite type over Λ and B is finite over A, then A′ is of
finite type over Λ, see More on Algebra, Lemma 4.1,

(2) we have Spec(A′) = Spec(A)qSpec(B) Spec(B′) in the category of schemes,
see More on Morphisms, Lemma 11.1,

(3) if X is an algebraic stack, then X satisfies (RS*) by Lemma 4.1, and
(4) if X satisfies (RS*), then X satisfies (RS) because (RS) covers exactly those

cases of (RS*) where A, B, B′ are Artinian local.

Let S be a locally Noetherian base. Let X be a category fibred in groupoids over
(Sch/S)fppf . We define a category whose objects are pairs (x,A′ → A) where

(1) A′ → A is a surjection of S-algebras whose kernel is an ideal of square zero
such that Spec(A) maps into an affine open of S, and

(2) x is an object of X lying over Spec(A).
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A morphism (y,B′ → B)→ (x,A′ → A) is given by a commutative diagram

B′ // B

A′

OO

// A

OO

of S-algebras together with a morphism x|Spec(B) → y over Spec(B). Let us call
this the category of deformation situations.

Lemma 18.3. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume X satisfies condition (RS*). Let A be an
S-algebra such that Spec(A) → S maps into an affine open and let x be an object
of X over Spec(A).

(1) There exists an A-linear functor Infx : ModA → ModA such that given a
deformation situation (x,A′ → A) and a lift x′ there is an isomorphism
Infx(I)→ Inf(x′/x) where I = Ker(A′ → A).

(2) There exists an A-linear functor Tx : ModA → ModA such that
(a) given M in ModA there is a bijection Tx(M)→ Lift(x,A[M ]),
(b) given a deformation situation (x,A′ → A) there is an action

Tx(I)× Lift(x,A′)→ Lift(x,A′)

where I = Ker(A′ → A). It is simply transitive if Lift(x,A′) 6= ∅.

Proof. To define Infx, resp. Tx we consider the functors

ModA −→ Sets, M −→ Lift(idx, A[M ]), resp. M −→ Lift(x,A[M ])

(for the first consider lifts of idx as automorphisms of the trivial deformation of x
to A[M ]) and we apply Formal Deformation Theory, Lemma 10.4. This lemma is
applicable, since (RS*) tells us that

Lift(x,A[M ×N ]) = Lift(x,A[M ])× Lift(x,A[N ])

as categories (and trivial deformations match up too).

Let (x,A′ → A) be a deformation situation. Consider the ring map g : A′×AA′ →
A[I] defined by the rule g(a1, a2) = a1 ⊕ a2 − a1. There is an isomorphism

A′ ×A A′ −→ A′ ×A A[I]

given by (a1, a2) 7→ (a1, g(a1, a2)). This isomorphism commutes with the projec-
tions to A′ on the first factor, and hence with the projections to A. Thus applying
(RS*) twice we find equivalences of categories

Lift(x,A′)× Lift(x,A′) = Lift(x,A′ ×A A′)
= Lift(x,A′ ×A A[I])

= Lift(x,A′)× Lift(x,A[I])

Using these maps and projection onto the last factor of the last product we see that
we obtain “difference maps”

Inf(x′/x)× Inf(x′/x) −→ Infx(I) and Lift(x,A′)× Lift(x,A′) −→ Tx(I)
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These difference maps satisfy the transitivity rule “(x′1−x′2) + (x′2−x′3) = x′1−x′3”
because

A′ ×A A′ ×A A′
(a1,a2,a3)7→(g(a1,a2),g(a2,a3))

//

(a1,a2,a3)7→g(a1,a3)

,,

A[I]×A A[I] = A[I × I]

+

��
A[I]

is commutative. Inverting the string of equivalences above we obtain an action
which is free and transitive provided Inf(x′/x), resp. Lift(x,A′) is nonempty. Note
that Inf(x′/x) is always nonempty as it is a group. �

Remark 18.4 (Functoriality). Assumptions and notation as in Lemma 18.3. Sup-
pose A→ B is a ring map and y = x|Spec(B). Let M ∈ ModA, N ∈ ModB and let
M → N an A-linear map. Then there are canonical maps Infx(M)→ Infy(N) and
Tx(M)→ Ty(N) simply because there is a pullback functor

Lift(x,A[M ])→ Lift(y,B[N ])

coming from the ring map A[M ] → B[N ]. Similarly, given a morphism of de-
formation situations (y,B′ → B) → (x,A′ → A) we obtain a pullback functor
Lift(x,A′) → Lift(y,B′). Since the construction of the action, the addition, and
the scalar multiplication on Infx and Tx use only morphisms in the categories of
lifts (see proof of Formal Deformation Theory, Lemma 10.4) we see that the con-
structions above are functorial. In other words we obtain A-linear maps

Infx(M)→ Infy(N) and Tx(M)→ Ty(N)

such that the diagrams

Infy(J) // Inf(y′/y)

Infx(I) //

OO

Inf(x′/x)

OO

and

Ty(J)× Lift(y,B′) // Lift(y,B′)

Tx(I)× Lift(x,A′) //

OO

Lift(x,A′)

OO

commute. Here I = Ker(A′ → A), J = Ker(B′ → B), x′ is a lift of x to A′ (which
may not always exist) and y′ = x′|Spec(B′).

Remark 18.5 (Automorphisms). Assumptions and notation as in Lemma 18.3.
Let x′, x′′ be lifts of x to A′. Then we have a composition map

Inf(x′′/x)×MorLift(x,A′)(x
′, x′′)× Inf(x′/x) −→ MorLift(x,A′)(x

′, x′′).

Since Lift(x,A′) is a groupoid, if MorLift(x,A′)(x
′, x′′) is nonempty, then this defines

a simply transitive left action of Inf(x′/x) on MorLift(x,A′)(x
′, x′′) and a simply tran-

sitive right action by Inf(x′/x). Now the lemma says that Inf(x′/x) = Infx(I) =
Inf(x′′/x). We claim that the two actions described above agree via these identifi-
cations. Namely, either x′ 6∼= x′′ in which the claim is clear, or x′ ∼= x′′ and in that
case we may assume that x′′ = x′ in which case the result follows from the fact
that Inf(x′/x) is commutative. In particular, we obtain a well defined action

Infx(I)×MorLift(x,A′)(x
′, x′′) −→ MorLift(x,A′)(x

′, x′′)

which is simply transitive as soon as MorLift(x,A′)(x
′, x′′) is nonempty.
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Remark 18.6 (Canonical element). Assumptions and notation as in Lemma 18.3.
Choose an affine open Spec(Λ) ⊂ S such that Spec(A) → S corresponds to a ring
map Λ→ A. Consider the ring map

A −→ A[ΩA/Λ], a 7−→ (a,dA/Λ(a))

Pulling back x along the corresponding morphism Spec(A[ΩA/Λ]) → Spec(A) we
obtain a deformation xcan of x over A[ΩA/Λ]. We call this the canonical element

xcan ∈ Tx(ΩA/Λ) = Lift(x,A[ΩA/Λ]).

Next, assume that Λ → A is of finite type and let k = κ(p) be a residue field at a
finite type point u0 of U = Spec(A). Let x0 = x|u0

. By (RS*) and the fact that
A[k] = A ×k k[k] the space Tx(k) is the tangent space to the deformation functor
FX ,k,x0

. Via

TFU,k,u0
= DerΛ(A, k) = HomA(ΩA/Λ, k)

(see Formal Deformation Theory, Example 10.11) and functoriality of Tx the canon-
ical element produces the map on tangent spaces induced by the object x over U .
Namely, θ ∈ TFU,k,u0 maps to Tx(θ)(xcan) in Tx(k) = TFX ,k,x0 .

Remark 18.7 (Canonical automorphism). Let S be a locally Noetherian scheme.
Let X be a category fibred in groupoids over (Sch/S)fppf . Assume X satisfies
condition (RS*). Let A be an S-algebra such that Spec(A) → S maps into an
affine open and let x, y be objects of X over Spec(A). Further, let A→ B be a ring
map and let α : x|Spec(B) → y|Spec(B) be a morphism of X over Spec(B). Consider
the ring map

B −→ B[ΩB/A], b 7−→ (b,dB/A(b))

Pulling back α along the corresponding morphism Spec(B[ΩB/A]) → Spec(B) we
obtain a morphism αcan between the pullbacks of x and y over B[ΩB/A]. On
the other hand, we can pullback α by the morphism Spec(B[ΩB/A]) → Spec(B)
corresponding to the injection of B into the first summand of B[ΩB/A]. By the
discussion of Remark 18.5 we can take the difference

ϕ(x, y, α) = αcan − α|Spec(B[ΩB/A]) ∈ Infx|Spec(B)
(ΩB/A).

We will call this the canonical automorphism. It depends on all the ingredients A,
x, y, A→ B and α.

Remark 18.8. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Let A be an S-algebra such that Spec(A) → S
maps into an affine open. There is a notion of a short exact sequence

(x,A′1 → A)→ (x,A′2 → A)→ (x,A′3 → A)

of deformation situations: we ask the corresponding maps between the kernels
Ii = Ker(A′i → A) give a short exact sequence

0→ I3 → I2 → I1 → 0

of A-modules. Note that in this case the map A′3 → A′1 factors through A, hence
there is a canonical isomorphism A′1 = A[I1].
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19. Obstruction theories

In this section we describe what an obstruction theory is. Contrary to the spaces of
infinitesimal deformations and infinitesimal automorphisms, an obstruction theory
is an additional piece of data. The formulation is motivated by the results of Lemma
18.3 and Remark 18.4.

Definition 19.1. Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . An obstruction theory is given by the following data

(1) for every S-algebra A such that Spec(A)→ S maps into an affine open and
every object x of X over Spec(A) an A-linear functor

Ox : ModA → ModA

of obstruction modules,
(2) for (x,A) as in (1), a ring map A → B, M ∈ ModA, N ∈ ModB , and an

A-linear map M → N an induced A-linear map Ox(M) → Oy(N) where
y = x|Spec(B), and

(3) for every deformation situation (x,A′ → A) an obstruction element ox(A′) ∈
Ox(I) where I = Ker(A′ → A).

These data are subject to the following conditions

(i) the functoriality maps turn the obstruction modules into a functor from
the category of triples (x,A,M) to sets,

(ii) for every morphism of deformation situations (y,B′ → B) → (x,A′ → A)
the element ox(A′) maps to oy(B′), and

(iii) we have

Lift(x,A′) 6= ∅ ⇔ ox(A′) = 0

for every deformation situation (x,A′ → A).

This last condition explains the terminology. The module Ox(A′) is called the ob-
struction module. The element ox(A′) is the obstruction. Most obstruction theories
have additional properties, and in order to make them useful additional conditions
are needed. Moreover, this is just a sample definition, for example in the definition
we could consider only deformation situations of finite type over S.

One of the main reasons for introducing obstruction theories is to check openness
of versality. The initial idea to do this is due to Artin, see the papers of Artin
mentioned in the introduction. It has been taken up for example in the work by
Flenner [Fle81], Hall [Hal12], Hall and Rydh [HR12], Olsson [Ols06], Olsson and
Starr [OS03], and Lieblich [Lie06] (random order of references). Moreover, for
particular categories fibred in groupoids, often authors develop a little bit of theory
adapted to the problem at hand. We will develop this theory later (insert future
reference here).

Example 19.2. Let S = Spec(Λ) for some Noetherian ring Λ. Let W → S be a
morphism of schemes. Let F be a quasi-coherent OW -module flat over S. Consider
the functor

F : (Sch/S)oppfppf −→ Sets, T/S −→ H0(WT ,FT )

where WT = T ×S W is the base change and FT is the pullback of F to WT . If
T = Spec(A) we will write WT = WA, etc. Let X → (Sch/S)fppf be the category
fibred in groupoids associated to F . Then X has an obstruction theory. Namely,
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(1) given A over Λ and x ∈ H0(WA,FA) we set Ox(M) = H1(WA,FA⊗AM),
(2) given a deformation situation (x,A′ → A) we let ox(A′) ∈ Ox(A) be the

image of x under the boundary map

H0(WA,FA) −→ H1(WA,FA ⊗A I)

coming from the short exact sequence of modules

0→ FA ⊗A I → FA′ → FA → 0.

We have omitted some details, in particular the construction of the short exact
sequence above (it uses that WA and WA′ have the same underlying topological
space) and the explanation for why flatness of F over S implies that the sequence
above is short exact.

Example 19.3 (Key example). Let S = Spec(Λ) for some Noetherian ring Λ.
Say X = (Sch/X)fppf with X = Spec(R) and R = Λ[x1, . . . , xn]/J . The naive
cotangent complex NLR/Λ is (canonically) homotopy equivalent to

J/J2 −→
⊕

i=1,...,n
Rdxi,

see Algebra, Lemma 129.2. Consider a deformation situation (x,A′ → A). Denote
I the kernel of A′ → A. The object x corresponds to (a1, . . . , an) with ai ∈ A such
that f(a1, . . . , an) = 0 in A for all f ∈ J . Set

Ox(A′) = HomR(J/J2, I)/HomR(R⊕n, I)

= Ext1
R(NLR/Λ, I)

= Ext1
A(NLR/Λ⊗RA, I).

Choose lifts a′i ∈ A′ of ai in A. Then ox(A′) is the class of the map J/J2 → I
defined by sending f ∈ J to f(a′1, . . . , a

′
n) ∈ I. We omit the verification that ox(A′)

is independent of choices. It is clear that if ox(A′) = 0 then the map lifts. Finally,
functoriality is straightforward. Thus we obtain an obstruction theory. We observe
that ox(A′) can be described a bit more canonically as the composition

NLR/Λ → NLA/Λ → NLA/A′ = I[1]

in D(A), see Algebra, Lemma 129.6 for the last identification.

20. Naive obstruction theories

The title of this section refers to the fact that we will use the naive cotangent
complex in this section. Let (x,A′ → A) be a deformation situation for a given
category fibred in groupoids over a locally Noetherian scheme S. The key Example
19.3 suggests that any obstruction theory should be closely related to maps in D(A)
with target the naive cotangent complex of A. Working this out we find a criterion
for versality in Lemma 20.3 which leads to a criterion for openness of versality in
Lemma 20.4. We introduce a notion of a naive obstruction theory in Definition
20.5 to try to formalize the notion a bit further.

In the following we will use the naive cotangent complex as defined in Algebra,
Section 129. In particular, if A′ → A is a surjection of Λ-algebras with square zero
kernel I, then there are maps

NLA′/Λ → NLA/Λ → NLA/A′
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whose composition is homotopy equivalent to zero (see Algebra, Remark 129.5).
This doesn’t form a distinguished triangle in general as we are using the naive
cotangent complex and not the full one. There is a homotopy equivalenceNLA/A′ →
I[1] (the complex consisting of I placed in degree −1, see Algebra, Lemma 129.6).
Finally, note that there is a canonical map NLA/Λ → ΩA/Λ.

Lemma 20.1. Let A → k be a ring map with k a field. Let E ∈ D−(A). Then
ExtiA(E, k) = Homk(H−i(E ⊗L k), k).

Proof. Omitted. Hint: Replace E by a bounded above complex of free A-modules
and compute both sides. �

Lemma 20.2. Let Λ → A → k be finite type ring maps of Noetherian rings with
k = κ(p) for some prime p of A. Let ξ : E → NLA/Λ be morphism of D−(A)

such that H−1(ξ ⊗L k) is not surjective. Then there exists a surjection A′ → A of
Λ-algebras such that

(a) I = Ker(A′ → A) has square zero and is isomorphic to k as an A-module,
(b) ΩA′/Λ ⊗ k = ΩA/Λ ⊗ k, and
(c) E → NLA/A′ is zero.

Proof. Let f ∈ A, f 6∈ p. Suppose that A′′ → Af satisfies (a), (b), (c) for the
induced map E ⊗A Af → NLAf/Λ, see Algebra, Lemma 129.13. Then we can set
A′ = A′′ ×Af

A and get a solution. Namely, it is clear that A′ → A satisfies (a)
because Ker(A′ → A) = Ker(A′′ → A) = I. Pick f ′′ ∈ A′′ lifting f . Then the
localization of A′ at (f ′′, f) is isomorphic to A′′ (for example by More on Algebra,
Lemma 4.3). Thus (b) and (c) are clear for A′ too. In this way we see that we
may replace A by the localization Af (finitely many times). In particular (after
such a replacement) we may assume that p is a maximal ideal of A, see Morphisms,
Lemma 17.1.

Choose a presentation A = Λ[x1, . . . , xn]/J . Then NLA/Λ is (canonically) homo-
topy equivalent to

J/J2 −→
⊕

i=1,...,n
Adxi,

see Algebra, Lemma 129.2. After localizing if necessary (using Nakayama’s lemma)
we can choose generators f1, . . . , fm of J such that fj⊗1 form a basis for J/J2⊗Ak.
Moreover, after renumbering, we can assume that the images of df1, . . . ,dfr form
a basis for the image of J/J2 ⊗ k →

⊕
kdxi and that dfr+1, . . . ,dfm map to zero

in
⊕
kdxi. With these choices the space

H−1(NLA/Λ⊗L
Ak) = H−1(NLA/Λ⊗Ak)

has basis fr+1⊗ 1, . . . , fm⊗ 1. Changing basis once again we may assume that the
image of H−1(ξ ⊗L k) is contained in the k-span of fr+1 ⊗ 1, . . . , fm−1 ⊗ 1. Set

A′ = Λ[x1, . . . , xn]/(f1, . . . , fm−1, pfm)

By construction A′ → A satisfies (a). Since dfm maps to zero in
⊕
kdxi we see that

(b) holds. Finally, by construction the induced map E → NLA/A′ = I[1] induces

the zero map H−1(E⊗L
A k)→ I⊗A k. By Lemma 20.1 we see that the composition

is zero. �

The following lemma is our key technical result.
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Lemma 20.3. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme
of finite type over S which maps into an affine open Spec(Λ). Let x be an object of
X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if
and only if E → NLA/Λ → NLA/A′ is zero, and

(ii) there is an isomorphism of functors Tx(−) → Ext0A(E,−) such that E →
NLA/Λ → Ω1

A/Λ corresponds to the canonical element (see Remark 18.6).

Let u0 ∈ U be a finite type point with residue field k = κ(u0). Consider the following
statements

(1) x is versal at u0, and
(2) ξ : E → NLA/Λ induces a surjection H−1(E ⊗L

A k) → H−1(NLA/Λ⊗L
Ak)

and an injection H0(E ⊗L
A k)→ H0(NLA/Λ⊗L

Ak).

Then we always have (2) ⇒ (1) and we have (1) ⇒ (2) if u0 is a closed point.

Proof. Let p = Ker(A→ k) be the prime corresponding to u0.

Assume that x versal at u0 and that u0 is a closed point of U . If H−1(ξ ⊗L
A k) is

not surjective, then let A′ → A be an extension with kernel I as in Lemma 20.2.
Because u0 is a closed point, we see that I is a finite A-module, hence that A′ is a
finite type Λ-algebra (this fails if u0 is not closed). In particular A′ is Noetherian.
By property (c) for A′ and (i) for ξ we see that x lifts to an object x′ over A′. Let
p′ ⊂ A′ be kernel of the surjective map to k. By Artin-Rees (Algebra, Lemma 49.2)
there exists an n > 1 such that (p′)n ∩ I = 0. Then we see that

B′ = A′/(p′)n −→ A/pn = B

is a small, essential extension of local Artinian rings, see Formal Deformation The-
ory, Lemma 3.12. On the other hand, as x is versal at u0 and as x′|Spec(B′) is a lift
of x|Spec(B), there exists an integer m ≥ n and a map q : A/pm → B′ such that the
composition A/pm → B′ → B is the quotient map. Since the maximal ideal of B′

has nth power equal to zero, this q factors through B which contradicts the fact
that B′ → B is an essential surjection. This contradiction shows that H−1(ξ⊗L

A k)
is surjective.

Assume that x versal at u0. By Lemma 20.1 the map H0(ξ ⊗L
A k) is dual to the

map Ext0
A(NLA/Λ, k)→ Ext0

A(E, k). Note that

Ext0
A(NLA/Λ, k) = DerΛ(A, k) and Tx(k) = Ext0

A(E, k)

Condition (ii) assures us the map Ext0
A(NLA/Λ, k) → Ext0

A(E, k) sends a tangent
vector θ to U at u0 to the corresponding infinitesimal deformation of x0, see Remark
18.6. Hence if x is versal, then this map is surjective, see Formal Deformation
Theory, Lemma 12.2. Hence H0(ξ ⊗L

A k) is injective. This finishes the proof of (1)
⇒ (2) in case u0 is a closed point.

For the rest of the proof assume H−1(E ⊗L
A k) → H−1(NLA/Λ⊗L

Ak) is surjective

and H0(E ⊗L
A k) → H0(NLA/Λ⊗L

Ak) injective. Set R = A∧p and let η be the
formal object over R associated to x|Spec(R). The map dη on tangent spaces is

surjective because it is identified with the dual of the injective map H0(E ⊗L
A

k)→ H0(NLA/Λ⊗L
Ak) (see previous paragraph). According to Formal Deformation

Theory, Lemma 12.2 it suffices to prove the following: Let C ′ → C be a small
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extension of finite type Artinian local Λ-algebras with residue field k. Let R→ C be
a Λ-algebra map compatible with identifications of residue fields. Let y = x|Spec(C)

and let y′ be a lift of y to C ′. To show: we can lift the Λ-algebra map R → C to
R→ C ′.

Observe that it suffices to lift the Λ-algebra map A → C. Let I = Ker(C ′ → C).
Note that I is a 1-dimensional k-vector space. The obstruction ob to lifting A→ C
is an element of Ext1

A(NLA/Λ, I), see Example 19.3. By Lemma 20.1 and our
assumption the map ξ induces an injection

Ext1
A(NLA/Λ, I) −→ Ext1

A(E, I)

By the construction of ob and (i) the image of ob in Ext1
A(E, I) is the obstruction

to lifting x to A ×C C ′. By (RS*) the fact that y/C lifts to y′/C ′ implies that x
lifts to A×C C ′. Hence ob = 0 and we are done. �

The key lemma above allows us to conclude that we have openness of versality in
some cases.

Lemma 20.4. Let S be a locally Noetherian scheme. Let X be a category fibred in
groupoids over (Sch/S)fppf satisfying (RS*). Let U = Spec(A) be an affine scheme
of finite type over S which maps into an affine open Spec(Λ). Let x be an object of
X over U . Let ξ : E → NLA/Λ be a morphism of D−(A). Assume

(i) for every deformation situation (x,A′ → A) we have: x lifts to Spec(A′) if
and only if E → NLA/Λ → NLA/A′ is zero,

(ii) there is an isomorphism of functors Tx(−) → Ext0A(E,−) such that E →
NLA/Λ → Ω1

A/Λ corresponds to the canonical element (see Remark 18.6),

(iii) the cohomology groups of E are finite A-modules.

If x is versal at a closed point u0 ∈ U , then there exists an open neighbourhood
u0 ∈ U ′ ⊂ U such that x is versal at every finite type point of U ′.

Proof. Let C be the cone of ξ so that we have a distinguished triangle

E → NLA/Λ → C → E[1]

in D−(A). By Lemma 20.3 the assumption that x is versal at u0 implies that
H−1(C ⊗L k) = 0. By More on Algebra, Lemma 56.16 there exists an f ∈ A not
contained in the prime corresponding to u0 such that H−1(C ⊗L

A M) = 0 for any
Af -module M . Using Lemma 20.3 again we see that we have versality for all finite
type points of the open D(f) ⊂ U . �

The technical lemmas above suggest the following definition.

Definition 20.5. Let S be a locally Noetherian base. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume that X satisfies (RS*). A naive obstruction
theory is given by the following data

(1) for every S-algebra A such that Spec(A) → S maps into an affine open
Spec(Λ) ⊂ S and every object x of X over Spec(A) we are given an object
Ex ∈ D−(A) and a map ξx : E → NLA/Λ,

(2) given (x,A) as in (1) there are transformations of functors

Infx(−)→ Ext−1
A (Ex,−) and Tx(−)→ Ext0

A(Ex,−)

(3) for (x,A) as in (1) and a ring map A → B setting y = x|Spec(B) there is a
functoriality map Ex → Ey in D(A).
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These data are subject to the following conditions

(i) in the situation of (3) the diagram

Ey
ξy

// NLB/Λ

Ex

OO

ξx // NLA/Λ

OO

is commutative in D(A),
(ii) given (x,A) as in (1) and A → B → C setting y = x|Spec(B) and z =

x|Spec(C) the composition of the functoriality maps Ex → Ey and Ey → Ez
is the functoriality map Ex → Ez,

(iii) the maps of (2) are isomorphisms compatible with the functoriality maps
and the maps of Remark 18.4,

(iv) the composition Ex → NLA/Λ → ΩA/Λ corresponds to the canonical ele-

ment of Tx(ΩA/Λ) = Ext0(Ex,ΩA/Λ), see Remark 18.6,
(v) given a deformation situation (x,A′ → A) with I = Ker(A′ → A) the

composition Ex → NLA/Λ → NLA/A′ is zero in

HomA(Ex, NLA/Λ) = Ext0
A(Ex, NLA/A′) = Ext1

A(Ex, I)

if and only if x lifts to A′.

Thus we see in particular that we obtain an obstruction theory as in Section 19 by
setting Ox(−) = Ext1

A(Ex,−).

Lemma 20.6. Let S and X be as in Definition 20.5 and let X be endowed with a
naive obstruction theory. Let A→ B and y → x be as in (3). Let k be a B-algebra
which is a field. Then the functoriality map Ex → Ey induces bijections

Hi(Ex ⊗L
A k)→ Hi(Ey ⊗L

A k)

for i = 0, 1.

Proof. Let z = x|Spec(k). Then (RS*) implies that

Lift(x,A[k]) = Lift(z, k[k]) and Lift(y,B[k]) = Lift(z, k[k])

because A[k] = A ×k k[k] and B[k] = B ×k k[k]. Hence the properties of a naive
obstruction theory imply that the functoriality map Ex → Ey induces bijections

ExtiA(Ex, k) → ExtiB(Ey, k) for i = −1, 0. By Lemma 20.1 our maps Hi(Ex ⊗L
A

k) → Hi(Ey ⊗L
A k), i = 0, 1 induce isomorphisms on dual vector spaces hence are

isomorphisms. �

Lemma 20.7. Let S be a locally Noetherian scheme. Let p : X → (Sch/S)oppfppf

be a category fibred in groupoids. Assume that X satisfies (RS*) and that X has
a naive obstruction theory. Then openness of versality holds for X provided the
complexes Ex of Definition 20.5 have finitely generated cohomology groups for pairs
(A, x) where A is of finite type over S.

Proof. Let U be a scheme locally of finite type over S, let x be an object of X over
U , and let u0 be a finite type point of U such that x is versal at u0. We may first
shrink U to an affine scheme such that u0 is a closed point and such that U → S
maps into an affine open Spec(Λ). Say U = Spec(A). Let ξx : Ex → NLA/Λ be the
obstruction map. At this point we may apply Lemma 20.4 to conclude. �
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21. A dual notion

Let (x,A′ → A) be a deformation situation for a given category X fibred in
groupoids over a locally Noetherian scheme S. Assume X has an obstruction the-
ory, see Definition 19.1. In practice one often has a complex K• of A-modules and
isomorphisms of functors

Infx(−)→ H0(K• ⊗L
A −), Tx(−)→ H1(K• ⊗L

A −), Ox(−)→ H2(K• ⊗L
A −)

In this section we formalize this a little bit and show how this leads to a verification
of openness of versality in some cases.

Example 21.1. Let Λ, S,W,F be as in Example 19.2. Assume that W → S is
proper and F coherent. By Cohomology of Schemes, Remark 20.2 there exists a
finite complex of finite projective Λ-modules N• which universally computes the
cohomology of F . In particular the obstruction spaces from Example 19.2 are
Ox(M) = H1(N• ⊗Λ M). Hence with K• = N• ⊗Λ A[−1] we see that Ox(M) =
H2(K• ⊗L

AM).

Situation 21.2. Let S be a locally Noetherian scheme. Let X be a category fibred
in groupoids over (Sch/S)fppf . Assume that X has (RS*) so that we can speak of
the functor Tx(−), see Lemma 18.3. Let U = Spec(A) be an affine scheme of finite
type over S which maps into an affine open Spec(Λ). Let x be an object of X over
U . Assume we are given

(1) a complex of A-modules K•,
(2) a transformation of functors Tx(−)→ H1(K• ⊗L

A −),
(3) for every deformation situation (x,A′ → A) with kernel I = Ker(A′ → A)

an element ox(A′) ∈ H2(K• ⊗L
A I)

satisfying the following (minimal) conditions

(i) the transformation Tx(−)→ H1(K• ⊗L
A −) is an isomorphism,

(ii) given a morphism (x,A′′ → A)→ (x,A′ → A) of deformation situations the
element ox(A′) maps to the element ox(A′′) via the map H2(K• ⊗L

A I) →
H2(K• ⊗L

A I
′) where I ′ = Ker(A′′ → A), and

(iii) x lifts to an object over Spec(A′) if and only if ox(A′) = 0.

It is possible to incorporate infinitesimal automorphisms as well, but we refrain
from doing so in order to get the sharpest possible result.

In Situation 21.2 an important role will be played by K• ⊗L
A NLA/Λ. Suppose we

are given an element ξ ∈ H1(K•⊗L
ANLA/Λ). Then (1) for any surjection A′ → A of

Λ-algebras with kernel I of square zero the canonical map NLA/Λ → NLA/A′ = I[1]

sends ξ to an element ξA′ ∈ H2(K• ⊗L
A I) and (2) the map NLA/Λ → ΩA/Λ sends

ξ to an element ξcan of H1(K• ⊗L
A ΩA/Λ).

Lemma 21.3. In Situation 21.2. Assume furthermore that

(iv) given a short exact sequence of deformation situations as in Remark 18.8
and a lift x′2 ∈ Lift(x,A′2) then ox(A′3) ∈ H2(K• ⊗L

A I3) equals ∂θ where
θ ∈ H1(K•⊗L

AI1) is the element corresponding to x′2|Spec(A′1) via A′1 = A[I1]

and the given map Tx(−)→ H1(K• ⊗L
A −).

In this case there exists an element ξ ∈ H1(K• ⊗L
A NLA/Λ) such that

(1) for every deformation situation (x,A′ → A) we have ξA′ = ox(A′), and

http://localhost:8080/tag/07YW
http://localhost:8080/tag/07YX
http://localhost:8080/tag/07YY
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(2) ξcan matches the canonical element of Remark 18.6 via the given transfor-
mation Tx(−)→ H1(K• ⊗L

A −).

Proof. Choose a α : Λ[x1, . . . , xn] → A with kernel J . Write P = Λ[x1, . . . , xn].
In the rest of this proof we work with

NL(α) = (J/J2 −→
⊕

Adxi)

which is permissible by Algebra, Lemma 129.2 and More on Algebra, Lemma 45.1.
Consider the element ox(P/J2) ∈ H2(K• ⊗L

A J/J
2) and consider the quotient

C = (P/J2 ×
⊕

Adxi)/(J/J
2)

where J/J2 is embedded diagonally. Note that C → A is a surjection with kernel⊕
Adxi. Moreover there is a section A → C to C → A given by mapping the

class of f ∈ P to the class of (f, df) in the pushout. For later use, denote xC the
pullback of x along the corresponding morphism Spec(C)→ Spec(A). Thus we see
that ox(C) = 0. We conclude that ox(P/J2) maps to zero in H2(K•⊗L

A

⊕
Adxi). It

follows that there exists some element ξ ∈ H1(K•⊗L
ANL(α)) mapping to ox(P/J2).

Note that for any deformation situation (x,A′ → A) there exists a Λ-algebra map
P/J2 → A′ compatible with the augmentations to A. Hence the element ξ satisfies
the first property of the lemma by construction and property (ii) of Situation 21.2.

Note that our choice of ξ was well defined up to the choice of an element of
H1(K• ⊗L

A

⊕
Adxi). We will show that after modifying ξ by an element of the

aforementioned group we can arrange it so that the second assertion of the lemma
is true. Let C ′ ⊂ C be the image of P/J2 under the Λ-algebra map P/J2 → C
(inclusion of first factor). Observe that Ker(C ′ → A) = Im(J/J2 →

⊕
Adxi). Set

C = A[ΩA/Λ]. The map P/J2 ×
⊕
Adxi → C, (f,

∑
fidxi) 7→ (f mod J,

∑
fidxi)

factors through a surjective map C → C. Then

(x,C → A)→ (x,C → A)→ (x,C ′ → A)

is a short exact sequence of deformation situations. The associated splitting C =
A[ΩA/Λ] (from Remark 18.8) equals the given splitting above. Moreover, the section

A → C composed with the map C → C is the map (1,d) : A → A[ΩA/Λ] of
Remark 18.6. Thus xC restricts to the canonical element xcan of Tx(ΩA/Λ) =

Lift(x,A[ΩA/Λ]). By condition (iv) we conclude that ox(P/J2) maps to ∂xcan in

H1(K• ⊗L
A Im(J/J2 →

⊕
Adxi))

By construction ξ maps to ox(P/J2). It follows that xcan and ξcan map to the
same element in the displayed group which means (by the long exact cohomology
sequence) that they differ by an element of H1(K• ⊗L

A

⊕
Adxi) as desired. �

Lemma 21.4. In Situation 21.2 assume that (iv) of Lemma 21.3 holds and that
K• is a perfect object of D(A). In this case, if x is versal at a closed point u0 ∈ U
then there exists an open neighbourhood u0 ∈ U ′ ⊂ U such that x is versal at every
finite type point of U ′.

Proof. We may assume that K• is a finite complex of finite projective A-modules.
Thus the derived tensor product with K• is the same as simply tensoring with K•.
Let E• be the dual perfect complex to K•, see More on Algebra, Lemma 56.21.
(So En = HomA(K−n, A) with differentials the transpose of the differentials of

http://localhost:8080/tag/07YZ
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K•.) Let E ∈ D−(A) denote the object represented by the complex E•[−1]. Let
ξ ∈ H1(Tot(K•⊗ANLA/Λ)) be the element constructed in Lemma 21.3 and denote
ξ : E = E•[−1]→ NLA/Λ the corresponding map (loc.cit.). We claim that the pair
(E, ξ) satisfies all the assumptions of Lemma 20.4 which finishes the proof.

Namely, assumption (i) of Lemma 20.4 follows from conclusion (1) of Lemma 21.3
and the fact that H2(K•⊗L

A−) = Ext1(E,−) by loc.cit. Assumption (ii) of Lemma
20.4 follows from conclusion (2) of Lemma 21.3 and the fact that H1(K• ⊗L

A −) =

Ext0(E,−) by loc.cit. Assumption (iii) of Lemma 20.4 is clear. �

22. Examples of deformation problems

List of things that should go here:

(1) Describe the general outline of an example.
(2) Deformations of schemes:

(a) The Rim-Schlessinger condition.
(b) Computing the tangent space.
(c) Computing the infinitesimal deformations.
(d) The deformation category of an affine hypersurface.

(3) Deformations of representations of abstract groups.
(4) Deformations of representations of topological groups (e.g., profinite ones).
(5) Deformations of sheaves (for example fix X/S, a finite type point s of S,

and a quasi-coherent sheaf Fs over Xs).
(6) Deformations of algebraic spaces (very similar to deformations of schemes;

maybe even easier?).
(7) Deformations of maps (eg morphisms between schemes; you can fix both

or one of the target and/or source).
(8) Add more here.

23. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites

(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes



38 ARTIN’S AXIOMS

(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index

References

[Art69] Michael Artin, Algebraization of formal moduli: I, Global Analysis (Papers in Honor of
K. Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71.

[Art70] , Algebraization of formal moduli: II – existence of modifications, Annals of Math-
ematics 91 (1970), 88–135.

[Art74] , Versal deformations and algebraic stacks, Inventiones Mathematics 27 (1974),
165–189.

[Fle81] Hubert Flenner, Ein Kriterium für die Offenheit der Versalität, Math. Z. 178 (1981),

no. 4, 449–473.
[Hal12] Jack Hall, Openness of versality via coherent functors.
[HR12] Jack Hall and David Rydh, Artin’s criteria for algebraicity revisited.

[Lie06] Max Lieblich, Moduli of complexes on a proper morphism, J. Algebraic Geom. 15 (2006),
no. 1, 175–206.

[Ols06] Martin Christian Olsson, Deformation theory of representable morphisms of algebraic

stacks, Math. Z. 253 (2006), no. 1, 25–62.
[OS03] Martin Christian Olsson and Jason Starr, Quot functors for Deligne-Mumford stacks,

Comm. Algebra 31 (2003), no. 8, 4069–4096, Special issue in honor of Steven L. Kleiman.


	1. Introduction
	2. Conventions
	3. Predeformation categories
	4. Pushouts and stacks
	5. The Rim-Schlessinger condition
	6. Deformation categories
	7. Change of field
	8. Tangent spaces
	9. Formal objects
	10. Approximation
	11. Versality
	12. Axioms
	13. Limit preserving
	14. Openness of versality
	15. Axioms for functors
	16. Algebraic spaces
	17. Algebraic stacks
	18. Infinitesimal deformations
	19. Obstruction theories
	20. Naive obstruction theories
	21. A dual notion
	22. Examples of deformation problems
	23. Other chapters
	References

