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1. Introduction

In this chapter we write about cohomology of algebraic spaces. Although we prove
some results on cohomology of abelian sheaves, we focus mainly on cohomology
of quasi-coherent sheaves, i.e., we prove analogues of the results in the chapter
“Cohomology of Schemes”. Some of the results in this chapter can be found in
[Knu71].

An important missing ingredient in this chapter is the induction principle, i.e., the
analogue for quasi-compact and quasi-separated algebraic spaces of Cohomology of
Schemes, Lemma 4.1. This is formulated precisely and proved in detail in Derived
Categories of Spaces, Section 8. Instead of the induction principle, in this chapter
we use the alternating Čech complex, see Section 5. It is designed to prove vanishing
statements such as Proposition 6.2, but in some cases the induction principle is a
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2 COHOMOLOGY OF ALGEBRAIC SPACES

more powerful and perhaps more “standard” tool. We encourage the reader to take
a look at the induction principle after reading some of the material in this section.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Higher direct images

Before discussing what happens with higher direct images of quasi-coherent sheaves
we formulate and prove a result which holds for all abelian sheaves (in particular
also quasi-coherent modules).

Lemma 3.1. Let S be a scheme. Let f : X → Y be an integral (for example
finite) morphism of algebraic spaces. Then f∗ : Ab(Xétale)→ Ab(Yétale) is an exact
functor and Rpf∗ = 0 for p > 0.

Proof. By Properties of Spaces, Lemma 15.11 we may compute the higher direct
images on an étale cover of Y . Hence we may assume Y is a scheme. This implies
that X is a scheme (Morphisms of Spaces, Lemma 41.3). In this case we may apply

Étale Cohomology, Lemma 44.5. For the finite case the reader may wish to consult
the less technical Étale Cohomology, Proposition 55.2. �

Let S be a scheme. Let X be a representable algebraic space over S. Let F be a
quasi-coherent module on X (see Properties of Spaces, Section 27). By Descent,
Proposition 7.10 the cohomology groups Hi(X,F) agree with the usual cohomology
group computed in the Zariski topology of the corresponding quasi-coherent module
on the scheme representing X.

More generally, let f : X → Y be a quasi-compact and quasi-separated morphism
of representable algebraic spaces X and Y . Let F be a quasi-coherent module
on X. By Descent, Lemma 7.15 the sheaf Rif∗F agrees with the usual higher
direct image computed for the Zariski topology of the quasi-coherent module on
the scheme representing X mapping to the scheme representing Y .

More generally still, suppose f : X → Y is a representable, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. Let V be a scheme and let
V → Y be an étale surjective morphism. Let U = V ×Y X and let f ′ : U → V be
the base change of f . Then for any quasi-coherent OX -module F we have

(3.1.1) Rif ′∗(F|U ) = (Rif∗F)|V ,

see Properties of Spaces, Lemma 24.2. And because f ′ : U → V is a quasi-
compact and quasi-separated morphism of schemes, by the remark of the preceding
paragraph we may compute Rif ′∗(F|U ) by thinking of F|U as a quasi-coherent sheaf
on the scheme U , and f ′ as a morphism of schemes. We will frequently use this
without further mention.
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COHOMOLOGY OF ALGEBRAIC SPACES 3

Next, we prove that higher direct images of quasi-coherent sheaves are quasi-
coherent for any quasi-compact and quasi-separated morphism of algebraic spaces.
In the proof we use a trick; a “better” proof would use a relative Cech complex, as
discussed in Sheaves on Stacks, Sections 17 and 18 ff.

Lemma 3.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If f is quasi-compact and quasi-separated, then Rif∗ transforms
quasi-coherent OX-modules into quasi-coherent OY -modules.

Proof. Let V → Y be an étale morphism where V is an affine scheme. Set U =
V ×Y X and denote f ′ : U → V the induced morphism. Let F be a quasi-
coherent OX -module. By Properties of Spaces, Lemma 24.2 we have Rif ′∗(F|U ) =
(Rif∗F)|V . Since the property of being a quasi-coherent module is local in the
étale topology on Y (see Properties of Spaces, Lemma 27.6) we may replace Y by
V , i.e., we may assume Y is an affine scheme.

Assume Y is affine. Since f is quasi-compact we see that X is quasi-compact. Thus
we may choose an affine scheme U and a surjective étale morphism g : U → X, see
Properties of Spaces, Lemma 6.3. Picture

U
g
//

f◦g   

X

f

��
Y

The morphism g : U → X is representable, separated and quasi-compact because
X is quasi-separated. Hence the lemma holds for g (by the discussion above the
lemma). It also holds for f ◦ g : U → Y (as this is a morphism of affine schemes).

In the situation described in the previous paragraph we will show by induction on
n that IHn: for any quasi-coherent sheaf F on X the sheaves RifF are quasi-
coherent for i ≤ n. The case n = 0 follows from Morphisms of Spaces, Lemma 11.2.
Assume IHn. In the rest of the proof we show that IHn+1 holds.

Let H be a quasi-coherent OU -module. Consider the Leray spectral sequence

Ep,q2 = Rpf∗R
qg∗H ⇒ Rp+q(f ◦ g)∗H

Cohomology on Sites, Lemma 14.7. As Rqg∗H is quasi-coherent by IHn all the
sheaves Rpf∗R

qg∗H are quasi-coherent for p ≤ n. The sheaves Rp+q(f ◦ g)∗H are
all quasi-coherent (in fact zero for p + q > 0 but we do not need this). Looking
in degrees ≤ n+ 1 the only module which we do not yet know is quasi-coherent is
En+1,0

2 = Rn+1f∗g∗H. Moreover, the differentials dn+1,0
r : En+1,0

r → En+1+r,1−r
r

are zero as the target is zero. Using that QCoh(OX) is a weak Serre subcategory of
Mod(OX) (Properties of Spaces, Lemma 27.7) it follows that Rn+1f∗g∗H is quasi-
coherent (details omitted).

Let F be a quasi-coherent OX -module. Set H = g∗F . The adjunction mapping
F → g∗g

∗F = g∗H is injective as U → X is surjective étale. Consider the exact
sequence

0→ F → g∗H → G → 0

where G is the cokernel of the first map and in particular quasi-coherent. Applying
the long exact cohomology sequence we obtain

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → Rn+1f∗g∗H → Rn+1f∗G

http://localhost:8080/tag/0720


4 COHOMOLOGY OF ALGEBRAIC SPACES

The cokernel of the first arrow is quasi-coherent and we have seen above that
Rn+1f∗g∗H is quasi-coherent. Thus Rn+1f∗F has a 2-step filtration where the first
step is quasi-coherent and the second a submodule of a quasi-coherent sheaf. Since
F is an arbitrary quasi-coherent OX -module, this result also holds for G. Thus we
can choose an exact sequence 0 → A → Rn+1f∗G → B with A, B quasi-coherent
OY -modules. Then the kernel K of Rn+1f∗g∗H → Rn+1f∗G → B is quasi-coherent,
whereupon we obtain a map K → A whose kernel K′ is quasi-coherent too. Hence
Rn+1f∗F sits in an exact sequence

Rnf∗g∗H → Rnf∗G → Rn+1f∗F → K′ → 0

with all modules quasi-coherent except for possibly Rn+1f∗F . We conclude that
Rn+1f∗F is quasi-coherent, i.e., IHn+1 holds as desired. �

Lemma 3.3. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S. For any quasi-coherent OX-module
F and any affine object V of Yétale we have

Hq(V ×Y X,F) = H0(V,Rqf∗F)

for all q ∈ Z.

Proof. Since formation of Rf∗ commutes with étale localization (Properties of
Spaces, Lemma 24.2) we may replace Y by V and assume Y = V is affine. Consider
the Leray spectral sequence Ep,q2 = Hp(Y,Rqf∗F) converging to Hp+q(X,F), see
Cohomology on Sites, Lemma 14.5. By Lemma 3.2 we see that the sheaves Rqf∗F
are quasi-coherent. By Cohomology of Schemes, Lemma 2.2 we see that Ep,q2 = 0
when p > 0. Hence the spectral sequence degenerates at E2 and we win. �

4. Colimits and cohomology

The following lemma in particular applies to diagrams of quasi-coherent sheaves.

Lemma 4.1. Let S be a scheme. Let X be an algebraic space over S. If X is
quasi-compact and quasi-separated, then

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

is an isomorphism for every filtered diagram of abelian sheaves on Xétale.

Proof. This follows from Cohomology on Sites, Lemma 16.1. Namely, let B ⊂
Ob(Xspaces,étale) be the set of quasi-compact and quasi-separated spaces étale over
X. Note that if U ∈ B then, because U is quasi-compact, the collection of finite
coverings {Ui → U} with Ui ∈ B is cofinal in the set of coverings of U in Xétale.
By Morphisms of Spaces, Lemma 8.9 the set B satisfies all the assumptions of
Cohomology on Sites, Lemma 16.1. Since X ∈ B we win. �

Lemma 4.2. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let F = colimFi be a filtered
colimit of abelian sheaves on Xétale. Then for any p ≥ 0 we have

Rpf∗F = colimRpf∗Fi.

Proof. Recall that Rpf∗F is the sheaf on Yspaces,étale associated to V 7→ Hp(V ×Y
X,F), see Cohomology on Sites, Lemma 8.4 and Properties of Spaces, Lemma 15.7.
Recall that the colimit is the sheaf associated to the presheaf colimit. Hence we can
apply Lemma 4.1 to Hp(V ×Y X,−) where V is affine to conclude (because when
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COHOMOLOGY OF ALGEBRAIC SPACES 5

V is affine, then V ×Y X is quasi-compact and quasi-separated). Strictly speaking
this also uses Properties of Spaces, Lemma 15.5 to see that there exist enough affine
objects. �

The following lemma tells us that finitely presented modules behave as expected in
quasi-compact and quasi-separated algebraic spaces.

Lemma 4.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let I be a partially ordered set and let (Fi, ϕii′) be a system
over I of quasi-coherent OX-modules. Let G be an OX-module of finite presentation.
Then we have

colimi HomX(G,Fi) = HomX(G, colimi Fi).

Proof. Choose an affine scheme U and a surjective étale morphism U → X. Set
R = U ×X U . Note that R is a quasi-compact (as X is quasi-separated and U
quasi-compact) and separated (as U is separated) scheme. Hence we have

colimi HomU (G|U ,Fi|U ) = HomU (G|U , colimi Fi|U ).

by Modules, Lemma 11.6 (and the material on restriction to schemes étale over X,
see Properties of Spaces, Sections 27 and 28). Similarly for R. Since QCoh(OX) =
QCoh(U,R, s, t, c) (see Properties of Spaces, Proposition 30.1) the result follows
formally. �

5. The alternating Čech complex

Let S be a scheme. Let f : U → X be an étale morphism of algebraic spaces over
S. The functor

j : Uspaces,étale −→ Xspaces,étale, V/U 7−→ V/X

induces an equivalence of Uspaces,étale with the localization Xspaces,étale/U , see
Properties of Spaces, Section 25. Hence there exist functors

f! : Ab(Uétale) −→ Ab(Xétale), f! : Mod(OU ) −→ Mod(OX),

which are left adjoint to

f−1 : Ab(Xétale) −→ Ab(Uétale), f∗ : Mod(OX) −→ Mod(OU )

see Modules on Sites, Section 19. Warning: This functor, a priori, has nothing to
do with cohomology with compact supports! We dubbed this functor “extension
by zero” in the reference above. Note that the two versions of f! agree as f∗ = f−1

for sheaves of OX -modules.

As we are going to use this construction below let us recall some of its properties.
Given an abelian sheaf G on Uétale the sheaf f! is the sheafification of the presheaf

V/X 7−→ f!G(V ) =
⊕

ϕ∈MorX(V,U)
G(V

ϕ−→ U),

see Modules on Sites, Lemma 19.2. Moreover, if G is an OU -module, then f!G is the
sheafification of the exact same presheaf of abelian groups which is endowed with
an OX -module structure in an obvious way (see loc. cit.). Let x : Spec(k)→ X be
a geometric point. Then there is a canonical identification

(f!G)x =
⊕

u
Gu

http://localhost:8080/tag/07U7


6 COHOMOLOGY OF ALGEBRAIC SPACES

where the sum is over all u : Spec(k) → U such that f ◦ u = x, see Modules on
Sites, Lemma 37.1 and Properties of Spaces, Lemma 16.13. In the following we are
going to study the sheaf f!Z. Here Z denotes the constant sheaf on Xétale or Uétale.

Lemma 5.1. Let S be a scheme. Let fi : Ui → X be étale morphisms of algebraic
spaces over S. Then there are isomorphisms

f1,!Z⊗Z f2,!Z −→ f12,!Z

where f12 : U1 ×X U2 → X is the structure morphism and

(f1 q f2)!Z −→ f1,!Z⊕ f2,!Z

Proof. Once we have defined the map it will be an isomorphism by our description
of stalks above. To define the map it suffices to work on the level of presheaves.
Thus we have to define a map(⊕

ϕ1∈MorX(V,U1)
Z

)
⊗Z

(⊕
ϕ2∈MorX(V,U2)

Z

)
−→

⊕
ϕ∈MorX(V,U1×XU2)

Z

We map the element 1ϕ1
⊗ 1ϕ2

to the element 1ϕ1×ϕ2
with obvious notation. We

omit the proof of the second equality. �

Another important feature is the trace map

Trf : f!Z −→ Z.

The trace map is adjoint to the map Z→ f−1Z (which is an isomorphism). If x is
above, then Trf on stalks at x is the map

(Trf )x : (f!Z)x =
⊕

u
Z −→ Z = Zx

which sums the given integers. This is true because it is adjoint to the map 1 : Z→
f−1Z. In particular, if f is surjective as well as étale then Trf is surjective.

Assume that f : U → X is a surjective étale morphism of algebraic spaces. Consider
the Koszul complex associated to the trace map we discussed above

. . .→ ∧3f!Z→ ∧2f!Z→ f!Z→ Z→ 0

Here the exterior powers are over the sheaf of rings Z. The maps are defined by
the rule

e1 ∧ . . . ∧ en 7−→
∑

i=1,...,n
(−1)i+1Trf (ei)e1 ∧ . . . ∧ êi ∧ . . . ∧ en

where e1, . . . , en are local sections of f!Z. Let x be a geometric point of X and set
Mx = (f!Z)x =

⊕
u Z. Then the stalk of the complex above at x is the complex

. . .→ ∧3Mx → ∧2Mx →Mx → Z→ 0

which is exact because Mx → Z is surjective, see More on Algebra, Lemma 20.5.
Hence if we let K• = K•(f) be the complex with Ki = ∧i+1f!Z, then we obtain a
quasi-isomorphism

(5.1.1) K• −→ Z[0]

We use the complex K• to define what we call the alternating Čech complex asso-
ciated to f : U → X.

http://localhost:8080/tag/0722
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Definition 5.2. Let S be a scheme. Let f : U → X be a surjective étale morphism
of algebraic spaces over S. Let F be an object of Ab(Xétale). The alternating Čech
complex1 Č•alt(f,F) associated to F and f is the complex

Hom(K0,F)→ Hom(K1,F)→ Hom(K2,F)→ . . .

with Hom groups computed in Ab(Xétale).

The reader may verify that if U =
∐
Ui and f |Ui : Ui → X is the open immersion

of a subspace, then Č•alt(f,F) agrees with the complex introduced in Cohomology,
Section 24 for the Zariski covering X =

⋃
Ui and the restriction of F to the Zariski

site of X. What is more important however, is to relate the cohomology of the
alternating Čech complex to the cohomology.

Lemma 5.3. Let S be a scheme. Let f : U → X be a surjective étale morphism of
algebraic spaces over S. Let F be an object of Ab(Xétale). There exists a canonical
map

Č•alt(f,F) −→ RΓ(X,F)

in D(Ab). Moreover, there is a spectral sequence with E1-page

Ep,q1 = ExtqAb(Xétale)
(Kp,F)

converging to Hp+q(X,F) where Kp = ∧p+1f!Z.

Proof. Recall that we have the quasi-isomorphism K• → Z[0], see (5.1.1). Choose
an injective resolution F → I• in Ab(Xétale). Consider the double complex A•,•

with terms

Ap,q = Hom(Kp, Iq)
where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Kp+1 → Kp and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential Iq → Iq+1. Denote sA• the total complex associated to the double
complex A•,•. We will use the two spectral sequences (′Er,

′dr) and (′′Er,
′′dr)

associated to this double complex, see Homology, Section 22.

Because K• is a resolution of Z we see that the complexes

A•,q : Hom(K0, Iq)→ Hom(K1, Iq)→ Hom(K2, Iq)→ . . .

are acyclic in positive degrees and have H0 equal to Γ(X, Iq). Hence by Homology,
Lemma 22.7 and its proof the spectral sequence (′′Er,

′′dr) degenerates, and the
natural map

I•(X) −→ sA•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(sA•) = Hn(X,F).

The map Č•alt(f,F) → RΓ(X,F) of the lemma is the composition of Č•alt(f,F) →
SA• with the inverse of the displayed quasi-isomorphism.

Finally, consider the spectral sequence (′Er,
′dr). We have

Ep,q1 = qth cohomology of Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

This proves the lemma. �

1This may be nonstandard notation
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It follows from the lemma that it is important to understand the ext groups
ExtAb(Xétale)(K

p,F), i.e., the right derived functors of F 7→ Hom(Kp,F).

Lemma 5.4. Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

where the fibre product has p+ 1 factors. There is a free action of Sp+1 on Wp over
X and

Hom(Kp,F) = Sp+1-anti-invariant elements of F(Wp)

functorially in F where Kp = ∧p+1f!Z.

Proof. Because U → X is separated the diagonal U → U ×X U is a closed immer-
sion. Since U → X is étale the diagonal U → U ×X U is an open immersion, see
Morphisms of Spaces, Lemmas 36.10 and 35.9. Hence Wp is an open and closed
subspace of Up+1 = U ×X . . . ×X U . The action of Sp+1 on Wp is free as we’ve
thrown out the fixed points of the action. By Lemma 5.1 we see that

(f!Z)⊗p+1 = fp+1
! Z = (Wp → X)!Z⊕Rest

where fp+1 : Up+1 → X is the structure morphism. Looking at stalks over a
geometric point x of X we see that(⊕

u 7→x
Z
)⊗p+1

−→ (Wp → X)!Zx

is the quotient whose kernel is generated by all tensors 1u0
⊗ . . .⊗1up where ui = uj

for some i 6= j. Thus the quotient map

(f!Z)⊗p+1 −→ ∧p+1f!Z

factors through (Wp → X)!Z, i.e., we get

(f!Z)⊗p+1 −→ (Wp → X)!Z −→ ∧p+1f!Z

This already proves that Hom(Kp,F) is (functorially) a subgroup of

Hom((Wp → X)!Z,F) = F(Wp)

To identify it with the Sp+1-anti-invariants we have to prove that the surjection
(Wp → X)!Z → ∧p+1f!Z is the maximal Sp+1-anti-invariant quotient. In other
words, we have to show that ∧p+1f!Z is the quotient of (Wp → X)!Z by the
subsheaf generated by the local sections s − sign(σ)σ(s) where s is a local section
of (Wp → X)!Z. This can be checked on the stacks, where it is clear. �

Lemma 5.5. Let S be a scheme. Let W be an algebraic space over S. Let G be a
finite group acting freely on W . Let U = W/G, see Properties of Spaces, Lemma
32.1. Let χ : G→ {+1,−1} be a character. Then there exists a rank 1 locally free
sheaf of Z-modules Z(χ) on Uétale such that for every abelian sheaf F on Uétale we
have

H0(W,F|W )χ = H0(U,F ⊗Z Z(χ))

Proof. The quotient morphism q : W → U is a G-torsor, i.e., there exists a
surjective étale morphism U ′ → U such that W ×U U ′ =

∐
g∈G U

′ as spaces with

G-action over U ′. (Namely, U ′ = W works.) Hence q∗Z is a finite locally free

http://localhost:8080/tag/0726
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Z-module with an action of G. For any geometric point u of U , then we get G-
equivariant isomorphisms

(q∗Z)u =
⊕

w 7→u
Z =

⊕
g∈G

Z = Z[G]

where the second = uses a geometric point w0 lying over u and maps the summand
corresponding to g ∈ G to the summand corresponding to g(w0). We have

H0(W,F|W ) = H0(U,F ⊗Z q∗Z)

because q∗F|W = F ⊗Z q∗Z as one can check by restricting to U ′. Let

Z(χ) = (q∗Z)χ ⊂ q∗Z
be the subsheaf of sections that transform according to χ. For any geometric point
u of U we have

Z(χ)u = Z ·
∑

g
χ(g)g ⊂ Z[G] = (q∗Z)u

It follows that Z(χ) is locally free of rank 1 (more precisely, this should be checked
after restricting to U ′). Note that for any Z-module M the χ-semi-invariants of
M [G] are the elements of the form m ·

∑
g χ(g)g. Thus we see that for any abelian

sheaf F on U we have
(F ⊗Z q∗Z)

χ
= F ⊗Z Z(χ)

because we have equality at all stalks. The result of the lemma follows by taking
global sections. �

Now we can put everything together and obtain the following pleasing result.

Lemma 5.6. Let S be a scheme. Let f : U → X be a surjective, étale, and
separated morphism of algebraic spaces over S. For p ≥ 0 set

Wp = U ×X . . .×X U \ all diagonals

(with p + 1 factors) as in Lemma 5.4. Let χp : Sp+1 → {+1,−1} be the sign
character. Let Up = Wp/Sp+1 and Z(χp) be as in Lemma 5.5. Then the spectral
sequence of Lemma 5.3 has E1-page

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))

and converges to Hp+q(X,F).

Proof. Note that since the action of Sp+1 on Wp is over X we do obtain a morphism
Up → X. Since Wp → X is étale and since Wp → Up is surjective étale, it follows
that also Up → X is étale, see Morphisms of Spaces, Lemma 36.2. Therefore an
injective object of Ab(Xétale) restricts to an injective object of Ab(Up,étale), see
Cohomology on Sites, Lemma 8.1. Moreover, the functor G 7→ G ⊗Z Z(χp)) is
an auto-equivalence of Ab(Up), whence transforms injective objects into injective
objects and is exact (because Z(χp) is an invertible Z-module). Thus given an
injective resolution F → I• in Ab(Xétale) the complex

Γ(Up, I0|Up ⊗Z Z(χp))→ Γ(Up, I1|Up ⊗Z Z(χp))→ Γ(Up, I2|Up ⊗Z Z(χp))→ . . .

computes H∗(Up,F|Up ⊗Z Z(χp)). On the other hand, by Lemma 5.5 it is equal to
the complex of Sp+1-anti-invariants in

Γ(Wp, I0)→ Γ(Wp, I1)→ Γ(Wp, I2)→ . . .

which by Lemma 5.4 is equal to the complex

Hom(Kp, I0)→ Hom(Kp, I1)→ Hom(Kp, I2)→ . . .

http://localhost:8080/tag/0728
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which computes Ext∗Ab(Xétale)
(Kp,F). Putting everything together we win. �

6. Higher vanishing for quasi-coherent sheaves

In this section we show that given a quasi-compact and quasi-separated algebraic
space X there exists an integer n = n(X) such that the cohomology of any quasi-
coherent sheaf on X vanishes beyond degree n.

Lemma 6.1. With S, W , G, U , χ as in Lemma 5.5. If F is a quasi-coherent
OU -module, then so is F ⊗Z Z(χ).

Proof. The OU -module structure is clear. To check that F ⊗Z Z(χ) is quasi-
coherent it suffices to check étale locally. Hence the lemma follows as Z(χ) is finite
locally free as a Z-module. �

The following proposition is interesting even if X is a scheme. It is the natural
generalization of Cohomology of Schemes, Lemma 4.2. Before we state it, observe
that given an étale morphism f : U → X from an affine scheme towards a quasi-
separated algebraic space X the fibres of f are universally bounded, in particular
there exists an integer d such that the fibres of |U | → |X| all have size at most d;
this is the implication (η)⇒ (δ) of Decent Spaces, Lemma 5.1.

Proposition 6.2. Let S be a scheme. Let X be an algebraic space over S. Assume
X is quasi-compact and separated. Let U be an affine scheme, and let f : U → X
be a surjective étale morphism. Let d be an upper bound for the size of the fibres of
|U | → |X|. Then for any quasi-coherent OX-module F we have Hq(X,F) = 0 for
q ≥ d.

Proof. We will use the spectral sequence of Lemma 5.6. The lemma applies since
f is separated as U is separated, see Morphisms of Spaces, Lemma 4.10. Since X is
separated the scheme U×X . . .×XU is a closed subscheme of U×Spec(Z). . .×Spec(Z)U
hence is affine. Thus Wp is affine. Hence Up = Wp/Sp+1 is an affine scheme by
Groupoids, Proposition 21.8. The discussion in Section 3 shows that cohomology of
quasi-coherent sheaves on Wp (as an algebraic space) agrees with the cohomology
of the corresponding quasi-coherent sheaf on the underlying affine scheme, hence
vanishes in positive degrees by Cohomology of Schemes, Lemma 2.2. By Lemma
6.1 the sheaves F|Up ⊗Z Z(χp) are quasi-coherent. Hence Hq(Wp,F|Up ⊗Z Z(χp))
is zero when q > 0. By our definition of the integer d we see that Wp = ∅ for
p ≥ d. Hence also H0(Wp,F|Up ⊗Z Z(χp)) is zero when p ≥ d. This proves the
proposition. �

In the following lemma we establish that a quasi-compact and quasi-separated al-
gebraic space has finite cohomological dimension for quasi-coherent modules. We
are explicit about the bound only because we will use it later to prove a similar
result for higher direct images.

Lemma 6.3. Let S be a scheme. Let X be an algebraic space over S. Assume X
is quasi-compact and quasi-separated. Then we can choose

(1) an affine scheme U ,
(2) a surjective étale morphism f : U → X,
(3) an integer d bounding the degrees of the fibres of U → X,
(4) for every p = 0, 1, . . . , d a surjective étale morphism Vp → Up from an affine

scheme Vp where Up is as in Lemma 5.6, and
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(5) an integer dp bounding the degree of the fibres of Vp → Up.

Moreover, whenever we have (1) – (5), then for any quasi-coherent OX-module F
we have Hq(X,F) = 0 for q ≥ max(dp + p).

Proof. Since X is quasi-compact we can find a surjective étale morphism U → X
with U affine, see Properties of Spaces, Lemma 6.3. By Decent Spaces, Lemma 5.1
the fibres of f are universally bounded, hence we can find d. We have Up = Wp/Sp+1

and Wp ⊂ U ×X . . . ×X U is open and closed. Since X is quasi-separated the
schemes Wp are quasi-compact, hence Up is quasi-compact. Since U is separated,
the schemes Wp are separated, hence Up is separated by (the absolute version
of) Spaces, Lemma 14.5. By Properties of Spaces, Lemma 6.3 we can find the
morphisms Vp →Wp. By Decent Spaces, Lemma 5.1 we can find the integers dp.

At this point the proof uses the spectral sequence

Ep,q1 = Hq(Up,F|Up ⊗Z Z(χp))⇒ Hp+q(X,F)

see Lemma 5.6. By definition of the integer d we see that Up = 0 for p ≥ d. By
Proposition 6.2 and Lemma 6.1 we see that Hq(Up,F|Up⊗ZZ(χp)) is zero for q ≥ dp
for p = 0, . . . , d. Whence the lemma. �

7. Vanishing for higher direct images

We apply the results of Section 6 to obtain vanishing of higher direct images of
quasi-coherent sheaves for quasi-compact and quasi-separated morphisms. This is
useful because it allows one to argue by descending induction on the cohomological
degree in certain situations.

Lemma 7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume that

(1) f is quasi-compact and quasi-separated, and
(2) Y is quasi-compact.

Then there exists an integer n(X → Y ) such that for any algebraic space Y ′, any
morphism Y ′ → Y and any quasi-coherent sheaf F ′ on X ′ = Y ′ ×Y X the higher
direct images Rif ′∗F ′ are zero for i ≥ n(X → Y ).

Proof. Let V → Y be a surjective étale morphism where V is an affine scheme, see
Properties of Spaces, Lemma 6.3. Suppose we prove the result for the base change
fV : V ×Y X → V . Then the result holds for f with n(X → Y ) = n(XV → V ).
Namely, if Y ′ → Y and F ′ are as in the lemma, then Rif ′∗F ′|V×Y Y ′ is equal to
Rif ′V,∗F ′|X′V where f ′V : X ′V = V ×Y Y ′ ×Y X → V ×Y Y ′ = Y ′V , see Properties of
Spaces, Lemma 24.2. Thus we may assume that Y is an affine scheme.

Moreover, to prove the vanishing for all Y ′ → Y and F ′ it suffices to do so when
Y ′ is an affine scheme. In this case, Rif ′∗F ′ is quasi-coherent by Lemma 3.2. Hence
it suffices to prove that Hi(X ′,F ′) = 0, because Hi(X ′,F ′) = H0(Y ′, Rif ′∗F ′)
by Cohomology on Sites, Lemma 14.6 and the vanishing of higher cohomology of
quasi-coherent sheaves on affine algebraic spaces (Proposition 6.2).

Choose U → X, d, Vp → Up and dp as in Lemma 6.3. For any affine scheme Y ′ and
morphism Y ′ → Y denote X ′ = Y ′ ×Y X, U ′ = Y ′ ×Y U , V ′p = Y ′ ×Y Vp. Then
U ′ → X ′, d′ = d, V ′p → U ′p and d′p = d is a collection of choices as in Lemma 6.3

for the algebraic space X ′ (details omitted). Hence we see that Hi(X ′,F ′) = 0 for
i ≥ max(p+ dp) and we win. �
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Lemma 7.2. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then Rif∗F = 0 for i > 0 and any quasi-coherent OX-module F .

Proof. Recall that an affine morphism of algebraic spaces is representable. Hence
this follows from (3.1.1) and Cohomology of Schemes, Lemma 2.3. �

8. Cohomology with support in a closed subspace

This section is the analogue of Cohomology, Section 22 and Étale Cohomology,
Section 73 for abelian sheaves on algebraic spaces.

Let S be a scheme. Let X be an algebraic space over S and let Z ⊂ X be a closed
subspace. Let F be an abelian sheaf on Xétale. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}

be the sections with support in Z (Properties of Spaces, Definition 17.3). This is a
left exact functor which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(Xétale) −→ D(Ab)

and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on Xétale. Let U ⊂ X be the open subspace
which is the complement of Z. Then the restriction map I(X)→ I(U) is surjective
(Cohomology on Sites, Lemma 12.6) with kernel ΓZ(X, I). It immediately follows
that for K ∈ D(Xétale) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .

for any K in D(Xétale).

For an abelian sheaf F on Xétale we can consider the subsheaf of sections with
support in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ×X Z}

Here we use the support of a section from Properties of Spaces, Definition 17.3.
Using the equivalence of Morphisms of Spaces, Lemma 13.5 we may view HZ(F)
as an abelian sheaf on Zétale. Thus we obtain a functor

Ab(Xétale) −→ Ab(Zétale), F 7−→ HZ(F)

which is left exact, but in general not exact.

Lemma 8.1. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let I be an injective abelian sheaf on Xétale. Then HZ(I) is an
injective abelian sheaf on Zétale.

Proof. Observe that for any abelian sheaf G on Zétale we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Lemma 3.1)
and as I is injective on Xétale we conclude that HZ(I) is injective on Zétale. �
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Denote

RHZ : D(Xétale) −→ D(Zétale)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 8.2. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. Let G be an injective abelian sheaf on Zétale. Then HpZ(i∗G) = 0 for
p > 0.

Proof. This is true because the functor i∗ is exact (Lemma 3.1) and transforms in-
jective abelian sheaves into injective abelian sheaves (Cohomology on Sites, Lemma
14.2). �

Lemma 8.3. Let S be a scheme. Let f : X → Y be an étale morphism of algebraic
spaces over S. Let Z ⊂ Y be a closed subspace such that f−1(Z) → Z is an
isomorphism of algebraic spaces. Let F be an abelian sheaf on X. Then

HqZ(F) = Hqf−1(Z)(f
−1F)

as abelian sheaves on Z = f−1(Z) and we have Hq
Z(Y,F) = Hq

f−1(Z)(X, f
−1F).

Proof. Because f is étale an injective resolution of F pulls back to an injective
resolution of f−1F . Hence it suffices to check the equality for HZ(−) which follows
from the definitions. The proof for cohomology with supports is the same. Some
details omitted. �

Let S be a scheme and let X be an algebraic space over S. Let T ⊂ |X| be a closed
subset. We denote DT (Xétale) the strictly full saturated triangulated subcategory
of D(Xétale) consisting of objects whose cohomology sheaves are supported on T .

Lemma 8.4. Let S be a scheme. Let i : Z → X be a closed immersion of algebraic
spaces over S. The map Ri∗ = i∗ : D(Zétale) → D(Xétale) induces an equivalence
D(Zétale)→ D|Z|(Xétale) with quasi-inverse

i−1|DZ(Xétale) = RHZ |D|Z|(Xétale)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗ is
isomorphic to the identify functor on abelian sheaves. See Properties of Spaces,
Lemma 16.9 and Morphisms of Spaces, Lemma 13.5. Thus i∗ : D(Zétale) →
DZ(Xétale) is fully faithfull and i−1 determines a left inverse. On the other hand,
suppose that K is an object of DZ(Xétale) and consider the adjunction map K →
i∗i
−1K. Using exactness of i∗ and i−1 this induces the adjunction maps Hn(K)→

i∗i
−1Hn(K) on cohomology sheaves. Since these cohomology sheaves are sup-

ported on Z we see these adjunction maps are isomorphisms and we conclude that
D(Zétale)→ DZ(Xétale) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1K if K is an object of
DZ(Xétale). To do this we can use that K = i∗i

−1K as we’ve just proved this is
the case. Then we can choose a K-injective representative I• for i−1K. Since i∗ is
the right adjoint to the exact functor i−1, the complex i∗I• is K-injective (Derived
Categories, Lemma 29.10). We see that RHZ(K) is computed by HZ(i∗I•) = I•
as desired. �
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9. Vanishing above the dimension

Let S be a scheme. Let X be a quasi-compact and quasi-separated algebraic space
over S. In this case |X| is a spectral space, see Properties of Spaces, Lemma 12.5.
Moreover, the dimension of X (as defined in Properties of Spaces, Definition 8.2) is
equal to the Krull dimension of |X|, see Decent Spaces, Lemma 10.7. We will show
that for quasi-coherent sheaves on X we have vanishing of cohomology above the
dimension. This result is already interesting for quasi-separated algebraic spaces of
finite type over a field.

Lemma 9.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Assume dim(X) ≤ d for some integer d. Let F be a quasi-
coherent sheaf F on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for any quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d for any closed subspace Z ⊂ X whose complement
is quasi-compact.

Proof. By Properties of Spaces, Lemma 20.3 every algebraic space Y étale over
X has dimension ≤ d. If Y is quasi-separated, the dimension of Y is equal to the
Krull dimension of |Y | by Decent Spaces, Lemma 10.7. Also, if Y is a scheme,
then étale cohomology of F over Y , resp. étale cohomology of F with support in
a closed subscheme, agrees with usual cohomology of F , resp. usual cohomology
with support in the closed subscheme. See Descent, Proposition 7.10 and Étale
Cohomology, Lemma 73.5. We will use these facts without further mention.

By Decent Spaces, Lemma 8.5 there exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up\Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1

p (Tp)→ Tp is an isomorphism.

As Un = Vn is a scheme, our initial remarks imply the cohomology of F over Un
vanishes in degrees > d by Cohomology, Proposition 23.4. Suppose we have shown,
by induction, that Hq(Up+1,F|Up+1) = 0 for q > d. It suffices to show Hq

Tp
(Up,F)

for q > d is zero in order to conclude the vanishing of cohomology of F over Up in
degrees > d. However, we have

Hq
Tp

(Up,F) = Hq

f−1
p (Tp)

(Vp,F)

by Lemma 8.3 and as Vp is a scheme we obtain the desired vanishing from Coho-
mology, Proposition 23.4. In this way we conclude that (1) is true.

To prove (2) let U ⊂ X be a quasi-compact open subspace. Consider the open sub-
space U ′ = U ∪ Un. Let Z = U ′ \ U . Then g : Un → U ′ is an étale morphism such
that g−1(Z) → Z is an isomorphism. Hence by Lemma 8.3 we have Hq

Z(U ′,F) =
Hq
Z(Un,F) which vanishes in degree > d because Un is a scheme and we can apply

Cohomology, Proposition 23.4. We conclude that Hd(U ′,F)→ Hd(U,F) is surjec-
tive. Assume, by induction, that we have reduced our problem to the case where
U contains Up+1. Then we set U ′ = U ∪ Up, set Z = U ′ \ U , and we argue using
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the morphism fp : Vp → U ′ which is étale and has the property that f−1
p (Z) → Z

is an isomorphism. In other words, we again see that

Hq
Z(U ′,F) = Hq

f−1
p (Z)

(Vp,F)

and we again see this vanishes in degrees > d. We conclude that Hd(U ′,F) →
Hd(U,F) is surjective. Eventually we reach the stage where U1 = X ⊂ U which
finishes the proof.

A formal argument shows that (2) implies (3). �

10. Cohomology and base change, I

Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces over S. Let
F be a quasi-coherent sheaf on X. Suppose further that g : Y ′ → Y is a morphism
of algebraic spaces over S. Denote X ′ = XY ′ = Y ′×Y X the base change of X and
denote f ′ : X ′ → Y ′ the base change of f . Also write g′ : X ′ → X the projection,
and set F ′ = (g′)∗F . Here is a diagram representing the situation:

(10.0.1)

F ′ = (g′)∗F X ′
g′
//

f ′

��

X

f

��

F

Rf ′∗F ′ Y ′
g // Y Rf∗F

Here is the basic result for a flat base change.

Lemma 10.1. In the situation above, assume that g is flat and that f is quasi-
compact and quasi-separated. Then we have

Rpf ′∗F ′ = g∗Rpf∗F

for all p ≥ 0 with notation as in (10.0.1).

Proof. The morphism g′ is flat by Morphisms of Spaces, Lemma 28.4. Note that
flatness of g and g′ is equivalent to flatness of the morphisms of small étale ringed
sites, see Morphisms of Spaces, Lemma 28.9. Hence we can apply Cohomology on
Sites, Lemma 15.1 to obtain a base change map

g∗Rpf∗F −→ Rpf ′∗F ′

To prove this map is an isomorphism we can work locally in the étale topology on
Y ′. Thus we may assume that Y and Y ′ are affine schemes. Say Y = Spec(A) and
Y ′ = Spec(B). In this case we are really trying to show that the map

Hp(X,F)⊗A B −→ Hp(XB ,FB)

is an isomorphism where XB = Spec(B) ×Spec(A) X and FB is the pullback of F
to XB .

Fix A → B a flat ring map and let X be a quasi-compact and quasi-separated
algebraic space over A. Note that g′ : XB → X is affine as a base change of
Spec(B)→ Spec(A). Hence the higher direct images Ri(g′)∗FB are zero by Lemma
7.2. Thus Hp(XB ,FB) = Hp(X, g′∗FB), see Cohomology on Sites, Lemma 14.6.
Moreover, we have

g′∗FB = F ⊗A B
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16 COHOMOLOGY OF ALGEBRAIC SPACES

where A, B denotes the constant sheaf of rings with value A, B. Namely, it is clear
that there is a map from right to left. For any affine scheme U étale over X we
have

g′∗FB(U) = FB(Spec(B)×Spec(A) U)

= Γ(Spec(B)×Spec(A) U, (Spec(B)×Spec(A) U → U)∗F|U )

= B ⊗A F(U)

hence the map is an isomorphism. Write B = colimMi as a filtered colimit of finite
free A-modules Mi using Lazard’s theorem, see Algebra, Theorem 78.4. We deduce
that

Hp(X, g′∗FB) = Hp(X,F ⊗A B)

= Hp(X, colimi F ⊗AMi)

= colimiH
p(X,F ⊗AMi)

= colimiH
p(X,F)⊗AMi

= Hp(X,F)⊗A colimiMi

= Hp(X,F)⊗A B

The first equality because g′∗FB = F ⊗A B as seen above. The second because
⊗ commutes with colimits. The third equality because cohomology on X com-
mutes with colimits (see Lemma 4.1). The fourth equality because Mi is finite free
(i.e., because cohomology commutes with finite direct sums). The fifth because ⊗
commutes with colimits. The sixth by choice of our system. �

Lemma 10.2. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Let F be a quasi-coherent OX-module. In this case f∗F ∼=
Rf∗F is a quasi-coherent sheaf, and for every diagram (10.0.1) we have g∗f∗F =
f ′∗(g

′)∗F .

Proof. By the discussion surrounding (3.1.1) this reduces to the case of an affine
morphism of schemes which is treated in Cohomology of Schemes, Lemma 5.1. �

11. Coherent modules on locally Noetherian algebraic spaces

This section is the analogue of Cohomology of Schemes, Section 9. In Modules on
Sites, Definition 23.1 we have defined coherent modules on any ringed topos. We
use this notion to define coherent modules on locally Noetherian algebraic spaces.
Although it is possible to work with coherent modules more generally we resist the
urge to do so.

Definition 11.1. Let S be a scheme. Let X be a locally Noetherian algebraic
space over S. A quasi-coherent module F on X is called coherent if F is a coherent
OX -module on the site Xétale in the sense of Modules on Sites, Definition 23.1.

Of course this definition is a bit hard to work with. We usually use the characteri-
zation given in the lemma below.

Lemma 11.2. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be an OX-module. The following are equivalent

(1) F is coherent,
(2) F is a quasi-coherent, finite type OX-module,
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(3) F is a finitely presented OX-module,
(4) for any étale morphism ϕ : U → X where U is a scheme the pullback ϕ∗F

is a coherent module on U , and
(5) there exists a surjective étale morphism ϕ : U → X where U is a scheme

such that the pullback ϕ∗F is a coherent module on U .

In particular OX is coherent, any invertible OX-module is coherent, and more gen-
erally any finite locally free OX-module is coherent.

Proof. To be sure, if X is a locally Noetherian algebraic space and U → X is an
étale morphism, then U is locally Noetherian, see Properties of Spaces, Section 7.
The lemma then follows from the points (1) – (5) made in Properties of Spaces,
Section 28 and the corresponding result for coherent modules on locally Noetherian
schemes, see Cohomology of Schemes, Lemma 9.1. �

Lemma 11.3. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. The category of coherent OX-modules is abelian. More precisely, the kernel
and cokernel of a map of coherent OX-modules are coherent. Any extension of
coherent sheaves is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (24.1.1). By Lemma 11.2 we can check whether an OX -module F is
coherent by checking whether f∗F is coherent. Hence the lemma follows from the
case of schemes which is Cohomology of Schemes, Lemma 9.2. �

Coherent modules form a Serre subcategory of the category of quasi-coherent OX -
modules. This does not hold for modules on a general ringed topos.

Lemma 11.4. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX-module. Any quasi-coherent submodule of F is
coherent. Any quasi-coherent quotient module of F is coherent.

Proof. Choose a scheme U and a surjective étale morphism f : U → X. Pullback
f∗ is an exact functor as it equals a restriction functor, see Properties of Spaces,
Equation (24.1.1). By Lemma 11.2 we can check whether an OX -module G is
coherent by checking whether f∗H is coherent. Hence the lemma follows from the
case of schemes which is Cohomology of Schemes, Lemma 9.3. �

Lemma 11.5. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S,. Let F , G be coherent OX-modules. The OX-modules F ⊗OX G and
HomOX (F ,G) are coherent.

Proof. Via Lemma 11.2 this follows from the result for schemes, see Cohomology
of Schemes, Lemma 9.4. �

Lemma 11.6. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F , G be coherent OX-modules. Let ϕ : G → F be a homomorphism of
OX-modules. Let x be a geometric point of X lying over x ∈ |X|.

(1) If Fx = 0 then there exists an open neighbourhood X ′ ⊂ X of x such that
F|X′ = 0.

(2) If ϕx : Gx → Fx is injective, then there exists an open neighbourhood X ′ ⊂
X of x such that ϕ|X′ is injective.
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(3) If ϕx : Gx → Fx is surjective, then there exists an open neighbourhood
X ′ ⊂ X of x such that ϕ|X′ is surjective.

(4) If ϕx : Gx → Fx is bijective, then there exists an open neighbourhood X ′ ⊂
X of x such that ϕ|X′ is an isomorphism.

Proof. Let ϕ : U → X be an étale morphism where U is a scheme and let u ∈ U
be a point mapping to x. By Properties of Spaces, Lemmas 27.4 and 19.1 as well
as More on Algebra, Lemma 34.1 we see that ϕx is injective, surjective, or bijective
if and only if ϕu : ϕ∗Fu → ϕ∗Gu has the corresponding property. Thus we can
apply the schemes version of this lemma to see that (after possibly shrinking U)
the map ϕ∗F → ϕ∗G is injective, surjective, or an isomorphism. Let X ′ ⊂ X be the
open subspace corresponding to |ϕ|(|U |) ⊂ |X|, see Properties of Spaces, Lemma
4.8. Since {U → X ′} is a covering for the étale topology, we conclude that ϕ|X′ is
injective, surjective, or an isomorphism as desired. Finally, observe that (1) follows
from (2) by looking at the map F → 0. �

Lemma 11.7. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. Let F be a coherent OX-module. Let i : Z → X be the scheme theo-
retic support of F and G the quasi-coherent OZ-module such that i∗G = F , see
Morphisms of Spaces, Definition 15.4. Then G is a coherent OZ-module.

Proof. The statement of the lemma makes sense as a coherent module is in par-
ticular of finite type. Moreover, as Z → X is a closed immersion it is locally of
finite type and hence Z is locally Noetherian, see Morphisms of Spaces, Lemmas
23.7 and 23.5. Finally, as G is of finite type it is a coherent OZ-module by Lemma
11.2 �

Lemma 11.8. Let S be a scheme. Let i : Z → X be a closed immersion of locally
Noetherian algebraic spaces over S. Let I ⊂ OX be the quasi-coherent sheaf of
ideals cutting out Z. The functor i∗ induces an equivalence between the category of
coherent OX-modules annihilated by I and the category of coherent OZ-modules.

Proof. The functor is fully faithful by Morphisms of Spaces, Lemma 14.1. Let F
be a coherent OX -module annihilated by I. By Morphisms of Spaces, Lemma 14.1
we can write F = i∗G for some quasi-coherent sheaf G on Z. To check that G is
coherent we can work étale locally (Lemma 11.2). Choosing an étale covering by
a scheme we conclude that G is coherent by the case of schemes (Cohomology of
Schemes, Lemma 9.8). Hence the functor is fully faithful and the proof is done. �

Lemma 11.9. Let S be a scheme. Let f : X → Y be a finite morphism of algebraic
spaces over S with Y locally Noetherian. Let F be a coherent OX-module. Assume
f is finite and Y locally Noetherian. Then Rpf∗F = 0 for p > 0 and f∗F is
coherent.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Then V ×Y
X → V is a finite morphism of locally Noetherian schemes. By (3.1.1) we reduce
to the case of schemes which is Cohomology of Schemes, Lemma 9.9. �

12. Coherent sheaves on Noetherian spaces

In this section we mention some properties of coherent sheaves on Noetherian al-
gebraic spaces.
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Lemma 12.1. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let F be a coherent OX-module. The ascending chain condition holds for quasi-
coherent submodules of F . In other words, given any sequence

F1 ⊂ F2 ⊂ . . . ⊂ F

of quasi-coherent submodules, then Fn = Fn+1 = . . . for some n ≥ 0.

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms
of Spaces, Lemma 23.5). If Fn|U = Fn+1|U = . . . then Fn = Fn+1 = . . .. Hence
the result follows from the case of schemes, see Cohomology of Schemes, Lemma
10.1. �

Lemma 12.2. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let F be a coherent sheaf on X. Let I ⊂ OX be a quasi-coherent sheaf of ideals
corresponding to a closed subspace Z ⊂ X. Then there is some n ≥ 0 such that
InF = 0 if and only if Supp(F) ⊂ Z (set theoretically).

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms
of Spaces, Lemma 23.5). Note that InF|U = 0 if and only if InF = 0 and similarly
for the condition on the support. Hence the result follows from the case of schemes,
see Cohomology of Schemes, Lemma 10.2. �

Lemma 12.3 (Artin-Rees). Let S be a scheme. Let X be a Noetherian algebraic
space over S. Let F be a coherent sheaf on X. Let G ⊂ F be a quasi-coherent
subsheaf. Let I ⊂ OX be a quasi-coherent sheaf of ideals. Then there exists a c ≥ 0
such that for all n ≥ c we have

In−c(IcF ∩ G) = InF

Proof. Choose an affine scheme U and a surjective étale morphism U → X (see
Properties of Spaces, Lemma 6.3). Then U is a Noetherian scheme (by Morphisms
of Spaces, Lemma 23.5). The equality of the lemma holds if and only if it holds after
restricting to U . Hence the result follows from the case of schemes, see Cohomology
of Schemes, Lemma 10.3. �

Lemma 12.4. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Let F be a quasi-coherent OX-module. Let G be a coherent OX-module. Let
I ⊂ OX be a quasi-coherent sheaf of ideals. Denote Z ⊂ X the corresponding closed
subspace and set U = X \ Z. There is a canonical isomorphism

colimn HomOX (InG,F) −→ HomOU (G|U ,F|U ).

In particular we have an isomorphism

colimn HomOX (In,F) −→ Γ(U,F).

Proof. Let W be an affine scheme and let W → X be a surjective étale morphism
(see Properties of Spaces, Lemma 6.3). Set R = W ×X W . Then W and R are
Noetherian schemes, see Morphisms of Spaces, Lemma 23.5. Hence the result hold
for the restrictions of F , G, and I, U , Z to W and R by Cohomology of Schemes,
Lemma 10.4. It follows formally that the result holds over X. �
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13. Devissage of coherent sheaves

This section is the analogue of Cohomology of Schemes, Section 12.

Lemma 13.1. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let F be a coherent sheaf on X. Suppose that Supp(F) = Z ∪Z ′ with Z, Z ′ closed.
Then there exists a short exact sequence of coherent sheaves

0→ G′ → F → G → 0

with Supp(G′) ⊂ Z ′ and Supp(G) ⊂ Z.

Proof. Let I ⊂ OX be the sheaf of ideals defining the reduced induced closed
subspace structure on Z, see Properties of Spaces, Lemma 9.3. Consider the sub-
sheaves G′n = InF and the quotients Gn = F/InF . For each n we have a short
exact sequence

0→ G′n → F → Gn → 0

For every geometric point x of Z ′ \Z we have Ix = OX,x and hence Gn,x = 0. Thus
we see that Supp(Gn) ⊂ Z. Note that X \Z ′ is a Noetherian algebraic space. Hence
by Lemma 12.2 there exists an n such that G′n|X\Z′ = InF|X\Z′ = 0. For such an
n we see that Supp(G′n) ⊂ Z ′. Thus setting G′ = G′n and G = Gn works. �

In the following we will freely use the scheme theoretic support of finite type mod-
ules as defined in Morphisms of Spaces, Definition 15.4.

Lemma 13.2. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let F be a coherent sheaf on X. Assume that the scheme theoretic support of F is
a reduced Z ⊂ X with |Z| irreducible. Then there exist an integer r > 0, a nonzero
sheaf of ideals I ⊂ OZ , and an injective map of coherent sheaves

i∗
(
I⊕r

)
→ F

whose cokernel is supported on a proper closed subspace of Z.

Proof. By assumption there exists a coherent OZ-module G with support Z and
F ∼= i∗G, see Lemma 11.7. Hence it suffices to prove the lemma for the case Z = X
and i = id.

By Properties of Spaces, Proposition 10.3 there exists a dense open subspace U ⊂ X
which is a scheme. Note that U is a Noetherian integral scheme. After shrinking U
we may assume that F|U ∼= O⊕rU (for example by Cohomology of Schemes, Lemma
12.2 or by a direct algebra argument). Let I ⊂ OX be a quasi-coherent sheaf
of ideals whose associated closed subspace is the complement of U in X (see for
example Properties of Spaces, Section 9). By Lemma 12.4 there exists an n ≥ 0
and a morphism In(O⊕rX ) → F which recovers our isomorphism over U . Since

In(O⊕rX ) = (In)⊕r we get a map as in the lemma. It is injective: namely, if σ is
a nonzero section of I⊕r over a scheme W étale over X, then because X hence
W is reduced the support of σ contains a nonempty open of W . But the kernel of
(In)⊕r → F is zero over a dense open, hence σ cannot be a section of the kernel. �

Lemma 13.3. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let F be a coherent sheaf on X. There exists a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
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by coherent subsheaves such that for each j = 1, . . . ,m there exists a reduced closed
subspace Zj ⊂ X with |Zj | irreducible and a sheaf of ideals Ij ⊂ OZj such that

Fj/Fj−1
∼= (Zj → X)∗Ij

Proof. Consider the collection

T =

{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 22.2) we can choose a minimal element T ∈ T . This
means that there exists a coherent sheaf F on X whose support is T and for which
the lemma does not hold. Clearly T 6= ∅ since the only sheaf whose support is
empty is the zero sheaf for which the lemma does hold (with m = 0).

If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 13.1 to get a short exact sequence of
coherent sheaves

0→ G1 → F → G2 → 0

with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has a filtration as in the
statement of the lemma. By considering the induced filtration on F we arrive at a
contradiction. Hence we conclude that T is irreducible.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 9.3. By Lemma
12.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F

each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Then the scheme
theoretic support of F is T , see Morphisms of Spaces, Lemma 14.1. Hence we can
apply Lemma 13.2. This gives a short exact sequence

0→ i∗(I⊕r)→ F → Q→ 0

where the support of Q is a proper closed subset of T . Hence we see that Q has
a filtration of the desired type by minimality of T . But then clearly F does too,
which is our final contradiction. �

Lemma 13.4. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) For every reduced closed subspace Z ⊂ X with |Z| irreducible and every

quasi-coherent sheaf of ideals I ⊂ OZ we have P for i∗I.

Then property P holds for every coherent sheaf on X.
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Proof. First note that if F is a coherent sheaf with a filtration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = F
by coherent subsheaves such that each of Fi/Fi−1 has property P, then so does F .
This follows from the property (1) for P. On the other hand, by Lemma 13.3 we can
filter any F with successive subquotients as in (2). Hence the lemma follows. �

Here is a more useful variant of the lemma above.

Lemma 13.5. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves

0→ F1 → F → F2 → 0

if Fi, i = 1, 2 have property P then so does F .
(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there exists

a coherent sheaf G on Z such that
(a) Supp(G) = Z,
(b) for every nonzero quasi-coherent sheaf of ideals I ⊂ OZ there exists a

quasi-coherent subsheaf G′ ⊂ IG such that Supp(G/G′) is proper closed
in Z and such that P holds for i∗G′.

Then property P holds for every coherent sheaf on X.

Proof. Consider the collection

T =

{
T ⊂ |X| closed such that there exists a coherent sheaf F

with Supp(F) = T for which the lemma is wrong

}
We are trying to show that T is empty. If not, then because |X| is Noetherian
(Properties of Spaces, Lemma 22.2) we can choose a minimal element T ∈ T . This
means that there exists a coherent sheaf F on X whose support is T and for which
the lemma does not hold. Clearly T 6= ∅ because the only sheaf with support in ∅
for which P does hold (by property (2)).

If T is not irreducible, then we can write T = Z1∪Z2 with Z1, Z2 closed and strictly
smaller than T . Then we can apply Lemma 13.1 to get a short exact sequence of
coherent sheaves

0→ G1 → F → G2 → 0

with Supp(Gi) ⊂ Zi. By minimality of T each of Gi has P. Hence F has property
P by (1), a contradiction.

Suppose T is irreducible. Let J be the sheaf of ideals defining the reduced induced
closed subspace structure on T , see Properties of Spaces, Lemma 9.3. By Lemma
12.2 we see there exists an n ≥ 0 such that J nF = 0. Hence we obtain a filtration

0 = InF ⊂ In−1F ⊂ . . . ⊂ IF ⊂ F
each of whose successive subquotients is annihilated by J . Hence if each of these
subquotients has a filtration as in the statement of the lemma then also F does. In
other words we may assume that J does annihilate F .

Assume T is irreducible and JF = 0 where J is as above. Denote i : Z → X the
closed subspace corresponding to J . Then F = i∗H for some coherent OZ-module
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H, see Morphisms of Spaces, Lemma 14.1 and Lemma 11.7. Let G be the coherent
sheaf on Z satisfying (3)(a) and (3)(b). We apply Lemma 13.2 to get injective maps

I⊕r11 → H and I⊕r22 → G
where the support of the cokernels are proper closed in Z. Hence we find an
nonempty open V ⊂ Z such that

H⊕r2V
∼= G⊕r1V

Let I ⊂ OZ be a quasi-coherent ideal sheaf cutting out Z \ V we obtain (Lemma
12.4) a map

InG⊕r1 −→ H⊕r2

which is an isomorphism over V . The kernel is supported on Z\V hence annihilated
by some power of I, see Lemma 12.2. Thus after increasing n we may assume the
displayed map is injective, see Lemma 12.3. Applying (3)(b) we find G′ ⊂ InG such
that

(i∗G′)⊕r1 −→ i∗H⊕r2 = F⊕r2

is injective with cokernel supported in a proper closed subset of Z and such that
property P holds for i∗G′. By (1) property P holds for (i∗G′)⊕r1 . By (1) and
minimality of T = |Z| property P holds for F⊕r2 . And finally by (2) property P
holds for F which is the desired contradiction. �

Lemma 13.6. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let P be a property of coherent sheaves on X. Assume

(1) For any short exact sequence of coherent sheaves on X if two out of three
have property P so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every reduced closed subspace i : Z → X with |Z| irreducible there exists

a coherent sheaf G on X whose scheme theoretic support is Z such that P
holds for G.

Then property P holds for every coherent sheaf on X.

Proof. We will show that conditions (1) and (2) of Lemma 13.4 hold. This is clear
for condition (1). To show that (2) holds, let

T =

{
i : Z → X reduced closed subspace with |Z| irreducible such

that i∗I does not have P for some quasi-coherent I ⊂ OZ

}
If T is nonempty, then since X is Noetherian, we can find an i : Z → X which is
minimal in T . We will show that this leads to a contradiction.

Let G be the sheaf whose scheme theoretic support is Z whose existence is assumed
in assumption (3). Let ϕ : i∗I⊕r → G be as in Lemma 13.2. Let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fm = Coker(ϕ)

be a filtration as in Lemma 13.3. By minimality of Z and assumption (1) we see
that Coker(ϕ) has property P. As ϕ is injective we conclude using assumption (1)
once more that i∗I⊕r has property P. Using assumption (2) we conclude that i∗I
has property P.

Finally, if J ⊂ OZ is a second quasi-coherent sheaf of ideals, set K = I ∩ J and
consider the short exact sequences

0→ K → I → I/K → 0 and 0→ K → J → J /K → 0
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Arguing as above, using the minimality of Z, we see that i∗I/K and i∗J /K satisfy
P. Hence by assumption (1) we conclude that i∗K and then i∗J satisfy P. In other
words, Z is not an element of T which is the desired contradiction. �

14. Limits of coherent modules

A colimit of coherent modules (on a locally Noetherian algebraic space) is typically
not coherent. But it is quasi-coherent as any colimit of quasi-coherent modules
on an algebraic space is quasi-coherent, see Properties of Spaces, Lemma 27.7.
Conversely, if the algebraic space is Noetherian, then every quasi-coherent module
is a filtered colimit of coherent modules.

Lemma 14.1. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Every quasi-coherent OX-module is the filtered colimit of its coherent submodules.

Proof. Let F be a quasi-coherent OX -module. If G,H ⊂ F are coherent OX -
submodules then the image of G ⊕ H → F is another coherent OX -submodule
which contains both of them (see Lemmas 11.3 and 11.4). In this way we see that
the system is directed. Hence it now suffices to show that F can be written as
a filtered colimit of coherent modules, as then we can take the images of these
modules in F to conclude there are enough of them.

Let U be an affine scheme and U → X a surjective étale morphism. Set R =
U ×X U so that X = U/R as usual. By Properties of Spaces, Proposition 30.1
we see that QCoh(OX) = QCoh(U,R, s, t, c). Hence we reduce to showing the
corresponding thing for QCoh(U,R, s, t, c). Thus the result follows from the more
general Groupoids, Lemma 13.3. �

Lemma 14.2. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S with Y Noetherian. Then every quasi-coherent OX-module
is a filtered colimit of finitely presented OX-modules.

Proof. Let F be a quasi-coherent OX -module. Write f∗F = colimHi with Hi a
coherent OY -module, see Lemma 14.1. By Lemma 11.2 the modules Hi are OY -
modules of finite presentation. Hence f∗Hi is an OX -module of finite presentation,
see Properties of Spaces, Section 28. We claim the map

colim f∗Hi = f∗f∗F → F

is surjective as f is assumed affine, Namely, choose a scheme V and a surjective
étale morphism V → Y . Set U = X ×Y V . Then U is a scheme, f ′ : U → V
is affine, and U → X is surjective étale. By Properties of Spaces, Lemma 24.2
we see that f ′∗(F|U ) = f∗F|V and similarly for pullbacks. Thus the restriction of
f∗f∗F → F to U is the map

f∗f∗F|U = (f ′)∗(f∗F)|V ) = (f ′)∗f ′∗(F|U )→ F|U
which is surjective as f ′ is an affine morphism of schemes. Hence the claim holds.

We conclude that every quasi-coherent module on X is a quotient of a filtered
colimit of finitely presented modules. In particular, we see that F is a cokernel of
a map

colimj∈J Gj −→ colimi∈I Hi
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with Gj and Hi finitely presented. Note that for every j ∈ I there exist i ∈ I and
a morphism α : Gj → Hi such that

Gj α
//

��

Hi

��
colimj∈J Gj // colimi∈I Hi

commutes, see Lemma 4.3. In this situation Coker(α) is a finitely presented OX -
module which comes endowed with a map Coker(α) → F . Consider the set K of
triples (i, j, α) as above. We say that (i, j, α) ≤ (i′, j′, α′) if and only if i ≤ i′,
j ≤ j′, and the diagram

Gj α
//

��

Hi

��
Gj′

α′ // Hi′

commutes. It follows from the above that K is a directed partially ordered set,

F = colim(i,j,α)∈K Coker(α),

and we win. �

15. Vanishing cohomology

In this section we show that a quasi-compact and quasi-separated algebraic space
is affine if it has vanishing higher cohomology for all quasi-coherent sheaves. We
do this in a sequence of lemmas all of which will become obsolete once we prove
Proposition 15.9.

Situation 15.1. Here S is a scheme and X is a quasi-compact and quasi-separated
algebraic space over S with the following property: For every quasi-coherent OX -
module F we have H1(X,F) = 0. We set A = Γ(X,OX).

We would like to show that the canonical morphism

p : X −→ Spec(A)

(see Properties of Spaces, Lemma 31.1) is an isomorphism. If M is an A-module

we denote M ⊗A OX the quasi-coherent module p∗M̃ .

Lemma 15.2. In Situation 15.1 for an A-module M we have p∗(M ⊗A OX) = M̃
and Γ(X,M ⊗A OX) = M .

Proof. The equality p∗(M ⊗A OX) = M̃ follows from the equality Γ(X,M ⊗A
OX) = M as p∗(M ⊗A OX) is a quasi-coherent module on Spec(A) by Morphisms
of Spaces, Lemma 11.2. Observe that Γ(X,

⊕
i∈I OX) =

⊕
i∈I A by Lemma 4.1.

Hence the lemma holds for free modules. Choose a short exact sequence F1 →
F0 → M where F0, F1 are free A-modules. Since H1(X,−) is zero the global
sections functor is right exact. Moreover the pullback p∗ is right exact as well.
Hence we see that

Γ(X,F1 ⊗A OX)→ Γ(X,F0 ⊗A OX)→ Γ(X,M ⊗A OX)→ 0

is exact. The result follows. �
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The following lemma shows that Situation 15.1 is preserved by base change of
X → Spec(A) by Spec(A′)→ Spec(A).

Lemma 15.3. In Situation 15.1.

(1) Given an affine morphism X ′ → X of algebraic spaces, we have H1(X ′,F ′) =
0 for every quasi-coherent OX′-module F ′.

(2) Given an A-algebra A′ setting X ′ = X ×Spec(A) Spec(A′) the morphism
X ′ → X is affine and Γ(X ′,OX′) = A′.

Proof. Part (1) follows from Lemma 7.2 and the Leray spectral sequence (Coho-
mology on Sites, Lemma 14.5). Let A → A′ be as in (2). Then X ′ → X is affine
because affine morphisms are preserved under base change (Morphisms of Spaces,
Lemma 20.5) and the fact that a morphism of affine schemes is affine. The equality
Γ(X ′,OX′) = A′ follows as (X ′ → X)∗OX′ = A′ ⊗A OX by Lemma 10.2 and thus

Γ(X ′,OX′) = Γ(X, (X ′ → X)∗OX′) = Γ(X,A′ ⊗A OX) = A′

by Lemma 15.2. �

Lemma 15.4. In Situation 15.1. Let Z0, Z1 ⊂ |X| be disjoint closed subsets. Then
there exists an a ∈ A such that Z0 ⊂ V (a) and Z1 ⊂ V (a− 1).

Proof. We may and do endow Z0, Z1 with the reduced induced subspace structure
(Properties of Spaces, Definition 9.5) and we denote i0 : Z0 → X and i1 : Z1 → X
the corresponding closed immersions. Since Z0 ∩ Z1 = ∅ we see that the canonical
map of quasi-coherent OX -modules

OX −→ i0,∗OZ0 ⊕ i1,∗OZ1

is surjective (look at stalks at geometric points). Since H1(X,−) is zero on the
kernel of this map the induced map of global sections is surjective. Thus we can
find a ∈ A which maps to the global section (0, 1) of the right hand side. �

Lemma 15.5. In Situation 15.1 the morphism p : X → Spec(A) is surjective.

Proof. Let A→ k be a ring homomorphism where k is a field. It suffices to show
that Xk = Spec(k)×Spec(A)X is nonempty. By Lemma 15.3 we have Γ(Xk,O) = k.
Hence Xk is nonempty. �

Lemma 15.6. In Situation 15.1 the morphism p : X → Spec(A) is universally
closed.

Proof. Let Z ⊂ |X| be a closed subset. We may and do endow Z with the reduced
induced subspace structure (Properties of Spaces, Definition 9.5) and we denote
i : Z → X the corresponding closed immersions. Then i is affine (Morphisms of
Spaces, Lemma 20.6). Hence Z is another algebraic space as in Situation 15.1
by Lemma 15.3. Set B = Γ(Z,OZ). Since OX → i∗OZ is surjective, we see that
A→ B is surjective by the vanishing of H1 of the kernel. Consider the commutative
diagram

Z
i

//

��

X

��
Spec(B) // Spec(A)

By Lemma 15.5 the map Z → Spec(B) is surjective and by the above Spec(B) →
Spec(A) is a closed immersion. Thus p is closed.
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By Lemma 15.3 we see that the base change of p by Spec(A′)→ Spec(A) is closed
for every ring map A→ A′. Hence p is universally closed by Morphisms of Spaces,
Lemma 9.5. �

Lemma 15.7. In Situation 15.1 the morphism p : X → Spec(A) is universally
injective.

Proof. Let A→ k be a ring homomorphism where k is a field. It suffices to show
that Spec(k)×Spec(A) X has at most one point (see Morphisms of Spaces, Lemma
19.6). Using Lemma 15.3 we may assume that A is a field and we have to show
that |X| has at most one point.

Let’s think of X as an algebraic space over Spec(k) and let’s use the notation
X(K) to denote K-valued points of X for any extension k ⊂ K, see Morphisms
of Spaces, Section 24. If k ⊂ K is an algebraically closed field extension of large
transcendence degree, then we see that X(K) → |X| is surjective, see Morphisms
of Spaces, Lemma 24.2. Hence, after replacing k by K, we see that it suffices to
prove that X(k) is a singleton (in the case A = k).

Let x, x′ ∈ X(k). By Decent Spaces, Lemma 12.3 we see that x and x′ are closed
points of |X|. Hence x and x′ map to distinct points of Spec(k) if x 6= x′ by Lemma
15.4. We conclude that x = x′ as desired. �

Lemma 15.8. In Situation 15.1 the morphism p : X → Spec(A) is separated.

Proof. We will use the results of Lemmas 15.2, 15.3 15.5, 15.6, and 15.7 without
further mention. We will use the valuative criterion of separatedness, see Morphisms
of Spaces, Lemma 40.2. Let R be a valuation ring over A with fraction field K. Let
Spec(K)→ X be a morphism over Spec(A). We have to show that we can extend
this to a morphism Spec(R)→ X in at most one way. We may replace A by R and
X by Spec(R) ×Spec(A) X. Hence we may assume that A = R is a valuation ring
with field of fractions K and that we have a K-point x in X.

Let X ′ ⊂ X be the scheme theoretic image of x : Spec(K)→ X. Then Γ(X ′,OX′)
is a subring of K containing A. If not equal to A, then there is no extension of x
at all and the result is true. If not, then we may replace X by X ′ by one of the
lemmas mentioned at the start of the proof.

Let U = Spec(B) be an affine scheme and let U → X be a surjective étale morphism.
Then U ×X,x Spec(K) is a quasi-compact scheme étale over K. Hence U ×X,x
Spec(K) = Spec(C) is affine and

C = K1 × . . .×Kn

with each Ki a finite separable extension of K (Morphisms, Lemma 37.7). The
scheme theoretic image of U×X,xSpec(K)→ U is U (Morphisms of Spaces, Lemma
16.3). which implies that B ⊂ C (Morphisms, Example 6.4). Thus B is a reduced
flat A-algebra (use More on Algebra, Lemma 15.4). Choose a finite Galois extension
K ⊂ K ′ such that each Ki embeds into K ′ over K and choose a valuation ring
A′ ⊂ K ′ dominating A (see Algebra, Lemma 48.2). After replacing A by A′, X by
Spec(A′)×Spec(A) X, x by the morphism

x′ : Spec(K ′) −→ Spec(A′)×Spec(A) Spec(K)
(1,x)−−−→ Spec(A′)×Spec(A) X,
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and U by Spec(A′) ×Spec(A) U we may assume that Ki = K for all i (small detail
omitted; note in particular that it still suffices to show that x′ has at most one
extension).

If X is normal then B is a finite product B = B1 × . . . × Bn of normal domains
(see Algebra, Lemma 36.14). Each of these has fraction field K by the above. One
of these rings Bi, say B1 has a prime ideal lying over mA because X → Spec(A) is
surjective. Then A = B1 as A is a valuation ring. Thus we see that there exists
an étale morphism Spec(A) → X! Of course this implies that X = Spec(A) (for
example by Morphisms of Spaces, Lemma 45.2 and the fact that Spec(A) → X is
surjective as |X| = |Spec(A)|) and we win in the case that X is normal.

In the general (possibly nonnormal) case we see that U = Spec(B) has finitely many
irreducible components (as all minimal primes of B lie over (0) ⊂ A by flatness of
A → B). Thus we may consider the normalization Xν → X of X, see Morphisms
of Spaces, Lemma 43.9. Note that Xν → X is integral hence affine and universally
closed (see Morphisms of Spaces, Lemma 41.7). Note that Xν ×X U = Uν , in
particular Xν → Spec(A) is flat (as the integral closure of B in its total quotient
ring is torsion free over A hence flat). Set Aν = Γ(Xν ,OXν ) and consider the
diagram

Xν

��

// X

��
Spec(Aν) // Spec(A)

By the lemmas mentioned at the beginning of the proof, the left vertical arrow
is (universally) surjective and the right vertical arrow is universally closed. Since
the top horizontal arrow is universally closed by construction we conclude that
Spec(Aν) → Spec(A) is universally closed. Hence A ⊂ Aν is integral, see Mor-
phisms, Lemma 44.7. Finally, Aν is a torsion free A-algebra with Aν⊗AK = K (as
Spec(K) maps onto XK = Xν

K). Hence A = Aν . Observe that x : Spec(K) → X
lifts to xν : Spec(K)→ Xν and that

Uν ×Xν ,xν Spec(K) = X ×U,x Spec(K) =
∐

i=1,...,n
Spec(K)

as normalization does not chance the scheme U over its generic points. Finally,
as Xν → X is universally closed any morphism Spec(A) → X extending x lifts
to a morphism into Xν extending xν (see Decent Spaces, Proposition 14.1). Thus
it suffices there is at most one morphism Spec(A) → Xν extending xν . This was
proved above. �

Proposition 15.9. A quasi-compact and quasi-separated algebraic space is affine
if and only if all higher cohomology groups of quasi-coherent sheaves vanish. More
precisely, any algebraic space as in Situation 15.1 is an affine scheme.

Proof. Choose an affine scheme U = Spec(B) and a surjective étale morphism
ϕ : U → X. Set R = U ×X U . As p is separated (Lemma 15.8) we see that R is a
closed subscheme of U ×Spec(A) U = Spec(B ⊗A B). Hence R = Spec(C) is affine
too and the ring map

B ⊗A B −→ C

is surjective. Let us denote the two maps s, t : B → C as usual. Pick g1, . . . , gm ∈ B
such that s(g1), . . . , s(gm) generate C over t : B → C (which is possible as t : B → C
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is of finite presentation and the displayed map is surjective). Then g1, . . . , gm give
global sections of ϕ∗OU and the map

OX [z1, . . . , zn] −→ ϕ∗OU , zj 7−→ gj

is surjective: you can check this by restricting to U . Namely, ϕ∗ϕ∗OU = t∗OR
(by Lemma 10.1) hence you get exactly the condition that s(gi) generate C over
t : B → C. By the vanishing of H1 of the kernel we see that

Γ(X,OX [x1, . . . , xn]) = A[x1, . . . , xn] −→ Γ(X,ϕ∗OU ) = Γ(U,OU ) = B

is surjective. Thus we conclude that B is a finite type A-algebra. Hence X →
Spec(A) is of finite type and separated. By Lemma 15.7 and Morphisms of Spaces,
Lemma 26.5 it is also locally quasi-finite. Hence X → Spec(A) is representable by
Morphisms of Spaces, Lemma 45.1 and X is a scheme. Finally X is affine, hence
equal to Spec(A), by an application of Cohomology of Schemes, Lemma 3.1. �

16. Finite morphisms and affines

This section is the analogue of Cohomology of Schemes, Section 13.

Lemma 16.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume

(1) f finite,
(2) f surjective,
(3) Y affine, and
(4) X Noetherian.

Then X is affine.

Proof. We will prove that under the assumptions of the lemma for any coherent
OX -module F we have H1(X,F) = 0. This implies that H1(X,F) = 0 for every
quasi-coherent OX -module F by Lemmas 14.1 and 4.1. Then it follows that X is
affine from Proposition 15.9.

Let P be the property of coherent sheaves F on X defined by the rule

P(F)⇔ H1(X,F) = 0.

We are going to apply Lemma 13.5. Thus we have to verify (1), (2) and (3) of
that lemma for P. Property (1) follows from the long exact cohomology sequence
associated to a short exact sequence of sheaves. Property (2) follows since H1(X,−)
is an additive functor. To see (3) let i : Z → X be a reduced closed subspace with
|Z| irreducible. Let W = Z ×X Y and denote i′ : W → Y the corresponding closed
immersion. Denote f ′ : W → Z the other projection which is a finite morphism of
algebraic spaces. Since W is a closed subscheme of Y , it is affine. We claim that
G = f∗i

′
∗OW = i∗f

′
∗OW satisfies properties (3)(a) and (3)(b) of Lemma 13.5 which

will finish the proof. Property (3)(a) is clear as W → Z is surjective (because f is
surjective). To see (3)(b) let I be a nonzero quasi-coherent sheaf of ideals on Z.
We simply take G′ = IG. Namely, we have

IG = f ′∗(I ′)
where I ′ = Im((f ′)∗I → OW ). This is true because f ′ is a (representable) affine
morphism of algebraic spaces and hence the result can be checked on an étale
covering of Z by a scheme in which case the result is Cohomology of Schemes,
Lemma 13.2. Finally, f ′ is affine, hence R1f ′∗I ′ = 0 by Lemma 7.2. As W is affine
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we have H1(W, I ′) = 0 hence the Leray spectral sequence (in the form Cohomology
on Sites, Lemma 14.6) implies that H1(Z, f ′∗I ′) = 0. Since i : Z → X is affine
we conclude that R1i∗f

′
∗I ′ = 0 hence H1(X, i∗f

′
∗I ′) = 0 by Leray again and we

win. �

17. A weak version of Chow’s lemma

In this section we quickly prove the following lemma in order to help us prove the
basic results on cohomology of coherent modules on proper algebraic spaces.

Lemma 17.1. Let A be a ring. Let X be an algebraic space over Spec(A) whose
structure morphism X → Spec(A) is separated of finite type. Then there exists
a proper surjective morphism X ′ → X where X ′ is a scheme which is H-quasi-
projective over Spec(A).

Proof. Let W be an affine scheme and let f : W → X be a surjective étale mor-
phism. There exists an integer d such that all geometric fibres of f have ≤ d points
(because X is a separated algebraic hence reasonable, see Decent Spaces, Lemma
5.1). Picking d minimal we get a nonempty open U ⊂ X such that f−1(U)→ U is
finite étale of degree d, see Decent Spaces, Lemma 8.1. Let

V ⊂W ×X W ×X . . .×X W

(d factors in the fibre product) be the complement of all the diagonals. Because
W → X is separated the diagonal W → W ×X W is a closed immersion. Since
W → X is étale the diagonal W →W ×XW is an open immersion, see Morphisms
of Spaces, Lemmas 36.10 and 35.9. Hence the diagonals are open and closed sub-
schemes of the quasi-compact scheme W ×X . . .×XW . In particular we conclude V
is a quasi-compact scheme. Choose an open immersion W ⊂ Y with Y H-projective
over A (this is possible as W is affine and of finite type over A; for example we can
use Morphisms, Lemmas 40.2 and 43.11). Let

Z ⊂ Y ×A Y ×A . . .×A Y
be the scheme theoretic image of the composition V → W ×X . . . ×X W → Y ×A
. . . ×A Y . Observe that this morphism is quasi-compact since V is quasi-compact
and Y ×A . . . ×A Y is separated. Note that V → Z is an open immersion as
V → Y ×A . . .×A Y is an immersion, see Morphisms, Lemma 7.7. The projection
morphisms give d morphisms gi : Z → Y . These morphisms gi are projective as Y
is projective over A, see material in Morphisms, Section 43. We set

X ′ =
⋃
g−1
i (W ) ⊂ Z

There is a morphism X ′ → X whose restriction to g−1
i (W ) is the composition

g−1
i (W ) → W → X. Namely, these morphisms agree over V hence agree over

g−1
i (W ) ∩ g−1

j (W ) by Morphisms of Spaces, Lemma 17.8. Claim: the morphism

X ′ → X is proper.

If the claim holds, then the lemma follows by induction on d. Namely, by construc-
tion X ′ is H-quasi-projective over Spec(A). The image of X ′ → X contains the
open U as V surjects onto U . Denote T the reduced induced algebraic space struc-
ture on X \U . Then T ×X W is a closed subscheme of W , hence affine. Moreover,
the morphism T ×X W → T is étale and every geometric fibre has < d points. By
induction hypothesis there exists a proper surjective morphism T ′ → T where T ′ is
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a scheme H-quasi-projective over Spec(A). Since T is a closed subspace of X we see
that T ′ → X is a proper morphism. Thus the lemma follows by taking the proper
surjective morphism X ′ q T ′ → X.

Proof of the claim. By construction the morphism X ′ → X is separated and of
finite type. We will check conditions (1) – (4) of Morphisms of Spaces, Lemma 39.3
for the morphisms V → X ′ and X ′ → X. Conditions (1) and (2) we have seen
above. Condition (3) holds as X ′ → X is separated (as a morphism whose source is
a separated algebraic space). Thus it suffices to check liftability to X ′ for diagrams

Spec(K) //

��

V

��
Spec(R) // X

where R is a valuation ring with fraction field K. Note that the top horizontal map
is given by d pairwise distinct K-valued points w1, . . . , wd of W . In fact, this is a
complete set of inverse images of the point x ∈ X(K) coming from the diagram.
Since W → X is surjective, we can, after possibly replacing R by an extension of
valuation rings, lift the morphism Spec(R)→ X to a morphism w : Spec(R)→W ,
see Morphisms of Spaces, Lemma 39.2. Since w1, . . . , wd is a complete collection of
inverse images of x we see that w|Spec(K) is equal to one of them, say wi. Thus we
see that we get a commutative diagram

Spec(K) //

��

Z

gi

��
Spec(R)

w // Y

By the valuative criterion of properness for the projective morphism gi we can lift
w to z : Spec(R)→ Z, see Morphisms, Lemma 43.5 and Schemes, Proposition 20.6.
The image of z is in g−1

i (W ) ⊂ X ′ and the proof is complete. �

18. Noetherian valuative criterion

We prove a version of the valuative criterion for properness using discrete valuation
rings. A lot more can be added here. In particular, we should formulate and prove
the analogues to Limits, Lemmas 12.1, 12.2, 12.3, 13.2, and 13.3.

Lemma 18.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume

(1) Y is locally Noetherian,
(2) f is locally of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is at
most one dotted arrow making the diagram commute.
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Then f is separated.

Proof. To prove f is separated, we may work étale locally on Y (Morphisms of
Spaces, Lemma 4.12). Choose an affine scheme U and an étale morphism U →
X ×Y X. Set V = X ×∆,X×YX U which is quasi-compact because f is quasi-
separated. Consider a commutative diagram

Spec(K) //

��

V

��
Spec(A) //

;;

U

We can interpret the composition Spec(A)→ U → X×Y X as a pair of morphisms
a, b : Spec(A) → X agreeing as morphisms into Y and equal when restricted to
Spec(K). Hence our assumption (3) guarantees a = b and we find the dotted arrow
in the diagram. By Limits, Lemma 12.3 we conclude that V → U is proper. In
other words, ∆ is proper. Since ∆ is a monomorphism, we find that ∆ is a closed
immersion (Étale Morphisms, Lemma 7.2) as desired. �

Lemma 18.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Assume

(1) Y is locally Noetherian,
(2) f is of finite type and quasi-separated,
(3) for every commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a discrete valuation ring and K its fraction field, there is a
unique dotted arrow making the diagram commute.

Then f is proper.

Proof. It suffices to prove f is universally closed because f is separated by Lemma
18.1. To do this we may work étale locally on Y (Morphisms of Spaces, Lemma
9.5). Hence we may assume Y is a Noetherian affine scheme. Choose X ′ → X as
in the weak form of Chow’s lemma (Lemma 17.1). We claim that X ′ → Spec(A) is
universally closed. The claim implies the lemma by Morphisms of Spaces, Lemma
37.7. To prove this, according to Limits, Lemma 13.3 it suffices to prove that in
every solid commutative diagram

Spec(K) //

��

X ′ // X

��
Spec(A) //

a

;;

b

66

Y

whereA is a dvr with fraction fieldK we can find the dotted arrow a. By assumption
we can find the dotted arrow b. Then the morphism X ′ ×X,b Spec(A) → Spec(A)
is a proper morphism of schemes and by the valuative criterion for morphisms of
schemes we can lift b to the desired morphism a. �

http://localhost:8080/tag/0ARK


COHOMOLOGY OF ALGEBRAIC SPACES 33

Remark 18.3 (Variant for complete discrete valuation rings). In Lemmas 18.1
and 18.2 it suffices to consider complete discrete valuation rings. To be precise in
Lemma 18.1 we can replace condition (3) by the following condition: Given any
commutative diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a complete discrete valuation ring with fraction field K there exists at
most one dotted arrow making the diagram commute. Namely, given any diagram
as in Lemma 18.1 (3) the completion A∧ is a discrete valuation ring (More on
Algebra, Lemma 32.5) and the uniqueness of the arrow Spec(A∧) → X implies
the uniqueness of the arrow Spec(A) → X for example by Properties of Spaces,
Proposition 14.1. Similarly in Lemma 18.2 we can replace condition (3) by the
following condition: Given any commutative diagram

Spec(K) //

��

X

��
Spec(A) // Y

where A is a complete discrete valuation ring with fraction field K there exists
an extension A ⊂ A′ of complete discrete valuation rings inducing a fraction field
extension K ⊂ K ′ such that there exists a unique arrow Spec(A′)→ X making the
diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

commute. Namely, given any diagram as in Lemma 18.2 part (3) the existence of
any commutative diagram

Spec(L) //

��

Spec(K) // X

��
Spec(B) //

44

Spec(A) // Y

for any extension A ⊂ B of discrete valuation rings will imply there exists an arrow
Spec(A) → X fitting into the diagram. This was shown in Morphisms of Spaces,
Lemma 38.4. In fact, it follows from these considerations that it suffices to look
for dotted arrows in diagrams for any class of discrete valuation rings such that,
given any discrete valuation ring, there is an extension of it that is in the class. For
example, we could take complete discrete valuation rings with algebraically closed
residue field.
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19. Higher direct images of coherent sheaves

In this section we prove the fundamental fact that the higher direct images of a
coherent sheaf under a proper morphism are coherent. First we prove a helper
lemma.

Lemma 19.1. Let S be a scheme. Consider a commutative diagram

X
i
//

f   

Pn
Y

��
Y

of algebraic spaces over S. Assume i is a closed immersion and Y Noetherian. Set
L = i∗OPnY

(1). Let F be a coherent module on X. Then there exists an integer d0

such that for all d ≥ d0 we have Rpf∗(F ⊗OX L⊗d) = 0 for all p > 0.

Proof. Checking whether Rpf∗(F⊗L⊗d) is zero can be done étale locally on Y , see
Equation (3.1.1). Hence we may assume Y is the spectrum of a Noetherian ring.
In this case X is a scheme and the result follows from Cohomology of Schemes,
Lemma 15.4. �

Lemma 19.2. Let S be a scheme. Let f : X → Y be a proper morphism of
algebraic spaces over S with Y locally Noetherian. Let F be a coherent OX-module.
Then Rif∗F is a coherent OY -module for all i ≥ 0.

Proof. We first remark that X is a locally Noetherian algebraic space by Mor-
phisms of Spaces, Lemma 23.5. Hence the statement of the lemma makes sense.
Moreover, computing Rif∗F commutes with étale localization on Y (Properties of
Spaces, Lemma 24.2) and checking whether Rif∗F coherent can be done étale lo-
cally on Y (Lemma 11.2). Hence we may assume that Y = Spec(A) is a Noetherian
affine scheme.

Assume Y = Spec(A) is an affine scheme. Note that f is locally of finite presentation
(Morphisms of Spaces, Lemma 27.7). Thus it is of finite presentation, hence X is
Noetherian (Morphisms of Spaces, Lemma 27.6). Thus Lemma 13.6 applies to the
category of coherent modules of X. For a coherent sheaf F on X we say P holds if
and only if Rif∗F is a coherent module on Spec(A). We will show that conditions
(1), (2), and (3) of Lemma 13.6 hold for this property thereby finishing the proof
of the lemma.

Verification of condition (1). Let

0→ F1 → F2 → F3 → 0

be a short exact sequence of coherent sheaves on X. Consider the long exact
sequence of higher direct images

Rp−1f∗F3 → Rpf∗F1 → Rpf∗F2 → Rpf∗F3 → Rp+1f∗F1

Then it is clear that if 2-out-of-3 of the sheaves Fi have property P, then the
higher direct images of the third are sandwiched in this exact complex between two
coherent sheaves. Hence these higher direct images are also coherent by Lemmas
11.3 and 11.4. Hence property P holds for the third as well.
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Verification of condition (2). This follows immediately from the fact that Rif∗(F1⊕
F2) = Rif∗F1⊕Rif∗F2 and that a summand of a coherent module is coherent (see
lemmas cited above).

Verification of condition (3). Let i : Z → X be a closed immersion with Z reduced
and |Z| irreducible. Set g = f ◦ i : Z → Spec(A). Let G be a coherent module on Z
whose scheme theoretic support is equal to Z such that Rpg∗G is coherent for all p.
Then F = i∗G is a coherent module on X whose support scheme theoretic support
is Z such that Rpf∗F = Rpg∗G. To see this use the Leray spectral sequence
(Cohomology on Sites, Lemma 14.7) and the fact that Rqi∗G = 0 for q > 0 by
Lemma 7.2 and the fact that a closed immersion is affine. (Morphisms of Spaces,
Lemma 20.6). Thus we reduce to finding a coherent sheaf G on Z with support
equal to Z such that Rpg∗G is coherent for all p.

We apply Lemma 17.1 to the morphism Z → Spec(A). Thus we get a diagram

Z

g
##

Z ′

g′

��

π
oo

i
// Pn

A

{{
Spec(A)

with π : Z ′ → Z proper surjective and i an immersion. Since Z → Spec(A) is
proper we conclude that g′ is proper (Morphisms of Spaces, Lemma 37.4). Hence i
is a closed immersion (Morphisms of Spaces, Lemmas 37.6 and 12.3). It follows that
the morphism i′ = (i, π) : Pn

A ×Spec(A) Z
′ = Pn

Z is a closed immersion (Morphisms
of Spaces, Lemma 4.6). Set

L = i∗OPnA
(1) = (i′)∗OPnZ

(1)

We may apply Lemma 19.1 to L and π as well as L and g′. Hence for all d� 0 we
have Rpπ∗L⊗d = 0 for all p > 0 and Rp(g′)∗L⊗d = 0 for all p > 0. Set G = π∗L⊗d.
By the Leray spectral sequence (Cohomology on Sites, Lemma 14.7) we have

Ep,q2 = Rpg∗R
qπ∗L⊗d ⇒ Rp+q(g′)∗L⊗d

and by choice of d the only nonzero terms in Ep,q2 are those with q = 0 and the
only nonzero terms of Rp+q(g′)∗L⊗d are those with p = q = 0. This implies that
Rpg∗G = 0 for p > 0 and that g∗G = (g′)∗L⊗n. Applying Cohomology of Schemes,
Lemma 17.1 we see that g∗G = (g′)∗L⊗d is coherent.

We still have to check that the support of G is Z. This follows from the fact that L⊗d
has lots of global sections. We spell it out here. Note that L⊗d is globally generated
for all d ≥ 0 because the same is true for OPn(d). Pick a point z ∈ Z ′ mapping to
the generic point ξ of Z which we can do as π is surjective. (Observe that Z does
indeed have a generic point as |Z| is irreducible and Z is Noetherian, hence quasi-
separated, hence |Z| is a sober topological space by Properties of Spaces, Lemma
12.4.) Pick s ∈ Γ(Z ′,L⊗d) which does not vanish at z. Since Γ(Z,G) = Γ(Z ′,L⊗d)
we may think of s as a global section of G. Choose a geometric point z of Z ′ lying
over z and denote ξ = g′◦z the corresponding geometric point of Z. The adjunction
map

(g′)∗G = (g′)∗g′∗L⊗d −→ L⊗d

induces a map of stalks Gξ → Lz, see Properties of Spaces, Lemma 27.5. Moreover

the adjunction map sends the pullback of s (viewed as a section of G) to s (viewed
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as a section of L⊗d). Thus the image of s in the vector space which is the source
of the arrow

Gξ ⊗ κ(ξ) −→ L⊗dz ⊗ κ(z)

isn’t zero since by choice of s the image in the target of the arrow is nonzero. Hence
ξ is in the support of G (Morphisms of Spaces, Lemma 15.2). Since |Z| is irreducible
and Z is reduced we conclude that the scheme theoretic support of G is all of Z as
desired. �

Remark 19.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is locally of finite type and Y locally Noetherian. Then
X is locally Noetherian (Morphisms of Spaces, Lemma 23.5). Let F be a coherent
OX -module. Assume the scheme theoretic support Z of F is proper over Y . we
claim Rpf∗F is a coherent OY -module for all p ≥ 0. Namely, Let i : Z → X be the
closed immersion and write F = i∗G for some coherent module G on Z (Lemma
11.7). Denoting g : Z → S the composition f ◦ i we see that Rpg∗G is coherent on
S by Lemma 19.2. On the other hand, Rqi∗G = 0 for q > 0 (Lemma 11.9). By
Cohomology on Sites, Lemma 14.7 we get Rpf∗F = Rpg∗G and the claim.

Lemma 19.4. Let A be a Noetherian ring. Let f : X → Spec(A) be a proper
morphism of algebraic spaces. Let F be a coherent OX-module. Then Hi(X,F) is
finite A-module for all i ≥ 0.

Proof. This is just the affine case of Lemma 19.2. Namely, by Lemma 3.2 we
know that Rif∗F is a quasi-coherent sheaf. Hence it is the quasi-coherent sheaf
associated to the A-module Γ(Spec(A), Rif∗F) = Hi(X,F). The equality holds by
Cohomology on Sites, Lemma 14.6 and vanishing of higher cohomology groups of
quasi-coherent modules on affine schemes (Cohomology of Schemes, Lemma 2.2).
By Lemma 11.2 we see Rif∗F is a coherent sheaf if and only if Hi(X,F) is an
A-module of finite type. Hence Lemma 19.2 gives us the conclusion. �

Lemma 19.5. Let A be a Noetherian ring. Let B be a finitely generated graded
A-algebra. Let f : X → Spec(A) be a proper morphism of algebraic spaces. Set

B = f∗B̃. Let F be a quasi-coherent graded B-module of finite type. For every
p ≥ 0 the graded B-module Hp(X,F) is a finite B-module.

Proof. To prove this we consider the fibre product diagram

X ′ = Spec(B)×Spec(A) X π
//

f ′

��

X

f

��
Spec(B) // Spec(A)

Note that f ′ is a proper morphism, see Morphisms of Spaces, Lemma 37.3. Also,
B is a finitely generated A-algebra, and hence Noetherian (Algebra, Lemma 30.1).
This implies that X ′ is a Noetherian algebraic space (Morphisms of Spaces, Lemma
27.6). Note that X ′ is the relative spectrum of the quasi-coherent OX -algebra B
by Morphisms of Spaces, Lemma 20.7. Since F is a quasi-coherent B-module we
see that there is a unique quasi-coherent OX′ -module F ′ such that π∗F ′ = F ,
see Morphisms of Spaces, Lemma 20.10. Since F is finite type as a B-module we
conclude that F ′ is a finite type OX′ -module (details omitted). In other words, F ′

http://localhost:8080/tag/08GC
http://localhost:8080/tag/08AS
http://localhost:8080/tag/08AT


COHOMOLOGY OF ALGEBRAIC SPACES 37

is a coherent OX′ -module (Lemma 11.2). Since the morphism π : X ′ → X is affine
we have

Hp(X,F) = Hp(X ′,F ′)
by Lemma 7.2 and Cohomology on Sites, Lemma 14.6. Thus the lemma follows
from Lemma 19.4. �

20. The theorem on formal functions

This section is the analogue of Cohomology of Schemes, Section 18. We encourage
the reader to read that section first.

Situation 20.1. Here A is a Noetherian ring and I ⊂ A is an ideal. Also, f : X →
Spec(A) is a proper morphism of algebraic spaces and F is a coherent sheaf on X.

In this situation we denote InF the quasi-coherent submodule of F generated as an
OX -module by products of local sections of F and elements of In. In other words,

it is the image of the map f∗Ĩ ⊗OX F → F .

Lemma 20.2. In Situation 20.1. Set B =
⊕

n≥0 I
n. Then for every p ≥ 0 the

graded B-module
⊕

n≥0H
p(X, InF) is a finite B-module.

Proof. Let B =
⊕
InOX = f∗B̃. Then

⊕
InF is a finite type graded B-module.

Hence the result follows from Lemma 19.5. �

Lemma 20.3. In Situation 20.1. For every p ≥ 0 there exists an integer c ≥ 0
such that

(1) the multiplication map In−c ⊗Hp(X, IcF)→ Hp(X, InF) is surjective for
all n ≥ c, and

(2) the image of Hp(X, In+mF)→ Hp(X, InF) is contained in the submodule
Im−cHp(X, InF) for all n ≥ 0, m ≥ c.

Proof. By Lemma 20.2 we can find d1, . . . , dt ≥ 0, and xi ∈ Hp(X, IdiF) such
that

⊕
n≥0H

p(X, InF) is generated by x1, . . . , xt over B =
⊕

n≥0 I
n. Take c =

max{di}. It is clear that (1) holds. For (2) let b = max(0, n − c). Consider the
commutative diagram of A-modules

In+m−c−b ⊗ Ib ⊗Hp(X, IcF) //

��

In+m−c ⊗Hp(X, IcF) // Hp(X, In+mF)

��
In+m−c−b ⊗Hp(X, InF) // Hp(X, InF)

By part (1) of the lemma the composition of the horizontal arrows is surjective if
n+m ≥ c. On the other hand, it is clear that n+m− c− b ≥ m− c. Hence part
(2). �

Lemma 20.4. In Situation 20.1. Fix p ≥ 0.

(1) There exists a c1 ≥ 0 such that for all n ≥ c1 we have

Ker(Hp(X,F)→ Hp(X,F/InF)) ⊂ In−c1Hp(X,F).

(2) The inverse system

(Hp(X,F/InF))n∈N

satisfies the Mittag-Leffler condition (see Homology, Definition 27.2).
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(3) In fact for any p and n there exists a c2(n) ≥ n such that

Im(Hp(X,F/IkF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

for all k ≥ c2(n).

Proof. Let c1 = max{cp, cp+1}, where cp, cp+1 are the integers found in Lemma
20.3 for Hp and Hp+1. We will use this constant in the proofs of (1), (2) and (3).

Let us prove part (1). Consider the short exact sequence

0→ InF → F → F/InF → 0

From the long exact cohomology sequence we see that

Ker(Hp(X,F)→ Hp(X,F/InF)) = Im(Hp(X, InF)→ Hp(X,F))

Hence by our choice of c1 we see that this is contained in In−c1Hp(X,F) for n ≥ c1.

Note that part (3) implies part (2) by definition of the Mittag-Leffler condition.

Let us prove part (3). Fix an n throughout the rest of the proof. Consider the
commutative diagram

0 // InF // F // F/InF // 0

0 // In+mF //

OO

F //

OO

F/In+mF //

OO

0

This gives rise to the following commutative diagram

Hp(X, InF) // Hp(X,F) // Hp(X,F/InF)
δ

// Hp+1(X, InF)

Hp(X, In+mF) //

OO

Hp(X,F) //

1

OO

Hp(X,F/In+mF) //

OO

Hp+1(X, In+mF)

a

OO

If m ≥ c1 we see that the image of a is contained in Im−c1Hp+1(X, InF). By the
Artin-Rees lemma (see Algebra, Lemma 49.3) there exists an integer c3(n) such
that

INHp+1(X, InF) ∩ Im(δ) ⊂ δ
(
IN−c3(n)Hp(X,F/InF)

)
for all N ≥ c3(n). As Hp(X,F/InF) is annihilated by In, we see that if m ≥
c3(n) + c1 + n, then

Im(Hp(X,F/In+mF)→ Hp(X,F/InF)) = Im(Hp(X,F)→ Hp(X,F/InF))

In other words, part (3) holds with c2(n) = c3(n) + c1 + n. �

Theorem 20.5 (Theorem on formal functions). In Situation 20.1. Fix p ≥ 0. The
system of maps

Hp(X,F)/InHp(X,F) −→ Hp(X,F/InF)

define an isomorphism of limits

Hp(X,F)∧ −→ limnH
p(X,F/InF)

where the left hand side is the completion of the A-module Hp(X,F) with respect
to the ideal I, see Algebra, Section 93. Moreover, this is in fact a homeomorphism
for the limit topologies.
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Proof. In fact, this follows immediately from Lemma 20.4. We spell out the details.
Set M = Hp(X,F) and Mn = Hp(X,F/InF). Denote Nn = Im(M → Mn). By
the description of the limit in Homology, Section 27 we have

limnMn = {(xn) ∈
∏

Mn | ϕi(xn) = xn−1, n = 2, 3, . . .}

Pick an element x = (xn) ∈ limnMn. By Lemma 20.4 part (3) we have xn ∈ Nn
for all n since by definition xn is the image of some xn+m ∈ Mn+m for all m. By
Lemma 20.4 part (1) we see that there exists a factorization

M → Nn →M/In−c1M

of the reduction map. Denote yn ∈ M/In−c1M the image of xn for n ≥ c1. Since
for n′ ≥ n the composition M → Mn′ → Mn is the given map M → Mn we see
that yn′ maps to yn under the canonical map M/In

′−c1M → M/In−c1M . Hence
y = (yn+c1) defines an element of limnM/InM . We omit the verification that y
maps to x under the map

M∧ = limnM/InM −→ limnMn

of the lemma. We also omit the verification on topologies. �

Lemma 20.6. Let A be a ring. Let I ⊂ A be an ideal. Assume A is Noetherian
and complete with respect to I. Let f : X → Spec(A) be a proper morphism of
algebraic spaces. Let F be a coherent sheaf on X. Then

Hp(X,F) = limnH
p(X,F/InF)

for all p ≥ 0.

Proof. This is a reformulation of the theorem on formal functions (Theorem 20.5)
in the case of a complete Noetherian base ring. Namely, in this case the A-module
Hp(X,F) is finite (Lemma 19.4) hence I-adically complete (Algebra, Lemma 93.2)
and we see that completion on the left hand side is not necessary. �

Lemma 20.7. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S and let F be a quasi-coherent sheaf on Y . Assume

(1) Y locally Noetherian,
(2) f proper, and
(3) F coherent.

Let y be a geometric point of Y . Consider the “infinitesimal neighbourhoods”

Xn = Spec(OY,y/mny )×Y X
in
//

fn

��

X

f

��
Spec(OY,y/mny )

cn // Y

of the fibre X1 = Xy and set Fn = i∗nF . Then we have

(Rpf∗F)
∧
y
∼= limnH

p(Xn,Fn)

as O∧Y,y-modules.
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Proof. This is just a reformulation of a special case of the theorem on formal
functions, Theorem 20.5. Let us spell it out. Note that OY,y is a Noetherian
local ring, see Properties of Spaces, Lemma 22.4. Consider the canonical morphism
c : Spec(OY,y)→ Y . This is a flat morphism as it identifies local rings. Denote f ′ :
X ′ → Spec(OY,y) the base change of f to this local ring. We see that c∗Rpf∗F =
Rpf ′∗F ′ by Lemma 10.1. Moreover, we have canonical identifications Xn = X ′n for
all n ≥ 1.

Hence we may assume that Y = Spec(A) is the spectrum of a strictly henselian Noe-
therian local ring A with maximal ideal m and that y → Y is equal to Spec(A/m)→
Y . It follows that

(Rpf∗F)y = Γ(Y,Rpf∗F) = Hp(X,F)

because (Y, y) is an initial object in the category of étale neighbourhoods of y. The
morphisms cn are each closed immersions. Hence their base changes in are closed
immersions as well. Note that in,∗Fn = in,∗i

∗
nF = F/mnF . By the Leray spectral

sequence for in, and Lemma 11.9 we see that

Hp(Xn,Fn) = Hp(X, in,∗F) = Hp(X,F/mnF)

Hence we may indeed apply the theorem on formal functions to compute the limit
in the statement of the lemma and we win. �

Here is a lemma which we will generalize later to fibres of dimension > 0, namely
the next lemma.

Lemma 20.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) Xy has discrete underlying topological space.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > 0.

Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma 20.7
we set Xy = X1 = Spec(κ(y)) ×Y X. By Morphisms of Spaces, Lemma 32.8 the
morphism f : X → Y is quasi-finite at each of the points of the fibre of X → Y
over y. It follows that Xy → y is separated and quasi-finite. Hence Xy is a scheme
by Morphisms of Spaces, Proposition 44.2. Since it is quasi-compact its underlying
topological space is a finite discrete space. Then it is an affine scheme by Schemes,
Lemma 11.7. By Lemma 16.1 it follows that the algebraic spaces Xn are affine
schemes as well. Moreover, the underlying topological of each Xn is the same as
that of X1. Hence it follows that Hp(Xn,Fn) = 0 for all p > 0. Hence we see that
(Rpf∗F)∧y = 0 by Lemma 20.7. Note that Rpf∗F is coherent by Lemma 19.2 and
hence Rpf∗Fy is a finite OY,y-module. By Algebra, Lemma 93.2 this implies that
(Rpf∗F)y = 0. �

Lemma 20.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y locally Noetherian,
(2) f is proper, and
(3) dim(Xy) = d.

Then for any coherent sheaf F on X we have (Rpf∗F)y = 0 for all p > d.
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Proof. Let κ(y) be the residue field of the local ring of OY,y. As in Lemma 20.7 we
setXy = X1 = Spec(κ(y))×YX. Moreover, the underlying topological space of each
infinitesimal neighbourhood Xn is the same as that of Xy. Hence Hp(Xn,Fn) = 0
for all p > d by Lemma 9.1. Hence we see that (Rpf∗F)∧y = 0 by Lemma 20.7 for
p > d. Note that Rpf∗F is coherent by Lemma 19.2 and hence Rpf∗Fy is a finite
OY,y-module. By Algebra, Lemma 93.2 this implies that (Rpf∗F)y = 0. �

21. Applications of the theorem on formal functions

We will add more here as needed.

Lemma 21.1. (For a more general version see More on Morphisms of Spaces,
Lemma 24.5). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume Y is locally Noetherian. The following are equivalent

(1) f is finite, and
(2) f is proper and |Xk| is a discrete space for every morphism Spec(k) → Y

where k is a field.

Proof. A finite morphism is proper according to Morphisms of Spaces, Lemma
41.9. A finite morphism is quasi-finite according to Morphisms of Spaces, Lemma
41.8. A quasi-finite morphism has discrete fibres Xk, see Morphisms of Spaces,
Lemma 26.5. Hence a finite morphism is proper and has discrete fibres Xk.

Assume f is proper with discrete fibres Xk. We want to show f is finite. In fact it
suffices to prove f is affine. Namely, if f is affine, then it follows that f is integral by
Morphisms of Spaces, Lemma 41.7 whereupon it follows from Morphisms of Spaces,
Lemma 41.6 that f is finite.

To show that f is affine we may assume that Y is affine, and our goal is to show that
X is affine too. Since f is proper we see that X is separated and quasi-compact.
We will show that for any coherent OX -module F we have H1(X,F) = 0. This
implies that H1(X,F) = 0 for every quasi-coherent OX -module F by Lemmas 14.1
and 4.1. Then it follows that X is affine from Proposition 15.9. By Lemma 20.8
we conclude that the stalks of R1f∗F are zero for all geometric points of Y . In
other words, R1f∗F = 0. Hence we see from the Leray Spectral Sequence for f that
H1(X,F) = H1(Y, f∗F). Since Y is affine, and f∗F is quasi-coherent (Morphisms
of Spaces, Lemma 11.2) we conclude H1(Y, f∗F) = 0 from Cohomology of Schemes,
Lemma 2.2. Hence H1(X,F) = 0 as desired. �

As a consequence we have the following useful result.

Lemma 21.2. (For a more general version see More on Morphisms of Spaces,
Lemma 24.6). Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let y be a geometric point of Y . Assume

(1) Y is locally Noetherian,
(2) f is proper, and
(3) |Xy| is finite.

Then there exists an open neighbourhood V ⊂ Y of y such that f |f−1(V ) : f−1(V )→
V is finite.

Proof. The morphism f is quasi-finite at all the geometric points of X lying over
y by Morphisms of Spaces, Lemma 32.8. By Morphisms of Spaces, Lemma 32.7 the
set of points at which f is quasi-finite is an open subspace U ⊂ X. Let Z = X \U .
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Then y 6∈ f(Z). Since f is proper the set f(Z) ⊂ Y is closed. Choose any open
neighbourhood V ⊂ Y of y with Z ∩ V = ∅. Then f−1(V ) → V is locally quasi-
finite and proper. Hence f−1(V )→ V has discrete fibres Xk (Morphisms of Spaces,
Lemma 26.5) which are quasi-compact hence finite. Thus f−1(V )→ V is finite by
Lemma 21.1. �
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