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1. Introduction

In this chapter we start studying varieties and more generally schemes over a field.
A fundamental reference is [DG67].

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 VARIETIES

2. Notation

Throughout this chapter we use the letter k to denote the ground field.

3. Varieties

In the stacks project we will use the following as our definition of a variety.

Definition 3.1. Let k be a field. A variety is a scheme X over k such that X is
integral and the structure morphism X → Spec(k) is separated and of finite type.

This definition has the following drawback. Suppose that k ⊂ k′ is an exten-
sion of fields. Suppose that X is a variety over k. Then the base change Xk′ =
X×Spec(k)Spec(k′) is not necessarily a variety over k′. This phenomenon (in greater
generality) will be discussed in detail in the following sections. The product of two
varieties need not be a variety (this is really the same phenomenon). Here is an
example.

Example 3.2. Let k = Q. Let X = Spec(Q(i)) and Y = Spec(Q(i)). Then the
product X×Spec(k) Y of the varieties X and Y is not a variety, since it is reducible.
(It is isomorphic to the disjoint union of two copies of X.)

If the ground field is algebraically closed however, then the product of varieties is
a variety. This follows from the results in the algebra chapter, but there we treat
much more general situations. There is also a simple direct proof of it which we
present here.

Lemma 3.3. Let k be an algebraically closed field. Let X, Y be varieties over k.
Then X ×Spec(k) Y is a variety over k.

Proof. The morphism X ×Spec(k) Y → Spec(k) is of finite type and separated
because it is the composition of the morphisms X ×Spec(k) Y → Y → Spec(k)
which are separated and of finite type, see Morphisms, Lemmas 16.4 and 16.3 and
Schemes, Lemma 21.13. To finish the proof it suffices to show that X ×Spec(k) Y is
integral. Let X =

⋃
i=1,...,n Ui, Y =

⋃
j=1,...,m Vj be finite affine open coverings. If

we can show that each Ui ×Spec(k) Vj is integral, then we are done by Properties,
Lemmas 3.2, 3.3, and 3.4. This reduces us to the affine case.

The affine case translates into the following algebra statement: Suppose that A, B
are integral domains and finitely generated k-algebras. Then A⊗k B is an integral
domain. To get a contradiction suppose that

(
∑

i=1,...,n
ai ⊗ bi)(

∑
j=1,...,m

cj ⊗ dj) = 0

in A ⊗k B with both factors nonzero in A ⊗k B. We may assume that b1, . . . , bn
are k-linearly independent in B, and that d1, . . . , dm are k-linearly independent
in B. Of course we may also assume that a1 and c1 are nonzero in A. Hence
D(a1c1) ⊂ Spec(A) is nonempty. By the Hilbert Nullstellensatz (Algebra, Theorem
33.1) we can find a maximal ideal m ⊂ A contained in D(a1c1) and A/m = k as k
is algebraically closed. Denote ai, cj the residue classes of ai, cj in A/m = k. Then
equation above becomes

(
∑

i=1,...,n
aibi)(

∑
j=1,...,m

cjdj) = 0

which is a contradiction with m ∈ D(a1c1), the linear independence of b1, . . . , bn
and d1, . . . , dm, and the fact that B is a domain. �
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VARIETIES 3

4. Geometrically reduced schemes

IfX is a reduced scheme over a field, then it can happen thatX becomes nonreduced
after extending the ground field. This does not happen for geometrically reduced
schemes.

Definition 4.1. Let k be a field. Let X be a scheme over k. Let x ∈ X be a point.

(1) Let x ∈ X be a point. We say X is geometrically reduced at x if for any
field extension k ⊂ k′ and any point x′ ∈ Xk′ lying over x the local ring
OXk′ ,x

′ is reduced.
(2) We say X is geometrically reduced over k if X is geometrically reduced at

every point of X.

This may seem a little mysterious at first, but it is really the same thing as the
notion discussed in the algebra chapter. Here are some basic results explaining the
connection.

Lemma 4.2. Let k be a field. Let X be a scheme over k. Let x ∈ X. The following
are equivalent

(1) X is geometrically reduced at x, and
(2) the ring OX,x is geometrically reduced over k (see Algebra, Definition 42.1).

Proof. Assume (1). This in particular implies that OX,x is reduced. Let k ⊂ k′

be a finite purely inseparable field extension. Consider the ring OX,x ⊗k k′. By
Algebra, Lemma 45.2 its spectrum is the same as the spectrum of OX,x. Hence
it is a local ring also (Algebra, Lemma 17.2). Therefore there is a unique point
x′ ∈ Xk′ lying over x and OXk′ ,x

′ ∼= OX,x ⊗k k′. By assumption this is a reduced
ring. Hence we deduce (2) by Algebra, Lemma 43.3.

Assume (2). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x

′ is a localization of the ring OX,x ⊗k k′. Hence
it is reduced by assumption and (1) is proved. �

The notion isn’t interesting in characteristic zero.

Lemma 4.3. Let X be a scheme over a perfect field k (e.g. k has characteristic
zero). Let x ∈ X. If OX,x is reduced, then X is geometrically reduced at x. If X is
reduced, then X is geometrically reduced over k.

Proof. The first statement follows from Lemma 4.2 and Algebra, Lemma 42.6 and
the definition of a perfect field (Algebra, Definition 44.1). The second statement
follows from the first. �

Lemma 4.4. Let k be a field of characteristic p > 0. Let X be a scheme over k.
The following are equivalent

(1) X is geometrically reduced,
(2) Xk′ is reduced for every field extension k ⊂ k′,
(3) Xk′ is reduced for every finite purely inseparable field extension k ⊂ k′,
(4) Xk1/p is reduced,
(5) Xkperf is reduced,
(6) Xk̄ is reduced,
(7) for every affine open U ⊂ X the ring OX(U) is geometrically reduced (see

Algebra, Definition 42.1).
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Proof. Assume (1). Then for every field extension k ⊂ k′ and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is reduced. In other words Xk′ is reduced. Hence (2).

Assume (2). Let U ⊂ X be an affine open. Then for every field extension k ⊂ k′ the
scheme Xk′ is reduced, hence Uk′ = Spec(O(U)⊗kk′) is reduced, henceO(U)⊗kk′ is
reduced (see Properties, Section 3). In other words O(U) is geometrically reduced,
so (7) holds.

Assume (7). For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 17). Hence Xk′ is reduced. So (1) holds.

This proves that (1), (2), and (7) are equivalent. These are equivalent to (3), (4),
(5), and (6) because we can apply Algebra, Lemma 43.3 to OX(U) for U ⊂ X affine
open. �

Lemma 4.5. Let k be a field of characteristic p > 0. Let X be a scheme over k.
Let x ∈ X. The following are equivalent

(1) X is geometrically reduced at x,
(2) OXk′ ,x

′ is reduced for every finite purely inseparable field extension k′ of k
and x′ ∈ Xk′ the unique point lying over x,

(3) OX
k1/p ,x′ is reduced for x′ ∈ Xk′ the unique point lying over x, and

(4) OX
kperf ,x′ is reduced for x′ ∈ Xkperf the unique point lying over x.

Proof. Note that if k ⊂ k′ is purely inseparable, then Xk′ → X induces a home-
omorphism on underlying topological spaces, see Algebra, Lemma 45.2. Whence
the uniqueness of x′ lying over x mentioned in the statement. Moreover, in this
case OXk′ ,x

′ = OX,x ⊗k k′. Hence the lemma follows from Lemma 4.2 above and
Algebra, Lemma 43.3. �

Lemma 4.6. Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically reduced at x,
(2) Xk′ is geometrically reduced at x′.

In particular, X is geometrically reduced over k if and only if Xk′ is geometrically
reduced over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k ⊂ k′′′ (i.e. with both k′ ⊂ k′′′

and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map
of local rings

OXk′′ ,x
′′ −→ OXk′′′ ,x

′′′′ .

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that
the local ring on the right is reduced. Thus by Algebra, Lemma 152.2 we conclude
that OXk′′ ,x

′′ is reduced. Thus by Lemma 4.5 we conclude that X is geometrically
reduced at x. �

Lemma 4.7. Let k be a field. Let X, Y be schemes over k.

(1) If X is geometrically reduced at x, and Y reduced, then X ×k Y is reduced
at every point lying over x.
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(2) If X geometrically reduced over k and Y reduced. Then X ×k Y is reduced.

Proof. Combine, Lemmas 4.2 and 4.4 and Algebra, Lemma 42.5. �

Lemma 4.8. Let k be a field. Let X be a scheme over k.

(1) If x′  x is a specialization and X is geometrically reduced at x, then X is
geometrically reduced at x′.

(2) If x ∈ X such that (a) OX,x is reduced, and (b) for each specialization
x′  x where x′ is a generic point of an irreducible component of X the
scheme X is geometrically reduced at x′, then X is geometrically reduced
at x.

(3) If X is reduced and geometrically reduced at all generic points of irreducible
components of X, then X is geometrically reduced.

Proof. Part (1) follows from Lemma 4.2 and the fact that if A is a geometri-
cally reduced k-algebra, then S−1A is a geometrically reduced k-algebra for any
multiplicative subset S of A, see Algebra, Lemma 42.3.

Let A = OX,x. The assumptions (a) and (b) of (2) imply that A is reduced, and
that Aq is geometrically reduced over k for every minimal prime q of A. Hence A
is geometrically reduced over k, see Algebra, Lemma 42.7. Thus X is geometrically
reduced at x, see Lemma 4.2.

Part (3) follows trivially from part (2). �

Lemma 4.9. Let k be a field. Let X be a scheme over k. Let x ∈ X. Assume
X locally Noetherian and geometrically reduced at x. Then there exists an open
neighbourhood U ⊂ X of x which is geometrically reduced over k.

Proof. Let R be a Noetherian k-algebra. Let p ⊂ R be a prime. Let I = Ker(R→
Rp. Since IRp = 0 and I is finitely generated there exists an f ∈ R, f 6∈ p such
that fI = 0. Hence Rf ⊂ Rp.

Assume X locally Noetherian and geometrically reduced at x. If we apply the above
to R = OX(U) for some affine open neighbourhood of x, and p ⊂ R the prime
corresponding to x, then we see that after shrinking U we may assume R ⊂ Rp.
By Lemma 4.2 the assumption means that Rp is geometrically reduced over k. By
Algebra, Lemma 42.2 this implies that R is geometrically reduced over k, which in
turn implies that U is geometrically reduced. �

Example 4.10. Let k = Fp(s, t), i.e., a purely transcendental extension of the
prime field. Consider the variety X = Spec(k[x, y]/(1 + sxp + typ)). Let k ⊂ k′ be
any extension such that both s and t have a pth root in k′. Then the base change
Xk′ is not reduced. Namely, the ring k′[x, y]/(1 + sxp + typ) contains the element
1 + s1/px + t1/py whose pth power is zero but which is not zero (since the ideal
(1 + sxp + typ) certainly does not contain any nonzero element of degree < p).

Lemma 4.11. Let k be a field. Let X → Spec(k) be locally of finite type. As-
sume X has finitely many irreducible components. Then there exists a finite purely
inseparable extension k ⊂ k′ such that (Xk′)red is geometrically reduced over k′.

Proof. To prove this lemma we may replace X by its reduction Xred. Hence we
may assume that X is reduced and locally of finite type over k. Let x1, . . . , xn ∈ X
be the generic points of the irreducible components of X. Note that for every
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purely inseparable algebraic extension k ⊂ k′ the morphism (Xk′)red → X is a
homeomorphism, see Algebra, Lemma 45.2. Hence the points x′1, . . . , x

′
n lying over

x1, . . . , xn are the generic points of the irreducible components of (Xk′)red. As X
is reduced the local rings Ki = OX,xi

are fields, see Algebra, Lemma 24.1. As X
is locally of finite type over k the field extensions k ⊂ Ki are finitely generated
field extensions. Finally, the local rings O(Xk′ )red,x

′
i

are the fields (Ki ⊗k k′)red.
By Algebra, Lemma 44.3 we can find a finite purely inseparable extension k ⊂ k′

such that (Ki ⊗k k′)red are separable field extensions of k′. In particular each
(Ki ⊗k k′)red is geometrically reduced over k′ by Algebra, Lemma 43.1. At this
point Lemma 4.8 part (3) implies that (Xk′)red is geometrically reduced. �

5. Geometrically connected schemes

If X is a connected scheme over a field, then it can happen that X becomes dis-
connected after extending the ground field. This does not happen for geometrically
connected schemes.

Definition 5.1. Let X be a scheme over the field k. We say X is geometrically
connected over k if the scheme Xk′ is connected for every field extension k′ of k.

By convention a connected topological space is nonempty; hence a fortiori geomet-
rically connected schemes are nonempty. Here is an example of a variety which is
not geometrically connected.

Example 5.2. Let k = Q. The scheme X = Spec(Q(i)) is a variety over Spec(Q).
But the base change XC is the spectrum of C⊗QQ(i) ∼= C×C which is the disjoint
union of two copies of Spec(C). So in fact, this is an example of a non-geometrically
connected variety.

Lemma 5.3. Let X be a scheme over the field k. Let k ⊂ k′ be a field exten-
sion. Then X is geometrically connected over k if and only if Xk′ is geometrically
connected over k′.

Proof. If X is geometrically connected over k, then it is clear that Xk′ is geo-
metrically connected over k′. For the converse, note that for any field extension
k ⊂ k′′ there exists a common field extension k′ ⊂ k′′′ and k′′ ⊂ k′′′. As the mor-
phism Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between
spectra of fields) we see that the connectedness of Xk′′′ implies the connectedness
of Xk′′ . Thus if Xk′ is geometrically connected over k′ then X is geometrically
connected over k. �

Lemma 5.4. Let k be a field. Let X, Y be schemes over k. Assume X is geomet-
rically connected over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between connected components.

Proof. The scheme theoretic fibres of p are connected, since they are base changes
of the geometrically connected scheme X by field extensions. Moreover the scheme
theoretic fibres are homeomorphic to the set theoretic fibres, see Schemes, Lemma
18.5. By Morphisms, Lemma 24.4 the map p is open. Thus we may apply Topology,
Lemma 6.5 to conclude. �
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Lemma 5.5. Let k be a field. Let A be a k-algebra. Then X = Spec(A) is
geometrically connected over k if and only if A is geometrically connected over k
(see Algebra, Definition 46.3).

Proof. Immediate from the definitions. �

Lemma 5.6. Let k ⊂ k′ be an extension of fields. Let X be a scheme over k.
Assume k separably algebraically closed. Then the morphism Xk′ → X induces a
bijection of connected components. In particular, X is geometrically connected over
k if and only if X is connected.

Proof. Since k is separably algebraically closed we see that k′ is geometrically
connected over k, see Algebra, Lemma 46.4. Hence Z = Spec(k′) is geometrically
connected over k by Lemma 5.5 above. Since Xk′ = Z ×k X the result is a special
case of Lemma 5.4. �

Lemma 5.7. Let k be a field. Let X be a scheme over k. Let k be a separable
algebraic closure of k. Then X is geometrically connected if and only if the base
change Xk is connected.

Proof. Assume Xk is connected. Let k ⊂ k′ be a field extension. There exists a

field extension k ⊂ k′ such that k′ embeds into k
′

as an extension of k. By Lemma
5.6 we see that Xk

′ is connected. Since Xk
′ → Xk′ is surjective we conclude that

Xk′ is connected as desired. �

Lemma 5.8. Let k be a field. Let X be a scheme over k. Let A be a k-algebra.
Let V ⊂ XA be a quasi-compact open. Then there exists a finitely generated k-
subalgebra A′ ⊂ A and a quasi-compact open V ′ ⊂ XA′ such that V = V ′A.

Proof. We remark that if X is also quasi-separated this follows from Limits,
Lemma 3.8. Let U1, . . . , Un be finitely many affine opens of X such that V ⊂⋃
Ui,A. Say Ui = Spec(Ri). Since V is quasi-compact we can find finitely many

fij ∈ Ri⊗kA, j = 1, . . . , ni such that V =
⋃
i

⋃
j=1,...,ni

D(fij) where D(fij) ⊂ Ui,A
is the corresponding standard open. (We do not claim that V ∩ Ui,A is the union
of the D(fij), j = 1, . . . , ni.) It is clear that we can find a finitely generated
k-subalgebra A′ ⊂ A such that fij is the image of some f ′ij ∈ Ri ⊗k A′. Set
V ′ =

⋃
D(f ′ij) which is a quasi-compact open of XA′ . Denote π : XA → XA′ the

canonical morphism. We have π(V ) ⊂ V ′ as π(D(fij)) ⊂ D(f ′ij). If x ∈ XA with
π(x) ∈ V ′, then π(x) ∈ D(f ′ij) for some i, j and we see that x ∈ D(fij) as f ′ij maps

to fij . Thus we see that V = π−1(V ′) as desired. �

Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension. For example
k could be the separable algebraic closure of k. For any σ ∈ Gal(k/k) we get a
corresponding automorphism Spec(σ) : Spec(k) −→ Spec(k). Note that Spec(σ) ◦
Spec(τ) = Spec(τ ◦ σ). Hence we get an action

Gal(k/k)opp × Spec(k) −→ Spec(k)

of the opposite group on the scheme Spec(k). Let X be a scheme over k. Since
Xk = Spec(k) ×Spec(k) X by definition we see that the action above induces a
canonical action

(5.8.1) Gal(k/k)opp ×Xk −→ Xk.
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Lemma 5.9. Let k be a field. Let X be a scheme over k. Let k be a (possibly
infinite) Galois extension of k. Let V ⊂ Xk be a quasi-compact open. Then

(1) there exists a finite subextension k ⊂ k′ ⊂ k and a quasi-compact open
V ′ ⊂ Xk′ such that V = (V ′)k,

(2) there exists an open subgroup H ⊂ Gal(k/k) such that σ(V ) = V for all
σ ∈ H.

Proof. By Lemma 5.8 there exists a finite subextension k ⊂ k′ ⊂ k and an open
V ′ ⊂ Xk′ which pulls back to V . This proves (1). Since Gal(k/k′) is open in
Gal(k/k) part (2) is clear as well. �

Lemma 5.10. Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension.
Let X be a scheme over k. Let T ⊂ Xk have the following properties

(1) T is a closed subset of Xk,

(2) for every σ ∈ Gal(k/k) we have σ(T ) = T .

Then there exists a closed subset T ⊂ X whose inverse image in Xk′ is T .

Proof. This lemma immediately reduces to the case where X = Spec(A) is affine.
In this case, let I ⊂ A ⊗k k be the radical ideal corresponding to T . Assumption
(2) implies that σ(I) = I for all σ ∈ Gal(k/k). Pick x ∈ I. There exists a finite
Galois extension k ⊂ k′ contained in k such that x ∈ A⊗k k′. Set G = Gal(k′/k).
Set

P (T ) =
∏

σ∈G
(T − σ(x)) ∈ (A⊗k k′)[T ]

It is clear that P (T ) is monic and is actually an element of (A ⊗k k′)G[T ] = A[T ]
(by basic Galois theory). Moreover, if we write P (T ) = T d + a1T

d−1 + . . .+ a0 the
we see that ai ∈ I := A∩ I. By Algebra, Lemma 37.5 we see that x is contained in
the radical of I(A⊗k k). Hence I is the radical of I(A⊗k k) and setting T = V (I)
is a solution. �

Lemma 5.11. Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically connected,
(2) for every finite separable field extension k ⊂ k′ the scheme Xk′ is connected.

Proof. It follows immediately from the definition that (1) implies (2). Assume
that X is not geometrically connected. Let k ⊂ k be a separable algebraic closure
of k. By Lemma 5.7 it follows that Xk is disconnected. Say Xk = U q V with U

and V open, closed, and nonempty.

Suppose that W ⊂ X is any quasi-compact open. Then Wk ∩ U and Wk ∩ V are

open and closed in Wk. In particular Wk ∩ U and Wk ∩ V are quasi-compact, and

by Lemma 5.9 both Wk ∩U and Wk ∩ V are defined over a finite subextension and

invariant under an open subgroup of Gal(k/k). We will use this without further
mention in the following.

Pick W0 ⊂ X quasi-compact open such that both W0,k ∩ U and W0,k ∩ V are

nonempty. Choose a finite subextension k ⊂ k′ ⊂ k and a decomposition W0,k′ =

U ′0 q V ′0 into open and closed subsets such that W0,k ∩ U = (U ′0)k and W0,k ∩ V =

(V ′0)k. Let H = Gal(k/k′) ⊂ Gal(k/k). In particular σ(W0,k ∩ U) = W0,k ∩ U and

similarly for V .
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Having chosen W0, k′ as above, for every quasi-compact open W ⊂ X we set

UW =
⋂

σ∈H
σ(Wk ∩ U), VW =

⋃
σ∈H

σ(Wk ∩ V ).

Now, since Wk ∩ U and Wk ∩ V are fixed by an open subgroup of Gal(k/k) we see
that the union and intersection above are finite. Hence UW and VW are both open
and closed. Also, by construction Wk̄ = UW q VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then Wk ∩ UW ′ = UW
and Wk ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain Xk = U q V is a disjoint union of

open and closed subsets. It is clear that V is nonempty as it is constructed by taking
unions (locally). On the other hand, U is nonempty since it contains W0 ∩ U by
construction. Finally, U, V ⊂ Xk̄ are closed andH-invariant by construction. Hence
by Lemma 5.10 we have U = (U ′)k̄, and V = (V ′)k̄ for some closed U ′, V ′ ⊂ Xk′ .
Clearly Xk′ = U ′ q V ′ and we see that Xk′ is disconnected as desired. �

Lemma 5.12. Let k be a field. Let k ⊂ k be a (possibly infinite) Galois extension.
Let f : T → X be a morphism of schemes over k. Assume Tk connected and Xk

disconnected. Then X is disconnected.

Proof. Write Xk = U
∐
V with U and V open and closed. Denote f : Tk → Xk

the base change of f . Since Tk is connected we see that Tk is contained in either

f
−1

(U) or f
−1

(V ). Say Tk ⊂ f
−1

(U).

Fix a quasi-compact open W ⊂ X. There exists a finite Galois subextension k ⊂
k′ ⊂ k such that U ∩Wk and V ∩Wk come from quasi-compact opens U ′, V ′ ⊂Wk′ .
Then also Wk′ = U ′

∐
V ′. Consider

U ′′ =
⋂

σ∈Gal(k′/k)
σ(U ′), V ′′ =

⋃
σ∈Gal(k′/k)

σ(V ′).

These are Galois invariant, open and closed, and Wk′ = U ′′
∐
V ′′. By Lemma 5.10

we get open and closed subsets UW , VW ⊂W such that U ′′ = (UW )k′ , V
′′ = (VW )k′

and W = UW
∐
VW .

We claim that if W ⊂ W ′ ⊂ X are quasi-compact open, then W ∩ UW ′ = UW
and W ∩ VW ′ = VW . Verification omitted. Hence we see that upon defining
U =

⋃
W⊂X UW and V =

⋃
W⊂X VW we obtain X = U

∐
V . It is clear that V is

nonempty as it is constructed by taking unions (locally). On the other hand, U is
nonempty since it contains f(T ) by construction. �

Lemma 5.13. Let k be a field. Let T → X be a morphism of schemes over k.
Assume T is geometrically connected and X connected. Then X is geometrically
connected.

Proof. This is a reformulation of Lemma 5.12. �

Lemma 5.14. Let k be a field. Let X be a scheme over k. Assume X is connected
and has a point x such that k is algebraically closed in κ(x). Then X is geometrically
connected. In particular, if X has a k-rational point and X is connected, then X
is geometrically connected.
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Proof. Set T = Spec(κ(x)). Let k ⊂ k be a separable algebraic closure of k. The
assumption on k ⊂ κ(x) implies that Tk is irreducible, see Algebra, Lemma 45.10.
Hence by Lemma 5.13 we see that Xk is connected. By Lemma 5.7 we conclude
that X is geometrically connected. �

Lemma 5.15. Let k ⊂ K be an extension of fields. Let X be a scheme over k.
For every connected component T of X the inverse image TK ⊂ XK is a union of
connected components of XK .

Proof. This is a purely topological statement. Denote p : XK → X the projection
morphism. Let T ⊂ X be a connected component of X. Let t ∈ TK = p−1(T ). Let
C ⊂ XK be a connected component containing t. Then p(C) is a connected subset
of X which meets T , hence p(C) ⊂ T . Hence C ⊂ TK . �

Lemma 5.16. Let k ⊂ K be a finite extension of fields and let X be a scheme
over k. Denote by p : XK → X the projection morphism. For every connected
component T of XK the image p(T ) is a connected component of X.

Proof. The image p(T ) is contained in some connected component X ′ of X. Con-
sider X ′ as a closed subscheme of X in any way. Then T is also a connected
component of X ′K = p−1(X ′) and we may therefore assume that X is connected.
The morphism p is open (Morphisms, Lemma 24.4), closed (Morphisms, Lemma
44.7) and the fibers of p are finite sets (Morphisms, Lemma 44.9). Thus we may
apply Topology, Lemma 6.6 to conclude. �

Remark 5.17. Let k ⊂ K be an extension of fields. Let X be a scheme over
k. Denote p : XK → X the projection morphism. Let T ⊂ XK be a connected
component. Is it true that p(T ) is a connected component of X? When k ⊂ K
is finite Lemma 5.16 tells us the answer is “yes”. In general we do not know the
answer. If you do, or if you have a reference, please email stacks.project@gmail.com.

Let X be a scheme. We denote π0(X) the set of connected components of X.

Lemma 5.18. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × π0(Xk) −→ π0(Xk)

with the following properties:

(1) An element T ∈ π0(Xk) is fixed by the action if and only if there exists a
connected component T ⊂ X, which is geometrically connected over k, such
that Tk = T .

(2) For any field extension k ⊂ k′ with separable algebraic closure k
′

the dia-
gram

Gal(k
′
/k′)× π0(Xk

′) //

��

π0(Xk
′)

��
Gal(k/k)× π0(Xk) // π0(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 5.6).
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Proof. The action (5.8.1) of Gal(k/k) on Xk induces an action on its connected
components. Connected components are always closed (Topology, Lemma 6.3).
Hence if T is as in (1), then by Lemma 5.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically connected over k, see Lemma 5.7.
To see that T is a connected component of X, suppose that T ⊂ T ′, T 6= T ′ where
T ′ is a connected component of X. In this case T ′k′ strictly contains T and hence is
disconnected. By Lemma 5.12 this means that T ′ is disconnected! Contradiction.

We omit the proof of the functoriality in (2). �

Lemma 5.19. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. Assume

(1) X is quasi-compact, and
(2) the connected components of Xk are open.

Then

(a) π0(Xk) is finite, and

(b) the action of Gal(k/k) on π0(Xk) is continuous.

Moreover, assumptions (1) and (2) are satisfied when X is of finite type over k.

Proof. Since the connected components are open, cover Xk (Topology, Lemma 6.3)
and Xk is quasi-compact, we conclude that there are only finitely many of them.
Thus (a) holds. By Lemma 5.8 these connected components are each defined over
a finite subextension of k ⊂ k and we get (b). If X is of finite type over k, then
Xk is of finite type over k (Morphisms, Lemma 16.4). Hence Xk is a Noetherian
scheme (Morphisms, Lemma 16.6) and has an underlying Noetherian topological
space (Properties, Lemma 5.5). Thus Xk has finitely many irreducible components
(Topology, Lemma 8.2) and a fortiori finitely many connected components (which
are therefore open). �

6. Geometrically irreducible schemes

If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 6.1. Let X be a scheme over the field k. We say X is geometrically
irreducible over k if the scheme Xk′ is irreducible1 for any field extension k′ of k.

Lemma 6.2. Let X be a scheme over the field k. Let k ⊂ k′ be a field exten-
sion. Then X is geometrically irreducible over k if and only if Xk′ is geometrically
irreducible over k′.

Proof. If X is geometrically irreducible over k, then it is clear that Xk′ is geomet-
rically irreducible over k′. For the converse, note that for any field extension k ⊂ k′′
there exists a common field extension k′ ⊂ k′′′ and k′′ ⊂ k′′′. As the morphism
Xk′′′ → Xk′′ is surjective (as a base change of a surjective morphism between spec-
tra of fields) we see that the irreducibility of Xk′′′ implies the irreducibility of Xk′′ .
Thus if Xk′ is geometrically irreducible over k′ then X is geometrically irreducible
over k. �

1An irreducible space is nonempty.
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Lemma 6.3. Let X be a scheme over a separably closed field k. If X is irreducible,
then XK is irreducible for any field extension k ⊂ K. I.e., X is geometrically
irreducible over k.

Proof. Use Properties, Lemma 3.3 and Algebra, Lemma 45.4. �

Lemma 6.4. Let k be a field. Let X, Y be schemes over k. Assume X is geomet-
rically irreducible over k. Then the projection morphism

p : X ×k Y −→ Y

induces a bijection between irreducible components.

Proof. First, note that the scheme theoretic fibres of p are irreducible, since they
are base changes of the geometrically irreducible scheme X by field extensions.
Moreover the scheme theoretic fibres are homeomorphic to the set theoretic fibres,
see Schemes, Lemma 18.5. By Morphisms, Lemma 24.4 the map p is open. Thus
we may apply Topology, Lemma 7.8 to conclude. �

Lemma 6.5. Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically irreducible over k,
(2) for every nonempty affine open U the k-algebra OX(U) is geometrically

irreducible over k (see Algebra, Definition 45.6),
(3) X is irreducible and there exists an affine open covering X =

⋃
Ui such

that each k-algebra OX(Ui) is geometrically irreducible, and
(4) there exists an open covering X =

⋃
i∈I Xi with I 6= ∅ such that Xi is

geometrically irreducible for each i and such that Xi∩Xj 6= ∅ for all i, j ∈ I.

Moreover, if X is geometrically irreducible so is every nonempty open subscheme
of X.

Proof. An affine scheme Spec(A) over k is geometrically irreducible if and only if
A is geometrically irreducible over k; this is immediate from the definitions. Recall
that if a scheme is irreducible so is every nonempty open subscheme of X, any two
nonempty open subsets have a nonempty intersection. Also, if every affine open is
irreducible then the scheme is irreducible, see Properties, Lemma 3.3. Hence the
final statement of the lemma is clear, as well as the implications (1) ⇒ (2), (2) ⇒
(3), and (3)⇒ (4). If (4) holds, then for any field extension k′/k the scheme Xk′ has
a covering by irreducible opens which pairwise intersect. Hence Xk′ is irreducible.
Hence (4) implies (1). �

Lemma 6.6. Let X be a geometrically irreducible scheme over the field k. Let
ξ ∈ X be its generic point. Then κ(ξ) is a geometrically irreducible over k.

Proof. Combining Lemma 6.5 and Algebra, Lemma 45.8 we see that OX,ξ is ge-
ometrically irreducible over k. Since OX,ξ → κ(ξ) is a surjection with locally
nilpotent kernel (see Algebra, Lemma 24.1) it follows that κ(ξ) is geometrically
irreducible, see Algebra, Lemma 45.2. �

Lemma 6.7. Let k ⊂ k′ be an extension of fields. Let X be a scheme over k. Set
X ′ = Xk′ . Assume k separably algebraically closed. Then the morphism X ′ → X
induces a bijection of irreducible components.
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Proof. Since k is separably algebraically closed we see that k′ is geometrically
irreducible over k, see Algebra, Lemma 45.7. Hence Z = Spec(k′) is geometrically
irreducible over k. by Lemma 6.5 above. Since X ′ = Z ×k X the result is a special
case of Lemma 6.4. �

Lemma 6.8. Let k be a field. Let X be a scheme over k. The following are
equivalent:

(1) X is geometrically irreducible over k,
(2) for every finite separable field extension k ⊂ k′ the scheme Xk′ is irre-

ducible, and
(3) Xk is irreducible, where k ⊂ k is a separable algebraic closure of k.

Proof. Assume Xk is irreducible, i.e., assume (3). Let k ⊂ k′ be a field extension.

There exists a field extension k ⊂ k′ such that k′ embeds into k
′

as an extension of
k. By Lemma 6.7 we see that Xk

′ is irreducible. Since Xk
′ → Xk′ is surjective we

conclude that Xk′ is irreducible. Hence (1) holds.

Let k ⊂ k be a separable algebraic closure of k. Assume not (3), i.e., assume Xk is
reducible. Our goal is to show that also Xk′ is reducible for some finite subextension
k ⊂ k′ ⊂ k. Let X =

⋃
i∈I Ui be an affine open covering with Ui not empty. If for

some i the scheme Ui is reducible, or if for some pair i 6= j the intersection Ui∩Uj is
empty, then X is reducible (Properties, Lemma 3.3) and we are done. In particular
we may assume that Ui,k ∩ Uj,k for all i, j ∈ I is nonempty and we conclude that
Ui,k has to be reducible for some i. According to Algebra, Lemma 45.5 this means

that Ui,k′ is reducible for some finite separable field extension k ⊂ k′. Hence also
Xk′ is reducible. Thus we see that (2) implies (3).

The implication (1) ⇒ (2) is immediate. This proves the lemma. �

Lemma 6.9. Let k ⊂ K be an extension of fields. Let X be a scheme over k.
For every irreducible component T of X the inverse image TK ⊂ XK is a union of
irreducible components of XK .

Proof. Let T ⊂ X be an irreducible component of X. The morphism TK → T is
flat, so generalizations lift along TK → T . Hence every ξ ∈ TK which is a generic
point of an irreducible component of TK maps to the generic point η of T . If ξ′  ξ
is a specialization in XK then ξ′ maps to η since there are no points specializing
to η in X. Hence ξ′ ∈ TK and we conclude that ξ = ξ′. In other words ξ is the
generic point of an irreducible component of XK . This means that the irreducible
components of TK are all irreducible components of XK . �

For a scheme X we denote IrredComp(X) the set of irreducible components of X.

Lemma 6.10. Let k ⊂ K be an extension of fields. Let X be a scheme over k.
For every irreducible component T ⊂ XK the image of T in X is an irreducible
component in X. This defines a canonical map

IrredComp(XK) −→ IrredComp(X)

which is surjective.
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Proof. Consider the diagram

XK

��

XK

��

oo

X Xk
oo

where K is the separable algebraic closure of K, and where k is the separable
algebraic closure of k. By Lemma 6.7 the morphism XK → Xk induces a bijec-
tion between irreducible components. Hence it suffices to show the lemma for the
morphisms Xk → X and XK → XK . In other words we may assume that K = k.

The morphism p : Xk → X is integral, flat and surjective. Flatness implies that
generalizations lift along p, see Morphisms, Lemma 26.8. Hence generic points of
irreducible components of Xk map to generic points of irreducible components of
X. Integrality implies that p is universally closed, see Morphisms, Lemma 44.7.
Hence we conclude that the image p(T ) of an irreducible component is a closed
irreducible subset which contains a generic point of an irreducible component of
X, hence p(T ) is an irreducible component of X. This proves the first assertion.
If T ⊂ X is an irreducible component, then p−1(T ) = TK is a nonempty union of
irreducible components, see Lemma 6.9. Each of these necessarily maps onto T by
the first part. Hence the map is surjective. �

Lemma 6.11. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. There is an action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

with the following properties:

(1) An element T ∈ IrredComp(Xk) is fixed by the action if and only if there
exists an irreducible component T ⊂ X, which is geometrically irreducible
over k, such that Tk = T .

(2) For any field extension k ⊂ k′ with separable algebraic closure k
′

the dia-
gram

Gal(k
′
/k′)× IrredComp(Xk

′) //

��

IrredComp(Xk
′)

��
Gal(k/k)× IrredComp(Xk) // IrredComp(Xk)

is commutative (where the right vertical arrow is a bijection according to
Lemma 6.7).

Proof. The action (5.8.1) of Gal(k/k) on Xk induces an action on its irreducible
components. Irreducible components are always closed (Topology, Lemma 6.3).
Hence if T is as in (1), then by Lemma 5.10 there exists a closed subset T ⊂ X
such that T = Tk. Note that T is geometrically irreducible over k, see Lemma 6.8.
To see that T is an irreducible component of X, suppose that T ⊂ T ′, T 6= T ′

where T ′ is an irreducible component of X. Let η be the generic point of T . It
maps to the generic point η of T . Then the generic point ξ ∈ T ′ specializes to η.
As Xk → X is flat there exists a point ξ ∈ Xk which maps to ξ and specializes to
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VARIETIES 15

η. It follows that the closure of the singleton {ξ} is an irreducible closed subset of
Xξ which strictly contains T . This is the desired contradiction.

We omit the proof of the functoriality in (2). �

Lemma 6.12. Let k be a field, with separable algebraic closure k. Let X be a
scheme over k. The fibres of the map

IrredComp(Xk) −→ IrredComp(X)

of Lemma 6.10 are exactly the orbits of Gal(k/k) under the action of Lemma 6.11.

Proof. Let T ⊂ X be an irreducible component of X. Let η ∈ T be its generic
point. By Lemmas 6.9 and 6.10 the generic points of irreducible components of
T which map into T map to η. By Algebra, Lemma 45.12 the Galois group acts
transitively on all of the points of Xk mapping to η. Hence the lemma follows. �

Lemma 6.13. Let k be a field. Assume X → Spec(k) locally of finite type. In this
case

(1) the action

Gal(k/k)opp × IrredComp(Xk) −→ IrredComp(Xk)

is continuous if we give IrredComp(Xk) the discrete topology,
(2) every irreducible component of Xk can be defined over a finite extension of

k, and
(3) given any irreducible component T ⊂ X the scheme Tk is a finite union of

irreducible components of Xk which are all in the same Gal(k/k)-orbit.

Proof. Let T be an irreducible component of Xk. We may choose an affine open

U ⊂ X such that T ∩ Uk is not empty. Write U = Spec(A), so A is a finite type

k-algebra, see Morphisms, Lemma 16.2. Hence Ak is a finite type k-algebra, and
in particular Noetherian. Let p = (f1, . . . , fn) be the prime ideal corresponding to
T ∩Uk. Since Ak = A⊗k k we see that there exists a finite subextension k ⊂ k′ ⊂ k
such that each fi ∈ Ak′ . It is clear that Gal(k/k′) fixes T , which proves (1).

Part (2) follows by applying Lemma 6.11 (1) to the situation over k′ which implies
the irreducible component T is of the form T ′

k
for some irreducible T ′ ⊂ Xk′ .

To prove (3), let T ⊂ X be an irreducible component. Choose an irreducible
component T ⊂ Xk which maps to T , see Lemma 6.10. By the above the orbit of

T is finite, say it is T 1, . . . , Tn. Then T 1 ∪ . . . ∪ Tn is a Gal(k/k)-invariant closed
subset of Xk hence of the form Wk for some W ⊂ X closed by Lemma 5.10. Clearly
W = T and we win. �

Lemma 6.14. Let k be a field. Let X → Spec(k) be locally of finite type. Assume
X has finitely many irreducible components. Then there exists a finite separable
extension k ⊂ k′ such that every irreducible component of Xk′ is geometrically
irreducible over k′.

Proof. Let k be a separable algebraic closure of k. The assumption that X has
finitely many irreducible components combined with Lemma 6.13 (3) shows that
Xk has finitely many irreducible components T 1, . . . , Tn. By Lemma 6.13 (2) there

exists a finite extension k ⊂ k′ ⊂ k and irreducible components Ti ⊂ Xk′ such that
T i = Ti,k and we win. �
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Lemma 6.15. Let X be a scheme over the field k. Assume X has finitely many
irreducible components which are all geometrically irreducible. Then X has finitely
many connected components each of which is geometrically connected.

Proof. This is clear because a connected component is a union of irreducible com-
ponents. Details omitted. �

7. Geometrically integral schemes

If X is an irreducible scheme over a field, then it can happen that X becomes
reducible after extending the ground field. This does not happen for geometrically
irreducible schemes.

Definition 7.1. Let X be a scheme over the field k.

(1) Let x ∈ X. We say X is geometrically pointwise integral at x if for every
field extension k ⊂ k′ and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x

′

is integral.
(2) We say X is geometrically pointwise integral if X is geometrically pointwise

integral at every point.
(3) We say X is geometrically integral over k if the scheme Xk′ is integral for

every field extension k′ of k.

The distinction between notions (2) and (3) is necessary. For example if k = R and
X = Spec(C[x]), then X is geometrically pointwise integral over R but of course
not geometrically integral.

Lemma 7.2. Let k be a field. Let X be a scheme over k. Then X is geometrically
integral over k if and only if X is both geometrically reduced and geometrically
irreducible over k.

Proof. See Properties, Lemma 3.4. �

8. Geometrically normal schemes

In Properties, Definition 7.1 we have defined the notion of a normal scheme. This
notion is defined even for non-Noetherian schemes. Hence, contrary to our dis-
cussion of “geometrically regular” schemes we consider all field extensions of the
ground field.

Definition 8.1. Let X be a scheme over the field k.

(1) Let x ∈ X. We say X is geometrically normal at x if for every field extension
k ⊂ k′ and every x′ ∈ Xk′ lying over x the local ring OXk′ ,x

′ is normal.
(2) We say X is geometrically normal over k if X is geometrically normal at

every x ∈ X.

Lemma 8.2. Let k be a field. Let X be a scheme over k. Let x ∈ X. The following
are equivalent

(1) X is geometrically normal at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over over x the local ring OXk′ ,x
′ is normal, and

(3) the ring OX,x is geometrically normal over k (see Algebra, Definition 153.2).
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Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′ be a finite purely
inseparable field extension (for example k = k′). Consider the ring OX,x ⊗k k′. By
Algebra, Lemma 45.2 its spectrum is the same as the spectrum of OX,x. Hence it is
a local ring also (Algebra, Lemma 17.2). Therefore there is a unique point x′ ∈ Xk′

lying over x and OXk′ ,x
′ ∼= OX,x⊗k k′. By assumption this is a normal ring. Hence

we deduce (3) by Algebra, Lemma 153.1.

Assume (3). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x

′ is a localization of the ring OX,x ⊗k k′. Hence
it is normal by assumption and (1) is proved. �

Lemma 8.3. Let k be a field. Let X be a scheme over k. The following are
equivalent

(1) X is geometrically normal,
(2) Xk′ is a normal scheme for every field extension k ⊂ k′,
(3) Xk′ is a normal scheme for every finitely generated field extension k ⊂ k′,
(4) Xk′ is a normal scheme for every finite purely inseparable field extension

k ⊂ k′, and
(5) for every affine open U ⊂ X the ring OX(U) is geometrically normal (see

Algebra, Definition 153.2).

Proof. Assume (1). Then for every field extension k ⊂ k′ and every point x′ ∈ Xk′

the local ring of Xk′ at x′ is normal. By definition this means that Xk′ is normal.
Hence (2).

It is clear that (2) implies (3) implies (4).

Assume (4) and let U ⊂ X be an affine open subscheme. Then Uk′ is a normal
scheme for any finite purely inseparable extension k ⊂ k′ (including k = k′). This
means that k′ ⊗k O(U) is a normal ring for all finite purely inseparable extensions
k ⊂ k′. Hence O(U) is a geometrically normal k-algebra by definition.

Assume (5). For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing
the spectra of the rings OX(U) ⊗k k′ where U is affine open in X (see Schemes,
Section 17). Hence Xk′ is normal. So (1) holds. �

Lemma 8.4. Let k be a field. Let X be a scheme over k. Let k′/k be a field
extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying over x. The
following are equivalent

(1) X is geometrically normal at x,
(2) Xk′ is geometrically normal at x′.

In particular, X is geometrically normal over k if and only if Xk′ is geometrically
normal over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it is
unique). We can find a common field extension k ⊂ k′′′ (i.e. with both k′ ⊂ k′′′

and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and x′′. Consider the map
of local rings

OXk′′ ,x
′′ −→ OXk′′′ ,x

′′′′ .

http://localhost:8080/tag/038O
http://localhost:8080/tag/038P


18 VARIETIES

This is a flat local ring homomorphism and hence faithfully flat. By (2) we see that
the local ring on the right is normal. Thus by Algebra, Lemma 152.3 we conclude
that OXk′′ ,x

′′ is normal. By Lemma 8.2 we see that X is geometrically normal at
x. �

Lemma 8.5. Let k be a field. Let X be a geometrically normal scheme over k and
let Y be a normal scheme over k. Then X ×k Y is a normal scheme.

Proof. This reduces to Algebra, Lemma 153.4 by Lemma 8.3. �

9. Change of fields and locally Noetherian schemes

Let X a locally Noetherian scheme over a field k. It is not always that case that
Xk′ is locally Noetherian too. For example if X = Spec(Q) and k = Q, then
XQ is the spectrum of Q ⊗Q Q which is not Noetherian. (Hint: It has too many

idempotents). But if we only base change using finitely generated field extensions
then the Noetherian property is preserved. (Or if X is locally of finite type over k,
since this property is preserved under base change.)

Lemma 9.1. Let k be a field. Let X be a scheme over k. Let k ⊂ k′ be a finitely
generated field extension. Then X is locally Noetherian if and only if Xk′ is locally
Noetherian.

Proof. Using Properties, Lemma 5.2 we reduce to the case where X is affine, say
X = Spec(A). In this case we have to prove that A is Noetherian if and only if
Ak′ is Noetherian. Since A→ Ak′ = k′ ⊗k A is faithfully flat, we see that if Ak′ is
Noetherian, then so is A, by Algebra, Lemma 152.1. Conversely, if A is Noetherian
then Ak′ is Noetherian by Algebra, Lemma 30.7. �

10. Geometrically regular schemes

A geometrically regular scheme over a field k is a locally Noetherian scheme over k
which remains regular upon suitable changes of base field. A finite type scheme over
k is geometrically regular if and only if it is smooth over k (see Lemma 10.6). The
notion of geometric regularity is most interesting in situations where smoothness
cannot be used such as formal fibres (insert future reference here).

In the following definition we restrict ourselves to locally Noetherian schemes, since
the property of being a regular local ring is only defined for Noetherian local rings.
By Lemma 8.3 above, if we restrict ourselves to finitely generated field extensions
then this property is preserved under change of base field. This comment will be
used without further reference in this section. In particular the following definition
makes sense.

Definition 10.1. Let k be a field. Let X be a locally Noetherian scheme over k.

(1) Let x ∈ X. We say X is geometrically regular at x over k if for every finitely
generated field extension k ⊂ k′ and any x′ ∈ Xk′ lying over x the local
ring OXk′ ,x

′ is regular.
(2) We say X is geometrically regular over k if X is geometrically regular at

all of its points.

A similar definition works to define geometrically Cohen-Macaulay, (Rk), and (Sk)
schemes over a field. We will add a section for these separately as needed.
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Lemma 10.2. Let k be a field. Let X be a locally Noetherian scheme over k. Let
x ∈ X. The following are equivalent

(1) X is geometrically regular at x,
(2) for every finite purely inseparable field extension k′ of k and x′ ∈ Xk′ lying

over over x the local ring OXk′ ,x
′ is regular, and

(3) the ring OX,x is geometrically regular over k (see Algebra, Definition 154.2).

Proof. It is clear that (1) implies (2). Assume (2). This in particular implies that
OX,x is a regular local ring. Let k ⊂ k′ be a finite purely inseparable field extension.
Consider the ring OX,x ⊗k k′. By Algebra, Lemma 45.2 its spectrum is the same
as the spectrum of OX,x. Hence it is a local ring also (Algebra, Lemma 17.2).
Therefore there is a unique point x′ ∈ Xk′ lying over x and OXk′ ,x

′ ∼= OX,x ⊗k k′.
By assumption this is a regular ring. Hence we deduce (3) from the definition of a
geometrically regular ring.

Assume (3). Let k ⊂ k′ be a field extension. Since Spec(k′)→ Spec(k) is surjective,
also Xk′ → X is surjective (Morphisms, Lemma 11.4). Let x′ ∈ Xk′ be any point
lying over x. The local ring OXk′ ,x

′ is a localization of the ring OX,x ⊗k k′. Hence
it is regular by assumption and (1) is proved. �

Lemma 10.3. Let k be a field. Let X be a locally Noetherian scheme over k. The
following are equivalent

(1) X is geometrically regular,
(2) Xk′ is a regular scheme for every finitely generated field extension k ⊂ k′,
(3) Xk′ is a regular scheme for every finite purely inseparable field extension

k ⊂ k′,
(4) for every affine open U ⊂ X the ring OX(U) is geometrically regular (see

Algebra, Definition 154.2), and
(5) there exists an affine open covering X =

⋃
Ui such that each OX(Ui) is

geometrically regular over k.

Proof. Assume (1). Then for every finitely generated field extension k ⊂ k′ and
every point x′ ∈ Xk′ the local ring of Xk′ at x′ is regular. By Properties, Lemma
9.2 this means that Xk′ is regular. Hence (2).

It is clear that (2) implies (3).

Assume (3) and let U ⊂ X be an affine open subscheme. Then Uk′ is a regular
scheme for any finite purely inseparable extension k ⊂ k′ (including k = k′). This
means that k′ ⊗k O(U) is a regular ring for all finite purely inseparable extensions
k ⊂ k′. Hence O(U) is a geometrically regular k-algebra and we see that (4) holds.

It is clear that (4) implies (5). Let X =
⋃
Ui be an affine open covering as in (5).

For any field extension k ⊂ k′ the base change Xk′ is gotten by gluing the spectra
of the rings OX(Ui)⊗k k′ (see Schemes, Section 17). Hence Xk′ is regular. So (1)
holds. �

Lemma 10.4. Let k be a field. Let X be a scheme over k. Let k′/k be a finitely
generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a point lying
over x. The following are equivalent

(1) X is geometrically regular at x,
(2) Xk′ is geometrically regular at x′.
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In particular, X is geometrically regular over k if and only if Xk′ is geometrically
regular over k′.

Proof. It is clear that (1) implies (2). Assume (2). Let k ⊂ k′′ be a finite purely
inseparable field extension and let x′′ ∈ Xk′′ be a point lying over x (actually it
is unique). We can find a common, finitely generated, field extension k ⊂ k′′′ (i.e.
with both k′ ⊂ k′′′ and k′′ ⊂ k′′′) and a point x′′′ ∈ Xk′′′ lying over both x′ and
x′′. Consider the map of local rings

OXk′′ ,x
′′ −→ OXk′′′ ,x

′′′′ .

This is a flat local ring homomorphism of Noetherian local rings and hence faithfully
flat. By (2) we see that the local ring on the right is regular. Thus by Algebra,
Lemma 106.9 we conclude that OXk′′ ,x

′′ is regular. By Lemma 10.2 we see that X
is geometrically regular at x. �

The following lemma is a geometric variant of Algebra, Lemma 154.3.

Lemma 10.5. Let k be a field. Let f : X → Y be a morphism of locally Noetherian
schemes over k. Let x ∈ X be a point and set y = f(x). If X is geometrically regular
at x and f is flat at x then Y is geometrically regular at y. In particular, if X is
geometrically regular over k and f is flat and surjective, then Y is geometrically
regular over k.

Proof. Let k′ be finite purely inseparable extension of k. Let f ′ : Xk′ → Yk′ be
the base change of f . Let x′ ∈ Xk′ be the unique point lying over x. If we show
that Yk′ is regular at y′ = f ′(x′), then Y is geometrically regular over k at y′, see
Lemma 10.3. By Morphisms, Lemma 26.6 the morphism Xk′ → Yk′ is flat at x′.
Hence the ring map

OYk′ ,y
′ −→ OXk′ ,x

′

is a flat local homomorphism of local Noetherian rings with right hand side regular
by assumption. Hence the left hand side is a regular local ring by Algebra, Lemma
106.9. �

Lemma 10.6. Let k be a field. Let X be a scheme of finite type over k. Let x ∈ X.
Then X is geometrically regular at x if and only if X → Spec(k) is smooth at x
(Morphisms, Definition 35.1).

Proof. The question is local around x, hence we may assume that X = Spec(A)
for some finite type k-algebra. Let x correspond to the prime p.

If A is smooth over k at p, then we may localize A and assume that A is smooth
over k. In this case k′⊗k A is smooth over k′ for all extension fields k′/k, and each
of these Noetherian rings is regular by Algebra, Lemma 135.3.

AssumeX is geometrically regular at x. Consider the residue fieldK := κ(x) = κ(p)
of x. It is a finitely generated extension of k. By Algebra, Lemma 44.3 there exists
a finite purely inseparable extension k ⊂ k′ such that the compositum k′K is a
separable field extension of k′. Let p′ ⊂ A′ = k′ ⊗k A be a prime ideal lying over
p. It is the unique prime lying over p, see Algebra, Lemma 45.2. Hence the residue
field K ′ := κ(p′) is the compositum k′K. By assumption the local ring (A′)p′ is
regular. Hence by Algebra, Lemma 135.5 we see that k′ → A′ is smooth at p′. This
in turn implies that k → A is smooth at p by Algebra, Lemma 132.18. The lemma
is proved. �
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Example 10.7. Let k = Fp(t). It is quite easy to give an example of a regular
variety V over k which is not geometrically reduced. For example we can take
Spec(k[x]/(xp− t)). In fact, there exists an example of a regular variety V which is
geometrically reduced, but not even geometrically normal. Namely, take for p > 2
the scheme V = Spec(k[x, y]/(y2 − xp + t)). This is a variety as the polynomial
y2 − xp + t ∈ k[x, y] is irreducible. The morphism V → Spec(k) is smooth at all
points except at the point v0 ∈ V corresponding to the maximal ideal (y, xp − t)
(because 2y is invertible). In particular we see that V is (geometrically) regular at
all points, except possibly v0. The local ring

OV,v0 =
(
k[x, y]/(y2 − xp + t)

)
(y,xp−t)

is a domain of dimension 1. Its maximal ideal is generated by 1 element, namely
y. Hence it is a discrete valuation ring and regular. Let k′ = k[t1/p]. Denote
t′ = t1/p ∈ k′, V ′ = Vk′ , v

′
0 ∈ V ′ the unique point lying over v0. Over k′ we can

write xp− t = (x− t′)p, but the polynomial y2− (x− t′)p is still irreducible and V ′

is still a variety. But the element
y

x− t′
∈ f.f.(OV ′,v′0)

is integral over OV ′,v′0 (just compute its square) and not contained in it, so V ′ is
not normal at v′0. This concludes the example.

11. Change of fields and the Cohen-Macaulay property

The following lemma says that it does not make sense to define geometrically Cohen-
Macaulay schemes, since these would be the same as Cohen-Macaulay schemes.

Lemma 11.1. Let X be a locally Noetherian scheme over the field k. Let k ⊂ k′

be a finitely generated field extension. Let x ∈ X be a point, and let x′ ∈ Xk′ be a
point lying over x. Then we have

OX,x is Cohen-Macaulay⇔ OXk′ ,x
′ is Cohen-Macaulay

If X is locally of finite type over k, the same holds for any field extension k ⊂ k′.

Proof. The first case of the lemma follows from Algebra, Lemma 155.2. The second
case of the lemma is equivalent to Algebra, Lemma 126.6. �

12. Change of fields and the Jacobson property

A scheme locally of finite type over a field has plenty of closed points, namely it is
Jacobson. Moreover, the residue fields are finite extensions of the ground field.

Lemma 12.1. Let X be a scheme which is locally of finite type over k. Then

(1) for any closed point x ∈ X the extension k ⊂ κ(x) is algebraic, and
(2) X is a Jacobson scheme (Properties, Definition 6.1).

Proof. A scheme is Jacobson if and only if it has an affine open covering by Jacob-
son schemes, see Properties, Lemma 6.3. The property on residue fields at closed
points is also local on X. Hence we may assume that X is affine. In this case the
result is a consequence of the Hilbert Nullstellensatz, see Algebra, Theorem 33.1. It
also follows from a combination of Morphisms, Lemmas 17.8, 17.9, and 17.10. �

It turns out that if X is not locally of finite type, then we can achieve the same
result after making a suitably large base field extension.
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Lemma 12.2. Let X be a scheme over a field k. For any field extension k ⊂ K
whose cardinality is large enough we have

(1) for any closed point x ∈ XK the extension K ⊂ κ(x) is algebraic, and
(2) XK is a Jacobson scheme (Properties, Definition 6.1).

Proof. Choose an affine open covering X =
⋃
Ui. By Algebra, Lemma 34.12

and Properties, Lemma 6.2 there exist cardinals κi such that Ui,K has the desired
properties over K if #(K) ≥ κi. Set κ = max{κi}. Then if the cardinality of
K is larger than κ we see that each Ui,K satisfies the conclusions of the lemma.
Hence XK is Jacobson by Properties, Lemma 6.3. The statement on residue fields
at closed points of XK follows from the corresponding statements for residue fields
of closed points of the Ui,K . �

13. Algebraic schemes

The following definition is taken from [DG67, I Definition 6.4.1].

Definition 13.1. Let k be a field. An algebraic k-scheme is a scheme X over k
such that the structure morphism X → Spec(k) is of finite type. A locally algebraic
k-scheme is a scheme X over k such that the structure morphism X → Spec(k) is
locally of finite type.

Note that every (locally) algebraic k-scheme is (locally) Noetherian, see Morphisms,
Lemma 16.6. The category of algebraic k-schemes has all products and fibre prod-
ucts (unlike the category of varieties over k). Similarly for the category of locally
algebraic k-schemes.

Lemma 13.2. Let k be a field. Let X be a locally algebraic k-scheme of dimen-
sion 0. Then X is a disjoint union of spectra of local Artinian k-algebras A with
dimk(A) < ∞. If X is an algebraic k-scheme of dimension 0, then in addition X
is affine and the morphism X → Spec(k) is finite.

Proof. Let X be a locally algebraic k-scheme of dimension 0. Let U = Spec(A) ⊂
X be an affine open subscheme. Since dim(X) = 0 we see that dim(A) = 0. By
Noether normalization, see Algebra, Lemma 111.4 we see that there exists a finite
injection k → A, i.e., dimk(A) < ∞. Hence A is Artinian, see Algebra, Lemma
51.2. This implies that A = A1 × . . . × Ar is a product of finitely many Artinian
local rings, see Algebra, Lemma 51.6. Of course dimk(Ai) < ∞ for each i as the
sum of these dimensions equals dimk(A).

The arguments above show that X has an open covering whose members are finite
discrete topological spaces. Hence X is a discrete topological space. It follows that
X is isomorphic to the disjoint union of its connected components each of which is
a singleton. Since a singleton scheme is affine we conclude (by the results of the
paragraph above) that each of these singletons is the spectrum of a local Artinian
k-algebra A with dimk(A) <∞.

Finally, if X is an algebraic k-scheme of dimension 0, then X is quasi-compact
hence is a finite disjoint union X = Spec(A1) q . . . q Spec(Ar) hence affine (see
Schemes, Lemma 6.8) and we have seen the finiteness of X → Spec(k) in the first
paragraph of the proof. �

Lemma 13.3. Let k be a field. Let X be a locally algebraic k-scheme.
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(1) The dimension of k is the supremum of the numbers trdegk(κ(η) where η
runs over the generic points of the irreducible components of X.

(2) If X is irreducible, then all maximal chains of irreducible closed subsets
have length equal to the dimension of X.

Proof. It is clear that the dimension of X is the supremum of the dimensions of
all affine opens. Simiarly, any maximal chain in X gives rise to a maximal chain
in an affine open. Hence it suffices to prove the lemma for an affine open. Part
(2) follows from Algebra, Lemma 110.4. Part (1) follows from Algebra, Lemma
112.3. �

14. Closures of products

Some results on the relation between closure and products.

Lemma 14.1. Let k be a field. Let X, Y be schemes over k, and let A ⊂ X,
B ⊂ Y be subsets. Set

AB = {z ∈ X ×k Y | prX(γ) ∈ A, prY (γ) ∈ B} ⊂ X ×k Y
Then set theoretically we have

A×k B = AB

Proof. The inclusion AB ⊂ A ×k B is immediate. We may replace X and Y by
the reduced closed subschemes A and B. Let W ⊂ X ×k Y be a nonempty open
subset. By Morphisms, Lemma 24.4 the subset U = prX(W ) is nonempty open
in X. Hence A ∩ U is nonempty. Pick a ∈ A ∩ U . Denote Yκ(a) = {a} ×k Y
the fibre of prX : X ×k Y → X over a. By Morphisms, Lemma 24.4 again the
morphism Ya → Y is open as Spec(κ(a))→ Spec(k) is universally open. Hence the
nonempty open subset Wa = W ×X×kY Ya maps to a nonempty open subset of Y .
We conclude there exists a b ∈ B in the image. Hence AB ∩W 6= ∅ as desired. �

Lemma 14.2. Let k be a field. Let f : A → X, g : B → Y be morphisms of
schemes over k. Then set theoretically we have

f(A)×k g(B) = (f × g)(A×k B)

Proof. This follows from Lemma 14.1 as the image of f × g is f(A)g(B) in the
notation of that lemma. �

Lemma 14.3. Let k be a field. Let f : A → X, g : B → Y be quasi-compact
morphisms of schemes over k. Let Z ⊂ X be the scheme theoretic image of f , see
Morphisms, Definition 6.2. Similarly, let Z ′ ⊂ Y be the scheme theoretic image of
g. Then Z ×k Z ′ is the scheme theoretic image of f × g.

Proof. Recall that Z is the smallest closed subscheme of X through which f fac-
tors. Similarly for Z ′. Let W ⊂ X ×k Y be the scheme theoretic image of f × g.
As f × g factors through Z ×k Z ′ we see that W ⊂ Z ×k Z ′.
To prove the other inclusion let U ⊂ X and V ⊂ Y be affine opens. By Morphisms,
Lemma 6.3 the scheme Z ∩U is the scheme theoretic image of f |f−1(U) : f−1(U)→
U , and similarly for Z ′ ∩ V and W ∩ U ×k V . Hence we may assume X and Y
affine. As f and g are quasi-compact this implies that A =

⋃
Ui is a finite union of

affines and B =
⋃
Vj is a finite union of affines. Then we may replace A by

∐
Ui

and B by
∐
Vj , i.e., we may assume that A and B are affine as well. In this case Z
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is cut out by Ker(Γ(X,OX) → Γ(A,OA)) and similarly for Z ′ and W . Hence the
result follows from the equality

Γ(A×k B,OA×kB) = Γ(A,OA)⊗k Γ(B,OB)

which holds as A and B are affine. Details omitted. �

15. Schemes smooth over fields

Here are two lemmas characterizing smooth schemes over fields.

Lemma 15.1. Let k be a field. Let X be a scheme over k. Assume

(1) X is locally of finite type over k,
(2) ΩX/k is locally free, and
(3) k has characteristic zero.

Then the structure morphism X → Spec(k) is smooth.

Proof. This follows from Algebra, Lemma 135.7. �

In positive characteristic there exist nonreduced schemes of finite type whose sheaf
of differentials is free, for example Spec(Fp[t]/(t

p)) over Spec(Fp). If the ground
field k is nonperfect of characteristic p, there exist reduced schemes X/k with free
ΩX/k which are nonsmooth, for example Spec(k[t]/(tp−a) where a ∈ k is not a pth
power.

Lemma 15.2. Let k be a field. Let X be a scheme over k. Assume

(1) X is locally of finite type over k,
(2) ΩX/k is locally free,
(3) X is reduced, and
(4) k is perfect.

Then the structure morphism X → Spec(k) is smooth.

Proof. Let x ∈ X be a point. As X is locally Noetherian (see Morphisms, Lemma
16.6) there are finitely many irreducible components X1, . . . , Xn passing through x
(see Properties, Lemma 5.5 and Topology, Lemma 8.2). Let ηi ∈ Xi be the generic
point. As X is reduced we have OX,ηi = κ(ηi), see Algebra, Lemma 24.1. Moreover,
κ(ηi) is a finitely generated field extension of the perfect field k hence separably
generated over k (see Algebra, Section 41). It follows that ΩX/k,ηi = Ωκ(ηi)/k is
free of rank the transcendence degree of κ(ηi) over k. By Morphisms, Lemma 29.1
we conclude that dimηi(Xi) = rankηi(ΩX/k). Since x ∈ X1 ∩ . . . ∩Xn we see that

rankx(ΩX/k) = rankηi(ΩX/k) = dim(Xi).

Therefore dimx(X) = rankx(ΩX/k), see Algebra, Lemma 110.5. It follows that
X → Spec(k) is smooth at x for example by Algebra, Lemma 135.3. �

Lemma 15.3. Let X → Spec(k) be a smooth morphism where k is a field. Then
X is a regular scheme.

Proof. (See also Lemma 10.6.) By Algebra, Lemma 135.3 every local ring OX,x
is regular. And because X is locally of finite type over k it is locally Noetherian.
Hence X is regular by Properties, Lemma 9.2. �

Lemma 15.4. Let X → Spec(k) be a smooth morphism where k is a field. Then
X is geometrically regular, geometrically normal, and geometrically reduced over k.
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Proof. (See also Lemma 10.6.) Let k′ be a finite purely inseparable extension of
k. It suffices to prove that Xk′ is regular, normal, reduced, see Lemmas 10.3, 8.3,
and 4.5. By Morphisms, Lemma 35.5 the morphism Xk′ → Spec(k′) is smooth too.
Hence it suffices to show that a scheme X smooth over a field is regular, normal,
and reduced. We see that X is regular by Lemma 15.3. Hence Properties, Lemma
9.4 guarantees that X is normal. �

Lemma 15.5. Let k be a field. Let d ≥ 0. Let W ⊂ Ad
k be nonempty open. Then

there exists a closed point w ∈W such that k ⊂ κ(w) is finite separable.

Proof. After possible shrinking W we may assume that W = Ad
k \ V (f) for some

f ∈ k[x1, . . . , xn]. If the lemma is wrong then f(a1, . . . , an) = 0 for all (a1, . . . , an) ∈
(ksep)n. This is absurd as ksep is an infinite field. �

Lemma 15.6. Let k be a field. If X is smooth over Spec(k) then the set

{x ∈ X closed such that k ⊂ κ(x) is finite separable}

is dense in X.

Proof. It suffices to show that given a nonempty smooth X over k there exists
at least one closed point whose residue field is finite separable over k. To see this,
choose a diagram

X Uoo π // Ad
k

with π étale, see Morphisms, Lemma 37.20. The morphism π : U → Ad
k is open, see

Morphisms, Lemma 37.13. By Lemma 15.5 we may choose a closed point w ∈ π(V )
whose residue field is finite separable over k. Pick any x ∈ V with π(x) = w. By
Morphisms, Lemma 37.7 the field extension κ(w) ⊂ κ(x) is finite separable. Hence
k ⊂ κ(x) is finite separable. The point x is a closed point of X by Morphisms,
Lemma 21.2. �

Lemma 15.7. Let X be a scheme over a field k. If X is locally of finite type and
geometrically reduced over k then X contains a dense open which is smooth over k.

Proof. The problem is local on X, hence we may assume X is quasi-compact. Let
X = X1 ∪ . . .∪Xn be the irreducible components of X. Then Z =

⋃
i6=j Xi ∩Xj is

nowhere dense in X. Hence we may replace X by X \Z. As X \Z is a disjoint union
of irreducible schemes, this reduces us to the case where X is irreducible. As X is
irreducible and reduced, it is integral, see Properties, Lemma 3.4. Let η ∈ X be its
generic point. Then the function field K = k(X) = κ(η) is geometrically reduced
over k, hence separable over k, see Algebra, Lemma 43.1. Let U = Spec(A) ⊂ X
be any nonempty affine open so that K = f.f.(A) = A(0). Apply Algebra, Lemma
135.5 to conclude that A is smooth at (0) over k. By definition this means that
some principal localization of A is smooth over k and we win. �

Lemma 15.8. Let k be a field. Let f : X → Y be a morphism of schemes locally
of finite type over k. Let x ∈ X be a point and set y = f(x). If X → Spec(k) is
smooth at x and f is flat at x then Y → Spec(k) is smooth at y. In particular, if
X is smooth over k and f is flat and surjective, then Y is smooth over k.

Proof. It suffices to show that Y is geometrically regular at y, see Lemma 10.6.
This follows from Lemma 10.5 (and Lemma 10.6 applied to (X,x)). �
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16. Types of varieties

Short section discussion some elementary global properties of varieties.

Definition 16.1. Let k be a field. Let X be a variety over k.

(1) We say X is an affine variety if X is an affine scheme. This is equivalent
to requiring X it be isomorphic to a closed subscheme of An

k for some n.
(2) We say X is a projective variety if the structure morphism X → Spec(k)

is projective. By Morphisms, Lemma 43.4 this is true if and only if X is
isomorphic to a closed subscheme of Pn

k for some n.
(3) We say X is a quasi-projective variety if the structure morphism X →

Spec(k) is quasi-projective. By Morphisms, Lemma 41.4 this is true if and
only if X is isomorphic to a locally closed subscheme of Pn

k for some n.
(4) A proper variety is a variety such that the morphismX → Spec(k) is proper.

Note that a projective variety is a proper variety, see Morphisms, Lemma 43.5. Also,
an affine variety is quasi-projective as An

k is isomorphic to an open subscheme of
Pn
k , see Constructions, Lemma 13.3.

Lemma 16.2. Let X be a proper variety over k. Then Γ(X,OX) is a field which
is a finite extension of the field k.

Proof. By Cohomology of Schemes, Proposition 17.2 we see that Γ(X,OX) is a
finite dimensional k-vector space. It is also a k-algebra without zero-divisors. Hence
it is a field, see Algebra, Lemma 35.17. �

17. Groups of invertible functions

It is often (but not always) the case that O∗(X)/k∗ is a finitely generated abelian
group if X is a variety over k. We show this by a series of lemmas. Everything
rests on the following special case.

Lemma 17.1. Let k be an algebraically closed field. Let X be a proper variety over
k. Let X ⊂ X be an open subscheme. Assume X is normal. Then O∗(X)/k∗ is a
finitely generated abelian group.

Proof. We will use without further mention that for any affine open U of X the
ring O(U) is a finitely generated k-algebra, which is Noetherian, a domain and
normal, see Algebra, Lemma 30.1, Properties, Definition 3.1, Properties, Lemmas
5.2 and 7.2, Morphisms, Lemma 16.2.

Let ξ1, . . . , ξr be the generic points of the complement of X in X. There are
finitely many since X has a Noetherian underlying topological space (see Mor-
phisms, Lemma 16.6, Properties, Lemma 5.5, and Topology, Lemma 8.2). For each
i the local ring Oi = OX,ξi is a normal Noetherian local domain (as a localization
of a Noetherian normal domain). Let J ⊂ {1, . . . , r} be the set of indices i such
that dim(Oi) = 1. For j ∈ J the local ring Oj is a discrete valuation ring, see
Algebra, Lemma 115.6. Hence we obtain a valuation

vj : k(X)∗ −→ Z

with the property that vj(f) ≥ 0⇔ f ∈ Oj .
Think of O(X) as a sub k-algebra of k(X) = k(X). We claim that the kernel of
the map

O(X)∗ −→
∏

j∈J
Z, f 7−→

∏
vj(f)
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is k∗. It is clear that this claim proves the lemma. Namely, suppose that f ∈
O(X) is an element of the kernel. Let U = Spec(B) ⊂ X be any affine open.
Then B is a Noetherian normal domain. For every height one prime q ⊂ B with
corresponding point ξ ∈ X we see that either ξ = ξj for some j ∈ J or that ξ ∈ X.

The reason is that codim({ξ}, X) = 1 by Properties, Lemma 11.4 and hence if
ξ ∈ X \ X it must be a generic point of X \ X, hence equal to some ξj , j ∈ J .
We conclude that f ∈ OX,ξ = Bq in either case as f is in the kernel of the map.
Thus f ∈

⋂
ht(q)=1Bq = B, see Algebra, Lemma 146.6. In other words, we see

that f ∈ Γ(X,OX). But since k is algebraically closed we conclude that f ∈ k by
Lemma 16.2. �

Next, we generalize the case above by some elementary arguments, still keeping the
field algebraically closed.

Lemma 17.2. Let k be an algebraically closed field. Let X be an integral scheme
locally of finite type over k. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. As X is integral the restriction mapping O(X)→ O(U) is injective for any
nonempty open subscheme U ⊂ X. Hence we may assume that X is affine. Choose
a closed immersion X → An

k and denote X the closure of X in Pn
k via the usual

immersion An
k → Pn

k . Thus we may assume that X is an affine open of a projective

variety X.

Let ν : X
ν → X be the normalization morphism, see Morphisms, Definition 48.12.

We know that ν is finite, dominant, and that X
ν

is a normal irreducible scheme, see
Morphisms, Lemmas 48.15, 48.17, and 19.2. It follows that X

ν
is a proper variety,

because X → Spec(k) is proper as a composition of a finite and a proper morphism
(see results in Morphisms, Sections 42 and 44). It also follows that ν is a surjective
morphism, because the image of ν is closed and contains the generic point of X.
Hence setting Xν = ν−1(X) we see that it suffices to prove the result for Xν . In
other words, we may assume that X is a nonempty open of a normal proper variety
X. This case is handled by Lemma 17.1. �

The preceding lemma implies the following slight generalization.

Lemma 17.3. Let k be an algebraically closed field. Let X be a connected re-
duced scheme which is locally of finite type over k with finitely many irreducible
components. Then O∗(X)/k∗ is a finitely generated abelian group.

Proof. Let X =
⋃
Xi be the irreducible components. By Lemma 17.2 we see that

O(Xi)
∗/k∗ is a finitely generated abelian group. Let f ∈ O(X)∗ be in the kernel

of the map

O(X)∗ −→
∏
O(Xi)

∗/k∗.

Then for each i there exists an element λi ∈ k such that f |Xi
= λi. By restricting

to Xi ∩ Xj we conclude that λi = λj if Xi ∩ Xj 6= ∅. Since X is connected we
conclude that all λi agree and hence that f ∈ k∗. This proves that

O(X)∗/k∗ ⊂
∏
O(Xi)

∗/k∗

and the lemma follows as on the right we have a product of finitely many finitely
generated abelian groups. �
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Lemma 17.4. Let k be a field. Let X be a scheme over k which is connected and
reduced. Then the integral closure of k in Γ(X,OX) is a field.

Proof. Let k′ ⊂ Γ(X,OX) be the integral closure of k. Then X → Spec(k)
factors through Spec(k′), see Schemes, Lemma 6.4. As X is reduced we see that
k′ has no nonzero nilpotent elements. As k → k′ is integral we see that every
prime ideal of k′ is both a maximal ideal and a minimal prime, and Spec(k′) is
totally disconnected, see Algebra, Lemmas 35.18 and 25.5. As X is connected the
morphism X → Spec(k′) is constant, say with image the point corresponding to
p ⊂ k′. Then any f ∈ k′, f 6∈ p maps to an invertible element of OX . By definition
of k′ this then forces f to be a unit of k′. Hence we see that k′ is local with maximal
ideal p, see Algebra, Lemma 17.2. Since we’ve already seen that k′ is reduced this
implies that k′ is a field, see Algebra, Lemma 24.1. �

Proposition 17.5. Let k be a field. Let X be a scheme over k. Assume that X
is locally of finite type over k, connected, reduced, and has finitely many irreducible
components. Then O(X)∗/k∗ is a finitely generated abelian group if in addition to
the conditions above at least one of the following conditions is satisfied:

(1) the integral closure of k in Γ(X,OX) is k,
(2) X has a k-rational point, or
(3) X is geometrically integral.

Proof. Let k be an algebraic closure of k. Let Y be a connected component of
(Xk)red. Note that the canonical morphism p : Y → X is open (by Morphisms,
Lemma 24.4) and closed (by Morphisms, Lemma 44.7). Hence p(Y ) = X as X was
assumed connected. In particular, as X is reduced this implies O(X) ⊂ O(Y ). By
Lemma 6.13 we see that Y has finitely many irreducible components. Thus Lemma
17.3 applies to Y . This implies that if O(X)∗/k∗ is not a finitely generated abelian
group, then there exist elements f ∈ O(X), f 6∈ k which map to an element of k
via the map O(X)→ O(Y ). In this case f is algebraic over k, hence integral over
k. Thus, if condition (1) holds, then this cannot happen. To finish the proof we
show that conditions (2) and (3) imply (1).

Let k ⊂ k′ ⊂ Γ(X,OX) be the integral closure of k in Γ(X,OX). By Lemma
17.4 we see that k′ is a field. If e : Spec(k) → X is a k-rational point, then
e] : Γ(X,OX) → k is a section to the inclusion map k → Γ(X,OX). In particular
the restriction of e] to k′ is a field map k′ → k over k, which clearly shows that (2)
implies (1).

If the integral closure k′ of k in Γ(X,OX) is not trivial, then we see that X is either
not geometrically connected (if k ⊂ k′ is not purely inseparable) or that X is not
geometrically reduced (if k ⊂ k′ is nontrivial purely inseparable). Details omitted.
Hence (3) implies (1). �

Lemma 17.6. Let k be a field. Let X be a variety over k. The group O(X)∗/k∗ is
a finitely generated abelian group provided at least one of the following conditions
holds:

(1) k is integrally closed in Γ(X,OX),
(2) k is algebraically closed in k(X),
(3) X is geometrically integral over k, or
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(4) k is the “intersection” of the field extensions k ⊂ κ(x) where x runs over
the closed points of x.

Proof. We see that (1) is enough by Proposition 17.5. We omit the verification
that each of (2), (3), (4) implies (1). �

18. Uniqueness of base field

The phrase “let X be a scheme over k” means that X is a scheme which comes
equipped with a morphism X → Spec(k). Now we can ask whether the field k is
uniquely determined by the scheme X. Of course this is not the case, since for
example A1

C which we ordinarily consider as a scheme over the field C of complex
numbers, could also be considered as a scheme over Q. But what if we ask that
the morphism X → Spec(k) does not factor as X → Spec(k′) → Spec(k) for any
nontrivial field extension k ⊂ k′? In other words we ask that k is somehow maximal
such that X lives over k.

An example to show that this still does not guarantee uniqueness of k is the scheme

X = Spec

(
Q(x)[y]

[
1

P (y)
, P ∈ Q[y], P 6= 0

])
At first sight this seems to be a scheme over Q(x), but on a second look it is clear
that it is also a scheme over Q(y). Moreover, the fields Q(x) and Q(y) are subfields
of R = Γ(X,OX) which are maximal among the subfields of R (details omitted).
In particular, both Q(x) and Q(y) are maximal in the sense above. Note that
both morphisms X → Spec(Q(x)) and X → Spec(Q(y)) are “essentially of finite
type” (i.e., the corresponding ring map is essentially of finite type). Hence X is a
Noetherian scheme of finite dimension, i.e., it is not completely pathological.

Another issue that can prevent uniqueness is that the scheme X may be nonreduced.
In that case there can be many different morphisms from X to the spectrum of a
given field. As an explicit example consider the dual numbers D = C[y]/(y2) =
C⊕ εC. Given any derivation θ : C→ C over Q we get a ring map

C −→ D, c 7−→ c+ εθ(c).

The subfield of C on which all of these maps are the same is the algebraic closure
of Q. This means that taking the intersection of all the fields that X can live over
may end up being a very small field if X is nonreduced.

One observation in this regard is the following: given a field k and two subfields
k1, k2 of k such that k is finite over k1 and over k2, then in general it is not the
case that k is finite over k1 ∩ k2. An example is the field k = Q(t) and its subfields
k1 = Q(t2) and Q((t + 1)2). Namely we have k1 ∩ k2 = Q in this case. So in the
following we have to be careful when taking intersections of fields.

Having said all of this we now show that if X is locally of finite type over a field,
then some uniqueness holds. Here is the precise result.

Proposition 18.1. Let X be a scheme. Let a : X → Spec(k1) and b : X →
Spec(k2) be morphisms from X to spectra of fields. Assume a, b are locally of finite
type, and X is reduced, and connected. Then we have k′1 = k′2, where k′i ⊂ Γ(X,OX)
is the integral closure of ki in Γ(X,OX).
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Proof. First, assume the lemma holds in case X is quasi-compact (we will do the
quasi-compact case below). As X is locally of finite type over a field, it is locally
Noetherian, see Morphisms, Lemma 16.6. In particular this means that it is lo-
cally connected, connected components of open subsets are open, and intersections
of quasi-compact opens are quasi-compact, see Properties, Lemma 5.5, Topology,
Lemma 6.10, Topology, Section 8, and Topology, Lemma 15.1. Pick an open cov-
ering X =

⋃
i∈I Ui such that each Ui is quasi-compact and connected. For each i

let Ki ⊂ OX(Ui) be the integral closure of k1 and of k2. For each pair i, j ∈ I we
decompose

Ui ∩ Uj =
∐

Ui,j,l

into its finitely many connected components. WriteKi,j,l ⊂ O(Ui,j,l) for the integral
closure of k1 and of k2. By Lemma 17.4 the rings Ki and Ki,j,l are fields. Now we
claim that k′1 and k′2 both equal the kernel of the map∏

Ki −→
∏

Ki,j,l, (xi)i 7−→ xi|Ui,j,l
− xj |Ui,j,l

which proves what we want. Namely, it is clear that k′1 is contained in this kernel.
On the other hand, suppose that (xi)i is in the kernel. By the sheaf condition (xi)i
corresponds to f ∈ O(X). Pick some i0 ∈ I and let P (T ) ∈ k1[T ] be a monic
polynomial with P (xi0) = 0. Then we claim that P (f) = 0 which proves that
f ∈ k1. To prove this we have to show that P (xi) = 0 for all i. Pick i ∈ I. As X
is connected there exists a sequence i0, i1, . . . , in = i ∈ I such that Uit ∩ Uit+1

6= ∅.
Now this means that for each t there exists an lt such that xit and xit+1 map to
the same element of the field Ki,j,l. Hence if P (xit) = 0, then P (xit+1) = 0. By
induction, starting with P (xi0) = 0 we deduce that P (xi) = 0 as desired.

To finish the proof of the lemma we prove the lemma under the additional hypothesis
that X is quasi-compact. By Lemma 17.4 after replacing ki by k′i we may assume
that ki is integrally closed in Γ(X,OX). This implies that O(X)∗/k∗i is a finitely
generated abelian group, see Proposition 17.5. Let k12 = k1 ∩ k2 as a subring of
O(X). Note that k12 is a field. Since

k∗1/k
∗
12 −→ O(X)∗/k∗2

we see that k∗1/k
∗
12 is a finitely generated abelian group as well. Hence there exist

α1, . . . , αn ∈ k∗1 such that every element λ ∈ k1 has the form

λ = cαe11 . . . αenn

for some ei ∈ Z and c ∈ k12. In particular, the ring map

k12[x1, . . . , xn,
1

x1 . . . xn
] −→ k1, xi 7−→ αi

is surjective. By the Hilbert Nullstellensatz, Algebra, Theorem 33.1 we conclude
that k1 is a finite extension of k12. In the same way we conclude that k2 is a finite
extension of k12. In particular both k1 and k2 are contained in the integral closure
k′12 of k12 in Γ(X,OX). But since k′12 is a field by Lemma 17.4 and since we chose ki
to be integrally closed in Γ(X,OX) we conclude that k1 = k12 = k2 as desired. �
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19. Coherent sheaves on projective space

In this section we prove some results on the cohomology of coherent sheaves on
Pn over a field which can be found in [Mum66]. These will be useful later when
discussing Quot and Hilbert schemes.

19.1. Preliminaries. Let k be a field, n ≥ 1, d ≥ 1, and let s ∈ Γ(Pn
k ,O(d)) be a

nonzero section. In this section we will write O(d) for the dth twist of the structure
sheaf on projective space (Constructions, Definitions 10.1 and 13.2). Since Pn

k is a
variety this section is regular, hence s is a regular section of O(d) and defines an
effective Cartier divisor H = Z(s) ⊂ Pn

k , see Divisors, Section 9. Such a divisor H
is called a hypersurface and if d = 1 it is called a hyperplane.

Lemma 19.2. Let k be a field. Let n ≥ 1. Let i : H → Pn
k be a hyperplane. Then

there exists an isomorphism

ϕ : Pn−1
k −→ H

such that i∗O(1) pulls back to O(1).

Proof. We have Pn
k = Proj(k[T0, . . . , Tn]). The section s corresponds to a homoge-

neous form in T0, . . . , Tn of degree 1, see Cohomology of Schemes, Section 8. Say s =∑
aiTi. Constructions, Lemma 13.6 gives that H = Proj(k[T0, . . . , Tn]/I) for the

graded ideal I defined by setting Id equal to the kernel of the map Γ(Pn
k ,O(d))→

Γ(H, i∗O(d)). By our construction of Z(s) in Divisors, Definition 9.18 we see
that on D+(Tj) the ideal of H is generated by

∑
aiTi/Tj in the polynomial ring

k[T0/Tj , . . . , Tn/Tj ]. Thus it is clear that I is the ideal generated by
∑
aiTi. Note

that

k[T0, . . . , Tn]/I = k[T0, . . . , Tn]/(
∑

aiTi) ∼= k[S0, . . . , Sn−1]

as graded rings. For example, if an 6= 0, then mapping Si equal to the class of Ti
works. We obtain the desired isomorphism by functoriality of Proj. Equality of
twists of structure sheaves follows for example from Constructions, Lemma 11.5. �

Lemma 19.3. Let k be an infinite field. Let n ≥ 1. Let F be a coherent module on
Pn
k . Then there exist a nonzero section s ∈ Γ(Pn

k ,O(1)) and a short exact sequence

0→ F(−1)→ F → i∗G → 0

where i : H → Pn
k is the hyperplane H associated to s and G = i∗F .

Proof. The map F(−1) → F comes from Constructions, Equation (10.1.2) with
n = 1, m = −1 and the section s of O(1). Let’s work out what this map looks
like if we restrict it to D+(T0). Write D+(T0) = Spec(k[x1, . . . , xn]) with xi =
Ti/T0. Identify O(1)|D+(T0) with O using the section T0. Hence if s =

∑
aiTi then

s|D+(T0) = a0 +
∑
aixi with the identification chosen above. Furthermore, suppose

F|D+(T0) corresponds to the finite k[x1, . . . , xn]-module M . Via the identification
F(−1) = F ⊗ O(−1) and our chosen trivialization of O(1) we see that F(−1)
corresponds to M as well. Thus restricting F(−1)→ F to D+(T0) gives the map

M
a0+

∑
aixi−−−−−−−→M

To see that the arrow is injective, it suffices to pick a0 +
∑
aixi outside any of

the associated primes of M , see Algebra, Lemma 62.9. By Algebra, Lemma 62.5
the set Ass(M) of associated primes of M is finite. Note that for p ∈ Ass(M) the
intersection p ∩ {a0 +

∑
aixi} is a proper k-subvector space. We conclude that
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there is a finite family of proper sub vector spaces V1, . . . , Vm ⊂ Γ(Pn
k ,O(1)) such

that if we take s outside of
⋃
Vi, then multiplication by s is injective over D+(T0).

Similarly for the restriction to D+(Tj) for j = 1, . . . , n. Since k is infinite, a finite
union of proper sub vector spaces is never equal to the whole space, hence we may
choose s such that the map is injective. The cokernel of F(−1)→ F is annihilated
by Im(s : O(−1) → O) which is the ideal sheaf of H by Divisors, Definition 9.18.
Hence we obtain G on H using Cohomology of Schemes, Lemma 9.8. �

Remark 19.4. Let k be an infinite field. Let n ≥ 1. Given a finite number of
coherent modules Fi on Pn

k we can choose a single s ∈ Γ(Pn
k ,O(1)) such that the

statement of Lemma 19.3 works for each of them. To prove this, just apply the
lemma to

⊕
Fi.

19.5. Regularity.

Definition 19.6. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

We say F is m-regular if

Hi(Pn
k ,F(m− i)) = 0

for i = 1, . . . , n.

Note that F = O(d) is m-regular if and only if d ≥ m. This follows from the
computation of cohomology groups in Cohomology of Schemes, Equation (8.1.1).
Namely, we see that Hn(Pn

k ,O(d)) = 0 if and only if d ≥ −n.

Lemma 19.7. Let k ⊂ k′ be an extension of fields. Let n ≥ 0. Let F be a coherent
sheaf on Pn

k . Let F ′ be the pullback of F to Pn
k′ . Then F is m-regular if and only

if F ′ is m-regular.

Proof. This is true because

Hi(Pn
k′ ,F ′) = Hi(Pn

k ,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 19.8. In the situation of Lemma 19.3, if F is m-regular, then G is m-
regular on H ∼= Pn−1

k .

Proof. Recall that Hi(Pn
k , i∗G) = Hi(H,G) by Cohomology of Schemes, Lemma

2.4. Hence we see that for i ≥ 1 we get

Hi(Pn
k ,F(m− i))→ Hi(H,G(m− i))→ Hi+1(Pn

k ,F(m− 1− i))
as part of the long exact sequence associated to the short exact sequence 0 →
F(m− 1− i)→ F(m− i)→ i∗G(m− i)→ 0 we obtain from the exact sequence of
Lemma 19.3 by tensoring with the invertible sheafO(m−i). The lemma follows. �

Lemma 19.9. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If F

is m-regular, then F is (m+ 1)-regular.

Proof. We prove this by induction on n. If n = 0 every sheaf is m-regular for all
m and there is nothing to prove. By Lemma 19.7 we may replace k by an infinite
overfield and assume k is infinite. Thus we may apply Lemma 19.3. By Lemma 19.8
we know that G is m-regular. By induction on n we see that G is (m+ 1)-regular.
Considering the long exact cohomology sequence associated to the sequence

0→ F(m− i)→ F(m+ 1− i)→ i∗G(m+ 1− i)→ 0
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the reader easily deduces for i ≥ 1 the vanishing of Hi(Pn
k ,F(m+ 1− i)) from the

(known) vanishing of Hi(Pn
k ,F(m− i)) and Hi(Pn

k ,G(m+ 1− i)). �

Lemma 19.10. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then the multiplication map

H0(Pn
k ,F(m))⊗k H0(Pn

k ,O(1)) −→ H0(Pn
k ,F(m+ 1))

is surjective.

Proof. Let k ⊂ k′ be an extension of fields. Let F ′ be as in Lemma 19.7. By
Cohomology of Schemes, Lemma 5.2 the base change of the linear map of the
lemma to k′ is the same linear map for the sheaf F ′. Since k → k′ is faithfully flat
it suffices to prove the lemma over k′, i.e., we may assume k is infinite.

Assume k is infinite. We prove the lemma by induction on n. The case n = 0 is
trivial as O(1) ∼= O is generated by T0. For n > 0 apply Lemma 19.3 and tensor
the sequence by O(m+ 1) to get

0→ F(m)
s−→ F(m+ 1)→ i∗G(m+ 1)→ 0

Let t ∈ H0(Pn
k ,F(m+1)). By induction the image t ∈ H0(H,G(m+1)) is the image

of
∑
gi ⊗ si with si ∈ Γ(H,O(1)) and gi ∈ H0(H,G(m)). Since F is m-regular we

have H1(Pn
k ,F(m − 1)) = 0, hence long exact cohomology sequence associated to

the short exact sequence

0→ F(m− 1)
s−→ F(m)→ i∗G(m)→ 0

shows we can lift gi to fi ∈ H0(Pn
k ,F(m)). We can also lift si to si ∈ H0(Pn

k ,O(1))
(see proof of Lemma 19.2 for example). After substracting the image of

∑
fi ⊗ si

from t we see that we may assume t = 0. But this exactly means that t is the image
of f ⊗ s for some f ∈ H0(Pn

k ,F(m)) as desired. �

Lemma 19.11. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . If

F is m-regular, then F(m) is globally generated.

Proof. For all d� 0 the sheaf F(d) is globally generated. This follows for example
from the first part of Cohomology of Schemes, Lemma 15.1. Pick d ≥ m such that
F(d) is globally generated. Choose a basis f1, . . . , fr ∈ H0(Pn

k ,F). By Lemma
19.10 every element f ∈ H0(Pn

k ,F(d)) can be written as f =
∑
Pifi for some

Pi ∈ k[T0, . . . , Tn] homogeneous of degree d − m. Since the sections f generate
F(d) it follows that the sections fi generate F(m). �

19.12. Hilbert polynomials. Let k be a field. Let X be a proper scheme over
k. Let F be a coherent OX -module. In this situation the Euler characteristic of F
is the integer

χ(X,F) =
∑

(−1)i dimkH
i(X,F).

Note that only a finite number of the vector spaces Hi(X,F) are nonzero (Coho-
mology of Schemes, Lemma 4.4) and that each of these spaces is finite dimensional
(Cohomology of Schemes, Lemma 17.4). Thus χ(X,F) ∈ Z is well defined. Observe
that this definition depends on the field k and not just on the pair (X,F).

Lemma 19.13. Let k be a field. Let X be a proper scheme over k. Let 0→ F1 →
F2 → F3 → 0 be a short exact sequence of coherent modules on X. Then

χ(X,F2) = χ(X,F1) + χ(X,F3)
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Proof. Consider the long exact sequence of cohomology

0→ H0(X,F1)→ H0(X,F2)→ H0(X,F3)→ H1(X,F1)→ . . .

associated to the short exact sequence of the lemma. The rank-nullity theorem in
linear algebra shows that

0 = dimH0(X,F1)− dimH0(X,F2) + dimH0(X,F3)− dimH1(X,F1) + . . .

This immediately implies the lemma. �

Lemma 19.14. Let k ⊂ k′ be an extension of fields. Let X be a proper scheme
over k. Let F be a coherent sheaf on X. Let F ′ be the pullback of F to Xk′ . Then
χ(X,F) = χ(X ′,F ′).

Proof. This is true because

Hi(Xk′ ,F ′) = Hi(X,F)⊗k k′

by flat base change, see Cohomology of Schemes, Lemma 5.2. �

Lemma 19.15. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k . The

function

d 7−→ χ(Pn
k ,F(d))

is a polynomial.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and

F(d) = F . Hence in this case the function is constant, i.e., a polynomial of degree
0. Assume n > 0. By Lemma 19.14 we may assume k is infinite. Apply Lemma
19.3. Applying Lemma 19.13 to the twisted sequences 0 → F(d − 1) → F(d) →
i∗G(d)→ 0 we obtain

χ(Pn
k ,F(d))− χ(Pn

k ,F(d− 1)) = χ(H,G(d))

(this also uses the identification of the cohomology of i∗G with the cohomology of
G, see Cohomology of Schemes, Lemma 2.4). Since H ∼= Pn−1

k (Lemma 19.2) by
induction the right hand side is a polynomial. The lemma is finished by noting that
any function f : Z → Z with the property that the map d 7→ f(d) − f(d − 1) is a
polynomial, is itself a polynomial. We omit the proof of this fact (hint: compare
with Algebra, Lemma 57.5). �

Definition 19.16. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k .

The function d 7→ χ(Pn
k ,F(d)) is called the Hilbert polynomial of F .

The Hilbert polynomial has coefficients in Q and not in general in Z. For example
the Hilbert polynomial of OPn

k
is

d 7−→
(
d+ n

n

)
=
dn

n!
+ . . .

This follows from the following lemma and the fact that

H0(Pn
k ,OPn

k
) = k[T0, . . . , Tn]d

(degree d part) whose dimension over k is
(
d+n
n

)
.
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Lemma 19.17. Let k be a field. Let n ≥ 0. Let F be a coherent sheaf on Pn
k with

Hilbert polynomial P ∈ Q[t]. Then

P (d) = dimkH
0(Pn

k ,F(d))

for all d� 0.

Proof. This follows from the vanishing of cohomology of high enough twists of F .
See Cohomology of Schemes, Lemma 15.1. �

19.18. Boundedness of quotients. In this subsection we bound the regularity
of quotients of a given coherent sheaf on Pn in terms of the Hilbert polynomial.

Lemma 19.19. Let k be a field. Let n ≥ 0. Let r ≥ 1. Let P ∈ Q[t]. There exists
an integer m depending on n, r, and P with the following property: if

0→ K → O⊕r → F → 0

is a short exact sequence of coherent sheaves on Pn
k and F has Hilbert polynomial

P , then K is m-regular.

Proof. We prove this by induction on n. If n = 0, then Pn
k = Spec(k) and any

coherent module is 0-regular and any surjective map is surjective on global sections.
Assume n > 0. Consider an exact sequence as in the lemma. Let P ′ ∈ Q[t] be the
polynomial P ′(t) = P (t)−P (t−1). Let m′ be the integer which works for n−1, r,
and P ′. By Lemmas 19.7 and 19.14 we may replace k by a field extension, hence we
may assume k is infinite. Apply Lemma 19.3 to the coherent sheaf F . The Hilbert
polynomial of F ′ = i∗F is P ′ (see proof of Lemma 19.15). Since i∗ is right exact we
see that F ′ is a quotient of O⊕rH = i∗O⊕r. Thus the induction hypothesis applies

to F ′ on H ∼= Pn−1
k (Lemma 19.2). Note that the map K(−1)→ K is injective as

K ⊂ O⊕r and has cokernel i∗H where H = i∗K. By the snake lemma (Homology,
Lemma 5.17) we obtain a commutative diagram with exact columns and rows

0

��

0

��

0

��
0 // K(−1) //

��

O⊕r(−1) //

��

F(−1)

��

// 0

0 // K //

��

O⊕r //

��

F

��

// 0

0 // i∗H //

��

i∗O⊕rH //

��

i∗F ′ //

��

0

0 0 0

Thus the induction hypothesis applies to the exact sequence 0 → H → O⊕rH →
F ′ → 0 on H ∼= Pn−1

k (Lemma 19.2) and H is m′-regular. Recall that this implies
that H is d-regular for all d ≥ m′ (Lemma 19.9).

Let i ≥ 2 and d ≥ m′. It follows from the long exact cohomology sequence associ-
ated to the left column of the diagram above and the vanishing of Hi−1(H,H(d))
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that the map

Hi(Pn
k ,K(d− 1)) −→ Hi(Pn

k ,K(d))

is injective. As these groups are zero for d � 0 (Cohomology of Schemes, Lemma
15.1) we conclude Hi(Pn

k ,K(d)) are zero for all d ≥ m′ and i ≥ 2.

We still have to control H1. First we observe that all the maps

H1(Pn
k ,K(m′ − 1))→ H1(Pn

k ,K(m′))→ H1(Pn
k ,K(m′ + 1))→ . . .

are surjective by the vanishing of H1(H,H(d)) for d ≥ m′. Suppose d > m′ is such
that

H1(Pn
k ,K(d− 1)) −→ H1(Pn

k ,K(d))

is injective. Then H0(Pn
k ,K(d)) → H0(H,H(d)) is surjective. Consider the com-

mutative diagram

H0(Pn
k ,K(d))⊗k H0(Pn

k ,O(1)) //

��

H0(Pn
k ,K(d+ 1))

��
H0(H,H(d))⊗k H0(H,OH(1)) // H0(H,H(d+ 1))

By Lemma 19.10 we see that the bottom horizontal arrow is surjective. Hence the
right vertical arrow is surjective. We conclude that

H1(Pn
k ,K(d)) −→ H1(Pn

k ,K(d+ 1))

is injective. By induction we see that

H1(Pn
k ,K(d− 1))→ H1(Pn

k ,K(d))→ H1(Pn
k ,K(d+ 1))→ . . .

are all injective and we conclude that H1(Pn
k ,K(d−1)) = 0 because of the eventual

vanishing of these groups. Thus the dimensions of the groups H1(Pn
k ,K(d)) for

d ≥ m′ are strictly decreasing until they become zero. It follows that the regularity
of K is bounded by m′+dimkH

1(Pn
k ,K(m′)). On the other hand, by the vanishing

of the higher cohomology groups we have

dimkH
1(Pn

k ,K(m′)) = −χ(Pn
k ,K(m′)) + dimkH

0(Pn
k ,K(m′))

Note that the H0 has dimension bounded by the dimension of H0(Pn
k ,O⊕r(m′))

which is at most r
(
n+m′

n

)
if m′ > 0 and zero if not. Finally, the term χ(Pn

k ,K(m′))

is equal to r
(
n+m′

n

)
− P (m′). This gives a bound of the desired type finishing the

proof of the lemma. �

20. Glueing dimension one rings

This section contains some algebraic preliminaries to proving that a finite set of
codimension 1 points of a separated scheme is contained in an affine open.

Situation 20.1. Here we are given a commutative diagram of rings

A // K

R

OO

// B

OO

where K is a field and A, B are subrings of K with fraction field K. Finally,
R = A×K B = A ∩B.
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Lemma 20.2. In Situation 20.1 assume that B is a valuation ring. Then for every
unit u of A either u ∈ R or u−1 ∈ R.

Proof. Namely, if the image c of u in K is in B, then u ∈ R. Otherwise, c−1 ∈ B
(Algebra, Lemma 48.3) and u−1 ∈ R. �

The following lemma explains the meaning of the condition “A⊗B → K is surjec-
tive” which comes up quite a bit in the following.

Lemma 20.3. In Situation 20.1 assume A is a Noetherian ring of dimension 1.
The following are equivalent

(1) A⊗B → K is not surjective,
(2) there exists a discrete valuation ring O ⊂ K containing both A and B.

Proof. It is clear that (2) implies (1). On the other hand, if A ⊗ B → K is not
surjective, then the image C ⊂ K is not a field hence C has a nonzero maximal
ideal m. Choose a valuation ring O ⊂ K dominating Cm. By Algebra, Lemma
115.11 applied to A ⊂ O the ring O is Noetherian. Hence O is a valuation ring by
Algebra, Lemma 48.18. �

Lemma 20.4. In Situation 20.1 assume

(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a discrete valuation ring,

Then we have the following two possibilities

(a) If A∗ is not contained in R, then Spec(A) → Spec(R) and Spec(B) →
Spec(R) are open immersions and K = A⊗R B.

(b) If A∗ is contained in R, then B dominates one of the local rings of A at a
maximal ideal and A⊗B → K is not surjective.

Proof. Assumption (a) implies there is a unit of A whose image in K lies in the
maximal ideal of B. Then u is a nonzerodivisor of R and for every a ∈ A there
exists an n such that una ∈ R. It follows that A = Ru.

Let mA be the radical of A. Let x ∈ mA be a nonzero element. Since dim(A) = 1
we see that K = Ax. After replacing x by xnum for some n ≥ 1 and m ∈ Z we
may assume x maps to a unit of B. We see that for every b ∈ B we have that xnb
in the image of R for some n. Thus B = Rx.

Let z ∈ R. If z 6∈ mA and z does not map to an element of mB , then z is invertible.
Thus x+ u is invertible in R. Hence Spec(R) = D(x) ∪D(u). We have seen above
that D(u) = Spec(A) and D(x) = Spec(B).

Case (b). If x ∈ mA, then 1 + x is a unit and hence 1 + x ∈ R, i.e, x ∈ R. Thus
we see that mA ⊂ R ⊂ A. In fact, in this case A is integral over R. Namely, write
A/mA = κ1 × . . . × κn as a product of fields. Say x = (c1, . . . , cr, 0, . . . , 0) is an
element with ci 6= 0. Then

x2 − x(c1, . . . , cr, 1, . . . , 1) = 0

Since R contains all units we see that A/mA is integral over the image of R in
it, and hence A is integral over R. It follows that R ⊂ A ⊂ B as B is integrally
closed. Moreover, if x ∈ mA is nonzero, then K = Ax =

⋃
x−nA =

⋃
x−nR. Hence

x−1 6∈ B, i.e., x ∈ mB . We conclude mA ⊂ mB . Thus A∩mB is a maximal ideal of
A thereby finishing the proof. �
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Lemma 20.5. Let B be a semi-local Noetherian domain of dimension 1. Let B′

be the integral closure of B in its fraction field. Then B′ is a semi-local Dedekind
domain. Let x be a nonzero element of the radical of B′. Then for every y ∈ B′
there exists an n such that xny ∈ B.

Proof. Let mB be the radical of B. The structure of B′ results from Algebra,
Lemma 116.14. Given x, y ∈ B′ as in the statement of the lemma consider the
subring B ⊂ A ⊂ B′ generated by x and y. Then A is finite over B (Algebra,
Lemma 35.5). Since the fraction fields of B and A are the same we see that the
finite module A/B is supported on the set of closed points of B. Thus mnBA ⊂ B
for a suitable n. Moreover, Spec(B′) → Spec(A) is surjective (Algebra, Lemma
35.15), hence A is semi-local as well. It also follows that x is in the radical mA of
A. Note that mA =

√
mBA. Thus xmy ∈ mBA for some m. Then xnmy ∈ B. �

Lemma 20.6. In Situation 20.1 assume

(1) A is a Noetherian semi-local domain of dimension 1,
(2) B is a Noetherian semi-local domain of dimension 1,
(3) A⊗B → K is surjective.

Then Spec(A)→ Spec(R) and Spec(B)→ Spec(R) are open immersions and K =
A⊗R B.

Proof. Special case: B is integrally closed in K. This means that B is a Dedekind
domain (Algebra, Lemma 116.13) whence all of its localizations at maximal ideals
are discrete valuation rings. Let m1, . . . ,mr be the maximal ideals of B. We set

R1 = A×K Bm1

Observing that A ⊗R1
Bm1

→ K is surjective we conclude from Lemma 20.4 that
A and Bm1

define open subschemes covering Spec(R1) and that K = A ⊗R1
Bm1

.
In particular R1 is a semi-local Noetherian ring of dimension 1. By induction we
define

Ri+1 = Ri ×K Bmi+1

for i = 1, . . . , r−1. Observe that R = Rn because B = Bm1
∩. . .∩Bmr

(see Algebra,
Lemma 146.6). It follows from the inductive procedure that R→ A defines an open
immersion Spec(A)→ Spec(R). On the other hand, the maximal ideals ni of R not
in this open correspond to the maximal ideals mi of B and in fact the ring map
R→ B defines an isomorphisms Rni

→ Bmi
(details omitted; hint: in each step we

added exactly one maximal ideal to Spec(Ri)). It follows that Spec(B)→ Spec(R)
is an open immersion as desired.

General case. Let B′ ⊂ K be the integral closure of B. See Lemma 20.5. Then
the special case applies to R′ = A ×K B′. Pick x ∈ R′ which is not contained in
the maximal ideals of A and is contained in the maximal ideals of B′ (see Algebra,
Lemma 14.3). By Lemma 20.5 there exists an integer n such that xn ∈ R = A×KB.
Replace x by xn so x ∈ R. For every y ∈ R′ there exists an integer n such that
xny ∈ R. On the other hand, it is clear that R′x = A. Thus Rx = A. Exchanging
the roles of A and B we also find an y ∈ R such that B = Ry. Note that inverting
both x and y leaves no primes except (0). Thus K = Rxy = Rx ⊗R Ry. This
finishes the proof. �

Lemma 20.7. Let K be a field. Let A1, . . . , Ar ⊂ K be Noetherian semi-local rings
of dimension 1 with fraction field K. If Ai ⊗ Aj → K is surjective for all i 6= j,
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then there exists a Noetherian semi-local domain A ⊂ K of dimension 1 containing
A1, . . . , Ar such that

(1) A→ Ai induces an open immersion ji : Spec(Ai)→ Spec(A),
(2) Spec(A) is the union of the opens ji(Spec(Ai)),
(3) each closed point of Spec(A) lies in exactly one of these opens.

Proof. Namely, we can take A = A1∩ . . .∩Ar. First we note that (3), once (1) and
(2) have been proven, follows from the assumption that Ai ⊗Aj → K is surjective
since if m ∈ ji(Spec(Ai)) ∩ jj(Spec(Aj)), then Ai ⊗ Aj → K ends up in Am. To
prove (1) and (2) we argue by induction on r. If r > 1 by induction we have the
results (1) and (2) for B = A2 ∩ . . . ∩ Ar. Then we apply Lemma 20.6 to see they
hold for A = A1 ∩B. �

Lemma 20.8. Let A be a domain with fraction field K. Let B1, . . . , Br ⊂ K be
Noetherian 1-dimensional semi-local rings whose fraction fields are K. If A⊗Bi →
K are surjective for i = 1, . . . , r, then there exists an x ∈ A such that x−1 is in the
radical of Bi for i = 1, . . . , r.

Proof. Let B′i be the integral closure of Bi in K. Suppose we find a nonzero x ∈ A
such that x−1 is in the radical of B′i for i = 1, . . . , r. Then by Lemma 20.5, after
replacing x by a power we get x−1 ∈ Bi. Since Spec(B′i) → Spec(Bi) is surjective
we see that x−1 is then also in the radical of Bi. Thus we may assume that each
Bi is a semi-local Dedekind domain.

If Bi is not local, then remove Bi from the list and add back the finite collection
of local rings (Bi)m. Thus we may assume that Bi is a discrete valuation ring for
i = 1, . . . , r.

Let vi : K → Z, i = 1, . . . , r be the corresponding discrete valuations (see Algebra,
Lemma 116.13). We are looking for a nonzero x ∈ A with vi(x) < 0 for i = 1, . . . , r.
We will prove this by induction on r.

If r = 1 and the result is wrong, then A ⊂ B and the map A ⊗ B → K is not
surjective, contradiction.

If r > 1, then by induction we can find a nonzero x ∈ A such that vi(x) < 0 for
i = 1, . . . , r − 1. If vr(x) < 0 then we are done, so we may assume vr(x) ≥ 0. By
the base case we can find y ∈ A nonzero such that vr(y) < 0. After replacing x by
a power we may assume that vi(x) < vi(y) for i = 1, . . . , r − 1. Then x + y is the
element we are looking for. �

Lemma 20.9. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let a1, a2 ∈ mA map to the
same element of L. Then an1 = an2 for some n > 0.

Proof. Write a1 = a2 + x. Then x maps to zero in L. Hence x is a nilpotent
element of A because

⋂
p is the radical of (0) and the annihilator I of x contains a

power of the maximal ideal because p 6∈ V (I) for all minimal primes. Say xk = 0
and mn ⊂ I. Then

ak+n
1 = ak+n

2 +

(
n+ k

1

)
an+k−1

2 x+

(
n+ k

2

)
an+k−2

2 x2+. . .+

(
n+ k

k − 1

)
an+1

2 xk−1 = an+k
2

because a2 ∈ mA. �
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Lemma 20.10. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

and I =
⋂
p where the product and intersection are over the minimal primes of A.

Let f ∈ L be an element of the form f = i + a where a ∈ mA and i ∈ IL. Then
some power of f is in the image of A→ L.

Proof. Since A is Noetherian we have It = 0 for some t > 0. Suppose that we
know that f = a + i with i ∈ IkL. Then fn = an + nan−1i mod Ik+1L. Hence it
suffices to show that nan−1i is in the image of Ik → IkL for some n � 0. To see
this, pick a g ∈ A such that mA =

√
(g) (Algebra, Lemma 59.7). Then L = Ag for

example by Algebra, Proposition 59.6. On the other hand, there is an n such that
an ∈ (g). Hence we can clear denominators for elements of L by multiplying by a
high power of a. �

Lemma 20.11. Let A be a Noetherian local ring of dimension 1. Let L =
∏
Ap

where the product is over the minimal primes of A. Let K → L be an integral ring
map. Then there exist a ∈ mA and x ∈ K which map to the same element of L
such that mA =

√
(a).

Proof. By Lemma 20.10 we may replace A by A/(
⋂

p) and assume that A is
a reduced ring (some details omitted). We may also replace K by the image of
K → L. Then K is a reduced ring. The map Spec(L)→ Spec(K) is surjective and
closed (details omitted). Hence Spec(K) is a finite discrete space. It follows that
K is a finite product of fields.

Let pj , j = 1, . . . ,m be the minimal primes of A. Set Lj = f.f.(Aj) so that
L =

∏
j=1,...,m Lj . Let Aj be the normalization of A/pj . Then Aj is a semi-local

Dedekind domain with at least one maximal ideal, see Algebra, Lemma 116.14. Let
n be the sum of the numbers of maximal ideals in A1, . . . , Am. For such a maximal
ideal m ⊂ Aj we consider the function

vm : L→ Lj → Z ∪ {∞}
where the second arrow is the discrete valuation corresponding to the discrete val-
uation ring (Aj)m extended by mapping 0 to ∞. In this way we obtain n functions
v1, . . . , vn : L → Z ∪ {∞}. We will find an element x ∈ K such that vi(x) < 0 for
all i = 1, . . . , n.

First we claim that for each i there exists an element x ∈ K with vi(x) < 0.
Namely, suppose that vi corresponds to m ⊂ Aj . If vi(x) ≥ 0 for all x ∈ K, then
K maps into (Aj)m inside of Lj = f.f.(Aj). The image of K in Lj is a field over
Lj is algebraic by Algebra, Lemma 35.16. Combined we get a contradiction with
Algebra, Lemma 48.7.

Suppose we have found an element x ∈ K such that v1(x) < 0, . . . , vr(x) < 0 for
some r < n. If vr+1(x) < 0, then x works for r+ 1. If not, then choose some y ∈ K
with vr+1(y) < 0 as is possible by the result of the previous paragraph. After
replacing x by xn for some n > 0, we may assume vi(x) < vi(y) for i = 1, . . . , r.
Then vj(x+y) = vj(x) < 0 for j = 1, . . . , r by properties of valuations and similarly
vr+1(x + y) = vr+1(y) < 0. Arguing by induction, we find x ∈ K with vi(x) < 0
for i = 1, . . . , n.

In particular, the element x ∈ K has nonzero projection in each factor of K (recall
that K is a finite product of fields and if some component of x was zero, then one
of the values vi(x) would be ∞). Hence x is invertible and x−1 ∈ K is an element

http://localhost:8080/tag/0AB3
http://localhost:8080/tag/0AB4


VARIETIES 41

with ∞ > vi(x
−1) > 0 for all i. It follows from Lemma 20.5 that for some e < 0

the element xe ∈ K maps to an element of mA/pj ⊂ A/pj for all j = 1, . . . ,m.
Observe that the cokernel of the map mA →

∏
mA/pj is annihilated by a power

of mA. Hence after replacing e by a more negative e, we find an element a ∈ mA
whose image in mA/pj is equal to the image of xe. The pair (a, xe) satisfies the
conclusions of the lemma. �

Lemma 20.12. Let A be a ring. Let p1, . . . , pr be a finite set of a primes of A.
Let S = A \

⋃
pi. Then S is a multiplicative system and S−1A is a semi-local ring

whose maximal ideals correspond to the maximal elements of the set {pi}.

Proof. If a, b ∈ A and a, b ∈ S, then a, b 6∈ pi hence ab 6∈ pi, hence ab ∈ S. Also
1 ∈ S. Thus S is a multiplicative subset of A. By the description of Spec(S−1A) in
Algebra, Lemma 16.5 and by Algebra, Lemma 14.2 we see that the primes of S−1A
correspond to the primes of A contained in one of the pi. Hence the maximal ideals
of S−1A correspond one-to-one with the maximal (w.r.t. inclusion) elements of the
set {p1, . . . , pr}. �

21. One dimensional Noetherian schemes

Some material leading up to a discussion of algebraic curves.

Lemma 21.1. Let X be a scheme all of whose local rings are Noetherian of di-
mension ≤ 1. Let U ⊂ X be a retrocompact open. Denote j : U → X the inclusion
morphism. Then Rpj∗F = 0, p > 0 for every quasi-coherent OU -module F .

Proof. We may check the vanishing of Rpj∗F at stalks. Formation of Rqj∗ com-
mutes with flat base change, see Cohomology of Schemes, Lemma 5.2. Thus we
may assume that X is the spectrum of a Noetherian local ring of dimension ≤ 1. In
this case X has a closed points x and finitely many other points x1, . . . , xn which
specialize to x but not each other (see Algebra, Lemma 30.6). If x ∈ U , then
U = X and the result is clear. If not, then U = {x1, . . . , xr} for some r after
possibly renumbering the points. Then U is affine (Schemes, Lemma 11.7). Thus
the result by Cohomology of Schemes, Lemma 2.3. �

Lemma 21.2. Let X be an affine scheme all of whose local rings are Noetherian
of dimension ≤ 1. Then any quasi-compact open U ⊂ X is affine.

Proof. Denote j : U → X the inclusion morphism. Let F be a quasi-coherent
OU -module. By Lemma 21.1 the higher direct images Rpj∗F are zero. The OX -
module j∗F is quasi-coherent (Schemes, Lemma 24.1). Hence it has vanishing
higher cohomology groups by Cohomology of Schemes, Lemma 2.2. By the Leray
spectral sequence Cohomology, Lemma 14.6 we have Hp(U,F) = 0 for all p > 0.
Thus U is affine, for example by Cohomology of Schemes, Lemma 3.1. �

Lemma 21.3. Let X be a scheme. Let U ⊂ X be an open. Assume

(1) U is a retrocompact open of X,
(2) X \ U is discrete, and
(3) for x ∈ X \ U the local ring OX,x is Noetherian of dimension ≤ 1.

Then (1) there exists an invertible OX-module L and a section s such that U = Xs

and (2) the map Pic(X)→ Pic(U) is surjective.
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Proof. Let X \ U = {xi; i ∈ I}. Choose affine opens Ui ⊂ X with xi ∈ X and
xj 6∈ Ui for j 6= i. This is possible by condition (2). Say Ui = Spec(Ai). Let
mi ⊂ Ai be the maximal ideal corresponding to xi. By our assumption on the
local rings there are only a finite number of prime ideals q ⊂ mi, q 6= mi (see
Algebra, Lemma 30.6). Thus by prime avoidance (Algebra, Lemma 14.2) we can
find fi ∈ mi not contained in any of those primes. Then V (fi) = {mi}qZi for some
closed subset Zi ⊂ Ui because Zi is a retrocompact open subset of V (fi) closed
under specialization, see Algebra, Lemma 40.7. After shrinking Ui we may assume
V (fi) = {xi}. Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗X given by fi on
U ∩Ui and by fi/fj on Ui ∩Uj . This defines a line bundle L such that the section
s defined by 1 on U and fi on Ui is as in the statement of the lemma.

LetN be an invertibleOU -module. Let Ni be the invertible (Ai)fi module such that

N|U∩Ui is equal to Ñi. Observe that (Ami)fi is an Artinian ring (as a dimension
zero Noetherian ring, see Algebra, Lemma 59.4). Thus it is a product of local rings
(Algebra, Lemma 51.6) and hence has trivial Picard group. Thus, after shrinking
Ui (i.e., after replacing Ai by (Ai)g for some g ∈ Ai, g 6∈ mi) we can assume that
Ni = (Ai)fi , i.e., that N|U∩Ui

is trivial. In this case it is clear how to extend N to
an invertible sheaf over X (by extending it by a trivial invertible module over each
Ui). �

Lemma 21.4. Let X be an integral separated scheme. Let U ⊂ X be a nonempty
affine open such that X \U is a finite set of points x1, . . . , xr with OX,xi

Noetherian
of dimension 1. Then there exists a globally generated invertible OX-module L and
a section s such that U = Xs.

Proof. Say U = Spec(A) and let K be the fraction field of X. Write Bi = OX,xi

and mi = mxi
. Since xi 6∈ U we see that the open U ×X Spec(Bi) of Spec(Bi) has

only one point, i.e., U ×X Spec(Bi) = Spec(K). Since X is separated, we find that
Spec(K) is a closed subscheme of U × Spec(Bi), i.e., the map A ⊗ Bi → K is a
surjection. By Lemma 20.8 we can find a nonzero f ∈ A such that f−1 ∈ mi for
i = 1, . . . , r. Pick opens xi ∈ Ui ⊂ X such that f−1 ∈ O(Ui). Then

U : X = U ∪
⋃
Ui

is an open covering of X. Consider the 2-cocycle with values in O∗X given by f on
U ∩ Ui and by 1 on Ui ∩ Uj . This defines a line bundle L with two sections:

(1) a section s defined by 1 on U and f−1 on Ui is as in the statement of the
lemma, and

(2) a section t defined by f on U and 1 on Ui.

Note that Xt ⊃ U1 ∪ . . . ∪ Ur. Hence s, t generate L and the lemma is proved. �

Lemma 21.5. Let X be a quasi-compact scheme. If for every x ∈ X there exists a
pair (L, s) consisting of a globally generated invertible sheaf L and a global section
s such that x ∈ Xs and Xs is affine, then X has an ample invertible sheaf.

Proof. Since X is quasi-compact we can find a finite collection (Li, si), i = 1, . . . , n
of pairs such that Xsi is affine and X =

⋃
Xsi . Again because X is quasi-compact
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we can find, for each i, a finite collection of sections ti,j , j = 1, . . . ,mi such that
X =

⋃
Xti,j . Set ti,0 = si. Consider the invertible sheaf

L = L1 ⊗OX
. . .⊗OX

Ln
and the global sections

τJ = t1,j1 ⊗ . . .⊗ tn,jn
By Properties, Lemma 24.4 the open XτJ is affine as soon as ji = 0 for some i. It is
a simple matter to see that these opens cover X. Hence L is ample by definition. �

Lemma 21.6. Let X be a Noetherian integral separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Choose an affine open covering X = U1 ∪ . . . ∪Un. Since X is Noetherian,
each of the sets X \ Ui is finite. Thus by Lemma 21.4 we can find a pair (Li, si)
consisting of a globally generated invertible sheaf Li and a global section si such
that Ui = Xsi . We conclude that X has an ample invertible sheaf by Lemma
21.5. �

Lemma 21.7. Let X be a scheme. Let Z1, . . . , Zn ⊂ X be closed subschemes. Let
Li be an invertible sheaf on Zi. Assume that

(1) X is reduced,
(2) X =

⋃
Zi set theoretically, and

(3) Zi ∩ Zj is a discrete topological space for i 6= j.

Then there exists an invertible sheaf L on X whose restriction to Zi is Li. Moreover,
if we are given sections si ∈ Γ(Zi,Li) which are nonvanishing at the points of
Zi ∩ Zj, then we can choose L such that there exists a s ∈ Γ(X,L) with s|Zi = si
for all i.

Proof. Set T =
⋃
i 6=j Zi ∩ Zj . As X is reduced we have

X \ T =
⋃

(Zi \ T )

as schemes. Assumption (3) implies T is a discrete subset of X. Thus for each
t ∈ T we can find an open Ut ⊂ X with t ∈ Ut but t′ 6∈ Ut for t′ ∈ T , t′ 6= t.
By shrinking Ut if necessary, we may assume that there exist isomorphisms ϕt,i :
Li|Ut∩Zi → OUt∩Zi . Furthermore, for each i choose an open covering

Zi \ T =
⋃

j
Uij

such that there exist isomorphisms ϕi,j : Li|Uij
∼= OUij . Observe that

U : X =
⋃
Ut ∪

⋃
Uij

is an open covering of X. We claim that we can use the isomorphisms ϕt,i and ϕi,j
to define a 2-cocycle with values in O∗X for this covering that defines L as in the
statement of the lemma.

Namely, if i 6= i′, then Ui,j ∩Ui′,j′ = ∅ and there is nothing to do. For Ui,j ∩Ui,j′ we
have OX(Ui,j ∩Ui,j′) = OZi

(Ui,j ∩Ui,j′) by the first remark of the proof. Thus the

transition function for Li (more precisely ϕi,j ◦ϕ−1
i,j′) defines the value of our cocycle

on this intersection. For Ut ∩ Ui,j we can do the same thing as before. Finally, for
t 6= t′ we have

Ut ∩ Ut′ =
∐

(Ut ∩ Ut′) ∩ Zi
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and moreover the intersections Ut ∩ Ut′ ∩ Zi is contained in Zti \ T . Hence by the
same reasoning as before we see that

OX(Ut ∩ Ut′) =
∏
OZi

(Ut ∩ Ut′ ∩ Zi)

and we can use the transition functions fpr Li (more precisely ϕt,i ◦ϕ−1
t′,i) to define

the value of our cocycle on Ut ∩ Ut′ . This finishes the proof of existence of L.

Given sections si as in the last assertion of the lemma, in the argument above,
we choose Ut such that si|Ut∩Zi is nonvanishing and we choose ϕt,i such that
ϕt,i(si|Ut∩Zi) = 1. Then using 1 over Ut and ϕi,j(si|Ui,j ) over Ui,j will define a
section of L which restricts to si over Zi. �

Remark 21.8. Let A be a reduced ring. Let I, J be ideals of A such that V (I) ∪
V (J) = Spec(A). Set B = A/J . Then I → IB is an isomorphism of A-modules.
Namely, we have IB = I + J/J = I/(I ∩ J) and I ∩ J is zero because A is reduced
and Spec(A) = V (I) ∪ V (J) = V (I ∩ J). Thus for any projective A-module P we
also have IP = I(P/JP ).

Lemma 21.9. Let X be a Noetherian reduced separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Zi, i = 1, . . . , n be the irreducible components of X. We view these
as reduced closed subschemes of X. By Lemma 21.6 there exist ample invertible
sheaves Li on Zi. Set T =

⋃
i 6=j Zi ∩ Zj . As X is Noetherian of dimension 1, the

set T is finite and consists of closed points of X. For each i we may, possibly after
replacing Li by a power, choose si ∈ Γ(Zi,Li) such that (Zi)si is affine and contains
T ∩ Zi, see Properties, Lemma 27.6.

By Lemma 21.7 we can find an invertible sheaf L on X and s ∈ Γ(X,L) such that
(L, s)|Zi

= (Li, si). Observe that Xs contains T and is set theoretically equal to the
affine closed subschemes (Zi)si . Thus it is affine by Limits, Lemma 10.3. To finish
the proof, it suffices to find for every x ∈ X, x 6∈ T an integer m > 0 and a section
t ∈ Γ(X,L⊗m) such that Xt is affine and x ∈ Xt. Since x 6∈ T we see that x ∈ Zi
for some unique i, say i = 1. Let Z ⊂ X be the reduced closed subscheme whose
underlying topological space is Z2 ∪ . . . ∪ Zn. Let I ⊂ OX be the ideal sheaf of
Z. Denote that I1 ⊂ OZ1

the inverse image of this ideal sheaf under the inclusion
morphism Z1 → X. Observe that

Γ(X, IL⊗m) = Γ(Z1, I1L⊗m1 )

see Remark 21.8. Thus it suffices to find m > 0 and t ∈ Γ(Z1, I1L⊗m1 ) with
x ∈ (Z1)t affine. Since L1 is ample and since x is not in Z1∩T = V (I1) we can find
a section t1 ∈ Γ(Z1, I1L⊗m1

1 ) with x ∈ (Z1)t1 , see Properties, Proposition 24.14.
Since L1 is ample we can find a section t2 ∈ Γ(Z1,L⊗m2

1 ) with x ∈ (Z1)t2 and
(Z1)t2 affine, see Properties, Definition 24.1. Set m = m1 +m2 and t = t1t2. Then
t ∈ Γ(Z1, I1L⊗m1 ) with x ∈ (Z1)t by construction and (Z1)t is affine by Properties,
Lemma 24.4. �

Lemma 21.10. Let i : Z → X be a closed immersion of schemes inducing a
homeomorphism on underlying topological spaces. If the underlying topological space
of X is Noetherian and dim(X) ≤ 1, then Pic(X)→ Pic(Z) is surjective.
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Proof. Consider the short exact sequence

0→ (1 + I)∗ → O∗X → O∗Z → 0

of sheaves of abelian groups on X. Since dim(X) ≤ 1 we see that H2(X,F) =
0 for any abelian sheaf F , see Cohomology, Proposition 21.6. Hence the map
H1(X,O∗X) → H1(Z,O∗Z) is surjective. This proves the lemma by Cohomology,
Lemma 6.1. �

Proposition 21.11. Let X be a Noetherian separated scheme of dimension 1.
Then X has an ample invertible sheaf.

Proof. Let Z ⊂ X be the reduction of X. By Lemma 21.9 the scheme Z has
an ample invertible sheaf. Thus by Lemma 21.10 there exists an invertible OX -
module L on X whose restriction to Z is ample. Then L is ample by an application
of Cohomology of Schemes, Lemma 14.5. �

Remark 21.12. In fact, if X is a scheme whose reduction is a Noetherian separated
scheme of dimension 1, then X has an ample invertible sheaf. The argument to
prove this is the same as the proof of Proposition 21.11 except one uses Limits,
Lemma 10.4 instead of Cohomology of Schemes, Lemma 14.5.

22. Finding affine opens

We continue the discussion started in Properties, Section 27. It turns out that we
can find affines containing a finite given set of codimension 1 points on a separated
scheme. See Proposition 22.7.

We will improve on the following lemma in Descent, Lemma 21.4.

Lemma 22.1. Let f : X → Y be a morphism of schemes. Let X0 denote the set
of generic points of irreducible components of X. If

(1) f is separated,
(2) there is an open covering X =

⋃
Ui such that f |Ui : Ui → X is an open

immersion, and
(3) if ξ, ξ′ ∈ X0, ξ 6= ξ′, then f(ξ) 6= f(ξ′),

then f is an open immersion.

Proof. Suppose that y = f(x) = f(x′). Pick a specialization y0  y where y0 is a
generic point of an irreducible component of Y . Since f is locally on the source an
isomorphism we can pick specializations x0  x and x′0  x′ mapping to y0  y.
Note that x0, x

′
0 ∈ X0. Hence x0 = x′0 by assumption (3). As f is separated we

conclude that x = x′. Thus f is an open immersion. �

Lemma 22.2. Let X → S be a morphism of schemes. Let x ∈ X be a point with
image s ∈ S. If

(1) OX,x = OS,s,
(2) X is reduced,
(3) X → S is of finite type, and
(4) S has finitely many irreducible components,

then there exists an open neighbourhood U of x such that f |U is an open immersion.
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Proof. We may remove the (finitely many) irreducible components of S which
do not contain s. We may replace S by an affine open neighbourhood of s. We
may replace X by an affine open neighbourhood of x. Say S = Spec(A) and
X = Spec(B). Let q ⊂ B, resp. p ⊂ A be the prime ideal corresponding to x,
resp. s. As A is a reduced and all of the minimal primes of A are contained in
p we see that A ⊂ Ap. As X → S is of finite type, B is of finite type over A.
Let b1, . . . , bn ∈ B be elements which generate B over A Since Ap = Bq we can
find f ∈ A, f 6∈ p and ai ∈ A such that bi and ai/f have the same image in Bq.
Thus we can find g ∈ B, g 6∈ q such that g(fbi − ai) = 0 in B. It follows that the
image of Af → Bfg contains the images of b1, . . . , bn, in particular also the image
of g. Choose n ≥ 0 and f ′ ∈ A such that f ′/fn maps to the image of g in Bfg.
Since Ap = Bq we see that f ′ 6∈ p. We conclude that Aff ′ → Bfg is surjective.
Finally, as Aff ′ ⊂ Ap = Bq (see above) the map Aff ′ → Bfg is injective, hence an
isomorphism. �

Lemma 22.3. Let f : T → X be a morphism of schemes. Let X0, resp. T 0 denote
the sets of generic points of irreducible components. Let t1, . . . , tm ∈ T be a finite
set of points with images xj = f(tj). If

(1) T is affine,
(2) X is quasi-separated,
(3) X0 is finite
(4) f(T 0) ⊂ X0 and f : T 0 → X0 is injective, and
(5) OX,xj = OT,tj ,

then there exists an affine open of X containing x1, . . . , xr.

Proof. Using Limits, Proposition 10.2 there is an immediate reduction to the case
where X and T are reduced. Details omitted.

Assume X and T are reduced. We may write T = limi∈I Ti as a directed limit of
schemes of finite presentation over X with affine transition morphisms, see Limits,
Lemma 6.1. Pick i ∈ I such that Ti is affine, see Limits, Lemma 3.10. Say Ti =
Spec(Ri) and T = Spec(R). Let R′ ⊂ R be the image of Ri → R. Then T ′ =
Spec(R′) is affine, reduced, of finite type over X, and T → T ′ dominant. For
j = 1, . . . , r let t′j ∈ T ′ be the image of tj . Consider the local ring maps

OX,xj → OT ′,t′j → OT,tj

Denote (T ′)0 the set of generic points of irreducible components of T ′. Let ξ  
t′j be a specialization with ξ ∈ (T ′)0. As T → T ′ is dominant we can choose

η ∈ T 0 mapping to ξ (warning: a priori we do not know that η specializes to
tj). Assumption (3) applied to η tells us that the image θ of ξ in X corresponds
to a minimal prime of OX,xj . Lifting ξ via the isomorphism of (5) we obtain a

specialization η′  tj with η′ ∈ X0 mapping to θ  xj . The injectivity of (4)
shows that η = η′. Thus every minimal prime of OT ′,t′j lies below a minimal prime

of OT,tj . We conclude that OT ′,t′j → OT,tj is injective, hence both maps above are

isomorphisms.

By Lemma 22.2 there exists an open U ⊂ T ′ containing all the points t′j such that
U → X is a local isomorphism as in Lemma 22.1. By that lemma we see that
U → X is an open immersion. Finally, by Properties, Lemma 27.5 we can find an
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open W ⊂ U ⊂ T ′ containing all the t′j . The image of W in X is the desired affine
open. �

Lemma 22.4. Let X be an integral separated scheme. Let x1, . . . , xr ∈ X be a
finite set of points such that OX,xi is Noetherian of dimension ≤ 1. Then there
exists an affine open subscheme of X containing all of x1, . . . , xr.

Proof. Let K be the field of rational functions of X. Set Ai = OX,xi . Then
Ai ⊂ K and K is the fraction field of Ai. Since X is separated, and xi 6= xj there
cannot be a valuation ring O ⊂ K dominating both Ai and Aj . Namely, considering
the diagram

Spec(O) //

��

Spec(A1)

��
Spec(A2) // X

and applying the valuative criterion of separatedness (Schemes, Lemma 22.1) we
would get xi = xj . Thus we see by Lemma 20.3 that Ai⊗Aj → K is surjective for
all i 6= j. By Lemma 20.7 we see that A = A1 ∩ . . .∩Ar is a Noetherian semi-local
rings with exactly r maximal ideals m1, . . . ,mr such that Ai = Ami

. Moreover,

Spec(A) = Spec(A1) ∪ . . . ∪ Spec(Ar)

is an open covering and the intersection of any two pieces of this covering is Spec(K).
Thus the given morphisms Spec(Ai)→ X glue to a morphism of schemes

Spec(A) −→ X

mapping mi to xi and inducing isomorphisms of local rings. Thus the result follows
from Lemma 22.3. �

Lemma 22.5. Let A be a ring, I ⊂ A an ideal, p1, . . . , pr primes of A, and f ∈ A/I
an element. If I 6⊂ pi for all i, then there exists an f ∈ A, f 6∈ pi which maps to f
in A/I.

Proof. We may assume there are no inclusion relations among the pi (by removing
the smaller primes). First pick any f ∈ A lifting f . Let S be the set s ∈ {1, . . . , r}
such that f ∈ ps. If S is empty we are done. If not, consider the ideal J = I

∏
i 6∈S pi.

Note that J is not contained in ps for s ∈ S because there are no inclusions among
the pi and because I is not contained in any pi. Hence we can choose g ∈ J , g 6∈ ps
for s ∈ S by Algebra, Lemma 14.2. Then f + g is a solution to the problem posed
by the lemma. �

Lemma 22.6. Let X be a scheme. Let T ⊂ X be finite set of points. Assume

(1) X has finitely many irreducible components Z1, . . . , Zt, and
(2) Zi ∩ T is contained in an affine open of the reduced induced subscheme

corresponding to Zi.

Then there exists an affine open subscheme of X containing T .

Proof. Using Limits, Proposition 10.2 there is an immediate reduction to the case
where X is reduced. Details omitted. In the rest of the proof we endow every closed
subset of X with the induced reduced closed subscheme structure.

We argue by induction that we can find an affine open U ⊂ Z1∪ . . .∪Zr containing
T ∩ (Z1 ∪ . . . ∪ Zr). For r = 1 this holds by assumption. Say r > 1 and let
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U ⊂ Z1∪ . . .∪Zr−1 be an affine open containing T ∩ (Z1∪ . . .∪Zr−1). Let V ⊂ Xr

be an affine open containing T ∩ Zr (exists by assumption). Then U ∩ V contains
T ∩ (Z1 ∪ . . . ∪ Zr−1) ∩ Zr. Hence

∆ = (U ∩ Zr) \ (U ∩ V )

does not contain any element of T . Note that ∆ is a closed subset of U . By prime
avoidance (Algebra, Lemma 14.2), we can find a standard open U ′ of U containing
T ∩ U and avoiding ∆, i.e., U ′ ∩ Zr ⊂ U ∩ V . After replacing U by U ′ we may
assume that U ∩ V is closed in U .

Using that by the same arguments as above also the set ∆′ = (U ∩ (Z1 ∪ . . . ∪
Zr−1)) \ (U ∩ V ) does not contain any element of T we find a h ∈ O(V ) such that
D(h) ⊂ V contains T ∩ V and such that U ∩D(h) ⊂ U ∩ V . Using that U ∩ V is
closed in U we can use Lemma 22.5 to find an element g ∈ O(U) whose restriction
to U ∩ V equals the restriction of h to U ∩ V and such that T ∩ U ⊂ D(g). Then
we can replace U by D(g) and V by D(h) to reach the situation where U ∩ V is
closed in both U and V . In this case the scheme U ∪ V is affine by Limits, Lemma
10.3. This proves the induction step and thereby the lemma. �

Here is a conclusion we can draw from the material above.

Proposition 22.7. Let X be a separated scheme such that every quasi-compact
open has a finite number of irreducible components. Let x1, . . . , xr ∈ X be points
such that OX,xi

is Noetherian of dimension ≤ 1. Then there exists an affine open
subscheme of X containing all of x1, . . . , xr.

Proof. We can replace X by a quasi-compact open containing x1, . . . , xr hence we
may assume that X has finitely many irreducible components. By Lemma 22.6 we
reduce to the case where X is integral. This case is Lemma 22.4. �

23. Curves

In the stacks project we will use the following as our definition of a curve.

Definition 23.1. Let k be a field. A curve is a variety of dimension 1 over k.

Two standard examples of curves over k are the affine line A1
k and the projective

line P1
k. The scheme X = Spec(k[x, y]/(f)) is a curve if and only if f ∈ k[x, y] is

irreducible.

Our definition of a curve has the same problems as our definition of a variety, see
the discussion following Definition 3.1. Moreover, it means that every curve comes
with a specified field of definition. For example X = Spec(C[x]) is a curve over C
but we can also view it as a curve over R. The scheme Spec(Z) isn’t a curve, even
though the schemes Spec(Z) and A1

Fp
behave similarly in many respects.

Lemma 23.2. Let X be an irreducible scheme of dimension > 0 over a field k.
Let x ∈ X be a closed point. The open subscheme X \ {x} is not proper over k.

Proof. Namely, choose a specialization x′  x with x′ 6= x (for example take x′ to
be the generic point). By Schemes, Lemma 20.4 there exists a morphism Spec(A)→
X where A is a valuation ring such that the generic point of A maps to x′ and the
closed point of Spec(A) maps to x. Clearly the morphism Spec(f.f.(A))→ X \{x}
does not extend to a morphism Spec(A)→ X \ {x}. Hence the valuative criterion
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(Schemes, Proposition 20.6) shows that X → Spec(k) is not universally closed,
hence not proper. �

Lemma 23.3. Let X be a separated finite type scheme over a field k. If dim(X) ≤ 1
then X is H-quasi-projective over k.

Proof. By Proposition 21.11 the scheme X has an ample invertible sheaf L. By
Morphisms, Lemma 40.3 we see that X is isomorphic to a locally closed subscheme
of Pn

k over Spec(k). This is the definiton of being H-quasi-projective over k, see
Morphisms, Definition 41.1. �

Lemma 23.4. Let X be a proper scheme over a field k. If dim(X) ≤ 1 then X is
H-projective over k.

Proof. By Lemma 23.3 we see that X is a locally closed subscheme of Pn
k for some

field k. Since X is proper over k it follows that X is a closed subscheme of Pn
k

(Morphisms, Lemma 42.7). �

Observe that if an affine scheme X over k is proper over k then X is finite over
k (Morphisms, Lemma 44.7) and hence has dimension 0 (Algebra, Lemma 51.2
and Proposition 59.6). Hence a scheme of dimension > 0 over k cannot be both
affine and proper over k. Thus the possibilities in the following lemma are mutually
exclusive.

Lemma 23.5. Let X be a curve over k. Then either X is an affine scheme or X
is H-projective over k.

Proof. By Lemma 23.3 we may assume X is a locally closed subscheme of Pn
k for

some n. Let X ⊂ Pn
k be the scheme theoretic image of X → Pn

k , see Morphisms,
Definition 6.2 and the description in Morphisms, Lemma 7.7. Since X is irreducible,
we see that X is irreducible. Then dim(X) = 1 ⇒ dim(X) = 1 for example by
looking at the generic point, see Lemma 13.3. As X is Noetherian, it then follows
that X \X = {x1, . . . , xn} is a finite set of closed points. By Lemma 21.4 we can
find a globally generated invertible sheaf L on X and a section s ∈ Γ(X,L) such
that X = Xs.

Choose a basis s = s0, s1, . . . , sm of the finite dimensional k-vector space Γ(X,L)
(Cohomology of Schemes, Lemma 17.4). We obtain a corresponding morphism

f : X −→ Pm
k

such that the inverse image of D+(T0) is X, see Constructions, Lemma 13.1. In
particular, f is non-constant, i.e., Im(f) has more than one point. A topological
argument shows that f maps the generic point η of X to a nonclosed point of Pn

k .

Hence if y ∈ Pn
k is a closed point, then f−1({y}) is a closed set of X not containing

η, hence finite. By Cohomology of Schemes, Lemma 19.22 we conclude that f is
finite. Hence X = f−1(D+(T0)) is affine. �

2One can avoid using this lemma which relies on the theorem of formal functions. Namely, X
is projective hence it suffices to show a proper morphism f : X → Y with finite fibres between

quasi-projective schemes over k is finite. To do this, one chooses an affine open of X containing

the fibre of f over a point y using that any finite set of points of a quasi-projective scheme over k
is contained in an affine. Shrinking Y to a small affine neighbourhood of y one reduces to the case

of a proper morphism between affines. Such a morphism is finite by Morphisms, Lemma 44.7.
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The following lemma combined with Lemma 23.2 tells us that given a separated
scheme of finite type over k, then X \ Z is affine, whenever the closed subset Z
meets every irreducible component of X.

Lemma 23.6. Let X be a separated scheme of finite type over k. If dim(X) ≤ 1
and no irreducible component of X is proper of dimension 1, then X is affine.

Proof. Let X =
⋃
Xi be the decomposition of X into irreducible components. We

think of Xi as an integral scheme (using the reduced induced scheme structure, see
Schemes, Definition 12.5). In particular Xi is a singleton (hence affine) or a curve
hence affine by Lemma 23.5. Then

∐
Xi → X is finite surjective and

∐
Xi is affine.

Thus we see that X is affine by Cohomology of Schemes, Lemma 13.3. �

24. Generically finite morphisms

In this section we revisit the notion of a generically finite morphism of schemes as
studied in Morphisms, Section 47.

Lemma 24.1. Let f : X → Y be locally of finite type. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field exten-
sion κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η) 
y the field extension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of an irreducible component of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then f is quasi-finite at every point of X lying over y.

Proof. Condition (4) implies X is locally Noetherian (Morphisms, Lemma 16.6).
The set of points at which morphism is quasi-finite is open (Morphisms, Lemma
49.2). A dense open of a locally Noetherian scheme contains all generic point of
irreducible components, hence (4) implies (3). Condition (3) implies condition (1)
by Morphisms, Lemma 21.5. Condition (1) implies condition (2). Thus it suffices
to prove the lemma in case (2) holds.

Assume (2) holds. Recall that Spec(OY,y) is the set of points of Y specializing to
y, see Schemes, Lemma 13.2. Combined with Morphisms, Lemma 21.13 this shows
we may replace Y by Spec(OY,y). Thus we may assume Y = Spec(B) where B is
a Noetherian local ring of dimension ≤ 1 and y is the closed point.

Let X =
⋃
Xi be the irreducible components of X viewed as reduced closed sub-

schemes. If we can show each fibre Xi,y is a discrete space, then Xy =
⋃
Xi,y is

discrete as well and we conclude that X → Y is quasi-finite at all points of Xy by
Morphisms, Lemma 21.6. Thus we may assume X is an integral scheme.

If X → Y maps the generic point η of X to y, then X is the spectrum of a finite
extension of κ(y) and the result is true. Assume that X maps η to a point corre-
sponding to a minimal prime p of B different from mB . We obtain a factorization
X → Spec(B/q)→ Spec(B). Let x ∈ X be a point lying over y. By the dimension
formula (Morphisms, Lemma 31.1) we have

dim(OX,x) ≤ dim(B/q) + trdegκ(q)(R(X))− trdegκ(y)κ(x)
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We know that dim(B/q) = 1, that the generic point of X is not equal to x and
specializes to x and that R(X) is algebraic over κ(q). Thus we get

1 ≤ 1− trdegκ(y)κ(x)

Hence every point x of Xy is closed in Xy by Morphisms, Lemma 21.2 and hence
X → Y is quasi-finite at every point x of Xy by Morphisms, Lemma 21.6 (which
also implies that Xy is a discrete topological space). �

Lemma 24.2. Let f : X → Y be a proper morphism. Let y ∈ Y be a point such
that OY,y is Noetherian of dimension ≤ 1. Assume in addition one of the following
conditions is satisfied

(1) for every generic point η of an irreducible component of X the field exten-
sion κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(2) for every generic point η of an irreducible component of X such that f(η) 
y the field extension κ(η) ⊃ κ(f(η)) is finite (or algebraic),

(3) f is quasi-finite at every generic point of X,
(4) Y is locally Noetherian and f is quasi-finite at a dense set of points of X,
(5) add more here.

Then there exists an open neighbourhood V ⊂ Y of y such that f−1(V ) → V is
finite.

Proof. By Lemma 24.1 the morphism f is quasi-finite at every point of the fibre
Xy. Hence Xy is a discrete topological space (Morphisms, Lemma 21.6). As f is
proper the fibre Xy is quasi-compact, i.e., finite. Thus we can apply Cohomology
of Schemes, Lemma 19.2 to conclude. �

25. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves

(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

http://localhost:8080/tag/0AB7


52 VARIETIES

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules
(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces

(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples
(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style
(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index

References
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