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1. Introduction

In this chapter we introduce ways of constructing schemes out of others. A basic
reference is [DG67].

2. Relative glueing

The following lemma is relevant in case we are trying to construct a scheme X over
S, and we already know how to construct the restriction of X to the affine opens
of S. The actual result is completely general and works in the setting of (locally)
ringed spaces, although our proof is written in the language of schemes.

Lemma 2.1. Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:
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2 CONSTRUCTIONS OF SCHEMES

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .

Assume that

(a) each ρUV induces an isomorphism XV → f−1U (V ) of schemes over V ,
(b) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW .

Then there exists a unique scheme f : X → S over S and isomorphisms iU :
f−1(U)→ XU over U such that for V ⊂ U ⊂ S affine open the composition

XV

i−1
V // f−1(V )

inclusion // f−1(U)
iU // XU

is the morphism ρUV .

Proof. To prove this we will use Schemes, Lemma 15.4. First we define a con-
travariant functor F from the category of schemes to the category of sets. Namely,
for a scheme T we set

F (T ) =

{
(g, {hU}U∈B), g : T → S, hU : g−1(U)→ XU ,

fU ◦ hU = g|g−1(U), hU |g−1(V ) = ρUV ◦ hV ∀ V,U ∈ B, V ⊂ U

}
.

The restriction mapping F (T ) → F (T ′) given a morphism T ′ → T is just gotten
by composition. For any W ∈ B we consider the subfunctor FW ⊂ F consisting of
those systems (g, {hU}) such that g(T ) ⊂W .

First we show F satisfies the sheaf property for the Zariski topology. Suppose that
T is a scheme, T =

⋃
Vi is an open covering, and ξi ∈ F (Vi) is an element such

that ξi|Vi∩Vj = ξj |Vi∩Vj . Say ξi = (gi, {hi,U}). Then we immediately see that the
morphisms gi glue to a unique global morphism g : T → S. Moreover, it is clear
that g−1(U) =

⋃
g−1i (U). Hence the morphisms hi,U : g−1i (U) → XU glue to a

unique morphism hU : U → XU . It is easy to verify that the system (g, {fU}) is an
element of F (T ). Hence F satisfies the sheaf property for the Zariski topology.

Next we verify that each FW , W ∈ B is representable. Namely, we claim that the
transformation of functors

FW −→ Mor(−, XW ), (g, {hU}) 7−→ hW

is an isomorphism. To see this suppose that T is a scheme and α : T → XW is
a morphism. Set g = fW ◦ α. For any U ∈ B such that U ⊂ W we can define
hU : g−1(U) → XU be the composition (ρWU )−1 ◦ α|g−1(U). This works because

the image α(g−1(U)) is contained in f−1W (U) and condition (a) of the lemma. It
is clear that fU ◦ hU = g|g−1(U) for such a U . Moreover, if also V ∈ B and

V ⊂ U ⊂ W , then ρUV ◦ hV = hU |g−1(V ) by property (b) of the lemma. We
still have to define hU for an arbitrary element U ∈ B. Since B is a basis for
the topology on S we can find an open covering U ∩ W =

⋃
Ui with Ui ∈ B.

Since g maps into W we have g−1(U) = g−1(U ∩W ) =
⋃
g−1(Ui). Consider the

morphisms hi = ρUUi ◦ hUi : g−1(Ui) → XU . It is a simple matter to use condition
(b) of the lemma to prove that hi|g−1(Ui)∩g−1(Uj) = hj |g−1(Ui)∩g−1(Uj). Hence these

morphisms glue to give the desired morphism hU : g−1(U) → XU . We omit the
(easy) verification that the system (g, {hU}) is an element of FW (T ) which maps
to α under the displayed arrow above.

Next, we verify each FW ⊂ F is representable by open immersions. This is clear
from the definitions.
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Finally we have to verify the collection (FW )W∈B covers F . This is clear by con-
struction and the fact that B is a basis for the topology of S.

Let X be a scheme representing the functor F . Let (f, {iU}) ∈ F (X) be a “universal
family”. Since each FW is representable by XW (via the morphism of functors
displayed above) we see that iW : f−1(W ) → XW is an isomorphism as desired.
The lemma is proved. �

Lemma 2.2. Let S be a scheme. Let B be a basis for the topology of S. Suppose
given the following data:

(1) For every U ∈ B a scheme fU : XU → U over U .
(2) For every U ∈ B a quasi-coherent sheaf FU over XU .
(3) For every pair U, V ∈ B such that V ⊂ U a morphism ρUV : XV → XU .
(4) For every pair U, V ∈ B such that V ⊂ U a morphism θUV : (ρUV )∗FU → FV .

Assume that

(a) each ρUV induces an isomorphism XV → f−1U (V ) of schemes over V ,
(b) each θUV is an isomorphism,
(c) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have ρUW = ρUV ◦ ρVW ,
(d) whenever W,V,U ∈ B, with W ⊂ V ⊂ U we have θUW = θVW ◦ (ρVW )∗θUV .

Then there exists a unique scheme f : X → S over S together with a unique quasi-
coherent sheaf F on X and isomorphisms iU : f−1(U) → XU and θU : i∗UFU →
F|f−1(U) over U such that for V ⊂ U ⊂ S affine open the composition

XV

i−1
V // f−1(V )

inclusion // f−1(U)
iU // XU

is the morphism ρUV , and the composition

(2.2.1) (ρUV )∗FU = (i−1V )∗((i∗UFU )|f−1(V ))
θU |f−1(V )−−−−−−→ (i−1V )∗(F|f−1(V ))

θ−1
V−−→ FV

is equal to θUV .

Proof. By Lemma 2.1 we get the scheme X over S and the isomorphisms iU . Set
F ′U = i∗UFU for U ∈ B. This is a quasi-coherent Of−1(U)-module. The maps

F ′U |f−1(V ) = i∗UFU |f−1(V ) = i∗V (ρUV )∗FU
i∗V θ

U
V−−−→ i∗V FV = F ′V

define isomorphisms (θ′)UV : F ′U |f−1(V ) → F ′V whenever V ⊂ U are elements of
B. Condition (d) says exactly that this is compatible in case we have a triple of
elements W ⊂ V ⊂ U of B. This allows us to get well defined isomorphisms

ϕ12 : F ′U1
|f−1(U1∩U2) −→ F

′
U2
|f−1(U1∩U2)

whenever U1, U2 ∈ B by covering the intersection U1 ∩U2 =
⋃
Vj by elements Vj of

B and taking

ϕ12|Vj =
(

(θ′)U2

Vj

)−1
◦ (θ′)U1

Vj
.

We omit the verification that these maps do indeed glue to a ϕ12 and we omit the
verification of the cocycle condition of a glueing datum for sheaves (as in Sheaves,
Section 33). By Sheaves, Lemma 33.2 we get our F on X. We omit the verification
of (2.2.1). �
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4 CONSTRUCTIONS OF SCHEMES

Remark 2.3. There is a functoriality property for the constructions explained in
Lemmas 2.1 and 2.2. Namely, suppose given two collections of data (fU : XU →
U, ρUV ) and (gU : YU → U, σUV ) as in Lemma 2.1. Suppose for every U ∈ B given
a morphism hU : XU → YU over U compatible with the restrictions ρUV and σUV .
Functoriality means that this gives rise to a morphism of schemes h : X → Y over S
restricting back to the morphisms hU , where f : X → S is obtained from the datum
(fU : XU → U, ρUV ) and g : Y → S is obtained from the datum (gU : YU → U, σUV ).

Similarly, suppose given two collections of data (fU : XU → U,FU , ρUV , θUV ) and
(gU : YU → U,GU , σUV , ηUV ) as in Lemma 2.2. Suppose for every U ∈ B given a
morphism hU : XU → YU over U compatible with the restrictions ρUV and σUV , and
a morphism τU : h∗UGU → FU compatible with the maps θUV and ηUV . Functoriality
means that these give rise to a morphism of schemes h : X → Y over S restricting
back to the morphisms hU , and a morphism h∗G → F restricting back to the maps
hU where (f : X → S,F) is obtained from the datum (fU : XU → U,FU , ρUV , θUV )
and where (g : Y → S,G) is obtained from the datum (gU : YU → U,GU , σUV , ηUV ).

We omit the verifications and we omit a suitable formulation of “equivalence of
categories” between relative glueing data and relative objects.

3. Relative spectrum via glueing

Situation 3.1. Here S is a scheme, and A is a quasi-coherent OS-algebra.

In this section we outline how to construct a morphism of schemes

Spec
S

(A) −→ S

by glueing the spectra Spec(Γ(U,A)) where U ranges over the affine opens of S. We
first show that the spectra of the values of A over affines form a suitable collection
of schemes, as in Lemma 2.1.

Lemma 3.2. In Situation 3.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let A =
A(U) and A′ = A(U ′). The map of rings A′ → A induces a morphism Spec(A)→
Spec(A′), and the diagram

Spec(A) //

��

Spec(A′)

��
U // U ′

is cartesian.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R⊗R′ A′ → A is an
isomorphism as A is quasi-coherent (see Schemes, Lemma 7.3 for example). The
result follows from the description of the fibre product of affine schemes in Schemes,
Lemma 6.7. �

In particular the morphism Spec(A) → Spec(A′) of the lemma is an open immer-
sion.

Lemma 3.3. In Situation 3.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens. Let
A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms
Spec(A)→ Spec(A′), and Spec(A′)→ Spec(A′′) of Lemma 3.2 gives the morphism
Spec(A)→ Spec(A′′) of Lemma 3.2.

http://localhost:8080/tag/01LK
http://localhost:8080/tag/01LM
http://localhost:8080/tag/01LN
http://localhost:8080/tag/01LO


CONSTRUCTIONS OF SCHEMES 5

Proof. This follows as the map A′′ → A is the composition of A′′ → A′ and
A′ → A (because A is a sheaf). �

Lemma 3.4. In Situation 3.1. There exists a morphism of schemes

π : Spec
S

(A) −→ S

with the following properties:

(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →
Spec(A(U)), and

(2) for U ⊂ U ′ ⊂ S affine open the composition

Spec(A(U))
i−1
U // π−1(U)

inclusion // π−1(U ′)
iU′ // Spec(A(U ′))

is the open immersion of Lemma 3.2 above.

Proof. Follows immediately from Lemmas 2.1, 3.2, and 3.3. �

4. Relative spectrum as a functor

We place ourselves in Situation 3.1. So S is a scheme and A is a quasi-coherent
sheaf of OS-algebras. (This means that A is a sheaf of OS-algebras which is quasi-
coherent as an OS-module.)

For any f : T → S the pullback f∗A is a quasi-coherent sheaf of OT -algebras. We
are going to consider pairs (f : T → S, ϕ) where f is a morphism of schemes and
ϕ : f∗A → OT is a morphism of OT -algebras. Note that this is the same as giving
a f−1OS-algebra homomorphism ϕ : f−1A → OT , see Sheaves, Lemma 20.2. This
is also the same as giving a OS-algebra map ϕ : A → f∗OT , see Sheaves, Lemma
24.7. We will use all three ways of thinking about ϕ, without further mention.

Given such a pair (f : T → S, ϕ) and a morphism a : T ′ → T we get a second pair
(f ′ = f ◦ a, ϕ′ = a∗ϕ) which we call the pullback of (f, ϕ). One way to describe
ϕ′ = a∗ϕ is as the composition A → f∗OT → f ′∗OT ′ where the second map is f∗a

]

with a] : OT → a∗OT ′ . In this way we have defined a functor

F : Schopp −→ Sets(4.0.1)

T 7−→ F (T ) = {pairs (f, ϕ) as above}

Lemma 4.1. In Situation 3.1. Let F be the functor associated to (S,A) above.
Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′ be the functor
associated to (S′,A′) above. Then there is a canonical isomorphism

F ′ ∼= hS′ ×hS F

of functors.

Proof. A pair (f ′ : T → S′, ϕ′ : (f ′)∗A′ → OT ) is the same as a pair (f, ϕ : f∗A →
OT ) together with a factorization of f as f = g ◦ f ′. Namely with this notation we
have (f ′)∗A′ = (f ′)∗g∗A = f∗A. Hence the lemma. �

Lemma 4.2. In Situation 3.1. Let F be the functor associated to (S,A) above. If
S is affine, then F is representable by the affine scheme Spec(Γ(S,A)).

http://localhost:8080/tag/01LP
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6 CONSTRUCTIONS OF SCHEMES

Proof. Write S = Spec(R) and A = Γ(S,A). Then A is an R-algebra and A = Ã.
The ring map R→ A gives rise to a canonical map

funiv : Spec(A) −→ S = Spec(R).

We have f∗univA = Ã⊗R A by Schemes, Lemma 7.3. Hence there is a canonical
map

ϕuniv : f∗univA = Ã⊗R A −→ Ã = OSpec(A)

coming from the A-module map A ⊗R A → A, a ⊗ a′ 7→ aa′. We claim that the
pair (funiv, ϕuniv) represents F in this case. In other words we claim that for any
scheme T the map

Mor(T, Spec(A)) −→ {pairs (f, ϕ)}, a 7−→ (a∗funiv, a
∗ϕ)

is bijective.

Let us construct the inverse map. For any pair (f : T → S, ϕ) we get the induced
ring map

A = Γ(S,A)
f∗ // Γ(T, f∗A)

ϕ // Γ(T,OT )

This induces a morphism of schemes T → Spec(A) by Schemes, Lemma 6.4.

The verification that this map is inverse to the map displayed above is omitted. �

Lemma 4.3. In Situation 3.1. The functor F is representable by a scheme.

Proof. We are going to use Schemes, Lemma 15.4.

First we check that F satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that (fi, ϕi) ∈

F (Ui) such that (fi, ϕi)|Ui∩Uj = (fj , ϕj)|Ui∩Uj . This implies that the morphisms
fi : Ui → S glue to a morphism of schemes f : T → S such that f |Ii = fi, see
Schemes, Section 14. Thus f∗i A = f∗A|Ui and by assumption the morphisms ϕi
agree on Ui ∩ Uj . Hence by Sheaves, Section 33 these glue to a morphism of OT -
algebras f∗A → OT . This proves that F satisfies the sheaf condition with respect
to the Zariski topology.

Let S =
⋃
i∈I Ui be an affine open covering. Let Fi ⊂ F be the subfunctor consisting

of those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fi is representable. This is the case because Fi is identified
with the functor associated to Ui equipped with the quasi-coherent OUi-algebra
A|Ui , by Lemma 4.1. Thus the result follows from Lemma 4.2.

Next we show that Fi ⊂ F is representable by open immersions. Let (f : T →
S, ϕ) ∈ F (T ). Consider Vi = f−1(Ui). It follows from the definition of Fi that
given a : T ′ → T we gave a∗(f, ϕ) ∈ Fi(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.

Finally, we have to show that the collection (Fi)i∈I covers F . Let (f : T → S, ϕ) ∈
F (T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of S we

see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fi(Vi). This

finishes the proof of the lemma. �

Lemma 4.4. In Situation 3.1. The scheme π : Spec
S

(A) → S constructed in
Lemma 3.4 and the scheme representing the functor F are canonically isomorphic
as schemes over S.

http://localhost:8080/tag/01LU
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Proof. Let X → S be the scheme representing the functor F . Consider the sheaf of
OS-algebras R = π∗OSpec

S
(A). By construction of Spec

S
(A) we have isomorphisms

A(U)→ R(U) for every affine open U ⊂ S; this follows from Lemma 3.4 part (1).
For U ⊂ U ′ ⊂ S open these isomorphisms are compatible with the restriction
mappings; this follows from Lemma 3.4 part (2). Hence by Sheaves, Lemma 30.13
these isomorphisms result from an isomorphism of OS-algebras ϕ : A → R. Hence
this gives an element (Spec

S
(A), ϕ) ∈ F (Spec

S
(A)). Since X represents the functor

F we get a corresponding morphism of schemes can : Spec
S

(A)→ X over S.

Let U ⊂ S be any affine open. Let FU ⊂ F be the subfunctor of F corresponding to
pairs (f, ϕ) over schemes T with f(T ) ⊂ U . Clearly the base change XU represents
FU . Moreover, FU is represented by Spec(A(U)) = π−1(U) according to Lemma
4.2. In other words XU

∼= π−1(U). We omit the verification that this identification
is brought about by the base change of the morphism can to U . �

Definition 4.5. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-
algebras. The relative spectrum of A over S, or simply the spectrum of A over S is
the scheme constructed in Lemma 3.4 which represents the functor F (4.0.1), see
Lemma 4.4. We denote it π : Spec

S
(A)→ S. The “universal family” is a morphism

of OS-algebras

A −→ π∗OSpec
S
(A)

The following lemma says among other things that forming the relative spectrum
commutes with base change.

Lemma 4.6. Let S be a scheme. Let A be a quasi-coherent sheaf of OS-algebras.
Let π : Spec

S
(A)→ S be the relative spectrum of A over S.

(1) For every affine open U ⊂ S the inverse image π−1(U) is affine.
(2) For every morphism g : S′ → S we have S′ ×S Spec

S
(A) = Spec

S′
(g∗A).

(3) The universal map

A −→ π∗OSpec
S
(A)

is an isomorphism of OS-algebras.

Proof. Part (1) comes from the description of the relative spectrum by glueing, see
Lemma 3.4. Part (2) follows immediately from Lemma 4.1. Part (3) follows because
it is local on S and it is clear in case S is affine by Lemma 4.2 for example. �

Lemma 4.7. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. By Schemes, Lemma 24.1 the sheaf f∗OX is a quasi-coherent sheaf of
OS-algebras. There is a canonical morphism

can : X −→ Spec
S

(f∗OX)

of schemes over S. For any affine open U ⊂ S the restriction can|f−1(U) is identified
with the canonical morphism

f−1(U) −→ Spec(Γ(f−1(U),OX))

coming from Schemes, Lemma 6.4.

Proof. The morphism comes, via the definition of Spec as the scheme representing
the functor F , from the canonical map ϕ : f∗f∗OX → OX (which by adjointness
of push and pull corresponds to id : f∗OX → f∗OX). The statement on the

http://localhost:8080/tag/01LW
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restriction to f−1(U) follows from the description of the relative spectrum over
affines, see Lemma 4.2. �

5. Affine n-space

As an application of the relative spectrum we define affine n-space over a base
scheme S as follows. For any integer n ≥ 0 we can consider the quasi-coherent
sheaf of OS-algebras OS [T1, . . . , Tn]. It is quasi-coherent because as a sheaf of
OS-modules it is just the direct sum of copies of OS indexed by multi-indices.

Definition 5.1. Let S be a scheme and n ≥ 0. The scheme

An
S = Spec

S
(OS [T1, . . . , Tn])

over S is called affine n-space over S. If S = Spec(R) is affine then we also call
this affine n-space over R and we denote it An

R.

Note that An
R = Spec(R[T1, . . . , Tn]). For any morphism g : S′ → S of schemes

we have g∗OS [T1, . . . , Tn] = OS′ [T1, . . . , Tn] and hence An
S′ = S′×S An

S is the base
change. Therefore an alternative definition of affine n-space is the formula

An
S = S ×Spec(Z) An

Z.

Also, a morphism from an S-scheme f : X → S to An
S is given by a homomorphism

of OS-algebras OS [T1, . . . , Tn] → f∗OX . This is clearly the same thing as giving
the images of the Ti. In other words, a morphism from X to An

S over S is the same
as giving n elements h1, . . . , hn ∈ Γ(X,OX).

6. Vector bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 18.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent sheaf
of OS-algebras. Hence it makes sense to apply the construction of the previous
section to it.

Definition 6.1. Let S be a scheme. Let E be a quasi-coherent OS-module1. The
vector bundle associated to E is

V(E) = Spec
S

(Sym(E)).

The vector bundle associated to E comes with a bit of extra structure. Namely, we
have a grading

π∗OV(E) =
⊕

n≥0
Symn(E).

which turns π∗OV(E) into a graded OS-algebra. Conversely, we can recover E from
the degree 1 part of this. Thus we define an abstract vector bundle as follows.

Definition 6.2. Let S be a scheme. A vector bundle π : V → S over S is an affine
morphism of schemes such that π∗OV is endowed with the structure of a graded
OS-algebra π∗OV =

⊕
n≥0 En such that E0 = OS and such that the maps

Symn(E1) −→ En

1The reader may expect here the condition that E is finite locally free. We do not do so in
order to be consistent with [DG67, II, Definition 1.7.8].

http://localhost:8080/tag/01M0
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are isomorphisms for all n ≥ 0. A morphism of vector bundles over S is a morphism
f : V → V ′ such that the induced map

f∗ : π′∗OV ′ −→ π∗OV
is compatible with the given gradings.

An example of a vector bundle over S is affine n-space An
S over S, see Definition

5.1. This is true because OS [T1, . . . , Tn] = Sym(O⊕nS ).

Lemma 6.3. The category of vector bundles over a scheme S is anti-equivalent to
the category of quasi-coherent OS-modules.

Proof. Omitted. Hint: In one direction one uses the functor Spec
S

(−) and in the

other the functor (π : V → S) (π∗OV )1 (degree 1 part). �

7. Cones

In algebraic geometry cones correspond to graded algebras. By our conventions a
graded ring or algebra A comes with a grading A =

⊕
d≥0Ad by the nonnegative

integers, see Algebra, Section 54.

Definition 7.1. Let S be a scheme. Let A be a quasi-coherent graded OS-algebra.
Assume that OS → A0 is an isomorphism2. The cone associated to A or the affine
cone associated to A is

C(A) = Spec
S

(A).

The cone associated to a graded sheaf of OS-algebras comes with a bit of extra
structure. Namely, we obtain a grading

π∗OC(A) =
⊕

n≥0
An

Thus we can define an abstract cone as follows.

Definition 7.2. Let S be a scheme. A cone π : C → S over S is an affine morphism
of schemes such that π∗OC is endowed with the structure of a graded OS-algebra
π∗OC =

⊕
n≥0An such that A0 = OS . A morphism of cones from π : C → S to

π′ : C ′ → S is a morphism f : C → C ′ such that the induced map

f∗ : π′∗OC′ −→ π∗OC
is compatible with the given gradings.

Any vector bundle is an example of a cone. In fact the category of vector bundles
over S is a full subcategory of the category of cones over S.

8. Proj of a graded ring

Let S be a graded ring. Consider the topological space Proj(S) associated to S, see
Algebra, Section 55. We will endow this space with a sheaf of rings OProj(S) such
that the resulting pair (Proj(S),OProj(S)) will be a scheme.

Recall that Proj(S) has a basis of open sets D+(f), f ∈ Sd, d ≥ 1 which we call
standard opens, see Algebra, Section 55. This terminology will always imply that
f is homogeneous of positive degree even if we forget to mention it. In addition,

2Often one imposes the assumption that A is generated by A1 over OS . We do not assume
this in order to be consistent with [DG67, II, (8.3.1)].
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the intersection of two standard opens is another: D+(f) ∩D+(g) = D+(fg), for
f, g ∈ S homogeneous of positive degree.

Lemma 8.1. Let S be a graded ring. Let f ∈ S homogeneous of positive degree.

(1) If g ∈ S homogeneous of positive degree and D+(g) ⊂ D+(f), then
(a) f is invertible in Sg, and fdeg(g)/gdeg(f) is invertible in S(g),
(b) ge = af for some e ≥ 1 and a ∈ S homogeneous,
(c) there is a canonical S-algebra map Sf → Sg,
(d) there is a canonical S0-algebra map S(f) → S(g) compatible with the

map Sf → Sg,
(e) the map S(f) → S(g) induces an isomorphism

(S(f))gdeg(f)/fdeg(g)
∼= S(g),

(f) these maps induce a commutative diagram of topological spaces

D+(g)

��

{Z-graded primes of Sg}oo //

��

Spec(S(g))

��
D+(f) {Z-graded primes of Sf}oo // Spec(S(f))

where the horizontal maps are homeomorphisms and the vertical maps
are open immersions,

(g) there are compatible canonical Sf and S(f)-module maps Mf → Mg

and M(f) →M(g) for any graded S-module M , and
(h) the map M(f) →M(g) induces an isomorphism

(M(f))gdeg(f)/fdeg(g)
∼= M(g).

(2) Any open covering of D+(f) can be refined to a finite open covering of the
form D+(f) =

⋃n
i=1D+(gi).

(3) Let g1, . . . , gn ∈ S be homogeneous of positive degree. Then D+(f) ⊂⋃
D+(gi) if and only if g

deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the

unit ideal in S(f).

Proof. Recall that D+(g) = Spec(S(g)) with identification given by the ring maps

S → Sg ← S(g), see Algebra, Lemma 55.3. Thus fdeg(g)/gdeg(f) is an element of
S(g) which is not contained in any prime ideal, and hence invertible, see Algebra,

Lemma 16.2. We conclude that (a) holds. Write the inverse of f in Sg as a/gd. We
may replace a by its homogeneous part of degree ddeg(g) − deg(f). This means
gd−af is annihilated by a power of g, whence ge = af for some a ∈ S homogeneous
of degree edeg(g) − deg(f). This proves (b). For (c), the map Sf → Sg exists by
(a) from the universal property of localization, or we can define it by mapping
b/fn to anb/gne. This clearly induces a map of the subrings S(f) → S(g) of degree
zero elements as well. We can similarly define Mf → Mg and M(f) → M(g) by
mapping x/fn to anx/gne. The statements writing S(g) resp. M(g) as principal
localizations of S(f) resp. M(f) are clear from the formulas above. The maps in
the commutative diagram of topological spaces correspond to the ring maps given
above. The horizontal arrows are homeomorphisms by Algebra, Lemma 55.3. The
vertical arrows are open immersions since the left one is the inclusion of an open
subset.
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The open D+(f) is quasi-compact because it is homeomorphic to Spec(S(f)), see
Algebra, Lemma 16.10. Hence the second statement follows directly from the fact
that the standard opens form a basis for the topology.

The third statement follows directly from Algebra, Lemma 16.2. �

In Sheaves, Section 30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 30.6 and 30.9. Moreover, we showed in Sheaves, Lemma 30.4 that it is
sufficient to check the sheaf condition on a cofinal system of open coverings for each
standard open. By the lemma above it suffices to check on the finite coverings by
standard opens.

Definition 8.2. Let S be a graded ring. Suppose that D+(f) ⊂ Proj(S) is a stan-
dard open. A standard open covering of D+(f) is a covering D+(f) =

⋃n
i=1D+(gi),

where g1, . . . , gn ∈ S are homogeneous of positive degree.

Let S be a graded ring. Let M be a graded S-module. We will define a presheaf

M̃ on the basis of standard opens. Suppose that U ⊂ Proj(S) is a standard open.
If f, g ∈ S are homogeneous of positive degree such that D+(f) = D+(g), then by
Lemma 8.1 above there are canonical maps M(f) → M(g) and M(g) → M(f) which
are mutually inverse. Hence we may choose any f such that U = D+(f) and define

M̃(U) = M(f).

Note that if D+(g) ⊂ D+(f), then by Lemma 8.1 above we have a canonical map

M̃(D+(f)) = M(f) −→M(g) = M̃(D+(g)).

Clearly, this defines a presheaf of abelian groups on the basis of standard opens.

If M = S, then S̃ is a presheaf of rings on the basis of standard opens. And for

general M we see that M̃ is a presheaf of S̃-modules on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Proj(S). Suppose that x corresponds
to the homogeneous prime ideal p ⊂ S. By definition of the stalk we see that

M̃x = colimf∈Sd,d>0,f 6∈pM(f)

Here the set {f ∈ Sd, d > 0, f 6∈ p} is partially ordered by the rule f ≥ f ′ ⇔
D+(f) ⊂ D+(f ′). If f1, f2 ∈ S \ p are homogeneous of positive degree, then we
have f1f2 ≥ f1 in this ordering. In Algebra, Section 55 we defined M(p) as the
ring whose elements are fractions x/f with x, f homogeneous, deg(x) = deg(f),
f 6∈ p. Since p ∈ Proj(S) there exists at least one f0 ∈ S homogeneous of positive
degree with f0 6∈ p. Hence x/f = f0x/ff0 and we see that we may always assume
the denominator of an element in M(p) has positive degree. From these remarks it
follows easily that

M̃x = M(p).

Next, we check the sheaf condition for the standard open coverings. If D+(f) =⋃n
i=1D+(gi), then the sheaf condition for this covering is equivalent with the ex-

actness of the sequence

0→M(f) →
⊕

M(gi) →
⊕

M(gigj).
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12 CONSTRUCTIONS OF SCHEMES

Note that D+(gi) = D+(fgi), and hence we can rewrite this sequence as the se-
quence

0→M(f) →
⊕

M(fgi) →
⊕

M(fgigj).

By Lemma 8.1 we see that g
deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn) generate the unit

ideal in S(f), and that the modules M(fgi), M(fgigj) are the principal localiza-
tions of the S(f)-module M(f) at these elements and their products. Thus we
may apply Algebra, Lemma 22.2 to the module M(f) over S(f) and the elements

g
deg(f)
1 /fdeg(g1), . . . , g

deg(f)
n /fdeg(gn). We conclude that the sequence is exact. By

the remarks made above, we see that M̃ is a sheaf on the basis of standard opens.

Thus we conclude from the material in Sheaves, Section 30 that there exists a

unique sheaf of rings OProj(S) which agrees with S̃ on the standard opens. Note
that by our computation of stalks above and Algebra, Lemma 55.5 the stalks of
this sheaf of rings are all local rings.

Similarly, for any graded S-module M there exists a unique sheaf of OProj(S)-

modules F which agrees with M̃ on the standard opens, see Sheaves, Lemma 30.12.

Definition 8.3. Let S be a graded ring.

(1) The structure sheaf OProj(S) of the homogeneous spectrum of S is the unique

sheaf of rings OProj(S) which agrees with S̃ on the basis of standard opens.
(2) The locally ringed space (Proj(S),OProj(S)) is called the homogeneous spec-

trum of S and denoted Proj(S).

(3) The sheaf of OProj(S)-modules extending M̃ to all opens of Proj(S) is called

the sheaf of OProj(S)-modules associated to M . This sheaf is denoted M̃ as
well.

We summarize the results obtained so far.

Lemma 8.4. Let S be a graded ring. Let M be a graded S-module. Let M̃ be the
sheaf of OProj(S)-modules associated to M .

(1) For every f ∈ S homogeneous of positive degree we have

Γ(D+(f),OProj(S)) = S(f).

(2) For every f ∈ S homogeneous of positive degree we have Γ(D+(f), M̃) =
M(f) as an S(f)-module.

(3) Whenever D+(g) ⊂ D+(f) the restriction mappings on OProj(S) and M̃ are
the maps S(f) → S(g) and M(f) →M(g) from Lemma 8.1.

(4) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have OProj(S),x = S(p).

(5) Let p be a homogeneous prime of S not containing S+, and let x ∈ Proj(S)
be the corresponding point. We have Fx = M(p) as an S(p)-module.

(6) There is a canonical ring map S0 −→ Γ(Proj(S), S̃) and a canonical S0-

module map M0 −→ Γ(Proj(S), M̃) compatible with the descriptions of sec-
tions over standard opens and stalks above.

Moreover, all these identifications are functorial in the graded S-module M . In

particular, the functor M 7→ M̃ is an exact functor from the category of graded
S-modules to the category of OProj(S)-modules.
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Proof. Assertions (1) - (5) are clear from the discussion above. We see (6) since
there are canonical maps M0 → M(f), x 7→ x/1 compatible with the restriction

maps described in (3). The exactness of the functor M 7→ M̃ follows from the fact
that the functor M 7→ M(p) is exact (see Algebra, Lemma 55.5) and the fact that
exactness of short exact sequences may be checked on stalks, see Modules, Lemma
3.1. �

Remark 8.5. The map from M0 to the global sections of M̃ is generally far from
being an isomorphism. A trivial example is to take S = k[x, y, z] with 1 = deg(x) =
deg(y) = deg(z) (or any number of variables) and to take M = S/(x100, y100, z100).

It is easy to see that M̃ = 0, but M0 = k.

Lemma 8.6. Let S be a graded ring. Let f ∈ S be homogeneous of positive degree.
Suppose that D(g) ⊂ Spec(S(f)) is a standard open. Then there exists a h ∈ S
homogeneous of positive degree such that D(g) corresponds to D+(h) ⊂ D+(f) via
the homeomorphism of Algebra, Lemma 55.3. In fact we can take h such that
g = h/fn for some n.

Proof. Write g = h/fn for some h homogeneous of positive degree and some n ≥ 1.
If D+(h) is not contained in D+(f) then we replace h by hf and n by n+1. Then h
has the required shape and D+(h) ⊂ D+(f) corresponds to D(g) ⊂ Spec(S(f)). �

Lemma 8.7. Let S be a graded ring. The locally ringed space Proj(S) is a scheme.
The standard opens D+(f) are affine opens. For any graded S-module M the sheaf

M̃ is a quasi-coherent sheaf of OProj(S)-modules.

Proof. Consider a standard open D+(f) ⊂ Proj(S). By Lemmas 8.1 and 8.4 we
have Γ(D+(f),OProj(S)) = S(f), and we have a homeomorphism ϕ : D+(f) →
Spec(S(f)). For any standard open D(g) ⊂ Spec(S(f)) we may pick a h ∈ S+ as in

Lemma 8.6. Then ϕ−1(D(g)) = D+(h), and by Lemmas 8.4 and 8.1 we see

Γ(D+(h),OProj(S)) = S(h) = (S(f))hdeg(f)/fdeg(h) = (S(f))g = Γ(D(g),OSpec(S(f))).

Thus the restriction of OProj(S) to D+(f) corresponds via the homeomorphism ϕ
exactly to the sheaf OSpec(S(f)) as defined in Schemes, Section 5. We conclude that

D+(f) is an affine scheme isomorphic to Spec(S(f)) via ϕ and hence that Proj(S)
is a scheme.

In exactly the same way we show that M̃ is a quasi-coherent sheaf of OProj(S)-
modules. Namely, the argument above will show that

M̃ |D+(f)
∼= ϕ∗

(
M̃(f)

)
which shows that M̃ is quasi-coherent. �

Lemma 8.8. Let S be a graded ring. The scheme Proj(S) is separated.

Proof. We have to show that the canonical morphism Proj(S)→ Spec(Z) is sepa-
rated. We will use Schemes, Lemma 21.8. Thus it suffices to show given any pair of
standard opens D+(f) and D+(g) that D+(f) ∩D+(g) = D+(fg) is affine (clear)
and that the ring map

S(f) ⊗Z S(g) −→ S(fg)

is surjective. Any element s in S(fg) is of the form s = h/(fngm) with h ∈ S
homogeneous of degree n deg(f) + mdeg(g). We may multiply h by a suitable
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monomial f igj and assume that n = n′ deg(g), and m = m′ deg(f). Then we can

rewrite s as s = h/f (n
′+m′) deg(g) · fm′ deg(g)/gm′ deg(f). So s is indeed in the image

of the displayed arrow. �

Lemma 8.9. Let S be a graded ring. The scheme Proj(S) is quasi-compact if and
only if there exist finitely many homogeneous elements f1, . . . , fn ∈ S+ such that

S+ ⊂
√

(f1, . . . , fn). In this case Proj(S) = D+(f1) ∪ . . . ∪D+(fn).

Proof. Given such a collection of elements the standard affine opens D+(fi) cover
Proj(S) by Algebra, Lemma 55.3. Conversely, if Proj(S) is quasi-compact, then we
may cover it by finitely many standard opens D+(fi), i = 1, . . . , n and we see that

S+ ⊂
√

(f1, . . . , fn) by the lemma referenced above. �

Lemma 8.10. Let S be a graded ring. The scheme Proj(S) has a canonical mor-
phism towards the affine scheme Spec(S0), agreeing with the map on topological
spaces coming from Algebra, Definition 55.1.

Proof. We saw above that our construction of S̃, resp. M̃ gives a sheaf of S0-
algebras, resp. S0-modules. Hence we get a morphism by Schemes, Lemma 6.4. This
morphism, when restricted to D+(f) comes from the canonical ring map S0 → S(f).
The maps S → Sf , S(f) → Sf are S0-algebra maps, see Lemma 8.1. Hence if the
homogeneous prime p ⊂ S corresponds to the Z-graded prime p′ ⊂ Sf and the
(usual) prime p′′ ⊂ S(f), then each of these has the same inverse image in S0. �

Lemma 8.11. Let S be a graded ring. If S is finitely generated as an algebra over
S0, then the morphism Proj(S) → Spec(S0) satisfies the existence and uniqueness
parts of the valuative criterion, see Schemes, Definition 20.3.

Proof. The uniqueness part follows from the fact that Proj(S) is separated (Lemma
8.8 and Schemes, Lemma 22.1). Choose xi ∈ S+ homogeneous, i = 1, . . . , n which
generate S over S0. Let di = deg(xi) and set d = lcm{di}. Suppose we are given a
diagram

Spec(K) //

��

Proj(S)

��
Spec(A) // Spec(S0)

as in Schemes, Definition 20.3. Denote v : K∗ → Γ the valuation of A, see Algebra,
Definition 48.13. We may choose an f ∈ S+ homogeneous such that Spec(K) maps
into D+(f). Then we get a commutative diagram of ring maps

K S(f)ϕ
oo

A

OO

S0
oo

OO

Let i0 ∈ {1, . . . , n} be an index minimizing the valuation (d/di)v(ϕ(x
deg(f)
i /fdi))

where we temporarily use the convention that the valuation of zero is bigger than
any element of the value group. For convenience set x0 = xi0 and d0 = di0 . Since
the open sets D+(xi) cover Proj(S) we see that ϕ(x0) 6= 0. This means that the
ring map ϕ factors though a map ϕ′ : S(fx0) → K. We see that

deg(f)v(ϕ′(xd0i /x
di
0 )) = d0v(ϕ(x

deg(f)
i /fdi))− div(ϕ(x

deg(f)
0 /fd0)) ≥ 0
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by our choice of i0. This implies that the S0-algebra S(x0), which is generated by

the elements xd0i /x
di
0 over S0, maps into A via ϕ′. The corresponding morphism

of schemes Spec(A) → Spec(S(x0)) = D+(x0) ⊂ Proj(S) provides the morphism
fitting into the first commutative diagram of this proof. �

We saw in the proof of Lemma 8.11 that, under the hypotheses of that lemma,
the morphism Proj(S) → Spec(S0) is quasi-compact as well. Hence (by Schemes,
Proposition 20.6) we see that Proj(S) → Spec(S0) is universally closed in the
situation of the lemma. We give two examples showing these results do not hold
without some assumption on the graded ring S.

Example 8.12. Let C[X1, X2, X3, . . .] be the graded C-algebra with each Xi in
degree 0. Consider the ring map

C[X1, X2, X3, . . .] −→ C[tα;α ∈ Q≥0]

which maps Xi to t1/i. The right hand side becomes a valuation ring A upon
localization at the ideal m = (tα;α > 0). This gives a morphism from Spec(f.f.(A))
to Proj(C[X1, X2, X3, . . .]) which does not extend to a morphism defined on all of
Spec(A). The reason is that the image of Spec(A) would be contained in one of the
D+(Xi) but then Xi+1/Xi would map to an element of A which it doesn’t since it
maps to t1/(i+1)−1/i.

Example 8.13. Let R = C[t] and

S = R[X1, X2, X3, . . .]/(X
2
i − tXi+1).

The grading is such that R = S0 and deg(Xi) = 2i−1. Note that if p ∈ Proj(S)
then t 6∈ p (otherwise p has to contain all of the Xi which is not allowed for an
element of the homogeneous spectrum). Thus we see that D+(Xi) = D+(Xi+1)
for all i. Hence Proj(S) is quasi-compact; in fact it is affine since it is equal to
D+(X1). It is easy to see that the image of Proj(S)→ Spec(R) is D(t). Hence the
morphism Proj(S) → Spec(R) is not closed. Thus the valuative criterion cannot
apply because it would imply that the morphism is closed (see Schemes, Proposition
20.6 ).

Example 8.14. Let A be a ring. Let S = A[T ] as a graded A algebra with T in
degree 1. Then the canonical morphism Proj(S) → Spec(A) (see Lemma 8.10) is
an isomorphism.

9. Quasi-coherent sheaves on Proj

Let S be a graded ring. Let M be a graded S-module. We saw in Lemma 8.4 how

to construct a quasi-coherent sheaf of modules M̃ on Proj(S) and a map

(9.0.1) M0 −→ Γ(Proj(S), M̃)

of the degree 0 part of M to the global sections of M̃ . The degree 0 part of the
nth twist M(n) of the graded module M (see Algebra, Section 54) is equal to Mn.
Hence we can get maps

(9.0.2) Mn −→ Γ(Proj(S), M̃(n)).

We would like to be able to perform this operation for any quasi-coherent sheaf F
on Proj(S). We will do this by tensoring with the nth twist of the structure sheaf,
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see Definition 10.1. In order to relate the two notions we will use the following
lemma.

Lemma 9.1. Let S be a graded ring. Let (X,OX) = (Proj(S),OProj(S)) be the
scheme of Lemma 8.7. Let f ∈ S+ be homogeneous. Let x ∈ X be a point corre-
sponding to the homogeneous prime p ⊂ S. Let M , N be graded S-modules. There
is a canonical map of OProj(S)-modules

M̃ ⊗OX Ñ −→ M̃ ⊗S N
which induces the canonical map M(f) ⊗S(f)

N(f) → (M ⊗S N)(f) on sections over

D+(f) and the canonical map M(p) ⊗S(p)
N(p) → (M ⊗S N)(p) on stalks at x.

Moreover, the following diagram

M0 ⊗S0
N0

//

��

(M ⊗S N)0

��

Γ(X, M̃ ⊗OX Ñ) // Γ(X, M̃ ⊗R N)

is commutative where the vertical maps are given by (9.0.1).

Proof. To construct a morphism as displayed is the same as constructing a OX -
bilinear map

M̃ × Ñ −→ M̃ ⊗R N
see Modules, Section 15. It suffices to define this on sections over the opens D+(f)
compatible with restriction mappings. On D+(f) we use the S(f)-bilinear map

M(f) ×N(f) → (M ⊗S N)(f), (x/fn, y/fm) 7→ (x⊗ y)/fn+m. Details omitted. �

Remark 9.2. In general the map constructed in Lemma 9.1 above is not an iso-
morphism. Here is an example. Let k be a field. Let S = k[x, y, z] with k in degree
0 and deg(x) = 1, deg(y) = 2, deg(z) = 3. Let M = S(1) and N = S(2), see
Algebra, Section 54 for notation. Then M ⊗S N = S(3). Note that

Sz = k[x, y, z, 1/z]

S(z) = k[x3/z, xy/z, y3/z2] ∼= k[u, v, w]/(uw − v3)

M(z) = S(z) · x+ S(z) · y2/z ⊂ Sz
N(z) = S(z) · y + S(z) · x2 ⊂ Sz

S(3)(z) = S(z) · z ⊂ Sz
Consider the maximal ideal m = (u, v, w) ⊂ S(z). It is not hard to see that both
M(z)/mM(z) and N(z)/mN(z) have dimension 2 over κ(m). But S(3)(z)/mS(3)(z)
has dimension 1. Thus the map M(z) ⊗N(z) → S(3)(z) is not an isomorphism.

10. Invertible sheaves on Proj

Recall from Algebra, Section 54 the construction of the twisted module M(n) as-
sociated to a graded module over a graded ring.

Definition 10.1. Let S be a graded ring. Let X = Proj(S).

(1) We define OX(n) = S̃(n). This is called the nth twist of the structure sheaf
of Proj(S).

(2) For any sheaf of OX -modules F we set F(n) = F ⊗OX OX(n).
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We are going to use Lemma 9.1 to construct some canonical maps. Since S(n)⊗S
S(m) = S(n+m) we see that there are canonical maps

(10.1.1) OX(n)⊗OX OX(m) −→ OX(n+m).

These maps are not isomorphisms in general, see the example in Remark 9.2. The
same example shows that OX(n) is not an invertible sheaf on X in general. Ten-
soring with an arbitrary OX -module F we get maps

(10.1.2) OX(n)⊗OX F(m) −→ F(n+m).

The maps (10.1.1) on global sections give a map of graded rings

(10.1.3) S −→
⊕

n≥0
Γ(X,OX(n)).

And for an arbitrary OX -module F the maps (10.1.2) give a graded module struc-
ture

(10.1.4)
⊕

n≥0
Γ(X,OX(n))×

⊕
m∈Z

Γ(X,F(m)) −→
⊕

m∈Z
Γ(X,F(m))

and via (10.1.3) also a S-module structure. More generally, given any graded S-
module M we have M(n) = M ⊗S S(n). Hence we get maps

(10.1.5) M̃(n) = M̃ ⊗OX OX(n) −→ M̃(n).

On global sections we get a map of graded S-modules

(10.1.6) M −→
⊕

n∈Z
Γ(X, M̃(n)).

Here is an important fact which follows basically immediately from the definitions.

Lemma 10.2. Let S be a graded ring. Set X = Proj(S). Let f ∈ S be homogeneous
of degree d > 0. The sheaves OX(nd)|D+(f) are invertible, and in fact trivial for all
n ∈ Z (see Modules, Definition 21.1). The maps (10.1.1) restricted to D+(f)

OX(nd)|D+(f) ⊗OD+(f)
OX(m)|D+(f) −→ OX(nd+m)|D+(f),

the maps (10.1.2) restricted to D+(f)

OX(nd)|D+(f) ⊗OD+(f)
F(m)|D+(f) −→ F(nd+m)|D+(f),

and the maps (10.1.5) restricted to D+(f)

M̃(nd)|D+(f) = M̃ |D+(f) ⊗OD+(f)
OX(nd)|D+(f) −→ M̃(nd)|D+(f)

are isomorphisms for all n,m ∈ Z.

Proof. The (not graded) S-module maps S → S(n), and M → M(n), given by
x 7→ fn/dx become isomorphisms after inverting f . The first shows that S(f)

∼=
S(n)(f) which gives an isomorphism OD+(f)

∼= OX(n)|D+(f). The second shows
that the map S(n)(f) ⊗S(f)

M(f) → M(n)(f) is an isomorphism. The case of the

map (10.1.2) is a consequence of the case of the map (10.1.1). �

Lemma 10.3. Let S be a graded ring. Let M be a graded S-module. Set X =
Proj(S). If S is generated by S1 over S0, then the sheaves OX(n) are invertible and
the maps (10.1.1), (10.1.2), and (10.1.5) are isomorphisms. In particular, these
maps induce isomorphisms

OX(1)⊗n ∼= OX(n) and M̃ ⊗OX OX(n) = M̃(n) ∼= M̃(n)
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Thus (9.0.2) becomes a map

(10.3.1) Mn −→ Γ(X, M̃(n))

and (10.1.6) becomes a map

(10.3.2) M −→
⊕

n∈Z
Γ(X, M̃(n)).

In fact these results hold more generally if X is covered by the standard opens D+(f)
with f ∈ S1.

Proof. Under the assumptions of the lemma X is covered by the open subsets
D+(f) with f ∈ S1 and the lemma is a consequence of Lemma 10.2 above. �

Lemma 10.4. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
The following open subsets of X are equal:

(1) The largest open subset W = Wd ⊂ X such that each OX(dn)|W is in-
vertible and all the multiplication maps OX(nd)|W ⊗OW OX(md)|W →
OX(nd+md)|W (see 10.1.1) are isomorphisms.

(2) The union of the open subsets D+(fg) with f, g ∈ S homogeneous and
deg(f) = deg(g) + d.

Moreover, all the maps M̃(nd)|W = M̃ |W ⊗OW OX(nd)|W → M̃(nd)|W (see 10.1.5)
are isomorphisms.

Proof. If x ∈ D+(fg) with deg(f) = deg(g) + d then on D+(fg) the sheaves
OX(dn) are generated by the element (f/g)n = f2n/(fg)n. This implies x is in the
open subset W defined in (1) by arguing as in the proof of Lemma 10.2.

Conversely, suppose that OX(d) is free of rank 1 in an open neighbourhood V of
x ∈ X and all the multiplication mapsOX(nd)|V ⊗OV OX(md)|V → OX(nd+md)|V
are isomorphisms. We may choose h ∈ S+ homogeneous such that D+(h) ⊂ V .
By the definition of the twists of the structure sheaf we conclude there exists an
element s of (Sh)d such that sn is a basis of (Sh)nd as a module over S(h) for all
n ∈ Z. We may write s = f/hm for some m ≥ 1 and f ∈ Sd+m deg(h). Set g = hm

so s = f/g. Note that x ∈ D(g) by construction. Note that gd ∈ (Sh)−d deg(g).

By assumption we can write this as a multiple of sdeg(g) = fdeg(g)/gdeg(g), say
gd = a/ge · fdeg(g)/gdeg(g). Then we conclude that gd+e+deg(g) = afdeg(g) and
hence also x ∈ D+(f). So x is an element of the set defined in (2).

The existence of the generating section s = f/g over the affine open D+(fg) whose
powers freely generate the sheaves of modules OX(nd) easily implies that the mul-

tiplication maps M̃(nd)|W = M̃ |W ⊗OW OX(nd)|W → M̃(nd)|W (see 10.1.5) are
isomorphisms. Compare with the proof of Lemma 10.2. �

Recall from Modules, Lemma 21.7 that given an invertible sheaf L on a locally
ringed space X, and given a global section s of L the set Xs = {x ∈ X | s 6∈ mxLx}
is open.

Lemma 10.5. Let S be a graded ring. Set X = Proj(S). Fix d ≥ 1 an integer.
Let W = Wd ⊂ X be the open subscheme defined in Lemma 10.4. Let n ≥ 1 and
f ∈ Snd. Denote s ∈ Γ(W,OW (nd)) the section which is the image of f via (10.1.3)
restricted to W . Then

Ws = D+(f) ∩W.
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Proof. Let D+(ab) ⊂W be a standard affine open with a, b ∈ S homogeneous and
deg(a) = deg(b) + d. Note that D+(ab) ∩ D+(f) = D+(abf). On the other hand
the restriction of s to D+(ab) corresponds to the element f/1 = bnf/an(a/b)n ∈
(Sab)nd. We have seen in the proof of Lemma 10.4 that (a/b)n is a generator
for OW (nd) over D+(ab). We conclude that Ws ∩ D+(ab) is the principal open
associated to bnf/an ∈ OX(D+(ab)). Thus the result of the lemma is clear. �

The following lemma states the properties that we will later use to characterize
schemes with an ample invertible sheaf.

Lemma 10.6. Let S be a graded ring. Let X = Proj(S). Let Y ⊂ X be a quasi-
compact open subscheme. Denote OY (n) the restriction of OX(n) to Y . There
exists an integer d ≥ 1 such that

(1) the subscheme Y is contained in the open Wd defined in Lemma 10.4,
(2) the sheaf OY (dn) is invertible for all n ∈ Z,
(3) all the maps OY (nd) ⊗OY OY (m) −→ OY (nd + m) of Equation (10.1.1)

are isomorphisms,

(4) all the maps M̃(nd)|Y = M̃ |Y ⊗OY OX(nd)|Y → M̃(nd)|Y (see 10.1.5) are
isomorphisms,

(5) given f ∈ Snd denote s ∈ Γ(Y,OY (nd)) the image of f via (10.1.3) re-
stricted to Y , then D+(f) ∩ Y = Ys,

(6) a basis for the topology on Y is given by the collection of opens Ys, where
s ∈ Γ(Y,OY (nd)), n ≥ 1, and

(7) a basis for the topology of Y is given by those opens Ys ⊂ Y , for s ∈
Γ(Y,OY (nd)), n ≥ 1 which are affine.

Proof. Since Y is quasi-compact there exist finitely many homogeneous fi ∈ S+,
i = 1, . . . , n such that the standard opens D+(fi) give an open covering of Y . Let

di = deg(fi) and set d = d1 . . . dn. Note that D+(fi) = D+(f
d/di
i ) and hence we see

immediately that Y ⊂ Wd, by characterization (2) in Lemma 10.4 or by (1) using
Lemma 10.2. Note that (1) implies (2), (3) and (4) by Lemma 10.4. (Note that
(3) is a special case of (4).) Assertion (5) follows from Lemma 10.5. Assertions (6)
and (7) follow because the open subsets D+(f) form a basis for the topology of X
and are affine. �

11. Functoriality of Proj

A graded ring map ψ : A→ B does not always give rise to a morphism of associated
projective homogeneous spectra. The reason is that the inverse image ψ−1(q) of a
homogeneous prime q ⊂ B may contain the irrelevant prime A+ even if q does not
contain B+. The correct result is stated as follows.

Lemma 11.1. Let A, B be two graded rings. Set X = Proj(A) and Y = Proj(B).
Let ψ : A→ B be a graded ring map. Set

U(ψ) =
⋃

f∈A+ homogeneous
D+(ψ(f)) ⊂ Y.

Then there is a canonical morphism of schemes

rψ : U(ψ) −→ X
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and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the following properties:

(1) For every d ≥ 0 the diagram

Ad

��

ψ
// Bd

��
Γ(X,OX(d))

θ // Γ(U(ψ),OY (d)) Γ(Y,OY (d))oo

is commutative.
(2) For any f ∈ A+ homogeneous we have r−1ψ (D+(f)) = D+(ψ(f)) and the

restriction of rψ to D+(ψ(f)) corresponds to the ring map A(f) → B(ψ(f))

induced by ψ.

Proof. Clearly condition (2) uniquely determines the morphism of schemes and the
open subset U(ψ). Pick f ∈ Ad with d ≥ 1. Note that OX(n)|D+(f) corresponds to
the A(f)-module (Af )n and that OY (n)|D+(ψ(f)) corresponds to the B(ψ(f))-module
(Bψ(f))n. In other words θ when restricted to D+(ψ(f)) corresponds to a map of
Z-graded B(ψ(f))-algebras

Af ⊗A(f)
B(ψ(f)) −→ Bψ(f)

Condition (1) determines the images of all elements of A. Since f is an invertible
element which is mapped to ψ(f) we see that 1/fm is mapped to 1/ψ(f)m. It easily
follows from this that θ is uniquely determined, namely it is given by the rule

a/fm ⊗ b/ψ(f)e 7−→ ψ(a)b/ψ(f)m+e.

To show existence we remark that the proof of uniqueness above gave a well defined
prescription for the morphism r and the map θ when restricted to every standard
open of the form D+(ψ(f)) ⊂ U(ψ) into D+(f). Call these rf and θf . Hence we
only need to verify that if D+(f) ⊂ D+(g) for some f, g ∈ A+ homogeneous, then
the restriction of rg to D+(ψ(f)) matches rf . This is clear from the formulas given
for r and θ above. �

Lemma 11.2. Let A, B, and C be graded rings. Set X = Proj(A), Y = Proj(B)
and Z = Proj(C). Let ϕ : A→ B, ψ : B → C be graded ring maps. Then we have

U(ψ ◦ ϕ) = r−1ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 11.3. With hypotheses and notation as in Lemma 11.1 above. Assume
Ad → Bd is surjective for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n) → OY (n) are surjective but not isomorphisms in

general (even if A→ B is surjective).
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Proof. Part (1) follows from the definition of U(ψ) and the fact that D+(f) =
D+(fn) for any n > 0. For f ∈ A+ homogeneous we see that A(f) → B(ψ(f)) is
surjective because any element of B(ψ(f)) can be represented by a fraction b/ψ(f)n

with n arbitrarily large (which forces the degree of b ∈ B to be large). This proves
(2). The same argument shows the map

Af → Bψ(f)

is surjective which proves the surjectivity of θ. For an example where this map
is not an isomorphism consider the graded ring A = k[x, y] where k is a field and
deg(x) = 1, deg(y) = 2. Set I = (x), so that B = k[y]. Note that OY (1) = 0
in this case. But it is easy to see that r∗ψOY (1) is not zero. (There are less silly

examples.) �

Lemma 11.4. With hypotheses and notation as in Lemma 11.1 above. Assume
Ad → Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. We have (1) by Lemma 11.3. Let f ∈ A+ be homogeneous. The assumption
on ψ implies that Af → Bf is an isomorphism (details omitted). Thus it is clear
that rψ and θ restrict to isomorphisms over D+(f). The lemma follows. �

Lemma 11.5. With hypotheses and notation as in Lemma 11.1 above. Assume
Ad → Bd is surjective for d� 0 and that A is generated by A1 over A0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. By Lemmas 11.4 and 11.2 we may replace B by the image of A→ B without
changing X or the sheaves OX(n). Thus we may assume that A→ B is surjective.
By Lemma 11.3 we get (1) and (2) and surjectivity in (3). By Lemma 10.3 we see
that both OX(n) and OY (n) are invertible. Hence θ is an isomorphism. �

Lemma 11.6. With hypotheses and notation as in Lemma 11.1 above. Assume
there exists a ring map R → A0 and a ring map R → R′ such that B = R′ ⊗R A.
Then

(1) U(ψ) = Y ,
(2) the diagram

Y = Proj(B)
rψ
//

��

Proj(A) = X

��
Spec(R′) // Spec(R)

is a fibre product square, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. This follows immediately by looking at what happens over the standard
opens D+(f) for f ∈ A+. �

http://localhost:8080/tag/07ZE
http://localhost:8080/tag/01N1
http://localhost:8080/tag/01N2


22 CONSTRUCTIONS OF SCHEMES

Lemma 11.7. With hypotheses and notation as in Lemma 11.1 above. Assume
there exists a g ∈ A0 such that ψ induces an isomorphism Ag → B. Then U(ψ) =
Y , rψ : Y → X is an open immersion which induces an isomorphism of Y with the
inverse image of D(g) ⊂ Spec(A0). Moreover the map θ is an isomorphism.

Proof. This is a special case of Lemma 11.6 above. �

12. Morphisms into Proj

Let S be a graded ring. Let X = Proj(S) be the homogeneous spectrum of S. Let
d ≥ 1 be an integer. Consider the open subscheme

(12.0.1) Ud =
⋃

f∈Sd
D+(f) ⊂ X = Proj(S)

Note that d|d′ ⇒ Ud ⊂ Ud′ and X =
⋃
d Ud. Neither X nor Ud need be quasi-

compact, see Algebra, Lemma 55.3. Let us write OUd(n) = OX(n)|Ud . By Lemma
10.2 we know that OUd(nd), n ∈ Z is an invertible OUd-module and that all the
multiplication maps OUd(nd)⊗OUd OX(m)→ OUd(nd+m) of (10.1.1) are isomor-

phisms. In particular we have OUd(nd) ∼= OUd(d)⊗n. The graded ring map (10.1.3)
on global sections combined with restriction to Ud give a homomorphism of graded
rings

(12.0.2) ψd : S(d) −→ Γ∗(Ud,OUd(d)).

For the notation S(d), see Algebra, Section 54. For the notation Γ∗ see Modules,
Definition 21.4. Moreover, since Ud is covered by the opens D+(f), f ∈ Sd we see

that OUd(d) is globally generated by the sections in the image of ψd1 : S
(d)
1 = Sd →

Γ(Ud,OUd(d)), see Modules, Definition 4.1.

Let Y be a scheme, and let ϕ : Y → X be a morphism of schemes. Assume
the image ϕ(Y ) is contained in the open subscheme Ud of X. By the discussion
following Modules, Definition 21.4 we obtain a homomorphism of graded rings

Γ∗(Ud,OUd(d)) −→ Γ∗(Y, ϕ
∗OX(d)).

The composition of this and ψd gives a graded ring homomorphism

(12.0.3) ψdϕ : S(d) −→ Γ∗(Y, ϕ
∗OX(d))

which has the property that the invertible sheaf ϕ∗OX(d) is globally generated by
the sections in the image of (S(d))1 = Sd → Γ(Y, ϕ∗OX(d)).

Lemma 12.1. Let S be a graded ring, and X = Proj(S). Let d ≥ 1 and Ud ⊂ X
as above. Let Y be a scheme. Let L be an invertible sheaf on Y . Let ψ : S(d) →
Γ∗(Y,L) be a graded ring homomorphism such that L is generated by the sections
in the image of ψ|Sd : Sd → Γ(Y,L). Then there exists a morphism ϕ : Y → X
such that ϕ(Y ) ⊂ Ud and an isomorphism α : ϕ∗OUd(d) → L such that ψdϕ agrees
with ψ via α:

Γ∗(Y,L) Γ∗(Y, ϕ
∗OUd(d))

α
oo Γ∗(Ud,OUd(d))

ϕ∗
oo

S(d)

ψ

OO

S(d)

ψd

OO

ψdϕ

ii

idoo

commutes. Moreover, the pair (ϕ, α) is unique.
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Proof. Pick f ∈ Sd. Denote s = ψ(f) ∈ Γ(Y,L). On the open set Ys where
s does not vanish multiplication by s induces an isomorphism OYs → L|Ys , see
Modules, Lemma 21.7. We will denote the inverse of this map x 7→ x/s, and
similarly for powers of L. Using this we define a ring map ψ(f) : S(f) → Γ(Ys,O)
by mapping the fraction a/fn to ψ(a)/sn. By Schemes, Lemma 6.4 this corresponds
to a morphism ϕf : Ys → Spec(S(f)) = D+(f). We also introduce the isomorphism
αf : ϕ∗fOD+(f)(d)→ L|Ys which maps the pullback of the trivializing section f over

D+(f) to the trivializing section s over Ys. With this choice the commutativity of
the diagram in the lemma holds with Y replace by Ys, ϕ replaced by ϕf , and α
replaced by αf ; verification omitted.

Suppose that f ′ ∈ Sd is a second element, and denote s′ = ψ(f ′) ∈ Γ(Y,L). Then
Ys ∩ Ys′ = Yss′ and similarly D+(f) ∩D+(f ′) = D+(ff ′). In Lemma 10.6 we saw
that D+(f ′) ∩D+(f) is the same as the set of points of D+(f) where the section
of OX(d) defined by f ′ does not vanish. Hence ϕ−1f (D+(f ′)∩D+(f)) = Ys ∩ Ys′ =

ϕ−1f ′ (D+(f ′)∩D+(f)). On D+(f)∩D+(f ′) the fraction f/f ′ is an invertible section

of the structure sheaf with inverse f ′/f . Note that ψ(f ′)(f/f
′) = ψ(f)/s′ = s/s′

and ψ(f)(f
′/f) = ψ(f ′)/s = s′/s. We claim there is a unique ring map S(ff ′) →

Γ(Yss′ ,O) making the following diagram commute

Γ(Ys,O) // Γ(Yss′ ,O) Γ(Ys,′O)oo

S(f)
//

ψ(f)

OO

S(ff ′)

OO

S(f ′)
oo

ψ(f′)

OO

It exists because we may use the rule x/(ff ′)n 7→ ψ(x)/(ss′)n, which “works” by
the formulas above. Uniqueness follows as Proj(S) is separated, see Lemma 8.8
and its proof. This shows that the morphisms ϕf and ϕf ′ agree over Ys ∩ Ys′ . The
restrictions of αf and αf ′ agree over Ys ∩ Ys′ because the regular functions s/s′

and ψ(f ′)(f) agree. This proves that the morphisms ψf glue to a global morphism
from Y into Ud ⊂ X, and that the maps αf glue to an isomorphism satisfying the
conditions of the lemma.

We still have to show the pair (ϕ, α) is unique. Suppose (ϕ′, α′) is a second such
pair. Let f ∈ Sd. By the commutativity of the diagrams in the lemma we have
that the inverse images of D+(f) under both ϕ and ϕ′ are equal to Yψ(f). Since the
opens D+(f) are a basis for the topology on X, and since X is a sober topological
space (see Schemes, Lemma 11.1) this means the maps ϕ and ϕ′ are the same on
underlying topological spaces. Let us use s = ψ(f) to trivialize the invertible sheaf
L over Yψ(f). By the commutativity of the diagrams we have that α⊗n(ψdϕ(x)) =

ψ(x) = (α′)⊗n(ψdϕ′(x)) for all x ∈ Snd. By construction of ψdϕ and ψdϕ′ we have

ψdϕ(x) = ϕ](x/fn)ψdϕ(fn) over Yψ(f), and similarly for ψdϕ′ . by the commutativity

of the diagrams of the lemma we deduce that ϕ](x/fn) = (ϕ′)](x/fn). This proves
that ϕ and ϕ′ induce the same morphism from Yψ(f) into the affine scheme D+(f) =
Spec(S(f)). Hence ϕ and ϕ′ are the same as morphisms. Finally, it remains to show
that the commutativity of the diagram of the lemma singles out, given ϕ, a unique
α. We omit the verification. �

We continue the discussion from above the lemma. Let S be a graded ring. Let Y
be a scheme. We will consider triples (d,L, ψ) where
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(1) d ≥ 1 is an integer,
(2) L is an invertible OY -module, and
(3) ψ : S(d) → Γ∗(Y,L) is a graded ring homomorphism such that L is gener-

ated by the global sections ψ(f), with f ∈ Sd.
Given a morphism h : Y ′ → Y and a triple (d,L, ψ) over Y we can pull it back
to the triple (d, h∗L, h∗ ◦ ψ). Given two triples (d,L, ψ) and (d,L′, ψ′) with the
same integer d we say they are strictly equivalent if there exists an isomorphism
β : L → L′ such that β ◦ ψ = ψ′ as graded ring maps S(d) → Γ∗(Y,L′).

For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,

Y 7−→ {strict equivalence classes of triples (d,L, ψ) as above}

with pullbacks as defined above.

Lemma 12.2. Let S be a graded ring. Let X = Proj(S). The open subscheme
Ud ⊂ X (12.0.1) represents the functor Fd and the triple (d,OUd(d), ψd) defined
above is the universal family (see Schemes, Section 15).

Proof. This is a reformulation of Lemma 12.1 �

Lemma 12.3. Let S be a graded ring generated as an S0-algebra by the elements
of S1. In this case the scheme X = Proj(S) represents the functor which associates
to a scheme Y the set of pairs (L, ψ), where

(1) L is an invertible OY -module, and
(2) ψ : S → Γ∗(Y,L) is a graded ring homomorphism such that L is generated

by the global sections ψ(f), with f ∈ S1

up to strict equivalence as above.

Proof. Under the assumptions of the lemma we have X = U1 and the lemma is a
reformulation of Lemma 12.2 above. �

We end this section with a discussion of a functor corresponding to Proj(S) for a
general graded ring S. We advise the reader to skip the rest of this section.

Fix an arbitrary graded ring S. Let T be a scheme. We will say two triples (d,L, ψ)
and (d′,L′, ψ′) over T with possibly different integers d, d′ are equivalent if there

exists an isomorphism β : L⊗d′ → (L′)⊗d of invertible sheaves over T such that

β ◦ ψ|S(dd′) and ψ′|S(dd′) agree as graded ring maps S(dd′) → Γ∗(Y, (L′)⊗dd
′
).

Lemma 12.4. Let S be a graded ring. Set X = Proj(S). Let T be a scheme. Let
(d,L, ψ) and (d′,L′, ψ′) be two triples over T . The following are equivalent:

(1) Let n = lcm(d, d′). Write n = ad = a′d′. There exists an isomorphism

β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|S(n) and ψ′|S(n) agree as
graded ring maps S(n) → Γ∗(Y, (L′)⊗n).

(2) The triples (d,L, ψ) and (d′,L′, ψ′) are equivalent.
(3) For some positive integer n = ad = a′d′ there exists an isomorphism β :

L⊗a → (L′)⊗a′ with the property that β ◦ψ|S(n) and ψ′|S(n) agree as graded
ring maps S(n) → Γ∗(Y, (L′)⊗n).

(4) The morphisms ϕ : T → X and ϕ′ : T → X associated to (d,L, ψ) and
(d′,L′, ψ′) are equal.
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Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Also (3) implies (4) by the uniqueness
statement in Lemma 12.1. Thus we have to prove that (4) implies (1). Assume (4),
in other words ϕ = ϕ′. Note that this implies that we may write L = ϕ∗OX(d) and
L′ = ϕ∗OX(d′). Moreover, via these identifications we have that the graded ring
maps ψ and ψ′ correspond to the restriction of the canonical graded ring map

S −→
⊕

n≥0
Γ(X,OX(n))

to S(d) and S(d′) composed with pullback by ϕ (by Lemma 12.1 again). Hence
taking β to be the isomorphism

(ϕ∗OX(d))⊗a = ϕ∗OX(n) = (ϕ∗OX(d′))⊗a
′

works. �

Let S be a graded ring. Let X = Proj(S). Over the open subscheme scheme
Ud ⊂ X = Proj(S) (12.0.1) we have the triple (d,OUd(d), ψd). Clearly, if d|d′
the triples (d,OUd(d), ψd) and (d′,OUd′ (d

′), ψd
′
) are equivalent when restricted to

the open Ud (which is a subset of Ud′). This, combined with Lemma 12.1 shows
that morphisms Y → X correspond roughly to equivalence classes of triples over
Y . This is not quite true since if Y is not quasi-compact, then there may not be
a single triple which works. Thus we have to be slightly careful in defining the
corresponding functor.

Here is one possible way to do this. Suppose d′ = ad. Consider the transforma-
tion of functors Fd → Fd′ which assigns to the triple (d,L, ψ) over T the triple
(d′,L⊗a, ψ|S(d′)). One of the implications of Lemma 12.4 is that the transformation
Fd → Fd′ is injective! For a quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

F : Schopp −→ Sets

Lemma 12.5. Let S be a graded ring. Let X = Proj(S). The functor F defined
above is representable by the scheme X.

Proof. We have seen above that the functor Fd corresponds to the open subscheme
Ud ⊂ X. Moreover the transformation of functors Fd → Fd′ (if d|d′) defined above
corresponds to the inclusion morphism Ud → Ud′ (see discussion above). Hence to
show that F is represented by X it suffices to show that T → X for a quasi-compact
scheme T ends up in some Ud, and that for a general scheme T we have

Mor(T,X) = limV⊂T quasi-compact open Mor(V,X).

These verifications are omitted. �
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13. Projective space

Projective space is one of the fundamental objects studied in algebraic geometry.
In this section we just give its construction as Proj of a polynomial ring. Later we
will discover many of its beautiful properties.

Lemma 13.1. Let S = Z[T0, . . . , Tn] with deg(Ti) = 1. The scheme

Pn
Z = Proj(S)

represents the functor which associates to a scheme Y the pairs (L, (s0, . . . , sn))
where

(1) L is an invertible OY -module, and
(2) s0, . . . , sn are global sections of L which generate L

up to the following equivalence: (L, (s0, . . . , sn)) ∼ (N , (t0, . . . , tn)) ⇔ there exists
an isomorphism β : L → N with β(si) = ti for i = 0, . . . , n.

Proof. This is a special case of Lemma 12.3 above. Namely, for any graded ring
A we have

Morgradedrings(Z[T0, . . . , Tn], A) = A1 × . . .×A1

ψ 7→ (ψ(T0), . . . , ψ(Tn))

and the degree 1 part of Γ∗(Y,L) is just Γ(Y,L). �

Definition 13.2. The scheme Pn
Z = Proj(Z[T0, . . . , Tn]) is called projective n-space

over Z. Its base change Pn
S to a scheme S is called projective n-space over S. If R

is a ring the base change to Spec(R) is denoted Pn
R and called projective n-space

over R.

Given a scheme Y over S and a pair (L, (s0, . . . , sn)) as in Lemma 13.1 the induced
morphism to Pn

S is denoted

ϕ(L,(s0,...,sn)) : Y −→ Pn
S

This makes sense since the pair defines a morphism into Pn
Z and we already have

the structure morphism into S so combined we get a morphism into Pn
S = Pn

Z×S.
Note that this is the S-morphism characterized by

L = ϕ∗(L,(s0,...,sn))OPnR
(1) and si = ϕ∗(L,(s0,...,sn))Ti

where we think of Ti as a global section of OPnS
(1) via (10.1.3).

Lemma 13.3. Projective n-space over Z is covered by n+ 1 standard opens

Pn
Z =

⋃
i=0,...,n

D+(Ti)

where each D+(Ti) is isomorphic to An
Z affine n-space over Z.

Proof. This is true because Z[T0, . . . , Tn]+ = (T0, . . . , Tn) and since

Spec

(
Z

[
T0
Ti
, . . . ,

Tn
Ti

])
∼= An

Z

in an obvious way. �

Lemma 13.4. Let S be a scheme. The structure morphism Pn
S → S is

(1) separated,
(2) quasi-compact,
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(3) satisfies the existence and uniqueness parts of the valuative criterion, and
(4) universally closed.

Proof. All these properties are stable under base change (this is clear for the last
two and for the other two see Schemes, Lemmas 21.13 and 19.3). Hence it suffices to
prove them for the morphism Pn

Z → Spec(Z). Separatedness is Lemma 8.8. Quasi-
compactness follows from Lemma 13.3. Existence and uniqueness of the valuative
criterion follow from Lemma 8.11. Universally closed follows from the above and
Schemes, Proposition 20.6. �

Remark 13.5. What’s missing in the list of properties above? Well to be sure the
property of being of finite type. The reason we do not list this here is that we have
not yet defined the notion of finite type at this point. (Another property which is
missing is “smoothness”. And I’m sure there are many more you can think of.)

We finish this section with two simple lemmas. These lemmas are special cases of
more general results later, but perhaps it makes sense to prove these directly here
now.

Lemma 13.6. Let R be a ring. Let Z ⊂ Pn
R be a closed subscheme. Let

Id = Ker
(
R[T0, . . . , Tn]d −→ Γ(Z,OPnR

(d)|Z)
)

Then I =
⊕
Id ⊂ R[T0, . . . , Tn] is a graded ideal and Z = Proj(R[T0, . . . , Tn]/I).

Proof. It is clear that I is a graded ideal. Set Z ′ = Proj(R[T0, . . . , Tn]/I). By
Lemma 11.5 we see that Z ′ is a closed subscheme of Pn

R. To see the equality
Z = Z ′ it suffices to check on an standard affine open D+(Ti). By renumbering the
homogeneous coordinates we may assume i = 0. Say Z∩D+(T0), resp. Z ′∩D+(T0)
is cut out by the ideal J , resp. J ′ of R[T1/T0, . . . , Tn/T0]. Then J ′ is the ideal

generated by the elements F/T
deg(F )
0 where F ∈ I is homogeneous. Suppose the

degree of F ∈ I is d. Since F vanishes as a section of OPnR
(d) restricted to Z we

see that F/T d0 is an element of J . Thus J ′ ⊂ J .

Conversely, suppose that f ∈ J . If f has total degree d in T1/T0, . . . , Tn/T0, then
we can write f = F/T d0 for some F ∈ R[T0, . . . , Tn]d. Pick i ∈ {1, . . . , n}. Then
Z ∩D+(Ti) is cut out by some ideal Ji ⊂ R[T0/Ti, . . . , Tn/Ti]. Moreover,

J ·R
[
T1
T0
, . . . ,

Tn
T0
,
T0
Ti
, . . . ,

Tn
Ti

]
= Ji ·R

[
T1
T0
, . . . ,

Tn
T0
,
T0
Ti
, . . . ,

Tn
Ti

]
The left hand side is the localization of J with respect to the element Ti/T0 and
the right hand side is the localization of Ji with respect to the element T0/Ti. It

follows that T di0 F/T d+dii is an element of Ji for some di sufficiently large. This

proves that T
max(di)
0 F is an element of I, because its restriction to each standard

affine open D+(Ti) vanishes on the closed subscheme Z ∩ D+(Ti). Hence f ∈ J ′
and we conclude J ⊂ J ′ as desired. �

The following lemma is a special case of the more general Properties, Lemma 26.3.

Lemma 13.7. Let R be a ring. Let F be a quasi-coherent sheaf on Pn
R. For d ≥ 0

set
Md = Γ(Pn

R,F ⊗OPn
R
OPnR

(d)) = Γ(Pn
R,F(d))

Then M =
⊕

d≥0Md is a graded R[T0, . . . , Rn]-module and there is a canonical

isomorphism F = M̃ .
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Proof. The multiplication maps

R[T0, . . . , Rn]e ×Md −→Md+e

come from the natural isomorphisms

OPnR
(e)⊗OPn

R
F(d) −→ F(e+ d)

see Equation (10.1.4). Let us construct the map c : M̃ → F . On each of the stan-

dard affines Ui = D+(Ti) we see that Γ(Ui, M̃) = (M [1/Ti])0 where the subscript

0 means degree 0 part. An element of this can be written as m/T di with m ∈ Md.
Since Ti is a generator of O(1) over Ui we can always write m|Ui = mi ⊗ T di where
mi ∈ Γ(Ui,F) is a unique section. Thus a natural guess is c(m/T di ) = mi. A
small argument, which is omitted here, shows that this gives a well defined map

c : M̃ → F if we can show that

(Ti/Tj)
dmi|Ui∩Uj = mj |Ui∩Uj

in M [1/TiTj ]. But this is clear since on the overlap the generators Ti and Tj of
O(1) differ by the invertible function Ti/Tj .

Injectivity of c. We may check for injectivity over the affine opens Ui. Let i ∈
{0, . . . , n} and let s be an element s = m/T di ∈ Γ(Ui, M̃) such that c(m/T di ) = 0.
By the description of c above this means that mi = 0, hence m|Ui = 0. Hence

T ei m = 0 in M for some e. Hence s = m/T di = T ei /T
e+d
i = 0 as desired.

Surjectivity of c. We may check for surjectivity over the affine opens Ui. By
renumbering it suffices to check it over U0. Let s ∈ F(U0). Let us write F|Ui =

Ñi for some R[T0/Ti, . . . , T0/Ti]-module Ni, which is possible because F is quasi-
coherent. So s corresponds to an element x ∈ N0. Then we have that

(Ni)Tj/Ti
∼= (Nj)Ti/Tj

(where the subscripts mean “principal localization at”) as modules over the ring

R

[
T0
Ti
, . . . ,

Tn
Ti
,
T0
Tj
, . . . ,

Tn
Tj

]
.

This means that for some large integer d there exist elements si ∈ Ni, i = 1, . . . , n
such that

s = (Ti/T0)dsi

on U0 ∩ Ui. Next, we look at the difference

tij = si − (Tj/Ti)
dsj

on Ui ∩ Uj , 0 < i < j. By our choice of si we know that tij |U0∩Ui∩Uj = 0. Hence
there exists a large integer e such that (T0/Ti)

etij = 0. Set s′i = (T0/Ti)
esi, and

s′0 = s. Then we will have

s′a = (Tb/Ta)e+ds′b

on Ua ∩ Ub for all a, b. This is exactly the condition that the elements s′a glue to a

global section m ∈ Γ(Pn
R,F(e+d)). And moreover c(m/T e+d0 ) = s by construction.

Hence c is surjective and we win. �
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14. Invertible sheaves and morphisms into Proj

Let T be a scheme and let L be an invertible sheaf on T . For a section s ∈ Γ(T,L)
we denote Ts the open subset of points where s does not vanish. See Modules,
Lemma 21.7. We can view the following lemma as a slight generalization of Lemma
12.3. It also is a generalization of Lemma 11.1.

Lemma 14.1. Let A be a graded ring. Set X = Proj(A). Let T be a scheme. Let
L be an invertible OT -module. Let ψ : A→ Γ∗(T,L) be a homomorphism of graded
rings. Set

U(ψ) =
⋃

f∈A+ homogeneous
Tψ(f)

The morphism ψ induces a canonical morphism of schemes

rL,ψ : U(ψ) −→ X

together with a map of Z-graded OT -algebras

θ : r∗L,ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
L⊗d|U(ψ).

The triple (U(ψ), rL,ψ, θ) is characterized by the following properties:

(1) For f ∈ A+ homogeneous we have r−1L,ψ(D+(f)) = Tψ(f).

(2) For every d ≥ 0 the diagram

Ad

(10.1.3)

��

ψ
// Γ(T,L⊗d)

restrict

��
Γ(X,OX(d))

θ // Γ(U(ψ),L⊗d)

is commutative.

Moreover, for any d ≥ 1 and any open subscheme V ⊂ T such that the sections
in ψ(Ad) generate L⊗d|V the morphism rL,ψ|V agrees with the morphism ϕ : V →
Proj(A) and the map θ|V agrees with the map α : ϕ∗OX(d)→ L⊗d|V where (ϕ, α)
is the pair of Lemma 12.1 associated to ψ|A(d) : A(d) → Γ∗(V,L⊗d).

Proof. Suppose that we have two triples (U, r : U → X, θ) and (U ′, r′ : U ′ →
X, θ′) satisfying (1) and (2). Property (1) implies that U = U ′ = U(ψ) and that
r = r′ as maps of underlying topological spaces, since the opens D+(f) form a
basis for the topology on X, and since X is a sober topological space (see Algebra,
Section 55 and Schemes, Lemma 11.1). Let f ∈ A+ be homogeneous. Note that
Γ(D+(f),

⊕
n∈ZOX(n)) = Af as a Z-graded algebra. Consider the two Z-graded

ring maps

θ, θ′ : Af −→ Γ(Tψ(f),
⊕
L⊗n).

We know that multiplication by f (resp. ψ(f)) is an isomorphism on the left (resp.
right) hand side. We also know that θ(x/1) = θ′(x/1) = ψ(x)|Tψ(f)

by (2) for all

x ∈ A. Hence we deduce easily that θ = θ′ as desired. Considering the degree 0
parts we deduce that r] = (r′)], i.e., that r = r′ as morphisms of schemes. This
proves the uniqueness.

Now we come to existence. By the uniqueness just proved, it is enough to construct
the pair (r, θ) locally on T . Hence we may assume that T = Spec(R) is affine,
that L = OT and that for some f ∈ A+ homogeneous we have ψ(f) generates
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OT = O⊗ deg(f)
T . In other words, ψ(f) = u ∈ R∗ is a unit. In this case the map ψ

is a graded ring map
A −→ R[x] = Γ∗(T,OT )

which maps f to uxdeg(f). Clearly this extends (uniquely) to a Z-graded ring map
θ : Af → R[x, x−1] by mapping 1/f to u−1x− deg(f). This map in degree zero gives
the ring map A(f) → R which gives the morphism r : T = Spec(R)→ Spec(A(f)) =
D+(f) ⊂ X. Hence we have constructed (r, θ) in this special case.

Let us show the last statement of the lemma. According to Lemma 12.1 the mor-
phism constructed there is the unique one such that the displayed diagram in its
statement commutes. The commutativity of the diagram in the lemma implies the
commutativity when restricted to V and A(d). Whence the result. �

Remark 14.2. Assumptions as in Lemma 14.1 above. The image of the morphism
rL,ψ need not be contained in the locus where the sheaf OX(1) is invertible. Here is
an example. Let k be a field. Let S = k[A,B,C] graded by deg(A) = 1, deg(B) = 2,
deg(C) = 3. Set X = Proj(S). Let T = P2

k = Proj(k[X0, X1, X2]). Recall that
L = OT (1) is invertible and that OT (n) = L⊗n. Consider the composition ψ of the
maps

S → k[X0, X1, X2]→ Γ∗(T,L).

Here the first map is A 7→ X6
0 , B 7→ X3

1 , C 7→ X3
2 and the second map is (10.1.3).

By the lemma this corresponds to a morphism rL,ψ : T → X = Proj(S) which is
easily seen to be surjective. On the other hand, in Remark 9.2 we showed that the
sheaf OX(1) is not invertible at all points of X.

15. Relative Proj via glueing

Situation 15.1. Here S is a scheme, and A is a quasi-coherent graded OS-algebra.

In this section we outline how to construct a morphism of schemes

Proj
S

(A) −→ S

by glueing the homogeneous spectra Proj(Γ(U,A)) where U ranges over the affine
opens of S. We first show that the homogeneous spectra of the values of A over
affines form a suitable collection of schemes, as in Lemma 2.1.

Lemma 15.2. In Situation 15.1. Suppose U ⊂ U ′ ⊂ S are affine opens. Let
A = A(U) and A′ = A(U ′). The map of graded rings A′ → A induces a morphism
r : Proj(A)→ Proj(A′), and the diagram

Proj(A) //

��

Proj(A′)

��
U // U ′

is cartesian. Moreover there are canonical isomorphisms θ : r∗OProj(A′)(n) →
OProj(A)(n) compatible with multiplication maps.

Proof. Let R = OS(U) and R′ = OS(U ′). Note that the map R⊗R′ A′ → A is an
isomorphism as A is quasi-coherent (see Schemes, Lemma 7.3 for example). Hence
the lemma follows from Lemma 11.6. �

In particular the morphism Proj(A)→ Proj(A′) of the lemma is an open immersion.
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Lemma 15.3. In Situation 15.1. Suppose U ⊂ U ′ ⊂ U ′′ ⊂ S are affine opens.
Let A = A(U), A′ = A(U ′) and A′′ = A(U ′′). The composition of the morphisms
r : Proj(A) → Proj(A′), and r′ : Proj(A′) → Proj(A′′) of Lemma 15.2 gives the
morphism r′′ : Proj(A)→ Proj(A′′) of Lemma 15.2. A similar statement holds for
the isomorphisms θ.

Proof. This follows from Lemma 11.2 since the map A′′ → A is the composition
of A′′ → A′ and A′ → A. �

Lemma 15.4. In Situation 15.1. There exists a morphism of schemes

π : Proj
S

(A) −→ S

with the following properties:

(1) for every affine open U ⊂ S there exists an isomorphism iU : π−1(U) →
Proj(A) with A = A(U), and

(2) for U ⊂ U ′ ⊂ S affine open the composition

Proj(A)
i−1
U // π−1(U)

inclusion // π−1(U ′)
iU′ // Proj(A′)

with A = A(U), A′ = A(U ′) is the open immersion of Lemma 15.2 above.

Proof. Follows immediately from Lemmas 2.1, 15.2, and 15.3. �

Lemma 15.5. In Situation 15.1. The morphism π : Proj
S

(A) → S of Lemma
15.4 comes with the following additional structure. There exists a quasi-coherent
Z-graded sheaf of OProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n), and a morphism of graded

OS-algebras

ψ : A −→
⊕

n≥0
π∗

(
OProj

S
(A)(n)

)
uniquely determined by the following property: For every affine open U ⊂ S with
A = A(U) there is an isomorphism

θU : i∗U

(⊕
n∈Z
OProj(A)(n)

)
−→

(⊕
n∈Z
OProj

S
(A)(n)

)
|π−1(U)

of Z-graded Oπ−1(U)-algebras such that

An
ψ

//

(10.1.3)
''

Γ(π−1(U),OProj
S
(A)(n))

Γ(Proj(A),OProj(A)(n))

θU

44

is commutative.

Proof. We are going to use Lemma 2.2 to glue the sheaves of Z-graded algebras⊕
n∈ZOProj(A)(n) for A = A(U), U ⊂ S affine open over the scheme Proj

S
(A). We

have constructed the data necessary for this in Lemma 15.2 and we have checked
condition (d) of Lemma 2.2 in Lemma 15.3. Hence we get the sheaf of Z-graded
OProj

S
(A)-algebras

⊕
n∈ZOProj

S
(A)(n) together with the isomorphisms θU for all

U ⊂ S affine open and all n ∈ Z. For every affine open U ⊂ S with A = A(U)
we have a map A → Γ(Proj(A),

⊕
n≥0OProj(A)(n)). Hence the map ψ exists by

functoriality of relative glueing, see Remark 2.3. The diagram of the lemma com-
mutes by construction. This characterizes the sheaf of Z-graded OProj

S
(A)-algebras
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OProj

S
(A)(n) because the proof of Lemma 11.1 shows that having these diagrams

commute uniquely determines the maps θU . Some details omitted. �

16. Relative Proj as a functor

We place ourselves in Situation 15.1. So S is a scheme and A =
⊕

d≥0Ad is a
quasi-coherent graded OS-algebra. In this section we relativize the construction
of Proj by constructing a functor which the relative homogeneous spectrum will
represent. As a result we will construct a morphism of schemes

Proj
S

(A) −→ S

which above affine opens of S will look like the homogeneous spectrum of a graded
ring. The discussion will be modeled after our discussion of the relative spectrum
in Section 4. The easier method using glueing schemes of the form Proj(A), A =
Γ(U,A), U ⊂ S affine open, is explained in Section 15, and the result in this section
will be shown to be isomorphic to that one.

Fix for the moment an integer d ≥ 1. We denote A(d) =
⊕

n≥0And similarly to the
notation in Algebra, Section 54. Let T be a scheme. Let us consider quadruples
(d, f : T → S,L, ψ) over T where

(1) d is the integer we fixed above,
(2) f : T → S is a morphism of schemes,
(3) L is an invertible OT -module, and
(4) ψ : f∗A(d) →

⊕
n≥0 L⊗n is a homomorphism of graded OT -algebras such

that f∗Ad → L is surjective.

Given a morphism h : T ′ → T and a quadruple (d, f,L, ψ) over T we can pull it
back to the quadruple (d, f ◦h, h∗L, h∗ψ) over T ′. Given two quadruples (d, f,L, ψ)
and (d, f ′,L′, ψ′) over T with the same integer d we say they are strictly equivalent
if f = f ′ and there exists an isomorphism β : L → L′ such that β ◦ ψ = ψ′ as
graded OT -algebra maps f∗A(d) →

⊕
n≥0(L′)⊗n.

For each integer d ≥ 1 we define

Fd : Schopp −→ Sets,

T 7−→ {strict equivalence classes of (d, f : T → S,L, ψ) as above}
with pullbacks as defined above.

Lemma 16.1. In Situation 15.1. Let d ≥ 1. Let Fd be the functor associated to
(S,A) above. Let g : S′ → S be a morphism of schemes. Set A′ = g∗A. Let F ′d be
the functor associated to (S′,A′) above. Then there is a canonical isomorphism

F ′d
∼= hS′ ×hS Fd

of functors.

Proof. A quadruple (d, f ′ : T → S′,L′, ψ′ : (f ′)∗(A′)(d) →
⊕

n≥0(L′)⊗n) is the

same as a quadruple (d, f,L, ψ : f∗A(d) →
⊕

n≥0 L⊗n) together with a factorization

of f as f = g ◦ f ′. Namely, the correspondence is f = g ◦ f ′, L = L′ and ψ = ψ′ via
the identifications (f ′)∗(A′)(d) = (f ′)∗g∗(A(d)) = f∗A(d). Hence the lemma. �

Lemma 16.2. In Situation 15.1. Let Fd be the functor associated to (d, S,A)
above. If S is affine, then Fd is representable by the open subscheme Ud (12.0.1)
of the scheme Proj(Γ(S,A)).
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Proof. Write S = Spec(R) and A = Γ(S,A). Then A is a graded R-algebra and

A = Ã. To prove the lemma we have to identify the functor Fd with the functor

F triplesd of triples defined in Section 12.

Let (d, f : T → S,L, ψ) be a quadruple. We may think of ψ as a OS-module
map A(d) →

⊕
n≥0 f∗L⊗n. Since A(d) is quasi-coherent this is the same thing as

an R-linear homomorphism of graded rings A(d) → Γ(S,
⊕

n≥0 f∗L⊗n). Clearly,

Γ(S,
⊕

n≥0 f∗L⊗n) = Γ∗(T,L). Thus we may associate to the quadruple the triple

(d,L, ψ).

Conversely, let (d,L, ψ) be a triple. The composition R → A0 → Γ(T,OT ) deter-
mines a morphism f : T → S = Spec(R), see Schemes, Lemma 6.4. With this choice
of f the map A(d) → Γ(S,

⊕
n≥0 f∗L⊗n) is R-linear, and hence corresponds to a ψ

which we can use for a quadruple (d, f : T → S,L, ψ). We omit the verification

that this establishes an isomorphism of functors Fd = F triplesd . �

Lemma 16.3. In Situation 15.1. The functor Fd is representable by a scheme.

Proof. We are going to use Schemes, Lemma 15.4.

First we check that Fd satisfies the sheaf property for the Zariski topology. Namely,
suppose that T is a scheme, that T =

⋃
i∈I Ui is an open covering, and that

(d, fi,Li, ψi) ∈ Fd(Ui) such that (d, fi,Li, ψi)|Ui∩Uj and (d, fj ,Lj , ψj)|Ui∩Uj are
strictly equivalent. This implies that the morphisms fi : Ui → S glue to a mor-
phism of schemes f : T → S such that f |Ii = fi, see Schemes, Section 14. Thus
f∗i A(d) = f∗A(d)|Ui . It also implies there exist isomorphisms βij : Li|Ui∩Uj →
Lj |Ui∩Uj such that βij ◦ ψi = ψj on Ui ∩ Uj . Note that the isomorphisms βij are
uniquely determined by this requirement because the maps f∗i Ad → Li are surjec-
tive. In particular we see that βjk ◦ βij = βik on Ui ∩ Uj ∩ Uk. Hence by Sheaves,
Section 33 the invertible sheaves Li glue to an invertible OT -module L and the
morphisms ψi glue to morphism of OT -algebras ψ : f∗A(d) →

⊕
n≥0 L⊗n. This

proves that Fd satisfies the sheaf condition with respect to the Zariski topology.

Let S =
⋃
i∈I Ui be an affine open covering. Let Fd,i ⊂ Fd be the subfunctor

consisting of those pairs (f : T → S, ϕ) such that f(T ) ⊂ Ui.
We have to show each Fd,i is representable. This is the case because Fd,i is identified
with the functor associated to Ui equipped with the quasi-coherent graded OUi-
algebra A|Ui) by Lemma 16.1. Thus the result follows from Lemma 16.2.

Next we show that Fd,i ⊂ Fd is representable by open immersions. Let (f : T →
S, ϕ) ∈ Fd(T ). Consider Vi = f−1(Ui). It follows from the definition of Fd,i that
given a : T ′ → T we gave a∗(f, ϕ) ∈ Fd,i(T ′) if and only if a(T ′) ⊂ Vi. This is what
we were required to show.

Finally, we have to show that the collection (Fd,i)i∈I covers Fd. Let (f : T →
S, ϕ) ∈ Fd(T ). Consider Vi = f−1(Ui). Since S =

⋃
i∈I Ui is an open covering of

S we see that T =
⋃
i∈I Vi is an open covering of T . Moreover (f, ϕ)|Vi ∈ Fd,i(Vi).

This finishes the proof of the lemma. �

At this point we can redo the material at the end of Section 12 in the current
relative setting and define a functor which is representable by Proj

S
(A). To do this

we introduce the notion of equivalence between two quadruples (d, f : T → S,L, ψ)
and (d′, f ′ : T → S,L′, ψ′) with possibly different values of the integers d, d′.
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Namely, we say these are equivalent if f = f ′, and there exists an isomorphism
β : L⊗d′ → (L′)⊗d such that β ◦ ψ|f∗A(dd′) = ψ′|f∗A(dd′) . The following lemma

implies that this defines an equivalence relation. (This is not a complete triviality.)

Lemma 16.4. In Situation 15.1. Let T be a scheme. Let (d, f,L, ψ), (d′, f ′,L′, ψ′)
be two quadruples over T . The following are equivalent:

(1) Let m = lcm(d, d′). Write m = ad = a′d′. We have f = f ′ and there exists

an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and

ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.

(2) The quadruples (d, f,L, ψ) and (d′, f ′,L′, ψ′) are equivalent.
(3) We have f = f ′ and for some positive integer m = ad = a′d′ there exists

an isomorphism β : L⊗a → (L′)⊗a′ with the property that β ◦ ψ|f∗A(m) and

ψ′|f∗A(m) agree as graded ring maps f∗A(m) →
⊕

n≥0(L′)⊗mn.

Proof. Clearly (1) implies (2) and (2) implies (3) by restricting to more divisible
degrees and powers of invertible sheaves. Assume (3) for some integer m = ad =
a′d′. Let m0 = lcm(d, d′) and write it as m0 = a0d = a′0d

′. We are given an

isomorphism β : L⊗a → (L′)⊗a′ with the property described in (3). We want to

find an isomorphism β0 : L⊗a0 → (L′)⊗a′0 having that property as well. Since by
assumption the maps ψ : f∗Ad → L and ψ′ : (f ′)∗Ad′ → L′ are surjective the same
is true for the maps ψ : f∗Am0

→ L⊗a0 and ψ′ : (f ′)∗Am0
→ (L′)⊗a0 . Hence if

β0 exists it is uniquely determined by the condition that β0 ◦ ψ = ψ′. This means
that we may work locally on T . Hence we may assume that f = f ′ : T → S maps
into an affine open, in other words we may assume that S is affine. In this case
the result follows from the corresponding result for triples (see Lemma 12.4) and
the fact that triples and quadruples correspond in the affine base case (see proof of
Lemma 16.2). �

Suppose d′ = ad. Consider the transformation of functors Fd → Fd′ which assigns
to the quadruple (d, f,L, ψ) over T the quadruple (d′, f,L⊗a, ψ|f∗A(d′)). One of the
implications of Lemma 16.4 is that the transformation Fd → Fd′ is injective! For a
quasi-compact scheme T we define

F (T ) =
⋃

d∈N
Fd(T )

with transition maps as explained above. This clearly defines a contravariant func-
tor on the category of quasi-compact schemes with values in sets. For a general
scheme T we define

F (T ) = limV⊂T quasi-compact open F (V ).

In other words, an element ξ of F (T ) corresponds to a compatible system of choices
of elements ξV ∈ F (V ) where V ranges over the quasi-compact opens of T . We
omit the definition of the pullback map F (T )→ F (T ′) for a morphism T ′ → T of
schemes. Thus we have defined our functor

(16.4.1) F : Schopp −→ Sets

Lemma 16.5. In Situation 15.1. The functor F above is representable by a scheme.

Proof. Let Ud → S be the scheme representing the functor Fd defined above. Let
Ld, ψd : π∗dA(d) →

⊕
n≥0 L

⊗n
d be the universal object. If d|d′, then we may con-

sider the quadruple (d′, πd,L⊗d
′/d

d , ψd|A(d′)) which determines a canonical morphism
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Ud → Ud′ over S. By construction this morphism corresponds to the transformation
of functors Fd → Fd′ defined above.

For every affine open Spec(R) = V ⊂ S setting A = Γ(V,A) we have a canonical
identification of the base change Ud,V with the corresponding open subscheme of
Proj(A), see Lemma 16.2. Moreover, the morphisms Ud,V → Ud′,V constructed
above correspond to the inclusions of opens in Proj(A). Thus we conclude that
Ud → Ud′ is an open immersion.

This allows us to construct X by glueing the schemes Ud along the open immersions
Ud → Ud′ . Technically, it is convenient to choose a sequence d1|d2|d3| . . . such that
every positive integer divides one of the di and to simply take X =

⋃
Udi using the

open immersions above. It is then a simple matter to prove that X represents the
functor F . �

Lemma 16.6. In Situation 15.1. The scheme π : Proj
S

(A) → S constructed in
Lemma 15.4 and the scheme representing the functor F are canonically isomorphic
as schemes over S.

Proof. Let X be the scheme representing the functor F . Note that X is a scheme
over S since the functor F comes equipped with a natural transformation F → hS .
Write Y = Proj

S
(A). We have to show that X ∼= Y as S-schemes. We give two

arguments.

The first argument uses the construction of X as the union of the schemes Ud
representing Fd in the proof of Lemma 16.5. Over each affine open of S we can
identify X with the homogeneous spectrum of the sections ofA over that open, since
this was true for the opens Ud. Moreover, these identifications are compatible with
further restrictions to smaller affine opens. On the other hand, Y was constructed
by glueing these homogeneous spectra. Hence we can glue these isomorphisms to
an isomorphism between X and Proj

S
(A) as desired. Details omitted.

Here is the second argument. Lemma 15.5 shows that there exists a morphism of
graded algebras

ψ : π∗A −→
⊕

n≥0
OY (n)

over Y which on sections over affine opens of S agrees with (10.1.3). Hence for
every y ∈ Y there exists an open neighbourhood V ⊂ Y of y and an integer
d ≥ 1 such that for d|n the sheaf OY (n)|V is invertible and the multiplication maps
OY (n)|V ⊗OV OY (m)|V → OY (n + m)|V are isomorphisms. Thus ψ restricted to
the sheaf π∗A(d)|V gives an element of Fd(V ). Since the opens V cover Y we see
“ψ” gives rise to an element of F (Y ). Hence a canonical morphism Y → X over S.
Because this construction is completely canonical to see that it is an isomorphism
we may work locally on S. Hence we reduce to the case S affine where the result
is clear. �

Definition 16.7. Let S be a scheme. Let A be a quasi-coherent sheaf of graded
OS-algebras. The relative homogeneous spectrum of A over S, or the homogeneous
spectrum of A over S, or the relative Proj of A over S is the scheme constructed in
Lemma 15.4 which represents the functor F (16.4.1), see Lemma 16.6. We denote
it π : Proj

S
(A)→ S.
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The relative Proj comes equipped with a quasi-coherent sheaf of Z-graded algebras⊕
n∈ZOProj

S
(A)(n) (the twists of the structure sheaf) and a “universal” homomor-

phism of graded algebras

ψuniv : A −→ π∗

(⊕
n≥0
OProj

S
(A)(n)

)
see Lemma 15.5. We may also think of this as a homomorphism

ψuniv : π∗A −→
⊕

n≥0
OProj

S
(A)(n)

if we like. The following lemma is a formulation of the universality of this object.

Lemma 16.8. In Situation 15.1. Let (f : T → S, d,L, ψ) be a quadruple. Let
rd,L,ψ : T → Proj

S
(A) be the associated S-morphism. There exists an isomorphism

of Z-graded OT -algebras

θ : r∗d,L,ψ

(⊕
n∈Z
OProj

S
(A)(nd)

)
−→

⊕
n∈Z
L⊗n

such that the following diagram commutes

A(d)

ψ
//

ψuniv ''

f∗
(⊕

n∈Z L⊗n
)

π∗

(⊕
n≥0OProj

S
(A)(nd)

) θ

55

The commutativity of this diagram uniquely determines θ.

Proof. Note that the quadruple (f : T → S, d,L, ψ) defines an element of Fd(T ).
Let Ud ⊂ Proj

S
(A) be the locus where the sheaf OProj

S
(A)(d) is invertible and

generated by the image of ψuniv : π∗Ad → OProj
S
(A)(d). Recall that Ud represents

the functor Fd, see the proof of Lemma 16.5. Hence the result will follow if we
can show the quadruple (Ud → S, d,OUd(d), ψuniv|A(d)) is the universal family, i.e.,
the representing object in Fd(Ud). We may do this after restricting to an affine
open of S because (a) the formation of the functors Fd commutes with base change
(see Lemma 16.1), and (b) the pair (

⊕
n∈ZOProj

S
(A)(n), ψuniv) is constructed by

glueing over affine opens in S (see Lemma 15.5). Hence we may assume that S is
affine. In this case the functor of quadruples Fd and the functor of triples Fd agree
(see proof of Lemma 16.2) and moreover Lemma 12.2 shows that (d,OUd(d), ψd)
is the universal triple over Ud. Going backwards through the identifications in the
proof of Lemma 16.2 shows that (Ud → S, d,OUd(d), ψuniv|A(d)) is the universal
quadruple as desired. �

Lemma 16.9. Let S be a scheme and A be a quasi-coherent sheaf of graded OS-
algebras. The morphism π : Proj

S
(A)→ S is separated.

Proof. To prove a morphism is separated we may work locally on the base, see
Schemes, Section 21. By construction Proj

S
(A) is over any affine U ⊂ S isomorphic

to Proj(A) with A = A(U). By Lemma 8.8 we see that Proj(A) is separated. Hence
Proj(A)→ U is separated (see Schemes, Lemma 21.14) as desired. �
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Lemma 16.10. Let S be a scheme and A be a quasi-coherent sheaf of graded OS-
algebras. Let g : S′ → S be any morphism of schemes. Then there is a canonical
isomorphism

r : Proj
S′

(g∗A) −→ S′ ×S Proj
S

(A)

as well as a corresponding isomorphism

θ : r∗pr∗2

(⊕
d∈Z
OProj

S
(A)(d)

)
−→

⊕
d∈Z
OProj

S′
(g∗A)(d)

of Z-graded OProj
S′

(g∗A)-algebras.

Proof. This follows from Lemma 16.1 and the construction of Proj
S

(A) in Lemma
16.5 as the union of the schemes Ud representing the functors Fd. In terms of
the construction of relative Proj via glueing this isomorphism is given by the iso-
morphisms constructed in Lemma 11.6 which provides us with the isomorphism θ.
Some details omitted. �

Lemma 16.11. Let S be a scheme. Let A be a quasi-coherent sheaf of graded OS-
modules generated as an A0-algebra by A1. In this case the scheme X = Proj

S
(A)

represents the functor F1 which associates to a scheme f : T → S over S the set of
pairs (L, ψ), where

(1) L is an invertible OT -module, and
(2) ψ : f∗A →

⊕
n≥0 L⊗n is a graded OT -algebra homomorphism such that

f∗A1 → L is surjective

up to strict equivalence as above. Moreover, in this case all the quasi-coherent
sheaves OProj(A)(n) are invertible OProj(A)-modules and the multiplication maps

induce isomorphisms OProj(A)(n)⊗OProj(A)
OProj(A)(m) = OProj(A)(n+m).

Proof. Under the assumptions of the lemma the sheaves OProj(A)(n) are invertible

and the multiplication maps isomorphisms by Lemma 16.5 and Lemma 12.3 over
affine opens of S. Thus X actually represents the functor F1, see proof of Lemma
16.5. �

17. Quasi-coherent sheaves on relative Proj

We briefly discuss how to deal with graded modules in the relative setting.

We place ourselves in Situation 15.1. So S is a scheme, and A is a quasi-coherent
graded OS-algebra. Let M =

⊕
n∈ZMn be a graded A-module, quasi-coherent

as an OS-module. We are going to describe the associated quasi-coherent sheaf of
modules on Proj

S
(A). We first describe the value of this sheaf schemes T mapping

into the relative Proj.

Let T be a scheme. Let (d, f : T → S,L, ψ) be a quadruple over T , as in Section

16. We define a quasi-coherent sheaf M̃T of OT -modules as follows

(17.0.1) M̃T =
(
f∗M(d) ⊗f∗A(d)

(⊕
n∈Z
L⊗n

))
0

So M̃T is the degree 0 part of the tensor product of the graded f∗A(d)-modulesM(d)

and
⊕

n∈Z L⊗n. Note that the sheaf M̃T depends on the quadruple even though
we suppressed this in the notation. This construction has the pleasing property

that given any morphism g : T ′ → T we have M̃T ′ = g∗M̃T where M̃T ′ denotes
the quasi-coherent sheaf associated to the pullback quadruple (d, f ◦ g, g∗L, g∗ψ).
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Since all sheaves in (17.0.1) are quasi-coherent we can spell out the construction
over an affine open Spec(C) = V ⊂ T which maps into an affine open Spec(R) =
U ⊂ S. Namely, suppose that A|U corresponds to the graded R-algebra A, that
M|U corresponds to the graded A-module M , and that L|V corresponds to the
invertible C-module L. The map ψ gives rise to a graded R-algebra map γ : A(d) →⊕

n≥0 L
⊗n. (Tensor powers of L over C.) Then (M̃T )|V is the quasi-coherent sheaf

associated to the C-module

NR,C,A,M,γ =
(
M (d) ⊗A(d),γ

(⊕
n∈Z

L⊗n
))

0

By assumption we may even cover T by affine opens V such that there exists some
a ∈ Ad such that γ(a) ∈ L is a C-basis for the module L. In that case any element
of NR,C,A,M,γ is a sum of pure tensors

∑
mi ⊗ γ(a)−ni with m ∈Mnid. In fact we

may multiply each mi with a suitable positive power of a and collect terms to see
that each element of NR,C,A,M,γ can be written as m⊗ γ(a)−n with m ∈Mnd and
n� 0. In other words we see that in this case

NR,C,A,M,γ = M(a) ⊗A(a)
C

where the map A(a) → C is the map x/an 7→ γ(x)/γ(a)n. In other words, this

is the value of M̃ on D+(a) ⊂ Proj(A) pulled back to Spec(C) via the morphism
Spec(C)→ D+(a) coming from γ.

Lemma 17.1. In Situation 15.1. For any quasi-coherent sheaf of graded A-modules

M on S, there exists a canonical associated sheaf of OProj
S
(A)-modules M̃ with the

following properties:

(1) Given a scheme T and a quadruple (T → S, d,L, ψ) over T corresponding

to a morphism h : T → Proj
S

(A) there is a canonical isomorphism M̃T =

h∗M̃ where M̃T is defined by (17.0.1).
(2) The isomorphisms of (1) are compatible with pullbacks.
(3) There is a canonical map

π∗M0 −→ M̃.

(4) The construction M 7→ M̃ is functorial in M.

(5) The construction M 7→ M̃ is exact.
(6) There are canonical maps

M̃ ⊗OProj
S

(A)
Ñ −→ M̃ ⊗A N

as in Lemma 9.1.
(7) There exist canonical maps

π∗M−→
⊕

n∈Z
M̃(n)

generalizing (10.1.6).

(8) The formation of M̃ commutes with base change.

Proof. Omitted. We should split this lemma into parts and prove the parts sepa-
rately. �
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18. Functoriality of relative Proj

This section is the analogue of Section 11 for the relative Proj. Let S be a scheme.
A graded OS-algebra map ψ : A → B does not always give rise to a morphism of
associated relative Proj. The correct result is stated as follows.

Lemma 18.1. Let S be a scheme. Let A, B be two graded quasi-coherent OS-
algebras. Set p : X = Proj

S
(A)→ S and q : Y = Proj

S
(B)→ S. Let ψ : A → B be

a homomorphism of graded OS-algebras. There is a canonical open U(ψ) ⊂ Y and
a canonical morphism of schemes

rψ : U(ψ) −→ X

over S and a map of Z-graded OU(ψ)-algebras

θ = θψ : r∗ψ

(⊕
d∈Z
OX(d)

)
−→

⊕
d∈Z
OU(ψ)(d).

The triple (U(ψ), rψ, θ) is characterized by the property that for any affine open
W ⊂ S the triple

(U(ψ) ∩ p−1W, rψ|U(ψ)∩p−1W : U(ψ) ∩ p−1W → q−1W, θ|U(ψ)∩p−1W )

is equal to the triple associated to ψ : A(W ) → B(W ) in Lemma 11.1 via the
identifications p−1W = Proj(A(W )) and q−1W = Proj(B(W )) of Section 15.

Proof. This lemma proves itself by glueing the local triples. �

Lemma 18.2. Let S be a scheme. Let A, B, and C be quasi-coherent graded OS-
algebras. Set X = Proj

S
(A), Y = Proj

S
(B) and Z = Proj

S
(C). Let ϕ : A → B,

ψ : B → C be graded OS-algebra maps. Then we have

U(ψ ◦ ϕ) = r−1ϕ (U(ψ)) and rψ◦ϕ = rϕ ◦ rψ|U(ψ◦ϕ).

In addition we have
θψ ◦ r∗ψθϕ = θψ◦ϕ

with obvious notation.

Proof. Omitted. �

Lemma 18.3. With hypotheses and notation as in Lemma 18.1 above. Assume
Ad → Bd is surjective for d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n) → OY (n) are surjective but not isomorphisms in

general (even if A → B is surjective).

Proof. Follows on combining Lemma 18.1 with Lemma 11.3. �

Lemma 18.4. With hypotheses and notation as in Lemma 18.1 above. Assume
Ad → Bd is an isomorphism for all d� 0. Then

(1) U(ψ) = Y ,
(2) rψ : Y → X is an isomorphism, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 18.1 with Lemma 11.4. �

Lemma 18.5. With hypotheses and notation as in Lemma 18.1 above. Assume
Ad → Bd is surjective for d� 0 and that A is generated by A1 over A0. Then

http://localhost:8080/tag/07ZG
http://localhost:8080/tag/07ZH
http://localhost:8080/tag/07ZI
http://localhost:8080/tag/07ZJ
http://localhost:8080/tag/07ZK


40 CONSTRUCTIONS OF SCHEMES

(1) U(ψ) = Y ,
(2) rψ : Y → X is a closed immersion, and
(3) the maps θ : r∗ψOX(n)→ OY (n) are isomorphisms.

Proof. Follows on combining Lemma 18.1 with Lemma 11.5. �

19. Invertible sheaves and morphisms into relative Proj

It seems that we may need the following lemma somewhere. The situation is the
following:

(1) Let S be a scheme.
(2) Let A be a quasi-coherent graded OS-algebra.
(3) Denote π : Proj

S
(A)→ S the relative homogeneous spectrum over S.

(4) Let f : X → S be a morphism of schemes.
(5) Let L be an invertible OX -module.
(6) Let ψ : f∗A →

⊕
d≥0 L⊗d be a homomorphism of graded OX -algebras.

Given this data set

U(ψ) =
⋃

(U,V,a)
Uψ(a)

where (U, V, a) satisfies:

(1) V ⊂ S affine open,
(2) U = f−1(V ), and
(3) a ∈ A(V )+ is homogeneous.

Namely, then ψ(a) ∈ Γ(U,L⊗ deg(a)) and Uψ(a) is the corresponding open (see Mod-
ules, Lemma 21.7).

Lemma 19.1. With assumptions and notation as above. The morphism ψ induces
a canonical morphism of schemes over S

rL,ψ : U(ψ) −→ Proj
S

(A)

together with a map of graded OU(ψ)-algebras

θ : r∗L,ψ

(⊕
d≥0
OProj

S
(A)(d)

)
−→

⊕
d≥0
L⊗d|U(ψ)

characterized by the following properties:

(1) For every open V ⊂ S and every d ≥ 0 the diagram

Ad(V )

ψ

��

ψ
// Γ(f−1(V ),L⊗d)

restrict

��
Γ(π−1(V ),OProj

S
(A)(d))

θ // Γ(f−1(V ) ∩ U(ψ),L⊗d)

is commutative.
(2) For any d ≥ 1 and any open subscheme W ⊂ X such that ψ|W : f∗Ad|W →
L⊗d|W is surjective the restriction of the morphism rL,ψ agrees with the
morphism W → Proj

S
(A) which exists by the construction of the relative

homogeneous spectrum, see Definition 16.7.
(3) For any affine open V ⊂ S, the restriction

(U(ψ) ∩ f−1(V ), rL,ψ|U(ψ)∩f−1(V ), θ|U(ψ)∩f−1(V ))
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agrees via iV (see Lemma 15.4) with the triple (U(ψ′), rL,ψ′ , θ
′) of Lemma

14.1 associated to the map ψ′ : A = A(V )→ Γ∗(f
−1(V ),L|f−1(V )) induced

by ψ.

Proof. Use characterization (3) to construct the morphism rL,ψ and θ locally over
S. Use the uniqueness of Lemma 14.1 to show that the construction glues. Details
omitted. �

20. Twisting by invertible sheaves and relative Proj

Let S be a scheme. Let A =
⊕

d≥0Ad be a quasi-coherent graded OS-algebra. Let
L be an invertible sheaf on S. In this situation we obtain another quasi-coherent
graded OS-algebra, namely

B =
⊕

d≥0
Ad ⊗OS L⊗d

It turns out that A and B have isomorphic relative homogeneous spectra.

Lemma 20.1. With notation S, A, L and B as above. There is a canonical
isomorphism

P = Proj
S

(A)
g

//

π

%%

Proj
S

(B) = P ′

π′

yy
S

with the following properties

(1) There are isomorphisms θn : g∗OP ′(n)→ OP (n)⊗π∗L⊗n which fit together
to give an isomorphism of Z-graded algebras

θ : g∗
(⊕

n∈Z
OP ′(n)

)
−→

⊕
n∈Z
OP (n)⊗ π∗L⊗n

(2) For every open V ⊂ S the diagrams

An(V )⊗ L⊗n(V )
multiply

//

ψ⊗π∗

��

Bn(V )

ψ

��

Γ(π−1V,OP (n))⊗ Γ(π−1V, π∗L⊗n)

multiply

��
Γ(π−1V,OP (n)⊗ π∗L⊗n) Γ(π′−1V,OP ′(n))

θnoo

are commutative.
(3) Add more here as necessary.

Proof. This is the identity map when L ∼= OS . In general choose an open covering
of S such that L is trivialized over the pieces and glue the corresponding maps.
Details omitted. �
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21. Projective bundles

Let S be a scheme. Let E be a quasi-coherent sheaf of OS-modules. By Modules,
Lemma 18.6 the symmetric algebra Sym(E) of E over OS is a quasi-coherent sheaf
of OS-algebras. Note that it is generated in degree 1 over OS . Hence it makes
sense to apply the construction of the previous section to it, specifically Lemmas
16.5 and 16.11.

Definition 21.1. Let S be a scheme. Let E be a quasi-coherent OS-module3. We
denote

π : P(E) = Proj
S

(Sym(E)) −→ S

and we call it the projective bundle associated to E . The symbol OP(E)(n) indicates
the invertible OP(E)-modules introduced in Lemma 16.5 and is called the nth twist
of the structure sheaf.

Note that according to Lemma 16.5 there are canonicalOS-module homomorphisms

Symn(E) −→ π∗(OP(E)(n))

for all n ≥ 0. This, combined with the fact that OP(E)(1) is the canonical relatively
ample invertible sheaf on P(E), is a good way to remember how we have normalized
our construction of P(E). Namely, in some references the space P(E) is only defined
for E finite locally free on S, and sometimes P(E) is actually defined as our P(E∧)
where E∧ is the dual of the sheaf E .

Example 21.2. The map Symn(E) → π∗(OP(E)(n)) is an isomorphism if E is
locally free, but in general need not be an isomorphism. In fact we will give an
example where this map is not injective for n = 1. Set S = Spec(A) with

A = k[u, v, s1, s2, t1, t2]/I

where k is a field and

I = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1).

Denote u the class of u in A and similarly for the other variables. Let M =
(Ax⊕Ay)/A(ux+ vy) so that

Sym(M) = A[x, y]/(ux+ vy) = k[x, y, u, v, s1, s2, t1, t2]/J

where

J = (−us1 + vt1 + ut2, vs1 + us2 − vt2, vs2, ut1, ux+ vy).

In this case the projective bundle associated to the quasi-coherent sheaf E = M̃ on
S = Spec(A) is the scheme

P = Proj(Sym(M)).

Note that this scheme as an affine open covering P = D+(x) ∪ D+(y). Consider
the element m ∈M which is the image of the element us1x+ vt2y. Note that

x(us1x+ vt2y) = (s1x+ s2y)(ux+ vy) mod I

and

y(us1x+ vt2y) = (t1x+ t2y)(ux+ vy) mod I.

3The reader may expect here the condition that E is finite locally free. We do not do so in
order to be consistent with [DG67, II, Definition 4.1.1].
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The first equation implies that m maps to zero as a section of OP (1) on D+(x)
and the second that it maps to zero as a section of OP (1) on D+(y). This shows
that m maps to zero in Γ(P,OP (1)). On the other hand we claim that m 6= 0,
so that m gives an example of a nonzero global section of E mapping to zero in
Γ(P,OP (1)). Assume m = 0 to get a contradiction. In this case there exists an
element f ∈ k[u, v, s1, s2, t1, t2] such that

us1x+ vt2y = f(ux+ vy) mod I

Since I is generated by homogeneous polynomials of degree 2 we may decompose
f into its homogeneous components and take the degree 1 component. In other
words we may assume that

f = au+ bv + α1s1 + α2s2 + β1t1 + β2t2

for some a, b, α1, α2, β1, β2 ∈ k. The resulting conditions are that

us1 − u(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(au+ bv + α1s1 + α2s2 + β1t1 + β2t2) ∈ I

There are no terms u2, uv, v2 in the generators of I and hence we see a = b = 0.
Thus we get the relations

us1 − u(α1s1 + α2s2 + β1t1 + β2t2) ∈ I
vt2 − v(α1s1 + α2s2 + β1t1 + β2t2) ∈ I

We may use the first generator of I to replace any occurrence of us1 by vt1 + ut2,
the second generator of I to replace any occurrence of vs1 by −us2 + vt2, the third
generator to remove occurrences of vs2 and the third to remove occurences of ut1.
Then we get the relations

(1− α1)vt1 + (1− α1)ut2 − α2us2 − β2ut2 = 0
(1− α1)vt2 + α1us2 − β1vt1 − β2vt2 = 0

This implies that α1 should be both 0 and 1 which is a contradiction as desired.

Lemma 21.3. Let S be a scheme. The structure morphism P(E)→ S of a projec-
tive bundle over S is separated.

Proof. Immediate from Lemma 16.9. �

Lemma 21.4. Let S be a scheme. Let n ≥ 0. Then Pn
S is a projective bundle over

S.

Proof. Note that

Pn
Z = Proj(Z[T0, . . . , Tn]) = Proj

Spec(Z)

(
˜Z[T0, . . . , Tn]

)
where the grading on the ring Z[T0, . . . , Tn] is given by deg(Ti) = 1 and the elements
of Z are in degree 0. Recall that Pn

S is defined as Pn
Z×Spec(Z)S. Moreover, forming

the relative homogeneous spectrum commutes with base change, see Lemma 16.10.
For any scheme g : S → Spec(Z) we have g∗OSpec(Z)[T0, . . . , Tn] = OS [T0, . . . , Tn].
Combining the above we see that

Pn
S = Proj

S
(OS [T0, . . . , Tn]).

Finally, note that OS [T0, . . . , Tn] = Sym(O⊕n+1
S ). Hence we see that Pn

S is a
projective bundle over S. �
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22. Grassmannians

In this section we introduce the standard Grassmannian functors and we show that
they are represented by schemes. Pick integers k, n with 0 < k < n. We will
construct a functor

(22.0.1) G(k, n) : Sch −→ Sets

which will loosely speaking parametrize k-dimensional subspaces of n-space. How-
ever, for technical reasons it is more convenient to parametrize (n−k)-dimensional
quotients and this is what we will do.

More precisely, G(k, n) associates to a scheme S the set G(k, n)(S) of isomorphism
classes of surjections

q : O⊕nS −→ Q
where Q is a finite locally free OS-module of rank n− k. Note that this is indeed a
set, for example by Modules, Lemma 9.8 or by the observation that the isomorphism
class of the surjection q is determined by the kernel of q (and given a sheaf there is
a set of subsheaves). Given a morphism of schemes f : T → S we let G(k, n)(f) :
G(k, n)(S)→ G(k, n)(T ) which sends the isomorphism class of q : O⊕nS −→ Q to the

isomorphism class of f∗q : O⊕nT −→ f∗Q. This makes sense since (1) f∗OS = OT ,
(2) f∗ is additive, (3) f∗ preserves locally free modules (Modules, Lemma 14.3),
and (4) f∗ is right exact (Modules, Lemma 3.3).

Lemma 22.1. Let 0 < k < n. The functor G(k, n) of (22.0.1) is representable by
a scheme.

Proof. Set F = G(k, n). To prove the lemma we will use the criterion of Schemes,
Lemma 15.4. The reason F satisfies the sheaf property for the Zariski topology is
that we can glue sheaves, see Sheaves, Section 33 (some details omitted).

The family of subfunctors Fi. Let I be the set of subsets of {1, . . . , n} of cardinality
n− k. Given a scheme S and j ∈ {1, . . . , n} we denote ej the global section

ej = (0, . . . , 0, 1, 0, . . . , 0) (1 in jth spot)

of O⊕nS . Of course these sections freely generate O⊕nS . Similarly, for j ∈ {1, . . . , k}
we denote fj the global section of O⊕kS which is zero in all summands except the
jth where we put a 1. For i ∈ I we let

si : O⊕n−kS −→ O⊕nS
which is the direct sum of the coprojections OS → O⊕nS corresponding to elements
of i. More precisely, if i = {i1, . . . , in−k} with i1 < i2 < . . . < in−k then si maps fj
to eij for j ∈ {1, . . . , n− k}. With this notation we can set

Fi(S) = {q : O⊕nS → Q ∈ F (S) | q ◦ si is surjective} ⊂ F (S)

Given a morphism f : T → S of schemes the pullback f∗si is the corresponding
map over T . Since f∗ is right exact (Modules, Lemma 3.3) we conclude that Fi is
a subfunctor of F .

Representability of Fi. To prove this we may assume (after renumbering) that
i = {1, . . . , n − k}. This means si is the inclusion of the first n − k summands.
Observe that if q ◦ si is surjective, then q ◦ si is an isomorphism as a surjective map
between finite locally free modules of the same rank (Modules, Lemma 14.5). Thus
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if q : O⊕nS → Q is an element of Fi(S), then we can use q ◦ si to identify Q with

O⊕n−kS . After doing so we obtain

q : O⊕nS −→ O⊕n−kS

mapping ej to fj (notation as above) for j = 1, . . . , n−k. To determine q completely

we have to fix the images q(en−k+1), . . . , q(en) in Γ(S,O⊕n−kS ). It follows that Fi
is isomorphic to the functor

S 7−→
∏

j=n−k+1,...,n
Γ(S,O⊕n−kS )

This functor is isomorphic to the k(n − k)-fold self product of the functor S 7→
Γ(S,OS). By Schemes, Example 15.2 the latter is representable by A1

Z. It follows

Fi is representable by A
k(n−k)
Z since fibred product over Spec(Z) is the product in

the category of schemes.

The inclusion Fi ⊂ F is representable by open immersions. Let S be a scheme
and let q : O⊕nS → Q be an element of F (S). By Modules, Lemma 9.4. the set
Ui = {s ∈ S | (q ◦ si)s surjective} is open in S. Since OS,s is a local ring and Qs a
finite OS,s-module by Nakayama’s lemma (Algebra, Lemma 19.1) we have

s ∈ Ui ⇔
(
the map κ(s)⊕n−k → Qs/msQs induced by (q ◦ si)s is surjective

)
Let f : T → S be a morphism of schemes and let t ∈ T be a point mapping to
s ∈ S. We have (f∗Q)t = Qs ⊗OS,s OT,t (Sheaves, Lemma 26.4) and so on. Thus
the map

κ(t)⊕n−k → (f∗Q)t/mt(f
∗Q)t

induced by (f∗q◦f∗si)t is the base change of the map κ(s)⊕n−k → Qs/msQs above
by the field extension κ(s) ⊂ κ(t). It follows that s ∈ Ui if and only if t is in the
corresponding open for f∗q. In particular T → S factors through Ui if and only if
f∗q ∈ Fi(T ) as desired.

The collection Fi, i ∈ I covers F . Let q : O⊕nS → Q be an element of F (S). We have
to show that for every point s of S there exists an i ∈ I such that si is surjective
in a neighbourhood of s. Thus we have to show that one of the compositions

κ(s)⊕n−k
si−→ κ(s)⊕n → Qs/msQs

is surjective (see previous paragraph). As Qs/msQs is a vector space of dimension
n− k this follows from the theory of vector spaces. �

Definition 22.2. Let 0 < k < n. The scheme G(k, n) representing the functor
G(k, n) is called Grassmannian over Z. Its base change G(k, n)S to a scheme S is
called Grassmannian over S. If R is a ring the base change to Spec(R) is denoted
G(k, n)R and called Grassmannian over R.

The definition makes sense as we’ve shown in Lemma 22.1 that these functors are
indeed representable.

Lemma 22.3. Let n ≥ 1. There is a canonical isomorphism G(n, n+ 1) = Pn
Z.

Proof. According to Lemma 13.1 the scheme Pn
Z represents the functor which

assigns to a scheme S the set of isomorphisms classes of pairs (L, (s0, . . . , sn)) con-
sisting of an invertible module L and an (n+ 1)-tuple of global sections generating
L. Given such a pair we obtain a quotient

O⊕n+1
S −→ L, (h0, . . . , hn) 7−→

∑
hisi.
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Conversely, given an element q : O⊕n+1
S → Q of G(n, n + 1)(S) we obtain such a

pair, namely (Q, (q(e1), . . . , q(en+1))). Here ei, i = 1, . . . , n + 1 are the standard
generating sections of the free module O⊕n+1

S . We omit the verification that these
constructions define mutually inverse transformations of functors. �
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