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1. Introduction

The goal of this chapter is to give a (relatively) gentle introduction to deformation
theory of modules, morphisms, etc. In this chapter we deal with those results that
can be proven using the naive cotangent complex. In the chapter on the cotangent
complex we will extend these results a little bit. The advanced reader may wish to
consult the treatise by Illusie on this subject, see [Ill72].

2. Deformations of rings and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a surjective ring map A′ → A whose kernel is an ideal I of
square zero. Moreover we assume given a ring map A → B, a B-module N , and
an A-module map c : I → N . In this section we ask ourselves whether we can find
the question mark fitting into the following diagram

(2.0.1)

0 // N // ? // B // 0

0 // I

c

OO

// A′

OO

// A

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for
a surjection of A′-algebras B′ → B whose kernel is identified with N such that
A′ → B′ induces the given map c. We will say B′ is a solution to (2.0.1).
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2 DEFORMATION THEORY

Lemma 2.1. Given a commutative diagram

0 // N2
// B′2 // B2

// 0

0 // I2

c2

OO

// A′2

OO

// A2

OO

// 0

0 // N1

GG

// B′1 // B1

GG

// 0

0 // I1

GG

c1

OO

// A′1

GG

OO

// A1

GG

OO

// 0

with front and back solutions to (2.0.1) we have

(1) There exist a canonical element in Ext1B1
(NLB1/A1

, N2) whose vanishing is
a necessary and sufficient condition for the existence of a ring map B′1 → B′2
fitting into the diagram.

(2) If there exists a map B′1 → B′2 fitting into the diagram the set of all such
maps is a principal homogeneous space under HomB1

(ΩB1/A1
, N2).

Proof. Let E = B1 viewed as a set. Consider the surjection A1[E] → B1 with
kernel J used to define the naive cotangent complex by the formula

NLB1/A1
= (J/J2 → ΩA1[E]/A1

⊗A1[E] B1)

in Algebra, Section 129. Since ΩA1[E]/A1
⊗B1 is a free B1-module we have

Ext1
B1

(NLB1/A1
, N2) =

HomB1
(J/J2, N2)

HomB1
(ΩA1[E]/A1

⊗B1, N2)

We will construct an obstruction in the module on the right. Let J ′ = Ker(A′1[E]→
B1). Note that there is a surjection J ′ → J whose kernel is I1A1[E]. For every
e ∈ E denote xe ∈ A1[E] the corresponding variable. Choose a lift ye ∈ B′1 of
the image of xe in B1 and a lift ze ∈ B′2 of the image of xe in B2. These choices
determine A′1-algebra maps

A′1[E]→ B′1 and A′1[E]→ B′2

The first of these gives a map J ′ → N1, f ′ 7→ f ′(ye) and the second gives a map
J ′ → N2, f ′ 7→ f ′(ze). A calculation shows that these maps annihilate (J ′)2.
Because the left square of the diagram (involving c1 and c2) commutes we see that
these maps agree on I1A1[E] as maps into N2. Observe that B′1 is the pushout
of J ′ → A′1[B1] and J ′ → N1. Thus, if the maps J ′ → N1 → N2 and J ′ → N2

agree, then we obtain a map B′1 → B′2 fitting into the diagram. Thus we let the
obstruction be the class of the map

J/J2 → N2, f 7→ f ′(ze)− ν(f ′(ye))

where ν : N1 → N2 is the given map and where f ′ ∈ J ′ is a lift of f . This is
well defined by our remarks above. Note that we have the freedom to modify our
choices of ze into ze + δ2,e and ye into ye + δ1,e for some δi,e ∈ Ni. This will modify
the map above into

f 7→ f ′(ze + δ2,e)− ν(f ′(ye + δ1,e)) = f ′(ze)− ν(f ′(ze)) +
∑

(δ2,e − ν(δ1,e))
∂f

∂xe

http://localhost:8080/tag/08S5
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This means exactly that we are modifying the map J/J2 → N2 by the composition
J/J2 → ΩA1[E]/A1

⊗ B1 → N2 where the second map sends dxe to δ2,e − ν(δ1,e).
Thus our obstruction is well defined and is zero if and only if a lift exists.

Part (2) comes from the observation that given two maps ϕ,ψ : B′1 → B′2 fitting
into the diagram, then ϕ − ψ factors through a map D : B1 → N2 which is an
A1-derivation:

D(fg) = ϕ(f ′g′)− ψ(f ′g′)

= ϕ(f ′)ϕ(g′)− ψ(f ′)ψ(g′)

= (ϕ(f ′)− ψ(f ′))ϕ(g′) + ψ(f ′)(ϕ(g′)− ψ(g′))

= gD(f) + fD(g)

Thus D corresponds to a unique B1-linear map ΩB1/A1
→ N2. Conversely, given

such a linear map we get a derivation D and given a ring map ψ : B′1 → B′2 fitting
into the diagram the map ψ +D is another ring map fitting into the diagram. �

The naive cotangent complex isn’t good enough to contain all information regarding
obstructions to finding solutions to (2.0.1). However, if the ring map is a local
complete intersection, then the obstruction vanishes. This is a kind of lifting result;
observe that for syntomic ring maps we have proved a rather strong lifting result
in Smoothing Ring Maps, Proposition 4.2.

Lemma 2.2. If A→ B is a local complete intersection ring map, then there exists
a solution to (2.0.1).

Proof. Write B = A[x1, . . . , xn]/J . Let J ′ ⊂ A′[x1, . . . , xn] be the inverse im-
age of J . Denote I[x1, . . . , xn] the kernel of A′[x1, . . . , xn] → A[x1, . . . , xn]. By
More on Algebra, Lemma 22.5 we have I[x1, . . . , xn] ∩ (J ′)2 = J ′I[x1, . . . , xn] =
JI[x1, . . . , xn]. Hence we obtain a short exact sequence

0→ I ⊗A B → J ′/(J ′)2 → J/J2 → 0

Since J/J2 is projective (More on Algebra, Lemma 22.3) we can choose a splitting
of this sequence

J ′/(J ′)2 = I ⊗A B ⊕ J/J2

Let (J ′)2 ⊂ J ′′ ⊂ J ′ be the elements which map to the second summand in the
decomposition above. Then

0→ I ⊗A B → A′[x1, . . . , xn]/J ′′ → B → 0

is a solution to (2.0.1) with N = I ⊗A B. The general case is obtained by doing a
pushout along the given map I ⊗A B → N . �

Lemma 2.3. If there exists a solution to (2.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1B(NLB/A, N).

Proof. We observe right away that given two solutions B′1 and B′2 to (2.0.1) we
obtain by Lemma 2.1 an obstruction element o(B′1, B

′
2) ∈ Ext1

B(NLB/A, N) to the
existence of a map B′1 → B′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution B′ and an element
ξ ∈ Ext1

B(NLB/A, N) we can find a second solution B′ξ such that o(B′, B′ξ) = ξ.

http://localhost:8080/tag/08S6
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4 DEFORMATION THEORY

Let E = B viewed as a set. Consider the surjection A[E]→ B with kernel J used
to define the naive cotangent complex by the formula

NLB/A = (J/J2 → ΩA[E]/A ⊗A[E] B)

in Algebra, Section 129. Since ΩA[E]/A ⊗B is a free B-module we have

Ext1
B(NLB/A, N) =

HomB(J/J2, N)

HomB(ΩA[E]/A ⊗B,N)

Thus we may represent ξ as the class of a morphism δ : J/J2 → N .

For every e ∈ E denote xe ∈ A[E] the corresponding variable. Choose a lift ye ∈ B′
of the image of xe in B. These choices determine an A′-algebra map ϕ : A′[E]→ B′.
Let J ′ = Ker(A′[E] → B). Observe that ϕ induces a map ϕ|J′ : J ′ → N and that
B′ is the pushout, as in the following diagram

0 // N // B′ // B // 0

0 // J ′

ϕ|J′

OO

// A′[E]

OO

// B

=

OO

// 0

Let ψ : J ′ → N be the sum of the map ϕ|J′ and the composition

J ′ → J ′/(J ′)2 → J/J2 δ−→ N.

Then the pushout along ψ is an other ring extension B′ξ fitting into a diagram as

above. A calculation shows that o(B′, B′ξ) = ξ as desired. �

Lemma 2.4. Let A be a ring and let I be an A-module.

(1) The set of extensions of rings 0→ I → A′ → A→ 0 where I is an ideal of
square zero is canonically bijective to Ext1A(NLA/Z, I).

(2) Given a ring map A → B, a B-module N , an A-module map c : I → N ,
and given extensions of rings with square zero kernels:
(a) 0→ I → A′ → A→ 0 corresponding to α ∈ Ext1A(NLA/Z, I), and

(b) 0→ N → B′ → B → 0 corresponding to β ∈ Ext1B(NLB/Z, N)
then there is a map A′ → B′ fitting into a diagram (2.0.1) if and only if β
and α map to the same element of Ext1A(NLA/Z, N).

Proof. To prove this we apply the previous results where we work over 0 → 0 →
Z→ Z→ 0, in order words, we work over the extension of Z by 0. Part (1) follows
from Lemma 2.3 and the fact that there exists a solution, namely I ⊕ A. Part
(2) follows from Lemma 2.1 and a compatibility between the constructions in the
proofs of Lemmas 2.3 and 2.1 whose statement and proof we omit. �

3. Thickenings of ringed spaces

In the following few sections we will use the following notions:

(1) A sheaf of ideals I ⊂ OX′ on a ringed space (X ′,OX′) is locally nilpotent if
any local section of I is locally nilpotent. Compare with Algebra, Item 29.

(2) A thickening of ringed spaces is a morphism i : (X,OX) → (X ′,OX′) of
ringed spaces such that
(a) i induces a homeomorphism X → X ′,
(b) the map i] : OX′ → i∗OX is surjective, and

http://localhost:8080/tag/08S8
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(c) the kernel of i] is a locally nilpotent sheaf of ideals.
(3) A first order thickening of ringed spaces is a thickening i : (X,OX) →

(X ′,OX′) of ringed spaces such that Ker(i]) has square zero.
(4) It is clear how to define morphisms of thickenings, morphisms of thickenings

over a base ringed space, etc.

If i : (X,OX) → (X ′,OX′) is a thickening of ringed spaces then we identify the
underlying topological spaces and think of OX , OX′ , and I = Ker(i]) as sheaves
on X = X ′. We obtain a short exact sequence

0→ I → OX′ → OX → 0

of OX′ -modules. By Modules, Lemma 13.4 the category of OX -modules is equiva-
lent to the category of OX′ -modules annihilated by I. In particular, if i is a first
order thickening, then I is a OX -module.

Situation 3.1. A morphism of thickenings (f, f ′) is given by a commutative dia-
gram

(3.1.1)

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS)

t // (S′,OS′)

of ringed spaces whose horizontal arrows are thickenings. In this situation we set
I = Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . As f = f ′ on underlying topological
spaces we will identify the (topological) pullback functors f−1 and (f ′)−1. Observe
that (f ′)] : f−1OS′ → OX′ induces in particular a map f−1J → I and therefore a
map of OX′ -modules

(f ′)∗J −→ I
If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 3.2. In Situation 3.1 we say that (f, f ′) is a strict morphism of thick-
enings if the map (f ′)∗J −→ I is surjective.

The following lemma in particular shows that a morphism (f, f ′) : (X ⊂ X ′) →
(S ⊂ S′) of thickenings of schemes is strict if and only if X = S ×S′ X ′.

Lemma 3.3. In Situation 3.1 the morphism (f, f ′) is a strict morphism of thick-
enings if and only if (3.1.1) is cartesian in the category of ringed spaces.

Proof. Omitted. �

4. Modules on first order thickenings of ringed spaces

In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We will
freely use the notation introduced in Section 3, in particular we will identify the
underlying topological spaces. In this section we consider short exact sequences

(4.0.1) 0→ K → F ′ → F → 0

of OX′ -modules, where F , K are OX -modules and F ′ is an OX′ -module. In this
situation we have a canonical OX -module map

cF ′ : I ⊗OX F −→ K

http://localhost:8080/tag/08KZ
http://localhost:8080/tag/08L1
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where I = Ker(i]). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 4.1. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (4.0.1) and maps ϕ : F → G and ψ : K → L.

(1) If there exists an OX′-module map ϕ′ : F ′ → G′ compatible with ϕ and ψ,
then the diagram

I ⊗OX F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX G

cG′ // L

is commutative.
(2) The set of OX′-module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if

nonempty, a principal homogeneous space under HomOX (F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and
ϕ′′ are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomOX (F ,L) by Modules,
Lemma 13.4. Conversely, given an element α of this group we can add the compo-
sition (as displayed above with α in the middle) to ϕ′. Some details omitted. �

Lemma 4.2. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (4.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗OX F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗OX G

cG′ // L

is commutative. Then there exists an element

o(ϕ,ψ) ∈ Ext1OX (F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
ϕ′ : F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0

by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G

http://localhost:8080/tag/08L5
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in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
OX (F ,L) ⊂ Ext1

OX′ (F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing
of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0

as desired. �

Lemma 4.3. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX-modules F , K and an OX-linear map c : I ⊗OX F → K.
If there exists a sequence (4.0.1) with cF ′ = c then the set of isomorphism classes
of these extensions is principal homogeneous under Ext1OX (F ,K).

Proof. Assume given extensions

0→ K → F ′1 → F → 0 and 0→ K → F ′2 → F → 0

with cF ′1 = cF ′2 = c. Then the difference (in the extension group, see Homology,
Section 6) is an extension

0→ K → E → F → 0

where E is annihilated by I (local computation omitted). Hence the sequence is
an extension of OX -modules, see Modules, Lemma 13.4. Conversely, given such an
extension E we can add the extension E to the OX′ -extension F ′ without affecting
the map cF ′ . Some details omitted. �

Lemma 4.4. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Assume given OX-modules F , K and an OX-linear map c : I ⊗OX F → K.
Then there exists an element

o(F ,K, c) ∈ Ext2OX (F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (4.0.1) with cF ′ = c.

Proof. We first show that if K is an injective OX -module, then there does exist
a sequence (4.0.1) with cF ′ = c. To do this, choose a flat OX′ -module H′ and a
surjection H′ → F (Modules, Lemma 16.6). Let J ⊂ H′ be the kernel. Since H′ is
flat we have

I ⊗OX′ H
′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗OX′ H
′ −→ I ⊗OX′ F = I ⊗OX F

http://localhost:8080/tag/08L7
http://localhost:8080/tag/08L8


8 DEFORMATION THEORY

annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗OX F

c // K

a diagram of OX -modules. If K is injective as an OX -module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0

is a solution to the problem posed by the lemma.

General case. Choose an embedding K ⊂ K′ with K′ an injective OX -module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0

Denote c′ : I⊗OX F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0

as in (4.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero,
hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (4.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in other
words, the D′ is an extension of OX -modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
OX (F ,Q) = Ext2

OX (F ,K)

(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0

with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 4.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. �
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Remark 4.5. Let (X,OX) be a ringed space. A first order thickening i : (X,OX)→
(X ′,OX′) is said to be trivial if there exists a morphism of ringed spaces π :
(X ′,OX′)→ (X,OX) which is a left inverse to i. The choice of such a morphism π
is called a trivialization of the first order thickening. Given π we obtain a splitting

(4.5.1) OX′ = OX ⊕ I

as sheaves of algebras on X by using π] to split the surjection OX′ → OX . Con-
versely, such a splitting determines a morphism π. The category of trivialized first
order thickenings of (X,OX) is equivalent to the category of OX -modules.

Remark 4.6. Let i : (X,OX) → (X ′,OX′) be a trivial first order thickening of
ringed spaces and let π : (X ′,OX′)→ (X,OX) be a trivialization. Then given any
triple (F ,K, c) consisting of a pair of OX -modules and a map c : I ⊗OX F → K we
may set

F ′c,triv = F ⊕K
and use the splitting (4.5.1) associated to π and the map c to define the OX′ -module
structure and obtain an extension (4.0.1). We will call F ′c,triv the trivial extension
of F by K corresponding to c and the trivialization π. Given any extension F ′ as
in (4.0.1) we can use π] : OX → OX′ to think of F ′ as an OX -module extension,
hence a class ξF ′ in Ext1

OX (F ,K). Lemma 4.3 assures that F ′ 7→ ξF ′ induces a
bijection {

isomorphism classes of extensions
F ′ as in (4.0.1) with c = cF ′

}
−→ Ext1

OX (F ,K)

Moreover, the trivial extension F ′c,triv maps to the zero class.

Remark 4.7. Let (X,OX) be a ringed space. Let (X,OX) → (X ′i,OX′i), i = 1, 2

be first order thickenings with ideal sheaves Ii. Let h : (X ′1,OX′1)→ (X ′2,OX′2) be
a morphism of first order thickenings of (X,OX). Picture

(X,OX)

xx &&
(X ′1,OX′1)

h // (X ′2,OX′2)

Observe that h] : OX′2 → OX′1 in particular induces an OX -module map I2 → I1.
Let F be an OX -module. Let (Ki, ci), i = 1, 2 be a pair consisting of an OX -module
Ki and a map ci : Ii⊗OXF → Ki. Assume furthermore given a map of OX -modules
K2 → K1 such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′2 as in (4.0.1) with
c2 = cF ′2 and K = K2

}
−→

{
F ′1 as in (4.0.1) with
c1 = cF ′1 and K = K1

}
Namely, thinking of all sheaves OX , OX′i , F , Ki, etc as sheaves on X, we set given

F ′2 the sheaf F ′1 equal to the pushout, i.e., fitting into the following diagram of

http://localhost:8080/tag/08L9
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extensions

0 // K2
//

��

F ′2 //

��

F // 0

0 // K1
// F ′1 // F // 0

We omit the construction of the OX′1 -module structure on the pushout (this uses
the commutativity of the diagram involving c1 and c2).

Remark 4.8. Let (X,OX), (X,OX) → (X ′i,OX′i), Ii, and h : (X ′1,OX′1) →
(X ′2,OX′2) be as in Remark 4.7. Assume that we are given given trivializations
πi : X ′i → X such that π1 = h◦π2. In other words, assume h is a morphism of triv-
ialized first order thickening of (X,OX). Let (Ki, ci), i = 1, 2 be a pair consisting
of an OX -module Ki and a map ci : Ii ⊗OX F → Ki. Assume furthermore given a
map of OX -modules K2 → K1 such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

is commutative. In this situation the construction of Remark 4.6 induces a com-
mutative diagram

{F ′2 as in (4.0.1) with c2 = cF ′2 and K = K2}

��

// Ext1
OX (F ,K2)

��
{F ′1 as in (4.0.1) with c1 = cF ′1 and K = K1} // Ext1

OX (F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 4.7.

Remark 4.9. Let (X,OX) be a ringed space. We define a sequence of morphisms
of first order thickenings

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

of (X,OX) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of OX -modules I3 → I2 → I1 (i.e., the composition is zero).
In this case the composition (X ′1,OX′1) → (X ′3,OX′3) factors through (X,OX) →
(X ′3,OX′3), i.e., the first order thickening (X ′1,OX′1) of (X,OX) is trivial and comes
with a canonical trivialization π : (X ′1,OX′1)→ (X,OX).

We say a sequence of morphisms of first order thickenings

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

of (X,OX) is a short exact sequence if the corresponding maps between ideal sheaves
is a short exact sequence

0→ I3 → I2 → I1 → 0

of OX -modules.

http://localhost:8080/tag/08LD
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Remark 4.10. Let (X,OX) be a ringed space. Let F be an OX -module. Let

(X ′1,OX′1)→ (X ′2,OX′2)→ (X ′3,OX′3)

be a complex first order thickenings of (X,OX), see Remark 4.9. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an OX -module Ki and a map ci : Ii ⊗OX F → Ki.
Assume given a short exact sequence of OX -modules

0→ K3 → K2 → K1 → 0

such that

I2 ⊗OX F c2
//

��

K2

��
I1 ⊗OX F

c1 // K1

and

I3 ⊗OX F c3
//

��

K3

��
I2 ⊗OX F

c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′2 → F → 0

as in (4.0.1) with K = K2 of OX′2-modules with cF ′2 = c2. In this situation we
can apply the functoriality of Remark 4.7 to obtain an extension F ′1 on X ′1 (we’ll
describe F ′1 in this special case below). By Remark 4.6 using the canonical splitting
π : (X ′1,OX′1) → (X,OX) of Remark 4.9 we obtain ξF ′1 ∈ Ext1

OX (F ,K1). Finally,
we have the obstruction

o(F ,K3, c3) ∈ Ext2
OX (F ,K3)

see Lemma 4.4. In this situation we claim that the canonical map

∂ : Ext1
OX (F ,K1) −→ Ext2

OX (F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′1 to the
obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injective OX -
module. We can lift j to a map j′ : K2 → K. Set E ′2 = j′∗F ′2 equal to the pushout
of F ′2 by j′ so that cE′2 = j′ ◦ c2. Picture:

0 // K2
//

j′

��

F ′2 //

��

F //

��

0

0 // K // E ′2 // F // 0

Set E ′3 = E ′2 but viewed as an OX′3 -module via OX′3 → OX′2 . Then cE′3 = j ◦ c3.
The proof of Lemma 4.4 constructs o(F ,K3, c3) as the boundary of the class of the
extension of OX -modules

0→ K/K3 → E ′3/K3 → F → 0

On the other hand, note that F ′1 = F ′2/K3 hence the class ξF ′1 is the class of the
extension

0→ K2/K3 → F ′2/K3 → F → 0

http://localhost:8080/tag/08LF
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seen as a sequence of OX -modules using π] where π : (X ′1,OX′1)→ (X,OX) is the
canonical splitting. Thus finally, the claim follows from the fact that we have a
commutative diagram

0 // K2/K3
//

��

F ′2/K3
//

��

F //

��

0

0 // K/K3
// E ′3/K3

// F // 0

which is OX -linear (with the OX -module structures given above).

5. Infinitesimal deformations of modules on ringed spaces

Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed spaces. We
freely use the notation introduced in Section 3. Let F ′ be an OX′ -module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0

of OX′ -modules. Since I2 = 0 the OX′ -module structure on IF ′ comes from
a unique OX -module structure. Thus the sequence above is an extension as in
(4.0.1). As a special case, if F ′ = OX′ we have i∗OX′ = OX and IOX′ = I and
we recover the sequence of structure sheaves

0→ I → OX′ → OX → 0

Lemma 5.1. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′-modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be
an OX-linear map. The set of lifts of ϕ to an OX′-linear map ϕ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomOX (F , IG′).

Proof. This is a special case of Lemma 4.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → OX′ → OX → 0 and 0→ IG′ → G′ → G → 0

and similarly for F ′. Since I has square zero the OX′ -module structure on I and
IG′ comes from a unique OX -module structure. It follows that

HomOX′ (F
′, IG′) = HomOX (F , IG′) and HomOX′ (F

′,G) = HomOX (F ,G)

The lemma now follows from the exact sequence

0→ HomOX′ (F
′, IG′)→ HomOX′ (F

′,G′)→ HomOX′ (F
′,G)

see Homology, Lemma 5.8. �

Lemma 5.2. Let (f, f ′) be a morphism of first order thickenings of ringed spaces
as in Situation 3.1. Let F ′ be an OX′-module and set F = i∗F ′. Assume that F
is flat over S and that (f, f ′) is a strict morphism of thickenings (Definition 3.2).
Then the following are equivalent

(1) F ′ is flat over S′, and
(2) the canonical map f∗J ⊗OX F → IF ′ is an isomorphism.

Moreover, in this case the maps

f∗J ⊗OX F → I ⊗OX F → IF ′

are isomorphisms.

http://localhost:8080/tag/08LH
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Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thicken-
ings. Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). We may check these conditions at stalks.
Let x ∈ X ⊂ X ′ be a point with image s = f(x) ∈ S ⊂ S′. Set A′ = OS′,s,
B′ = OX′,x, A = OS,s, and B = OX,x. Then A = A′/J and B = B′/I for some
square zero ideals. Since (f, f ′) is a strict morphism of thickenings we have I = JB′.
Let M ′ = F ′x and M = Fx. Then M ′ is a B′-module and M is a B-module. Since
F = i∗F ′ we see that the kernel of the surjection M ′ → M is IM ′ = JM ′. Thus
we have a short exact sequence

0→ JM ′ →M ′ →M → 0

Using Sheaves, Lemma 26.4 and Modules, Lemma 15.1 to identify stalks of pullbacks
and tensor products we see that the stalk at x of the canonical map of the lemma
is the map

(J ⊗A B)⊗B M = J ⊗AM = J ⊗A′ M ′ −→ JM ′

The assumption that F is flat over S signifies that M is a flat A-module.

Assume (1). Flatness implies TorA
′

1 (M ′, A) = 0 by Algebra, Lemma 72.7. This
means J⊗A′M ′ →M ′ is injective by Algebra, Remark 72.8. Hence J⊗AM → JM ′

is an isomorphism.

Assume (2). Then J⊗A′M ′ →M ′ is injective. Hence TorA
′

1 (M ′, A) = 0 by Algebra,
Remark 72.8. Hence M ′ is flat over A′ by Algebra, Lemma 95.8. �

Lemma 5.3. Let (f, f ′) be a morphism of first order thickenings as in Situation
3.1. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. Assume that G′ is flat over S′ and that (f, f ′) is a strict
morphism of thickenings. The set of lifts of ϕ to an OX′-linear map ϕ′ : F ′ → G′
is, if nonempty, a principal homogeneous space under

HomOX (F ,G ⊗OX f∗J )

Proof. Combine Lemmas 5.1 and 5.2. �

Lemma 5.4. Let i : (X,OX) → (X ′,OX′) be a first order thickening of ringed
spaces. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. There exists an element

o(ϕ) ∈ Ext1OX (Li∗F ′, IG′)

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an OX′-linear map ϕ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 5.1 that the vanishing of the boundary
of ϕ via the map

HomOX (F ,G) = HomOX′ (F
′,G) −→ Ext1

OX′ (F
′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
OX′ (F

′, IG′) = Ext1
OX (Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology, Lemma
29.1). �
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Lemma 5.5. Let (f, f ′) be a morphism of first order thickenings as in Situation
3.1. Let F ′, G′ be OX′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an OX-linear map. Assume that F ′ and G′ are flat over S′ and that (f, f ′) is a
strict morphism of thickenings. There exists an element

o(ϕ) ∈ Ext1OX (F ,G ⊗OX f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an OX′-linear map ϕ′ : F ′ → G′.

First proof. This follows from Lemma 5.4 as we claim that under the assumptions
of the lemma we have

Ext1
OX (Li∗F ′, IG′) = Ext1

OX (F ,G ⊗OX f∗J )

Namely, we have IG′ = G ⊗OX f∗J by Lemma 5.2. On the other hand, observe
that

H−1(Li∗F ′) = Tor
OX′
1 (F ′,OX)

(local computation omitted). Using the short exact sequence

0→ I → OX′ → OX → 0

we see that this Tor1 is computed by the kernel of the map I ⊗OX F → IF ′ which
is zero by the final assertion of Lemma 5.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
OX (Li∗F ′, IG′) = Ext1

OX (τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 17.1. �

Second proof. We can apply Lemma 4.2 as follows. Note that K = I ⊗OX F and
L = I ⊗OX G by Lemma 5.2, that cF ′ = 1⊗1 and cG′ = 1⊗1 and taking ψ = 1⊗ϕ
the diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ ϕ) works. �

Lemma 5.6. Let (f, f ′) be a morphism of first order thickenings as in Situation
3.1. Let F be an OX-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. If there exists a pair (F ′, α) consisting of an OX′-module F ′
flat over S′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism classes
of such pairs is principal homogeneous under Ext1OX (F , I ⊗OX F).

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗OX F → I ⊗OX F

is an isomorphism by Lemma 5.2. Apply Lemma 4.3 with K = I ⊗OX F and c = 1.
By Lemma 5.2 the corresponding extensions F ′ are all flat over S′. �

Lemma 5.7. Let (f, f ′) be a morphism of first order thickenings as in Situation
3.1. Let F be an OX-module. Assume (f, f ′) is a strict morphism of thickenings
and F flat over S. There exists an OX′-module F ′ flat over S′ with i∗F ′ ∼= F , if
and only if

(1) the canonical map f∗J ⊗OX F → I ⊗OX F is an isomorphism, and
(2) the class o(F , I ⊗OX F , 1) ∈ Ext2OX (F , I ⊗OX F) of Lemma 4.4 is zero.

Proof. This follows immediately from the characterization of OX′ -modules flat
over S′ of Lemma 5.2 and Lemma 4.4. �
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6. Application to flat modules on flat thickenings of ringed spaces

Consider a commutative diagram

(X,OX)
i
//

f

��

(X ′,OX′)

f ′

��
(S,OS)

t // (S′,OS′)

of ringed spaces whose horizontal arrows are first order thickenings as in Situation
3.1. Set I = Ker(i]) ⊂ OX′ and J = Ker(t]) ⊂ OS′ . Let F be an OX -module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over S.

Note that (1) + (2) imply that I = f∗J (apply Lemma 5.2 to OX′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 6.1. In the situation above.

(1) There exists an OX′-module F ′ flat over S′ with i∗F ′ ∼= F , if and only if
the class o(F , f∗J ⊗OX F , 1) ∈ Ext2OX (F , f∗J ⊗OX F) of Lemma 4.4 is
zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is prin-
cipal homogeneous under Ext1OX (F , f∗J ⊗OX F).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0OX (F , f∗J ⊗OX F).

Proof. Part (1) follows from Lemma 5.7 as we have seen above that I = f∗J .
Part (2) follows from Lemma 5.6. Part (3) follows from Lemma 5.3. �

Situation 6.2. Let f : (X,OX)→ (S,OS) be a morphism of ringed spaces. Con-
sider a commutative diagram

(X ′1,O′1)
h
//

f ′1
��

(X ′2,O′2) //

f ′2
��

(X ′3,O′3)

f ′3
��

(S′1,OS′1) // (S′2,OS′2) // (S′3,OS′3)

where (a) the top row is a short exact sequence of first order thickenings of X, (b)
the lower row is a short exact sequence of first order thickenings of S, (c) each f ′i
restricts to f , (d) each pair (f, f ′i) is a strict morphism of thickenings, and (e) each
f ′i is flat. Finally, let F ′2 be an O′2-module flat over S′2 and set F = F ′2|X . Let
π : X ′1 → X be the canonical splitting (Remark 4.9).

Lemma 6.3. In Situation 6.2 the modules π∗F and h∗F ′2 are O′1-modules flat
over S′1 restricting to F on X. Their difference (Lemma 6.1) is an element θ
of Ext1OX (F , f∗J1 ⊗OX F) whose boundary in Ext2OX (F , f∗J3 ⊗OX F) equals the
obstruction (Lemma 6.1) to lifting F to an O′3-module flat over S′3.
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Proof. Note that both π∗F and h∗F ′2 restrict to F on X and that the kernels of
π∗F → F and h∗F ′2 → F are given by f∗J1⊗OX F . Hence flatness by Lemma 5.2.
Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗OX F → f∗J2 ⊗OX F → f∗J1 ⊗OX F → 0

is short exact due to the assumptions in Situation 6.2 and the fact that F is flat
over S. The statement on the obstruction class is a direct translation of the result
of Remark 4.10 to this particular situation. �

7. Deformations of ringed spaces and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (S,OS) → (S′,OS′) of ringed
spaces. We denote J = Ker(t]) and we identify the underlying topological spaces
of S and S′. Moreover we assume given a morphism of ringed spaces f : (X,OX)→
(S,OS), an OX -module G, and an f -map c : J → G of sheaves of modules (Sheaves,
Definition 21.7 and Section 26). In this section we ask ourselves whether we can
find the question mark fitting into the following diagram

(7.0.1)

0 // G // ? // OX // 0

0 // J

c

OO

// OS′

OO

// OS

OO

// 0

(where the vertical arrows are f -maps) and moreover how unique the solution is (if it
exists). More precisely, we look for a first order thickening i : (X,OX)→ (X ′,OX′)
and a morphism of thickenings (f, f ′) as in (3.1.1) where Ker(i]) is identified with
G such that (f ′)] induces the given map c. We will say X ′ is a solution to (7.0.1).

Lemma 7.1. Assume given a commutative diagram of morphisms ringed spaces

(7.1.1)

(X2,OX2)
i2
//

f2

��
g

��

(X ′2,OX′2)

f ′2

��
(S2,OS2

)
t2 //

��

(S′2,OS′2)

��

(X1,OX1
)

i1
//

f1

��

(X ′1,OX′1)

f ′1

��
(S1,OS1

)
t1 // (S′1,OS′1)
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whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume
given a g-map ν : G1 → G2 of modules giving rise to the commutative diagram

(7.1.2)

0 // G2
// OX′2 // OX2

// 0

0 // J2

c2

OO

// OS′2

OO

// OS2

OO

// 0

0 // G1

FF

// OX′1 // OX1

EE

// 0

0 // J1

FF

c1

OO

// OS′1

EE

OO

// OS1

EE

OO

// 0

with front and back solutions to (7.0.1).

(1) There exist a canonical element in Ext1OX2
(Lg∗NLX1/S1

,G2) whose vanish-

ing is a necessary and sufficient condition for the existence of a morphism
of ringed spaces X ′2 → X ′1 fitting into (7.1.1) compatibly with ν.

(2) If there exists a morphism X ′2 → X ′1 fitting into (7.1.1) compatibly with ν
the set of all such morphisms is a principal homogeneous space under

HomOX1
(ΩX1/S1

, g∗G2) = HomOX2
(g∗ΩX1/S1

,G2) = Ext0OX2
(Lg∗NLX1/S1

,G2).

Proof. The naive cotangent complex NLX1/S1
is defined in Modules, Definition

24.4. The equalities in the last statement of the lemma follow from the fact that
g∗ is adjoint to g∗, the fact that H0(NLX1/S1

) = ΩX1/S1
(by construction of the

naive cotangent complex) and the fact that Lg∗ is the left derived functor of g∗.

Thus we will work with the groups ExtkOX2
(Lg∗NLX1/S1

,G2), k = 0, 1 in the rest

of the proof. We first argue that we can reduce to the case where the underlying
topological spaces of all ringed spaces in the lemma is the same.

To do this, observe that g−1NLX1/S1
is equal to the naive cotangent complex of the

homomorphism of sheaves of rings g−1f−1
1 OS1

→ g−1OX1
, see Modules, Lemma

24.3. Moreover, the degree 0 term of NLX1/S1
is a flat OX1-module, hence the

canonical map
Lg∗NLX1/S1

−→ g−1NLX1/S1
⊗g−1OX1

OX2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1OX1
(g−1NLX1/S1

,G2) = Extkg−1OX1
(NLg−1OX1

/g−1f−1
1 OS1

,G2)

The set of morphism of ringed spaces X ′2 → X ′1 fitting into (7.1.1) compatibly with
ν is in one-to-one bijection with the set of homomorphisms of g−1f−1

1 OS′1-algebras

g−1OX′1 → OX′2 which are compatible with f ] and ν. In this way we see that we
may assume we have a diagram (7.1.2) of sheaves on X and we are looking to find
a homomorphism of sheaves of rings OX′1 → OX′2 fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces
are the same, i.e., we have a diagram (7.1.2) of sheaves on a space X and we are
looking for homomorphisms of sheaves of rings OX′1 → OX′2 fitting into it. As ext

groups we will use ExtkOX1
(NLOX1

/OS1 ,G2), k = 0, 1.
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Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = OX′1 ×OX2
OX′2

This comes with a surjective map α : E → OX1
and hence we can use NL(α) instead

of NLOX1
/OS1 , see Modules, Lemma 24.2. Set

I ′ = Ker(OS′1 [E ]→ OX1
) and I = Ker(OS1

[E ]→ OX1
)

There is a surjection I ′ → I whose kernel is J1OS′1 [E ]. We obtain two homomor-
phisms of OS′2-algebras

a : OS′1 [E ]→ OX′1 and b : OS′1 [E ]→ OX′2
which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate (I ′)2.
Moreover a and b agree on J1OS′1 [E ] as maps into G2 because the left hand square
of (7.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a well defined
OX1

-linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)− ν(b(f ′)) where f ′ is a lift
of f to a local section of I ′. We let [ξ] ∈ Ext1

OX1
(NL(α),G2) be the image (see

below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOS1 [E]/OS1 ⊗OS1 [E] OX1
.

Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
ϕ : OX′1 → OX′2 fitting into (7.1.2). In this case consider the map OS′1 [E ] → G2,
f ′ 7→ b(f ′)−ϕ(a(f ′)). A calculation shows this annihilates J1OS′1 [E ] and induces a
derivation OS1

[E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.

Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a OX1
-linear map such that

ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OS′1 [E ]→ OX′2
annihilates I ′ and hence defines a map OX′1 → OX′2 fitting into (7.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 2.1. �

Lemma 7.2. Let X be a topological space. Let A → B be a homomorphism of
sheaves of rings. Let G be a B-module. Let ξ ∈ Ext1B(NLB/A,G). There exists a

map of sheaves of sets α : E → B such that ξ ∈ Ext1B(NL(α),G) is the class of a
map I/I2 → G (see proof for notation).

Proof. Recall that given α : E → B such that A[E ] → B is surjective with kernel
I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically isomorphic to
NLB/A, see Modules, Lemma 24.2. Observe moreover, that Ω = ΩA[E]/A ⊗A[E] B
is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In other words, Ω is

the free B-module on the sheaf of sets E and in particular there is a canonical map
E → Ω.
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Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. �

Lemma 7.3. If there exists a solution to (7.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1OX (NLX/S ,G).

Proof. We observe right away that given two solutions X ′1 and X ′2 to (7.0.1) we
obtain by Lemma 7.1 an obstruction element o(X ′1, X

′
2) ∈ Ext1

OX (NLX/S ,G) to
the existence of a map X ′1 → X ′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution X ′ and an element
ξ ∈ Ext1

OX (NLX/S ,G) we can find a second solution X ′ξ such that o(X ′, X ′ξ) = ξ.

Pick α : E → OX as in Lemma 7.2 for the class ξ. Consider the surjection
f−1OS [E ]→ OX with kernel I and corresponding naive cotangent complexNL(α) =
(I/I2 → Ωf−1OS [E]/f−1OS ⊗f−1OS [E] OX). By the lemma ξ is the class of a mor-

phism δ : I/I2 → G. After replacing E by E ×OX OX′ we may also assume that α
factors through a map α′ : E → OX′ .

These choices determine an f−1OS′ -algebra map ϕ : OS′ [E ] → OX′ . Let I ′ =
Ker(ϕ). Observe that ϕ induces a map ϕ|I′ : I ′ → G and that OX′ is the pushout,
as in the following diagram

0 // G // OX′ // OX // 0

0 // I ′
ϕ|I′

OO

// f−1OS′ [E ]

OO

// OX

=

OO

// 0

Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.

Then the pushout along ψ is an other ring extension OX′ξ fitting into a diagram as

above. A calculation (omitted) shows that o(X ′, X ′ξ) = ξ as desired. �

Lemma 7.4. Let (S,OS) be a ringed space and let J be an OS-module.

(1) The set of extensions of sheaves of rings 0 → J → OS′ → OS → 0 where
J is an ideal of square zero is canonically bijective to Ext1OS (NLS/Z,J ).
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(2) Given a morphism of ringed spaces f : (X,OX)→ (S,OS), an OX-module
G, an f -map c : J → G, and given extensions of sheaves of rings with
square zero kernels:
(a) 0→ J → OS′ → OS → 0 corresponding to α ∈ Ext1OS (NLS/Z,J ),

(b) 0→ G → OX′ → OX → 0 corresponding to β ∈ Ext1OX (NLX/Z,G)
then there is a morphism X ′ → S′ fitting into a diagram (7.0.1) if and only
if β and α map to the same element of Ext1OX (Lf∗NLS/Z,G).

Proof. To prove this we apply the previous results where we work over the base
ringed space (∗,Z) with trivial thickening. Part (1) follows from Lemma 7.3 and
the fact that there exists a solution, namely J ⊕OS . Part (2) follows from Lemma
7.1 and a compatibility between the constructions in the proofs of Lemmas 7.3 and
7.1 whose statement and proof we omit. �

8. Thickenings of ringed topoi

This section is the analogue of Section 3 for ringed topoi. In the following few
sections we will use the following notions:

(1) A sheaf of ideals I ⊂ O′ on a ringed topos (Sh(D),O′) is locally nilpotent
if any local section of I is locally nilpotent.

(2) A thickening of ringed topoi is a morphism i : (Sh(C),O)→ (Sh(D),O′) of
ringed topoi such that
(a) i∗ is an equivalence Sh(C)→ Sh(D),
(b) the map i] : O′ → i∗O is surjective, and
(c) the kernel of i] is a locally nilpotent sheaf of ideals.

(3) A first order thickening of ringed topoi is a thickening i : (Sh(C),O) →
(Sh(D),O′) of ringed topoi such that Ker(i]) has square zero.

(4) It is clear how to define morphisms of thickenings of ringed topoi, morphisms
of thickenings of ringed topoi over a base ringed topos, etc.

If i : (Sh(C),O) → (Sh(D),O′) is a thickening of ringed topoi then we identify the
underlying topoi and think of O, O′, and I = Ker(i]) as sheaves on C. We obtain
a short exact sequence

0→ I → O′ → O → 0

of O′-modules. By Modules on Sites, Lemma 25.1 the category of O-modules is
equivalent to the category of O′-modules annihilated by I. In particular, if i is a
first order thickening, then I is a O-module.

Situation 8.1. A morphism of thickenings of ringed topoi (f, f ′) is given by a
commutative diagram

(8.1.1)

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB)

t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are thickenings. In this situation we set
I = Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . As f = f ′ on underlying topoi we will
identify the pullback functors f−1 and (f ′)−1. Observe that (f ′)] : f−1OB′ → O′
induces in particular a map f−1J → I and therefore a map of O′-modules

(f ′)∗J −→ I
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If i and t are first order thickenings, then (f ′)∗J = f∗J and the map above becomes
a map f∗J → I.

Definition 8.2. In Situation 8.1 we say that (f, f ′) is a strict morphism of thick-
enings if the map (f ′)∗J −→ I is surjective.

9. Modules on first order thickenings of ringed topoi

In this section we discuss some preliminaries to the deformation theory of modules.
Let i : (Sh(C,O)→ (Sh(D),O′) be a first order thickening of ringed topoi. We will
freely use the notation introduced in Section 8, in particular we will identify the
underlying topological topoi. In this section we consider short exact sequences

(9.0.1) 0→ K → F ′ → F → 0

of O′-modules, where F , K are O-modules and F ′ is an O′-module. In this situation
we have a canonical O-module map

cF ′ : I ⊗O F −→ K

where I = Ker(i]). Namely, given local sections f of I and s of F we set cF ′(f⊗s) =
fs′ where s′ is a local section of F ′ lifting s.

Lemma 9.1. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0

as in (9.0.1) and maps ϕ : F → G and ψ : K → L.

(1) If there exists an O′-module map ϕ′ : F ′ → G′ compatible with ϕ and ψ,
then the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L
is commutative.

(2) The set of O′-module maps ϕ′ : F ′ → G′ compatible with ϕ and ψ is, if
nonempty, a principal homogeneous space under HomO(F ,L).

Proof. Part (1) is immediate from the description of the maps. For (2), if ϕ′ and
ϕ′′ are two maps F ′ → G′ compatible with ϕ and ψ, then ϕ′ − ϕ′′ factors as

F ′ → F → L → G′

The map in the middle comes from a unique element of HomO(F ,L) by Modules
on Sites, Lemma 25.1. Conversely, given an element α of this group we can add
the composition (as displayed above with α in the middle) to ϕ′. Some details
omitted. �

Lemma 9.2. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given extensions

0→ K → F ′ → F → 0 and 0→ L → G′ → G → 0
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as in (9.0.1) and maps ϕ : F → G and ψ : K → L. Assume the diagram

I ⊗O F cF′
//

1⊗ϕ
��

K

ψ

��
I ⊗O G

cG′ // L

is commutative. Then there exists an element

o(ϕ,ψ) ∈ Ext1O(F ,L)

whose vanishing is a necessary and sufficient condition for the existence of a map
ϕ′ : F ′ → G′ compatible with ϕ and ψ.

Proof. We can construct explicitly an extension

0→ L → H → F → 0

by taking H to be the cohomology of the complex

K 1,−ψ−−−→ F ′ ⊕ G′ ϕ,1−−→ G

in the middle (with obvious notation). A calculation with local sections using the
assumption that the diagram of the lemma commutes shows that H is annihilated
by I. Hence H defines a class in

Ext1
O(F ,L) ⊂ Ext1

O′(F ,L)

Finally, the class of H is the difference of the pushout of the extension F ′ via ψ and
the pullback of the extension G′ via ϕ (calculations omitted). Thus the vanishing
of the class of H is equivalent to the existence of a commutative diagram

0 // K //

ψ

��

F ′ //

ϕ′

��

F //

ϕ

��

0

0 // L // G′ // G // 0

as desired. �

Lemma 9.3. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given O-modules F , K and an O-linear map c : I ⊗O F → K. If
there exists a sequence (9.0.1) with cF ′ = c then the set of isomorphism classes of
these extensions is principal homogeneous under Ext1O(F ,K).

Proof. Assume given extensions

0→ K → F ′1 → F → 0 and 0→ K → F ′2 → F → 0

with cF ′1 = cF ′2 = c. Then the difference (in the extension group, see Homology,
Section 6) is an extension

0→ K → E → F → 0

where E is annihilated by I (local computation omitted). Hence the sequence is
an extension of O-modules, see Modules on Sites, Lemma 25.1. Conversely, given
such an extension E we can add the extension E to the O′-extension F ′ without
affecting the map cF ′ . Some details omitted. �
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Lemma 9.4. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Assume given O-modules F , K and an O-linear map c : I ⊗O F → K. Then
there exists an element

o(F ,K, c) ∈ Ext2O(F ,K)

whose vanishing is a necessary and sufficient condition for the existence of a se-
quence (9.0.1) with cF ′ = c.

Proof. We first show that if K is an injective O-module, then there does exist
a sequence (9.0.1) with cF ′ = c. To do this, choose a flat O′-module H′ and a
surjection H′ → F (Modules on Sites, Lemma 28.6). Let J ⊂ H′ be the kernel.
Since H′ is flat we have

I ⊗O′ H′ = IH′ ⊂ J ⊂ H′

Observe that the map

IH′ = I ⊗O′ H′ −→ I ⊗O′ F = I ⊗O F

annihilates IJ . Namely, if f is a local section of I and s is a local section of H,
then fs is mapped to f ⊗ s where s is the image of s in F . Thus we obtain

IH′/IJ �
� //

��

J /IJ

γ

��
I ⊗O F

c // K

a diagram of O-modules. If K is injective as an O-module, then we obtain the
dotted arrow. Denote γ′ : J → K the composition of γ with J → J /IJ . A local
calculation shows the pushout

0 // J //

γ′

��

H′ //

��

F // 0

0 // K // F ′ // F // 0

is a solution to the problem posed by the lemma.

General case. Choose an embedding K ⊂ K′ with K′ an injective O-module. Let
Q be the quotient, so that we have an exact sequence

0→ K → K′ → Q→ 0

Denote c′ : I ⊗O F → K′ be the composition. By the paragraph above there exists
a sequence

0→ K′ → E ′ → F → 0

as in (9.0.1) with cE′ = c′. Note that c′ composed with the map K′ → Q is zero,
hence the pushout of E ′ by K′ → Q is an extension

0→ Q→ D′ → F → 0

as in (9.0.1) with cD′ = 0. This means exactly that D′ is annihilated by I, in other
words, the D′ is an extension of O-modules, i.e., defines an element

o(F ,K, c) ∈ Ext1
O(F ,Q) = Ext2

O(F ,K)
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(the equality holds by the long exact cohomology sequence associated to the exact
sequence above and the vanishing of higher ext groups into the injective module
K′). If o(F ,K, c) = 0, then we can choose a splitting s : F → D′ and we can set

F ′ = Ker(E ′ → D′/s(F))

so that we obtain the following diagram

0 // K //

��

F ′ //

��

F // 0

0 // K′ // E ′ // F // 0

with exact rows which shows that cF ′ = c. Conversely, if F ′ exists, then the pushout
of F ′ by the map K → K′ is isomorphic to E ′ by Lemma 9.3 and the vanishing
of higher ext groups into the injective module K′. This gives a diagram as above,
which implies that D′ is split as an extension, i.e., the class o(F ,K, c) is zero. �

Remark 9.5. Let (Sh(C),O) be a ringed topos. A first order thickening i :
(Sh(C),O) → (Sh(D),O′) is said to be trivial if there exists a morphism of ringed
topoi π : (Sh(D),O′) → (Sh(C),O) which is a left inverse to i. The choice of such
a morphism π is called a trivialization of the first order thickening. Given π we
obtain a splitting

(9.5.1) O′ = O ⊕ I

as sheaves of algebras on C by using π] to split the surjection O′ → O. Conversely,
such a splitting determines a morphism π. The category of trivialized first order
thickenings of (Sh(C),O) is equivalent to the category of O-modules.

Remark 9.6. Let i : (Sh(C),O) → (Sh(D),O′) be a trivial first order thickening
of ringed topoi and let π : (Sh(D),O′)→ (Sh(C),O) be a trivialization. Then given
any triple (F ,K, c) consisting of a pair of O-modules and a map c : I ⊗O F → K
we may set

F ′c,triv = F ⊕K
and use the splitting (9.5.1) associated to π and the map c to define the O′-module
structure and obtain an extension (9.0.1). We will call F ′c,triv the trivial extension
of F by K corresponding to c and the trivialization π. Given any extension F ′ as
in (9.0.1) we can use π] : O → O′ to think of F ′ as an O-module extension, hence
a class ξF ′ in Ext1

O(F ,K). Lemma 9.3 assures that F ′ 7→ ξF ′ induces a bijection{
isomorphism classes of extensions
F ′ as in (9.0.1) with c = cF ′

}
−→ Ext1

O(F ,K)

Moreover, the trivial extension F ′c,triv maps to the zero class.

Remark 9.7. Let (Sh(C),O) be a ringed topos. Let (Sh(C),O) → (Sh(Di),O′i),
i = 1, 2 be first order thickenings with ideal sheaves Ii. Let h : (Sh(D1),O′1) →
(Sh(D2),O′2) be a morphism of first order thickenings of (Sh(C),O). Picture

(Sh(C),O)

ww ''
(Sh(D1),O′1)

h // (Sh(D2),O′2)
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Observe that h] : O′2 → O′1 in particular induces an O-module map I2 → I1. Let
F be an O-module. Let (Ki, ci), i = 1, 2 be a pair consisting of an O-module Ki
and a map ci : Ii ⊗O F → Ki. Assume furthermore given a map of O-modules
K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. Then there is a canonical functoriality{
F ′2 as in (9.0.1) with
c2 = cF ′2 and K = K2

}
−→

{
F ′1 as in (9.0.1) with
c1 = cF ′1 and K = K1

}
Namely, thinking of all sheaves O, O′i, F , Ki, etc as sheaves on C, we set given
F ′2 the sheaf F ′1 equal to the pushout, i.e., fitting into the following diagram of
extensions

0 // K2
//

��

F ′2 //

��

F // 0

0 // K1
// F ′1 // F // 0

We omit the construction of the O′1-module structure on the pushout (this uses the
commutativity of the diagram involving c1 and c2).

Remark 9.8. Let (Sh(C),O), (Sh(C),O)→ (Sh(Di),O′i), Ii, and h : (Sh(D1),O′1)→
(Sh(D2),O′2) be as in Remark 9.7. Assume that we are given given trivializations
πi : (Sh(Di),O′i) → (Sh(C),O) such that π1 = h ◦ π2. In other words, assume h is
a morphism of trivialized first order thickenings of (Sh(C),O). Let (Ki, ci), i = 1, 2
be a pair consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki. Assume
furthermore given a map of O-modules K2 → K1 such that

I2 ⊗O F c2
//

��

K2

��
I1 ⊗O F

c1 // K1

is commutative. In this situation the construction of Remark 9.6 induces a com-
mutative diagram

{F ′2 as in (9.0.1) with c2 = cF ′2 and K = K2}

��

// Ext1
O(F ,K2)

��
{F ′1 as in (9.0.1) with c1 = cF ′1 and K = K1} // Ext1

O(F ,K1)

where the vertical map on the right is given by functoriality of Ext and the map
K2 → K1 and the vertical map on the left is the one from Remark 9.7.

Remark 9.9. Let (Sh(C),O) be a ringed topos. We define a sequence of morphisms
of first order thickenings

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)
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of (Sh(C),O) to be a complex if the corresponding maps between the ideal sheaves
Ii give a complex of O-modules I3 → I2 → I1 (i.e., the composition is zero). In this
case the composition (Sh(D1),O′1) → (Sh(D3),O′3) factors through (Sh(C),O) →
(Sh(D3),O′3), i.e., the first order thickening (Sh(D1),O′1) of (Sh(C),O) is trivial and
comes with a canonical trivialization π : (Sh(D1),O′1)→ (Sh(C),O).

We say a sequence of morphisms of first order thickenings

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)

of (Sh(C),O) is a short exact sequence if the corresponding maps between ideal
sheaves is a short exact sequence

0→ I3 → I2 → I1 → 0

of O-modules.

Remark 9.10. Let (Sh(C),O) be a ringed topos. Let F be an O-module. Let

(Sh(D1),O′1)→ (Sh(D2),O′2)→ (Sh(D3),O′3)

be a complex first order thickenings of (Sh(C),O), see Remark 9.9. Let (Ki, ci),
i = 1, 2, 3 be pairs consisting of an O-module Ki and a map ci : Ii ⊗O F → Ki.
Assume given a short exact sequence of O-modules

0→ K3 → K2 → K1 → 0

such that
I2 ⊗O F c2

//

��

K2

��
I1 ⊗O F

c1 // K1

and

I3 ⊗O F c3
//

��

K3

��
I2 ⊗O F

c2 // K2

are commutative. Finally, assume given an extension

0→ K2 → F ′2 → F → 0

as in (9.0.1) with K = K2 of O′2-modules with cF ′2 = c2. In this situation we can
apply the functoriality of Remark 9.7 to obtain an extension F ′1 ofO′1-modules (we’ll
describe F ′1 in this special case below). By Remark 9.6 using the canonical splitting
π : (Sh(D1),O′1)→ (Sh(C),O) of Remark 9.9 we obtain ξF ′1 ∈ Ext1

O(F ,K1). Finally,
we have the obstruction

o(F ,K3, c3) ∈ Ext2
O(F ,K3)

see Lemma 9.4. In this situation we claim that the canonical map

∂ : Ext1
O(F ,K1) −→ Ext2

O(F ,K3)

coming from the short exact sequence 0 → K3 → K2 → K1 → 0 sends ξF ′1 to the
obstruction class o(F ,K3, c3).

To prove this claim choose an embedding j : K3 → K where K is an injective O-
module. We can lift j to a map j′ : K2 → K. Set E ′2 = j′∗F ′2 equal to the pushout
of F ′2 by j′ so that cE′2 = j′ ◦ c2. Picture:

0 // K2
//

j′

��

F ′2 //

��

F //

��

0

0 // K // E ′2 // F // 0
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Set E ′3 = E ′2 but viewed as an O′3-module via O′3 → O′2. Then cE′3 = j◦c3. The proof
of Lemma 9.4 constructs o(F ,K3, c3) as the boundary of the class of the extension
of O-modules

0→ K/K3 → E ′3/K3 → F → 0

On the other hand, note that F ′1 = F ′2/K3 hence the class ξF ′1 is the class of the
extension

0→ K2/K3 → F ′2/K3 → F → 0

seen as a sequence of O-modules using π] where π : (Sh(D1),O′1) → (Sh(C),O) is
the canonical splitting. Thus finally, the claim follows from the fact that we have
a commutative diagram

0 // K2/K3
//

��

F ′2/K3
//

��

F //

��

0

0 // K/K3
// E ′3/K3

// F // 0

which is O-linear (with the O-module structures given above).

10. Infinitesimal deformations of modules on ringed topi

Let i : (Sh(C),O) → (Sh(D),O′) be a first order thickening of ringed topoi. We
freely use the notation introduced in Section 8. Let F ′ be an O′-module and set
F = i∗F ′. In this situation we have a short exact sequence

0→ IF ′ → F ′ → F → 0

of O′-modules. Since I2 = 0 the O′-module structure on IF ′ comes from a unique
O-module structure. Thus the sequence above is an extension as in (9.0.1). As a
special case, if F ′ = O′ we have i∗O′ = O and IO′ = I and we recover the sequence
of structure sheaves

0→ I → O′ → O → 0

Lemma 10.1. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Let F ′, G′ be O′-modules. Set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be
an O-linear map. The set of lifts of ϕ to an O′-linear map ϕ′ : F ′ → G′ is, if
nonempty, a principal homogeneous space under HomO(F , IG′).

Proof. This is a special case of Lemma 9.1 but we also give a direct proof. We
have short exact sequences of modules

0→ I → O′ → O → 0 and 0→ IG′ → G′ → G → 0

and similarly for F ′. Since I has square zero the O′-module structure on I and
IG′ comes from a unique O-module structure. It follows that

HomO′(F ′, IG′) = HomO(F , IG′) and HomO′(F ′,G) = HomO(F ,G)

The lemma now follows from the exact sequence

0→ HomO′(F ′, IG′)→ HomO′(F ′,G′)→ HomO′(F ′,G)

see Homology, Lemma 5.8. �
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Lemma 10.2. Let (f, f ′) be a morphism of first order thickenings of ringed topoi
as in Situation 8.1. Let F ′ be an O′-module and set F = i∗F ′. Assume that F is
flat over OB and that (f, f ′) is a strict morphism of thickenings (Definition 8.2).
Then the following are equivalent

(1) F ′ is flat over OB′ , and
(2) the canonical map f∗J ⊗O F → IF ′ is an isomorphism.

Moreover, in this case the maps

f∗J ⊗O F → I ⊗O F → IF ′

are isomorphisms.

Proof. The map f∗J → I is surjective as (f, f ′) is a strict morphism of thicken-
ings. Hence the final statement is a consequence of (2).

Proof of the equivalence of (1) and (2). By definition flatness overOB means flatness
over f−1OB. Similarly for flatness over f−1OB′ . Note that the strictness of (f, f ′)
and the assumption that F = i∗F ′ imply that

F = F ′/(f−1J )F ′

as sheaves on C. Moreover, observe that f∗J ⊗O F = f−1J ⊗f−1OB F . Hence the
equivalence of (1) and (2) follows from Modules on Sites, Lemma 28.13. �

Lemma 10.3. Let (f, f ′) be a morphism of first order thickenings of ringed topoi as
in Situation 8.1. Let F ′ be an O′-module and set F = i∗F ′. Assume that F ′ is flat
over OB′ and that (f, f ′) is a strict morphism of thickenings. Then the following
are equivalent

(1) F ′ is an O′-module of finite presentation, and
(2) F is an O-module of finite presentation.

Proof. The implication (1)⇒ (2) follows from Modules on Sites, Lemma 23.4. For
the converse, assume F of finite presentation. We may and do assume that C = C′.
By Lemma 10.2 we have a short exact sequence

0→ I ⊗OX F → F ′ → F → 0

Let U be an object of C such that F|U has a presentation

O⊕mU → O⊕nU → F|U → 0

After replacing U by the members of a covering we may assume the map O⊕nU →
F|U lifts to a map (O′U )⊕n → F ′|U . The induced map I⊕n → I ⊗ F is surjective
by right exactness of ⊗. Thus after replacing U by the members of a covering we
can find a lift (O′|U )⊕m → (O′|U )⊕n of the given map O⊕mU → O⊕nU such that

(O′U )⊕m → (O′U )⊕n → F ′|U → 0

is a complex. Using right exactness of ⊗ once more it is seen that this complex is
exact. �

Lemma 10.4. Let (f, f ′) be a morphism of first order thickenings as in Situation
8.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G
be an O-linear map. Assume that G′ is flat over OB′ and that (f, f ′) is a strict
morphism of thickenings. The set of lifts of ϕ to an O′-linear map ϕ′ : F ′ → G′ is,
if nonempty, a principal homogeneous space under

HomO(F ,G ⊗O f∗J )
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Proof. Combine Lemmas 10.1 and 10.2. �

Lemma 10.5. Let i : (Sh(C),O)→ (Sh(D),O′) be a first order thickening of ringed
topoi. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be
an O-linear map. There exists an element

o(ϕ) ∈ Ext1O(Li∗F ′, IG′)

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an O′-linear map ϕ′ : F ′ → G′.

Proof. It is clear from the proof of Lemma 10.1 that the vanishing of the boundary
of ϕ via the map

HomO(F ,G) = HomO′(F ′,G) −→ Ext1
O′(F ′, IG′)

is a necessary and sufficient condition for the existence of a lift. We conclude as

Ext1
O′(F ′, IG′) = Ext1

O(Li∗F ′, IG′)

the adjointness of i∗ = Ri∗ and Li∗ on the derived category (Cohomology on Sites,
Lemma 19.1). �

Lemma 10.6. Let (f, f ′) be a morphism of first order thickenings as in Situation
8.1. Let F ′, G′ be O′-modules and set F = i∗F ′ and G = i∗G′. Let ϕ : F → G be
an O-linear map. Assume that F ′ and G′ are flat over OB′ and that (f, f ′) is a
strict morphism of thickenings. There exists an element

o(ϕ) ∈ Ext1O(F ,G ⊗O f∗J )

whose vanishing is a necessary and sufficient condition for the existence of a lift of
ϕ to an O′-linear map ϕ′ : F ′ → G′.

First proof. This follows from Lemma 10.5 as we claim that under the assump-
tions of the lemma we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(F ,G ⊗O f∗J )

Namely, we have IG′ = G ⊗O f∗J by Lemma 10.2. On the other hand, observe
that

H−1(Li∗F ′) = TorO
′

1 (F ′,O)

(local computation omitted). Using the short exact sequence

0→ I → O′ → O → 0

we see that this Tor1 is computed by the kernel of the map I ⊗O F → IF ′ which
is zero by the final assertion of Lemma 10.2. Thus τ≥−1Li

∗F ′ = F . On the other
hand, we have

Ext1
O(Li∗F ′, IG′) = Ext1

O(τ≥−1Li
∗F ′, IG′)

by the dual of Derived Categories, Lemma 17.1. �

Second proof. We can apply Lemma 9.2 as follows. Note that K = I ⊗O F and
L = I ⊗O G by Lemma 10.2, that cF ′ = 1⊗ 1 and cG′ = 1⊗ 1 and taking ψ = 1⊗ϕ
the diagram of the lemma commutes. Thus o(ϕ) = o(ϕ, 1⊗ ϕ) works. �

http://localhost:8080/tag/08MS
http://localhost:8080/tag/08MT


30 DEFORMATION THEORY

Lemma 10.7. Let (f, f ′) be a morphism of first order thickenings as in Situation
8.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of thickenings and
F flat over OB. If there exists a pair (F ′, α) consisting of an O′-module F ′ flat
over OB′ and an isomorphism α : i∗F ′ → F , then the set of isomorphism classes
of such pairs is principal homogeneous under Ext1O(F , I ⊗O F).

Proof. If we assume there exists one such module, then the canonical map

f∗J ⊗O F → I ⊗O F

is an isomorphism by Lemma 10.2. Apply Lemma 9.3 with K = I ⊗O F and c = 1.
By Lemma 10.2 the corresponding extensions F ′ are all flat over OB′ . �

Lemma 10.8. Let (f, f ′) be a morphism of first order thickenings as in Situation
8.1. Let F be an O-module. Assume (f, f ′) is a strict morphism of thickenings and
F flat over OB. There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if and
only if

(1) the canonical map f∗J ⊗O F → I ⊗O F is an isomorphism, and
(2) the class o(F , I ⊗O F , 1) ∈ Ext2O(F , I ⊗O F) of Lemma 9.4 is zero.

Proof. This follows immediately from the characterization of O′-modules flat over
OB′ of Lemma 10.2 and Lemma 9.4. �

11. Application to flat modules on flat thickenings of ringed topoi

Consider a commutative diagram

(Sh(C),O)
i
//

f

��

(Sh(D),O′)

f ′

��
(Sh(B),OB)

t // (Sh(B′),OB′)

of ringed topoi whose horizontal arrows are first order thickenings as in Situation
8.1. Set I = Ker(i]) ⊂ O′ and J = Ker(t]) ⊂ OB′ . Let F be an O-module.
Assume that

(1) (f, f ′) is a strict morphism of thickenings,
(2) f ′ is flat, and
(3) F is flat over OB.

Note that (1) + (2) imply that I = f∗J (apply Lemma 10.2 to O′). The theory
of the preceding section is especially nice under these assumptions. We summarize
the results already obtained in the following lemma.

Lemma 11.1. In the situation above.

(1) There exists an O′-module F ′ flat over OB′ with i∗F ′ ∼= F , if and only if
the class o(F , f∗J ⊗O F , 1) ∈ Ext2O(F , f∗J ⊗O F) of Lemma 9.4 is zero.

(2) If such a module exists, then the set of isomorphism classes of lifts is prin-
cipal homogeneous under Ext1O(F , f∗J ⊗O F).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0O(F , f∗J ⊗O F).

Proof. Part (1) follows from Lemma 10.8 as we have seen above that I = f∗J .
Part (2) follows from Lemma 10.7. Part (3) follows from Lemma 10.4. �
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Situation 11.2. Let f : (Sh(C),O)→ (Sh(B),OB) be a morphism of ringed topoi.
Consider a commutative diagram

(Sh(C′1),O′1)
h
//

f ′1
��

(Sh(C′2),O′2) //

f ′2
��

(Sh(C′3),O′3)

f ′3
��

(Sh(B′1),OB′1) // (Sh(B′2),OB′2) // (Sh(B′3),OB′3)

where (a) the top row is a short exact sequence of first order thickenings of (Sh(C),O),
(b) the lower row is a short exact sequence of first order thickenings of (Sh(B),OB),
(c) each f ′i restricts to f , (d) each pair (f, f ′i) is a strict morphism of thickenings,
and (e) each f ′i is flat. Finally, let F ′2 be an O′2-module flat over OB′2 and set
F = F ′2⊗O. Let π : (Sh(C′1),O′1)→ (Sh(C),O) be the canonical splitting (Remark
9.9).

Lemma 11.3. In Situation 11.2 the modules π∗F and h∗F ′2 are O′1-modules flat
over OB′1 restricting to F on (Sh(C),O). Their difference (Lemma 11.1) is an

element θ of Ext1O(F , f∗J1 ⊗O F) whose boundary in Ext2O(F , f∗J3 ⊗O F) equals
the obstruction (Lemma 11.1) to lifting F to an O′3-module flat over OB′3 .

Proof. Note that both π∗F and h∗F ′2 restrict to F on (Sh(C),O) and that the
kernels of π∗F → F and h∗F ′2 → F are given by f∗J1 ⊗O F . Hence flatness by
Lemma 10.2. Taking the boundary makes sense as the sequence of modules

0→ f∗J3 ⊗O F → f∗J2 ⊗O F → f∗J1 ⊗O F → 0

is short exact due to the assumptions in Situation 11.2 and the fact that F is flat
over OB. The statement on the obstruction class is a direct translation of the result
of Remark 9.10 to this particular situation. �

12. Deformations of ringed topoi and the naive cotangent complex

In this section we use the naive cotangent complex to do a little bit of deformation
theory. We start with a first order thickening t : (Sh(B),OB) → (Sh(B′),OB′) of
ringed topoi. We denote J = Ker(t]) and we identify the underlying topoi of B
and B′. Moreover we assume given a morphism of ringed topoi f : (Sh(C),O) →
(Sh(B),OB), an O-module G, and a map f−1J → G of sheaves of f−1OB-modules.
In this section we ask ourselves whether we can find the question mark fitting into
the following diagram

(12.0.1)

0 // G // ? // O // 0

0 // f−1J

c

OO

// f−1OB′

OO

// f−1OB

OO

// 0

and moreover how unique the solution is (if it exists). More precisely, we look for a
first order thickening i : (Sh(C),O) → (Sh(C′),O′) and a morphism of thickenings
(f, f ′) as in (8.1.1) where Ker(i]) is identified with G such that (f ′)] induces the
given map c. We will say (Sh(C′),O′) is a solution to (12.0.1).
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Lemma 12.1. Assume given a commutative diagram of morphisms ringed topoi

(12.1.1)

(Sh(C2),O2)
i2
//

f2

��
g

~~

(Sh(C′2),O′2)

f ′2
��

(Sh(B2),OB2)
t2 //

~~

(Sh(B′2),OB′2)

~~

(Sh(C1),O1)
i1
//

f1

��

(Sh(C′1),O′1)

f ′1
��

(Sh(B1),OB1
)

t1 // (Sh(B′1),OB′1)

whose horizontal arrows are first order thickenings. Set Gj = Ker(i]j) and assume

given a map of g−1O1-modules ν : g−1G1 → G2 giving rise to the commutative
diagram

(12.1.2)

0 // G2
// O′2 // O2

// 0

0 // f−1
2 J2

c2

OO

// f−1
2 OB′2

OO

// f−1
2 OB2

OO

// 0

0 // G1

CC

// O′1 // O1

CC

// 0

0 // f−1
1 J1

CC

c1

OO

// f−1
1 OB′1

CC

OO

// f−1
1 OB1

CC

OO

// 0

with front and back solutions to (12.0.1). (The north-north-west arrows are maps
on C2 after applying g−1 to the source.)

(1) There exist a canonical element in Ext1O2
(Lg∗NLO1/OB1 ,G2) whose vanish-

ing is a necessary and sufficient condition for the existence of a morphism
of ringed topoi (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (12.1.1) compatibly
with ν.

(2) If there exists a morphism (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (12.1.1)
compatibly with ν the set of all such morphisms is a principal homogeneous
space under

HomO1(ΩO1/OB1 , g∗G2) = HomO2(g∗ΩO1/OB1 ,G2) = Ext0O2
(Lg∗NLO1/OB1 ,G2).

Proof. The proof of this lemma is identical to the proof of Lemma 7.1. We urge the
reader to read that proof instead of this one. We will identify the underlying topoi
for every thickening in sight (we have already used this convention in the statement).
The equalities in the last statement of the lemma are immediate from the definitions.
Thus we will work with the groups ExtkO2

(Lg∗NLO1/OB1 ,G2), k = 0, 1 in the rest
of the proof. We first argue that we can reduce to the case where the underlying
topos of all ringed topoi in the lemma is the same.
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To do this, observe that g−1NLO1/OB1 is equal to the naive cotangent complex of

the homomorphism of sheaves of rings g−1f−1
1 OB1 → g−1O1, see Modules on Sites,

Lemma 32.5. Moreover, the degree 0 term of NLO1/OB1 is a flat O1-module, hence
the canonical map

Lg∗NLO1/OB1 −→ g−1NLO1/OB1 ⊗g−1O1
O2

induces an isomorphism on cohomology sheaves in degrees 0 and −1. Thus we may
replace the Ext groups of the lemma with

Extkg−1O1
(g−1NLO1/OB1 ,G2) = Extkg−1O1

(NLg−1O1/g−1f−1
1 OB1

,G2)

The set of morphism of ringed topoi (Sh(C′2),O′2)→ (Sh(C′1),O′1) fitting into (12.1.1)
compatibly with ν is in one-to-one bijection with the set of homomorphisms of
g−1f−1

1 OB′1 -algebras g−1O′1 → O′2 which are compatible with f ] and ν. In this way
we see that we may assume we have a diagram (12.1.2) of sheaves on a site C (with
f1 = f2 = id on underlying topoi) and we are looking to find a homomorphism of
sheaves of rings O′1 → O′2 fitting into it.

In the rest of the proof of the lemma we assume all underlying topological spaces are
the same, i.e., we have a diagram (12.1.2) of sheaves on a site C (with f1 = f2 = id
on underlying topoi) and we are looking for homomorphisms of sheaves of rings

O′1 → O′2 fitting into it. As ext groups we will use ExtkO1
(NLO1/OB1 ,G2), k = 0, 1.

Step 1. Construction of the obstruction class. Consider the sheaf of sets

E = O′1 ×O2
O′2

This comes with a surjective map α : E → O1 and hence we can use NL(α) instead
of NLO1/OB1 , see Modules on Sites, Lemma 34.2. Set

I ′ = Ker(OB′1 [E ]→ O1) and I = Ker(OB1
[E ]→ O1)

There is a surjection I ′ → I whose kernel is J1OB′1 [E ]. We obtain two homomor-
phisms of OB′2-algebras

a : OB′1 [E ]→ O′1 and b : OB′1 [E ]→ O′2
which induce maps a|I′ : I ′ → G1 and b|I′ : I ′ → G2. Both a and b annihilate
(I ′)2. Moreover a and b agree on J1OB′1 [E ] as maps into G2 because the left hand
square of (12.1.2) is commutative. Thus the difference b|I′ − ν ◦ a|I′ induces a well
defined O1-linear map

ξ : I/I2 −→ G2

which sends the class of a local section f of I to a(f ′)−ν(b(f ′)) where f ′ is a lift of
f to a local section of I ′. We let [ξ] ∈ Ext1

O1
(NL(α),G2) be the image (see below).

Step 2. Vanishing of [ξ] is necessary. Let us write Ω = ΩOB1 [E]/OB1 ⊗OB1 [E] O1.

Observe that NL(α) = (I/I2 → Ω) fits into a distinguished triangle

Ω[0]→ NL(α)→ I/I2[1]→ Ω[1]

Thus we see that [ξ] is zero if and only if ξ is a composition I/I2 → Ω → G2 for
some map Ω → G2. Suppose there exists a homomorphisms of sheaves of rings
ϕ : O′1 → O′2 fitting into (12.1.2). In this case consider the map O′1[E ] → G2,
f ′ 7→ b(f ′)−ϕ(a(f ′)). A calculation shows this annihilates J1OB′1 [E ] and induces a
derivation OB1

[E ] → G2. The resulting linear map Ω → G2 witnesses the fact that
[ξ] = 0 in this case.
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Step 3. Vanishing of [ξ] is sufficient. Let θ : Ω→ G2 be a O1-linear map such that
ξ is equal to θ ◦ (I/I2 → Ω). Then a calculation shows that

b+ θ ◦ d : OB′1 [E ] −→ O′2
annihilates I ′ and hence defines a map O′1 → O′2 fitting into (12.1.2).

Proof of (2) in the special case above. Omitted. Hint: This is exactly the same as
the proof of (2) of Lemma 2.1. �

Lemma 12.2. Let C be a site. Let A → B be a homomorphism of sheaves of rings
on C. Let G be a B-module. Let ξ ∈ Ext1B(NLB/A,G). There exists a map of sheaves

of sets α : E → B such that ξ ∈ Ext1B(NL(α),G) is the class of a map I/I2 → G
(see proof for notation).

Proof. Recall that given α : E → B such that A[E ] → B is surjective with
kernel I the complex NL(α) = (I/I2 → ΩA[E]/A ⊗A[E] B) is canonically iso-
morphic to NLB/A, see Modules on Sites, Lemma 34.2. Observe moreover, that
Ω = ΩA[E]/A⊗A[E] B is the sheaf associated to the presheaf U 7→

⊕
e∈E(U) B(U). In

other words, Ω is the free B-module on the sheaf of sets E and in particular there
is a canonical map E → Ω.

Having said this, pick some E (for example E = B as in the definition of the naive
cotangent complex). The obstruction to writing ξ as the class of a map I/I2 → G is
an element in Ext1

B(Ω,G). Say this is represented by the extension 0→ G → H →
Ω→ 0 of B-modules. Consider the sheaf of sets E ′ = E ×Ω H which comes with an
induced map α′ : E ′ → B. Let I ′ = Ker(A[E ′] → B) and Ω′ = ΩA[E′]/A ⊗A[E′] B.
The pullback of ξ under the quasi-isomorphism NL(α′) → NL(α) maps to zero in
Ext1

B(Ω′,G) because the pullback of the extension H by the map Ω′ → Ω is split as
Ω′ is the free B-module on the sheaf of sets E ′ and since by construction there is a
commutative diagram

E ′ //

��

E

��
H // Ω

This finishes the proof. �

Lemma 12.3. If there exists a solution to (12.0.1), then the set of isomorphism
classes of solutions is principal homogeneous under Ext1O(NLO/OB ,G).

Proof. We observe right away that given two solutions O′1 and O′2 to (12.0.1) we
obtain by Lemma 12.1 an obstruction element o(O′1,O′2) ∈ Ext1

O(NLO/OB ,G) to
the existence of a map O′1 → O′2. Clearly, this element is the obstruction to the
existence of an isomorphism, hence separates the isomorphism classes. To finish
the proof it therefore suffices to show that given a solution O′ and an element
ξ ∈ Ext1

O(NLO/OB ,G) we can find a second solution O′ξ such that o(O′,O′ξ) = ξ.

Pick α : E → O as in Lemma 12.2 for the class ξ. Consider the surjection
f−1OB[E ]→ O with kernel I and corresponding naive cotangent complex NL(α) =
(I/I2 → Ωf−1OB[E]/f−1OB⊗f−1OB[E]O). By the lemma ξ is the class of a morphism

δ : I/I2 → G. After replacing E by E ×O O′ we may also assume that α factors
through a map α′ : E → O′.
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These choices determine an f−1OB′ -algebra map ϕ : OB′ [E ]→ O′. Let I ′ = Ker(ϕ).
Observe that ϕ induces a map ϕ|I′ : I ′ → G and that O′ is the pushout, as in the
following diagram

0 // G // O′ // O // 0

0 // I ′
ϕ|I′

OO

// f−1OB′ [E ]

OO

// O

=

OO

// 0

Let ψ : I ′ → G be the sum of the map ϕ|I′ and the composition

I ′ → I ′/(I ′)2 → I/I2 δ−→ G.
Then the pushout along ψ is an other ring extension O′ξ fitting into a diagram as

above. A calculation (omitted) shows that o(O′,O′ξ) = ξ as desired. �

Lemma 12.4. Let (Sh(B),OB) be a ringed topos and let J be an OB-module.

(1) The set of extensions of sheaves of rings 0 → J → OB′ → OB → 0 where
J is an ideal of square zero is canonically bijective to Ext1OB(NLOB/Z,J ).

(2) Given a morphism of ringed topoi f : (Sh(C),O) → (Sh(B),OB), an O-
module G, an f−1OB-module map c : f−1J → G, and given extensions of
sheaves of rings with square zero kernels:
(a) 0→ J → OB′ → OB → 0 corresponding to α ∈ Ext1OB(NLOB/Z,J ),

(b) 0→ G → O′ → O → 0 corresponding to β ∈ Ext1O(NLO/Z,G)
then there is a morphism (Sh(C),O′)→ (Sh(B,OB′) fitting into a diagram
(12.0.1) if and only if β and α map to the same element of Ext1O(Lf∗NLOB/Z,G).

Proof. To prove this we apply the previous results where we work over the base
ringed topos (Sh(∗),Z) with trivial thickening. Part (1) follows from Lemma 12.3
and the fact that there exists a solution, namely J ⊕ OB. Part (2) follows from
Lemma 12.1 and a compatibility between the constructions in the proofs of Lemmas
12.3 and 12.1 whose statement and proof we omit. �
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