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1. Introduction

Let C be a site, see Sites, Definition 6.2. Let X be an object of C. Given an abelian
sheaf F on C we would like to compute its cohomology groups

Hi(X,F).

According to our general definitions (Cohomology on Sites, Section 3) this cohomol-
ogy group is computed by choosing an injective resolution 0→ F → I0 → I1 → . . .
and setting

Hi(X,F) = Hi(Γ(X, I0)→ Γ(X, I1)→ Γ(X, I2)→ . . .)

The goal of this chapter is to show that we may also compute these cohomology
groups without choosing an injective resolution (in the case that C has fibre prod-
ucts). To do this we will use hypercoverings.

A hypercovering in a site is a generalization of a covering, see [AGV71, Exposé V,
Sec. 7]. Given a hypercovering K of an object X, there is a Čech to cohomology
spectral sequence expressing the cohomology of an abelian sheaf F over X in terms
of the cohomology of the sheaf over the components Kn of K. It turns out that there
are always enough hypercoverings, so that taking the colimit over all hypercoverings,
the spectral sequence degenerates and the cohomology of F over X is computed by
the colimit of the Čech cohomology groups.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 HYPERCOVERINGS

A more general gadget one can consider is a simplicial augmentation where one
has cohomological descent, see [AGV71, Exposé Vbis]. A nice manuscript on coho-
mological descent is the text by Brian Conrad, see http://math.stanford.edu/

~conrad/papers/hypercover.pdf. We will come back to these issue in the chapter
on simplicial spaces where we will show, for example, that proper hypercoverings
of “locally compact” topological spaces are of cohomological descent (Simplicial
Spaces, Section 6). Our method of attack will be to reduce this statement to the
Čech to cohomology spectral sequence constructed in this chapter.

2. Hypercoverings

In order to start we make the following definition. The letters “SR” stand for
Semi-Representable.

Definition 2.1. Let C be a site. We denote SR(C) the category of semi-representable
objects defined as follows

(1) objects are families of objects {Ui}i∈I , and
(2) morphisms {Ui}i∈I → {Vj}j∈J are given by a map α : I → J and for each

i ∈ I a morphism fi : Ui → Vα(i) of C.
Let X ∈ Ob(C) be an object of C. The category of semi-representable objects over
X is the category SR(C, X) = SR(C/X).

This definition differs from the one in [AGV71, Exposé V, Sec. 7], but it seems
flexible enough to do all the required arguments. Note that this is a “big” category.
We will later “bound” the size of the index sets I that we need for hypercoverings
of X. We can then redefine SR(C, X) to become a category. Let’s spell out the
objects and morphisms SR(C, X):

(1) objects are families of morphisms {Ui → X}i∈I , and
(2) morphisms {Ui → X}i∈I → {Vj → X}j∈J are given by a map α : I → J

and for each i ∈ I a morphism fi : Ui → Vα(i) over X.

There is a forgetful functor SR(C, X)→ SR(C).

Definition 2.2. Let C be a site with fibre products. We denote F the functor
which associates a presheaf to a semi-representable object. In a formula

F : SR(C) −→ PSh(C)
{Ui}i∈I 7−→ qi∈IhUi

where hU denotes the representable presheaf associated to the object U .

Given a morphism U → X we obtain a morphism hU → hX of representable
presheaves. Thus we often think of F on SR(C, X) as a functor into the category
of presheaves of sets over hX , namely PSh(C)/hX . Here is a picture:

SR(C, X)
F
//

��

PSh(C)/hX

��
SR(C) F // PSh(C)

Next we discuss the existence of limits in the category of semi-representable objects.

Lemma 2.3. Let C be a site.

(1) the category SR(C) has coproducts and F commutes with them,

http://math.stanford.edu/~conrad/papers/hypercover.pdf
http://math.stanford.edu/~conrad/papers/hypercover.pdf
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http://localhost:8080/tag/01G1
http://localhost:8080/tag/01G2
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(2) the functor F : SR(C)→ PSh(C) commutes with limits,
(3) if C has fibre products, then SR(C) has fibre products,
(4) if C has products of pairs, then SR(C) has products of pairs,
(5) if C has equalizers, so does SR(C), and
(6) if C has a final object, so does SR(C).

Let X ∈ Ob(C).
(1) the category SR(C, X) has coproducts and F commutes with them,
(2) if C has fibre products, then SR(C, X) has finite limits and F : SR(C, X)→

PSh(C)/hX commutes with them.

Proof. Proof of the results on SR(C). Proof of (1). The coproduct of {Ui}i∈I and
{Vj}j∈J is {Ui}i∈I q{Vj}j∈J , in other words, the family of objects whose index set
is IqJ and for an element k ∈ IqJ gives Ui if k = i ∈ I and gives Vj if k = j ∈ J .
Similarly for coproducts of families of objects. It is clear that F commutes with
these.

Proof of (2). For U in Ob(C) consider the object {U} of SR(C). It is clear that
MorSR(C)({U},K)) = F (K)(U) for K ∈ Ob(SR(C)). Since limits of presheaves are
computed at the level of sections (Sites, Section 4) we conclude that F commutes
with limits.

Proof of (3). Suppose given a morphism (α, fi) : {Ui}i∈I → {Vj}j∈J and a mor-
phism (β, gk) : {Wk}k∈K → {Vj}j∈J . The fibred product of these morphisms is
given by

{Ui ×fi,Vj ,gk Wk}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist if C has fibre products.

Proof of (4). The product of {Ui}i∈I and {Vj}j∈J is {Ui×Vj}i∈I,j∈J . The products
exist if C has products.

Proof of (5). The equalizer of two maps (α, fi), (α
′, f ′i) : {Ui}i∈I → {Vj}j∈J is

{Eq(fi, f
′
i : Ui → Vα(i))}i∈I, α(i)=α′(i)

The equalizers exist if C has equalizers.

Proof of (6). If X is a final object of C, then {X} is a final object of SR(C).

Proof of the statements about SR(C, X). These follow from the results above ap-
plied to the category C/X using that SR(C/X) = SR(C, X) and that PSh(C/X) =
PSh(C)/hX (Sites, Lemma 24.4 applied to C endowed with the chaotic topol-
ogy). However we also argue directly as follows. It is clear that the coproduct
of {Ui → X}i∈I and {Vj → X}j∈J is {Ui → X}i∈I q {Vj → X}j∈J and simi-
larly for coproducts of families of families of morphisms with target X. The object
{X → X} is a final object of SR(C, X). Suppose given a morphism (α, fi) : {Ui →
X}i∈I → {Vj → X}j∈J and a morphism (β, gk) : {Wk → X}k∈K → {Vj → X}j∈J .
The fibred product of these morphisms is given by

{Ui ×fi,Vj ,gk Wk → X}(i,j,k)∈I×J×K such that j=α(i)=β(k)

The fibre products exist by the assumption that C has fibre products. Thus
SR(C, X) has finite limits, see Categories, Lemma 18.4. We omit verifying the
statements on the functor F in this case. �
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Definition 2.4. Let C be a site. Let f = (α, fi) : {Ui}i∈I → {Vj}j∈J be a
morphism in the category SR(C). We say that f is a covering if for every j ∈ J the
family of morphisms {Ui → Vj}i∈I,α(i)=j is a covering for the site C. Let X be an
object of C. A morphism K → L in SR(C, X) is a covering if its image in SR(C) is
a covering.

Lemma 2.5. Let C be a site.

(1) A composition of coverings in SR(C) is a covering.
(2) If K → L is a covering in SR(C) and L′ → L is a morphism, then L′×LK

exists and L′ ×L K → L′ is a covering.
(3) If C has products of pairs, and A→ B and K → L are coverings in SR(C),

then A×K → B × L is a covering.

Let X ∈ Ob(C). Then (1) and (2) holds for SR(C, X) and (3) holds if C has fibre
products.

Proof. Part (1) is immediate from the axioms of a site. Part (2) follows by the
construction of fibre products in SR(C) in the proof of Lemma 2.3 and the require-
ment that the morphisms in a covering of C are representable. Part (3) follows
by thinking of A × K → B × L as the composition A × K → B × K → B × L
and hence a composition of basechanges of coverings. The final statement follows
because SR(C, X) = SR(C/X). �

By Lemma 2.3 and Simplicial, Lemma 18.2 the coskeleton of a truncated simplicial
object of SR(C, X) exists if C has fibre products. Hence the following definition
makes sense.

Definition 2.6. Let C be a site. Assume C has fibre products. Let X ∈ Ob(C) be
an object of C. A hypercovering of X is a simplicial object K of SR(C, X) such that

(1) The object K0 is a covering of X for the site C.
(2) For every n ≥ 0 the canonical morphism

Kn+1 −→ (cosknsknK)n+1

is a covering in the sense defined above.

Condition (1) makes sense since each object of SR(C, X) is after all a family of
morphisms with target X. It could also be formulated as saying that the morphism
of K0 to the final object of SR(C, X) is a covering.

Example 2.7. Let {Ui → X}i∈I be a covering of the site C. Set K0 = {Ui →
X}i∈I . Then K0 is a 0-truncated simplicial object of SR(C, X). Hence we may
form

K = cosk0K0.

Clearly K passes condition (1) of Definition 2.6. Since all the morphisms Kn+1 →
(cosknsknK)n+1 are isomorphisms by Simplicial, Lemma 18.10 it also passes con-
dition (2). Note that the terms Kn are the usual

Kn = {Ui0 ×X Ui1 ×X . . .×X Uin → X}(i0,i1,...,in)∈In+1

Lemma 2.8. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of C.
The collection of all hypercoverings of X forms a set.

http://localhost:8080/tag/01G3
http://localhost:8080/tag/01G4
http://localhost:8080/tag/01G5
http://localhost:8080/tag/01G6
http://localhost:8080/tag/01G7
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Proof. Since C is a site, the set of all coverings of X forms a set. Thus we see
that the collection of possible K0 forms a set. Suppose we have shown that the
collection of all possible K0, . . . ,Kn form a set. Then it is enough to show that given
K0, . . . ,Kn the collection of all possible Kn+1 forms a set. And this is clearly true
since we have to choose Kn+1 among all possible coverings of (cosknsknK)n+1. �

Remark 2.9. The lemma does not just say that there is a cofinal system of choices
of hypercoverings that is a set, but that really the hypercoverings form a set.

The category of presheaves on C has finite (co)limits. Hence the functors coskn
exists for presheaves of sets.

Lemma 2.10. Let C be a site with fibre products. Let X ∈ Ob(C) be an object of
C. Let K be a hypercovering of X. Consider the simplicial object F (K) of PSh(C),
endowed with its augmentation to the constant simplicial presheaf hX .

(1) The morphism of presheaves F (K)0 → hX becomes a surjection after sheafi-
fication.

(2) The morphism

(d1
0, d

1
1) : F (K)1 −→ F (K)0 ×hX

F (K)0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

F (K)n+1 −→ (cosknsknF (K))n+1

turns into a surjection after sheafification.

Proof. We will use the fact that if {Ui → U}i∈I is a covering of the site C, then
the morphism

qi∈IhUi → hU

becomes surjective after sheafification, see Sites, Lemma 13.4. Thus the first asser-
tion follows immediately.

For the second assertion, note that according to Simplicial, Example 18.1 the sim-
plicial object cosk0sk0K has terms K0× . . .×K0. Thus according to the definition
of a hypercovering we see that (d1

0, d
1
1) : K1 → K0 ×K0 is a covering. Hence (2)

follows from the claim above and the fact that F transforms products into fibred
products over hX .

For the third, we claim that cosknsknF (K) = F (cosknsknK) for n ≥ 1. To prove
this, denote temporarily F ′ the functor SR(C, X) → PSh(C)/hX . By Lemma 2.3
the functor F ′ commutes with finite limits. By our description of the coskn functor
in Simplicial, Section 12 we see that cosknsknF

′(K) = F ′(cosknsknK). Recall
that the category used in the description of (cosknU)m in Simplicial, Lemma 18.2
is the category (∆/[m])opp≤n . It is an amusing exercise to show that (∆/[m])≤n is

a connected category (see Categories, Definition 16.1) as soon as n ≥ 1. Hence,
Categories, Lemma 16.2 shows that cosknsknF

′(K) = cosknsknF (K). Whence the
claim. Property (2) follows from this, because now we see that the morphism in
(2) is the result of applying the functor F to a covering as in Definition 2.4, and
the result follows from the first fact mentioned in this proof. �

http://localhost:8080/tag/01G8
http://localhost:8080/tag/01G9
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3. Acyclicity

Let C be a site. For a presheaf of sets F we denote ZF the presheaf of abelian
groups defined by the rule

ZF (U) = free abelian group on F(U).

We will sometimes call this the free abelian presheaf on F . Of course the con-
struction F 7→ ZF is a functor and it is left adjoint to the forgetful functor

PAb(C) → PSh(C). Of course the sheafification Z#
F is a sheaf of abelian groups,

and the functor F 7→ Z#
F is a left adjoint as well. We sometimes call Z#

F the free
abelian sheaf on F .

For an object X of the site C we denote ZX the free abelian presheaf on hX , and

we denote Z#
X its sheafification.

Definition 3.1. Let C be a site. Let K be a simplicial object of PSh(C). By the

above we get a simplicial object Z#
K of Ab(C). We can take its associated complex

of abelian presheaves s(Z#
K), see Simplicial, Section 22. The homology of K is the

homology of the complex of abelian sheaves s(Z#
K).

In other words, the ith homology Hi(K) of K is the sheaf of abelian groups

Hi(K) = Hi(s(Z
#
K)). In this section we worry about the homology in case K

is a hypercovering of an object X of C.

Lemma 3.2. Let C be a site. Let F → G be a morphism of presheaves of sets.
Denote K the simplicial object of PSh(C) whose nth term is the (n + 1)st fibre
product of F over G, see Simplicial, Example 3.5. Then, if F → G is surjective
after sheafification, we have

Hi(K) =

{
0 if i > 0

Z#
G if i = 0

The isomorphism in degree 0 is given by the morphism H0(K)→ Z#
G coming from

the map (Z#
K)0 = Z#

F → Z#
G .

Proof. Let G′ ⊂ G be the image of the morphism F → G. Let U ∈ Ob(C). Set
A = F(U) and B = G′(U). Then the simplicial set K(U) is equal to the simplicial
set with n-simplices given by

A×B A×B . . .×B A (n+ 1 factors).

By Simplicial, Lemma 31.3 the morphism K(U) → B is a trivial Kan fibration.
Thus it is a homotopy equivalence (Simplicial, Lemma 31.3). Hence applying the
functor “free abelian group on” to this we deduce that

ZK(U) −→ ZB

is a homotopy equivalence. Note that s(ZB) is the complex

. . .→
⊕

b∈B
Z

0−→
⊕

b∈B
Z

1−→
⊕

b∈B
Z

0−→
⊕

b∈B
Z→ 0

see Simplicial, Lemma 22.3. Thus we see that Hi(s(ZK(U))) = 0 for i > 0, and
H0(s(ZK(U))) =

⊕
b∈B Z =

⊕
s∈G′(U) Z. These identifications are compatible with

restriction maps.

http://localhost:8080/tag/01GB
http://localhost:8080/tag/01GC
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We conclude that Hi(s(ZK)) = 0 for i > 0 and H0(s(ZK)) = ZG′ , where here we
compute homology groups in PAb(C). Since sheafification is an exact functor we
deduce the result of the lemma. Namely, the exactness implies that H0(s(ZK))# =

H0(s(Z#
K)), and similarly for other indices. �

Lemma 3.3. Let C be a site. Let f : L → K be a morphism of simplicial objects
of PSh(C). Let n ≥ 0 be an integer. Assume that

(1) For i < n the morphism Li → Ki is an isomorphism.
(2) The morphism Ln → Kn is surjective after sheafification.
(3) The canonical map L→ cosknsknL is an isomorphism.
(4) The canonical map K → cosknsknK is an isomorphism.

Then Hi(f) : Hi(L)→ Hi(K) is an isomorphism.

Proof. This proof is exactly the same as the proof of Lemma 3.2 above. Namely,
we first let K ′n ⊂ Kn be the sub presheaf which is the image of the map Ln → Kn.
Assumption (2) means that the sheafification of K ′n is equal to the sheafification
of Kn. Moreover, since Li = Ki for all i < n we see that get an n-truncated
simplicial presheaf U by taking U0 = L0 = K0, . . . , Un−1 = Ln−1 = Kn−1, Un =
K ′n. Denote K ′ = cosknU , a simplicial presheaf. Because we can construct K ′m as
a finite limit, and since sheafification is exact, we see that (K ′m)# = Km. In other
words, (K ′)# = K#. We conclude, by exactness of sheafification once more, that
Hi(K) = Hi(K

′). Thus it suffices to prove the lemma for the morphism L→ K ′, in
other words, we may assume that Ln → Kn is a surjective morphism of presheaves!

In this case, for any object U of C we see that the morphism of simplicial sets

L(U) −→ K(U)

satisfies all the assumptions of Simplicial, Lemma 31.1. Hence it is a trivial Kan
fibration. In particular it is a homotopy equivalence (Simplicial, Lemma 29.8).
Thus

ZL(U) −→ ZK(U)

is a homotopy equivalence too. This for all U . The result follows. �

Lemma 3.4. Let C be a site. Let K be a simplicial presheaf. Let G be a presheaf.
Let K → G be an augmentation of K towards G. Assume that

(1) The morphism of presheaves K0 → G becomes a surjection after sheafifica-
tion.

(2) The morphism
(d1

0, d
1
1) : K1 −→ K0 ×G K0

becomes a surjection after sheafification.
(3) For every n ≥ 1 the morphism

Kn+1 −→ (cosknsknK)n+1

turns into a surjection after sheafification.

Then Hi(K) = 0 for i > 0 and H0(K) = Z#
G .

Proof. Denote Kn = cosknsknK for n ≥ 1. Define K0 as the simplicial object
with terms (K0)n equal to the (n + 1)-fold fibred product K0 ×G . . . ×G K0, see
Simplicial, Example 3.5. We have morphisms

K −→ . . .→ Kn → Kn−1 → . . .→ K1 → K0.

http://localhost:8080/tag/01GD
http://localhost:8080/tag/01GE
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The morphismsK → Ki, Kj → Ki for j ≥ i ≥ 1 come from the universal properties
of the coskn functors. The morphism K1 → K0 is the canonical morphism from
Simplicial, Remark 19.4. We also recall that K0 → cosk1sk1K

0 is an isomorphism,
see Simplicial, Lemma 19.3.

By Lemma 3.2 we see that Hi(K
0) = 0 for i > 0 and H0(K0) = Z#

G .

Pick n ≥ 1. Consider the morphism Kn → Kn−1. It is an isomorphism on terms
of degree < n. Note that Kn → cosknsknK

n and Kn−1 → cosknsknK
n−1 are

isomorphisms. Note that (Kn)n = Kn and that (Kn−1)n = (coskn−1skn−1K)n.
Hence by assumption, we have that (Kn)n → (Kn−1)n is a morphism of presheaves
which becomes surjective after sheafification. By Lemma 3.3 we conclude that
Hi(K

n) = Hi(K
n−1). Combined with the above this proves the lemma. �

Lemma 3.5. Let C be a site with fibre products. Let X be an object of of C. Let
K be a hypercovering of X. The homology of the simplicial presheaf F (K) is 0 in

degrees > 0 and equal to Z#
X in degree 0.

Proof. Combine Lemmas 3.4 and 2.10. �

4. Cech cohomology and hypercoverings

Let C be a site. Consider a presheaf of abelian groups F on the site C. It defines a
functor

F : SR(C)opp −→ Ab

{Ui}i∈I 7−→
∏

i∈I
F(Ui)

Thus a simplicial object K of SR(C) is turned into a cosimplicial object F(K) of
Ab. The cochain complex s(F)(K)) associated to F(K) (Simplicial, Section 24) is
called the Čech complex of F with respect to the simplicial object K. We set

Ȟi(K,F) = Hi(s(F(K))).

and we call it the ith Čech cohomology group of F with respect to K. In this
section we prove analogues of some of the results for Cech cohomology of open
coverings proved in Cohomology, Sections 10, 11 and 12.

Lemma 4.1. Let C be a site with fibre products. Let X be an object of C. Let K be
a hypercovering of X. Let F be a sheaf of abelian groups on C. Then Ȟ0(K,F) =
F(X).

Proof. We have
Ȟ0(K,F) = Ker(F(K0) −→ F(K1))

Write K0 = {Ui → X}. It is a covering in the site C. As well, we have that K1 →
K0×K0 is a covering in SR(C, X). Hence we may write K1 = qi0,i1∈I{Vi0i1j → X}
so that the morphism K1 → K0 ×K0 is given by coverings {Vi0i1j → Ui0 ×X Ui1}
of the site C. Thus we can further identify

Ȟ0(K,F) = Ker(
∏

i
F(Ui) −→

∏
i0i1j
F(Vi0i1j))

with obvious map. The sheaf property of F implies that Ȟ0(K,F) = H0(X,F). �

In fact this property characterizes the abelian sheaves among all abelian presheaves
on C of course. The analogue of Cohomology, Lemma 4.2 in this case is the following.

http://localhost:8080/tag/01GF
http://localhost:8080/tag/01GV
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Lemma 4.2. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let I be an injective sheaf of abelian groups on C. Then

Ȟp(K, I) =

{
I(X) if p = 0

0 if p > 0

Proof. Observe that for any object Z = {Ui → X} of SR(C, X) and any abelian
sheaf F on C we have

F(Z) =
∏
F(Ui)

=
∏

MorPSh(C)(hUi ,F)

= MorPSh(C)(F (Z),F)

= MorPAb(C)(ZF (Z),F)

= MorAb(C)(Z
#
F (Z),F)

Thus we see, for any simplicial object K of SR(C, X) that we have

(4.2.1) s(F(K)) = HomAb(C)(s(Z
#
F (K)),F)

see Definition 3.1 for notation. The complex of sheaves s(Z#
F (K)) is quasi-isomorphic

to Z#
X if K is a hypercovering, see Lemma 3.5. We conclude that if I is an injective

abelian sheaf, and K a hypercovering, then the complex s(I(K)) is acyclic except
possibly in degree 0. In other words, we have

Ȟi(K, I) = 0

for i > 0. Combined with Lemma 4.1 the lemma is proved. �

Next we come to the analogue of Cohomology on Sites, Lemma 11.6. Let C be a site.
Let F be a sheaf of abelian groups on C. Recall that Hi(F) indicates the presheaf
of abelian groups on C which is defined by the rule Hi(F) : U 7−→ Hi(U,F). We
extend this to SR(C) as in the introduction to this section.

Lemma 4.3. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let F be a sheaf of abelian groups on C. There is a map

s(F(K)) −→ RΓ(X,F)

in D+(Ab) functorial in F , which induces natural transformations

Ȟi(K,−) −→ Hi(X,−)

as functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(X,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. We could prove this by the same method as employed in the corresponding
lemma in the chapter on cohomology. Instead let us prove this by a double complex
argument.

Choose an injective resolution F → I• in the category of abelian sheaves on C.
Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

http://localhost:8080/tag/01GW
http://localhost:8080/tag/01GY
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where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Ip → Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
differential on the complex s(Ip(K)) associated to the cosimplicial abelian group
Ip(K) as explained above. As usual we denote sA• the simple complex associated
to the double complex A•,•. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 22.

By Lemma 4.2 the complexes s(Ip(K)) are acyclic in positive degrees and have
H0 equal to Ip(X). Hence by Homology, Lemma 22.7 and its proof the spectral
sequence (′Er,

′dr) degenerates, and the natural map

I•(X) −→ sA•

is a quasi-isomorphism of complexes of abelian groups. In particular we conclude
that Hn(sA•) = Hn(X,F).

The map s(F(K)) −→ RΓ(X,F) of the lemma is the composition of the natural
map s(F(K)) → sA• followed by the inverse of the displayed quasi-isomorphism
above. This works because I•(X) is a representative of RΓ(X,F).

Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 22.4 we see

that
′′Ep,q2 = Hp

II(H
q
I (A•,•))

In other words, we first take cohomology with respect to d1 which gives the groups
′′Ep,q1 = Hp(F)(Kq). Hence it is indeed the case (by the description of the differ-

ential ′′d1) that ′′Ep,q2 = Ȟp(K,Hq(F)). And by the other spectral sequence above
we see that this one converges to Hn(X,F) as desired.

We omit the proof of the statements regarding the functoriality of the above con-
structions in the abelian sheaf F and the hypercovering K. �

5. Hypercoverings a la Verdier

The astute reader will have noticed that all we need in order to get the Čech to
cohomology spectral sequence for a hypercovering of an object X, is the conclusion
of Lemma 2.10. Therefore the following definition makes sense.

Definition 5.1. Let C be a site. Assume C has equalizers and fibre products. Let
G be a presheaf of sets. A hypercovering of G is a simplicial object K of SR(C)
endowed with an augmentation F (K)→ G such that

(1) F (K0)→ G becomes surjective after sheafification,
(2) F (K1)→ F (K0)×G F (K0) becomes surjective after sheafification, and
(3) F (Kn+1) −→ F ((cosknsknK)n+1) for n ≥ 1 becomes surjective after sheafi-

fication.

We say that a simplicial object K of SR(C) is a hypercovering if K is a hypercovering
of the final object ∗ of PSh(C).

The assumption that C has fibre products and equalizers guarantees that SR(C)
has fibre products and equalizers and F commutes with these (Lemma 2.3) which
suffices to define the coskeleton functors used (see Simplicial, Remark 18.11 and
Categories, Lemma 18.2). If C is general, we can replace the condition (3) by the
condition that F (Kn+1) −→ ((cosknsknF (K))n+1) for n ≥ 1 becomes surjective
after sheafification and the results of this section remain valid.
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Let F be an abelian sheaf on C. In the previous section, we defined the Čech complex
of F with respect to a simplicial object K of SR(C). Next, given a presheaf G we
set

H0(G,F) = MorPSh(C)(G,F) = MorSh(C)(G#,F) = H0(G#,F)

with notation as in Cohomology on Sites, Section 13). This is a left exact functor
and its higher derived functors (briefly studied in Cohomology on Sites, Section 13)
will be denoted Hi(G,F). We will show that given a hypercovering K of G, there
is a Čech to cohomology spectral sequence converging to the cohomology Hi(G,F).
Note that if G = ∗, then Hi(∗,F) = Hi(F) recovers the global cohomology of F .

Lemma 5.2. Let C be a site with equalizers and fibre products. Let G be a presheaf
on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups on C.
Then Ȟ0(K,F) = H0(G,F).

Proof. This follows from the definition of H0(G,F) and the fact that

F (K1)
//
// F (K0) // G

becomes an coequalizer diagram after sheafification. �

Lemma 5.3. Let C be a site with equalizers and fibre products. Let G be a presheaf
on C. Let K be a hypercovering of G. Let I be an injective sheaf of abelian groups
on C. Then

Ȟp(K, I) =

{
H0(G, I) if p = 0

0 if p > 0

Proof. By (4.2.1) we have

s(F(K)) = HomAb(C)(s(Z
#
F (K)),F)

The complex s(Z#
F (K)) is quasi-isomorphic to Z#

G , see Lemma 3.4. We conclude

that if I is an injective abelian sheaf, then the complex s(I(K)) is acyclic except
possibly in degree 0. In other words, we have Ȟi(K, I) = 0 for i > 0. Combined
with Lemma 5.2 the lemma is proved. �

Lemma 5.4. Let C be a site with equalizers and fibre products. Let G be a presheaf
on C. Let K be a hypercovering of G. Let F be a sheaf of abelian groups on C.
There is a map

s(F(K)) −→ RΓ(G,F)

in D+(Ab) functorial in F , which induces a natural transformation

Ȟi(K,−) −→ Hi(G,−)

of functors Ab(C)→ Ab. Moreover, there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(K,Hq(F))

converging to Hp+q(G,F). This spectral sequence is functorial in F and in the
hypercovering K.

Proof. Choose an injective resolution F → I• in the category of abelian sheaves
on C. Consider the double complex A•,• with terms

Ap,q = Iq(Kp)

where the differential dp,q1 : Ap,q → Ap+1,q is the one coming from the differential
Ip → Ip+1 and the differential dp,q2 : Ap,q → Ap,q+1 is the one coming from the
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differential on the complex s(Ip(K)) associated to the cosimplicial abelian group
Ip(K) as explained above. We will use the two spectral sequences (′Er,

′dr) and
(′′Er,

′′dr) associated to this double complex, see Homology, Section 22.

By Lemma 5.3 the complexes s(Ip(K)) are acyclic in positive degrees and have H0

equal to H0(G, Ip). Hence by Homology, Lemma 22.7 and its proof the spectral
sequence (′Er,

′dr) degenerates, and the natural map

H0(G, I•) −→ Tot(A•,•)

is a quasi-isomorphism of complexes of abelian groups. The map s(F(K)) −→
RΓ(G,F) of the lemma is the composition of the natural map s(F(K))→ Tot(A•,•)
followed by the inverse of the displayed quasi-isomorphism above. This works be-
cause H0(G, I•) is a representative of RΓ(G,F).

Consider the spectral sequence (′′Er,
′′dr)r≥0. By Homology, Lemma 22.4 we see

that
′′Ep,q2 = Hp

II(H
q
I (A•,•))

In other words, we first take cohomology with respect to d1 which gives the groups
′′Ep,q1 = Hp(F)(Kq). Hence it is indeed the case (by the description of the differ-

ential ′′d1) that ′′Ep,q2 = Ȟp(K,Hq(F)). Since this spectral sequence converges to
the cohomology of Tot(A•,•) the proof is finished. �

Lemma 5.5. Let C be a site with equalizers and fibre products. Let K be a hy-
percovering. Let F be an abelian sheaf. There is a spectral sequence (Er, dr)r≥0

with
Ep,q2 = Ȟp(K,Hq(F))

converging to the global cohomology groups Hp+q(F).

Proof. This is a special case of Lemma 5.4. �

6. Covering hypercoverings

Here are some ways to construct hypercoverings. We note that since the category
SR(C, X) has fibre products the category of simplicial objects of SR(C, X) has fibre
products as well, see Simplicial, Lemma 7.2.

Lemma 6.1. Let C be a site with fibre products. Let X be an object of C. Let
K,L,M be simplicial objects of SR(C, X). Let a : K → L, b : M → L be morphisms.
Assume

(1) K is a hypercovering of X,
(2) the morphism M0 → L0 is a covering, and
(3) for all n ≥ 0 in the diagram

Mn+1

��

//

γ

**

(cosknsknM)n+1

��

Ln+1 ×(cosknsknL)n+1
(cosknsknM)n+1

tt

33

Ln+1
// (cosknsknL)n+1

the arrow γ is a covering.

http://localhost:8080/tag/09VY
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Then the fibre product K ×LM is a hypercovering of X.

Proof. The morphism (K ×L M)0 = K0 ×L0
M0 → K0 is a base change of a

covering by (2), hence a covering, see Lemma 2.5. And K0 → {X → X} is a
covering by (1). Thus (K×LM)0 → {X → X} is a covering by Lemma 2.5. Hence
K ×LM satisfies the first condition of Definition 2.6.

We still have to check that

Kn+1 ×Ln+1
Mn+1 = (K ×LM)n+1 −→ (cosknskn(K ×LM))n+1

is a covering for all n ≥ 0. We abbreviate as follows: A = (cosknsknK)n+1,
B = (cosknsknL)n+1, and C = (cosknsknM)n+1. The functor cosknskn commutes
with fibre products, see Simplicial, Lemma 18.13. Thus the right hand side above
is equal to A×B C. Consider the following commutative diagram

Kn+1 ×Ln+1
Mn+1

//

��

Mn+1

��
γ

&& **Kn+1
//

((

Ln+1

**

Ln+1 ×B Coo // C

��
A // B

This diagram shows that

Kn+1 ×Ln+1 Mn+1 = (Kn+1 ×B C)×(Ln+1×BC),γ Mn+1

Now, Kn+1 ×B C → A ×B C is a base change of the covering Kn+1 → A via the
morphism A×B C → A, hence is a covering. By assumption (3) the morphism γ is
a covering. Hence the morphism

(Kn+1 ×B C)×(Ln+1×BC),γ Mn+1 −→ Kn+1 ×B C

is a covering as a base change of a covering. The lemma follows as a composition
of coverings is a covering. �

Lemma 6.2. Let C be a site with fibre products. Let X be an object of C. If K,L
are hypercoverings of X, then K × L is a hypercovering of X.

Proof. You can either verify this directly, or use Lemma 6.1 above and check that
L→ {X → X} has property (3). �

Let C be a site with fibre products. Let X be an object of C. Since the category
SR(C, X) has coproducts and finite limits, it is permissible to speak about the
objects U ×K and Hom(U,K) for certain simplicial sets U (for example those with
finitely many nondegenerate simplices) and any simplicial object K of SR(C, X).
See Simplicial, Sections 13 and 16.

Lemma 6.3. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let k ≥ 0 be an integer. Let u : Z → Kk be a covering in
in SR(C, X). Then there exists a morphism of hypercoverings f : L→ K such that
Lk → Kk factors through u.

http://localhost:8080/tag/01GI
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Proof. Denote Y = Kk. There is a canonical morphism K → Hom(∆[k], Y )
corresponding to idY via Simplicial, Lemma 16.5. We will use the description
of Hom(∆[k], Y ) and Hom(∆[k], Z) given in that lemma. In particular there is a
morphism Hom(∆[k], Y )→ Hom(∆[k], Z) which on degree n terms is the morphism∏

α:[k]→[n]
Y −→

∏
α:[k]→[n]

Z.

Set
L = K ×Hom(∆[n],Y ) Hom(∆[n], Z).

The morphism Lk → Kk sits in to a commutative diagram

Lk //

��

∏
α:[k]→[n] Y

prid[k] //

��

Y

��
Kk

// ∏
α:[k]→[n] Z

prid[k] // Z

Since the composition of the two bottom arrows is the identity we conclude that
we have the desired factorization.

We still have to show that L is a hypercovering of X. To see this we will use Lemma
6.1. Condition (1) is satisfied by assumption. For (2), the morphism

Hom(∆[k], Y )0 → Hom(∆[k], Z)0

is a covering because it is a product of coverings, see Lemma 2.5. For (3) suppose
first that n ≥ 1. In this case by Simplicial, Lemma 20.12 we have Hom(∆[k], Y ) =
cosknskn Hom(∆[k], Y ) and similarly for Z. Thus condition (3) for n > 0 is clear.
For n = 0, the diagram of condition (3) of Lemma 6.1 is, according to Simplicial,
Lemma 20.13, the diagram ∏

α:[k]→[1] Z
//

��

Z × Z

��∏
α:[k]→[1] Y

// Y × Y

with obvious horizontal arrows. Thus the morphism γ is the morphism∏
α:[k]→[1]

Z −→
∏

α:[k]→[1] not onto
Z ×

∏
α:[k]→[1] onto

Y

which is a product of coverings and hence a covering according to Lemma 6.1 once
again. �

Lemma 6.4. Let C be a site with fibre products. Let X be an object of C. Let
K be a hypercovering of X. Let n ≥ 0 be an integer. Let u : F → F (Kn) be
a morphism of presheaves which becomes surjective on sheafification. Then there
exists a morphism of hypercoverings f : L→ K such that F (fn) : F (Ln)→ F (Kn)
factors through u.

Proof. Write Kn = {Ui → X}i∈I . Thus the map u is a morphism of presheaves of
sets u : F → qhui . The assumption on u means that for every i ∈ I there exists a
covering {Uij → Ui}j∈Ii of the site C and a morphism of presheaves tij : hUij → F
such that u ◦ tij is the map hUij

→ hUi
coming from the morphism Uij → Ui. Set

J = qi∈IIi, and let α : J → I be the obvious map. For j ∈ J denote Vj = Uα(j)j .

http://localhost:8080/tag/01GK
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Set Z = {Vj → X}j∈J . Finally, consider the morphism u′ : Z → Kn given by
α : J → I and the morphisms Vj = Uα(j)j → Uα(j) above. Clearly, this is a
covering in the category SR(C, X), and by construction F (u′) : F (Z) → F (Kn)
factors through u. Thus the result follows from Lemma 6.3 above. �

7. Adding simplices

In this section we prove some technical lemmas which we will need later. Let C be
a site with fibre products. Let X be an object of C. As we pointed out in Section
6 above, the objects U ×K and Hom(U,K) for certain simplicial sets U and any
simplicial object K of SR(C, X) are defined. See Simplicial, Sections 13 and 16.

Lemma 7.1. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U has finitely many nondegenerate simplices. Suppose n ≥ 0
and x ∈ Vn, x 6∈ Un are such that

(1) Vi = Ui for i < n,
(2) Vn = Un ∪ {x},
(3) any z ∈ Vj, z 6∈ Uj for j > n is degenerate.

Then the morphism
Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. If n = 0, then it follows easily that V = U q ∆[0] (see below). In this
case Hom(V,K)0 = Hom(U,K)0 ×K0. The result, in this case, then follows from
Lemma 2.5.

Let a : ∆[n] → V be the morphism associated to x as in Simplicial, Lemma 11.3.
Let us write ∂∆[n] = i(n−1)!skn−1∆[n] for the (n − 1)-skeleton of ∆[n]. Let b :
∂∆[n] → U be the restriction of a to the (n − 1) skeleton of ∆[n]. By Simplicial,
Lemma 20.7 we have V = U q∂∆[n] ∆[n]. By Simplicial, Lemma 16.6 we get that

Hom(V,K)0
//

��

Hom(U,K)0

��
Hom(∆[n],K)0

// Hom(∂∆[n],K)0

is a fibre product square. Thus it suffices to show that the bottom horizontal arrow
is a covering. By Simplicial, Lemma 20.11 this arrow is identified with

Kn → (coskn−1skn−1K)n

and hence is a covering by definition of a hypercovering. �

Lemma 7.2. Let C be a site with fibre products. Let X be an object of C. Let K
be a hypercovering of X. Let U ⊂ V be simplicial sets, with Un, Vn finite nonempty
for all n. Assume that U and V have finitely many nondegenerate simplices. Then
the morphism

Hom(V,K)0 −→ Hom(U,K)0

of SR(C, X) is a covering.

Proof. By Lemma 7.1 above, it suffices to prove a simple lemma about inclusions
of simplicial sets U ⊂ V as in the lemma. And this is exactly the result of Simplicial,
Lemma 20.8. �
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8. Homotopies

Let C be a site with fibre products. Let X be an object of C. Let L be a simplicial
object of SR(C, X). According to Simplicial, Lemma 16.4 there exists an object
Hom(∆[1], L) in the category Simp(SR(C, X)) which represents the functor

T 7−→ MorSimp(SR(C,X))(∆[1]× T, L)

There is a canonical morphism

Hom(∆[1], L)→ L× L

coming from ei : ∆[0]→ ∆[1] and the identification Hom(∆[0], L) = L.

Lemma 8.1. Let C be a site with fibre products. Let X be an object of C. Let L be
a simplicial object of SR(C, X). Let n ≥ 0. Consider the commutative diagram

(8.1.1) Hom(∆[1], L)n+1
//

��

(cosknskn Hom(∆[1], L))n+1

��
(L× L)n+1

// (cosknskn(L× L))n+1

coming from the morphism defined above. We can identify the terms in this diagram
as follows, where ∂∆[n+1] = in!skn∆[n+1] is the n-skeleton of the (n+1)-simplex:

Hom(∆[1], L)n+1 = Hom(∆[1]×∆[n+ 1], L)0

(cosknskn Hom(∆[1], L))n+1 = Hom(∆[1]× ∂∆[n+ 1], L)0

(L× L)n+1 = Hom((∆[n+ 1]q∆[n+ 1], L)0

(cosknskn(L× L))n+1 = Hom(∂∆[n+ 1]q ∂∆[n+ 1], L)0

and the morphism between these objects of SR(C, X) come from the commutative
diagram of simplicial sets

(8.1.2) ∆[1]×∆[n+ 1] ∆[1]× ∂∆[n+ 1]oo

∆[n+ 1]q∆[n+ 1]

OO

∂∆[n+ 1]q ∂∆[n+ 1]oo

OO

Moreover the fibre product of the bottom arrow and the right arrow in (8.1.1) is
equal to

Hom(U,L)0

where U ⊂ ∆[1] × ∆[n + 1] is the smallest simplicial subset such that both ∆[n +
1]q∆[n+ 1] and ∆[1]× ∂∆[n+ 1] map into it.

Proof. The first and third equalities are Simplicial, Lemma 16.4. The second and
fourth follow from the cited lemma combined with Simplicial, Lemma 20.11. The
last assertion follows from the fact that U is the push-out of the bottom and right
arrow of the diagram (8.1.2), via Simplicial, Lemma 16.6. To see that U is equal
to this push-out it suffices to see that the intersection of ∆[n + 1] q∆[n + 1] and
∆[1]×∂∆[n+ 1] in ∆[1]×∆[n+ 1] is equal to ∂∆[n+ 1]q∂∆[n+ 1]. This we leave
to the reader. �
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Lemma 8.2. Let C be a site with fibre products. Let X be an object of C. Let K,L
be hypercoverings of X. Let a, b : K → L be morphisms of hypercoverings. There
exists a morphism of hypercoverings c : K ′ → K such that a ◦ c is homotopic to
b ◦ c.

Proof. Consider the following commutative diagram

K ′
def

c

((

K ×(L×L) Hom(∆[1], L) //

��

Hom(∆[1], L)

��
K

(a,b) // L× L

By the functorial property of Hom(∆[1], L) the composition of the horizontal mor-
phisms corresponds to a morphism K ′∆[1]→ L which defines a homotopy between
c ◦ a and c ◦ b. Thus if we can show that K ′ is a hypercovering of X, then we
obtain the lemma. To see this we will apply Lemma 6.1 to the pair of morphisms
K → L × L and Hom(∆[1], L) → L × L. Condition (1) of Lemma 6.1 is satis-
fied. Condition (2) of Lemma 6.1 is true because Hom(∆[1], L)0 = L1, and the
morphism (d1

0, d
1
1) : L1 → L0 × L0 is a covering of SR(C, X) by our assumption

that L is a hypercovering. To prove condition (3) of Lemma 6.1 we use Lemma 8.1
above. According to this lemma the morphism γ of condition (3) of Lemma 6.1 is
the morphism

Hom(∆[1]×∆[n+ 1], L)0 −→ Hom(U,L)0

where U ⊂ ∆[1]×∆[n+ 1]. According to Lemma 7.2 this is a covering and hence
the claim has been proven. �

Remark 8.3. Note that the crux of the proof is to use Lemma 7.2. This lemma
is completely general and does not care about the exact shape of the simplicial
sets (as long as they have only finitely many nondegenerate simplices). It seems
altogether reasonable to expect a result of the following kind: Given any mor-
phism a : K × ∂∆[k]→ L, with K and L hypercoverings, there exists a morphism
of hypercoverings c : K ′ → K and a morphism g : K ′ × ∆[k] → L such that
g|K′×∂∆[k] = a ◦ (c× id∂∆[k]). In other words, the category of hypercoverings is in
a suitable sense contractible.

9. Cohomology and hypercoverings

Let C be a site with fibre products. Let X be an object of C. Let F be a sheaf of
abelian groups on C. Let K,L be hypercoverings of X. If a, b : K → L are homo-
topic maps, then F(a),F(b) : F(K) → F(L) are homotopic maps, see Simplicial,
Lemma 27.3. Hence have the same effect on cohomology groups of the associated
cochain complexes, see Simplicial, Lemma 27.5. We are going to use this to define
the colimit over all hypercoverings.

Let us temporarily denote HC(C, X) the category of hypercoverings of X. We have
seen that this is a category and not a “big” category, see Lemma 2.8. This will
be the index category for our diagram, see Categories, Section 14 for notation.
Consider the diagram

Ȟi(−,F) : HC(C, X) −→ Ab.
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By Lemma 6.2 and Lemma 8.2, and the remark on homotopies above, this diagram
is directed, see Categories, Definition 19.1. Thus the colimit

Ȟi
HC(X,F) = colimK∈HC(C,X) Ȟ

i(K,F)

has a particularly simple description (see location cited).

Theorem 9.1. Let C be a site with fibre products. Let X be an object of C. Let
i ≥ 0. The functors

Ab(C) −→ Ab

F 7−→ Hi(X,F)

F 7−→ Ȟi
HC(X,F)

are canonically isomorphic.

Proof using spectral sequences. Suppose that ξ ∈ Hp(X,F) for some p ≥ 0.
Let us show that ξ is in the image of the map Ȟp(X,F) → Hp(X,F) of Lemma
4.3 for some hypercovering K of X.

This is true if p = 0 by Lemma 4.1. If p = 1, choose a Cech hypercovering K of
X as in Example 2.7 starting with a covering K0 = {Ui → X} in the site C such
that ξ|Ui

= 0, see Cohomology on Sites, Lemma 8.3. It follows immediately from
the spectral sequence in Lemma 4.3 that ξ comes from an element of Ȟ1(K,F) in
this case. In general, choose any hypercovering K of X such that ξ maps to zero in
Hp(F)(K0) (using Example 2.7 and Cohomology on Sites, Lemma 8.3 again). By
the spectral sequence of Lemma 4.3 the obstruction for ξ to come from an element of
Ȟp(K,F) is a sequence of elements ξ1, . . . , ξp−1 with ξq ∈ Ȟp−q(K,Hq(F)) (more
precisely the images of the ξq in certain subquotients of these groups).

We can inductively replace the hypercovering K by refinements such that the ob-
structions ξ1, . . . , ξp−1 restrict to zero (and not just the images in the subquotients
– so no subtlety here). Indeed, suppose we have already managed to reach the sit-
uation where ξq+1, . . . , ξp−1 are zero. Note that ξq ∈ Ȟp−q(K,Hq(F)) is the class
of some element

ξ̃q ∈ Hq(F)(Kp−q) =
∏

Hq(Ui,F)

if Kp−q = {Ui → X}i∈I . Let ξq,i be the component of ξ̃q in Hq(Ui,F). As
q ≥ 1 we can use Cohomology on Sites, Lemma 8.3 yet again to choose coverings
{Ui,j → Ui} of the site such that each restriction ξq,i|Ui,j

= 0. Consider the object
Z = {Ui,j → X} of the category SR(C, X) and its obvious morphism u : Z → Kp−q.
It is clear that u is a covering, see Definition 2.4. By Lemma 6.3 there exists a
morphism L→ K of hypercoverings of X such that Lp−q → Kp−q factors through
u. Then clearly the image of ξq in Hq(F)(Lp−q). is zero. Since the spectral
sequence of Lemma 4.3 is functorial this means that after replacing K by L we
reach the situation where ξq, . . . , ξp−1 are all zero. Continuing like this we end up
with a hypercovering where they are all zero and hence ξ is in the image of the map
Ȟp(X,F)→ Hp(X,F).

Suppose that K is a hypercovering of X, that ξ ∈ Ȟp(K,F) and that the image of
ξ under the map Ȟp(X,F)→ Hp(X,F) of Lemma 4.3 is zero. To finish the proof
of the theorem we have to show that there exists a morphism of hypercoverings
L → K such that ξ restricts to zero in Ȟp(L,F). By the spectral sequence of
Lemma 4.3 the vanishing of the image of ξ in Hp(X,F) means that there exist
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elements ξ1, . . . , ξp−2 with ξq ∈ Ȟp−1−q(K,Hq(F)) (more precisely the images of

these in certain subquotients) such that the images dp−1−q,q
q+1 ξq (in the spectral

sequence) add up to ξ. Hence by exactly the same mechanism as above we can find
a morphism of hypercoverings L → K such that the restrictions of the elements
ξq, q = 1, . . . , p − 2 in Ȟp−1−q(L,Hq(F)) are zero. Then it follows that ξ is zero
since the morphism L→ K induces a morphism of spectral sequences according to
Lemma 4.3. �

Proof without using spectral sequences. We have seen the result for i = 0,
see Lemma 4.1. We know that the functors Hi(X,−) form a universal δ-functor,
see Derived Categories, Lemma 20.4. In order to prove the theorem it suffices to
show that the sequence of functors Ȟi

HC(X,−) forms a δ-functor. Namely we know
that Cech cohomology is zero on injective sheaves (Lemma 4.2) and then we can
apply Homology, Lemma 11.4.

Let

0→ F → G → H → 0

be a short exact sequence of abelian sheaves on C. Let ξ ∈ Ȟp
HC(X,H). Choose

a hypercovering K of X and an element σ ∈ H(Kp) representing ξ in cohomology.
There is a corresponding exact sequence of complexes

0→ s(F(K))→ s(G(K))→ s(H(K))

but we are not assured that there is a zero on the right also and this is the only
thing that prevents us from defining δ(ξ) by a simple application of the snake
lemma. Recall that

H(Kp) =
∏
H(Ui)

if Kp = {Ui → X}. Let σ =
∏
σi with σi ∈ H(Ui). Since G → H is a surjection

of sheaves we see that there exist coverings {Ui,j → Ui} such that σi|Ui,j
is the

image of some element τi,j ∈ G(Ui,j). Consider the object Z = {Ui,j → X} of the
category SR(C, X) and its obvious morphism u : Z → Kp. It is clear that u is a
covering, see Definition 2.4. By Lemma 6.3 there exists a morphism L → K of
hypercoverings of X such that Lp → Kp factors through u. After replacing K by L
we may therefore assume that σ is the image of an element τ ∈ G(Kp). Note that
d(σ) = 0, but not necessarily d(τ) = 0. Thus d(τ) ∈ F(Kp+1) is a cocycle. In this

situation we define δ(ξ) as the class of the cocycle d(τ) in Ȟp+1
HC (X,F).

At this point there are several things to verify: (a) δ(ξ) does not depend on the
choice of τ , (b) δ(ξ) does not depend on the choice of the hypercovering L→ K such
that σ lifts, and (c) δ(ξ) does not depend on the initial hypercovering and σ chosen
to represent ξ. We omit the verification of (a), (b), and (c); the independence of
the choices of the hypercoverings really comes down to Lemmas 6.2 and 8.2. We
also omit the verification that δ is functorial with respect to morphisms of short
exact sequences of abelian sheaves on C.
Finally, we have to verify that with this definition of δ our short exact sequence of
abelian sheaves above leads to a long exact sequence of Cech cohomology groups.
First we show that if δ(ξ) = 0 (with ξ as above) then ξ is the image of some
element ξ′ ∈ Ȟp

HC(X,G). Namely, if δ(ξ) = 0, then, with notation as above, we

see that the class of d(τ) is zero in Ȟp+1
HC (X,F). Hence there exists a morphism of

hypercoverings L → K such that the restriction of d(τ) to an element of F(Lp+1)
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is equal to d(υ) for some υ ∈ F(Lp). This implies that τ |Lp
+υ form a cocycle, and

determine a class ξ′ ∈ Ȟp(L,G) which maps to ξ as desired.

We omit the proof that if ξ′ ∈ Ȟp+1
HC (X,F) maps to zero in Ȟp+1

HC (X,G), then it is

equal to δ(ξ) for some ξ ∈ Ȟp
HC(X,H). �

Next, we deduce Verdier’s case of Theorem 9.1 by a sleight of hand.

Proposition 9.2. Let C be a site with fibre products and products of pairs. Let F
be an abelian sheaf on C. Let i ≥ 0. Then

(1) for every ξ ∈ Hi(F) there exists a hypercovering K such that ξ is in the
image of the canonical map Ȟi(K,F)→ Hi(F), and

(2) if K,L are hypercoverings and ξK ∈ Ȟi(K,F), ξL ∈ Ȟi(L,F) are elements
mapping to the same element of Hi(F), then there exists a hypercovering
M and morphisms M → K and M → L such that ξK and ξL map to the
same element of Ȟi(M,F).

In other words, modulo set theoretical issues, the cohomology groups of F on C are
the colimit of the Čech cohomology groups of F over all hypercoverings.

Proof. This result is a trivial consequence of Theorem 9.1. Namely, we can arti-
cially replace C with a slightly bigger site C′ such that (I) C′ has a final object X
and (II) hypercoverings in C are more or less the same thing as hypercoverings of
X in C′. But due to the nature of things, there is quite a bit of bookkeeping to do.

Let us call a family of morphisms {Ui → U} in C with fixed target a weak covering
if the sheafification of the map

∏
i∈I hUi → hU becomes surjective. We construct a

new site C′ as follows

(1) as a category set Ob(C′) = Ob(C)q{X} and add a unique morphism to X
from every object of C′,

(2) C′ has fibre products as fibre products and products of pairs exist in C,
(3) coverings of C′ are weak coverings of C together with those {Ui → X}i∈I

such that either Ui = X for some i, or Ui 6= X for all i and the map∏
hUi
→ ∗ of presheaves on C becomes surjective after sheafification on C,

(4) we apply Sets, Lemma 11.1 to restrict the coverings to obtain our site C′.
Then Sh(C′) = Sh(C) because the inclusion functor C → C′ is a special cocontinuous
functor (see Sites, Definition 28.2). We omit the straightforward verifications.

Choose a covering {Ui → X} of C′ such that Ui is an object of C for all i (possible
because C → C′ is special cocontinuous). Then K0 = {Ui → X} is a covering in
the site C′ constructed above. We view K0 as an object of SR(C′, X) and we set
Kinit = cosk0(K0). Then Kinit is a hypercovering of X, see Example 2.7. Note
that every Kinit,n has the shape {Wj → X} with Wj ∈ Ob(C).

Proof of (1). Choose ξ ∈ Hi(F) = Hi(X,F ′) where F ′ is the abelian sheaf on C′
corresponding to F on C. By Theorem 9.1 there exists a morphism of hypercoverings
K ′ → Kinit of X in C′ such that ξ comes from an element of Ȟi(K ′,F). Write
K ′n = {Un,j → X}. Now since K ′n maps to Kinit,n we see that Un,j is an object
of C. Hence we can define a simplicial object K of SR(C) by setting Kn = {Un,j}.
Since coverings in C′ consisting of families of morphisms of C are weak coverings,
we see that K is a hypercovering in the sense of Definition 5.1. Finally, since F ′ is
the unique sheaf on C′ whose restriction to C is equal to F we see that the Čech

http://localhost:8080/tag/09VZ
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complexes s(F(K)) and s(F ′(K ′)) are identical and (1) follows. (Compatibility
with map into cohomology groups omitted.)

Proof of (2). Let K and L be hypercoverings in C. Let K ′ and L′ be the simplicial
objects of SR(C′, X) gotten from K and L by the functor SR(C) → SR(C′, X),
{Ui} 7→ {Ui → X}. As before we have equality of Čech complexes and hence we
obtain ξK′ and ξL′ mapping to the same cohomology class of F ′ over C′. After
possibly enlarging our choice of coverings in C′ (due to a set theoretical issue) we
may assume that K ′ and L′ are hypercoverings of X in C′; this is true by our
definition of hypercoverings in Definition 5.1 and the fact that weak coverings in
C give coverings in C′. By Theorem 9.1 there exists a hypercovering M ′ of X in
C′ and morphisms M ′ → K ′, M ′ → L′, and M ′ → Kinit such that ξK′ and ξL′

restrict to the same element of Ȟi(M ′,F). Unwinding this statement as above we
find that (2) is true. �

10. Hypercoverings of spaces

The theory above is mildly interesting even in the case of topological spaces. In
this case we can work out what a hypercovering is and see what the result actually
says.

Let X be a topological space. Consider the site XZar of Sites, Example 6.4. Re-
call that an object of XZar is simply an open of X and that morphisms of XZar

correspond simply to inclusions. So what is a hypercovering of X for the site XZar?

Let us first unwind Definition 2.1. An object of SR(XZar, X) is simply given by a
set I and for each i ∈ I an open Ui ⊂ X. Let us denote this by {Ui}i∈I since there
can be no confusion about the morphism Ui → X. A morphism {Ui}i∈I → {Vj}j∈J
between two such objects is given by a map of sets α : I → J such that Ui ⊂ Vα(i)

for all i ∈ I. When is such a morphism a covering? This is the case if and only if
for every j ∈ J we have Vj =

⋃
i∈I, α(i)=j Ui (and is a covering in the site XZar).

Using the above we get the following description of a hypercovering in the site
XZar. A hypercovering of X in XZar is given by the following data

(1) a simplicial set I (see Simplicial, Section 11), and
(2) for each n ≥ 0 and every i ∈ In an open set Ui ⊂ X.

We will denote such a collection of data by the notation (I, {Ui}). In order for this
to be a hypercovering of X we require the following properties

• for i ∈ In and 0 ≤ a ≤ n we have Ui ⊂ Udna (i),
• for i ∈ In and 0 ≤ a ≤ n we have Ui = Usna (i),
• we have

(10.0.1) X =
⋃

i∈I0
Ui,

• for every i0, i1 ∈ I0, we have

(10.0.2) Ui0 ∩ Ui1 =
⋃

i∈I1, d10(i)=i0, d11(i)=i1
Ui,

• for every n ≥ 1 and every (i0, . . . , in+1) ∈ (In)n+2 such that dnb−1(ia) =
dna(ib) for all 0 ≤ a < b ≤ n+ 1 we have

(10.0.3) Ui0 ∩ . . . ∩ Uin+1
=
⋃

i∈In+1, d
n+1
a (i)=ia, a=0,...,n+1

Ui,
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• each of the open coverings (10.0.1), (10.0.2), and (10.0.3) is an element of
Cov(XZar) (this is a set theoretic condition, bounding the size of the index
sets of the coverings).

Conditions (10.0.1) and (10.0.2) should be familiar from the chapter on sheaves on
spaces for example, and condition (10.0.3) is the natural generalization.

Remark 10.1. One feature of this description is that if one of the multiple in-
tersections Ui0 ∩ . . . ∩ Uin+1

is empty then the covering on the right hand side
may be the empty covering. Thus it is not automatically the case that the maps
In+1 → (cosknsknI)n+1 are surjective. This means that the geometric realization
of I may be an interesting (non-contractible) space.

In fact, let I ′n ⊂ In be the subset consisting of those simplices i ∈ In such that
Ui 6= ∅. It is easy to see that I ′ ⊂ I is a subsimplicial set, and that (I ′, {Ui}) is
a hypercovering. Hence we can always refine a hypercovering to a hypercovering
where none of the opens Ui is empty.

Remark 10.2. Let us repackage this information in yet another way. Namely,
suppose that (I, {Ui}) is a hypercovering of the topological space X. Given this
data we can construct a simplicial topological space U• by setting

Un =
∐

i∈In
Ui,

and where for given ϕ : [n]→ [m] we let morphisms U(ϕ) : Un → Um be the mor-
phism coming from the inclusions Ui ⊂ Uϕ(i) for i ∈ In. This simplicial topological
space comes with an augmentation ε : U• → X. With this morphism the simplicial
space U• becomes a hypercovering of X along which one has cohomological descent
in the sense of [AGV71, Exposé Vbis]. In other words, Hn(U•, ε

∗F) = Hn(X,F).
(Insert future reference here to cohomology over simplicial spaces and cohomologi-
cal descent formulated in those terms.) Suppose that F is an abelian sheaf on X.
In this case the spectral sequence of Lemma 4.3 becomes the spectral sequence with
E1-term

Ep,q1 = Hq(Up, ε
∗
qF)⇒ Hp+q(U•, ε

∗F) = Hp+q(X,F)

comparing the total cohomology of ε∗F to the cohomology groups of F over the
pieces of U•. (Insert future reference to this spectral sequence here.)

In topology we often want to find hypercoverings of X which have the property that
all the Ui come from a given basis for the topology of X and that all the coverings
(10.0.2) and (10.0.3) are from a given cofinal collection of coverings. Here are two
example lemmas.

Lemma 10.3. Let X be a topological space. Let B be a basis for the topology of X.
There exists a hypercovering (I, {Ui}) of X such that each Ui is an element of B.

Proof. Let n ≥ 0. Let us say that an n-truncated hypercovering of X is given by
an n-truncated simplicial set I and for each i ∈ Ia, 0 ≤ a ≤ n an open Ui of X such
that the conditions defining a hypercovering hold whenever they make sense. In
other words we require the inclusion relations and covering conditions only when
all simplices that occur in them are a-simplices with a ≤ n. The lemma follows if
we can prove that given a n-truncated hypercovering (I, {Ui}) with all Ui ∈ B we
can extend it to an (n+1)-truncated hypercovering without adding any a-simplices
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for a ≤ n. This we do as follows. First we consider the (n+ 1)-truncated simplicial
set I ′ defined by I ′ = skn+1(cosknI). Recall that

I ′n+1 =

{
(i0, . . . , in+1) ∈ (In)n+2 such that

dnb−1(ia) = dna(ib) for all 0 ≤ a < b ≤ n+ 1

}
If i′ ∈ I ′n+1 is degenerate, say i′ = sna(i) then we set Ui′ = Ui (this is forced on us
anyway by the second condition). We also set Ji′ = {i′} in this case. If i′ ∈ I ′n+1

is nondegenerate, say i′ = (i0, . . . , in+1), then we choose a set Ji′ and an open
covering

(10.3.1) Ui0 ∩ . . . ∩ Uin+1
=
⋃

i∈Ji′
Ui,

with Ui ∈ B for i ∈ Ji′ . Set

In+1 =
∐

i′∈I′n+1

Ji′

There is a canonical map π : In+1 → I ′n+1 which is a bijection over the set of
degenerate simplices in I ′n+1 by construction. For i ∈ In+1 we define dn+1

a (i) =
dn+1
a (π(i)). For i ∈ In we define sna(i) ∈ In+1 as the unique simplex lying over

the degenerate simplex sna(i) ∈ I ′n+1. We omit the verification that this defines an
(n+ 1)-truncated hypercovering of X. �

Lemma 10.4. Let X be a topological space. Let B be a basis for the topology of
X. Assume that

(1) X is quasi-compact,
(2) each U ∈ B is quasi-compact open, and
(3) the intersection of any two quasi-compact opens in X is quasi-compact.

Then there exists a hypercovering (I, {Ui}) of X with the following properties

(1) each Ui is an element of the basis B,
(2) each of the In is a finite set, and in particular
(3) each of the coverings (10.0.1), (10.0.2), and (10.0.3) is finite.

Proof. This follows directly from the construction in the proof of Lemma 10.3 if
we choose finite coverings by elements of B in (10.3.1). Details omitted. �

11. Hypercoverings and weakly contractible objects

In this section we construct hypercoverings in the presence of enough weakly con-
tractible objects (Sites, Definition 39.2). With our conventions this is particularly
straightforward if every object has a covering by a single weakly contractible object.

Lemma 11.1. Let C be a site. Let B ⊂ Ob(C) be a subset. Assume

(1) C has fibre products,
(2) for all X ∈ Ob(C) there exists a covering {U → X} with U ∈ B,
(3) every element of B is weakly contractible,
(4) the topology is subcanonical.

Then for every X there exists a hypercovering K of X such that each Kn = {Un →
X} with Un ∈ B.
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Proof. We will construct K by induction. As a first approximation choose a cov-
ering {U0 → X} with U0 ∈ B and set K0 = {U0 → X} and K = cosk0K0, see
Example 2.7. (This object will be denoted K0 in the final paragraph of the proof.)

Suppose for some n ≥ 0 we have constructed a hypercovering K such that Kk

consists of a single object of B mapping to X for 0 ≤ k ≤ n and such that K =
cosknsknK. In particular Kn+1 = (cosknsknK)n+1 is a finite limit of Kk for k ≤ n,
see Simplicial, Section 12 (especially Lemmas 18.2 and 18.5). By the description of
finite limits in SR(C, X) (see proof of Lemma 2.3) we see that Kn+1 = {Xn+1 → X}
for some object Xn+1 of C. Choose a covering {Un+1 → Xn+1} with Un+1 ∈ B.
Since Un is weakly contractible, the topology is subcanonical, and {Un+1 → Xn+1}
is a covering, the morphisms si : Un → Xn+1 lift to morphisms s′i : Un → Un+1. Set
d′j : Un+1 → Un equal to the composition of Un+1 → Xn+1 and dj : Xn+1 → Un.
We obtain a truncated simplicial object K ′ of SR(C, X) by setting K ′k = Kk for
k ≤ n and K ′n+1 = Un+1 and morphisms d′i = di and s′i = si in degrees k ≤ n− 1
and using the morphisms d′j and s′i in degree n. Extend this to a full simplicial
object K ′ of SR(C, X) using coskn+1. By functoriality of the coskeleton functors
there is a morphism K ′ → K of simplicial objects extending the given morphism
of (n+ 1)-truncated simplicial objects.

It is immediately clear from the construction that the simplicial object K ′ so con-
structed is a hypercovering of X. Moreover, note that K ′ → K is the identity
morphism in degrees ≤ n.

To finish the proof we take the inverse limit K = limKn of the sequence of simplicial
objects

. . .→ K2 → K1 → K0

constructed above. Since we have stabilization in each degree it is clear that K
agrees with Kn in degrees ≤ n and therefore is a hypercovering of X. �
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