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1. Introduction

A reference is the book [Har66].

The goals of this chapter are the following:

(1) Define what it means to have a dualizing complex ω•A over a Noetherian
ring A, namely
(a) we have ω•A ∈ D+(A),
(b) the cohomology modules Hi(ω•A) are all finite A-modules,
(c) ω•A has finite injective dimension, and
(d) we have A→ RHomA(ω•A, ω

•
A) is a quasi-isomorphism.

(2) List elementary properties of dualizing complexes.
(3) Show a dualizing complex gives rise to a dimension function.
(4) Show a dualizing complex gives rise to a good notion of a reflexive hull.
(5) Prove the finiteness theorem when a dualizing complex exists.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.

1



2 DUALIZING COMPLEXES

2. Essential surjections and injections

We will mostly work in categories of modules, but we may as well make the definition
in general.

Definition 2.1. Let A be an abelian category.

(1) An injection A ⊂ B of A is essential, or we say that B is an essential
extension of A, if every nonzero subobject B′ ⊂ B has nonzero intersection
with A.

(2) A surjection f : A → B of A is essential if for every proper subobject
A′ ⊂ A we have f(A′) 6= B.

Some lemmas about this notion.

Lemma 2.2. Let A be an abelian category.

(1) If A ⊂ B and B ⊂ C are essential extensions, then A ⊂ C is an essential
extension.

(2) If A ⊂ B is an essential extension and C ⊂ B is a subobject, then A∩C ⊂ C
is an essential extension.

(3) If A→ B and B → C are essential surjections, then A→ C is an essential
surjection.

(4) Given an essential surjection f : A → B and a surjection A → C with
kernel K, the morphism C → B/f(K) is an essential surjection.

Proof. Omitted. �

Lemma 2.3. Let R be a ring. Let M be an R-module. Let E = colimEi be
a filtered colimit of R-modules. Suppose given a compatible system of essential
injections M → Ei of R-modules. Then M → E is an essential extension of M .

Proof. Immediate from the definitions and the fact that filtered colimits are exact
(Algebra, Lemma 8.9). �

Lemma 2.4. Let R be a ring. Let M ⊂ N be R-modules. The following are
equivalent

(1) M ⊂ N is an essential extension,
(2) for all x ∈ N there exists an f ∈ R such that fx ∈M and fx 6= 0.

Proof. Assume (1) and let x ∈ N be a nonzero element. By (1) we have Rx∩M 6=
0. This implies (2).

Assume (2). Let N ′ ⊂ N be a nonzero submodule. Pick x ∈ N ′ nonzero. By (2)
we can find f ∈ with fx ∈ N and fx 6= 0. Thus N ′ ∩M 6= 0. �

3. Injective modules

Some results about injective modules over rings.

Lemma 3.1. Let R be a ring. Any product of injective R-modules is injective.

Proof. Special case of Homology, Lemma 23.3. �

Lemma 3.2. Let R → S be a flat ring map. If E is an injective S-module, then
E is injective as an R-module.
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Proof. This is true because HomR(M,E) = HomS(M⊗RS,E) by Algebra, Lemma
13.3 and the fact that tensoring with S is exact. �

Lemma 3.3. Let R → S be an epimorphism of rings. Let E be an S-module. If
E is injective as an R-module, then E is an injective S-module.

Proof. This is true because HomR(N,E) = HomS(N,E) for any S-module N , see
Algebra, Lemma 103.14. �

Lemma 3.4. Let R → S be a ring map. If E is an injective R-module, then
HomR(S,E) is an injective S-module.

Proof. This is true because HomS(N,HomR(S,E)) = HomR(N,E) by Algebra,
Lemma 13.4. �

Lemma 3.5. Let R be a ring. Let I be an injective R-module. Let E ⊂ I be a
submodule. The following are equivalent

(1) E is injective, and
(2) for all E ⊂ E′ ⊂ I with E ⊂ E′ essential we have E = E′.

In particular, an R-module is injective if and only if every essential extension is
trivial.

Proof. The final assertion follows from the first and the fact that the category of
R-modules has enough injectives (More on Algebra, Section 42).

Assume (1). Let E ⊂ E′ ⊂ I as in (2). Then the map idE : E → E can be
extended to a map α : E′ → E. The kernel of α has to be zero because it intersects
E trivially and E′ is an essential extension. Hence E = E′.

Assume (2). Let M ⊂ N be R-modules and let ϕ : M → E be an R-module map.
In order to prove (1) we have to show that ϕ extends to a morphism N → E.
Consider the set S of pairs (M ′, ϕ′) where M ⊂ M ′ ⊂ N and ϕ′ : M ′ → E is an
R-module map agreeing with ϕ on M . We define an ordering on S by the rule
(M ′, ϕ′) ≤ (M ′′, ϕ′′) if and only if M ′ ⊂ M ′′ and ϕ′′|M ′ = ϕ′. It is clear that we
can take the maximum of a totally ordered subset of S. Hence by Zorn’s lemma we
may assume (M,ϕ) is a maximal element.

Choose an extension ψ : N → I of ϕ composed with the inclusion E → I. This is
possible as I is injective. If ψ(N) ⊂ E, then ψ is the desired extension. If ψ(N) is
not contained in E, then by (2) the inclusion E ⊂ E+ψ(N) is not essential. hence
we can find a nonzero submodule K ⊂ E +ψ(N) meeting E in 0. This means that
M ′ = ψ−1(E +K) strictly contains M . Thus we can extend ϕ to M ′ using

M ′
ψ|M′−−−→ E +K → (E +K)/K = E

This contradicts the maximality of (M,ϕ). �

Example 3.6. Let R be a reduced ring. Let p ⊂ R be a minimal prime so that
K = Rp is a field (Algebra, Lemma 24.1). Then K is an injective R-module.
Namely, we have HomR(M,K) = HomK(Mp,K) for any R-module M . Since
localization is an exact functor and taking duals is an exact functor on K-vector
spaces we conclude HomR(−,K) is an exact functor, i.e., K is an injective R-
module.

Lemma 3.7. Let R be a ring. Let E be an R-module. The following are equivalent
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(1) E is an injective R-module, and
(2) given an ideal I ⊂ R and a module map ϕ : I → E there exists an extension

of ϕ to and R-module map R→ E.

Proof. The implication (1) ⇒ (2) follows from the definitions. Thus we assume
(2) holds and we prove (1). First proof: Since R is a generator for the category of
R-modules, this follows from Injectives, Lemma 11.5.

Second proof: We have to show that every essential extension E ⊂ E′ is trivial.
Pick x ∈ E′ and set I = {f ∈ R | fx ∈ E}. The map I → E, f 7→ fx extends to
ψ : R → E by (2). Then x′ = x − ψ(1) is an element of E′ whose annihilator in
E′/E is I and which is annihilated by I as an element of E′. Thus Rx′ = (R/I)x′

does not intersect E. Since E ⊂ E′ is an essential extension it follows that x′ ∈ E
as desired. �

Lemma 3.8. Let R be a Noetherian ring. A direct sum of injective modules is
injective.

Proof. Let Ei be a family of injective modules parametrized by a set I. Set
E =

⋃
Ei. To show that E is injective we use Lemma 3.7. Thus let ϕ : I → E

be a module map from an ideal of R into E. As I is a finite R-module (because R
is Noetherian) we can find finitely many elements i1, . . . , ir ∈ I such that ϕ maps
into

⋃
j=1,...,r Eij . Then we can extend ϕ into

⋃
j=1,...,r Eij using the injectivity of

the modules Eij . �

Lemma 3.9. Let R be a Noetherian ring. Let S ⊂ R be a multiplicative subset. If
E is an injective R-module, then S−1E is an injective S−1R-module.

Proof. Since R→ S−1R is an epimorphism of rings, it suffices to show that S−1E
is injective as an R-module, see Lemma 3.3. To show this we use Lemma 3.7. Thus
let I ⊂ R be an ideal and let ϕ : I → S−1E be an R-module map. As I is a finitely
presented R-module (because R is Noetherian) we can find find an f ∈ S and an
R-module map I → E such that fϕ is the composition I → E → S−1E (Algebra,
Lemma 10.2). Then we can extend I → E to a homomorphism R → E. Then the
composition

R→ E → S−1E
f−1

−−→ S−1E

is the desired extension of ϕ to R. �

Lemma 3.10. Let R be a Noetherian ring. Let I be an injective R-module.

(1) Let f ∈ R. Then E =
⋃
I[fn] = I[f∞] is an injective submodule of I.

(2) Let J ⊂ R be an ideal. Then the J-power torsion submodule I[J∞] is an
injective submodule of I.

Proof. We will use Lemma 3.5 to prove (1). Suppose that E ⊂ E′ ⊂ I and that
E′ is an essential extension of E. We will show that E′ = E. If not, then we can
find x ∈ E′ and x 6∈ E. Let J = {a ∈ R | ax ∈ E′}. Since R is Noetherian we
can choose x with J maximal. Since R is Noetherian we can write J = (g1, . . . , gt)
for some gi ∈ R. Say fni annihilates gix. Set n = max{ni}. Then x′ = fnx is
an element of E′ not in E and is annihilated by J . By maximality of J we see
that Rx′ = (R/J)x′ ∩ E = (0). Hence E′ is not an essential extension of E a
contradiction.
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To prove (2) write J = (f1, . . . , ft). Then I[J∞] is equal to

(. . . ((I[f∞1 ])[f∞2 ]) . . .)[f∞t ]

and the result follows from (1) and induction. �

Lemma 3.11. Let A be a Noetherian ring. Let E be an injective A-module. Then
E ⊗A A[x] has injective-amplitude [0, 1] as an object of D(A[x]). In particular,
E ⊗A A[x] has finite injective dimension as an A[x]-module.

Proof. Let us write E[x] = E ⊗A A[x]. Consider the short exact sequence of
A[x]-modules

0→ E[x]→ HomA(A[x], E[x])→ HomA(A[x], E[x])→ 0

where the first map sends p ∈ E[x] to f 7→ fp and the second map sends ϕ to
f 7→ ϕ(xf) − xϕ(f). The second map is surjective because HomA(A[x], E[x]) =∏
n≥0E[x] as an abelian group and the map sends (en) to (en+1 − xen) which is

surjective. As an A-module we have E[x] ∼=
⊕

n≥0E which is injective by Lemma

3.8. Hence the A[x]-module HomA(A[x], I[x]) is injective by Lemma 3.4 and the
proof is complete. �

4. Projective covers

In this section we briefly discuss projective covers.

Definition 4.1. Let R be a ring. A surjection P →M of R-modules is said to be
a projective cover, or sometimes a projective envelope, if P is a projective R-module
and P →M is an essential surjection.

Projective covers do not always exist. For example, if k is a field and R = k[x] is
the polynomial ring over k, then the module M = R/(x) does not have a projective
cover. Namely, for any surjection f : P →M with P projective over R, the proper
submodule (x− 1)P surjects onto M . Hence f is not essential.

Lemma 4.2. Let R be a ring and let M be an R-module. If a projective cover of
M exists, then it is unique up to isomorphism.

Proof. Let P → M and P ′ → M be projective covers. Because P is a projective
R-module and P ′ → M is surjective, we can find an R-module map α : P → P ′

compatible with the maps to M . Since P ′ → M is essential, we see that α is
surjective. As P ′ is a projectiveR-module we can choose a direct sum decomposition
P = Ker(α) ⊕ P ′. Since P ′ → M is surjective and since P → M is essential we
conclude that Ker(α) is zero as desired. �

Here is an example where projective covers exist.

Lemma 4.3. Let (R,m, κ) be a local ring. Any finite R-module has a projective
cover.

Proof. Let M be a finite R-module. Let r = dimκ(M/mM). Choose x1, . . . , xr ∈
M mapping to a basis of M/mM . Consider the map f : R⊕r →M . By Nakayama’s
lemma this is a surjection (Algebra, Lemma 19.1). If N ⊂ R⊕R is a proper sub-
module, then N/mN → κ⊕r is not surjective (by Nakayama’s lemma again) hence
N/mN →M/mM is not surjective. Thus f is an essential surjection. �
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5. Injective hulls

In this section we briefly discuss injective hulls.

Definition 5.1. Let R be a ring. A injection M → I of R-modules is said to be
an injective hull if I is a injective R-module and M → I is an essential injection.

Injective hulls always exist.

Lemma 5.2. Let R be a ring. Any R-module has an injective hull.

Proof. Let M be an R-module. By More on Algebra, Section 42 the category of
R-modules has enough injectives. Choose an injection M → I with I an injective
R-module. Consider the set S of submodules M ⊂ E ⊂ I such that E is an essential
extension of M . We order S by inclusion. If {Eα} is a totally ordered subset of
S, then

⋃
Eα is an essential extension of M too (Lemma 2.3). Thus we can apply

Zorn’s lemma and find a maximal element E ∈ S. We claim M ⊂ E is an injective
hull, i.e., E is an injective R-module. This follows from Lemma 3.5. �

Lemma 5.3. Let R be a ring. Let M , N be R-modules and let M → E and
N → E′ be injective hulls. Then

(1) for any R-module map ϕ : M → N there exists an R-module map ψ : E →
E′ such that

M //

ϕ

��

E

ψ

��
N // E′

commutes,
(2) if ϕ is injective, then ψ is injective,
(3) if ϕ is an essential injection, then ψ is an isomorphism,
(4) if ϕ is an isomorphism, then ψ is an isomorphism,
(5) if M → I is an embedding of M into an injective R-module, then there is

an isomorphism I ∼= E ⊕ I ′ compatible with the embeddings of M ,

In particular, the injective hull E of M is unique up to isomorphism.

Proof. Part (1) follows from the fact that E′ is an injective R-module. Part (2)
follows as Ker(ψ) ∩M = 0 and E is an essential extension of M . Assume ϕ is an
essential injection. Then E ∼= ψ(E) ⊂ E′ by (2) which implies E′ = ψ(E) ⊕ E′′
because E is injective. Since E′ is an essential extension of M (Lemma 2.2) we get
E′′ = 0. Part (4) is a special case of (3). Assume M → I as in (5). Choose a map
α : E → I extending the map M → I. Arguing as before we see that α is injective.
Thus as before α(E) splits off from I. This proves (5). �

Example 5.4. Let R be a domain with fraction field K. Then R ⊂ K is an
injective hull of R. Namely, by Example 3.6 we see that K is an injective R-module
and by Lemma 2.4 we see that R ⊂ K is an essential extension.

Definition 5.5. An object X of an additive category is called indecomposable if it
is nonzero and if X = Y ⊕ Z, then either Y = 0 or Z = 0.

Lemma 5.6. Let R be a ring. Let E be an indecomposable injective R-module.
Then

(1) E is the injective hull of any nonzero submodule of E,
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(2) the intersection of any two nonzero submodules of E is nonzero,
(3) EndR(E,E) is a noncommutative local ring with maximal ideal those ϕ :

E → E whose kernel is nonzero, and
(4) the set of zerodivisors on E is a prime ideal p of R and E is an injective

Rp-module.

Proof. Part (1) follows from Lemma 5.3. Part (2) follows from part (1) and the
definition of injective hulls.

Proof of (3). Set A = EndR(E,E) and I = {ϕ ∈ A | Ker(f) 6= 0}. The statement
means that I is a two sided ideal and that any ϕ ∈ A, ϕ 6∈ I is invertible. Suppose ϕ
and ψ are not injective. Then Ker(ϕ)∩Ker(ψ) is nonzero by (2). Hence ϕ+ψ ∈ I.
It follows that I is a two sided ideal. If ϕ ∈ A, ϕ 6∈ I, then E ∼= ϕ(E) ⊂ E is an
injective submodule, hence E = ϕ(E) because E is indecomposable.

Proof of (4). Consider the ring map R → A and let p ⊂ R be the inverse image
of the maximal ideal I. Then it is clear that p is a prime ideal and that R → A
extends to Rp → A. Thus E is an Rp-module. It follows from Lemma 3.3 that E
is injective as an Rp-module. �

Lemma 5.7. Let p ⊂ R be a prime of a ring R. Let E be the injective hull of R/p.
Then

(1) E is indecomposable,
(2) E is the injective hull of κ(p),
(3) E is the injective hull of κ(p) over the ring Rp.

Proof. As R/p ⊂ κ(p) we can extend the embedding to a map κ(p) → E. Hence
(2) holds. For f ∈ R, f 6∈ p the map f : κ(p) → κ(p) is an isomorphism hence
the map f : E → E is an isomorphism, see Lemma 5.3. Thus E is an Rp-module.
It is injective as an Rp-module by Lemma 3.3. Finally, let E′ ⊂ E be a nonzero
injective R-submodule. Then J = (R/p) ∩ E′ is nonzero. After shrinking E′ we
may assume that E′ is the injective hull of J (see Lemma 5.3 for example). Observe
that R/p is an essential extension of J for example by Lemma 2.4. Hence E′ → E
is an isomorphism by Lemma 5.3 part (3). Hence E is indecomposable. �

Lemma 5.8. Let R be a Noetherian ring. Let E be an indecomposable injective
R-module. Then there exists a prime ideal p of R such that E is the injective hull
of κ(p).

Proof. Let p be the prime ideal found in Lemma 5.6. Say p = (f1, . . . , fr). Pick a
nonzero element x ∈

⋂
Ker(fi : E → E), see Lemma 5.6. Then (Rp)x is a module

isomorphic to κ(p) inside E. We conclude by Lemma 5.6. �

Proposition 5.9 (Structure injective modules over Noetherian rings). Let R be a
Noetherian ring. Every injective module is a direct sum of indecomposable injective
modules. Every indecomposable injective module is the injective hull of the residue
field at a prime.

Proof. The second statement is Lemma 5.8. For the second statement, let I be
an injective R-module. We will use transfinite induction to construct Iα ⊂ I for
ordinals α which are direct sums of indecomposable injective R-modules Eβ+1 for
β < α. For α = 0 we let I0 = 0. Suppose given an ordinal α such that Iα has been
constructed. Then Iα is an injective R-module by Lemma 3.8. Hence I ∼= Iα ⊕ I ′.
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8 DUALIZING COMPLEXES

If I ′ = 0 we are done. If not, then I ′ has an associated prime by Algebra, Lemma
62.7. Thus I ′ contains a copy of R/p for some prime p. Hence I ′ contains an
indecomposable submodule E by Lemmas 5.3 and 5.7. Set Iα+1 = Iα ⊕Eα. If α is
a limit ordinal and Iβ has been constructed for β < α, then we set Iα =

⋃
β<α Iβ .

Observe that Iα =
⊕

β<αEβ+1. This concludes the proof. �

6. Duality over Artinian local rings

Let (R,m, κ) be an artinian local ring. Recall that this implies R is Noetherian and
that R has finite length as an R-module. Moreover an R-module is finite if and
only if it has finite length. We will use these facts without further mention in this
section. Please see Algebra, Sections 50 and 51 and Algebra, Proposition 59.6 for
more details.

Lemma 6.1. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of
κ. For every finite R-module M we have

lengthR(M) = lengthR(HomR(M,E))

In particular, the injective hull E of κ is a finite R-module.

Proof. Because E is an essential extension of κ we have κ = E[m] where E[m] is the
m-torsion in E (notation as in More on Algebra, Section 63). Hence HomR(κ,E) ∼=
κ and the equality of lengths holds for M = κ. We prove the displayed equality
of the lemma by induction on the length of M . If M is nonzero there exists a
surjection M → κ with kernel M ′. Since the functor M 7→ HomR(M,E) is exact
we obtain a short exact sequence

0→ HomR(κ,E)→ HomR(M,E)→ HomR(M ′, E)→ 0.

Additivity of length for this sequence and the sequence 0 → M ′ → M → κ → 0
and the equality for M ′ (induction hypothesis) and κ implies the equality for M .
The final statement of the lemma follows as E = HomR(R,E). �

Lemma 6.2. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of
κ. For any finite R-module M the evaluation map

M −→ HomR(HomR(M,E), E)

is an isomorphism. In particular R = HomR(E,E).

Proof. Observe that the displayed arrow is injective. Namely, if x ∈ M is a
nonzero element, then there is a nonzero map Rx → κ which we can extend to a
map ϕ : M → E that doesn’t vanish on x. Since the source and target of the arrow
have the same length by Lemma 6.1 we conclude it is an isomorphism. The final
statement follows on taking M = R. �

To state the next lemma, denote ModfgR the category of finite R-modules over a
ring R.

Lemma 6.3. Let (R,m, κ) be an artinian local ring. Let E be an injective hull of

κ. The functor D(−) = HomR(−, E) induces an exact anti-equivalence ModfgR →
ModfgR and D ◦D ∼= id.

Proof. We have seen that D ◦D = id on ModfgR in Lemma 6.2. It follows imme-
diately that D is an anti-equivalence. �
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Lemma 6.4. Assumptions and notation as in Lemma 6.3. Let I ⊂ R be an ideal
and M a finite R-module. Then

D(M [I]) = D(M)/ID(M) and D(M/IM) = D(M)[I]

Proof. Say I = (f1, . . . , ft). Consider the map

M⊕t
f1,...,ft−−−−−→M

with cokernel M/IM . Applying the exact functor D we conclude that D(M/IM)
is D(M)[I]. The other case is proved in the same way. �

7. Injective hull of the residue field

Most of our results will be for Noetherian local rings in this section.

Lemma 7.1. Let R→ S be a surjective map of local rings with kernel I. Let E be
the injective hull of the residue field of R over R. Then E[I] is the injective hull of
the residue field of S over S.

Proof. Observe that E[I] = HomR(S,E) as S = R/I. Hence E[I] is an injective
S-module by Lemma 3.4. Since E is an essential extension of κ = R/mR it follows
that E[I] is an essential extension of κ as well. The result follows. �

Lemma 7.2. Let (R,m, κ) be a local ring. Let E be the injective hull of κ. Let M
be a m-power torsion R-module with n = dimκ(M [m]) <∞. Then M is isomorphic
to a submodule of E⊕n.

Proof. Observe that E⊕n is the injective hull of κ⊕n = M [m]. Thus there is an
R-module map M → E⊕n which is injective on M [m]. Since M is m-power torsion
the inclusion M [m] ⊂ M is an essential extension (for example by Lemma 2.4) we
conclude that the kernel of M → E⊕n is zero. �

Lemma 7.3. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Let En be an injective hull of κ over R/mn. Then E =

⋃
En and

En = E[mn].

Proof. We have En = E[mn] by Lemma 7.1. We have E =
⋃
En because

⋃
En =

E[m∞] is an injective R-submodule which contains κ, see Lemma 3.10. �

The following lemma tells us the injective hull of the residue field of a Noetherian
local ring only depends on the completion.

Lemma 7.4. Let R → S be a flat local homomorphism of local Noetherian rings
such that R/mR ∼= S/mRS. Then the injective hull of the residue field of R is the
injective hull of the residue field of S.

Proof. Set κ = R/mR = S/mS . Let ER be the injective hull of κ over R. Let
ES be the injective hull of κ over S. Observe that ES is an injective R-module by
Lemma 3.2. Choose an extension ER → ES of the identification of residue fields.
This map is an isomorphism by Lemma 7.3 because R→ S induces an isomorphism
R/mnR → S/mnS for all n. �

Lemma 7.5. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then HomR(E,E) is canonically isomorphic to the completion of R.
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Proof. Write E =
⋃
En with En = E[mn] as in Lemma 7.3. Any endomorphism

of E preserves this filtration. Hence

HomR(E,E) = lim HomR(En, En)

The lemma follows as HomR(En, En) = HomR/mn(En, En) = R/mn by Lemma
6.2. �

Lemma 7.6. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ over R. Then E satisfies the descending chain condition.

Proof. If E ⊂M1 ⊂M2 . . . is a sequence of submodules, then

HomR(E,E)→ HomR(M1, E)→ HomR(M2, E)→ . . .

is sequence of surjections. By Lemma 7.5 each of these is a module over the com-
pletion R∧ = HomR(E,E). Since R∧ is Noetherian (Algebra, Lemma 93.10) the
sequence stabilizes: HomR(Mn, E) = HomR(Mn+1, E) = . . .. Since E is injec-
tive, this can only happen if HomR(Mn/Mn+1, E) is zero. However, if Mn/Mn+1

is nonzero, then it contains a nonzero element annihilated by m, because E is m-
power torsion by Lemma 7.3. In this case Mn/Mn+1 has a nonzero map into E,
contradicting the assumed vanishing. This finishes the proof. �

Lemma 7.7. Let (R,m, κ) be a Noetherian local ring. Let E be an injective hull
of κ.

(1) For an R-module M the following are equivalent:
(a) M satisfies the ascending chain condition,
(b) M is a finite R-module, and
(c) there exist n,m and an exact sequence R⊕m → R⊕n →M → 0.

(2) For an R-module M the following are equivalent:
(a) M satisfies the descending chain condition,
(b) M is m-power torsion and dimκ(M [m]) <∞, and
(c) there exist n,m and an exact sequence 0→M → E⊕n → E⊕m.

Proof. We omit the proof of (1).

Let M be an R-module with the descending chain condition. Let x ∈ M . Then
mnx is a descending chain of submodules, hence stabilizes. Thus mnx = mn+1x
for some n. By Nakayama’s lemma (Algebra, Lemma 19.1) this implies mnx = 0,
i.e., x is m-power torsion. Since M [m] is a vector space over κ it has to be finite
dimensional in order to have the descending chain condition.

Assume that M is m-power torsion and has a finite dimensional m-torsion sub-
module M [m]. By Lemma 7.2 we see that M is a submodule of E⊕n for some n.
Consider the quotient N = E⊕n/M . By Lemma 7.6 the module E has the descend-
ing chain condition hence so do E⊕n and N . Therefore N satisfies (2)(a) which
implies N satisfies (2)(b) by the second paragraph of the proof. Thus by Lemma
7.2 again we see that N is a submodule of E⊕m for some m. Thus we have a short
exact sequence 0→M → E⊕n → E⊕m.

Assume we have a short exact sequence 0→M → E⊕n → E⊕m. Since E satisfies
the descending chain condition by Lemma 7.6 so does M . �
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Proposition 7.8 (Matlis duality). Let (R,m, κ) be a complete local Noetherian
ring. Let E be an injective hull of κ over R. The functor D(−) = HomR(−, E)
induces an anti-equivalence{

R-modules with the
descending chain condition

}
←→

{
R-modules with the

ascending chain condition

}
and we have D ◦D = id on either side of the equivalence.

Proof. By Lemma 7.5 we have R = HomR(E,E) = D(E). Of course we have
E = HomR(R,E) = D(R). Since E is injective the functor D is exact. The result
now follows immediately from the description of the categories in Lemma 7.7. �

8. Local cohomology

Let A be a ring and let I ⊂ A be a finitely generated ideal (if I is not finitely
generated perhaps a different definition should be used). Let Z = V (I) ⊂ Spec(A).
Recall that the category I∞-torsion of I-power torsion modules only depends on
the closed subset Z and not on the choice of the finitely generated ideal I such that
Z = V (I), see More on Algebra, Lemma 62.6. In this section we will consider the
functor

H0
I : ModA −→ I∞-torsion, M 7−→M [I∞] =

⋃
M [In]

which sends M to the submodule of I-power torsion as well as its relationship with
the functors

HZ : Ab(X) −→ Ab(Z)

and ΓZ(−) = Γ(Z,HZ(−)) of Cohomology, Section 22.

Let A be a ring and let I be a finitely generated ideal. Note that I∞-torsion
is a Grothendieck abelian category (direct sums exist, filtered colimits are exact,
and

⊕
A/In is a generator by More on Algebra, Lemma 62.2). Hence the derived

category D(I∞-torsion) exists, see Injectives, Remark 13.3. Our functor H0
I is left

exact and has a derived extension which we will denote

RΓI : D(A) −→ D(I∞-torsion).

Warning: this functor does not deserve the name local cohomology unless the ring
A is Noetherian. The functors H0

I , RΓI , and the satellites Hp
I only depend on the

closed subset Z ⊂ Spec(A) and not on the choice of the finitely generated ideal I
such that V (I) = Z. However, we insist on using the subscript I for the functors
above as the notation RΓZ is going to be used for a different functor, see (8.4.1),
which agrees with the functor RΓI only (as far as we know) in case A is Noetherian
(see Lemma 8.9).

Lemma 8.1. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functor RΓI is right adjoint to the functor D(I∞-torsion)→ D(A).

Proof. This follows from the fact that taking I-power torsion submodules is the
right adjoint to the inclusion functor I∞-torsion→ ModA. See Derived Categories,
Lemma 28.4. �

Lemma 8.2. Let A be a ring and let I ⊂ A be a finitely generated ideal. For any
object K of D(A) we have

RΓI(K) = hocolim RHom(A/In,K)
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in D(A) and

RqΓI(K) = colimn ExtqA(A/In,K)

as modules for all q ∈ Z.

Proof. Let J• be a K-injective complex representing K. Then

RΓI(K) = J•[I∞] = colimJ•[In] = colim HomA(A/In, J•)

By Derived Categories, Lemma 31.4 we obtain the first equality. The second equal-
ity is clear because Hq(HomA(A/In, J•)) = ExtqA(A/In,K) and because filtered
colimits are exact in the category of abelian groups. �

Lemma 8.3. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be
a complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I,
i.e., K• is a complex of Af -modules. Then RΓI(K

•) = 0.

Proof. Namely, in this case the cohomology modules of RΓI(K
•) are both f -power

torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. �

Let A be a ring and I ⊂ A a finitely generated ideal. By More on Algebra, Lemma
62.5 the category of I-power torsion modules is a Serre subcategory of the category
of all A-modules, hence there is a functor

(8.3.1) D(I∞-torsion)→ DI∞-torsion(A)

see Derived Categories, Section 13.

Lemma 8.4. Let A be a ring and let I be a finitely generated ideal. Let M and N
be I-power torsion modules.

(1) HomD(A)(M,N) = HomD(I∞-torsion)(M,N),

(2) Ext1D(A)(M,N) = Ext1D(I∞-torsion)(M,N),

(3) Ext2D(I∞-torsion)(M,N)→ Ext2D(A)(M,N) is not surjective in general,

(4) (8.3.1) is not an equivalence in general.

Proof. Parts (1) and (2) follow immediately from the fact that I-power torsion
forms a Serre subcategory of ModA. Part (4) follows from part (3).

For part (3) let A be a ring with an element f ∈ A such that A[f ] contains a nonzero
element x and A contains elements xn with fnxn = x. Such a ring A exists because
we can take

A = Z[f, x, xn]/(fx, fnxn − x)

Given A set I = (f). Then the exact sequence

0→ A[f ]→ A
f−→ A→ A/fA→ 0

defines an element in Ext2A(A/fA,A[f ]). We claim this element does not come from
an element of Ext2D(f∞-torsion)(A/fA,A[f ]). Namely, if it did, then there would be
an exact sequence

0→ A[f ]→M → N → A/fA→ 0

http://localhost:8080/tag/0A6M
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where M and N are f -power torsion modules defining the same 2 extension class.
Since A→ A is a complex of free modules and since the 2 extension classes are the
same we would be able to find a map

0 // A[f ] //

��

A //

ϕ

��

A //

ψ

��

A/fA //

��

0

0 // A[f ] // M // N // A/fA // 0

(some details omitted). Then we could replace M by the image of ϕ and N by
the image of ψ. Then M would be a cyclic module, hence fnM = 0 for some
n. Considering ϕ(xn+1) we get a contradiction with the fact that fn+1xn = x is
nonzero in A[f ]. �

Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
We will construct a functor

(8.4.1) RΓZ : D(A) −→ DI∞-torsion(A).

which is right adjoint to the inclusion functor. The cohomology modules of RΓZ(K)
are the local cohomology groups of K with respect to Z. In fact, we will show
RΓZ computes cohomology with support in Z for the assocated complex of quasi-
comherent sheaves on Spec(A). By Lemma 8.4 this functor will in general not be
equal to RΓI(−) even viewed as functors into D(A).

Lemma 8.5. Let A be a ring and let I ⊂ A be a finitely generated ideal. There
exists a right adjoint RΓZ (8.4.1) to the inclusion functor DI∞-torsion(A)→ D(A).
In fact, if I is generated by f1, . . . , fr ∈ A, then we have

RΓZ(K) = (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )⊗L
A K

functorially in K.

Proof. Say I = (f1, . . . , fr) be an ideal. Let K• be a complex of A-modules. There
is a canonical map of complexes

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) −→ A.

from the extended Čech complex to A. Tensoring with K•, taking associated total
complex, we get a map

Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)
−→ K•

in D(A). We claim the cohomology modules of the complex on the left are I-power
torsion, i.e., the LHS is an object of DI∞-torsion(A). Namely, we have

(A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr ) = colimK(A, fn1 , . . . , f
n
r )

by More on Algebra, Lemma 20.13. Moreover, multiplication by fni on the complex
K(A, fn1 , . . . , f

n
r ) is homotopic to zero by More on Algebra, Lemma 20.6. Since

Hq (LHS) = colimHq(Tot(K• ⊗A K(A, fn1 , . . . , f
n
r )))

http://localhost:8080/tag/0A6R
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we obtain our claim. On the other hand, if K• is an object of DI∞-torsion(A), then
the complexes K• ⊗A Afi0 ...fip have vanishing cohomology. Hence in this case the

map LHS → K• is an isomorphism in D(A). The construction

RΓZ(K•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

is functorial in K• and defines an exact functor D(A) → DI∞-torsion(A) between
triangulated categories. It follows formally from the existence of the natural trans-
formation RΓZ → id given above and the fact that this evaluates to an isomorphism
on K• in the subcategory, that RΓZ is the desired right adjoint. �

Lemma 8.6. Let A be a ring and let I ⊂ A be a finitely generated ideal. Let K• be
a complex of A-modules such that f : K• → K• is an isomorphism for some f ∈ I,
i.e., K• is a complex of Af -modules. Then RΓZ(K•) = 0.

Proof. Namely, in this case the cohomology modules of RΓZ(K•) are both f -power
torsion and f acts by automorphisms. Hence the cohomology modules are zero and
hence the object is zero. �

Lemma 8.7. Let A be a ring and let I ⊂ A be a finitely generated ideal. For
K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L

A RΓZ(L) = RΓZ(K)⊗L
A L = RΓZ(K)⊗L

A RΓZ(L)

If K or L is in DI∞-torsion(A) then so is K ⊗L
A L.

Proof. By Lemma 8.5 we know that RΓZ is given by C ⊗L− for some C ∈ D(A).
Hence, for K,L ∈ D(A) general we have

RΓZ(K ⊗L
A L) = K ⊗L L⊗L

A C = K ⊗L
A RΓZ(L)

The other equalities follow formally from this one. This also implies the last state-
ment of the lemma. �

The following lemma tells us that the functor RΓZ is related to local cohomology.

Lemma 8.8. Let A be a ring and let I be a finitely generated ideal. With Z =
V (I) ⊂ X = Spec(A) there is a functorial isomorphism

RΓZ(K•) = RΓZ(K̃•)

where on the left we have (8.4.1) and on the right we have the functor of Cohomol-
ogy, Section 22.

Proof. Denote F• = K̃• be the complex of quasi-coherent OX -modules on X
associated to K•. By Cohomology, Section 22 there exists a distinguished triangle

RΓZ(X,F•)→ RΓ(X,F•)→ RΓ(U,F•)→ RΓZ(X,F•)[1]

where U = X \ Z. We know that RΓ(X,F•) = K• for example by Derived
Categories of Schemes, Lemma 3.4. Say I = (f1, . . . , fr). Then we obtain a finite
affine open covering U : U = D(f1)∪. . .∪D(fr). By Derived Categories of Schemes,
Lemma 8.4 the alternating Čech complex

Tot(Č•alt(U ,F•))
computes RΓ(U,F•). Working through the definitions we find

RΓ(U,F•) = Tot
(
K• ⊗A (

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)
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It is clear that RΓ(X,F•) → RΓ(U,F•) is given by the map from A into
∏
Afi .

Hence we conclude that

RΓZ(X,F•) = Tot
(
K• ⊗A (A→

∏
i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )
)

By Lemma 8.5 this complex computes RΓZ(K•) and we see the lemma holds. �

Let A be a ring and let I ⊂ A be a finitely generated ideal. Set Z = V (I) ⊂ Spec(A).
There is a natural transformation of functors

(8.8.1) (8.3.1) ◦RΓI(−) −→ RΓZ(−)

Namely, given a complex of A-modules K• the canonical map RΓI(K
•) → K•

in D(A) factors (uniquely) through RΓZ(K•) as RΓI(K
•) has I-power torsion

cohomology modules (see Lemma 8.1). In general this map is not an isomorphism
(we’ve seen this above).

Lemma 8.9. Let A be a Noetherian ring and let I ⊂ A be an ideal. Denote
j : D(I∞-torsion)→ DI∞-torsion(A) the functor (8.3.1).

(1) the adjunction j(RΓI(K))→ K is an isomorphism for K ∈ DI∞-torsion(A),
(2) the functor j is an equivalence,
(3) the transformation of functors (8.8.1) is an isomorphism,

Proof. A formal argument, which we omit, shows that it suffices to prove (1).

Let M be an I-power torsion A-module. Choose an embedding M → J into an
injective A-module. Then J [I∞] is an injective A-module, see Lemma 3.10, and
we obtain an embedding M → J [I∞]. Thus every I-power torsion module has
an injective resolution M → J• with Jn also I-power torsion. It follows that
RΓI(M) = M (this is not a triviality and this is not true in general if A is not
Noetherian). Next, suppose that K ∈ D+

I∞-torsion(A). Then the spectral sequence

RqΓI(H
p(K))⇒ Rp+qΓI(K)

(Derived Categories, Lemma 21.3) converges and above we have seen that only the
terms with q = 0 are nonzero. Thus we see that RΓI(K)→ K is an isomorphism.

Suppose K is an arbitrary object of DI∞-torsion(A). We have

RqΓI(K) = colim ExtqA(A/In,K)

by Lemma 8.2. Choose f1, . . . , fr ∈ A generating I. Let K•n = K(A, fn1 , . . . , f
n
r ) be

the Koszul complex with terms in degrees −r, . . . , 0. Since the pro-objects {A/In}
and {K•n} in D(A) are the same by More on Algebra, Lemma 64.18, we see that

RqΓI(K) = colim ExtqA(K•n,K)

Pick any complex K• of A-modules representing K. Since K•n is a finite complex
of finite free modules we see that

ExtqA(Kn,K) = Hq(Tot((K•n)∨ ⊗A K•))
where (K•n)∨ is the dual of the complex K•n. See More on Algebra, Lemma 55.2.
As (K•n)∨ is a complex of finite free A-modules sitting in degrees 0, . . . , r we see
that the terms of the complex Tot((K•n)∨ ⊗A K•)) are the same as the terms of
the complex Tot((K•n)∨⊗A τ≥q−r−2K•)) in degrees q− 1 and higher. Hence we see
that

ExtqA(Kn,K) = ExtqA(Kn, τ≥q−r−2K)
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for all n. It follows that

RqΓI(K) = RqΓI(τ≥q−r−2K) = Hq(τ≥q−r−2K) = Hq(K)

Thus we see that the map RΓI(K)→ K is an isomorphism. �

Lemma 8.10. If A is a Noetherian ring and I = (f1, . . . , fr) an ideal. There are
canonical isomorphisms

RΓI(A)→ (A→
∏

i0
Afi0 →

∏
i0<i1

Afi0fi1 → . . .→ Af1...fr )→ RΓZ(A)

in D(A).

Proof. This follows from Lemma 8.9 and the computation of the functor RΓZ in
Lemma 8.5. �

Lemma 8.11. Let A→ B be a ring map. Let I ⊂ A be a finitely generated ideal.
Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). For K in D(A) we have
RΓZ(K)⊗L

A B = RΓY (K ⊗L
A B).

Proof. This follows from uniquess of adjoint functors as both RΓZ(−) ⊗L
A B and

RΓY (− ⊗L
A B) are right adjoint to the functor D(IB)∞torsion(B) → D(A). Al-

ternatively, one can use the description of RΓZ and RΓY in terms of alternating
Čech complexes (Lemma 8.5) and use that formation of the extended Čech complex
commutes with base change. �

Lemma 8.12. If A→ B is a homomorphism of Noetherian rings and I ⊂ A is an
ideal, then in D(B) we have

RΓI(A)⊗L
A B = RΓZ(A)⊗L

A B = RΓY (B) = RΓIB(B)

where Y = V (IB) ⊂ Spec(B).

Proof. Combine Lemmas 8.10 and 8.11. �

The following lemma is the analogue of More on Algebra, Lemma 64.26 for com-
plexes with torsion cohomologies.

Lemma 8.13. Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I = B/IB. Then base change and restriction induce quasi-inverse
equivalences DI∞-torsion(A) = D(IB)∞-torsion(B).

Proof. More precisely the functors are K 7→ K ⊗L
A B for K in DI∞-torsion(A) and

M 7→MA for M in D(IB)∞-torsion(B). The reason this works is that Hi(K⊗L
AB) =

Hi(K) ⊗A B = Hi(K). The first equality holds as A → B is flat and the second
by More on Algebra, Lemma 63.2. �

The following lemma was shown for Hom and Ext1 of modules in More on Algebra,
Lemmas 63.3 and 63.8.

Lemma 8.14. Let A→ B be a flat ring map and let I ⊂ A be a finitely generated
ideal such that A/I → B/IB is an isomorphism. For K ∈ DI∞-torsion(A) and
L ∈ D(A) the map

RHomA(K,L) −→ RHomB(K ⊗A B,L⊗A B)

is a quasi-isomorphism. In particular, if M , N are A-modules and M is I-power
torsion, then the canonical map

ExtiA(M,N) −→ ExtiB(M ⊗A B,N ⊗A B)
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is an isomorphism for all i.

Proof. Let Z = V (I) ⊂ Spec(A) and Y = V (IB) ⊂ Spec(B). Since the cohomol-
ogy modules of K are I power torsion, the canonical map RΓZ(L)→ L induces an
isomorphism

RHomA(K,RΓZ(L))→ RHomA(K,L)

in D(A). Similarly, the cohomology modules of K ⊗A B are IB power torsion and
we have an isomorphism

RHomB(K ⊗A B,RΓY (L⊗A B))→ RHomB(K ⊗A B,L⊗A B)

in D(B). By Lemma 8.11 we have RΓZ(L)⊗AB = RΓY (L⊗AB). Hence it suffices
to show that the map

RHomA(K,RΓZ(L))→ RHomB(K ⊗A B,RΓZ(L)⊗A B)

is a quasi-isommorphism. This follows from Lemma 8.13. �

9. Torsion versus complete modules

Let A be a ring and let I be a finitely generated ideal. In this case we can consider
the derived category DI∞-torsion(A) of complexes with I-power torsion cohomology
modules (Section 8) and the derived category Dcomp(A, I) of derived complete
complexes (More on Algebra, Section 64). In this section we show these categories
are equivalent. A more general statement can be found in [DG02].

Lemma 9.1. Let A be a ring and let I be a finitely generated ideal. Let RΓZ be as
in Lemma 8.5. Let ∧ denote derived completion as in More on Algebra, Lemma
64.9. For an object K in D(A) we have

RΓZ(K∧) = RΓZ(K) and (RΓZ(K))∧ = K∧

in D(A).

Proof. Choose f1, . . . , fr ∈ A generating I. Recall that

K∧ = RHom
(

(A→
∏

Afi0 →
∏

Afi0i1
→ . . .→ Af1...fr ),K

)
by More on Algebra, Lemma 64.9. Hence the cone C = Cone(K → K∧) is given
by

RHom
(

(
∏

Afi0 →
∏

Afi0i1
→ . . .→ Af1...fr ),K

)
which can be represented by a complex endowed with a finite filtration whose
succesive quotients are isomorphic to

RHom(Afi0 ...fip ,K), p > 0

These complexes vanish on applying RΓZ , see Lemma 8.6. Applying RΓZ to the
distinguished triangle K → K∧ → C → K[1] we see that the first formula of the
lemma is correct.

Recall that

RΓZ(K) = K ⊗L (A→
∏

Afi0 →
∏

Afi0i1
→ . . .→ Af1...fr )

by Lemma 8.5. Hence the cone C = Cone(RΓZ(K)→ K) can be represented by a
complex endowed with a finite filtration whose succesive quotients are isomorphic
to

K ⊗A Afi0 ...fip , p > 0
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These complexes vanish on applying ∧, see More on Algebra, Lemma 64.10. Ap-
plying derived completion to the distinguished triangle RΓZ(K) → K → C →
RΓZ(K)[1] we see that the second formula of the lemma is correct. �

The following result is a special case of a very general phenomenon concerning
admissible subcategories of a triangulated category.

Proposition 9.2. Let A be a ring and let I ⊂ A be a finitely generated ideal. The
functors RΓZ and ∧ define quasi-inverse equivalences of categories

DI∞-torsion(A)↔ Dcomp(A, I)

Proof. Follows immediately from Lemma 9.1. �

The following addendum of the proposition above makes the correspondence on
morphisms more precise.

Lemma 9.3. With notation as in Lemma 9.1. For objects K,L in D(A) there is
a canonical isomorphism

RHom(K∧, L∧) −→ RHom(RΓZ(K), RΓZ(L))

in D(A).

Proof. Say I = (f1, . . . , fr). Denote C = (A →
∏
Afi → . . . → Af1...fr ) the

alternating Čech complex. Then derived completion is given by RHom(C,−) and
local cohomology by C ⊗L −. Combinging the isomorphism

RHom(K ⊗L C,L⊗L C) = RHom(K,RHom(C,L⊗L C))

(More on Algebra, Lemma 55.1) and the map

L→ RHom(C,L⊗L C)

(More on Algebra, Lemma 55.8) we obtain a map

γ : RHom(K,L)→ RHom(K ⊗L C,L⊗L C)

On the other hand, the right hand side is derived complete as it is equal to

RHom(C,RHom(K,L⊗L C)).

Thus γ factors through the derived completion of RHom(K,L) by the universal
property of derived completion. However, the derived completion goes inside the
RHom by More on Algebra, Lemma 64.11 and we obtain the desired map.

To show that the map of the lemma is an isomorphism we may assume that K and
L are derived complete, i.e., K = K∧ and L = L∧. In this case we are looking at
the map

γ : RHom(K,L) −→ RHom(RΓZ(K), RΓZ(L))

By Proposition 9.2 we know that the cohomology groups of the left and the right
hand side coincide. In other words, we have to check that the map γ sends a
morphism α : K → L in D(A) to the morphism RΓZ(α) : RΓZ(K)→ RΓZ(L). We
omit the verification (hint: note that RΓZ(α) is just the map α⊗ idC : K ⊗L C →
L⊗LC which is almost the same as the construction of the map in More on Algebra,
Lemma 55.8). �
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10. Trivial duality for a ring map

Let A→ B be a ring homomorphism. Consider the functor

Hom(B,−) : ModA −→ ModB , M 7−→ HomA(B,M)

This functor is left exact and has a derived extension RHom(B,−) : D(A)→ D(B).
Note that for every K ∈ D(A) there is a canonical map i∗RHom(B,K)→ K where
i∗ : D(B)→ D(A) is the obvious functor.

Lemma 10.1. With notation as above. The functor RHom(B,−) is the right
adjoint to the functor i∗ : D(B)→ D(A).

Proof. This is a consequence of the fact that i∗ and HomA(B,−) are adjoint
functors by Algebra, Lemma 13.3. See Derived Categories, Lemma 28.4. �

Lemma 10.2. With notation as above. For K in D(A) we have Rq Hom(B,K) =
ExtqA(B,K) as A-modules (the left hand side starts out as a B-module).

Proof. Omitted. �

Let A be a Noetherian ring. We will denote

DCoh(A) ⊂ D(A)

the full subcategory consisting of those objects K of D(A) whose cohomology mod-
ules are all finite A-modules. This makes sense by Derived Categories, Section 13
because as A is Noetherian, the subcategory of finite A-modules is a Serre subcat-
egory of ModA.

Lemma 10.3. With notation as above, assume A → B is a finite ring map of
Noetherian rings. Then RHom(B,−) maps D+

Coh(A) into D+
Coh(B).

Proof. We have to show: if K ∈ D+(A) has finite cohomology modules, then the
complex RHom(B,K) has finite cohomology modules too. This follows for example
from Lemma 10.2 if we can show the ext modules ExtiA(B,K) are finite A-modules.
Since K is bounded below there is a convergent spectral sequence

ExtpA(B,Hq(K))⇒ Extp+qA (B,K)

This finishes the proof as the modules ExtpA(B,Hq(K)) are finite by Algebra,
Lemma 69.9. �

Remark 10.4. Let A be a ring and let I ⊂ A be an ideal. Set B = A/I. In this
case the functor HomA(B,−) is equal to the functor

ModA −→ ModB , M 7−→M [I]

which sends M to the submodule of I-torsion.

11. Sections with support in a closed subscheme

Let i : (Z,OZ) → (X,OX) be a morphism of ringed spaces such that i is a ho-
momorphism onto a closed subset and such that i] : OX → i∗OZ is surjective.
(For example a closed immersion of schemes.) Let I = Ker(i]). For a sheaf of
OX -modules F the sheaf

HomOX
(i∗OZ ,F)
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a sheaf of OX -modules annihilated by I. Hence by Modules, Lemma 13.4 there is
a sheaf of OZ-modules, which we will denote Hom(OZ ,F), such that

i∗Hom(OZ ,F) = HomOX
(i∗OZ ,F)

as OX -modules. We spell out what this means.

Lemma 11.1. With notation as above. The functor Hom(OZ ,−) is a right adjoint
to the functor i∗ : Mod(OZ)→ Mod(OX). For V ⊂ Z open we have

Γ(V,Hom(OZ ,F)) = {s ∈ Γ(U,F) | Is = 0}
where U ⊂ X is an open whose intersection with Z is V .

Proof. Let G be a sheaf of OZ-modules. Then

HomOX
(i∗G,F) = Homi∗OZ

(i∗G,HomOX
(i∗OZ ,F)) = HomOZ

(G,Hom(OZ ,F))

The first equality by Modules, Lemma 19.5 and the second by the fully faithfulness
of i∗, see Modules, Lemma 13.4. The description of sections is left to the reader. �

The functor
Mod(OX) −→ Mod(OZ), F 7−→ Hom(OZ ,F)

is left exact and has a derived extension

RHom(OZ ,−) : D(OX)→ D(OZ).

Lemma 11.2. With notation as above. The functor RHom(OZ ,−) is the right
adjoint of the functor i∗ : D(OZ)→ D(OX).

Proof. This is a consequence of the fact that i∗ and Hom(OZ ,−) are adjoint
functors by Lemma 11.1. See Derived Categories, Lemma 28.4. �

Lemma 11.3. With notation as above. For any OX-module F we have

i∗RHom(OZ ,F) = RHom(i∗OZ ,F)

in D(OX).

Proof. Omitted. �

Lemma 11.4. In the situation above, assume i : Z → X is a pseudo-coherent
morphism of schemes (for example if X is locally Noetherian). Then

(1) RHom(OZ ,−) maps D+
QCoh(OX) into D+

QCoh(OZ), and

(2) if X = Spec(A) and Z = Spec(B), then the diagram

D+(B) // D+
QCoh(OZ)

D+(A) //

RHom(B,−)

OO

D+
QCoh(OX)

RHom(OZ ,−)

OO

is commutative.

Proof. To explain the parenthetical remark, if X is locally Noetherian, then i is
pseudo-coherent by More on Morphisms, Lemma 40.8.

Let K be an object of D+
QCoh(OX). To prove (1), by Morphisms, Lemma 4.1 it

suffices to show that i∗ applied to Hn(RHom(OZ ,K)) produces a quasi-coherent
module on X. By Lemma 11.3 this means we have to show that RHom(i∗OZ ,K)
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is in DQCoh(OX). Since i is pseudo-coherent the sheaf OZ is a pseudo-coherent
OX -module. Hence the result follows from Derived Categories of Schemes, Lemma
9.8.

Assume X = Spec(A) and Z = Spec(B) as in (2). Let I• be a bounded below
complex of injective A-modules representing an object K of D+(A). Then we know
that RHom(B,K) = HomA(B, I•) viewed as a complex of B-modules. Choose a
quasi-isomorphism

Ĩ• −→ I•

where I• is a bounded below complex of injective OX -modules. It follows from the
description of the functor Hom(OZ ,−) in Lemma 11.1 that there is a map

HomA(B, I•) −→ Γ(Z,Hom(OZ , I•))

Observe that Hom(OZ , I•) represents RHom(OZ , K̃). Applying the universal
property of the ˜ functor we obtain a map

˜HomA(B, I•) −→ RHom(OZ , K̃)

in D(OZ). We may check that this map is an isomorphism in D(OZ) after applying
i∗. However, once we apply i∗ we obtain the isomorphism of Derived Categories of
Schemes, Lemma 9.8 via the identification of Lemma 11.3. �

Lemma 11.5. In this situation above. Assume X is a locally Noetherian scheme.
Then RHom(OZ ,−) maps D+

Coh(OX) into D+
Coh(OZ).

Proof. The question is local on X, hence we may assume that X is affine. Say
X = Spec(A) and Z = Spec(B) with A Noetherian and A → B surjective. In
this case, we can apply Lemma 11.4 to translate the question into algebra. The
corresponding algebra result is a consequence of Lemma 10.3. �

Lemma 11.6. Let i : D → X be the inclusion of an effective Cartier divisor.
Denote N = i∗OX(D) the normal sheaf of i (Morphisms, Section 33). Then for a
finite locally free OX-module E we have RHom(OD, E) = i∗E ⊗OD

N [−1].

Proof. Omitted. This lemma can be significantly generalized. �

12. Dualizing complexes

In this section we define dualizing complexes for Noetherian rings.

Definition 12.1. Let A be a Noetherian ring. A dualizing complex is a complex
of A-modules ω•A such that

(1) ω•A has finite injective dimension,
(2) Hi(ω•A) is a finite A-module for all i, and
(3) A→ RHom(ω•A, ω

•
A) is a quasi-isomorphism.

This definition takes some time getting used to. It is perhaps a good idea to prove
some of the following lemmas yourself without reading the proofs.

Lemma 12.2. Let A be a Noetherian ring. If ω•A is a dualizing complex, then the
functor

D : K 7−→ RHom(K,ω•A)

is an anti-equivalence DCoh(A)→ DCoh(A) which exchanges D+
Coh(A) and D−Coh(A)

and induces an equivalence Db
Coh(A) → Db

Coh(A). Moreover D ◦ D is isomorphic
to the identity functor.
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Proof. Let K be an object of DCoh(A). Pick an integer n and consider the distin-
guihsed triangle

τ≤nK → K → τ≥n+1K → τ≤nK[1]

see Derived Categories, Remark 12.4. Since ω•A has finite injective dimension we
see that RHom(τ≥n+1K,ω

•
A) has vanishing cohomology in degrees ≥ n−c for some

constant c. On the other hand, we obtain a spectral sequence

ExtpA(H−q(τ≤nK,ω
•
A)⇒ Extp+qA (τ≤nK,ω

•
A) = Hp+q(RHom(τ≤nK,ω

•
A))

which shows that these cohomology modules are finite. Since for n > p+ q+ c this
is equal to Hp+q(RHom(K,ω•A)) we see that RHom(K,ω•A) is indeed an object of
DCoh(A). By More on Algebra, Lemma 55.6 and the assumptions on the dualizing
complex we obtain a canonical isomorphism

K = RHom(ω•A, ω
•
A)⊗L

A K −→ RHom(RHom(K,ω•A), ω•A)

Thus our functor has a quasi-inverse and the proof is complete. �

Lemma 12.3. Let A be a Noetherian ring. Let K ∈ Db
Coh(A). Let m be a maximal

ideal of A. If Hi(K)/mHi(K) 6= 0, then there exists a finite A-module E annihilated
by a power of m and a map K → E[−i] which is nonzero on Hi(K).

Proof. Let I be the injective hull of the residue field of m. If Hi(K)/mHi(K) 6= 0,
then there exists a nonzero map Hi(K)→ I. Since I is injective, we can lift this to
a nonzero map K → I[−i]. Recall that I =

⋃
I[mn], see Lemma 7.2 and that each

of the modules E = I[mn] is of the desired type. Thus it suffices to prove that

HomD(A)(K, I) = colim HomD(A)(K, I[mn])

This would be immediate if K where a compact object (or a perfect object) of
D(A). This is not the case, but K is a pseudo-coherent object which is enough here.
Namely, we can represent K by a bounded above complex of finite free R-modules
K•. In this case the Hom groups above are computed by using HomK(A)(K

•,−).
As each Kn is finite free the limit statement holds and the proof is complete. �

Let R be a ring. We will say that an object L of D(R) is invertible if there is an
open covering Spec(R) =

⋃
D(fi) such that L⊗RRfi ∼= Rfi [−ni] for some integers

ni. In this case, the function

p 7→ np, where np is the unique integer such that Hnp(L⊗ κ(p)) 6= 0

is locally constant on Spec(R). In particular, it follows that L =
⊕
Hn(L)[−n]

which gives a well defined complex of R-modules (with zero differentials) represent-
ing L. Since each Hn(L) is finite projective and nonzero for only a finite number
of n we also see that L is a perfect object of D(R).

Lemma 12.4. Let A be a Noetherian ring. Let F : Db
Coh(A) → Db

Coh(A) be an
A-linear equivalence of categories. Then F (A) is an invertible object of D(A).

Proof. Let m ⊂ A be a maximal ideal with residue field κ. Consider the object
F (κ). Since κ = HomD(A)(κ, κ) we find that all cohomology groups of F (κ) are
annihilated by m. We also see that

ExtiA(κ, κ) = ExtiA(F (κ), F (κ)) = HomD(A)(F (κ), F (κ)[−i])

http://localhost:8080/tag/0A7D
http://localhost:8080/tag/0A7E


DUALIZING COMPLEXES 23

is zero for i < 0. Say Ha(F (κ)) 6= 0 and Hb(F (κ)) 6= 0 with a minimal and b
maximal (so in particular a ≤ b). Then there is a nonzero map

F (κ)→ Hb(F (κ))[−b]→ Ha(F (κ))[−b]→ F (κ)[a− b]
in D(A) (nonzero because it induces a nonzero map on cohomology). This proves
that b = a. We conclude that F (κ) = κ[−a].

Let G be a quasi-inverse to our functor F . Arguing as above we find an integer
b such that G(κ) = κ[−b]. On composing we find a + b = 0. Let E be a finite
A-module wich is annihilated by a power of m. Arguing by induction on the length
of E we find that G(E) = E′[−b] for some finite A-module E′ annihilated by a
power of m. Then E[−a] = F (E′). Next, we consider the groups

ExtiA(A,E′) = ExtiA(F (A), F (E′)) = HomD(A)(F (A), E[−a+ i])

The left hand side is nonzero if and only if i = 0 and then we get E′. Applying this
with E = E′ = κ and using Nakayama’s lemma this implies that Hj(F (A)) is zero
for j > a and generated by 1 element for j = a. On the other hand, if Hj(F (A))m
is not zero for some j < a, then there is a map F (A) → E[−a + i] for some i < 0
and some E (Lemma 12.3) Thus we see that F (A)m = M [−a] for some Am-module
M generated by 1 element. However, since

Am = HomD(A)(A,A)m = HomD(A)(F (A), F (A))m = HomAm
(M,M)

we see that M ∼= Am. We conclude that there exists an element f ∈ A, f 6∈ m such
that F (A)f is isomorphic to Af [−a]. This finishes the proof. �

Lemma 12.5. Let A be a Noetherian ring. If ω•A and (ω′A)• are dualizing com-
plexes, then (ω′A)• is quasi-isomorphic to ω•A ⊗L

A L for some invertible object L of
D(A).

Proof. By Lemmas 12.2 and 12.4 the functor K 7→ RHom(RHom(K,ω•A), (ω′A)•)
maps A to an invertible object L. In other words, there is an isomorphism

L −→ RHom(ω•A, (ω
′
A)•)

Since L has finite tor dimension, this means that we can apply More on Algebra,
Lemma 55.6 to see that

RHom(ω•A, (ω
′
A)•)⊗L

A K −→ RHom(RHom(K,ω•A), (ω′A)•)

is an isomorphism for K in Db
Coh(A). In particular, setting K = ω•A finishes the

proof. �

Lemma 12.6. Let A be a Noetherian ring. Let B = S−1A be a localization. If ω•A
is a dualizing complex, then ω•A ⊗A B is a dualizing complex for B.

Proof. Let ω•A → I• be a quasi-isomorphism with I• a bounded complex of injec-
tives. Then S−1I• is a bounded complex of injective B = S−1A-modules (Lemma
3.9) representing ω•A ⊗A B. Thus ω•A ⊗A B has finite injective dimension. Since
Hi(ω•A⊗AB) = Hi(ω•A)⊗AB by flatness of A→ B we see that ω•A⊗AB has finite
cohomology modules. Finally, the map

B −→ RHom(ω•A ⊗A B,ω•A ⊗A B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 55.7. �
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Lemma 12.7. Let A be a Noetherian ring. Let f1, . . . , fn ∈ A generate the unit
ideal. If ω•A is a complex of A-modules such that (ω•A)fi is a dualizing complex for
Afi for all i, then ω•A is a dualizing complex for A.

Proof. Consider the double complex∏
i0

(ω•A)fi0 →
∏

i0<i1
(ω•A)fi0fi1 → . . .

The associated total complex is quasi-isomorphic to ω•A for example by Descent,
Remark 3.10 or by Derived Categories of Schemes, Lemma 8.4. By assumption the
complexes (ω•A)fi have finite injective dimension as complexes of Afi-modules. This
implies that each of the complexes (ω•A)fi0 ...fip , p > 0 has finite injective dimension
over Afi0 ...fip , see Lemma 3.9. This in turn implies that each of the complexes

(ω•A)fi0 ...fip , p > 0 has finite injective dimension over A, see Lemma 3.2. Hence ω•A
has finite injective dimension as a complex of A-modules (as it can be represented by
a complex endowed with a finite filtration whose graded parts have finite injective
dimension). Since Hn(ω•A)fi is a finite Afi module for each i we see that Hi(ω•A)
is a finite A-module, see Algebra, Lemma 23.2. Finally, the (derived) base change
of the map A → RHom(ω•A, ω

•
A) to Afi is the map Afi → RHom((ω•A)fi , (ω

•
A)fi)

by More on Algebra, Lemma 55.7. Hence we deduce that A → RHom(ω•A, ω
•
A) is

an isomorphism and the proof is complete. �

Lemma 12.8. Let A→ B be a surjective homomorphism of Noetherian rings. Let
ω•A be a dualizing complex. Then RHom(B,ω•A) is a dualizing complex for B.

Proof. Let ω•A → I• be a quasi-isomorphism with I• a bounded complex of injec-
tives. Then HomA(B, I•) is a bounded complex of injective B-modules (Lemma
3.4) representing RHom(B,ω•A). Thus RHom(B,ω•A) has finite injective dimen-
sion. By Lemma 10.3 it is an object of DCoh(B). Finally, we compute

HomD(B)(RHom(B,ω•A), RHom(B,ω•A)) = HomD(A)(RHom(B,ω•A), ω•A) = B

and for n 6= 0 we compute

HomD(B)(RHom(B,ω•A), RHom(B,ω•A)[n]) = HomD(A)(RHom(B,ω•A), ω•A[n]) = 0

which proves the last property of a dualizing complex. In the displayed equations,
the first equality holds by Lemma 10.1 and the second equality holds by Lemma
12.2. �

Lemma 12.9. Let A be a Noetherian ring. If ω•A is a dualizing complex, then
ω•A ⊗A A[x] is a dualizing complex for A[x].

Proof. Set B = A[x] and ω•B = ω•A ⊗A B. It follows from Lemma 3.11 and More
on Algebra, Lemma 53.4 that ω•B has finite injective dimension. Since Hi(ω•B) =
Hi(ω•A) ⊗A B by flatness of A → B we see that ω•A ⊗A B has finite cohomology
modules. Finally, the map

B −→ RHom(ω•B , ω
•
B)

is a quasi-isomorphism as formation of internal hom commutes with flat base change
in this case, see More on Algebra, Lemma 55.7. �

Proposition 12.10. Let A be a Noetherian ring which has a dualizing complex.
Then any A-algebra essentially of finite type over A has a dualixing complex.

Proof. This follows from a combination of Lemmas 12.6, 12.8, and 12.9. �
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Lemma 12.11. Let A be a Noetherian ring. Let ω•A be a dualizing complex. Let
m ⊂ A be a maximal ideal and set κ = A/m. Then RHomA(κ, ω•A) ∼= κ[n] for some
n ∈ Z.

Proof. This is true because RHomA(κ, ω•A) is a dualizing complex over κ (Lemma
12.8), because dualizing complexes over κ are unique up to shifts (Lemma 12.5),
and because κ is a dualizing complex over κ. �

13. Dualizing complexes over local rings

In this section (A,m, κ) will be a Noetherian local ring endowed with a dualizing
complex ω•A such that the integer n of Lemma 12.11 is zero. More precisely, we
assume that RHomA(κ, ω•A) = κ[0]. In this case we will say that the dualizing
complex is normalized. Observe that a normalized dualizing complex is unique up
to isomorphism and that any other dualizing complex for A is isomorphic to a shift
of a normalized one (Lemma 12.5).

Lemma 13.1. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let A→ B be surjective. Then ω•B = RHomA(B,ω•A) is a normalized
dualizing complex for B.

Proof. By Lemma 12.8 the complex ω•B is dualizing for B. We compute

RHomB(κ,RHomA(B,ω•A)) = RHomA(κ, ω•A) ∼= κ[0]

The first equality by Lemma 10.1. �

Lemma 13.2. Let (A,m, κ) be a Noetherian local ring. Let F be an A-linear self-
equivalence of the category of finite length A-modules. Then F is isomorphic to the
identity functor.

Proof. Since κ is the unique simple object of the category we have F (κ) ∼= κ. Since
our category is abelian, we find that F is exact. Hence F (E) has the same length
as E for all finite length modules E. Since Hom(E, κ) = Hom(F (E), F (κ)) ∼=
Hom(F (E), κ) we conclude from Nakayama’s lemma that E and F (E) have the
same number of generators. Hence F (A/mn) is a cyclic A-module. Pick a generator
e ∈ F (A/mn). Since F is A-linear we conclude that mne = 0. The map A/mn →
F (A/mn) has to be an isomorphism as the lengths are equal. Pick an element

e ∈ limF (A/mn)

which maps to a generator for all n (small argument omitted). Then we obtain
a system of isomorphisms A/mn → F (A/mn) compatible with all A-module maps

A/mn → A/mn
′

(by A-linearity of F again). Since any finite lenghth module is a
cokernel of a map between direct sums of cyclic modules, we obtain the isomorphism
of the lemma. �

Lemma 13.3. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let E be an injective hull of κ. Then there exists a functorial isomor-
phism

RHom(N,ω•A) = HomA(N,E)[0]

for N running through the finite length A-modules.
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Proof. By induction on the length of N we see that RHom(N,ω•A) is a module of
finite length sitting in degree 0. Thus RHomA(−, ω•A) induces an anti-equivalence
on the category of finite length modules. Since the same is true for HomA(−, E)
by Proposition 7.8 we see that

N 7−→ HomA(RHom(N,ω•A), E)

is an equivalence as in Lemma 13.2. Hence it is isommorphic to the identity functor.
Since HomA(−, E) applied twice is the identity (Proposition 7.8) we obtain the
statement of the lemma. �

Lemma 13.4. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. If dim(A) = 0, then ω•A

∼= E[0] where E is an injective hull of the
residue field.

Proof. Immediate from Lemma 13.3. �

Lemma 13.5. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex. Let I ⊂ m be an ideal of finite length. Set B = A/I. Then there is a
distinguished triangle

ω•B → ω•A → HomA(I, E)[0]→ ω•B [1]

in D(A) where E is an injective hull of κ and ω•B is a normalized dualizing complex
for B.

Proof. Use the short exact sequence 0→ I → A→ B → 0 and Lemmas 13.3 and
13.1. �

Lemma 13.6. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let f ∈ m be a nonzerodivisor. Set B = A/(f). Then there is a
distinguished triangle

ω•B → ω•A → ω•A → ω•B [1]

in D(A) where ω•B is a normalized dualizing complex for B.

Proof. Use the short exact sequence 0→ A→ A→ B → 0 and Lemma 13.1. �

Lemma 13.7. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let d = dim(A). Then

(1) if Hi(ω•A) is nonzero, then i ∈ {−d, . . . , 0},
(2) the dimension of the support of Hi(ω•A) is at most −i,

Proof. We prove this by induction on the dimension of A. If dim(A) = 0 this
follows immediately from Lemma 13.4.

Assume that the result holds for rings of dimension < d and that A has depth
at least 1. Then we can find a nonzero divisor f and apply Lemma 13.6 and the
induction hypothesis to B. It follows that multiplication by f is surjective on
Hi(ω•A) for i > 0 and i < d. By Nakayama we conclude these cohomology modules
are zero, i.e., (1) holds. If the dimension of the support of Hi(ω•A) is e, then the
dimension of the support of Hi(ω•A)/fHi(ω•A) ⊂ Hi+1(ω•B) is at least e− 1. Hence
our induction assumption gives that e ≤ −i.
If A has depth 0, then we let I = A[m∞] be the maximal ideal of A having finite
length. Then B = A/I has depth ≥ 1 so we know the result for B. Applying
Lemma 13.5 we obtain the result for A. �
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Lemma 13.8. Let (A,m, κ) be a Noetherian local ring with normalized dualizing
complex ω•A. Let p be a minimal prime of A with dim(A/p) = e. Then Hi(ω•A)p is
nonzero if and only if i = −e.

Proof. Since Ap has dimension zero, there exists an integer n > 0 such that pnAp

is zero. Set B = A/pn and ω•B = RHomA(B,ω•A). Since Bp = Ap we see that
(ω•B)p ∼= (ω•A)p by using More on Algebra, Lemma 55.7. By Lemma 13.1 we may
replace A by B. After doing so, we see that dim(A) = e. Then we see that Hi(ω•A)p
can only be nonzero if i = −e by Lemma 13.7. On the other hand, since (ω•A)p is a
dualizing complex for the nonzero ring Ap (Lemma 12.6) we see that the remaining
module has to be nonzero. �

14. The dimension function of a dualizing complex

Our results in the local setting have the following consequence: a Noetherian ring
with has a dualizing complex is a universally catenary ring of finite dimension.

Lemma 14.1. Let A be a Noetherian ring. Let p be a minimal prime of A. Then
Hi(ω•A)p is nonzero for exactly one i.

Proof. The complex ω•A ⊗A Ap is a dualizing complex for Ap (Lemma 12.6). The
dimension of Ap is zero as p is minimal. Hence the result follows from Lemma
13.4. �

Let A be a Noetherian ring and let ω•A be a dualizing complex. Lemma 12.11 allows
us to define a function

δ = δω•A : Spec(A) −→ Z

by mapping p to the integer of Lemma 12.11 for the dualizing complex (ω•A)p over
Ap (Lemma 12.6) and the residue field κ(p). To be precise, we define δ(p) to be
the unique integer such that

(ω•A)p[−δ(p)]

is a normalized dualizing complex over the Noetherian local ring Ap.

Lemma 14.2. Let A be a Noetherian ring and let ω•A be a dualizing complex. Let
A → B be a surjective ring map and let ω•B = RHom(B,ω•A) be the dualizing
complex for B of Lemma 12.8. Then we have

δω•B = δω•A |Spec(B)

Proof. This follows from the definition of the functions and Lemma 13.1. �

Lemma 14.3. Let A be a Noetherian ring and let ω•A be a dualizing complex. The
function δ = δω•A defined above is a dimension function (Topology, Definition 19.1).

Proof. Let p ⊂ q be an immediate specialization. We have to show that δ(p) =
δ(q) + 1. We may replace A by A/p, the complex ω•A by ω•A/p = RHom(A/p, ω•A),

the prime p by (0), and the prime q by q/p, see Lemma 14.2. Thus we may assume
that A is a domain, p = (0), and q is a prime ideal of height 1.

Then Hi(ω•A)(0) is nonzero for exactly one i, say i0, by Lemma 14.1. In fact
i0 = −δ((0)) because (ω•A)(0)[−δ((0))] is a normalized dualizing complex over the
field A(0).
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On the other hand (ω•A)q[−δ(q)] is a normalized dualizing complex for Aq. By
Lemma 13.8 we see that

He((ω•A)q[−δ(q)])(0) = He−δ(q)(ω•A)(0)

is nonzero only for e = −dim(Aq) = −1. We conclude

−δ((0)) = −1− δ(p)

as desired. �

Lemma 14.4. Let A be a Noetherian ring which has a dualizing complex. Then A
is universally catenary of finite dimension.

Proof. Because Spec(A) has a dimension function by Lemma 14.3 it is catenary,
see Topology, Lemma 19.2. Hence A is catenary, see Algebra, Lemma 101.2. It
follows from Proposition 12.10 that A is universally catenary.

Because any dualizing complex ω•A is in Db
Coh(A) the values of the function δω•A in

minimal primes are bounded by Lemma 14.1. On the other hand, for a maximal
ideal m with residue field κ the integer i = −δ(m) is the unique integer such that
ExtiA(κ, ω•A) is nonzero (Lemma 12.11). Since ω•A has finite injective dimension
these values are bounded too. Since the dimension of A is the maximal value of
δ(p) − δ(m) where p ⊂ m are a pair consisting of a minimal prime and a maximal
prime we find that the dimension of Spec(A) is bounded. �

15. The local duality theorem

The main result in this section is due to Grothendieck.

Lemma 15.1. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let Z = V (m) ⊂ Spec(A). Then E = R0ΓZ(ω•A) is an injective
hull of κ and RΓZ(ω•A) = E[0].

Proof. By Lemma 8.9 we have RΓm = RΓZ . Thus

RΓZ(ω•A) = RΓm(ω•A) = hocolim RHom(A/mn, ω•A)

by Lemma 8.2. Let E′ be an injective hull of the residue field. By Lemma 13.3 we
can find isomorphisms

RHom(A/mn, ω•A) ∼= HomA(A/In, E′)[0]

compatible with transition maps. Since E′ =
⋃
E′[mn] = colim HomA(A/In, E′)

by Lemma 7.3 we conclude that E ∼= E′ and that all other cohomology groups of
the complex RΓZ(ω•A) are zero. �

Remark 15.2. Let (A,m, κ) be a Noetherian local ring with a normalized dualizing
complex ω•A. By Lemma 15.1 above we see that RΓZ(ω•A) is an injective hull of the
residue field placed in degree 0. In fact, this gives a “construction” or “realization”
of the injective hull which is slightly more canonical than just picking any old
injective hull. Namely, a normalized dualizing complex is unique up to isomorphism,
with group of automorphisms the group of units of A, whereas an injective hull of
κ is unique up to isomorphism, with group of automorphisms the group of units of
the completion A∧ of A with respect to m.

Here is the main result of this section.
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Theorem 15.3. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let Z = V (m) ⊂
Spec(A). Denote ∧ derived completion with respect to m. Then

RHom(K,ω•A)∧ ∼= RHom(RΓZ(K), E[0])

for K in D(A).

Proof. Observe that E[0] ∼= RΓZ(ω•A) by Lemma 15.1. By More on Algebra,
Lemma 64.11 completion on the left hand side goes inside. Thus we have to prove

RHom(K∧, (ω•A)∧) = RHom(RΓZ(K), RΓZ(ω•A))

This follows from the equivalence between Dcomp(A,m) and Dm∞-torsion(A) given
in Proposition 9.2. More precisely, it is a special case of Lemma 9.3. �

Here is a special case of the theorem above.

Lemma 15.4. Let (A,m, κ) be a Noetherian local ring. Let ω•A be a normalized
dualizing complex. Let E be an injective hull of the residue field. Let K ∈ DCoh(A).
Then

ExtiA(K,ω•A)∧ = HomA(Hi
m(K), E)

where ∧ denotes m-adic completion.

Proof. By Lemma 12.2 we see that RHom(K,ω•A) is an object of DCoh(A). It
follows that the cohomology modules of the derived completion of RHom(K,ω•A)

are equal to the usual completions ExtiA(K,ω•A)∧ by More on Algebra, Lemma
64.20. On the other hand, we have RΓm = RΓZ for Z = V (m) by Lemma 8.9.
Moreover, the functor HomA(−, E) is exact hence factors through cohomology.
Hence the lemma is consequence of Theorem 15.3. �

16. Dualizing complexes on schemes

We define a dualizing complex on a locally Noetherian scheme to be a complex
which affine locally comes from a dualizing complex on the corresponding ring.
This is not completely standard but agrees with all definitions in the literature on
Noetherian schemes of finite dimension.

Lemma 16.1. Let X be a locally Noetherian scheme. Let K be an object of D(OX).
The following are equivalent

(1) For every affine open U = Spec(A) ⊂ X there exists a dualizing complex
ω•A for A such that K|U is isomorphic to the image of ω•A by the functor˜: D(A)→ D(OU ).

(2) There is an affine open covering X =
⋃
Ui, Ui = Spec(Ai) such that for

each i there exists a dualizing complex ω•i for Ai such that K|U is isomorphic
to the image of ω•i by the functor˜: D(Ai)→ D(OUi).

Proof. Assume (2) and let U = Spec(A) be an affine open of X. Since condition
(2) implies that K is in DQCoh(OX) we find an object ω•A in D(A) whose associated
complex of quasi-coherent sheaves is isomorphic to K|U , see Derived Categories of
Schemes, Lemma 3.4. We will show that ω•A is a dualizing complex for A which
will finish the proof.

Since X =
⋃
Ui is an open covering, we can find a standard open covering U =

D(f1) ∪ . . . ∪ D(fm) such that each D(fj) is a standard open in one of the affine
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opens Ui, see Schemes, Lemma 11.5. Say D(fj) = D(gj) for gj ∈ Aij . Then
Afj
∼= (Aij )gj and we have

(ω•A)fj
∼= (ω•i )gj

in the derived category by Derived Categories of Schemes, Lemma 3.4. By Lemma
12.6 we find that the complex (ω•A)fj is a dualizing complex over Afj for j =
1, . . . ,m. This implies that ω•A is dualizing by Lemma 12.7. �

Definition 16.2. Let X be a locally Noetherian scheme. An object K of D(OX)
is called a dualizing complex if K satisfies the equivalent conditions of Lemma 16.1.

Please see remarks made at the beginning of this section.

Lemma 16.3. Let A be a Noetherian ring and let X = Spec(A). Let K,L be
objects of D(A). If K ∈ DCoh(A) and L has finite injective dimension, then

RHom(K̃, L̃) = ˜RHom(K,L)

in D(OX).

Proof. We may assume that L is given by a finite complex I• of injective A-
modules. By induction on the length of I• and compatibility of the constructions
with distinguished triangles, we reduce to the case that L = I[0] where I is an
injective A-module. In this case, Derived Categories of Schemes, Lemma 9.8, tells

us that the nth cohomology sheaf of RHom(K̃, L̃) is the sheaf associated to the
presheaf

D(f) 7−→ ExtnAf
(K ⊗A Af , I ⊗A Af )

Since A is Noetherian, the Af -module I ⊗AAf is injective (Lemma 3.9). Hence we
see that

ExtnAf
(K ⊗A Af , I ⊗A Af ) = HomAf

(H−n(K ⊗A Af ), I ⊗A Af )

= HomAf
(H−n(K)⊗A Af , I ⊗A Af )

= HomA(H−n(K), I)⊗A Af
The last equality because H−n(K) is a finite A-module. This proves that the
canonical map

˜RHom(K,L) −→ RHom(K̃, L̃)

is a quasi-isomorphism in this case and the proof is done. �

Lemma 16.4. Let K be a dualizing complex on a locally Noetherian scheme X.
Then K is an object of DCoh(OX) and D = RHom(−,K) induces an anti-equivalence

D : DCoh(OX) −→ DCoh(OX)

such that D ◦ D ∼= id. If X is quasi-compact, then D exchanges D+
Coh(OX) and

D−Coh(OX) and induces an equivalence Db
Coh(OX)→ Db

Coh(OX).

Proof. Let U ⊂ X be an affine open. Say U = Spec(A) and let ω•A be a dualizing
complex for A corresponding toK|U as in Lemma 16.1. By Lemma 16.3 the diagram

DCoh(A) //

RHom(−,ω•A)

��

DCoh(OU )

RHom(−,K|U )

��
DCoh(A) // D(OU )
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commutes. We conclude that D sends DCoh(OX) into DCoh(OX). Moreover, the
canonical map

L −→ RHom(RHom(L,K),K)

(Cohomology on Sites, Lemma 26.5) is an isomorphism for all L because this is
true on affines by Lemma 12.2. The statement on boundedness properties of the
functor D in the quasi-compact case also folow from the corresponding statements
of Lemma 12.2. �

17. Twisted inverse image

References for this section are [Nee96] and [LN07]. Let f : X → Y be a morphism
of schemes. In some papers, a twisted inverse image for f is defined to be a right
adjoint to the functor Rf∗ : DQCoh(OX)→ DQCoh(OX). However, this terminology
is not universally accepted and we refrain from giving a formal definition. We also
will not use the notation f ! for such a functor, as this would clash (for general
morphisms f) with the notation in [Har66].

Lemma 17.1. Let f : X → Y be a morphism between quasi-separated and quasi-
compact schemes. The functor Rf∗ : DQCoh(X)→ DQCoh(Y ) has a right adjoint.

Proof. We will prove a right adjoint exists by verifying the hypotheses of Derived
Categories, Proposition 35.2. First off, the category DQCoh(OX) has direct sums,
see Derived Categories of Schemes, Lemma 3.1. The category DQCoh(OX) is com-
pactly generated by Derived Categories of Schemes, Theorem 13.3. Since X and
Y are quasi-compact and quasi-separated, so is f , see Schemes, Lemmas 21.14 and
21.15. Hence the functor Rf∗ commutes with direct sums, see Derived Categories
of Schemes, Lemma 4.2. This finishes the proof. �

Example 17.2. Let A → B be a ring map. Let Y = Spec(A) and X = Spec(B)
and f : X → Y the morphism corresponding to A → B. Then Rf∗ corre-
sponds to restriction D(B) → D(A) via the equivalences D(B) → DQCoh(OX)
and D(A) → DQCoh(OY ). Hence the right adjoint corresponds to the functor
K 7−→ RHom(B,K) of Section 10.

Example 17.3. If f : X → Y is a separated finite type morphism of Noether-
ian schemes, then twisted inverse image does not map DCoh(OY ) into DCoh(OX).
Namely, let k be a field and consider the morphism f : A1

k → Spec(k). By Example
17.2 this corresponds to the question of whether RHom(B,−) maps DCoh(A) into
DCoh(B) where A = k and B = k[x]. This is not true because

RHom(k[x], k) =
(∏

n≥0
k
)

[0]

which is not a finite k[x]-module. Hence a(OY ) does not have coherent cohomology
sheaves.

Example 17.4. If f : X → Y is a proper or even finite morphism of Noetherian
schemes, then twisted inverse image does not map D−QCoh(OY ) into D−QCoh(OX).

Namely, let k be a field, let k[ε] be the dual numbers over k, let X = Spec(k), and
let Y = Spec(k[ε]). Then Extik[ε](k, k) is nonzero for all i ≥ 0. Hence a(OY ) is not
bounded above by Example 17.2.
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Lemma 17.5. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let a : DQCoh(OY )→ DQCoh(OX) be the right adjoint to Rf∗ of Lemma
17.1. Then a maps D+

QCoh(OY ) into D+
QCoh(OX).

Proof. By Derived Categories of Schemes, Lemma 4.1 the functor Rf∗ has fi-
nite cohomological dimension. In other words, there exist an integer N such that
Hi(Rf∗L) = 0 for i ≥ N + c if Hj(L) = 0 for j ≥ c. Say K ∈ D+

QCoh(OY ) has

Hk(K) = 0 for k ≥ c. Then

HomD(OX)(τ≤c−Na(K), a(K)) = HomD(OY )(Rf∗τ≤c−Na(K),K) = 0

by what we said above. Clearly, this implies that a(K) is bounded below. �

We often want to know whether the twisted inverse image commutes with base
change. Thus we consider a cartesian square

(17.5.1)

X ′
g′
//

f ′

��

X

f

��
Y ′

g // Y

of quasi-compact and quasi-separated schemes. Denote

a : DQCoh(OY )→ DQCoh(OX),

a′ : DQCoh(OY ′)→ DQCoh(OX′),
b : DQCoh(OX)→ DQCoh(OX′),
b′ : DQCoh(OY )→ DQCoh(OY ′)

the right adjoints to Rf∗, Rf
′
∗, Rg∗, and Rg′∗ (Lemma 17.1). Since Rf∗ ◦ Rg′∗ =

Rg∗ ◦Rf ′∗ we get
b′ ◦ a = a′ ◦ b.

Another compatibility comes from the base change map of Cohomology, Remark
29.2. It induces a transformation of functors

Lg∗ ◦Rf∗ −→ Rf ′∗ ◦ L(g′)∗

on derived categories of sheaves with quasi-coherent cohomology. Hence a trans-
formation between the right adjoints in the opposite direction

a ◦Rg∗ ←− Rg′∗ ◦ a′

Lemma 17.6. In diagram (17.5.1) assume that g is flat or more generally that f
and g are Tor independent. Then a ◦Rg∗ ←− Rg′∗ ◦ a′ is an isomorphism.

Proof. In this case the base change map Lg∗ ◦Rf∗K −→ Rf ′∗ ◦L(g′)∗K is an iso-
morphism for every K in DQCoh(OX) by Derived Categories of Schemes, Lemma
16.3. Thus the corresponding transformation between adjoint functors is an iso-
morphism as well. �

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
V ⊂ Y be a quasi-compact open subscheme and set U = f−1(V ). This gives a
cartesian square

U
j′
//

f |U
��

X

f

��
V

j // Y

http://localhost:8080/tag/0A9I
http://localhost:8080/tag/0A9K


DUALIZING COMPLEXES 33

as in (17.5.1). By Lemma 17.6 we have a ◦ Rj∗ = Rj′∗ ◦ a′ where a and a′ are the
twisted inverse images corresponding to f and f |U . Let K ∈ DQCoh(OY ). Then
we get a map

(17.6.1) a(K)|U −→ a(Rj∗K|V )|U = (Rj′∗a
′(K|V ))|U = a′(K|V )

where the first arrow comes from the adjunction map K → Rj∗K|V .

Example 17.7. There is a finite morphsm f : X → Y of Noetherian schemes
such that (17.6.1) is not an isomorphism for some K ∈ DCoh(OY ). Namely, let
X = Spec(B) → Y = Spec(A) with A = k[x, ε] where k is a field and ε2 = 0 and
B = k[x] = A/(ε). For n ∈ N set Mn = A/(ε, xn). Observe that

ExtiA(B,Mn) = Mn, i ≥ 0

because B has the free periodic resolution . . . → A → A → A with maps given
by multiplication by ε. Consider the object K =

⊕
Kn[n] =

∏
Kn[n] of DCoh(A)

(equality in D(A) by Derived Categories, Lemmas 31.2 and 32.2). Then we see
that a(K) correspnds to RHom(B,K) by Example 17.2 and

H0(RHom(B,K)) = Ext0A(B,K) =
∏

n≥1
ExtnA(B.Mn) =

∏
n≥1

Mn

by the above. But this module has elements which are not annihilated by any power
of x, whereas the complex K does have every element of its cohomology annihilated
by a power of x. In other words, for the map (17.6.1) with V = D(x) and U = D(x)
and the complex K, the left hand side is nonzero and the right hand side is zero.

Lemma 17.8. Let f : X → Y be a morphism of quasi-compact and quasi-separated
schemes. Let V ⊂ Y be quasi-compact open with inverse image U ⊂ X. If for every
Q ∈ D+

QCoh(OY ) supported on Y \ V the twisted inverse image a(Q) is supported

on X \ U , then (17.6.1) is an isomorphism for all K in D+
QCoh(OY ).

Proof. Choose a distinguished triangle

K → Rj∗K|V → Q→ K[1]

Observe that Q is supported on Y \ V (Derived Categories of Schemes, Definition
6.4). Applying the twisted inverse image a we obtain a distinguished triangle

a(K)→ a(Rj∗K|V )→ a(Q)→ a(K)[1]

on X. If a(Q) is supported on X \ U , then restricting to U the map a(K)|U →
a(Rj∗K|V )|U is an isomorphism, i.e., (17.6.1) is an isomorphism. �

Lemma 17.9. Let f : X → Y be a proper1 morphism of Noetherian schemes. The
assumption and hence the conclusion of Lemma 17.8 holds for all opens V of Y .

Proof. Let Q ∈ D+
QCoh(OY ) be supported on Y \V . To get a contradiction, assume

that a(Q) is not supported on X \ U . Then we can find a perfect complex PU on
U and a nonzero map PU → a(Q)|U (follows from Derived Categories of Schemes,
Theorem 13.3). Then using Derived Categories of Schemes, Lemma 11.9 we may
assume there is a perfect complex P on X and a map P → a(Q) whose restriction

1This proof works for those morphisms of quasi-compact and quasi-separated schemes such

that Rf∗P is pseudo-coherent for all P perfect on X. It follows easily from a theorem of Kiehl
[Kie72] that this holds if f is proper and pseudo-coherent. This is the correct generality for this

lemma and some of the other results in this section.
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to U is nonzero. By definition of the twisted inverse image this map is adjoint to a
map Rf∗P → Q.

Because f is proper and X and Y Noetherian, the complex Rf∗P is pseudo-
coherent, see Derived Categories of Schemes, Lemmas 5.1 and 9.4. Thus we may
apply Derived Categories of Schemes, Lemma 14.3 and get a map I → OY of per-
fect complexes whose restriction to V is an isomorphism such that the composition
I ⊗L
OY

Rf∗P → Rf∗P → K is zero. By Derived Categories of Schemes, Lemma

16.1 we have I⊗L
OY

Rf∗P = Rf∗(Lf
∗I⊗L

OX
P ). We conclude that the composition

Lf∗I ⊗L
OX

P → P → a(K)

is zero. However, the restriction to U is the map P |U → a(K)|U which we assumed
to be nonzero. This contradiction finishes the proof. �

Lemma 17.10. Let f : X → Y be a proper morphism of Noetherian schemes. Let
a be the twisted inverse image. Then the canonical map

Rf∗RHom(L, a(K)) −→ RHom(Rf∗L,K)

is an isomorphism for all L ∈ DQCoh(OX) and all K ∈ D+
QCoh(OY ).

Proof. Since a is the right adjoint to Rf∗ there is a adjunction map Rf∗a(K)→ K.
On the other hand, there is a canonical map

Rf∗RHom(L, a(K))→ RHom(Rf∗L,Rf∗a(K))

which works on the level of complexes. Combining these we obtain the map of the
lemma. Taking H0(V,−) for an open V of Y with inverse image U in X we get

HomD(OU )(L|U , a(K)|U ) −→ HomD(OV )(Rf∗L|V ,K|V )

Since we’ve shown above that a(K)|U is the twisted inverse image of K|V (Lemma
17.9) the two sides of this arrow are isomorphic. We omit the verification that the
two maps agree. A similar argument works for Hn(V,−). Thus the map defined
above is an isomorphism on cohomology and hence an isomorphism in the derived
category. �

Let f : X → Y be a morphism of quasi-compact and quasi-separated schemes. Let
a be the twisted inverse image (Lemma 17.1). There is a canonical map

(17.10.1) Lf∗K ⊗L
OX

a(OY ) −→ a(K)

functorial in K and compatible with distinguished triangles. Namely, this map is
adjoint to a map

Rf∗(Lf
∗K ⊗L

OX
a(OY )) = K ⊗L

OX
Rf∗(a(OY )) −→ K

(equality by Derived Categories of Schemes, Lemma 16.1) for which we use the
adjunction map Rf∗a(OY )→ OY and the indentity on K.

Lemma 17.11. Let f : X → Y be a morphism of quasi-compact and quasi-
separated schemes. The map (17.10.1) is an isomorphism for every perfect object
K of D(OY ).
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Proof. For a perfect object K on Y and L ∈ DQCoh(OX) we have

HomD(OY )(Rf∗L,K) = HomD(OY )(Rf∗L⊗L
OY

K∧,OY )

= HomD(OX)(L⊗L
OX

Lf∗K∧, a(OY ))

= HomD(OX)(L, a(OY )⊗L
OX

Lf∗K)

Hence the result by the Yoneda lemma. �

Lemma 17.12. Let i : Z → X be a closed immersion of quasi-compact and quasi-
separated schemes. Let a : DQCoh(OX)→ DQCoh(OZ) be the twisted inverse image,
i.e., the right adjoint to Ri∗. Then there is a functorial isomorphism

a(K) = RHom(OZ ,K)

for K ∈ D+
QCoh(OX).

Proof. By Lemma 11.2 the functor RHom(OZ ,−) is a right adjoint to Ri∗ :
D(OZ)→ D(OX). Moreover, by Lemma 11.4 and Lemma 17.5 both RHom(OZ ,−)
and a map D+

QCoh(OX) into D+
QCoh(OZ). Hence we obtain the isomorphism by

uniqueness of adjoint functors. �

Remark 17.13. The map (17.6.1) is a special case of a base change map. Namely,
suppose that we have a diagram (17.5.1) where f and g are Tor independent. Let
K ∈ DQCoh(OX). Then we can consider the composition

(17.13.1) L(g′)∗a(K)→ L(g′)∗a(Rg∗Lg
∗K) = L(g′)∗Rg′∗a

′(Lg∗K)→ a′(Lg∗K)

We need the assumption on Tor independence to get the equality sign (the canonical
map goes the other way). The two arrows come from the adjunction maps id →
Rg∗Lg

∗ and L(g′)∗Rg′∗ → id. Alternatively, we can think of (17.5.1) by adjointness
of L(g′)∗ and R(g′)∗ as the map

a(K)→ a(Rg∗Lg
∗K) = Rg′∗a

′(Lg∗K)

If M ∈ DQCoh(OX) then on Yoneda functors this map is given by

HomX(M,a(K)) = HomY (Rf∗M,K)

→ HomY (Rf∗M,Rg∗Lg
∗K)

= HomY ′(Lg
∗Rf∗M,Lg∗K)

= HomY ′(Rf
′
∗L(g′)∗M,Lg∗K)

= HomX′(L(g′)∗M,a′(Lg∗K))

= HomX(M,Rg′∗a
′(Lg∗K))

which makes things a little bit more explicit.

Lemma 17.14. Let A→ A′ be a ring map. Let X be a quasi-compact and quasi-
separated scheme over A. Let h : X ′ = X ×Spec(A) Spec(A′)→ X be the projection.
Assume X and Spec(B) are Tor independent over Spec(A). We have

HomX(M,K ⊗L
OX

h∗OX′) = H0(RΓ(X,RHom(M,K))⊗L
A A

′)

in the following two cases

(1) M ∈ D(OX) is perfect and K ∈ DQCoh(X), or
(2) M ∈ D(OX) is pseudo-coherent, K ∈ D+

QCoh(X), and A′ has finite tor
dimension over A.
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Proof. The complex RHom(M,K) is an object of DQCoh(OX) and we have

RHom(M,K ⊗L
OX

h∗OX′) = RHom(M,K)⊗L
OX

h∗OX′

in both cases (details omitted; hints: you can check this when X is affine and
use Derived Categories of Schemes, Lemma 9.8 to identify the RHom complexes).
Hence, by replacing K by RHom(M,K) we reduce to proving

H0(X,K ⊗L
OX

h∗OX′) = H0(RΓ(X,K)⊗L
A A

′)

Note that the left hand side is equal to H0(X ′, Lh∗K) by Derived Categories of
Schemes, Lemma 4.4. Hence the lemma is an example of by Derived Categories of
Schemes, Lemma 16.3. �

Lemma 17.15. In diagram (17.5.1) assume

(1) g : Y ′ → Y is a morphism of affine schemes,
(2) f : X → Y is proper,
(3) Y Noetherian, and
(4) f or g is flat.

Then the base change map (17.13.1) is an isomorphism for all K ∈ DQCoh(OX) if
f is flat and for K ∈ D+

QCoh(OX) if g is flat.

Proof. Write Y = Spec(A) and Y ′ = Spec(A′). As a base change of an affine
morphism, the morphism g′ is affine. Hence Rg′∗ reflects isomorphisms, see Derived
Categories of Schemes, Lemma 4.3. Thus (17.13.1) is an isomorphism for K ∈
DQCoh(OX) if and only if the map a(K) → a(Rg∗Lg

∗K) = Rg′∗a
′(Lg∗K) induces

an isomorphism

a(K)⊗L
OX

g′∗OX′ → a(Rg∗Lg
∗K)

(see Derived Categories of Schemes, Lemma 4.4). As DQCoh(OX) is generated by
perfect objects (see Derived Categories of Schemes, Theorem 13.3), it suffices to
check we obtain an isomorphism after applying the functor HomX(M,−) where M
is perfect on X. On the left hand side we get

HomX(M,a(K)⊗L
OX

g′∗OX′) = H0(RΓ(X,RHom(M,a(K)))⊗L
A A

′)

= H0(RΓ(Y,RHom(Rf∗M,K))⊗L
A A

′)

The first equality by Lemma 17.14. Observe that RΓ(X,RHom(M,a(K))) is the
complex of A-modules whose cohomology groups are HomX(M,a(K)[n]) and simi-
lary for RΓ(Y,RHom(Rf∗M,K)), see Cohomology, Lemma 34.1. Hence the second
equality follows from the definition of a. In the case that f is flat the complex Rf∗M
is perfect on Y (Derived Categories of Schemes, Lemma 17.1) and in general the
complex Rf∗M is pseudo-coherent on Y (Derived Categories of Schemes, Lemmas
5.1 and 9.4). Thus we get on the right hand side

HomX(M,a(Rg∗Lg
∗K)) = HomY (Rf∗M,Rg∗Lg

∗K)

= HomY (Rf∗M,K ⊗L
OY

g∗OY ′)
= H0(RΓ(Y,RHom(Rf∗M,K))⊗L

A A
′)

by the same arguments. Thus we get the same outcome as before. We omit the
verification that our map induces the given identifications. �
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18. Flat and proper morphisms

The correct generality for this section would be to consider proper perfect mor-
phisms of quasi-compact and quasi-separated schemes, see [LN07].

Lemma 18.1. Let f : X → Y be a flat and proper morphism of Noetherian
schemes. Let a be the twisted inverse image. Then a commutes with direct sums.

Proof. Let P be a perfect object of D(OX). By Derived Categories of Schemes,
Lemma 17.1 the complex Rf∗P is perfect on Y . Let Ki be a family of objects of
DQCoh(OY ). Then

HomD(OX)(P, a(
⊕

Ki)) = HomD(OY )(Rf∗P,
⊕

Ki)

=
⊕

HomD(OY )(Rf∗P,Ki)

=
⊕

HomD(OX)(P, a(Ki))

because a perfect object is compact (Derived Categories of Schemes, Proposition
14.1). Since DQCoh(OX) has a perfect generator (Derived Categories of Schemes,
Theorem 13.3) we conclude that the map

⊕
a(Ki)→ a(

⊕
Ki) is an isomorphism,

i.e., a commutes with direct sums. �

Lemma 18.2. Let f : X → Y be a flat and proper morphism of Noetherian
schemes. Let a be the twisted inverse image. Let T ⊂ Y be closed. Then

(1) if Q ∈ DQCoh(Y ) is supported on T , then a(Q) is supported on f−1(T ),
(2) the map (17.6.1) is an isomorphism for K ∈ DQCoh(OY ), and
(3) the canonical map

Rf∗RHom(L, a(K)) −→ RHom(Rf∗L,K)

is an isomorphism for all L ∈ DQCoh(OX) and all K ∈ DQCoh(OY ).

Proof. Arguing exactly as in the proof of Lemma 17.10 we see that (2) implies (3).
Arguing exactly as in the proof of Lemma 17.8 we see that (1) implies (2).

Proof of (1). We will use the notation DQCoh,T (OY ) and DQCoh,f−1(T )(OX) to

denote complexes whose cohomology sheaves are supported on T and f−1(T ). By
Lemma 18.1 the functor a commutes with direct sums. Hence the strictly full,
saturated, triangulated subcategory D with objects

{Q ∈ DQCoh,T (OY ) | a(Q) ∈ DQCoh,f−1(T )(OX)}

is preserved by direct sums (and hence derived colimits). On the other hand, the
category DQCoh,T (OY ) is generated by a perfect object E (see Derived Categories
of Schemes, Lemma 13.5). By Lemma 17.9 we see that E ∈ D. By Derived
Categories, Lemma 34.3 every object Q of DQCoh,T (OY ) is a derived colimit of a
system Q1 → Q2 → Q3 → . . . such that the cones of the transition maps are direct
sums of shifts of E. Arguing by induction we see that En ∈ D for all n and finally
that Q is in D. Thus (1) is true. �

Lemma 18.3. Let f : X → Y be a proper flat morphism of Noetherian schemes.
The map (17.10.1) is an isomorphism for every object K of DQCoh(OY ).
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Proof. By Lemma 18.1 we know that a commutes with direct sums. Hence the col-
lection of objects of DQCoh(OY ) for which (17.10.1) is an isomorphism is a strictly
full, saturated, triangulated subcategory of DQCoh(OY ) which is moreover pre-
served under taking direct sums. Since DQCoh(OY ) is a module category (Derived
Categories of Schemes, Theorem 15.3) generated by a single perfect object (Derived
Categories of Schemes, Theorem 13.3) we can argue as in More on Algebra, Remark
45.11 to see that it suffices to prove (17.10.1) is an isomorphism for a single perfect
object. However, the result holds for perfect objects, see Lemma 17.11. �

Lemma 18.4. Let f : X → Y be a proper flat morphism of Noetherian schemes.
Let g : Y ′ → Y be a morphism of finite type. Then the base change map (17.13.1)
is an isomorphism for all K ∈ DQCoh(OX).

Proof. By Lemma 18.2 formation of the functors a and a′ commutes with restric-
tion to opens of Y and Y ′. Hence we may assume Y ′ → Y is a morphism of affine
schemes. In this case the statement follows from Lemma 17.15. �

Lemma 18.5. Let f : X = P1
Y → Y be the projection where Y is a Noether-

ian scheme. Let a be the twisted inverse image. Then a(OY ) is isomorphic to
OX(−2)[1].

Proof. Recall that there is an identification Rf∗(OX(−2)[1]) = OY , see Cohomol-
ogy of Schemes, Lemma 8.3 or 8.4. This determines a map OX(−2)[1] → a(OY ).
By Lemma 17.9 construction of the twisted inverse image is local on the base. In
particular, to check that OX(−2)[1] → a(OY ) is an isomorphism, we may work
locally on Y . In other words, we may assume Y is affine. In the affine case the
sheaves OX and OX(−1) generate DQCoh(X), see Derived Categories of Schemes,
Lemma 13.4. Hence it suffices to show that the maps

H−n+1(X,O(−2)) = HomD(OX)(OX [n],OX(−2)[1])

→ HomD(OX)(OX [n], a(OY ))

= HomD(OY )(Rf∗(OX)[n],OY )

= H−n(Y,OY )

and

H−n+1(X,OX(−1)) = HomD(OX)(OX(−1)[n],OX(−2)[1])

→ HomD(OX)(OX(−1)[n], a(OY ))

= HomD(OY )(Rf∗(OX(−1))[n],OY )

= 0

(where we used Cohomology of Schemes, Lemma 8.1) are isomorphisms for all
n ∈ Z. This is clear from the explicit computation of cohomology in Cohomology
of Schemes, Lemma 8.1. �

Example 18.6. The base change map (17.13.1) is not an isomorphism if f is proper
and perfect and g is perfect. Let k be a field. Let Y = A2

k and let f : X → Y be
the blow up of Y in the origin. Denote E ⊂ X the exceptional divisor. Then we
can factor f as

X
i−→ P1

Y
p−→ Y
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This gives a factorization a = c ◦ b where b is the twisted inverse image for p and
c is the twisted inverse image for i. Denote O(n) the Serre twist of the structure
sheaf on P1

Y and denote OX(n) its restriction to X. Note that X ⊂ P1
Y is cut

out by a degree one equation, hence O(X) = O(1). By Lemma 18.5 we have
b(OY ) = O(−2)[1]. By Lemma 17.12 we have

a(OY ) = c(b(OY )) = c(O(−2)[1]) = RHom(OX ,O(−2)[1]) = OX(−1)

Last equality by Lemma 11.6. Hence the restriction of a(OY ) to E = P1
k is an

invertible sheaf of degree −1 placed in cohomological degree 0. But on the other
hand, a′(OSpec(k)) = OE(−2)[1] which is an invertible sheaf of degree −2 placed in
cohomological degree −1, so different.

19. Upper shriek functors

In this section all schemes are Noetherian (but we will make sure all the assumptions
are mentioned explicitly in the statements).

Let S be a Noetherian scheme. We will say a schemeX over S has a compactification
over S if there exists an open immersion X → X into a scheme X proper over S.
If X has a compactification over S, then X → S is separated and of finite type. It
is a theorem of Nagata (see [Con07], [Nag56], [Nag57], [Nag62], and [Nag63]) that
the converse is true as well (we will give a precise statement and a proof if we ever
need this result).

Lemma 19.1. Let S be a Noetherian scheme. Let X be a scheme over S which
has a compactification over S.

(1) Any two compactifications of X/S can be dominated by a third.
(2) If X → Y → S is a factorization with Y → S of separated of finite type,

then X has a compactification over Y .

Proof. Omitted. �

Given a morphism f : X → Y of compactifyable schemes over a Noetherian base
scheme S, we will define an exact functor

f ! : D+
QCoh(OY )→ D+

QCoh(OX)

of triangulated categories. Namely, we choose a compactification X → X over Y
which is possible by Lemma 19.1. Denote f : X → Y the structure morphism.
We let a : DQCoh(OY ) → DQCoh(OX) be the twisted inverse image, i.e., the right

adjoint of Rf∗ constructed in Lemma 17.1. Then we set

f !K = a(K)|X
for K ∈ D+

QCoh(OY ). The result is an object of D+
QCoh(OX) by Lemma 17.5.

Lemma 19.2. The functor f ! is independent of the choice of the compactification
(up to canonical isomorphism). If f is an open immersion, then f ! = f∗. Moreover,
if f : X → Y , g : Y → Z are morphisms of compactifyable schemes over S, then
there is a canonical isomorphism f ! ◦ g! = (g ◦ f)!.

Proof. We first prove the last statement. Choose a compactification Y → Y → Z
over Z and then choose a compactification X → X → Y over Y using Lemma 19.1.
Let a be the twisted inverse image for X → Y and let b be the twisted inverse image
for Y → Z. Then a◦b is the twisted inverse image for the composition X → Z. Let
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a′ be the twisted inverse image for X×Y Y → Y . Let K be an object of D+
QCoh(OZ .

To prove the statement on compositions it suffices to find a functorial isomorphism
between

a′(b(K)|Y ) and a(b(K))|X×Y Y

in D(OX). The canonical map (17.6.1) from left to right is an isomorphism by
Lemma 17.9.

Independence of the choice of the compactification is a special case of the argument
above where X → Y is an isomorphism. The statement on open immersions is
immediate from the construction (once it is shown to be independent of choices). �

Lemma 19.3. Let S be a Noetherian scheme. Let Y be a compactifyable scheme
over S and let f : X = A1

Y → Y be the projection. Then there is a (noncanonical)
isomorphism f !(−) ∼= Lf∗(−)[1] of functors.

Proof. Since X = A1
Y ⊂ P1

Y and since OP1
Y

(−2)|X ∼= OX this follows from
Lemmas 18.5 and 18.3. �

Lemma 19.4. Let S be a Noetherian scheme. Let Y be a compactifyable scheme
over S and let i : X → Y be a closed immersion. Then there is a canonical
isomorphism i!(−) = RHom(OX ,−) of functors.

Proof. This is a restatement of Lemma 17.12. �

Lemma 19.5. Let S be a Noetherian scheme. Let f : X → Y be a morphism of
compactifyable schemes over S. If K is a dualizing complex for Y , then f !K is a
dualizing complex for X.

Proof. The question is local on X hence we may assume that X and Y are affine
schemes mapping into an affine open of S. In this case we can factor f : X → Y as

X
i−→ An

Y → An−1
Y → . . .→ A1

Y → Y

where i is a closed immersion. By Lemmas 19.3 and 12.9 and induction we see that
the p!K is a dualizing complex on An

Y where p : An
Y → Y is the projection. Simi-

larly, by Lemmas 12.8, 11.4, and 19.4 we see that i! transforms dualizing complexes
into dualizing complexes. �
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