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1. Introduction

The purpose of this chapter is to write about Quot and Hilbert functors and to prove
that these are algebraic spaces provided certain technical conditions are satisfied.
In this chapter we will discuss this in the setting of algebraic space. A reference is
Grothendieck’s lectures, see [Gro95a], [Gro95b], [Gro95e], [Gro95f], [Gro95c], and
[Gro95d]. Another reference is the paper [OS03]; this paper discusses the more
general case of Quot and Hilbert spaces associated to a morphism of algebraic
stacks which we will discuss in another chapter, see (insert future reference here).

In the case of Hilbert spaces there is a more general notion of “Hilbert stacks”
which we will discuss in a separate chapter, see (insert future reference here).

We have intentionally placed this chapter, as well as the chapters “Examples
of Stacks”, “Sheaves on Algebraic Stacks”, “Criteria for Representability”, and
“Artin’s Axioms” before the general development of the theory of algebraic stacks.
The reason for this is that starting with the next chapter (see Properties of Stacks,
Section 2) we will no longer distinguish between a scheme and the algebraic stack it
gives rise to. Thus our language will become more flexible and easier for a human
to parse, but also less precise. These first few chapters, including the initial chap-
ter “Algebraic Stacks”, lay the groundwork that later allow us to ignore some of
the very technical distinctions between different ways of thinking about algebraic
stacks. But especially in the chapters “Artin’s Axioms” and “Criteria of Repre-
sentability” we need to be very precise about what objects exactly we are working
with, as we are trying to show that certain constructions produce algebraic stacks
or algebraic spaces.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 QUOT AND HILBERT SPACES

Unfortunately, this means that some of the notation, conventions and terminology
is awkward and may seem backwards to the more experienced reader. We hope the
reader will forgive us!

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. The Hom functor

In this section we study the functor of homomorphisms defined below.

Situation 3.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F , G be quasi-coherent OX -modules. For any scheme T over
B we will denote FT and GT the base changes of F and G to T , in other words,
the pullbacks via the projection morphism XT = X ×B T → X. We consider the
functor

(3.1.1) Hom(F ,G) : (Sch/B)opp −→ Sets, T −→ HomOXT (FT ,GT )

In Situation 3.1 we sometimes think of the functor Hom(F ,G) as a functor

Hom(F ,G) : (Sch/S)opp −→ Sets

endowed with a morphism Hom(F ,G) → B. Namely, if T is a scheme over S,
then an element of Hom(F ,G)(T ) consists of a pair (h, u), where h is a morphism
h : T → B and u : FT → GT is an OXT -module map where XT = T ×h,B X and
FT and GT are the pullbacks to XT . In particular, when we say that Hom(F ,G) is
an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets is
an algebraic space.

Lemma 3.2. In Situation 3.1 the functor Hom(F ,G) satisfies the sheaf property
for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and Fi = uTi and Gi = GTi . Note that {Xi → XT }i∈I is an fpqc covering
of XT , see Topologies on Spaces, Lemma 3.2. Thus a family of maps ui : Fi → Gi
such that ui and uj restrict to the same map on XTi×TTj comes from a unique map
u : FT → GT by descent (Descent on Spaces, Proposition 4.1). �

Remark 3.3. In Situation 3.1 let B′ → B be a morphism of algebraic spaces over
S. Set X ′ = X ×B B′ and denote F ′, G′ the pullback of F , G to X ′. Then we
obtain a functor Hom(F ′,G′) : (Sch/B′)opp → Sets associated to the base change
f ′ : X ′ → B′. For a scheme T over B′ it is clear that we have

Hom(F ′,G′)(T ) = Hom(F ,G)(T )

where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.
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QUOT AND HILBERT SPACES 3

Lemma 3.4. In Situation 3.1 let {Xi → X}i∈I be an fppf covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. Similarly define Gi and Gijk. For every scheme T
over B the diagram

Hom(F ,G)(T ) // ∏
i Hom(Fi,Gi)(T )

pr∗0 //

pr∗1

//
∏
i,j,k Hom(Fijk,Gijk)(T )

presents the first arrow as the equalizer of the other two.

Proof. Let ui : Fi,T → Gi,T be an element in the equalizer of pr∗0 and pr∗1. Since
the base change of an fppf covering is an fppf covering (Topologies on Spaces,
Lemma 4.2) we see that {Xi,T → XT }i∈I and {Xijk,T → Xi,T ×XT Xj,T } are fppf
coverings. Applying Descent on Spaces, Proposition 4.1 we first conclude that ui
and uj restrict to the same morphism over Xi,T ×XT Xj,T , whereupon a second
application shows that there is a unique morphism u : FT → GT restricting to ui
for each i. This finishes the proof. �

Lemma 3.5. In Situation 3.1. If F is of finite presentation and f is quasi-compact
and quasi-separated, then Hom(F ,G) is limit preserving.

Proof. Let T = limi∈I Ti be a directed limit of affine B-schemes. We have to show
that

Hom(F ,G)(T ) = colim Hom(F ,G)(Ti)

Pick 0 ∈ I. We may replace B by T0, X by XT0 , F by FT0 , G by GT0 , and I by
{i ∈ I | i ≥ 0}. See Remark 3.3. Thus we may assume B = Spec(R) is affine.

When B is affine, then X is quasi-compact and quasi-separated. Choose a surjective
étale morphism U → X where U is an affine scheme (Properties of Spaces, Lemma
6.3). Since X is quasi-separated, the scheme U ×X U is quasi-compact and we may
choose a surjective étale morphism V → U ×X U where V is an affine scheme.
Applying Lemma 3.4 we see that Hom(F ,G) is the equalizer of two maps between

Hom(F|U ,G|U ) and Hom(F|V ,G|V )

This reduces us to the case that X is affine.

In the affine case the statement of the lemma reduces to the following problem:
Given a ring map R → A, two A-modules M , N and a directed system of R-
algebras C = colimCi. When is it true that the map

colim HomA⊗RCi(M ⊗R Ci, N ⊗R Ci) −→ HomA⊗RC(M ⊗R C,N ⊗R C)

is bijective? By Algebra, Lemma 123.3 this holds if M⊗RC is of finite presentation
over A⊗R C, i.e., when M is of finite presentation over A. �

Lemma 3.6. Let S be a scheme. Let B be an algebraic space over S. Let i : X ′ →
X be a closed immersion of algebraic spaces over B. Let F be a quasi-coherent
OX-module and let G′ be a quasi-coherent OX′-module. Then

Hom(F , i∗G′) = Hom(i∗F ,G′)

as functors on (Sch/B).
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4 QUOT AND HILBERT SPACES

Proof. Let g : T → B be a morphism where T is a scheme. Denote iT : X ′T → XT

the base change of i. Denote h : XT → X and h′ : X ′T → X ′ the projections.
Observe that (h′)∗i∗F = i∗Th

∗F . As a closed immersion is affine (Morphisms of
Spaces, Lemma 20.6) we have h∗i∗G = iT,∗(h

′)∗G by Cohomology of Spaces, Lemma
10.2. Thus we have

Hom(F , i∗G′)(T ) = HomOXT (h∗F , h∗i∗G′)
= HomOXT (h∗F , iT,∗(h′)∗G)

= HomOX′
T

(i∗Th
∗F , (h′)∗G)

= HomOX′
T

((h′)∗i∗F , (h′)∗G)

= Hom(i∗F ,G′)(T )

as desired. The middle equality follows from the adjointness of the functors iT,∗
and i∗T . �

Lemma 3.7. Let S be a scheme. Let B be an algebraic space over S. Let K be a
pseudo-coherent object of D(OB).

(1) If for all g : T → B in (Sch/B) the cohomology sheaf H−1(Lg∗K) is zero,
then the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T,H0(Lg∗K))

is an algebraic space affine and of finite presentation over B.
(2) If for all g : T → B in (Sch/B) the cohomology sheaves Hi(Lg∗K) are zero

for i < 0, then K is perfect with tor amplitude in [0, b] for some b ≥ 0 and
the functor

(Sch/B)opp −→ Sets, (g : T → B) 7−→ H0(T, Lg∗K)

is an algebraic space affine and of finite presentation over B.

Proof. Under the assumptions of (2) we have H0(T, Lg∗K) = H0(T,H0(Lg∗K)).
Let us prove that the rule T 7→ H0(T,H0(Lg∗K)) satisfies the sheaf property for
the fppf topology. To do this assume we have an fppf covering {hi : Ti → T} of
a scheme g : T → B over B. Set gi = g ◦ hi. Note that since hi is flat, we have
Lh∗i = h∗i and h∗i commutes with taking cohomology. Hence

H0(Ti, H
0(Lg∗iK)) = H0(Ti, H

0(h∗iLg
∗K)) = H0(T, h∗iH

0(Lg∗K))

Similarly for the pullback to Ti ×T Tj . Since Lg∗K is a pseudo-coherent complex
on T (Cohomology on Sites, Lemma 34.3) the cohomology sheaf F = H0(Lg∗K) is
quasi-coherent (Derived Categories of Spaces, Lemma 12.5). Hence by Descent on
Spaces, Proposition 4.1 we see that

H0(T,F) = Ker(
∏

H0(Ti, h
∗
iF)→

∏
H0(Ti, h

∗
iF))

In this way we see that the rules in (1) and (2) satisfy the sheaf property for fppf
coverings. This mean we may apply Bootstrap, Lemma 11.4 it suffices to prove the
representability étale locally on B. Moreover, we may check whether the end result
is affine and of finite presentation étale locally on B, see Morphisms of Spaces,
Lemmas 20.3 and 27.4. Hence we may assume that B is an affine scheme.

Assume B = Spec(A) is an affine scheme. By the results of Derived Categories of
Spaces, Lemmas 12.5, 4.2, and 12.2 we deduce that in the rest of the proof we may

http://localhost:8080/tag/08JX


QUOT AND HILBERT SPACES 5

think of K as a perfect object of the derived category of complexes of modules on
B in the Zariski topology. By Derived Categories of Schemes, Lemmas 9.1, 3.4,
and 9.3 we can find a pseudo-coherent complex M• of A-modules such that K is
the corresponding object of D(OB). Our assumption on pullbacks implies that
M•⊗L

A κ(p) has vanishing H−1 for all primes p ⊂ A. By More on Algebra, Lemma
56.16 we can write

M• = τ≥0M
• ⊕ τ≤−1M

•

with τ≥0M
• perfect with Tor amplitude in [0, b] for some b ≥ 0 (here we also have

used More on Algebra, Lemmas 56.11 and 51.13). Note that in case (2) we also see
that τ≤−1M

• = 0 in D(A) whence M• and K are perfect with tor amplitude in
[0, b]. For any B-scheme g : T → B we have

H0(T,H0(Lg∗K)) = H0(T,H0(Lg∗τ≥0K))

(by the dual of Derived Categories, Lemma 17.1) hence we may replace K by τ≥0K
and correspondingly M• by τ≥0M

•. In other words, we may assume M• has tor
amplitude in [0, b].

Assume M• has tor amplitude in [0, b]. We may assume M• is a bounded above
complex of finite free A-modules (by our definition of pseudo-coherent complexes,
see More on Algebra, Definition 50.1 and the discussion following the definition).
By More on Algebra, Lemma 51.2 we see that M = Coker(M−1 → M0) is flat.
By Algebra, Lemma 75.2 we see that M is finite locally free. Hence M• is quasi-
isomorphic to

M →M1 →M2 → . . .→Md → 0 . . .

Note that this is a K-flat complex (Cohomology, Lemma 27.8), hence derived pull-
back of K via a morphism T → B is computed by the complex

g∗M̃ → g∗M̃1 → . . .

Thus it suffices to show that the functor

(g : T → B) 7−→ Ker(Γ(T, g∗M̃)→ Γ(T, g∗(M̃1))

is representable by an affine scheme of finite presentation over B.

We may still replace B by the members of an affine open covering in order to prove
this last statement. Hence we may assume that M is finite free (recall that M1 is
finite free to begin with). Write M = A⊕n and M1 = A⊕m. Let the map M →M1

be given by the m × n matrix (aij) with coefficients in A. Then M̃ = O⊕nB and

M̃1 = O⊕mB . Thus the functor above is equal to the functor

(g : T → B) 7−→ {(f1, . . . , fn) ∈ Γ(T,OT ) |
∑

g](aijfi = 0, j = 1, . . . ,m}

Clearly this is representable by the affine scheme

Spec
(
A[x1, . . . , xn]/(

∑
aijxi; j = 1, . . . ,m)

)
and the lemma has been proved. �

The functor Hom(F ,G) is representable in a number of situations. All of our results
will be based on the following basic case. The proof of this lemma as given below
is in some sense the natural generalization to the proof of [DG67, III, Cor 7.7.8].

Lemma 3.8. In Situation 3.1 assume that

http://localhost:8080/tag/08JY


6 QUOT AND HILBERT SPACES

(1) B is a Noetherian algebraic space,
(2) f is locally of finite type and quasi-separated,
(3) F is a finite type OX-module, and
(4) G is a finite type OX-module, flat over B, with scheme theoretic support

proper over B.

Then the functor Hom(F ,G) is representable by an algebraic space affine and of
finite presentation over B.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → F by a perfect complex P of
the triple (X,F , 0), see Derived Categories of Spaces, Definition 13.1 and Theorem
13.7). Then the induced map

HomOX (F ,G) −→ HomD(OX)(P,G)

is an isomorphism because P → F induces an isomorphism H0(P ) → F and
Hi(P ) = 0 for i > 0. Moreover, for any morphism g : T → B denote h : XT =
T ×B X → X the projection and set PT = Lh∗P . Then it is equally true that

HomOXT (FT ,GT ) −→ HomD(OXT )(PT ,GT )

is an isomorphism, as PT = Lh∗P → Lh∗F → FT induces an isomorphism
H0(PT ) → FT (because h∗ is right exact and Hi(P ) = 0 for i > 0). Thus it
suffices to prove the result for the functor

T 7−→ HomD(OXT )(PT ,GT ).

By the Leray spectral sequence (see Cohomology on Sites, Remark 14.4) we have

HomD(OXT )(PT ,GT ) = H0(XT , RHom(PT ,GT )) = H0(T,RfT,∗RHom(PT ,GT ))

where fT : XT → T is the base change of f . By Derived Categories of Spaces,
Lemma 17.6 we have

RfT,∗RHom(PT ,GT ) = Lg∗Rf∗RHom(P,G).

By Derived Categories of Spaces, Lemma 19.2 the object K = Rf∗RHom(P,G)
of D(OB) is perfect. This means we can apply Lemma 3.7 as long as we can
prove that the cohomology sheaf Hi(Lg∗K) is 0 for all i < 0 and g : T →
B as above. This is clear from the last displayed formula as the cohomology
sheaves of RfT,∗RHom(PT ,GT ) are zero in negative degrees due to the fact that
RHom(PT ,GT ) has vanishing cohomology sheaves in negative degrees as PT is per-
fect with vanishing cohomology sheaves in positive degrees. �

Here is a cheap consequence of Lemma 3.8.

Proposition 3.9. In Situation 3.1 assume that

(1) f is of finite presentation, and
(2) G is a finitely presented OX-module, flat over B, with scheme theoretic

support proper over B.

Then the functor Hom(F ,G) is representable by an algebraic space affine over B.
If F is of finite presentation, then Hom(F ,G) is of finite presentation over B.

http://localhost:8080/tag/08K6
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Proof. By Lemma 3.2 the functor Hom(F ,G) satisfies the sheaf property for fppf
coverings. This mean we may1 apply Bootstrap, Lemma 11.1 to check the repre-
sentability étale locally on B. Moreover, we may check whether the end result is
affine or of finite presentation étale locally on B, see Morphisms of Spaces, Lemmas
20.3 and 27.4. Hence we may assume that B is an affine scheme.

Assume B is an affine scheme. As f is of finite presentation, it follows X is quasi-
compact and quasi-separated. Thus we can write F = colimFi as a filtered colimit
of OX -modules of finite presentation (Limits of Spaces, Lemma 9.1). It is clear that

Hom(F ,G) = lim Hom(Fi,G)

Hence if we can show that each Hom(Fi,G) is representable by an affine scheme,
then we see that the same thing holds for Hom(F ,G). Use the material in Limits,
Section 2 and Limits of Spaces, Section 4. Thus we may assume that F is of finite
presentation.

Say B = Spec(R). Write R = colimRi with each Ri a finite type Z-algebra. Set
Bi = Spec(Ri). By the results of Limits of Spaces, Lemmas 7.1 and 7.2 we can find
an i, a morphism of algebraic spaces Xi → Bi, and finitely presented OXi-modules
Fi and Gi such that the base change of (Xi,Fi,Gi) to B recovers (X,F ,G). By
Limits of Spaces, Lemma 6.11 we may, after increasing i, assume that Gi is flat
over Bi. By Limits of Spaces, Lemma 12.3 we may similarly assume the scheme
theoretic support of Gi is proper over Bi. At this point we can apply Lemma 3.8
to see that Hi = Hom(Fi,Gi) is an algebraic space affine of finite presentation over
Bi. Pulling back to B (using Remark 3.3) we see that Hi ×Bi B = Hom(F ,G) and
we win. �

4. The Isom functor

In Situation 3.1 we can consider the subfunctor

Isom(F ,G) ⊂ Hom(F ,G)

whose value on a scheme T over B is the set of invertible OXT -homomorphisms
u : FT → GT . In this brief section we quickly point out some properties of this
functor.

Lemma 4.1. In Situation 3.1 the functor Isom(F ,G) satisfies the sheaf property
for the fpqc topology.

Proof. We have already seen that Hom(F ,G) satisfies the sheaf property. Hence
it remains to show the following: Given an fpqc covering {Ti → T}i∈I of schemes
over B and an OXT -linear map u : FT → GT such that uTi is an isomorphism for
all i, then u is an isomorphism. Since {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 3.2, this follows from Descent on Spaces, Proposition
4.1. �

Proposition 4.2. In Situation 3.1 assume that

(1) f is of finite presentation, and
(2) F and G are finitely presented OX-modules, flat over B, with scheme the-

oretic support proper over B.

1We omit the verification of the set theoretical condition (3) of the referenced lemma.
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8 QUOT AND HILBERT SPACES

Then the functor Isom(F ,G) is representable by an algebraic space affine of finite
presentation over B.

Proof. We will use the abbreviations H = Hom(F ,G), I = Hom(F ,F), H ′ =
Hom(G,F), and I ′ = Hom(G,G). By Proposition 3.9 the functors H, I, H ′, I ′ are
algebraic spaces and the morphisms H → B, I → B, H ′ → B, and I ′ → B are
affine and of finite presentation. The composition of maps gives a morphism

c : H ′ ×B H −→ I ×B I ′, (u′, u) 7−→ (u ◦ u′, u′ ◦ u)

of algebraic spaces over B. Since I ×B I ′ → B is separated, the section σ : B →
I ×B I ′ corresponding to (idF , idG) is a closed immersion (Morphisms of Spaces,
Lemma 4.7). Moreover, σ is of finite presentation (Morphisms of Spaces, Lemma
27.9). Hence

Isom(F ,G) = (H ′ ×B H)×c,I×BI′,σ B
is an algebraic space affine of finite presentation over B as well. Some details
omitted. �

5. The stack of coherent sheaves

In this section we prove that the stack of coherent sheaves on X/B is algebraic
under suitable hypotheses. This is a special case of [Lie06, Theorem 2.1.1] which
treats the case of the stack of coherent sheaves on an Artin stack over a base.

Situation 5.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Assume that f is of finite presentation. We denote CohX/B the
category whose objects are triples (T, g,F) where

(1) T is a scheme over S,
(2) g : T → B is a morphism over S, and setting XT = T ×g,B X
(3) F is a quasi-coherent OXT -module of finite presentation, flat over T , with

scheme theoretic support proper over T .

A morphism (T, g,F)→ (T ′, g′,F ′) is given by a pair (h, ϕ) where

(1) h : T → T ′ is a morphism of schemes over B (i.e., g′ ◦ h = g), and
(2) ϕ : (h′)∗F ′ → F is an isomorphism of OXT -modules where h′ : XT → XT ′

is the base change of h.

Thus CohX/B is a category and the rule

p : CohX/B −→ (Sch/S)fppf , (T, g,F) 7−→ T

is a functor. For a scheme T over S we denote CohX/B,T the fibre category of p
over T . These fibre categories are groupoids.

Lemma 5.2. In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is fibred in
groupoids.

Proof. We show that p is fibred in groupoids by checking conditions (1) and (2) of
Categories, Definition 33.1. Given an object (T ′, g′,F ′) of CohX/B and a morphism
h : T → T ′ of schemes over S we can set g = h ◦ g′ and F = (h′)∗F ′ where
h′ : XT → XT ′ is the base change of h. Then it is clear that we obtain a morphism
(T, g,F) → (T ′, g′,F ′) of CohX/B lying over h. This proves (1). For (2) suppose
we are given morphisms

(h1, ϕ1) : (T1, g1,F1)→ (T, g,F) and (h2, ϕ2) : (T2, g2,F2)→ (T, g,F)

http://localhost:8080/tag/08KB
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QUOT AND HILBERT SPACES 9

of CohX/B and a morphism h : T1 → T2 such that h2 ◦ h = h1. Then we can let ϕ
be the composition

(h′)∗F2
(h′)∗ϕ−1

2−−−−−−→ (h′)∗(h2)∗F = (h1)∗F ϕ1−→ F1

to obtain the morphism (h, ϕ) : (T1, g1,F1)→ (T2, g2,F2) that witnesses the truth
of condition (2). �

Lemma 5.3. In Situation 5.1. Denote X = CohX/B. Then ∆ : X → X × X is
representable by algebraic spaces.

Proof. Consider two objects x = (T, g,F) and y = (T, h,G) of X over a scheme
T . We have to show that IsomX (x, y) is representable by an algebraic space over
T , see Algebraic Stacks, Lemma 10.11. If for a : T ′ → T the restrictions x|T ′ and
y|T ′ are isomorphic in the fibre category XT ′ , then g ◦ a = h ◦ a. Hence there is a
transformation of presheaves

IsomX (x, y) −→ Equalizer(g, h)

Since the diagonal of B is representable by schemes this equalizer is a scheme. Thus
we may replace T by this equalizer and the sheaves F and G by their pullbacks.
Thus we may assume g = h. In this case we have IsomX (x, y) = Isom(F ,G) and
the result follows from Proposition 4.2. �

Lemma 5.4. In Situation 5.1 the functor p : CohX/B −→ (Sch/S)fppf is a stack
in groupoids.

Proof. To prove that CohX/B is a stack in groupoids, we have to show that the
presheaves Isom are sheaves and that descent data are effective. The statement on
Isom follows from Lemma 5.3, see Algebraic Stacks, Lemma 10.11. Let us prove
the statement on descent data. Suppose that {ai : Ti → T} is an fppf covering
of schemes over S. Let (ξi, ϕij) be a descent datum for {Ti → T} with values in
CohX/B . For each i we can write ξi = (Ti, gi,Fi). Denote pr0 : Ti ×T Tj → Ti
and pr1 : Ti ×T Tj → Tj the projections. The condition that ξi|Ti×TTj = ξj |Ti×TTj
implies in particular that gi ◦ pr0 = gj ◦ pr1. Thus there exists a unique morphism
g : T → B such that gi = g ◦ ai, see Descent on Spaces, Lemma 6.2. Denote
XT = T ×g,B X. Set Xi = XTi = Ti ×gi,B X = Ti ×ai,T XT and

Xij = XTi ×XT XTj = Xi ×XT Xj

with projections pri and prj to Xi and Xj . Observe that the pullback of (Ti, gi,Fi)
by pr0 : Ti×T Tj → Ti is given by (Ti×T Tj , gi ◦pr0,pr∗iFi). Hence a descent datum
for {Ti → T} in CohX/B is given by the objects (Ti, g ◦ ai,Fi) and for each pair i, j
an isomorphism of OXij -modules

ϕij : pr∗iFi −→ pr∗jFj
satisfying the cocycle condition over (the pullback of X to) Ti ×T Tj ×T Tk. Ok,
and now we simply use that {Xi → XT } is an fppf covering so that we can view
(Fi, ϕij) as a descent datum for this covering. By Descent on Spaces, Proposition
4.1 this descent datum is effective and we obtain a quasi-coherent sheaf F over
XT restricting to Fi on Xi. By Morphisms of Spaces, Lemma 29.5 we see that
F is flat over T and Descent on Spaces, Lemma 5.2 guarantees that Q is of finite
presentation as an OXT -module. Finally, by Descent on Spaces, Lemma 10.17 we
see that the scheme theoretic support of F is proper over T as we’ve assume the

http://localhost:8080/tag/08W6
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scheme theoretic support of Fi is proper over Ti (note that taking scheme theoretic
support commutes with flat base change by Morphisms of Spaces, Lemma 28.10).
In this way and we obtain our desired object over T . �

Remark 5.5. In Situation 5.1 the rule (T, g,F) 7→ (T, g) defines a 1-morphism

CohX/B −→ SB

of categories fibred in groupoids (see Lemma 5.4, Algebraic Stacks, Section 7, and
Examples of Stacks, Section 9). Let B′ → B be a morphism of algebraic spaces
over S. Let SB′ → SB be the associated 1-morphism of stacks fibred in sets. Set
X ′ = X×BB′. We obtain a stack in groupoids CohX′/B′ → (Sch/S)fppf associated
to the base change f ′ : X ′ → B′. In this situation the diagram

CohX′/B′ //

��

CohX/B

��
SB′ // SB

is 2-fibre product square. This trivial remark will occasionally be useful to change
the base algebraic space.

Lemma 5.6. In Situation 5.1 assume that B → S is locally of finite presentation.
Then p : CohX/B → (Sch/S)fppf is limit preserving (Artin’s Axioms, Definition
13.1).

Proof. Write B(T ) for the discrete category whose objects are the S-morphisms
T → B. Let T = limTi be a filtered limit of affine schemes over S. Assigning to an
object (T, h,F) of CohX/B,T the object h of B(T ) gives us a commutative diagram
of fibre categories

colim CohX/B,Ti
//

��

CohX/B,T

��
colimB(Ti) // B(T )

We have to show the top horizontal arrow is an equivalence. Since we have assume
that B is locally of finite presentation over S we see from Limits of Spaces, Remark
3.10 that the bottom horizontal arrow is an equivalence. This means that we may
assume T = limTi be a filtered limit of affine schemes over B. Denote gi : Ti → B
and g : T → B the corresponding morphisms. Set Xi = Ti ×gi,B X and XT =
T ×g,B X. Observe that XT = colimXi and that the algebraic spaces Xi and XT

are quasi-separated and quasi-compact (as they are of finite presentation over the
affines Ti and T ). By Limits of Spaces, Lemma 7.2 we see that

colim FP(Xi) = FP(XT ).

where FP(W ) is short hand for the category of finitely presented OW -modules. The
results of Limits of Spaces, Lemmas 6.11 and 12.3 tell us the same thing is true if
we replace FP(Xi) and FP(XT ) by the full subcategory of objects flat over Ti and
T with scheme theoretic support proper over Ti and T . This proves the lemma. �

http://localhost:8080/tag/08LP
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Lemma 5.7. In Situation 5.1. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over S where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 11.1. Then the functor on fibre
categories

CohX/B,Y ′ −→ CohX/B,Y ×CohX/B,Z CohX/B,Z′

is an equivalence.

Proof. Observe that the corresponding map

B(Y ′) −→ B(Y )×B(Z) B(Z ′)

is a bijection, see Pushouts of Spaces, Lemma 2.2. Thus using the commutative
diagram

CohX/B,Y ′ //

��

CohX/B,Y ×CohX/B,Z CohX/B,Z′

��
B(Y ′) // B(Y )×B(Z) B(Z ′)

we see that we may assume that Y ′ is a scheme over B′. By Remark 5.5 we may
replace B by Y ′ and X by X ×B Y ′. Thus we may assume B = Y ′. In this case
the statement follows from Pushouts of Spaces, Lemma 2.7. �

Lemma 5.8. Let
X

��

i
// X ′

��
T // T ′

be a cartesian square of algebraic spaces where T → T ′ is a first order thickening.
Let F ′ be an OX′-module flat over T ′. Set F = i∗F ′. The following are equivalent

(1) F is a quasi-coherent OX′-module of finite presentation,
(2) F is an OX′-module of finite presentation,
(3) F is a quasi-coherent OX-module of finite presentation,
(4) F is an OX-module of finite presentation,

Proof. Recall that a finitely presented module is quasi-coherent hence the equiv-
alence of (1) and (2) and (3) and (4). The equivalence of (2) and (4) is a special
case of Deformation Theory, Lemma 10.3. �

Lemma 5.9. In Situation 5.1 assume that S is a locally Noetherian scheme and
B → S is locally of finite presentation. Let k be a finite type field over S and
let x0 = (Spec(k), g0,G0) be an object of X = CohX/B over k. Then the spaces
TFX ,k,x0

and Infx0
(FX ,k,x0

) (Artin’s Axioms, Section 8) are finite dimensional.

Proof. Observe that by Lemma 5.7 our stack in groupoids X satisfies property
(RS*) defined in Artin’s Axioms, Section 18. In particular X satisfies (RS). Hence
all associated predeformation categories are deformation categories (Artin’s Ax-
ioms, Lemma 6.1) and the statement makes sense.

http://localhost:8080/tag/08LQ
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In this paragraph we show that we can reduce to the case B = Spec(k). Set
X0 = Spec(k)×g0,BX and denote X0 = CohX0/k. In Remark 5.5 we have seen that
X0 is the 2-fibre product of X with Spec(k) over B as categories fibred in groupoids
over (Sch/S)fppf . Thus by Artin’s Axioms, Lemma 8.2 we reduce to proving that
B, Spec(k), and X0 have finite dimensional tangent spaces and infinitesimal auto-
morphism spaces. The tangent space of B and Spec(k) are finite dimensional by
Artin’s Axioms, Lemma 8.1 and of course these have vanishing Inf. Thus it suffices
to deal with X0.

Let k[ε] be the dual numbers over k. Let Spec(k[ε])→ B be the composition of g0 :
Spec(k) → B and the morphism Spec(k[ε]) → Spec(k) coming from the inclusion
k → k[ε]. Set X0 = Spec(k)×BX and Xε = Spec(k[ε])×BX. Observe that Xε is a
first order thickening of X0 flat over the first order thickening Spec(k)→ Spec(k[ε]).
Unwinding the definitions and using Lemma 5.8 we see that TFX0,k,x0 is the set
of lifts of G0 to a flat module on Xε. By Deformation Theory, Lemma 11.1 we
conclude that

TFX0,k,x0 = Ext1
OX0

(G0,G0)

Here we have used the identification εk[ε] ∼= k of k[ε]-modules. Using Deformation
Theory, Lemma 11.1 once more we see that

Infx0(FX ,k,x0) = Ext0
OX0

(G0,G0)

These spaces are finite dimensional over k as G0 has support proper over Spec(k).
Namely, X0 is of finite presentation over Spec(k), hence Noetherian. Since G0 is
of finite presentation it is a coherent OX0

-module. Thus we may apply Derived
Categories of Spaces, Lemma 19.3 to conclude the desired finiteness. �

Lemma 5.10. In Situation 5.1 assume that S is a locally Noetherian scheme and
that f : X → B is separated. Let X = CohX/B. Then the functor Artin’s Axioms,
Equation (9.2.1) is an equivalence.

Proof. Let A be an S-algebra which is a complete local Noetherian ring with
maximal ideal m whose residue field k is of finite type over S. We have to show
that the category of objects over A is equivalent to the category of formal objects
over A. Since we know this holds for the category SB fibred in sets associated to B
by Artin’s Axioms, Lemma 9.4, it suffices to prove this for those objects lying over
a given morphism Spec(A)→ B.

Set XA = Spec(A)×BX and Xn = Spec(A/mn)×BX. By Grothendieck’s existence
theorem (More on Morphisms of Spaces, Theorem 31.11) we see that the category
of coherent modules F on XA with support proper over Spec(A) is equivalent to the
category of systems (Fn) of coherent modules Fn on Xn with support proper over
Spec(A/mn). The equivalence sends F to the system (F ⊗AA/mn). See discussion
in More on Morphisms of Spaces, Remark 31.12. To finish the proof of the lemma,
it suffices to show that F is flat over A if and only if all F ⊗A A/mn are flat over
A/mn. This follows from More on Morphisms of Spaces, Lemma 20.3. �

Lemma 5.11. In Situation 5.1 assume that S is a locally Noetherian scheme,
S = B, and f : X → B is flat. Let X = CohX/B. Then we have openness of
versality for X (see Artin’s Axioms, Definition 14.1).

http://localhost:8080/tag/08W9
http://localhost:8080/tag/08WA
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Proof. Let U → S be of finite type morphism of schemes, x an object of X over
U and u0 ∈ U a finite type point such that x is versal at u0. After shrinking U we
may assume that u0 is a closed point (Morphisms, Lemma 17.1) and U = Spec(A)
with U → S mapping into an affine open Spec(Λ) of S. We will use Artin’s
Axioms, Lemma 21.4 to prove the lemma. Let F be the coherent module on
XA = Spec(A)×S X flat over A corresponding to the given object x.

According to Deformation Theory, Lemma 11.1 we have an isomorphism of functors

Tx(M) = Ext1
XA(F ,F ⊗AM)

and given any surjection A′ → A of Λ-algebras with square zero kernel I we have
an obstruction class

ξA′ ∈ Ext2
XA(F ,F ⊗A I)

This uses that for any A′ → A as above the base change XA′ = Spec(A′)×B X is
flat over A′. Apply Derived Categories of Spaces, Lemma 19.3 to the computation
of the Ext groups ExtiXA(F ,F ⊗A M) for i ≤ m with m = 2. We find a perfect
object K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(F ,F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
21.2. Finally, condition (iv) of Artin’s Axioms, Lemma 21.3 holds by Deformation
Theory, Lemma 11.3. Thus Artin’s Axioms, Lemma 21.4 does indeed apply and
the lemma is proved. �

Theorem 5.12 (Algebraicity of stack coherent sheaves). Let S be a scheme. Let
f : X → B be morphism of algebraic spaces over S. Assume that f is of finite
presentation, separated, and flat2. Then CohX/B is an algebraic stack over S.

Proof. Set X = CohX/B . We have seen that X is a stack in groupoids over
(Sch/S)fppf with diagonal representable by algebraic spaces (Lemmas 5.4 and 5.3).
Hence it suffices to find a schemeW and a surjective and smooth morphismW → X .

Let B′ be a scheme and let B′ → B be a surjective étale morphism. Set X ′ =
B′ ×B X and denote f ′ : X ′ → B′ the projection. Then X ′ = CohX′/B′ is equal to
the 2-fibre product of X with the category fibred in sets associated to B′ over the
category fibred in sets associated to B (Remark 5.5). By the material in Algebraic
Stacks, Section 10 the morphism X ′ → X is surjective and étale. Hence it suffices
to prove the result for X ′. In other words, we may assume B is a scheme.

Assume B is a scheme. In this case we may replace S by B, see Algebraic Stacks,
Section 19. Thus we may assume S = B.

Assume S = B. Choose an affine open covering S =
⋃
Ui. Denote Xi the restriction

of X to (Sch/Ui)fppf . If we can find schemes Wi over Ui and surjective smooth
morphisms Wi → Xi, then we set W =

∐
Wi and we obtain a surjective smooth

morphism W → X . Thus we may assume S = B is affine.

Assume S = B is affine, say S = Spec(Λ). Write Λ = colim Λi as a filtered
colimit with each Λi of finite type over Z. For some i we can find a morphism of
algebraic spaces Xi → Spec(Λi) which is of finite presentation and flat and whose
base change to Λ is X. See Limits of Spaces, Lemmas 7.1 and 6.11. If we show

2This assumption is not necessary. See discussion in Section 6.

http://localhost:8080/tag/08WC
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that CohXi/ Spec(Λi) is an algebraic stack, then it follows by base change (Remark
5.5 and Algebraic Stacks, Section 19) that X is an algebraic stack. Thus we may
assume that Λ is a finite type Z-algebra.

Assume S = B = Spec(Λ) is affine of finite type over Z. In this case we will verify
conditions (1), (2), (3), and (4) of Artin’s Axioms, Lemma 17.1 to conclude that
X is an algebraic stack. Note that Λ is a G-ring, see More on Algebra, Proposition
39.12. Hence all local rings of S are G-rings. Thus (4) holds. By Lemma 5.11 we
have that X satisfies openness of versality, hence (3) holds. To check (2) we have
to verify axioms [-1], [0], [1], [2], [3], and [4] of Artin’s Axioms, Section 12. We
omit the verification of [-1] and axioms [0], [1], [2], [3], [4] correspond respectively
to Lemmas 5.4, 5.6, 5.7, 5.9, and 5.10. Finally, condition (1) is Lemma 5.3. This
finishes the proof of the theorem. �

6. The stack of coherent sheaves in the non-flat case

In Theorem 5.12 the assumption that f : X → B is flat is not necessary. In this
section we explain where this assumption is used in the proof and one way to get
around it.

For a different approach to this problem the reader may wish to consult [Art69]
and follow the method discussed in the papers [OS03], [Lie06], [Ols05], [HR13],
[HR10], [Ryd11]. Some of these papers deal with the more general case of the stack
of coherent sheaves on an algebraic stack over an algebraic stack and others deal
with similar problems in the case of Hilbert stacks or Quot functors. Our strategy
will be to show algebraicity of some cases of Hilbert stacks and Quot functors as a
consequence of the algebraicity of the stack of coherent sheaves.

The only step in the proof of Theorem 5.12 which uses flatness is in the application
of Lemma 5.11. The lemma is used to construct an obstruction theory as in Artin’s
Axioms, Section 21. The proof of the lemma relies on Deformation Theory, Lemmas
11.1 and 11.3 from Deformation Theory, Section 11. This is how the assumption
that f is flat comes about. Before we go on, note that results (2) and (3) of
Deformation Theory, Lemmas 11.1 do hold without the assumption that f is flat as
they rely on Deformation Theory, Lemmas 10.7. and 10.4 which do not have any
flatness assumptions.

Before we give the details we give some motivation for the construction from derived
algebraic geometry, since we think it will clarify what follows. Let A be a finite type
algebra over the locally Noetherian base S. Denote X⊗LA a “derived base change”
of X to A and denote i : XA → X ⊗L A the canonical inclusion morphism. The
object X ⊗LA does not (yet) have a definition in the Stacks project; we may think
of it as the algebraic space XA endowed with a simplicial sheaf of rings OX⊗LA

whose homology sheaves are

Hi(OX⊗LA) = TorOSi (OX , A).

The morphism X ⊗LA→ Spec(A) is flat (the terms of the simplicial sheaf of rings
being A-flat), so the usual material for deformations of flat modules applies to it.
Thus we see that we get an obstruction theory using the groups

ExtiX⊗LA(i∗F , i∗F ⊗AM)
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where i = 0, 1, 2 for inf auts, inf defs, obstructions. Note that a flat deformation of
i∗F to X ⊗L A′ is automatically of the form i′∗F ′ where F ′ is a flat deformation of
F . By adjunction of the functors Li∗ and i∗ = Ri∗ these ext groups are equal to

ExtiXA(Li∗(i∗F),F ⊗AM)

Thus we obtain obstruction groups of exactly the same form as in the proof of
Lemma 5.11 with the only change being that one replaces the first occurrence of F
by the complex Li∗(i∗F).

Below we prove the non-flat version of the lemma by a “direct” construction of
E(F) = Li∗(i∗F) and direct proof of its relationship to the deformation theory
of F . In fact, it suffices to construct τ≥−2E(F), as we are only interested in the

ext groups ExtiXA(Li∗(i∗F),F ⊗A M) for i = 0, 1, 2. We can even identify the
cohomology sheaves

Hi(E(F)) =


0 if i > 0
F if i = 0
0 if i = −1

TorOS1 (OX , A)⊗OX F if i = −2

This observation will guide our construction of E(F) in the remarks below.

Remark 6.1 (Direct construction). Let S be a scheme. Let f : X → B be a
morphism of algebraic spaces over S. Let U be another algebraic space over B.
Denote q : X×B U → U the second projection. Consider the distinguished triangle

Lq∗LU/B → LX×BU/B → E → Lq∗LU/B [1]

of Cotangent, Section 27. For any sheaf F of OX×BU -modules we have the Atiyah
class

F → LX×BU/B ⊗
L
OX×BU

F [1]

see Cotangent, Section 18. We can compose this with the map to E and choose a
distinguished triangle

E(F)→ F → F ⊗L
OX×BU

E[1]→ E(F)[1]

in D(OX×BU ). By construction the Atiyah class lifts to a map

eF : E(F) −→ Lq∗LU/B ⊗L
OX×BU

F [1]

fitting into a morphism of distinguished triangles

F ⊗L Lq∗LU/B [1] // F ⊗L LX×BU/B [1] // F ⊗L E[1]

E(F) //

eF

OO

F //

Atiyah

OO

F ⊗L E[1]

=

OO

Given S,B,X, f, U,F we fix a choice of E(F) and eF .

Remark 6.2 (Construction of obstruction class). With notation as in Remark 6.1
let i : U → U ′ be a first order thickening of U over B. Let I ⊂ OU ′ be the
quasi-coherent sheaf of ideals cutting out B in B′. The fundamental triangle

Li∗LU ′/B → LU/B → LU/U ′ → Li∗LU ′/B [1]

http://localhost:8080/tag/09DN
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together with the map LU/U ′ → I[1] determine a map eU ′ : LU/B → I[1]. Com-
bined with the map eF of the previous remark we obtain

(idF ⊗ Lq∗eU ′) ∪ eF : E(F) −→ F ⊗OX×BU q
∗I[2]

(we have also composed with the map from the derived tensor product to the usual
tensor product). In other words, we obtain an element

ξU ′ ∈ Ext2
OX×BU

(E(F),F ⊗OX×BU q
∗I)

Lemma 6.3. In the situation of Remark 6.2 assume that F is flat over U . Then
the vanishing of the class ξU ′ is a necessary and sufficient condition for the existence
of a OX×BU ′-module F ′ flat over U ′ with i∗F ′ ∼= F .

Proof (sketch). We will use the criterion of Deformation Theory, Lemma 10.8.
We will abbreviate O = OX×BU and O′ = OX×BU ′ . Consider the short exact
sequence

0→ I → OU ′ → OU → 0.

Let J ⊂ O′ be the quasi-coherent sheaf of ideals cutting out X×BU . By the above
we obtain an exact sequence

TorOB1 (OX ,OU )→ q∗I → J → 0

where the TorOB1 (OX ,OU ) is an abbreviation for

Torh
−1OB

1 (p−1OX , q−1OU )⊗(p−1OX⊗h−1OB
q−1OU ) O.

Tensoring with F we obtain the exact sequence

F ⊗O TorOB1 (OX ,OU )→ F ⊗O q∗I → F ⊗O J → 0

(Note that the roles of the letters I and J are reversed relative to the notation
in Deformation Theory, Lemma 10.8.) Condition (1) of the lemma is that the last
map above is an isomorphism, i.e., that the first map is zero. The vanishing of this
map may be checked on stalks at geometric points z = (x, u) : Spec(k)→ X ×B U .
Set R = OB,b, A = OX,x, B = OU,u, and C = Oz. By Cotangent, Lemma 27.2 and

the defining triangle for E(F) we see that

H−2(E(F))z = Fz ⊗ TorR1 (A,B)

The map ξU ′ therefore induces a map

Fz ⊗ TorR1 (A,B) −→ Fz ⊗B Iu
We claim this map is the same as the stalk of the map described above (proof
omitted; this is a purely ring theoretic statement). Thus we see that condition
(1) of Deformation Theory, Lemma 10.8 is equivalent to the vanishing H−2(ξU ′) :
H−2(E(F))→ F ⊗ I.

To finish the proof we show that, assuming that condition (1) is satisfied, condition
(2) is equivalent to the vanising of ξU ′ . In the rest of the proof we write F ⊗ I to
denote F ⊗O q∗I = F ⊗O J . A consideration of the spectral sequence

Exti(H−j(E(F)),F ⊗ I)⇒ Exti+j(E(F),F ⊗ I)

using that H0(E(F)) = F and H−1(E(F)) = 0 shows that there is an exact
sequence

0→ Ext2(F ,F ⊗ I)→ Ext2(E(F),F ⊗ I)→ Hom(H−2(E(F)),F ⊗ I)

http://localhost:8080/tag/09DQ
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Thus our element ξU ′ is an element of Ext2(F ,F ⊗ I). The proof is finished by
showing this element agrees with the element of Deformation Theory, Lemma 10.8
a verification we omit. �

Lemma 6.4. In Situation 5.1 assume that S is a locally Noetherian scheme and
S = B. Let X = CohX/B. Then we have openness of versality for X (see Artin’s
Axioms, Definition 14.1).

Proof (sketch). Let U → S be of finite type morphism of schemes, x an object
of X over U and u0 ∈ U a finite type point such that x is versal at u0. After
shrinking U we may assume that u0 is a closed point (Morphisms, Lemma 17.1)
and U = Spec(A) with U → S mapping into an affine open Spec(Λ) of S. We
will use Artin’s Axioms, Lemma 21.4 to prove the lemma. Let F be the coherent
module on XA = Spec(A)×S X flat over A corresponding to the given object x.

Choose E(F) and eF as in Remark 6.1. The description of the cohomology sheaves
of E(F) shows that

Ext1(E(F),F ⊗AM) = Ext1(F ,F ⊗AM)

for any A-module M . Using this and using Deformation Theory, Lemma 10.7 we
have an isomorphism of functors

Tx(M) = Ext1
XA(E(F),F ⊗AM)

By Lemma 6.3 given any surjection A′ → A of Λ-algebras with square zero kernel
I we have an obstruction class

ξA′ ∈ Ext2
XA(E(F),F ⊗A I)

Apply Derived Categories of Spaces, Lemma 19.3 to the computation of the Ext
groups ExtiXA(E(F),F ⊗A M) for i ≤ m with m = 2. We omit the verification

that E(F) is in D−Coh; hint: use Cotangent, Lemma 5.4. We find a perfect object
K ∈ D(A) and functorial isomorphisms

Hi(K ⊗L
AM) −→ ExtiXA(E(F),F ⊗AM)

for i ≤ m compatible with boundary maps. This object K, together with the
displayed identifications above gives us a datum as in Artin’s Axioms, Situation
21.2. Finally, condition (iv) of Artin’s Axioms, Lemma 21.3 holds by a variant
of Deformation Theory, Lemma 11.3 whose formulation and proof we omit. Thus
Artin’s Axioms, Lemma 21.4 applies and the lemma is proved. �

Theorem 6.5 (Algebraicity of stack coherent sheaves; general case). Let S be a
scheme. Let f : X → B be morphism of algebraic spaces over S. Assume that f is
of finite presentation and separated. Then CohX/B is an algebraic stack over S.

Proof. Identical to the proof of Theorem 5.12 except that we substitute Lemma
6.4 for Lemma 5.11. �

7. Flattening functors

This section is the analogue of More on Flatness, Section 19. We urge the reader
to skip this section on a first reading.
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Situation 7.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let u : F → G be a homomorphism of quasi-coherent OX -modules.
For any scheme T over B we will denote uT : FT → GT the base change of u to T , in
other words, uT is the pullback of u via the projection morphism XT = X ×B T →
X. In this situation we can consider the functor

(7.1.1) Fiso : (Sch/B)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.

There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

In Situation 7.1 we sometimes think of the functors Fiso, Finj , Fsurj , and Fzero
as functors (Sch/S)opp → Sets endowed with a morphism Fiso → B, Finj → B,
Fsurj → B, and Fzero → B. Namely, if T is a scheme over S, then an element
h ∈ Fiso(T ) is just a morphism h : T → B, i.e., an element h ∈ B(T ), such that
the base change of u via h is an isomorphism. In particular, when we say that Fiso
is an algebraic space, we mean that the corresponding functor (Sch/S)opp → Sets
is an algebraic space.

Lemma 7.2. In Situation 7.1. Each of the functors Fiso, Finj, Fsurj, Fzero satis-
fies the sheaf property for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over B. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies on Spaces, Lemma 3.2. In particular, for every x ∈ |XT | there exists an
i ∈ I and an xi ∈ |Xi| mapping to x. Since OXT ,x → OXi,xi is flat, hence faithfully
flat (see Morphisms of Spaces, Section 28). we conclude that (ui)xi is injective,
surjective, bijective, or zero if and only if (uT )x is injective, surjective, bijective, or
zero. The lemma follows. �

Lemma 7.3. In Situation 7.1 let X ′ → X be a flat morphism of algebraic spaces.
Denote u′ : F ′ → G′ the pullback of u to X ′. Denote F ′iso, F

′
inj, F

′
surj, F

′
zero the

functors on Sch/B associated to u′.

(1) If G is of finite type and the image of |X ′| → |X| contains the support of
G, then Fsurj = F ′surj and Fzero = F ′zero.

(2) If F is of finite type and the image of |X ′| → |X| contains the support of
F , then Finj = F ′inj and Fzero = F ′zero.

(3) If F and G are of finite type and the image of |X ′| → |X| contains the
supports of F and G, then Fiso = F ′iso.

Proof. let v : H → E be a map of quasi-coherent modules on an algebraic space
Y and let ϕ : Y ′ → Y be a surjective flat morphism of algebraic spaces, then v is
an isomorphism, injective, surjective, or zero if and only if ϕ∗v is an isomorphism,
injective, surjective, or zero. Namely, for every y ∈ |Y | there exists a y′ ∈ |Y ′| and
the map of local rings OY,y → OY ′,y′ is faithfully flat (see Morphisms of Spaces,

Section 28). Of course, to check for injectivity or being zero it suffices to look
at the points in the support of H, and to check for surjectivity it suffices to look
at points in the support of E . Moreover, under the finite type assumptions as in
the statement of the lemma, taking the supports commutes with base change, see
Morphisms of Spaces, Lemma 15.2. Thus the lemma is clear. �
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Recall that we’ve defined the scheme theoretic support of a finite type quasi-
coherent module in Morphisms of Spaces, Definition 15.4.

Lemma 7.4. In Situation 7.1.

(1) If G is of finite type and the scheme theoretic support of G is quasi-compact
over B, then Fsurj is limit preserving.

(2) If F of finite type and the scheme theoretic support of F is quasi-compact
over B, then Fzero is limit preserving.

(3) If F is of finite type, G is of finite presentation, and the scheme theoretic
supports of F and G are quasi-compact over B, then Fiso is limit preserving.

Proof. Proof of (1). Let i : Z → X be the scheme theoretic support of G and think
of G as a finite type quasi-coherent module on Z. We may replace X by Z and u by
the map i∗F → G (details omitted). Hence we may assume f is quasi-compact and G
of finite type. Let T = limi∈I Ti be a directed limit of affine B-schemes and assume
that uT is surjective. Set Xi = XTi = X×S Ti and ui = uTi : Fi = FTi → Gi = GTi .
To prove (1) we have to show that ui is surjective for some i. Pick 0 ∈ I and replace
I by {i | i ≥ 0}. Since f is quasi-compact we see X0 is quasi-compact. Hence
we may choose a surjective étale morphism ϕ0 : W0 → X0 where W0 is an affine
scheme. Set W = W0×T0

T and Wi = W0×T0
Ti for i ≥ 0. These are affine schemes

endowed with a surjective étale morphisms ϕ : W → XT and ϕi : Wi → Xi. Note
that W = limWi. Hence ϕ∗uT is surjective and it suffices to prove that ϕ∗i ui is
surjective for some i. Thus we have reduced the problem to the affine case which
is Algebra, Lemma 123.3 part (2).

Proof of (2). Assume F is of finite type with scheme theoretic support Z ⊂ B
quasi-compact over B. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is zero. Set Xi = Ti ×B X and denote ui : Fi → Gi the
pullback. Choose 0 ∈ I and replace I by {i | i ≥ 0}. Set Z0 = Z ×X X0. By
Morphisms of Spaces, Lemma 15.2 the support of Fi is |Z0|. Since |Z0| is quasi-
compact we can find an affine scheme W0 and an étale morphism W0 → X0 such
that |Z0| ⊂ Im(|W0| → |X0|). Set W = W0 ×T0

T and Wi = W0 ×T0
Ti for

i ≥ 0. These are affine schemes endowed with étale morphisms ϕ : W → XT and
ϕi : Wi → Xi. Note that W = limWi and that the support of FT and Fi is
contained in the image of |W | → |XT | and |Wi| → |Xi|. Now ϕ∗uT is injective
and it suffices to prove that ϕ∗i ui is injective for some i. Thus we have reduced the
problem to the affine case which is Algebra, Lemma 123.3 part (1).

Proof of (3). This can be proven in exactly the same manner as in the previous
two paragraphs using Algebra, Lemma 123.3 part (3). We can also deduce it from
(1) and (2) as follows. Let T = limi∈I Ti be a directed limit of affine B-schemes
and assume that uT is an isomorphism. By part (1) there exists an 0 ∈ I such
that uT0

is surjective. Set K = Ker(uT0
) and consider the map of quasi-coherent

modules v : K → FT0 . For i ≥ 0 the base change vTi is zero if and only if ui is
an isomorphism. Moreover, vT is zero. Since GT0 is of finite presentation, FT0 is of
finite type, and uT0

is surjective we conclude that K is of finite type (Modules on
Sites, Lemma 24.1). It is clear that the support of K is contained in the support of
FT0

which is quasi-compact over T0. Hence we can apply part (2) to see that vTi
is zero for some i. �
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Lemma 7.5. Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let u : F → G be a map of quasi-coherent OX-modules. Assume G flat over
S. Let T → S be a quasi-compact morphism of schemes such that the base change
uT is zero. Then exists a closed subscheme Z ⊂ S such that (a) T → S factors
through Z and (b) the base change uZ is zero. If F is a finite type OX-module and
the scheme theoretic support of F is quasi-compact, then we can take Z → S of
finite presentation.

Proof. Let U → X be a surjective étale morphism of algebraic spaces where U =∐
Ui is a disjoint union of affine schemes (see Properties of Spaces, Lemma 6.1).

By Lemma 7.3 we see that we may replace X by U . In other words, we may assume
that X =

∐
Xi is a disjoint union of affine schemes Xi. Suppose that we can prove

the lemma for ui = u|Xi . Then we find a closed subscheme Zi ⊂ S such that
T → S factors through Zi and ui,Zi is zero. If Zi = Spec(R/Ii) ⊂ Spec(R) = S,
then taking Z = Spec(R/

∑
Ii) works. Thus we may assume that X = Spec(A) is

affine.

Choose a finite affine open covering T = T1 ∪ . . . ∪ Tm. It is clear that we may
replace T by

∐
j=1,...,m Tj . Hence we may assume T is affine. Say T = Spec(R′).

Let u : M → N be the homomorphisms of A-modules corresponding to u : F → G.
Then N is a flat R-module as G is flat over S. The assumption of the lemma means
that the composition

M ⊗R R′ → N ⊗R R′

is zero. Let z ∈ M . By Lazard’s theorem (Algebra, Theorem 78.4) and the fact
that ⊗ commutes with colimits we can find free R-module Fz, an element z̃ ∈ Fz,
and a map Fz → N such that u(z) is the image of z̃ and z̃ maps to zero in Fz⊗RR′.
Choose a basis {ez,α} of Fz and write z̃ =

∑
fz,αez,α with fz,α ∈ R. Let I ⊂ R

be the ideal generated by the elements fz,α with z ranging over all elements of M .
By construction I maps to zero in R′ and the elements z̃ map to zero in Fz/IFz
whence in N/IN . Thus Z = Spec(R/I) is a solution to the problem in this case.

Assume F is of finite type with quasi-compact scheme theoretic support. Write
Z = Spec(R/I). Write I =

⋃
Iλ as a filtered union of finitely generated ideals. Set

Zλ = Spec(R/Iλ), so Z = colimZλ. Since uZ is zero, we see that uZλ is zero for
some λ by Lemma 7.4. This finishes the proof of the lemma. �

Lemma 7.6. Let A be a ring. Let u : M → N be a map of A-modules. If N is
projective as an A-module, then there exists an ideal I ⊂ A such that for any ring
map ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is zero, and
(2) ϕ(I) = 0.

Proof. As M is projective we can find a projective A-module C such that F =
N ⊕ C is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume N is free. In this case let I be the ideal of A generated by
coefficients of all the elements of Im(u) with respect to some (fixed) basis of N . �

It would be interesting to find a simple direct proof of the following lemma using
the result of Lemma 7.5. A “classical” proof of this lemma when f : X → B is a
projective morphism and B a Noetherian scheme would be: (a) choose a relatively
ample invertible sheaf OX(1), (b) set un : f∗F(n) → f∗G(n), (c) observe that
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f∗G(n) is a finite locally free sheaf for all n � 0, and (d) Fzero is represented by
the vanishing locus of un for some n� 0.

Lemma 7.7. In Situation 7.1. Assume

(1) f is locally of finite presentation,
(2) G is an OX-module of finite presentation flat over B,
(3) the scheme theoretic support of G is proper over B.

Then the functor Fzero is an algebraic space and Fzero → B is a closed immersion.
If F is of finite type, then Fzero → B is of finite presentation.

Proof. In order to prove that Fzero is an algebraic space, it suffices to show that
Fzero → B is representable, see Spaces, Lemma 11.1. Let B′ → B be a morphism
where B′ is a scheme and let u′ : F ′ → G′ be the pullback of u to X ′ = XB′ . Then
the associated functor F ′zero equals Fzero ×B B′. This reduces us to the case that
B is a scheme.

Assume B is a scheme. We will show that Fzero is representable by a closed sub-
scheme of B. By Lemma 7.2 and Descent, Lemmas 33.2 and 35.1 the question
is local for the étale topology on B. Let b ∈ B. We first replace B by an affine
neighbourhood of b. Denote Z ⊂ X the scheme theoretic support of G. Denote
Zb ⊂ Xb the fibre of Z ⊂ X → B over b. The space |Zb| is quasi-compact by the
last assumption of the lemma. Choose an affine scheme U and an étale morphism
ϕ : U → X such that |Zb| ⊂ Im(|U | → |X|). After replacing B by an affine ele-
mentary étale neighbourhood of b and replacing U by some affine U ′ étale over U
with U ′b → Ub surjective, we may assume that Γ(U,ϕ∗G) is a projective Γ(B,OB)-
module, see More on Flatness, Lemma 11.5. Since Z → B is proper the image
of

|Z| \ Im(|U | → |X|)
in |B| is a closed subset not containing b. Hence, after replacing B by an affine
open containing b, we may assume that |Z| ⊂ Im(|U | → |X|). (To be sure, after
this replacement it is still true that Γ(U,ϕ∗G) is a projective Γ(B,OB)-module.)
By Lemma 7.3 we see that Fzero is the same as the corresponding functor for the
map ϕ∗F → ϕ∗G. This case follows immediately from Lemma 7.6.

We still have to show that Fzero → B is of finite presentation if F is of finite
type. Let F ′ ⊂ G be the image of u and denote F ′zero the functor corresponding to
F ′ → G. Then Fzero = F ′zero and the scheme theoretic support of F ′ is a closed
subspace of the scheme theoretic support of G, hence proper over B. Thus Lemma
7.4 implies that Fzero = F ′zero is limit preserving over B. We conclude by Limits
of Spaces, Proposition 3.9. �

The following result is a variant of More on Flatness, Theorem 22.3.

Lemma 7.8. In Situation 7.1. Assume

(1) f is locally of finite presentation,
(2) F is locally of finite presentation and flat over B,
(3) the scheme theoretic support of F is proper over B, and
(4) u is surjective.

Then the functor Fiso is an algebraic space and Fiso → B is a closed immersion.
If G is of finite presentation, then Fiso → B is of finite presentation.
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Proof. Let K = Ker(u) and apply Lemma 7.7 to K → F . Note that K is of finite
type if G is of finite presentation, see Modules on Sites, Lemma 24.1. �

We will use the following (easy) result when discussing the Quot functor.

Lemma 7.9. In Situation 7.1. Assume

(1) f is locally of finite presentation,
(2) G is of finite type,
(3) the scheme theoretic support of G is proper over B.

Then Fsurj is an algebraic space and Fsurj → B is an open immersion.

Proof. Consider Coker(u). Observe that Coker(uT ) = Coker(u)T for any T/B.
Note that formation of the support of a finite type quasi-coherent module commutes
with pullback (Morphisms of Spaces, Lemma 15.1). Hence Fsurj is representable
by the open subspace of B corresponding to the open set

|B| \ |f |(Supp(Coker(u)))

see Properties of Spaces, Lemma 4.8. This is an open because |f | is closed on
Supp(G) and Supp(Coker(u)) is a closed subset of Supp(G). �

8. The functor of quotients

In this section we discuss some generalities regarding the functor QF/X/B defined
below. The notation QuotF/X/B is reserved for a subfunctor of QF/X/B . We urge
the reader to skip this section on a first reading.

Situation 8.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×S T → X. Given such a T we set

QF/X/B(T ) =

{
quotients FT → Q where Q is a quasi-coherent
OXT -module of finite presentation, flat over T

}
We identify quotients if they have the same kernel. Suppose that T ′ → T is a
morphism of schemes over B and FT → Q is an element of QF/X/B(T ). Then the

pullback Q′ = (XT ′ → XT )∗Q is a quasi-coherent OXT ′ -module of finite presen-
tation flat over T ′ (see Properties of Spaces, Section 28 and Morphisms of Spaces,
Lemma 29.3). Thus we obtain a functor

(8.1.1) QF/X/B : (Sch/B)opp −→ Sets

This is the functor of quotients of F/X/B.

In Situation 8.1 we sometimes think of QF/X/B as a functor (Sch/S)opp → Sets
endowed with a morphism QF/X/S → B. Namely, if T is a scheme over S, then we

can think of an element of QF/X/B as a pair (h,Q) where h a morphism h : T → B,

i.e., an element h ∈ B(T ), and Q is a T -flat quotient FT → Q of finite presentation
on XT = X ×B,h T . In particular, when we say that QF/X/S is an algebraic space,

we mean that the corresponding functor (Sch/S)opp → Sets is an algebraic space.

Remark 8.2. In Situation 8.1 let B′ → B be a morphism of algebraic spaces over
S. Set X ′ = X ×B B′ and denote F ′ the pullback of F to X ′. Thus we have the
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functor QF ′/X′/B′ on the category of schemes over B′. For a scheme T over B′ it
is clear that we have

QF ′/X′/B′(T ) = QF/X/B(T )

where on the right hand side we think of T as a scheme over B via the composition
T → B′ → B. This trivial remark will occasionally be useful to change the base
algebraic space.

Remark 8.3. Let S be a scheme, X an algebraic space over S, and F a quasi-
coherent OX -module. Suppose that {fi : Xi → X}i∈I is an fpqc covering and for
each i, j ∈ I we are given an fpqc covering {Xijk → Xi ×X Xj}. In this situation
we have a bijection{

quotients F → Q where
Q is a quasi-coherent

}
−→

families of quotients f∗i F → Qi where
Qi is quasi-coherent and Qi and Qj
restrict to the same quotient on Xijk


Namely, let (f∗i F → Qi)i∈I be an element of the right hand side. Then since
{Xijk → Xi ×X Xj} is an fpqc covering we see that the pullbacks of Qi and Qj
restrict to the same quotient of the pullback of F to Xi×XXj (by fully faithfulness
in Descent on Spaces, Proposition 4.1). Hence we obtain a descent datum for quasi-
coherent modules with respect to {Xi → X}i∈I . By Descent on Spaces, Proposition
4.1 we find a map of quasi-coherent OX -modules F → Q whose restriction to Xi

recovers the given maps f∗i F → Qi. Since the family of morphisms {Xi → X} is
jointly surjective and flat, for every point x ∈ |X| there exists an i and a point
xi ∈ |Xi| mapping to x. Note that the induced map on local rings OX,x → OXi,xi
is faithfully flat, see Morphisms of Spaces, Section 28. Thus we see that F → Q is
surjective.

Lemma 8.4. In Situation 8.1. The functor QF/X/B satisfies the sheaf property
for the fpqc topology.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and Fi = FTi . Note that {Xi → XT }i∈I is an fpqc covering of XT

(Topologies on Spaces, Lemma 3.2) and that XTi×TTi′ = Xi ×XT Xi′ . Suppose
that Fi → Qi is a collection of elements of QF/X/B(Ti) such that Qi and Qi′
restrict to the same element of QF/X/B(Ti ×T Ti′). By Remark 8.3 we obtain a
surjective map of quasi-coherent OXT -modules FT → Q whose restriction to Xi

recovers the given quotients. By Morphisms of Spaces, Lemma 29.5 we see that Q
is flat over T . Finally, Descent on Spaces, Lemma 5.2 guarantees that Q is of finite
presentation as an OXT -module. �

Lemma 8.5. In Situation 8.1 let {Xi → X}i∈I be an fppf covering and for each
i, j ∈ I let {Xijk → Xi ×X Xj} be an fppf covering. Denote Fi, resp. Fijk the
pullback of F to Xi, resp. Xijk. For every scheme T over B the diagram

QF/X/B(T ) // ∏
iQFi/Xi/B(T )

pr∗0 //

pr∗1

//
∏
i,j,kQFijk/Xijk/B(T )

presents the first arrow as the equalizer of the other two.

Proof. Let Fi,T → Qi be an element in the equalizer of pr∗0 and pr∗1. By Remark 8.3
we obtain a surjection FT → Q of quasi-coherent OXT -modules whose restriction
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to Xi,T recovers Fi → Qi. By Morphisms of Spaces, Lemma 29.5 we see that Q is
flat over T as desired. �

Lemma 8.6. In Situation 8.1 assume also that (a) f is quasi-compact and quasi-
separated and (b) F is of finite presentation. Then the functor QF/X/B is limit
preserving in the following sense: If T = limTi is a directed limit of affine schemes
over B, then QF/X/B(T ) = colim QF/X/B(Ti).

Proof. Let T = limTi be as in the statement of the lemma. Choose i0 ∈ I and
replace I by {i ∈ I | i ≥ i0}. We may set B = S = Ti0 and we may replace X by XT0

and F by the pullback to XT0 . Then XT = limXTi , see Limits of Spaces, Lemma
4.1. Let FT → Q be an element of QF/X/B(T ). By Limits of Spaces, Lemma 7.2
there exists an i and a map FTi → Qi of OXTi -modules of finite presentation whose
pullback to XT is the given quotient map.

We still have to check that, after possibly increasing i, the map FTi → Qi is
surjective and Qi is flat over Ti. To do this, choose an affine scheme U and a
surjective étale morphism U → X (see Properties of Spaces, Lemma 6.3). We
may check surjectivity and flatness over Ti after pulling back to the étale cover
UTi → XTi (by definition). This reduces us to the case where X = Spec(B0) is
an affine scheme of finite presentation over B = S = T0 = Spec(A0). Writing
Ti = Spec(Ai), then T = Spec(A) with A = colimAi we have reached the following
algebra problem. Let Mi → Ni be a map of finitely presented B0 ⊗A0

Ai-modules
such that Mi ⊗Ai A → Ni ⊗Ai A is surjective and Ni ⊗Ai A is flat over A. Show
that for some i′ ≥ i Mi ⊗Ai Ai′ → Ni ⊗Ai Ai′ is surjective and Ni ⊗Ai Ai′ is flat
over A. The first follows from Algebra, Lemma 123.3 and the second from Algebra,
Lemma 156.1. �

Lemma 8.7. In Situation 8.1 assume X → B locally of finite presentation. Let

Z //

��

Z ′

��
Y // Y ′

be a pushout in the category of schemes over B where Z → Z ′ is a thickening and
Z → Y is affine, see More on Morphisms, Lemma 11.1. Then the natural map

QF/X/B(Y ′) −→ QF/X/B(Y )×QF/X/B(Z) QF/X/B(Z ′)

is bijective.

Proof. We first argue that it suffices to prove this when all the schemes and alge-
braic spaces in sight are affine schemes. Let Y ′ =

⋃
Y ′i be an affine open covering

and let Yi, Z
′
i, and Zi be the corresponding (affine) opens of Y , Z ′, and Z. Since

QF/X/B satisfies the sheaf property for the fpqc topology (Lemma 8.4), it suffices
to prove the result of the lemma for the diagrams

Zi //

��

Z ′i

��
Yi // Y ′i

and

Zi ∩ Zj //

��

Z ′i ∩ Z ′j

��
Yi ∩ Yj // Y ′i ∩ Y ′j
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This reduces us to the case where the schemes Y ′, Y , Z ′, Z are separated and a
second application of this argument to the case where Y ′, Y , Z ′, Z are affine.

Assume Y ′ (and hence also Y , Z ′, and Z) is affine. By Remark 8.2 we may replace
B by Y ′ and X by X×B Y ′, and F by the pullback. Thus we may assume B = Y ′.

Assume B = Y ′ (and hence also Y , Z ′, and Z) is affine. Choose an étale covering
{Xi → X}i∈I with each Xi affine and similarly choose étale coverings {Xijk →
Xi ×X Xj} with each Xijk affine (Properties of Spaces, Lemma 6.1). By Lemma
8.5 it suffices to prove the lemma for each of the functors associated to Xi and
Xijk. Hence we may assume X is affine as well. This reduces the lemma to More
on Algebra, Remark 4.15. �

9. The quot functor

In this section we prove the Quot functor is representable by an algebraic space.

Situation 9.1. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent OX -module. For any scheme T over B
we will denote XT the base change of X to T and FT the pullback of F via the
projection morphism XT = X ×S T → X. Given such a T we set

QuotF/X/B(T ) =

quotients FT → Q where Q is a quasi-coherent
OXT -module of finite presentation, flat over T
with scheme theoretic support proper over T


This is a subfunctor of QF/X/T discussed in Section 8. Thus we obtain a functor

(9.1.1) QuotF/X/B : (Sch/B)opp −→ Sets

This is the quot functor associated to F/X/B.

In Situation 9.1 we may think of QuotF/X/B as a functor (Sch/S)opp → Sets en-
dowed with a morphism QuotF/X/S → B. Namely, if T is a scheme over S, then

we can think of an element of QuotF/X/B as a pair (h,Q) where h a morphism

h : T → B, i.e., an element h ∈ B(T ), and Q is a finitely presented, T -flat quotient
FT → Q on XT = X ×B,h T with support proper over T . In particular, when we
say that QuotF/X/S is an algebraic space, we mean that the corresponding functor

(Sch/S)opp → Sets is an algebraic space.

Lemma 9.2. In Situation 9.1. The functor QuotF/X/B satisfies the sheaf property
for the fpqc topology.

Proof. In Lemma 8.4 we have seen that the functor QF/X/S is a sheaf. Recall

that for a scheme T over S the subset QuotF/X/S(T ) ⊂ QF/X/S(T ) picks out those
quotients whose support is proper over T . This defines a subsheaf by the result
of Descent on Spaces, Lemma 10.17 (combined with Morphisms of Spaces, Lemma
28.10) which shows that taking scheme theoretic support commutes with flat base
change). �

Proposition 9.3. Let S be a scheme. Let f : X → B be a morphism of algebraic
spaces over S. Let F be a quasi-coherent sheaf on X. If f is of finite presentation
and separated, then QuotF/X/B is an algebraic space. If F is of finite presentation,
then QuotF/X/B → B is locally of finite presentation.
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Proof. Note that QuotF/X/B is a sheaf in the fppf topology. Let QuotF/X/B be
the stack in groupoids corresponding to QuotF/X/S , see Algebraic Stacks, Section
7. By Algebraic Stacks, Proposition 13.3 it suffices to show that QuotF/X/B is an
algebraic stack. Consider the 1-morphism of stacks in groupoids

QuotF/X/S −→ CohX/B

on (Sch/S)fppf which associates to the quotient FT → Q the coherent sheaf Q.
By Theorem 6.5 we know that CohX/B is an algebraic stack. By Algebraic Stacks,
Lemma 15.4 it suffices to show that this 1-morphism is representable by algebraic
spaces.

Let T be a scheme over S and let the object (h,G) of CohX/B over T correspond
to a 1-morphism ξ : (Sch/T )fppf → CohX/B . The 2-fibre product

Z = (Sch/T )fppf ×ξ,CohX/B QuotF/X/S

is a stack in setoids, see Stacks, Lemma 6.7. The corresponding sheaf of sets (i.e.,
functor, see Stacks, Lemmas 6.7 and 6.2) assigns to a scheme T ′/T the set of
surjections u : FT ′ → GT ′ of quasi-coherent modules on XT ′ . Thus we see that
Z is representable by an open subspace (by Lemma 7.9) of the algebraic space
Hom(FT ,G) from Proposition 3.9. �
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