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1. Introduction

This is a discussion of examples of stacks in algebraic geometry. Some of them
are algebraic stacks, some are not. We will discuss which are algebraic stacks in a
later chapter. This means that in this chapter we mainly worry about the descent
conditions. See [Vis04] for example.

Some of the notation, conventions and terminology in this chapter is awkward and
may seem backwards to the more experienced reader. This is intentional. Please
see Quot, Section 1 for an explanation.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 EXAMPLES OF STACKS

2. Notation

In this chapter we fix a suitable big fppf site Schfppf as in Topologies, Definition
7.6. So, if not explicitly stated otherwise all schemes will be objects of Schfppf . We
will always work relative to a base S contained in Schfppf . And we will then work
with the big fppf site (Sch/S)fppf , see Topologies, Definition 7.8. The absolute
case can be recovered by taking S = Spec(Z).

3. Examples of stacks

We first give some important examples of stacks over (Sch/S)fppf .

4. Quasi-coherent sheaves

We define a category QCoh as follows:

(1) An object of QCoh is a pair (X,F), where X/S is an object of (Sch/S)fppf ,
and F is a quasi-coherent OX -module, and

(2) a morphism (f, ϕ) : (Y,G) → (X,F) is a pair consisting of a morphism
f : Y → X of schemes over S and an f -map (see Sheaves, Section 26)
ϕ : F → G.

(3) The composition of morphisms

(Z,H)
(g,ψ)−−−→ (Y,G)

(f,φ)−−−→ (X,F)

is (f ◦ g, ψ ◦ φ) where ψ ◦ φ is the composition of f -maps.

Thus QCoh is a category and

p : QCoh→ (Sch/S)fppf , (X,F) 7→ X

is a functor. Note that the fibre category of QCoh over a scheme X is just the
category QCoh(OX) of quasi-coherent OX -modules. We remark for later use that
given (X,F), (Y,G) ∈ Ob(QCoh) we have

(4.0.1) MorQCoh((Y,G), (X,F)) =
∐

f∈MorS(Y,X)
MorQCoh(OY )(f

∗F ,G)

See the discussion on f -maps of modules in Sheaves, Section 26.

The category QCoh is not a stack over (Sch/S)fppf because its collection of objects
is a proper class. On the other hand we will see that it does satisfy all the axioms
of a stack. We will get around the set theoretical issue in Section 5.

Lemma 4.1. A morphism (f, ϕ) : (Y,G) → (X,F) of QCoh is strongly cartesian
if and only if the map ϕ induces an isomorphism f∗F → G.

Proof. Let (X,F) ∈ Ob(QCoh). Let f : Y → X be a morphism of (Sch/S)fppf .
Note that there is a canonical f -map c : F → f∗F and hence we get a morphism
(f, c) : (Y, f∗F) → (X,F). We claim that (f, c) is strongly cartesian. Namely, for
any object (Z,H) of QCoh we have

MorQCoh((Z,H), (Y, f∗F)) =
∐

g∈MorS(Z,Y )
MorQCoh(OZ)(g

∗f∗F ,H)

=
∐

g∈MorS(Z,Y )
MorQCoh(OZ)((f ◦ g)∗F ,H)

= MorQCoh((Z,H), (X,F))×MorS(Z,X) MorS(Z, Y )

where we have used Equation (4.0.1) twice. This proves that the condition of
Categories, Definition 31.1 holds for (f, c), and hence our claim is true. Now by
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Categories, Lemma 31.2 we see that isomorphisms are strongly cartesian and com-
positions of strongly cartesian morphisms are strongly cartesian which proves the
“if” part of the lemma. For the converse, note that given (X,F) and f : Y → X,
if there exists a strongly cartesian morphism lifting f with target (X,F) then it
has to be isomorphic to (f, c) (see discussion following Categories, Definition 31.1).
Hence the ”only if” part of the lemma holds. �

Lemma 4.2. The functor p : QCoh → (Sch/S)fppf satisfies conditions (1), (2)
and (3) of Stacks, Definition 4.1.

Proof. It is clear from Lemma 4.1 that QCoh is a fibred category over (Sch/S)fppf .
Given covering U = {Xi → X}i∈I of (Sch/S)fppf the functor

QCoh(OT ) −→ DD(U)

is fully faithful and essentially surjective, see Descent, Proposition 5.2. Hence
Stacks, Lemma 4.2 applies to show that QCoh satisfies all the axioms of a stack. �

5. The stack of finitely generated quasi-coherent sheaves

It turns out that we can get a stack of quasi-coherent sheaves if we only consider
finite type quasi-coherent modules. Let us denote

pfg : QCohfg → (Sch/S)fppf

the full subcategory of QCoh over (Sch/S)fppf consisting of pairs (T,F) such that
F is a quasi-coherent OT -module of finite type.

Lemma 5.1. The functor pfg : QCohfg → (Sch/S)fppf satisfies conditions (1),
(2) and (3) of Stacks, Definition 4.1.

Proof. We will verify assumptions (1), (2), (3) of Stacks, Lemma 4.3 to prove this.
By Lemma 4.1 a morphism (Y,G) → (X,F) is strongly cartesian if and only if
it induces an isomorphism f∗F → G. By Modules, Lemma 9.2 the pullback of a
finite type OX -module is of finite type. Hence assumption (1) of Stacks, Lemma
4.3 holds. Assumption (2) holds trivially. Finally, to prove assumption (3) we
have to show: If F is a quasi-coherent OX -module and {fi : Xi → X} is an fppf
covering such that each f∗i F is of finite type, then F is of finite type. Considering
the restriction of F to an affine open of X this reduces to the following algebra
statement: Suppose that R→ S is a finitely presented, faithfully flat ring map and
M an R-module. If M ⊗R S is a finitely generated S-module, then M is a finitely
generated R-module. A stronger form of the algebra fact can be found in Algebra,
Lemma 80.2. �

Lemma 5.2. Let (X,OX) be a ringed space.

(1) The category of finite type OX-modules has a set of isomorphism classes.
(2) The category of finite type quasi-coherent OX-modules has a set of isomor-

phism classes.

Proof. Part (2) follows from part (1) as the category in (2) is a full subcategory
of the category in (1). Consider any open covering U : X =

⋃
i∈I Ui. Denote

ji : Ui → X the inclusion maps. Consider any map r : I → N. If F is an OX -
module whose restriction to Ui is generated by at most r(i) sections from F(Ui),
then F is a quotient of the sheaf

HU,r =
⊕

i∈I
ji,!O⊕r(i)Ui

http://localhost:8080/tag/03YM
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4 EXAMPLES OF STACKS

By definition, if F is of finite type, then there exists some open covering with U
whose index set is I = X such that this condition is true. Hence it suffices to show
that there is a set of possible choices for U (obvious), a set of possible choices for
r : I → N (obvious), and a set of possible quotient modules of HU,r for each U
and r. In other words, it suffices to show that given an OX -module H there is at
most a set of isomorphism classes of quotients. This last assertion becomes obvious
by thinking of the kernels of a quotient map H → F as being parametrized by a
subset of the power set of

∏
U⊂X openH(U). �

Lemma 5.3. There exists a subcategory QCohfg,small ⊂ QCohfg with the following
properties:

(1) the inclusion functor QCohfg,small → QCohfg is fully faithful and essen-
tially surjective, and

(2) the functor pfg,small : QCohfg,small → (Sch/S)fppf turns QCohfg,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 5.1 and 5.2 that pfg : QCohfg → (Sch/S)fppf
satisfies (1), (2) and (3) of Stacks, Definition 4.1 as well as the additional condition
(4) of Stacks, Remark 4.9. Hence we obtain QCohfg,small from the discussion in
that remark. �

We will often perform the replacement

QCohfg  QCohfg,small

without further remarking on it, and by abuse of notation we will simply denote
QCohfg this replacement.

Remark 5.4. Note that the whole discussion in this section works if we want to
consider those quasi-coherent sheaves which are locally generated by at most κ
sections, for some infinite cardinal κ, e.g., κ = ℵ0.

6. Algebraic spaces

We define a category Spaces as follows:

(1) An object of Spaces is a morphism X → U of algebraic spaces over S, where
U is representable by an object of (Sch/S)fppf , and

(2) a morphism (f, g) : (X → U)→ (Y → V ) is a commutative diagram

X

��

f
// Y

��
U

g // V

of morphisms of algebraic spaces over S.

Thus Spaces is a category and

p : Spaces→ (Sch/S)fppf , (X → U) 7→ U

is a functor. Note that the fibre category of Spaces over a scheme U is just the
category Spaces/U of algebraic spaces over U (see Topologies on Spaces, Section
2). Hence we sometimes think of an object of Spaces as a pair X/U consisting of

http://localhost:8080/tag/04U6
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a scheme U and an algebraic space X over U . We remark for later use that given
(X/U), (Y/V ) ∈ Ob(Spaces) we have

(6.0.1) MorSpaces(X/U, Y/V ) =
∐

g∈MorS(U,V )
MorSpaces/U (X,U ×g,V Y )

The category Spaces is almost, but not quite a stack over (Sch/S)fppf . The problem
is a set theoretical issue as we will explain below.

Lemma 6.1. A morphism (f, g) : X/U → Y/V of Spaces is strongly cartesian if
and only if the map f induces an isomorphism X → U ×g,V Y .

Proof. Let Y/V ∈ Ob(Spaces). Let g : U → V be a morphism of (Sch/S)fppf .
Note that the projection p : U ×g,V Y → Y gives rise a morphism (p, g) : U ×g,V
Y/U → Y/V of Spaces. We claim that (p, g) is strongly cartesian. Namely, for any
object Z/W of Spaces we have

MorSpaces(Z/W,U ×g,V Y/U) =
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×h,U U ×g,V Y )

=
∐

h∈MorS(W,U)
MorSpaces/W (Z,W ×g◦h,V Y )

= MorSpaces(Z/W, Y/V )×MorS(W,V ) MorS(W,U)

where we have used Equation (6.0.1) twice. This proves that the condition of
Categories, Definition 31.1 holds for (p, g), and hence our claim is true. Now by
Categories, Lemma 31.2 we see that isomorphisms are strongly cartesian and com-
positions of strongly cartesian morphisms are strongly cartesian which proves the
“if” part of the lemma. For the converse, note that given Y/V and g : U → V , if
there exists a strongly cartesian morphism lifting g with target Y/V then it has to
be isomorphic to (p, g) (see discussion following Categories, Definition 31.1). Hence
the ”only if” part of the lemma holds. �

Lemma 6.2. The functor p : Spaces → (Sch/S)fppf satisfies conditions (1) and
(2) of Stacks, Definition 4.1.

Proof. It is follows from Lemma 6.1 that Spaces is a fibred category over (Sch/S)fppf
which proves (1). Suppose that {Ui → U}i∈I is a covering of (Sch/S)fppf . Sup-
pose that X,Y are algebraic spaces over U . Finally, suppose that ϕi : XUi → YUi

are morphisms of Spaces/Ui such that ϕi and ϕj restrict to the same morphisms
XUi×UUj

→ YUi×UUj
of algebraic spaces over Ui ×U Uj . To prove (2) we have to

show that there exists a unique morphism ϕ : X → Y over U whose base change
to Ui is equal to ϕi. As a morphism from X to Y is the same thing as a map of
sheaves this follows directly from Sites, Lemma 25.1. �

Remark 6.3. Ignoring set theoretical difficulties1 Spaces also satisfies descent for
objects and hence is a stack. Namely, we have to show that given

(1) an fppf covering {Ui → U}i∈I ,
(2) for each i ∈ I an algebraic space Xi/Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj ×U Uk,

1The difficulty is not that Spaces is a proper class, since by our definition of an algebraic space

over S there is only a set worth of isomorphism classes of algebraic spaces over S. It is rather
that arbitrary disjoint unions of algebraic spaces may end up being too large, hence lie outside of

our chosen “partial universe” of sets.

http://localhost:8080/tag/04U9
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6 EXAMPLES OF STACKS

there exists an algebraic space X/U and isomorphisms XUi
∼= Xi over Ui recovering

the isomorphisms ϕij . First, note that by Sites, Lemma 25.2 there exists a sheaf
X on (Sch/U)fppf recovering the Xi and the ϕij . Then by Bootstrap, Lemma 11.1
we see that X is an algebraic space (if we ignore the set theoretic condition of that
lemma). We will use this argument in the next section to show that if we consider
only algebraic spaces of finite type, then we obtain a stack.

7. The stack of finite type algebraic spaces

It turns out that we can get a stack of spaces if we only consider spaces of finite
type. Let us denote

pft : Spacesft → (Sch/S)fppf

the full subcategory of Spaces over (Sch/S)fppf consisting of pairs X/U such that
X → U is a morphism of finite type.

Lemma 7.1. The functor pft : Spacesft → (Sch/S)fppf satisfies the conditions
(1), (2) and (3) of Stacks, Definition 4.1.

Proof. We are going to write this out in ridiculous detail (which may make it hard
to see what is going on).

We have seen in Lemma 6.1 that a morphism (f, g) : X/U → Y/V of Spaces is
strongly cartesian if the induced morphism f : X → U ×V Y is an isomorphism.
Note that if Y → V is of finite type then also U ×V Y → U is of finite type, see
Morphisms of Spaces, Lemma 23.3. So if (f, g) : X/U → Y/V of Spaces is strongly
cartesian in Spaces and Y/V is an object of Spacesft then automatically also X/U
is an object of Spacesft, and of course (f, g) is also strongly cartesian in Spacesft.
In this way we conclude that Spacesft is a fibred category over (Sch/S)fppf . This
proves (1).

The argument above also shows that the inclusion functor Spacesft → Spaces trans-
forms strongly cartesian morphisms into strongly cartesian morphisms. In other
words Spacesft → Spaces is a 1-morphism of fibred categories over (Sch/S)fppf .

Let U ∈ Ob((Sch/S)fppf ). Let X,Y be algebraic spaces of finite type over U . By
Stacks, Lemma 2.3 we obtain a map of presheaves

MorSpacesft
(X,Y ) −→ MorSpaces(X,Y )

which is an isomorphism as Spacesft is a full subcategory of Spaces. Hence the left
hand side is a sheaf, because in Lemma 6.2 we showed the right hand side is a sheaf.
This proves (2).

To prove condition (3) of Stacks, Definition 4.1 we have to show the following:
Given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,
(2) for each i ∈ I an algebraic space Xi of finite type over Ui, and
(3) for each i, j ∈ I an isomorphism ϕij : Xi ×U Uj → Ui ×U Xj of algebraic

spaces over Ui×U Uj satisfying the cocycle condition over Ui×U Uj ×U Uk,

there exists an algebraic space X of finite type over U and isomorphisms XUi
∼= Xi

over Ui recovering the isomorphisms ϕij . By Sites, Lemma 25.2 there exists a sheaf
X on (Sch/U)fppf recovering the Xi and the ϕij . Then by Bootstrap, Lemma 11.4
we see that X is an algebraic space. By Descent on Spaces, Lemma 10.8 we see
that X → U is of finite type which concludes the proof. �

http://localhost:8080/tag/04UD
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Lemma 7.2. There exists a subcategory Spacesft,small ⊂ Spacesft with the follow-
ing properties:

(1) the inclusion functor Spacesft,small → Spacesft is fully faithful and essen-
tially surjective, and

(2) the functor pft,small : Spacesft,small → (Sch/S)fppf turns Spacesft,small
into a stack over (Sch/S)fppf .

Proof. We have seen in Lemmas 7.1 that pfg : QCohfg → (Sch/S)fppf satisfies
(1), (2) and (3) of Stacks, Definition 4.1. The additional condition (4) of Stacks,
Remark 4.9 holds because every algebraic space X over S is of the form U/R for
U,R ∈ Ob((Sch/S)fppf ), see Spaces, Lemma 9.1. Thus there is only a set worth of
isomorphism classes of objects. Hence we obtain Spacesft,small from the discussion
in that remark. �

We will often perform the replacement

Spacesft  Spacesft,small

without further remarking on it, and by abuse of notation we will simply denote
Spacesft this replacement.

Remark 7.3. Note that the whole discussion in this section works if we want to
consider those algebraic spaces X/U which are locally of finite type such that the
inverse image in X of an affine open of U can be covered by countably many affines.
If needed we can also introduce the notion of a morphism of κ-type (meaning some
bound on the number of generators of ring extensions and some bound on the
cardinality of the affines over a given affine in the base) where κ is a cardinal, and
then we can produce a stack

Spacesκ −→ (Sch/S)fppf

in exactly the same manner as above (provided we make sure that Sch is large
enough depending on κ).

8. Examples of stacks in groupoids

The examples above are examples of stacks which are not stacks in groupoids. In
the rest of this chapter we give algebraic geometric examples of stacks in groupoids.

9. The stack associated to a sheaf

Let F : (Sch/S)oppfppf → Sets be a presheaf. We obtain a category fibred in sets

pF : SF → (Sch/S)fppf ,

see Categories, Example 36.5. This is a stack in sets if and only if F is a sheaf, see
Stacks, Lemma 6.3.

10. The stack in groupoids of finitely generated quasi-coherent sheaves

Let p : QCohfg → (Sch/S)fppf be the stack introduced in Section 5 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : QCoh′fg → (Sch/S)fppf by the procedure of Categories, Lemma 33.3, see

Stacks, Lemma 5.3. In this particular case this simply means QCoh′fg has the same
objects as QCohfg but the morphisms are pairs (f, g) : (U,F) → (U ′,F ′) where g
is an isomorphism g : f∗F ′ → F .

http://localhost:8080/tag/04UE
http://localhost:8080/tag/04UF


8 EXAMPLES OF STACKS

11. The stack in groupoids of finite type algebraic spaces

Let p : Spacesft → (Sch/S)fppf be the stack introduced in Section 7 (using the
abuse of notation introduced there). We can turn this into a stack in groupoids
p′ : Spaces′ft → (Sch/S)fppf by the procedure of Categories, Lemma 33.3, see

Stacks, Lemma 5.3. In this particular case this simply means Spaces′ft has the
same objects as Spacesft, i.e., finite type morphisms X → U where X is an algebraic
space over S and U is a scheme over S. But the morphisms (f, g) : X/U → Y/V
are now commutative diagrams

X

��

f
// Y

��
U

g // V

which are cartesian.

12. Quotient stacks

Let (U,R, s, t, c) be a groupoid in algebraic spaces over S. In this case the quotient
stack

[U/R] −→ (Sch/S)fppf

is a stack in groupoids by construction, see Groupoids in Spaces, Definition 19.1.
It is even the case that the Isom-sheaves are representable by algebraic spaces, see
Bootstrap, Lemma 11.5. These quotient stacks are of fundamental importance to
the theory of algebraic stacks.

A special case of the construction above is the quotient stack

[X/G] −→ (Sch/S)fppf

associated to a datum (B,G/B,m,X/B, a). Here

(1) B is an algebraic space over S,
(2) (G,m) is a group algebraic space over B,
(3) X is an algebraic space over B, and
(4) a : G×B X → X is an action of G on X over B.

Namely, by Groupoids in Spaces, Definition 19.1 the stack in groupoids [X/G] is
the quotient stack [X/G ×B X] given above. It behooves us to spell out what the
category [X/G] really looks like. We will do this in Section 14.

13. Classifying torsors

We want to carefuly explain a number of variants of what it could mean to study
the stack of torsors for a group algebraic space G or a sheaf of groups G.

13.1. Torsors for a sheaf of groups. Let G be a sheaf of groups on (Sch/S)fppf .
For U ∈ Ob((Sch/S)fppf ) we denote G|U the restriction of G to (Sch/U)fppf . We
define a category G-Torsors as follows:

(1) An object of G-Torsors is a pair (U,F) where U is an object of (Sch/S)fppf
and F is a G|U -torsor, see Cohomology on Sites, Definition 5.1.

(2) A morphism (U,F)→ (V,H) is given by a pair (f, α), where f : U → V is
a morphism of schemes over S, and α : f−1H → F is an isomorphism of
G|U -torsors.
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Thus G-Torsors is a category and

p : G-Torsors −→ (Sch/S)fppf , (U,F) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the category of
G|U -torsors which is a groupoid.

Lemma 13.2. Up to a replacement as in Stacks, Remark 4.9 the functor

p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Let {Ui → U}i∈I be a covering of (Sch/S)fppf . Suppose that for each i we
are given a G|Ui

-torsor Fi, and for each i, j ∈ I an isomorphism ϕij : Fi|Ui×UUj
→

Fj |Ui×UUj of G|Ui×UUj -torsors satisfying a suitable cocycle condition on Ui×UUj×U
Uk. Then by Sites, Section 25 we obtain a sheaf F on (Sch/U)fppf whose restriction
to each Ui recovers Fi as well as recovering the descent data. By the equivalence of
categories in Sites, Lemma 25.3 the action maps G|Ui

×Fi → Fi glue to give a map
a : G|U × F → F . Now we have to show that a is an action and that F becomes
a G|U -torsor. Both properties may be checked locally, and hence follow from the
corresponding properties of the actions G|Ui × Fi → Fi. This proves that descent
for objects holds in G-Torsors. Some details omitted. �

13.3. Variant on torsors for a sheaf. The construction of Subsection 13.1 can
be generalized slightly. Namely, let G → B be a map of sheaves on (Sch/S)fppf and
let

m : G ×B G −→ G
be a group law on G/B. In other words, the pair (G,m) is a group object of the topos
Sh((Sch/S)fppf )/B. See Sites, Section 29 for information regarding localizations of
topoi. In this setting we can define a category G/B-Torsors as follows (where we
use the Yoneda embedding to think of schemes as sheaves):

(1) An object of G/B-Torsors is a triple (U, b,F) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a section of B over U , and
(c) F is a U ×b,B G-torsor over U .

(2) A morphism (U, b,F)→ (U ′, b′,F ′) is given by a pair (f, g), where f : U →
U ′ is a morphism of schemes over S such that b = b′◦f , and g : f−1F ′ → F
is an isomorphism of U ×b,B G-torsors.

Thus G/B-Torsors is a category and

p : G/B-Torsors −→ (Sch/S)fppf , (U, b,F) 7−→ U

is a functor. Note that the fibre category of G/B-Torsors over U is the disjoint
union over b : U → B of the categories of U ×b,B G-torsors, hence is a groupoid.

In the special case B = S we recover the category G-Torsors introduced in Subsec-
tion 13.1.

Lemma 13.4. Up to a replacement as in Stacks, Remark 4.9 the functor

p : G/B-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

http://localhost:8080/tag/04UK
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Proof. This proof is a repeat of the proof of Lemma 13.2. The reader is encouraged
to read that proof first since the notation is less cumbersome. The most difficult
part of the proof is to show that we have descent for objects. Let {Ui → U}i∈I
be a covering of (Sch/S)fppf . Suppose that for each i we are given a pair (bi,Fi)
consisting of a morphism bi : Ui → B and a Ui ×bi,B G-torsor Fi, and for each
i, j ∈ I we have bi|Ui×UUj

= bj |Ui×UUj
and we are given an isomorphism ϕij :

Fi|Ui×UUj → Fj |Ui×UUj of (Ui ×U Uj) ×B G-torsors satisfying a suitable cocycle
condition on Ui ×U Uj ×U Uk. Then by Sites, Section 25 we obtain a sheaf F
on (Sch/U)fppf whose restriction to each Ui recovers Fi as well as recovering the
descent data. By the sheaf axiom for B the morphisms bi come from a unique
morphism b : U → B. By the equivalence of categories in Sites, Lemma 25.3 the
action maps (Ui ×bi,B G) ×Ui

Fi → Fi glue to give a map (U ×b,B G) × F → F .
Now we have to show that this is an action and that F becomes a U ×b,B G-torsor.
Both properties may be checked locally, and hence follow from the corresponding
properties of the actions on the Fi. This proves that descent for objects holds in
G/B-Torsors. Some details omitted. �

13.5. Principal homogeneous spaces. Let B be an algebraic space over S. Let
G be a group algebraic space over B. We define a category G-Principal as follows:

(1) An object of G-Principal is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) X is a principal homogeneous GU -space over U where GU = U×b,BG.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of principal homogeneous GU -spaces.

Thus G-Principal is a category and

p : G-Principal −→ (Sch/S)fppf , (U, b,X) 7−→ U

is a functor. Note that the fibre category of G-Principal over U is the disjoint union
over b : U → B of the categories of principal homogeneous U ×b,B G-spaces, hence
is a groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is a principal homogeneous GU -space over U . Moreover, morphisms
are simply cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Remark 13.6. We conjecture that up to a replacement as in Stacks, Remark 4.9
the functor

p : G-Principal −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf . This would follow if one could show
that given

(1) a covering {Ui → U}i∈I of (Sch/S)fppf ,

http://localhost:8080/tag/04UP
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(2) an group algebraic space H over U ,
(3) for every i a principal homogeneous HUi-space Xi over Ui, and
(4) H-equivariant isomorphisms ϕij : Xi,Ui×UUj → Xj,Ui×UUj satisfying the

cocycle condition,

there exists a principal homogeneous H-space X over U which recovers (Xi, ϕij).
The technique of the proof of Bootstrap, Lemma 11.8 reduces this to a set theoret-
ical question, so the reader who ignores set theoretical questions will “know” that
the result is true. In http://math.columbia.edu/~dejong/wordpress/?p=591

there is a suggestion as to how to approach this problem.

13.7. Variant on principal homogeneous spaces. Let S be a scheme. Let
B = S. Let G be a group scheme over B = S. In this setting we can define a full
subcategory G-Principal-Schemes ⊂ G-Principal whose objects are pairs (U,X)
where U is an object of (Sch/S)fppf and X → U is a principal homogeneous G-
space over U which is representable, i.e., a scheme.

It is in general not the case that G-Principal-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist principal homoge-
neous spaces which are not schemes, hence descent for objects will not be satisfied
in general.

13.8. Torsors in fppf topology. Let B be an algebraic space over S. Let G be
a group algebraic space over B. We define a category G-Torsors as follows:

(1) An object of G-Torsors is a triple (U, b,X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism, and
(c) X is an fppf GU -torsor over U where GU = U ×b,B G.

See Groupoids in Spaces, Definition 9.3.
(2) A morphism (U, b,X) → (U ′, b′, X ′) is given by a pair (f, g), where f :

U → U ′ is a morphism of schemes over B, and g : X → U ×f,U ′ X ′ is an
isomorphism of GU -torsors.

Thus G-Torsors is a category and

p : G-Torsors −→ (Sch/S)fppf , (U, a,X) 7−→ U

is a functor. Note that the fibre category of G-Torsors over U is the disjoint union
over b : U → B of the categories of fppf U ×b,B G-torsors, hence is a groupoid.

In the special case S = B the objects are simply pairs (U,X) where U is a scheme
over S, and X is an fppf GU -torsor over U . Moreover, morphisms are simply
cartesian diagrams

X

��

g
// X ′

��
U

f // U ′

where g is G-equivariant.

Lemma 13.9. Up to a replacement as in Stacks, Remark 4.9 the functor

p : G-Torsors −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

http://math.columbia.edu/~dejong/wordpress/?p=591
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Proof. The most difficult part of the proof is to show that we have descent for
objects, which is Bootstrap, Lemma 11.8. We omit the proof of axioms (1) and (2)
of Stacks, Definition 5.1. �

Lemma 13.10. Let B be an algebraic space over S. Let G be a group algebraic
space over B. Denote G, resp. B the algebraic space G, resp. B seen as a sheaf on
(Sch/S)fppf . The functor

G-Torsors −→ G/B-Torsors

which associates to a triple (U, b,X) the triple (U, b,X ) where X is X viewed as a
sheaf is an equivalence of stacks in groupoids over (Sch/S)fppf .

Proof. We will use the result of Stacks, Lemma 4.8 to prove this. The functor is
fully faithful since the category of algebraic spaces over S is a full subcategory of
the category of sheaves on (Sch/S)fppf . Moreover, all objects (on both sides) are
locally trivial torsors so condition (2) of the lemma referenced above holds. Hence
the functor is an equivalence. �

13.11. Variant on torsors in fppf topology. Let S be a scheme. Let B = S.
Let G be a group scheme over B = S. In this setting we can define a full subcategory
G-Torsors-Schemes ⊂ G-Torsors whose objects are pairs (U,X) where U is an
object of (Sch/S)fppf and X → U is an fppf G-torsor over U which is representable,
i.e., a scheme.

It is in general not the case that G-Torsors-Schemes is a stack in groupoids over
(Sch/S)fppf . The reason is that in general there really do exist fppf G-torsors which
are not schemes, hence descent for objects will not be satisfied in general.

14. Quotients by group actions

At this point we have introduced enough notation that we can work out in more
detail what the stacks [X/G] of Section 12 look like.

Situation 14.1. Here

(1) S is a scheme contained in Schfppf ,
(2) B is an algebraic space over S,
(3) (G,m) is a group algebraic space over B,
(4) π : X → B is an algebraic space over B, and
(5) a : G×B X → X is an action of G on X over B.

In this situation we construct a category [[X/G]]2 as follows:

(1) An object of [[X/G]] consists of a quadruple (U, b, P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S,
(c) P is an fppf GU -torsor over U where GU = U ×b,B G, and

2The notation [[X/G]] with double brackets serves to distinguish this category from the stack
[X/G] introduced earlier. In Proposition 14.3 we show that the two are canonically equivalent.

Afterwards we will use the notation [X/G] to indicate either.

http://localhost:8080/tag/04UT
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(d) ϕ : P → X is a G-equivariant morphism fitting into the commutative
diagram

P

��

ϕ
// X

��
U

b // B

(2) A morphism of [[X/G]] is a pair (f, g) : (U, b, P, ϕ)→ (U ′, b′, P ′, ϕ′) where
f : U → U ′ is a morphism of schemes over B and g : P → P ′ is a G-
equivariant morphism over f which induces an isomorphism P ∼= U×f,U ′P ′,
and has the property that ϕ = ϕ′ ◦ g. In other words (f, g) fits into the
following commutative diagram

P

�� ϕ

**

g // P ′

��

ϕ′

&&
U

b
**

f // U ′

b′

&&

X

��
B

Thus [[X/G]] is a category and

p : [[X/G]] −→ (Sch/S)fppf , (U, b, P, ϕ) 7−→ U

is a functor. Note that the fibre category of [[X/G]] over U is the disjoint union over
b ∈ MorS(U,B) of U ×b,B G-torsors P endowed with a G-equivariant morphism to
X. Hence the fibre categories of [[X/G]] are groupoids.

Note that the functor

[[X/G]] −→ G-Torsors, (U, b, P, ϕ) 7−→ (U, b, P )

is a 1-morphism of categories over (Sch/S)fppf .

Lemma 14.2. Up to a replacement as in Stacks, Remark 4.9 the functor

p : [[X/G]] −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. The most difficult part of the proof is to show that we have descent for
objects. Suppose that {Ui → U}i∈I is a covering in (Sch/S)fppf . Let ξi =
(Ui, bi, Pi, ϕi) be objects of [[X/G]] over Ui, and let ϕij : pr∗0ξi → pr∗1ξj be a
descent datum. This in particular implies that we get a descent datum on the
triples (Ui, bi, Pi) for the stack in groupoids G-Torsors by applying the functor
[[X/G]]→ G-Torsors above. We have seen that G-Torsors is a stack in groupoids
(Lemma 13.9). Hence we may assume that bi = b|Ui

for some morphism b : U → B,
and that Pi = Ui ×U P for some fppf GU = U ×b,B G-torsor P over U . The
morphisms ϕi are compatible with the canonical descent datum on the restrictions
Ui×U P and hence define a morphism ϕ : P → X. (For example you can use Sites,
Lemma 25.3 or you can use Descent on Spaces, Lemma 6.2 to get ϕ.) This proves
descent for objects. We omit the proof of axioms (1) and (2) of Stacks, Definition
5.1. �

http://localhost:8080/tag/0370
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Proposition 14.3. In Situation 14.1 there exists a canonical equivalence

[X/G] −→ [[X/G]]

of stacks in groupoids over (Sch/S)fppf .

Proof. We write this out in detail, to make sure that all the definitions work out
in exactly the correct manner. Recall that [X/G] is the quotient stack associated
to the groupoid in algebraic spaces (X,G ×B X, s, t, c), see Groupoids in Spaces,
Definition 19.1. This means that [X/G] is the stackification of the category fibred
in groupoids [X/pG] associated to the functor

(Sch/S)fppf −→ Groupoids, U 7−→ (X(U), G(U)×B(U) X(U), s, t, c)

where s(g, x) = x, t(g, x) = a(g, x), and c((g, x), (g′, x′)) = (m(g, g′), x′). By
the construction of Categories, Example 35.1 an object of [X/pG] is a pair (U, x)
with x ∈ X(U) and a morphism (f, g) : (U, x) → (U ′, x′) of [X/pG] is given by a
morphism of schemes f : U → U ′ and an element g ∈ G(U) such that a(g, x) = x′◦f .
Hence we can define a 1-morphism of stacks in groupoids

Fp : [X/pG] −→ [[X/G]]

by the following rules: On objects we set

Fp(U, x) = (U, π ◦ x,G×B,π◦x U, a ◦ (idG × x))

This makes sense because the diagram

G×B,π◦x U

��

idG×x
// G×B,π X a

// X

π

��
U

π◦x // B

commutes, and the two horizontal arrows are G-equivariant if we think of the fibre
products as trivial G-torsors over U , resp. X. On morphisms (f, g) : (U, x) →
(U ′, x′) we set Fp(f, g) = (f,Rg) where Rg denotes right translation by g. More
precisely, the morphism of Fp(f, g) : Fp(U, x)→ Fp(U

′, x′) is given by the cartesian
diagram

G×B,π◦x U

��

Rg

// G×B,π◦x′ U ′

��
U

f // U ′

where Rg on T -valued points is given by

Rg(g
′, u) = (m(g′, g), f(u))

To see that this works we have to verify that

a ◦ (idG × x) = a ◦ (idG × x′) ◦Rg
which is true because the right hand side applied to the T -valued point (g′, u) gives

a((idG × x′)(m(g′, g), f(u))) = a(m(g′, g), x′(f(u)))

= a(g′, a(g, x′(f(u))))

= a(g′, x(u))

because a(g, x) = x′ ◦ f as desired.

http://localhost:8080/tag/04WM
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By the universal property of stackification from Stacks, Lemma 9.2 we obtain a
canonical extension F : [X/G] → [[X/G]] of the 1-morphism Fp above. We first
prove that F is fully faithful. To do this, since both source and target are stacks in
groupoids, it suffices to prove that the Isom-sheaves are identified under F . Pick a
scheme U and objects ξ, ξ′ of [X/G] over U . We want to show that

F : Isom [X/G](ξ, ξ
′) −→ Isom [[X/G]](F (ξ), F (ξ′))

is an isomorphism of sheaves. To do this it suffices to work locally on U , and hence
we may assume that ξ, ξ′ come from objects (U, x), (U, x′) of [X/pG] over U ; this
follows directly from the construction of the stackification, and it is also worked out
in detail in Groupoids in Spaces, Section 23. Either by directly using the description
of morphisms in [X/pG] above, or using Groupoids in Spaces, Lemma 21.1 we see
that in this case

Isom [X/G](ξ, ξ
′) = U ×(x,x′),X×SX,(s,t) (G×B X)

A T -valued point of this fibre product corresponds to a pair (u, g) with u ∈ U(T ),
and g ∈ G(T ) such that a(g, x◦u) = x′◦u. (Note that this implies π◦x◦u = π◦x′◦
u.) On the other hand, a T -valued point of Isom [[X/G]](F (ξ), F (ξ′)) by definition
corresponds to a morphism u : T → U such that π ◦ x ◦ u = π ◦ x′ ◦ u : T → B and
an isomorphism

R : G×B,π◦x◦u T −→ G×B,π◦x′◦u T

of trivial GT -torsors compatible with the given maps to X. Since the torsors are
trivial we see that R = Rg (right multiplication) by some g ∈ G(T ). Compatibility
with the maps a ◦ (1G, x ◦ u), a ◦ (1G, x

′ ◦ u) : G ×B T → X is equivalent to the
condition that a(g, x ◦ u) = x′ ◦ u. Hence we obtain the desired equality of Isom-
sheaves.

Now that we know that F is fully faithful we see that Stacks, Lemma 4.8 applies.
Thus to show that F is an equivalence it suffices to show that objects of [[X/G]]
are fppf locally in the essential image of F . This is clear as fppf torsors are locally
trivial, and hence we win. �

Remark 14.4. Let S be a scheme. Let G be an abstract group. Let X be an
algebraic space over S. Let G → AutS(X) be a group homomorphism. In this
setting we can define [[X/G]] similarly to the above as follows:

(1) An object of [[X/G]] consists of a triple (U,P, ϕ : P → X) where
(a) U is an object of (Sch/S)fppf ,
(b) P is a sheaf on (Sch/U)fppf which comes with an action of G that

turns it into a torsor under the constant sheaf with value G, and
(c) ϕ : P → X is a G-equivariant map of sheaves.

(2) A morphism (f, g) : (U,P, ϕ) → (U ′, P ′, ϕ′) is given by a morphism of
schemes f : T → T ′ and a G-equivariant isomorphism g : P → f−1P ′ such
that ϕ = ϕ′ ◦ g.

In exactly the same manner as above we obtain a functor

[[X/G]] −→ (Sch/S)fppf

which turns [[X/G]] into a stack in groupoids over (Sch/S)fppf . The constant
sheaf G is (provided the cardinality of G is not too large) representable by GS
on (Sch/S)fppf and this version of [[X/G]] is equivalent to the stack [[X/GS ]]
introduced above.
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16 EXAMPLES OF STACKS

15. The Picard stack

Let S be a scheme. Let π : X → B be a morphism of algebraic spaces over S. We
define a category PicX/B as follows:

(1) An object is a triple (U, b,L), where
(a) U is an object of (Sch/S)fppf ,
(b) b : U → B is a morphism over S, and
(c) L is in invertible sheaf on the base change XU = U ×b,B X.

(2) A morphism (f, g) : (U, b,L) → (U ′, b′,L′) is given by a morphism of
schemes f : U → U ′ over B and an isomorphism g : f∗L′ → L.

The composition of (f, g) : (U, b,L) → (U ′, b′,L′) with (f ′, g′) : (U ′, b′,L′) →
(U ′′, b′′,L′′) is given by (f ◦ f ′, g ◦ f∗(g′)). Thus we get a category PicX/B and

p : PicX/B −→ (Sch/S)fppf , (U, b,L) 7−→ U

is a functor. Note that the fibre category of PicX/B over U is the disjoint union
over b ∈ MorS(U,B) of the categories of invertible sheaves on XU = U ×b,B X.
Hence the fibre categories are groupoids.

Lemma 15.1. Up to a replacement as in Stacks, Remark 4.9 the functor

PicX/B −→ (Sch/S)fppf

defines a stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, bi,Li) be an object of
PicX/B lying over U , and let ϕij : pr∗0ξi → pr∗1ξj be a descent datum. This implies
in particular that the morphisms bi are the restrictions of a morphism b : U → B.
Write XU = U ×b,B X and Xi = Ui ×bi,B X = Ui ×U U ×b,B X = Ui ×U XU .
Observe that Li is an invertible OXi

-module. Note that {Xi → XU} forms an fppf
covering as well. Moreover, the descent datum ϕij translates into a descent datum
on the invertible sheaves Li relative to the fppf covering {Xi → XU}. Hence by
Descent on Spaces, Proposition 4.1 we obtain a unique invertible sheaf L on XU

which recovers Li and the descent data over Xi. The triple (U, b,L) is therefore
the object of PicX/B over U we were looking for. Details omitted. �

16. Examples of inertia stacks

Here are some examples of inertia stacks.

Example 16.1. Let S be a scheme. Let G be a commutative group. Let X → S
be a scheme over S. Let a : G ×X → X be an action of G on X. For g ∈ G we
denote g : X → X the corresponding automorphism. In this case the inertia stack
of [X/G] (see Remark 14.4) is given by

I[X/G] =
∐

g∈G
[Xg/G],

where, given an element g of G, the symbol Xg denotes the scheme Xg = {x ∈ X |
g(x) = x}. In a formula Xg is really the fibre product

Xg = X ×(1,1),X×SX,(g,1) X.

Indeed, for any S-scheme T , a T -point on the inertia stack of [X/G] consists of a
triple (P/T, φ, α) consisting of a G-torsor P → T together with a G-equivariant
isomorphism φ : P → X, together with an automorphism α of P → T over T such

http://localhost:8080/tag/04WN
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that φ ◦ α = φ. Since G is a sheaf of commutative groups, α is, locally in the fppf
topology over T , given by multiplication by some element g ofG. The condition that
φ ◦α = φ means that φ factors through the inclusion of Xg in X, i.e., φ is obtained
by composing that inclusion with a morphism P → Xγ . The above discussion
allows us to define a morphism of fibred categories I[X/G] →

∐
g∈G[Xg/G] given on

T -points by the discussion above. We omit showing that this is an equivalence.

Example 16.2. LetX → S be a morphism of schemes. Assume that for any T → S
the base change fT : XT → T has the property that the map OT → fT,∗OXT

is
an isomorphism. (This implies that f is cohomologically flat in dimension 0 (insert
future reference here) but is stronger.) Consider the Picard stack PicX/S , see
Section 15. The points of its inertia stack over an S-scheme T consist of pairs
(L, α) where L is a line bundle on XT and α is an automorphism of that line
bundle. I.e., we can think of α as an element of H0(XT ,OXT

)× = H0(T,O∗T )
by our condition. Note that H0(T,O∗T ) = Gm,S(T ), see Groupoids, Example 5.1.
Hence the inertia stack of PicX/S is

IPicX/S
= Gm,S ×S PicX/S .

as a stack over (Sch/S)fppf .

17. Finite Hilbert stacks

We formulate this in somewhat greater generality than is perhaps strictly needed.
Fix a 1-morphism

F : X −→ Y

of stacks in groupoids over (Sch/S)fppf . For each integer d ≥ 1 consider a category
Hd(X/Y) defined as follows:

(1) An object (U,Z, y, x, α) where U,Z are objects of in (Sch/S)fppf and Z is
a finite locally free of degree d over U , where y ∈ Ob(YU ), x ∈ Ob(XZ) and
α : y|Z → F (x) is an isomorphism3.

(2) A morphism (U,Z, y, x, α) → (U ′, Z ′, y′, x′, α′) is given by a morphism of
schemes f : U → U ′, a morphism of schemes g : Z → Z ′ which induces an
isomorphism Z → Z ′ ×U U ′, and isomorphisms b : y → f∗y′, a : x → g∗x′

3 This means the data gives rise, via the 2-Yoneda lemma (Categories, Lemma 39.1), to a
2-commutative diagram

(Sch/Z)fppf x
//

��

X

F

��
(Sch/U)fppf

y // Y

of stacks in groupoids over (Sch/S)fppf . Alternatively, we may picture α as a 2-morphism

(Sch/Z)fppf

y◦(Z→U)

**

F◦x

44�� α Y.
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inducing a commutative diagram

y|Z α
//

b|Z
��

F (x)

F (a)

��
f∗y′|Z

α′
// F (g∗x′)

It is clear from the definitions that there is a canonical forgetful functor

p : Hd(X/Y) −→ (Sch/S)fppf

which assigns to the quintuple (U,Z, y, x, α) the scheme U and to the morphism
(f, g, b, a) : (U,Z, y, x, α)→ (U ′, Z ′, y′, x′, α′) the morphism f : U → U ′.

Lemma 17.1. The category Hd(X/Y) endowed with the functor p above defines a
stack in groupoids over (Sch/S)fppf .

Proof. As usual, the hardest part is to show descent for objects. To see this let
{Ui → U} be a covering of (Sch/S)fppf . Let ξi = (Ui, Zi, yi, xi, αi) be an object
of Hd(X/Y) lying over Ui, and let ϕij : pr∗0ξi → pr∗1ξj be a descent datum. First,
observe that ϕij induces a descent datum (Zi/Ui, ϕij) which is effective by Descent,
Lemma 33.1 This produces a scheme Z/U which is finite locally free of degree d
by Descent, Lemma 19.28. From now on we identify Zi with Z ×U Ui. Next, the
objects yi in the fibre categories YUi descend to an object y in YU because Y is a
stack in groupoids. Similarly the objects xi in the fibre categories XZi

descend to an
object x in XZ because X is a stack in groupoids. Finally, the given isomorphisms

αi : (y|Z)Zi
= yi|Zi

−→ F (xi) = F (x|Zi
)

glue to a morphism α : y|Z → F (x) as the Y is a stack and hence IsomY(y|Z , F (x))
is a sheaf. Details omitted. �

Definition 17.2. We will denote Hd(X/Y) the degree d finite Hilbert stack of X
over Y constructed above. If Y = S we write Hd(X ) = Hd(X/Y). If X = Y = S
we denote it Hd.

Note that given F : X → Y as above we have the following natural 1-morphisms of
stacks in groupoids over (Sch/S)fppf :

(17.2.1)

Hd(X )

%%

Hd(X/Y)

��

oo // Y

Hd

Each of the arrows is given by a ”forgetful functor”.

Lemma 17.3. The 1-morphism Hd(X/Y)→ Hd(X ) is faithful.

Proof. To check that Hd(X/Y) → Hd(X ) is faithful it suffices to prove that it is
faithful on fibre categories. Suppose that ξ = (U,Z, y, x, α) and ξ′ = (U,Z ′, y′, x′, α′)
are two objects of Hd(X/Y) over the scheme U . Let (g, b, a), (g′, b′, a′) : ξ → ξ′

be two morphisms in the fibre category of Hd(X/Y) over U . The image of these
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morphisms in Hd(X ) agree if and only if g = g′ and a = a′. Then the commutative
diagram

y|Z α
//

b|Z , b′|Z
��

F (x)

F (a)=F (a′)

��
y′|Z

α′
// F (g∗x′) = F ((g′)∗x′)

implies that b|Z = b′|Z . Since Z → U is finite locally free of degree d we see
{Z → U} is an fppf covering, hence b = b′. �
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