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1. Introduction

In this chapter we discuss derived categories of modules on algebraic spaces. There
do not seem to be good introductory references addressing this topic; it is covered
in the literature by referring to papers dealing with derived categories of modules
on algebraic stacks, for example see [Ols07].

2. Conventions

If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.

If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
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2 DERIVED CATEGORIES OF SPACES

space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

3. Generalities

In this section we put some general results on cohomology of unbounded complexes
of modules on algebraic spaces.

Lemma 3.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Given an étale morphism V → Y , set U = V ×Y X and denote g : U → V
the projection morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Cohomology on Sites, Lemma 20.1. Hence the
result follows from Properties of Spaces, Lemma 24.2. �

Definition 3.2. Let S be a scheme. Let X be an algebraic space over S. Let E
be an object of D(OX). Let T ⊂ |X| be a closed subset. We say E is supported on
T if the cohomology sheaves Hi(E) are supported on T .

4. Derived category of quasi-coherent modules on the small étale site

Let X be a scheme. In this section we show that DQCoh(OX) can be defined in
terms of the small étale site Xétale of X. Denote Oétale the structure sheaf on
Xétale. Consider the morphism of ringed sites

(4.0.1) ε : (Xétale,Oétale) −→ (XZar,OX).

denoted idsmall,étale,Zar in Descent, Lemma 7.5.

Lemma 4.1. The morphism ε of (4.0.1) is a flat morphism of ringed sites. In
particular the functor ε∗ : Mod(OX)→ Mod(Oétale) is exact. Moreover, if ε∗F = 0,
then F = 0.

Proof. The second assertion follows from the first by Modules on Sites, Lemma
30.2. To prove the first assertion we have to show that Oétale is a flat ε−1OX -
module. To do this it suffices to check OX,x → Oétale,x is flat for any geometric

point x of X, see Modules on Sites, Lemma 38.2, Sites, Lemma 33.1, and Étale Co-
homology, Remarks 29.11. By Étale Cohomology, Lemma 33.1 we see that Oétale,x
is the strict henselization of OX,x. Thus OX,x → Oétale,x is faithfully flat by More
on Algebra, Lemma 34.1. The final statement follows also: if ε∗F = 0, then

0 = ε∗Fx = Fx ⊗OX,x
Oétale

(Modules on Sites, Lemma 35.4) for all geometric points x. By faithful flatness of
OX,x → Oétale,x we conclude Fx = 0 for all x ∈ X. �

Let X be a scheme. Notation as in (4.0.1). Recall that ε∗ : QCoh(OX) →
QCoh(Oétale) is an equivalence by Descent, Proposition 7.11 and Remark 7.6. More-
over, QCoh(Oétale) forms a Serre subcategory of Mod(Oétale) by Descent, Lemma
7.13. Hence we can let DQCoh(Oétale) be the triangulated subcategory of D(Oétale)
whose objects are the complexes with quasi-coherent cohomology sheaves, see De-
rived Categories, Section 13. The functor ε∗ is exact (Lemma 4.1) hence induces
ε∗ : D(OX) → D(Oétale) and since pullbacks of quasi-coherent modules are quasi-
coherent also ε∗ : DQCoh(OX)→ DQCoh(Oétale).

http://localhost:8080/tag/08GE
http://localhost:8080/tag/08GF
http://localhost:8080/tag/08H8


DERIVED CATEGORIES OF SPACES 3

Lemma 4.2. Let X be a scheme. The functor ε∗ : DQCoh(OX) → DQCoh(Oétale)
defined above is an equivalence.

Proof. We will prove this by showing the functor Rε∗ : D(Oétale) → D(OX)
induces a quasi-inverse.

Every quasi-coherent Oétale-module H is of the form ε∗F for some quasi-coherent
OX -module F , see Descent, Proposition 7.11. Since F = ε∗H in this case (as ε∗ is
the restriction to XZar ⊂ Xétale) we conclude that the adjunction map ε∗ε∗H → H
is an isomorphism for all quasi-coherent Oétale-modules H.

Let E be an object of DQCoh(Oétale) and denote Hi = Hi(E) its ith cohomology
sheaf. Let B be the set of affine objects of Xétale. Then Hp(U,Hi) = 0 for all
p > 0, all i ∈ Z, and all U ∈ B, see Descent, Proposition 7.10 and Cohomology of
Schemes, Lemma 2.2. According to Cohomology on Sites, Lemma 22.3 this implies
E is represented by a K-injective complex I• and I• = lim I•n where each I•n is a
bounded below complex of injectives, the maps in the system . . . → I•2 → I•1 are
termwise split surjections, and each I•n is quasi-isomorphic to τ≥−nE. In particular,

Rε∗E = ε∗I• = lim ε∗I•n
For every U ∈ B we have

Hm(I•n(U)) =

{
Hm(U) if m ≥ −n

0 if m < n

by the vanishing of Hp(U,Hi) for p > 0, the spectral sequence Derived Categories,
Lemma 21.3, and the fact that τ≥−nE ∼= I•n. Hence we can apply Homology,
Lemma 27.7 to the sequence of complexes

limn Im−2
n (U)→ limn Im−1

n (U)→ limn Imn (U)→ limn Im+1
n (U)

to conclude that Hm(I•(U)) = Hm(U) for U ∈ B. Since ε∗ is restriction to XZar

we see, on applying the above to U ⊂ X affine open, that Hm(ε∗I•) = ε∗Hm. Thus
Rε∗ indeed gives rise to a functor

Rε∗ : DQCoh(Oétale) −→ DQCoh(OX)

For our object E of DQCoh(Oétale) above the adjunction map ε∗Rε∗E → E is an
isomorphism as we’ve seen that the cohomology sheaves of Rε∗E are ε∗Hm and
we have ε∗ε∗Hm = Hm (see above). For F ∈ DQCoh(OX) the adjunction map
F → Rε∗ε

∗F is an isomorphism for the same reason, i.e., because the cohomology
sheaves of Rε∗ε

∗F are isomorphic to ε∗H
m(ε∗F ) = ε∗ε

∗Hm(F ) = Hm(F ). �

5. Derived category of quasi-coherent modules

Let S be a scheme. Lemma 4.2 shows that the category DQCoh(OS) can be defined
in terms of complexes ofOS-modules on the scheme S or by complexes ofO-modules
on the small étale site of S. Hence the following definition is compatible with the
definition in the case of schemes.

Definition 5.1. Let S be a scheme. Let X be an algebraic space over S. The
derived category of OX-modules with quasi-coherent cohomology sheaves is denoted
DQCoh(OX).

http://localhost:8080/tag/071Q
http://localhost:8080/tag/071X


4 DERIVED CATEGORIES OF SPACES

This makes sense by Properties of Spaces, Lemma 27.7 and Derived Categories,
Section 13. Thus we obtain a canonical functor

(5.1.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.1.1).

Observe that a flat morphism f : Y → X of algebraic spaces induces an exact
functor f∗ : Mod(OX) → Mod(OY ), see Morphisms of Spaces, Lemma 28.9 and
Modules on Sites, Lemma 30.2. In particular Lf∗ : D(OX)→ D(OY ) is computed
on any representative complex (Derived Categories, Lemma 17.8). We will write
Lf∗ = f∗ when f is flat and we have Hi(f∗E) = f∗Hi(E) for E in D(OX) in this
case. We will use this often when f is étale. Of course in the étale case the pullback
functor is just the restriction to Yétale, see Properties of Spaces, Equation (24.1.1).

Lemma 5.2. Let S be a scheme. Let X be an algebraic space over S. Let E be an
object of D(OX). The following are equivalent

(1) E is in DQCoh(OX),
(2) for every étale morphism ϕ : U → X where U is an affine scheme ϕ∗E is

an object of DQCoh(OU ),
(3) for every étale morphism ϕ : U → X where U is a scheme ϕ∗E is an object

of DQCoh(OU ),
(4) there exists a surjective étale morphism ϕ : U → X where U is a scheme

such that ϕ∗E is an object of DQCoh(OU ), and
(5) there exists a surjective étale morphism of algebraic spaces f : Y → X such

that Lf∗E is an object of DQCoh(OY ).

Proof. This follows immediately from the discussion preceding the lemma and
Properties of Spaces, Lemma 27.6. �

Lemma 5.3. Let S be a scheme. Let X be an algebraic space over S. Then
DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Properties of Spaces, Lemma 27.7. �

Lemma 5.4. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).

Proof. Choose a diagram

U

a

��

h
// V

b
��

X
f // Y

where U and V are schemes, the vertical arrows are étale, and a is surjective. Since
a∗ ◦ Lf∗ = Lh∗ ◦ b∗ the result follows from Lemma 5.2 and the case of schemes
which is Derived Categories of Schemes, Lemma 3.6. �

Lemma 5.5. Let S be a scheme. Let X be an algebraic space over S. For objects
K,L of DQCoh(OX) the derived tensor product K ⊗L L is in DQCoh(OX).
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Proof. Let ϕ : U → X be a surjective étale morphism from a scheme U . Since
ϕ∗(K ⊗L

OX
L) = ϕ∗K ⊗L

OU
ϕ∗L we see from Lemma 5.2 that this follows from the

case of schemes which is Derived Categories of Schemes, Lemma 3.7. �

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 5.6. Let S be a scheme. Let X be an algebraic space over S. Let E be
an object of DQCoh(OX). Then there exists an inverse system I•n of complexes of
OX-modules such that

(1) I• = limn I•n represents E,
(2) I•n is a bounded below complex of injectives,
(3) I• → I•n induces an identification τ≥−nE → I•n in D(OX),
(4) the transition maps I•n+1 → I•n are termwise split surjections, and
(5) I• is a K-injective complex of OX-modules.

Moreover, E is the derived limit of the inverse system of its canonical truncations
τ≥−nE.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine objects of Xétale. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all U ∈ B
as U is an affine scheme. See discussion in Cohomology of Spaces, Section 3 and
Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from Cohomology
on Sites, Lemmas 22.3 and 22.4. �

Lemma 5.7. Let S be a scheme. Let X be an algebraic space over S. Let F :
Mod(OX)→ Ab be a functor and N ≥ 0 an integer. Assume that

(1) F is left exact,
(2) F commutes with countable direct products,
(3) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX) the maps RpF (E) → RpF (τ≥p−N+1E) are isomor-
phisms.

Proof. Let E be an object ofDQCoh(OX). By shifting the complex we see it suffices
to prove the assertion for p = 0. Choose I• = lim I•n as in Lemma 5.6. As I• is
K-injective RF (E) is represented by F (I•). As F commutes with countable direct
products, and since the maps Imn → Imn−1 are split surjections, we get F (I•) =
limF (I•n). The cohomology of

(5.7.1) F (I−2
n )→ F (I−1

n )→ F (I0
n)→ F (I1

n)

in degree 0, resp. −1 is equal to R0F (τ≥−nE), resp. R−1F (τ≥−nE) because I•n is a
bounded below complex of injectives representing τ≥−nE. We have a distinguished
triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we
have

RpF (H−n(E)[n]) = Rp+nF (H−n(E)) = 0

for p+ n ≥ N and

RpF (H−n(E)[n+ 1]) = Rp+n+1F (H−n(E)) = 0

http://localhost:8080/tag/08F6
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6 DERIVED CATEGORIES OF SPACES

for p+ n+ 1 ≥ N . We conclude that

RpF (τ≥−nE)→ RpF (τ≥−n+1E)

is an isomorphism for all n� p and an isomorphism for n ≥ N for p = 0. Thus Ho-
mology, Lemma 27.7 applies to the system of sequences (5.7.1) and we conclude that
R0F (E) = limR0F (τ≥−nE). By the above the system R0F (τ≥−nE) is constant
starting with n = N − 1 as desired. �

6. Total direct image

The following lemma is the analogue of Cohomology of Spaces, Lemma 7.1.

Lemma 6.1. Let S be a scheme. Let f : X → Y be a quasi-separated and quasi-
compact morphism of algebraic spaces over S.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If Y is quasi-compact, there exists an integer N = N(X,Y, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m > N .

(3) In fact, if Y is quasi-compact we can find N = N(X,Y, f) such that for
every morphism of algebraic spaces Y ′ → Y the same conclusion holds for
the functor R(f ′)∗ where f ′ : X ′ → Y ′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. This question is local on Y , hence
we may assume Y is quasi-compact. Pick N = N(X,Y, f) as in Cohomology of
Spaces, Lemma 7.1. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and all
p ≥ N . In particular, for any affine object V of Yétale we have Hp(V ×Y X,F) = 0
for p ≥ N , see Cohomology of Spaces, Lemma 3.3.

Let E be an object of DQCoh(OX). Choose I• = lim I•n as in Lemma 5.6. As I• is
K-injective Rf∗E is represented by f∗I• = lim f∗I•n. Let V be an affine object of
Yétale. The cohomology Hm(f∗I•n(V )) of

f∗Im−1
n (V )→ f∗Imn (V )→ f∗Im+1

n (V )

is equal toHm(V ×YX, τ≥−nE) because I•n is a bounded below complex of injectives
representing τ≥−nE. We have a distinguished triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

in D(OX). Since H−n(E) is quasi-coherent we have Hm(V ×Y X,H−n(E)[n]) = 0
for n+m ≥ N by our choice of N . Similarly, Hm(V ×Y X,H−n(E)[n+ 1]) = 0 for
n+m+ 1 ≥ N . We conclude that

Hm(f∗I•n(V ))→ Hm(f∗I•n−1(V ))

is an isomorphism for all n ≥ N − m. Thus Cohomology on Sites, Lemma 22.1
applies to show that the mth cohomology sheaf of lim f∗I•n agrees with the mth
cohomology sheaf of f∗I•n for n ≥ N − m. Since these cohomology sheaves are
quasi-coherent by Cohomology of Spaces, Lemma 3.2 we get (1).

Finally, we show that (2) and (3) hold with our choice of N . Namely, the stabi-
lization proven above gives that Hm(Rf∗E) is equal to Hm(Rf∗(τ≥−nE)) for all n

http://localhost:8080/tag/08FA
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large enough which means we can work with objects in D+(OX) in order to prove
(2) and (3). In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 21.3) and the vanishing of Rpf∗H
q(E) for p ≥ N to

conclude. Some details omitted. �

Lemma 6.2. Let S be a scheme. Let f : X → Y be a quasi-separated and
quasi-compact morphism of algebraic spaces over S. Then Rf∗ : DQCoh(OX) →
DQCoh(OS) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 6.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.
Observe that τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-
coherent sheaves. This case is handled by Cohomology of Spaces, Lemma 4.2. �

Remark 6.3. Let S be a scheme. Let f : X → Y be a quasi-compact and
quasi-separated morphism of representable algebraic spaces X and Y over S. Let
f0 : X0 → Y0 be a morphism of schemes representing f (awkward but temporary
notation). Then we claim the diagrams

DQCoh(OX0)

Rf0,∗

��

Lemma 4.2
DQCoh(OX)

Rf∗

��
DQCoh(OY0

)
Lemma 4.2

DQCoh(OY )

(Lemma 6.1 and Derived Categories of Schemes, Lemma 4.1) and

DQCoh(OX0
)

Lemma 4.2
DQCoh(OX)

DQCoh(OY0)

Lf∗0

OO

Lemma 4.2
DQCoh(OY )

Lf∗

OO

(Lemma 5.4 and Derived Categories of Schemes, Lemma 3.6) are commutative. The
result for Lf∗ and Lf∗0 follows as the equivalences DQCoh(OX0

)→ DQCoh(OX) and
DQCoh(OY0

) → DQCoh(OY ) of Lemma 4.2 come from pulling back by the (flat)
morphisms of ringed sites ε : Xétale → X0,Zar and ε : Yétale → Y0,Zar and the
diagram of ringed sites

X0,Zar

f0

��

Xétaleε
oo

f

��
Y0,Zar Yétale

εoo

http://localhost:8080/tag/08FB
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8 DERIVED CATEGORIES OF SPACES

is commutative (details omitted). In fact the commutativity of the first diagram also
follows as the proof of Lemma 4.2 shows that the functor Rε∗ gives the equivalences
DQCoh(OX)→ DQCoh(OX0) and DQCoh(OY )→ DQCoh(OY0).

Lemma 6.4. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. Then Rf∗ : DQCoh(OX)→ DQCoh(OY ) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is
an isomorphism if Rf∗α is an isomorphism. We may check this on cohomology
sheaves. In particular, the question is étale local on Y . Hence we may assume Y
and therefore X is affine. In this case the problem reduces to the case of schemes
(Derived Categories of Schemes, Lemma 4.3) via Lemma 4.2 and Remark 6.3. �

Lemma 6.5. Let S be a scheme. Let f : X → Y be an affine morphism of algebraic
spaces over S. For E in DQCoh(OY ) we have Rf∗Lf

∗E = E ⊗L
OY

f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Spaces, Lemma 7.2). There is a canonical map E ⊗L f∗OX = E ⊗L Rf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on Y . Hence
we may assume Y and therefore X is affine. In this case the problem reduces to
the case of schemes (Derived Categories of Schemes, Lemma 4.4) via Lemma 4.2
and Remark 6.3. �

7. Derived category of coherent modules

Let S be a scheme. Let X be a locally Noetherian algebraic space over S. In this
case the category Coh(OX) ⊂ Mod(OX) of coherent OX -modules is a weak Serre
subcategory, see Homology, Section 9 and Cohomology of Spaces, Lemma 11.3.
Denote

DCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13. Thus we obtain a canonical functor

(7.0.1) D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (13.1.1).

Lemma 7.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is locally of finite type and Y is Noetherian. Let E be an object
of Db

Coh(OX) such that the scheme theoretic support of Hi(E) is proper over Y for
all i. Then Rf∗E is an object of Db

Coh(OY ).

Proof. Consider the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 21.3. By assumption and Cohomology of Spaces,
Remark 19.3 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent,
i.e., E ∈ DCoh(OS). Boundedness from below is trivial. Boundedness from above
follows from Cohomology of Spaces, Lemma 7.1 or from Lemma 6.1. �

http://localhost:8080/tag/08II
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8. Induction principle

In this section we discuss an induction principle for algebraic spaces analogues
to what is Cohomology of Schemes, Lemma 8.3 for schemes. To formulate it we
introduce the notion of an elementary distinguished square; this terminology is
borrowed from [MV99]. The principle as formulated here is implicit in the paper
[GR71] by Raynaud and Gruson. A related principle for algebraic stacks is [Ryd10,
Theorem D] by David Rydh.

Definition 8.1. Let S be a scheme. A commutative diagram

U ×W V //

��

V

f

��
U

j // W

of algebraic spaces over S is called an elementary distinguished square if

(1) U is an open subspace of W and j is the inclusion morphism,
(2) f is étale, and
(3) setting T = W \U (with reduced induced subspace structure) the morphism

f−1(T )→ T is an isomorphism.

We will indicate this by saying: “Let (U ⊂ W, f : V → W ) be an elementary
distinguished square.”

Note that if (U ⊂ W, f : V → W ) is an elementary distinguished square, then we
have W = U ∪ f(V ). Thus {U → W,V → W} is an étale covering of W . It turns
out that these étale coverings have nice properties and that in some sense there are
“enough” of them.

Lemma 8.2. Let S be a scheme. Let (U ⊂ W, f : V → W ) be an elementary
distinguished square of algebraic spaces over S.

(1) If V ′ ⊂ V and U ⊂ U ′ ⊂W are open subspaces and W ′ = U ′ ∪ f(V ′) then
(U ′ ⊂W ′, f |V ′ : V ′ →W ′) is an elementary distinguished square.

(2) If p : W ′ →W is a morphism of algebraic spaces, then (p−1(U) ⊂W ′, V×W
W ′ →W ′) is an elementary distinguished square.

Proof. Omitted. �

Lemma 8.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let P be a property of the quasi-compact and quasi-separated
objects of Xspaces,étale. Assume that

(1) P holds for every affine object of Xspaces,étale,
(2) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W is a quasi-compact and quasi-separated object of Xspaces,étale,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,

then P holds for W .

Then P holds for every quasi-compact and quasi-separated object of Xspaces,étale

and in particular for X.
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Proof. We first claim that P holds for every representable quasi-compact and
quasi-separated object of Xspaces,étale. Namely, suppose that U → X is étale and
U is a quasi-compact and quasi-separated scheme. By assumption (1) property P
holds for every affine open of U . Moreover, if W,V ⊂ U are quasi-compact open
with V affine and P holds for W , V , and W ∩V , then P holds for W ∪V by (2) (as
the pair (W ⊂ W ∪ V, V → W ∪ V ) is an elementary distinguished square). Thus
P holds for U by the induction principle for schemes, see Cohomology of Schemes,
Lemma 4.1.

To finish the proof it suffices to prove P holds for X (because we can simply replace
X by any quasi-compact and quasi-separated object of Xspaces,étale we want to
prove the result for). We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.5. We will prove
that P holds for Up by descending induction on p. Note that P holds for Un+1

by (1) as an empty algebraic space is affine. Assume P holds for Up+1. Note that
(Up+1 ⊂ Up, fp : Vp → Up) is an elementary distinguished square, but (2) may not
apply as Vp may not be affine. However, as Vp is a quasi-compact scheme we may
choose a finite affine open covering Vp = Vp,1 ∪ . . . ∪ Vp,m. Set Wp,0 = Up+1 and

Wp,i = Up+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)

for i = 1, . . . ,m. These are quasi-compact open subspaces of X. Then we have

Up+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Up

and the pairs

(Wp,0 ⊂Wp,1, fp|Vp,1
), (Wp,1 ⊂Wp,2, fp|Vp,2

), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m
)

are elementary distinguished squares by Lemma 8.2. Note that P holds for each
Vp,1 (as affine schemes) and for Wp,i×Wp,i+1Vp,i+1 as this is a quasi-compact open of
Vp,i+1 and hence P holds for it by the first paragraph of this proof. Thus (2) applies
to each of these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Up. �

Lemma 8.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let B ⊂ Ob(Xspaces,étale). Let P be a property of the
elements of B. Assume that

(1) every W ∈ B is quasi-compact and quasi-separated,
(2) if W ∈ B and U ⊂W is quasi-compact open, then U ∈ B,
(3) if V ∈ Ob(Xspaces,étale) is affine, then (a) V ∈ B and (b) P holds for V ,
(4) for every elementary distinguished square (U ⊂W, f : V →W ) such that

(a) W ∈ B,
(b) U is quasi-compact,
(c) V is affine, and
(d) P holds for U , V , and U ×W V ,

then P holds for W .

Then P holds for every W ∈ B.

Proof. This is proved in exactly the same manner as the proof of Lemma 8.3. (We
remark that (4)(d) makes sense as U ×W V is a quasi-compact open of V hence an
element of B by conditions (2) and (3).) �
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Remark 8.5. How to choose the collection B in Lemma 8.4? Here are some
examples:

(1) If X is quasi-compact and separated, then we can choose B to be the set of
quasi-compact and separated objects of Xspaces,étale. Then X ∈ B and B
satisfies (1), (2), and (3)(a). With this choice of B Lemma 8.4 reproduces
Lemma 8.3.

(2) If X is quasi-compact with affine diagonal, then we can choose B to be
the set of objects of Xspaces,étale which are quasi-compact and have affine
diagonal. Again X ∈ B and B satisfies (1), (2), and (3)(a).

(3) IfX is quasi-compact and quasi-separated, then the smallest subset B which
contains X and satisfies (1), (2), and (3)(a) is given by the rule W ∈ B
if and only if either W is a quasi-compact open subspace of X, or W is a
quasi-compact open of an affine object of Xspaces,étale.

Here is a variant where we extend the truth from an open to larger opens.

Lemma 8.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open subspace. Let P be a
property of quasi-compact open subspaces of X. Assume that

(1) P holds for W , and
(2) for every elementary distinguished square (W1 ⊂ W2, f : V → W2) where

such that
(a) W1, W2 are quasi-compact open subspaces of X,
(b) W ⊂W1,
(c) V is affine, and
(d) P holds for W1,

then P holds for W2.

Then P holds for X.

Proof. We can deduce this from Lemma 8.4, but instead we will give a direct
argument by eplicitly redoing the proof of Lemma 8.3. We will use the filtration

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

and the morphisms fp : Vp → Up of Decent Spaces, Lemma 8.5. We will prove that
P holds for Wp = W ∪ Up by descending induction on p. This will finish the proof
as W1 = X. Note that P holds for Wn+1 = W ∩Un+1 = W by (1). Assume P holds
for Wp+1. Observe that Wp \Wp+1 (with reduced induced subspace structure) is
a closed subspace of Up \ Up+1. Since (Up+1 ⊂ Up, fp : Vp → Up) is an elementary
distinguished square, the same is true for (Wp+1 ⊂Wp, fp : Vp →Wp). However (2)
may not apply as Vp may not be affine. However, as Vp is a quasi-compact scheme
we may choose a finite affine open covering Vp = Vp,1∪ . . .∪Vp,m. Set Wp,0 = Wp+1

and

Wp,i = Wp+1 ∪ fp(Vp,1 ∪ . . . ∪ Vp,i)
for i = 1, . . . ,m. These are quasi-compact open subspaces of X containing W .
Then we have

Wp+1 = Wp,0 ⊂Wp,1 ⊂ . . . ⊂Wp,m = Wp

and the pairs

(Wp,0 ⊂Wp,1, fp|Vp,1
), (Wp,1 ⊂Wp,2, fp|Vp,2

), . . . , (Wp,m−1 ⊂Wp,m, fp|Vp,m
)
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12 DERIVED CATEGORIES OF SPACES

are elementary distinguished squares by Lemma 8.2. Now (2) applies to each of
these and we inductively conclude P holds for Wp,1, . . . ,Wp,m = Wp. �

9. Mayer-Vietoris

In this section we prove that an elementary distinguished triangle gives rise to
various Mayer-Vietoris sequences.

Let S be a scheme. Let U → X be an étale morphism of algebraic spaces over S.
In Properties of Spaces, Section 25 it was shown that Uspaces,étale = Xspaces,étale/U
compatible with structure sheaves. Hence in this situation we often think of the
morphism jU : U → X as a localization morphism (see Modules on Sites, Definition
19.1). In particular we think of pullback j∗U as restriction to U and we often denote it
by |U ; this is compatible with Properties of Spaces, Equation (24.1.1). In particular
we see that

(9.0.1) (F|U )u = Fx
if u is a geometric point of U and x the image of u in X. Moreover, restriction
has an exact left adjoint jU !, see Modules on Sites, Lemmas 19.2 and 19.3. Finally,
recall that if G is an OX -module, then

(9.0.2) (jU !G)x =
⊕

u
Gu

for any geometric point x : Spec(k) → X where the direct sum is over those
morphism u : Spec(k) → U such that jU ◦ u = x, see Modules on Sites, Lemma
37.1 and Properties of Spaces, Lemma 16.13.

Lemma 9.1. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S.

(1) For a sheaf of OX-modules F we have a short exact sequence

0→ jU×XV !F|U×XV → jU !F|U ⊕ jV !F|V → F → 0

(2) For an object E of D(OX) we have a distinguished triangle

jU×XV !E|U×XV → jU !E|U ⊕ jV !E|V → E → jU×XV !E|U×XV [1]

in D(OX).

Proof. To show the sequence of (1) is exact we may check on stalks at geometric
points by Properties of Spaces, Theorem 16.12. Let x be a geometric point of X.
By Equations (9.0.1) and (9.0.2) taking stalks at x we obtain the sequence

0→
⊕

(u,v)
Fx →

⊕
u
Fx ⊕

⊕
v
Fx → Fx → 0

This sequence is exact because for every x there either is exactly one u mapping to
x, or there is no u and exactly one v mapping to x.

Proof of (2). We have seen in Cohomology on Sites, Section 20 that the restriction
functors and the extension by zero functors on derived categories are computed by
just applying the functor to any complex. Let E• be a complex of OX -modules rep-
resenting E. The distinguished triangle of the lemma is the distinguished triangle
associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the
short exact sequence of complexes of OX -modules

0→ jU×XV !E•|U×XV → jU !E•|U ⊕ jV !E•|V → E• → 0

which is short exact by (1). �
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Lemma 9.2. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S.

(1) For every sheaf of OX-modules F we have a short exact sequence

0→ F → jU,∗F|U ⊕ jV,∗F|V → jU×XV,∗F|U×XV → 0

(2) For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU×XV,∗E|U×XV → E[1]

in D(OX).

Proof. Let W be an object of Xétale. We claim the sequence

0→ F(W )→ F(W ×X U)⊕F(W ×X V )→ F(W ×X U ×X V )

is exact and that an element of the last group can locally on W be lifted to the
middle one. By Lemma 8.2 the pair (W×XU ⊂W,V ×XW →W ) is an elementary
distinguished square. Thus we may assume W = X and it suffices to prove the same
thing for

0→ F(X)→ F(U)⊕F(V )→ F(U ×X V )

We have seen that

0→ jU×XV !OU×XV → jU !OU ⊕ jV !OV → OX → 0

is a exact sequence of OX -modules in Lemma 9.1 and applying the right ex-
act functor HomOX

(−,F) gives the sequence above. This also means that the
obstruction to lifting s ∈ F(U ×X V ) to an element of F(U) ⊕ F(V ) lies in
Ext1

OX
(OX ,F) = H1(X,F). By locality of cohomology (Cohomology on Sites,

Lemma 8.3) this obstruction vanishes étale locally on X and the proof of (1) is
complete.

Proof of (2). Choose a K-injective complex I• representing E whose terms In
are injective objects of Mod(OX), see Injectives, Theorem 12.6. Then I•|U is a
K-injective complex (Cohomology on Sites, Lemma 20.1). Hence RjU,∗E|U is rep-
resented by jU,∗I•|U . Similarly for V and U×X V . Hence the distinguished triangle
of the lemma is the distinguished triangle associated (by Derived Categories, Sec-
tion 12 and especially Lemma 12.1) to the short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU×XV,∗I•|U×XV → 0.

This sequence is exact by (1). �

Lemma 9.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Let (U ⊂ X,V → X) be an elementary distinguished square. Denote
a = f |U : U → Y , b = f |V : V → Y , and c = f |U×XV : U ×X V → Y the
restrictions. For every object E of D(OX) there exists a distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U×XV )→ Rf∗E[1]

in D(OY ). This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then Rf∗E is
computed by f∗I•. Similarly for U , V , and U ∩V by Cohomology on Sites, Lemma
20.1. Hence the distinguished triangle of the lemma is the distinguished triangle
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14 DERIVED CATEGORIES OF SPACES

associated (by Derived Categories, Section 12 and especially Lemma 12.1) to the
short exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U×XV → 0.

To see this is a short exact sequence of complexes we argue as follows. Pick an
injective object I of Mod(OX). Apply f∗ to the short exact sequence

0→ I → jU,∗I|U ⊕ jV,∗I|V → jU×XV,∗I|U×XV → 0

of Lemma 9.2 and use that R1f∗I = 0 to get a short exact sequence

0→ f∗I → f∗jU,∗I|U ⊕ f∗jV,∗I|V → f∗jU×XV,∗I|U×XV → 0

The proof is finished by observing that a∗ = f∗jU,∗ and similarly for b∗ and c∗. �

Lemma 9.4. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S. For objects E, F of D(OX) we have a
Mayer-Vietoris sequence

. . . // Ext−1(EU×XV , FU×XV )

qq
Hom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU×XV , FU×XV )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 9.1 to obtain a long exact sequence
of Hom’s (from Derived Categories, Lemma 4.2) and use that Hom(jU !E|U , F ) =
Hom(E|U , F |U ) by Cohomology on Sites, Lemma 20.2. �

Lemma 9.5. Let S be a scheme. Let j : U → X be a étale morphism of algebraic
spaces over S. Given an étale morphism V → Y , set W = V ×X U and denote
jW : W → V the projection morphism. Then (j!E)|V = jW !(E|W ) for E in D(OU ).

Proof. This is true because (j!F)|V = jW !(F|W ) for an OX -module F as follows
immediately from the construction of the functors j! and jW !, see Modules on Sites,
Lemma 19.2. �

Lemma 9.6. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Set T = |X| \ |U |.

(1) If E is an object of D(OX) supported on T , then (a) E → Rj∗(E|V ) and
(b) j!(E|V )→ E are isomorphisms.

(2) If F is an object of D(OV ) supported on j−1T , then (a) F → (j!F )|V , (b)
(Rj∗F )|V → F , and (c) j!F → Rj∗F are isomorphisms.

Proof. Let E be an object of D(OX) whose cohomology sheaves are supported on
T . Then we see that E|U = 0 and E|U×XV = 0 as T doesn’t meet U and j−1T
doesn’t meet U ×X V . Thus (1)(a) follows from Lemma 9.2. In exactly the same
way (1)(b) follows from Lemma 9.1.

Let F be an object of D(OV ) whose cohomology sheaves are supported on j−1T .
By Lemma 3.1 we have (Rj∗F )|U = RjW,∗(F |W ) = 0 because F |W = 0 by our
assumption. Similarly (j!F )|U = jW !(F |W ) = 0 by Lemma 9.5. Thus j!F and
Rj∗F are supported on T and (j!F )|V and (Rj∗F )|V are supported on j−1(T ).
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To check that the maps (2)(a), (b), (c) are isomorphisms in the derived category,
it suffices to check that these map induce isomorphisms on stalks of cohomology
sheaves at geometric points of T and j−1(T ) by Properties of Spaces, Theorem
16.12. This we may do after replacing X by V , U by U ×X V , V by V ×X V and
F by F |V×XV (restriction via first projection), see Lemmas 3.1, 9.5, and 8.2. Since
V ×X V → V has a section this reduces (2) to the case that j : V → X has a
section.

Assume j has a section σ : X → V . Set V ′ = σ(X). This is an open subspace of
V . Set U ′ = j−1(U). This is another open subspace of V . Then (U ′ ⊂ V, V ′ → V )
is an elementary distinguished square. Observe that F |U ′ = 0 and F |V ′∩U ′ = 0
because F is supported on j−1(T ). Denote j′ : V ′ → V the open immersion
and jV ′ : V ′ → X the composition V ′ → V → X which is the inverse of σ.
Set F ′ = σ∗F . The distinguished triangles of Lemmas 9.1 and 9.2 show that
F = j′!(F |V ′) and F = Rj′∗(F |V ′). It follows that j!F = j!j

′
!(F |V ′) = jV ′!F = F ′

because jV ′ : V ′ → X is an isomorphism and the inverse of σ. Similarly, Rj∗F =
Rj∗Rj

′
∗F = RjV ′,∗F = F ′. This proves (2)(c). To prove (2)(a) and (2)(b) it suffices

to show that F = F ′|V . This is clear because both F and F ′|V restrict to zero on
U ′ and U ′ ∩ V ′ and the same object on V ′. �

We can glue complexes!

Lemma 9.7. Let S be a scheme. Let (U ⊂ X,V → X) be an elementary distin-
guished square of algebraic spaces over S. Suppose given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),
(4) an isomorphism c : A|U×XV → B|U×XV

such that
a|U×XV = b|U×XV ◦ c.

Then there exists a morphism F → E in D(OX) whose restriction to U is isomor-
phic to a and whose restriction to V is isomorphic to b.

Proof. Denote jU , jV , jU×XV the corresponding morphisms towards X. Choose
a distinguished triangle

F → RjU,∗A⊕RjV,∗B → RjU×XV,∗(B|U×XV )→ F [1]

Here the mapRjV,∗B → RjU×XV,∗(B|U×XV ) is the obvious one. The mapRjU,∗A→
RjU×XV,∗(B|U×XV ) is the composition of RjU,∗A → RjU×XV,∗(A|U×XV ) with
RjU×XV,∗c. Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU×XV,∗(B|U×XV ))|U → F |U [1]

Denote j : U ×X V → U . Compatibility of restriction and total direct image
(Lemma 3.1) shows that both (RjV,∗B)|U and (RjU×XV,∗(B|U×XV ))|U are canon-
ically isomorphic to Rj∗(B|U×XV ). Hence the second arrow of the last displayed
equation has a section, and we conclude that the morphism F |U → A is an isomor-
phism.

To see that the morphism F |V → B is an isomorphism we will use a trick. Namely,
choose a distinguished triangle

F |V → B → B′ → F [1]|V
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in D(OV ). Since F |U → A is an isomorphism, and since we have the isomorphism
c : A|U×XV → B|U×XV the restriction of F |V → B is an isomorphism over U×X V .
Thus B′ is supported on j−1

V (T ) where T = |X| \ |U |. On the other hand, there is
a morphism of distinguished triangles

F //

��

RjU,∗F |U ⊕RjV,∗F |V //

��

RjU×XV,∗F |U×XV
//

��

F [1]

��
F // RjU,∗A⊕RjV,∗B // RjU×XV,∗(B|U×XV ) // F [1]

The all of the vertical maps in this diagram are isomorphisms, except for the
map RjV,∗F |V → RjV,∗B, hence that is an isomorphism too (Derived Categories,
Lemma 4.3). This implies that RjV,∗B

′ = 0. Hence B′ = 0 by Lemma 9.6.

The existence of the morphism F → E follows from the Mayer-Vietoris sequence
for Hom, see Lemma 9.4. �

10. The coherator

Let S be a scheme. Let X be an algebraic space over S. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any algebraic space X and moreover the adjunction mapping QX(F) → F
is an isomorphism for every quasi-coherent module F , see Properties of Spaces,
Proposition 30.2. Since QX is left exact (as a right adjoint) we can consider its
right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

As this functor is constructed by applying QX to a K-injective replacement we see
that RQX is a right adjoint to the canonical functor D(QCoh(OX))→ D(OX).

Lemma 10.1. Let S be a scheme. Let f : X → Y be an affine morphism of
algebraic spaces over S. Then f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )). This functor has the property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Spaces, Lemma 7.2. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 17.8. For any complex of OX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism when
F• is a complex with each Fn quasi-coherent. The statement is étale local on Y
hence we may assume Y affine. As an affine morphism is representable we reduce
to the case of schemes by the compatibility of Remark 6.3. The case of schemes is
Derived Categories of Schemes, Lemma 6.1. �
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Lemma 10.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) f is quasi-compact, quasi-separated, and flat, and
(2) denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Then RQY ◦Rf∗ = Φ ◦RQX .

Proof. Since f is quasi-compact and quasi-separated, we see that f∗ preserve quasi-
coherence, see Morphisms of Spaces, Lemma 11.2. Recall that QCoh(OX) is a
Grothendieck abelian category (Properties of Spaces, Proposition 30.2). Hence any
K in D(QCoh(OX)) can be represented by a K-injective complex I• of QCoh(OX),
see Injectives, Theorem 12.6. Then we can define Φ(K) = f∗I•.
Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
D(OX) is left adjoint to Rf∗ : D(OX)→ D(OY ), see Cohomology on Sites, Lemma
19.1. Similarly, the functor f∗ : D(QCoh(OY ))→ D(QCoh(OX)) is left adjoint to
Φ : D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 28.4.

Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)

= HomD(OX)(f
∗A,E)

= HomD(QCoh(OX))(f
∗A,RQX(E))

= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 10.3. Let S be a scheme. Let X be an affine algebraic space over S. Set
A = Γ(X,OX). Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherent OX-module associated to the A-module Γ(X,F),

(2) RQX : D(OX)→ D(QCoh(OX)) is the functor which sends E to the com-
plex of quasi-coherent OX-modules associated to the object RΓ(X,E) of
D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (5.1.1).

Proof. Let X0 = Spec(A) be the affine scheme representing X. Recall that there
is a morphism of ringed sites ε : Xétale → X0,Zar which induces equivalences

QCoh(OX)
ε∗ //

QCoh(OX0
),

ε∗
oo

see Lemma 4.2. Hence we see that QX = ε∗ ◦ QX0 ◦ ε∗ by uniqueness of adjoint
functors. Hence (1) follows from the description of QX0

in Derived Categories of

http://localhost:8080/tag/08GZ
http://localhost:8080/tag/08H0


18 DERIVED CATEGORIES OF SPACES

Schemes, Lemma 6.3 and the fact that Γ(X0, ε∗F) = Γ(X,F). Part (2) follows from
(1) and the fact that the functor from A-modules to quasi-coherent OX -modules
is exact. The third assertion now follows from the result for schemes (Derived
Categories of Schemes, Lemma 6.3) and Lemma 4.2. �

Proposition 10.4. Let S be a scheme. Let X be a quasi-compact algebraic space
over S with affine diagonal. Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. We first use the induction principle to prove iX is fully faithful. Let B ⊂
Ob(Xspaces,étale) be the set of objects which are quasi-compact and have affine
diagonal. For U ∈ B let P (U) = “the functor iU : D(QCoh(OU )) → DQCoh(OU )
is fully faithful”. By Remark 8.5 conditions (1), (2), and (3)(a) of Lemma 8.4 hold
and we are left with proving (3)(b) and (4). Condition (3)(b) holds by Lemma 10.3.

Let (U ⊂W,V →W ) be an elementary distinguished square with V affine. Assume
that P holds for U , V , and U ×W V . We have to show that P holds for W . We
may replace X by W , i.e., we may assume W = X (we do this just to simplify the
notation).

Suppose that A,B are objects of D(QCoh(OX)). We want to show that

HomD(QCoh(OX))(A,B) −→ HomD(OX)(iX(A), iX(B))

is bijective. Let T = |X| \ |U |.

Assume first iX(B) is supported on T . In this case the map

iX(B)→ RjV,∗(iX(B)|V ) = RjV,∗(iV (B|V ))

is a quasi-isomorphism (Lemma 9.6). The morphism V → X is affine as V is
affine and X has affine diagonal (Morphisms of Spaces, Lemma 20.11). Thus
we have an object jV,∗(B|V ) in QCoh(OX) and an isomorphism iX(jV,∗(B|V )) →
RjV,∗(iV (B|V )) in D(OX) (Lemma 10.1). Moreover, jV,∗ and −|V are adjoint func-
tors on the derived categories of quasi-coherent modules, see proof Lemma 10.2.
The adjunction map B → jV,∗(B|V ) becomes an isomorphism after applying iX ,
whence is an isomorphism in D(QCoh(OX)). Hence

MorD(QCoh(OX))(A,B) = MorD(QCoh(OX))(A, jV,∗(B|V ))

= MorD(QCoh(OV ))(A|V , B|V )

= MorD(OV )(iV (A|V ), iV (B|V ))

= MorD(OX)(iX(A), RjV,∗(iV (B|V )))

= MorD(OX)(iX(A), iX(B))

as desired.

In general, choose any complex B• of quasi-coherent OX -modules representing B.
Next, choose any quasi-isomorphism s : B•|U → C• of complexes of quasi-coherent
modules on U . As jU : U → X is quasi-compact and quasi-separated the functor
jU,∗ transforms quasi-coherent modules into quasi-coherent modules (Morphisms of
Spaces, Lemma 11.2). Thus there is a canonical map B• → jU,∗(B•|U ) → jU,∗C•
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of complexes of quasi-coherent modules on X. Set B′′ = jU,∗C• in D(QCoh(OX))
and choose a distinguished triangle

B → B′′ → B′ → B•[1]

in D(QCoh(OX)). Since the first arrow of the triangle restricts to an isomorphism
over U we see that B′ is supported on T . Hence in the diagram

HomD(QCoh(OX))(A,B
′[−1]) //

��

HomD(OX)(iX(A), iX(B′)[−1])

��
HomD(QCoh(OX))(A,B) //

��

HomD(OX)(iX(A), iX(B))

��
HomD(QCoh(OX))(A,B

′′) //

��

HomD(OX)(iX(A), iX(B′′))

��
HomD(QCoh(OX))(A,B

′) // HomD(OX)(iX(A), iX(B′))

we have exact columns and the top and bottom horizontal arrows are bijective.
Finally, choose a complex A• of quasi-coherent modules representing A.

Let α : iX(A) → iX(B) be a morphism between in D(OX). The restriction α|U
comes from a morphism in D(QCoh(OU )) by assumption. Hence there exists a
choice of s : B•|U → C• as above such that α|U is represented by an actual map of
complexes A•|U → C•. This corresponds to a map of complexes A → jU,∗C•. In
other words, the image of α in HomD(OX)(iX(A), iX(B′′)) comes from an element
of HomD(QCoh(OX))(A,B

′′). A diagram chase then shows that α comes from a
morphismA→ B inD(QCoh(OX)). Finally, suppose that a : A→ B is a morphism
of D(QCoh(OX)) which becomes zero in D(OX). After choosing B• suitably, we
may assume a is represented by a morphism of complexes a• : A• → B•. Since
P holds for U the restriction a•|U is zero in D(QCoh(OU )). Thus we can choose
s such that s ◦ a•|U : A•|U → C• is homotopic to zero. Applying the functor
jU,∗ we conclude that A• → jU,∗C• is homotopic to zero. Thus a maps to zero in
HomD(QCoh(OX))(A,B

′′). Thus we may assume that a is the image of an element of
b ∈ HomD(QCoh(OX))(A,B

′[−1]). The image of b in HomD(OX)(iX(A), iX(B′)[−1])
comes from a γ ∈ HomD(OX)(A,B

′′[−1]) (as a maps to zero in the group on the
right). Since we’ve seen above the horizontal arrows are surjective, we see that γ
comes from a c in HomD(QCoh(OX))(A,B

′′[−1]) which implies a = 0 as desired.

Since iX is fully faithful with right adjoint RQX we see that RQX ◦ iX = id (Cat-
egories, Lemma 24.3). To finish the proof we show that for any E in DQCoh(OX)
the map iX(RQX(E))→ E is an isomorphism. Choose a distinguished triangle

iX(RQX(E))→ E → E′ → iX(RQX(E))[1]

in DQCoh(OX). A formal argument using the above shows that iX(RQX(E′)) = 0.
Thus it suffices to prove that for E ∈ DQCoh(OX) the condition iX(RQX(E)) = 0
implies that E = 0. Consider an étale morphism j : V → X with V affine. By
Lemmas 10.3, 10.1, and 10.2 we have

Rj∗(E|V ) = Rj∗(iV (RQV (E|V ))) = iX(j∗(RQV (E|V ))) = iX(RQX(Rj∗(E|V )))
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Choose a distinguished triangle

E → Rj∗(E|V )→ E′ → E[1]

Apply RQX to get a distinguished triangle

0→ RQX(Rj∗(E|V ))→ RQX(E′)→ 0[1]

in other words the map in the middle is an isomorphism. Combined with the
string of equalities above we find that our first distinghuished triangle becomes a
distinguished triangle

E → iX(RQX(E′))→ E′ → E[1]

where the middle morphism is the adjunction map. However, the composition E →
E′ is zero, hence E → iX(RQX(E′)) is zero by adjunction! Since this morphism is
isomorphic to the morphism E → Rj∗(E|V ) adjoint to id : E|V → E|V we conclude
that E|V is zero. Since this holds for all affine V étale over X we conlude E is zero
as desired. �

Remark 10.5. Analyzing the proof of Proposition 10.4 we see that we have shown
the following. Let X be a quasi-compact and quasi-separated scheme. Suppose
that for every étale morphism j : V → X with V affine the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))

of the left exact functor j∗ : QCoh(OV ) → QCoh(OX) fits into a commutative
diagram

D(QCoh(OV ))

Φ

��

iV
// DQCoh(OV )

Rj∗

��
D(QCoh(OX))

iX // DQCoh(OX)

Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

11. The coherator for Noetherian spaces

We need a little bit more about injective modules to treat the case of a Noetherian
algebraic space.

Lemma 11.1. Let S be a Noetherian affine scheme. Every injective object of
QCoh(OS) is a filtered colimit colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → S)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Let S = Spec(A). Let J be an injective object of QCoh(OS). Since
QCoh(OS) is equivalent to the category of A-modules we see that J is equal to

J̃ for some injective A-module J . By Dualizing Complexes, Proposition 5.9 we
can write J =

⊕
Eα with Eα indecomposable and therefore isomorphic to the

injective hull of a reside field at a point. Thus (because finite disjoint unions of
Artinian schemes are Artinian) we may assume that J is the injective hull of κ(p)
for some prime p of A. Then J =

⋃
J [pn] where J [pn] is the injective hull of
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κ(p) over A/p
nAp, see Dualizing Complexes, Lemma 7.3. Thus J̃ is the colimit of

the sheaves (Zn → X)∗Gn where Zn = Spec(Ap/p
nAp) and Gn the coherent sheaf

associated to the finite A/p
nAp-module J [pn]. Finiteness follows from Dualizing

Complexes, Lemma 6.1. �

Lemma 11.2. Let S be an affine scheme. Let X be a Noetherian algebraic space
over S. Every injective object of QCoh(OX) is a direct summand of a filtered colimit
colimi Fi of quasi-coherent sheaves of the form

Fi = (Zi → X)∗Gi
where Zi is the spectrum of an Artinian ring and Gi is a coherent module on Zi.

Proof. Choose an affine scheme U and a surjective étale morphism j : U → X
(Properties of Spaces, Lemma 6.3). Then U is a Noetherian affine scheme. Choose
an injective object J ′ of QCoh(OU ) such that there exists an injection J |U → J ′.
Then

J → j∗J ′

is an injective morphism in QCoh(OX), hence identifies J as a direct summand
of j∗J ′. Thus the result follows from the corresponding result for J ′ proved in
Lemma 11.1. �

Lemma 11.3. Let S be a scheme. Let f : X → Y be a flat, quasi-compact, and
quasi-separated morphism of algebraic spaces over S. If J is an injective object of
QCoh(OX), then f∗J is an injective object of QCoh(OY ).

Proof. Since f is quasi-compact and quasi-separated, the functor f∗ transforms
quasi-coherent sheaves into quasi-coherent sheaves (Morphisms of Spaces, Lemma
11.2). The functor f∗ is a left adjoint to f∗ which transforms injections into injec-
tions. Hence the result follows from Homology, Lemma 25.1 �

Lemma 11.4. Let S be a scheme. Let X be a Noetherian algebraic space over S.
If J is an injective object of QCoh(OX), then

(1) Hp(U,J |U ) = 0 for p > 0 and for every quasi-compact and quasi-separated
algebraic space U étale over X,

(2) for any morphism f : X → Y of algebraic spaces over S with Y quasi-
separated we have Rpf∗J = 0 for p > 0.

Proof. Proof of (1). Write J as a direct summand of colimFi with Fi = (Zi →
X)∗Gi as in Lemma 11.2. It is clear that it suffices to prove the vanishing for
colimFi. Since pullback commutes with colimits and since U is quasi-compact and
quasi-separated, it suffices to prove Hp(U,Fi|U ) = 0 for p > 0, see Cohomology of
Spaces, Lemma 4.1. Observe that Zi → X is an affine morphism, see Morphisms
of Spaces, Lemma 20.12. Thus

Fi|U = (Zi ×X U → U)∗G′i = R(Zi ×X U → U)∗G′i
where G′i is the pullback of Gi to Zi ×X U , see Cohomology of Spaces, Lemma
10.2. Since Zi ×X U is affine we conlude that G′i has no higher cohomology on
Zi ×X U . By the Leray spectral sequence we conclude the same thing is true for
Fi|U (Cohomology on Sites, Lemma 14.6).

Proof of (2). Let f : X → Y be a morphism of algebraic spaces over S. Let V → Y
be an étale morphism with V affine. Then V ×Y X → X is an étale morphism
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and V ×Y X is a quasi-compact and quasi-separated algebraic space étale over X
(details omitted). Hence Hp(V ×Y X,J ) is zero by part (1). Since Rpf∗J is the
sheaf associated to the presheaf V 7→ Hp(V ×Y X,J ) the result is proved. �

Lemma 11.5. Let S be a scheme. Let f : X → Y be a morphism of Noetherian
algebraic spaces over S. Then f∗ on quasi-coherent sheaves has a right derived
extension Φ : D(QCoh(OX))→ D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Proof. Since X and Y are Noetherian the morphism is quasi-compact and quasi-
separated (see Morphisms of Spaces, Lemma 8.9). Thus f∗ preserve quasi-coherence,
see Morphisms of Spaces, Lemma 11.2. Next, Let K be an object of D(QCoh(OX)).
Since QCoh(OX) is a Grothendieck abelian category (Properties of Spaces, Propo-
sition 30.2), we can represent K by a K-injective complex I• such that each In is
an injective object of QCoh(OX), see Injectives, Theorem 12.6. Thus we see that
the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as
in Lemma 6.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0

of complexes of quasi-coherent sheaves on X. By Lemma 6.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we
see that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may
assume that I• is a bounded below complex of injective objects of QCoh(OX).
This case follows from Leray’s acyclicity lemma (Derived Categories, Lemma 17.7)
with required vanishing because of Lemma 11.4. �

Proposition 11.6. Let S be a scheme. Let X be a Noetherian algebraic space over
S. Then the functor (5.1.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. This follows using the exact same argument as in the proof of Proposition
10.4 using Lemma 11.5. See discussion in Remark 10.5. �
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12. Pseudo-coherent and perfect complexes

In this section we study the general notions defined in Cohomology on Sites, Sec-
tions 33, 34, 35, and 36 for the étale site of an algebraic space. In particular we
match this with what happens for schemes.

First we compare the notion of a pseudo-coherent complex on a scheme and on its
associated small étale site.

Lemma 12.1. Let X be a scheme. Let F be an OX-module. The following are
equivalent

(1) F is of finite type as an OX-module, and
(2) ε∗F is of finite type as an Oétale-module on the small étale site of X.

Here ε is as in (4.0.1).

Proof. The implication (1) ⇒ (2) is a general fact, see Modules on Sites, Lemma
23.4. Assume (2). By assumption there exists an étale covering {fi : Xi → X} such
that ε∗F|(Xi)étale

is generated by finitely many sections. Let x ∈ X. We will show
that F is generated by finitely many sections in a neighbourhood of x. Say x is in
the image of Xi → X and denote X ′ = Xi. Let s1, . . . , sn ∈ Γ(X ′, ε∗F|X′étale

) be

generating sections. As ε∗F = ε−1F ⊗ε−1OX
Oétale we can find an étale morphism

X ′′ → X ′ such that x is in the image of X ′ → X and such that si|X′′ =
∑
sij ⊗aij

for some sections sij ∈ ε−1F(X ′′) and aij ∈ Oétale(X ′′). Denote U ⊂ X the image
of X ′′ → X. This is an open subscheme as f ′′ : X ′′ → X is étale (Morphisms,
Lemma 37.13). After possibly shrinking X ′′ more we may assume sij come from
elements tij ∈ F(U) as follows from the construction of the inverse image functor
ε−1. Now we claim that tij generate F|U which finishes the proof of the lemma.

Namely, the corresponding map O⊕NU → F|U has the property that its pullback
by f ′′ to X ′′ is surjective. Since f ′′ : X ′′ → U is a surjective flat morphism of
schemes, this implies that O⊕NU → F|U is surjective by looking at stalks and using
that OU,f ′′(z) → OX′′,z is faithfully flat for all z ∈ X ′′. �

In the situation above the morphism of sites ε is flat hence defines a pullback on
complexes of modules.

Lemma 12.2. Let X be a scheme. Let E be an object of D(OX). The following
are equivalent

(1) E is m-pseudo-coherent, and
(2) ε∗E is m-pseudo-coherent on the small étale site of X.

Here ε is as in (4.0.1).

Proof. The implication (1) ⇒ (2) is a general fact, see Cohomology on Sites,
Lemma 34.3. Assume ε∗E is m-pseudo-coherent. We will use without further
mention that ε∗ is an exact functor and that therefore

ε∗Hi(E) = Hi(ε∗E).

To show that E is m-pseudo-coherent we may work locally on X, hence we may
assume that X is quasi-compact (for example affine). Since X is quasi-compact
every étale covering {Ui → X} has a finite refinement. Thus we see that ε∗E is
an object of D−(Oétale), see comments following Cohomology on Sites, Definition
34.1. By Lemma 4.1 it follows that E is an object of D−(OX).
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Let n ∈ Z be the largest integer such that Hn(E) is nonzero; then n is also the
largest integer such that Hn(ε∗E) is nonzero. We will prove the lemma by induction
on n −m. If n < m, then the lemma is clearly true. If n ≥ m, then Hn(ε∗E) is
a finite Oétale-module, see Cohomology on Sites, Lemma 34.7. Hence Hn(E) is a
finite OX -module, see Lemma 12.1. After replacing X by the members of an open
covering, we may assume there exists a surjection O⊕tX → Hn(E). We may locally

on X lift this to a map of complexes α : O⊕tX [−n] → E (details omitted). Choose
a distinguished triangle

O⊕tX [−n]→ E → C → O⊕tX [−n+ 1]

Then C has vanishing cohomology in degrees ≥ n. On the other hand, the complex
ε∗C is m-pseudo-coherent, see Cohomology on Sites, Lemma 34.4. Hence by induc-
tion we see that C is m-pseudo-coherent. Applying Cohomology on Sites, Lemma
34.4 once more we conclude. �

Lemma 12.3. Let X be a scheme. Let E be an object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if ε∗E has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if ε∗E has finite tor dimension.

Here ε is as in (4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 35.4 (and the fact that the small étale site of X has enough

points, see Étale Cohomology, Remarks 29.11). For the converse, assume that ε∗E
has tor amplitude in [a, b] Let F be an OX -module. As ε is a flat morphism of
ringed sites (Lemma 4.1) we have

ε∗(E ⊗L
OX
F) = ε∗E ⊗L

Oétale
ε∗F

Thus the (assumed) vanishing of cohomology sheaves on the right hand side implies
the desired vanishing of the cohomology sheaves of E ⊗L

OX
F via Lemma 4.1. �

Lemma 12.4. Let X be a scheme. Let E be an object of D(OX). Then E is a
perfect object of D(OX) if and only if ε∗E is a perfect object of D(Oétale). Here ε
is as in (4.0.1).

Proof. The easy implication follows from the general result contained in Cohomol-
ogy on Sites, Lemma 36.5 (and the fact that the small étale site of X has enough

points, see Étale Cohomology, Remarks 29.11). For the converse, we can use the
equivalence of Cohomology on Sites, Lemma 36.4 and the corresponding results for
pseudo-coherent and complexes of finite tor dimension, namely Lemmas 12.2 and
12.3. Some details omitted. �

Lemma 12.5. Let S be a scheme. Let X be an algebraic space over S. If E is an
m-pseudo-coherent object of D(OX), then Hi(E) is a quasi-coherent OX-module
for i > m. If E is pseudo-coherent, then E is an object of DQCoh(OX).

Proof. LocallyHi(E) is isomorphic toHi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. �

Lemma 12.6. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let E be an object of DQCoh(OX). For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
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(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−Coh(OX).

Proof. As X is quasi-compact we can find an affine scheme U and a surjective
étale morphism U → X (Properties of Spaces, Lemma 6.3). Observe that U is
Noetherian. Note that E is m-pseudo-coherent if and only if E|U is m-pseudo-
coherent (follows from the definition or from Cohomology on Sites, Lemma 34.2).
Similarly, Hi(E) is coherent if and only if Hi(E)|U = Hi(E|U ) is coherent (see
Cohomology of Spaces, Lemma 11.2). Thus we may assume that X is representable.

If X is representable by a scheme X0 then (Lemma 4.2) we can write E = ε∗E0

where E0 is an object of DQCoh(OX0
) and ε : Xétale → (X0)Zar is as in (4.0.1). In

this case E is m-pseudo-coherent if and only if E0 is by Lemma 12.2. Similarly,
Hi(E0) is of finite type (i.e., coherent) if and only if Hi(E) is by Lemma 12.1.
Finally, Hi(E0) = 0 if and only if Hi(E) = 0 by Lemma 4.1. Thus we reduce to
the case of schemes which is Derived Categories of Schemes, Lemma 9.4. �

Lemma 12.7. Let S be a scheme. Let X be a quasi-separated algebraic space over
S. Let E be an object of DQCoh(OX). Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let j : U → X be an étale
morphism with U affine. As X is quasi-separated j : U → X is quasi-compact and
separated, hence j∗ transforms quasi-coherent modules into quasi-coherent modules
(Morphisms of Spaces, Lemma 11.2). Thus the functor QCoh(OX) → QCoh(OU )
is essentially surjective. It follows that condition (2) implies the vanishing of
Hi(E|U ⊗L

OU
G) for i 6∈ [a, b] for all quasi-coherent OU -modules G. Since it suf-

fices to prove that E|U has tor amplitude in [a, b] we reduce to the case where X is
representable.

If X is representable by a scheme X0 then (Lemma 4.2) we can write E = ε∗E0

where E0 is an object of DQCoh(OX0
) and ε : Xétale → (X0)Zar is as in (4.0.1).

For every quasi-coherent module F0 on X0 the module ε∗F0 is quasi-coherent on
X and

Hi(E ⊗L
OX

ε∗F0) = ε∗Hi(E0 ⊗L
OX0
F0)

as ε is flat (Lemma 4.1). Moreover, the vanishing of these sheaves for i 6∈ [a, b]
implies the same thing for Hi(E0 ⊗L

OX0
F0) by the same lemma. Thus we’ve re-

duced the problem to the case of schemes which is treated in Derived Categories of
Schemes, Lemma 9.6. �

Lemma 12.8. Let X be a scheme. Let E,F be objects of D(OX). Assume either

(1) E is pseudo-coherent and F lies in D+(OX), or
(2) E is perfect and F arbitrary,

then there is a canonical isomorphism

ε∗RHom(E,F ) −→ RHom(ε∗E, ε∗F )

Here ε is as in (4.0.1).
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Proof. Recall that ε is flat (Lemma 4.1) and hence ε∗ = Lε∗. There is a canonical
map from left to right by Cohomology on Sites, Remark 26.9. To see this is an
isomorphism we can work locally, i.e., we may assume X is an affine scheme.

In case (1) we can represent E by a bounded above complex E• of finite free OX -
modules, see Derived Categories of Schemes, Lemma 11.2. We may also represent
F by a bounded below complex F• of OX -modules. Applying Cohomology, Lemma
35.10 we see that RHom(E,F ) is represented by the complex with terms⊕

n=−p+q
HomOX

(Ep,Fq)

Applying Cohomology on Sites, Lemma 33.10 we see that RHom(ε∗E, ε∗F ) is rep-
resented by the complex with terms⊕

n=−p+q
HomOétale

(ε∗Ep, ε∗Fq)

Thus the statement of the lemma boils down to the true fact that the canonical
map

ε∗HomOX
(E ,F) −→ HomOétale

(ε∗E , ε∗F)

is an isomorphism for any OX -module F and finite free OX -module E .

In case (2) we can represent E by a strictly perfect complex E• of OX -modules,
use Derived Categories of Schemes, Lemmas 3.4 and 9.7 and the fact that a perfect
complex of modules is represented by a finite complex of finite projective mod-
ules. Thus we can do the exact same proof as above, replacing the reference to
Cohomology, Lemma 35.10 by a reference to Cohomology, Lemma 35.9. �

Lemma 12.9. Let S be a scheme. Let X be an algebraic space over S. Let L,K
be objects of D(OX). If either

(1) L in D+
QCoh(OX) and K is pseudo-coherent,

(2) L in DQCoh(OX) and K is perfect,

then RHom(K,L) is in DQCoh(OX).

Proof. This follows from the analogue for schemes (Derived Categories of Schemes,
Lemma 9.8) via the criterion of Lemma 5.2, the criterion of Lemmas 12.2 and 12.4,
and the result of Lemma 12.8. �

13. Approximation by perfect complexes

In this section we continue the discussion started in Derived Categories of Schemes,
Section 12.

Definition 13.1. Let S be a scheme. Let X be an algebraic space over S. Consider
triples (T,E,m) where

(1) T ⊂ |X| is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Please read the remarks following
Derived Categories of Schemes, Definition 12.1 to see why.
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Definition 13.2. Let S be a scheme. Let X be an algebraic space over S. We
say approximation by perfect complexes holds on X if for any closed subset T ⊂ |X|
such that the morphism X \T → X is quasi-compact there exists an integer r such
that for every triple (T,E,m) as in Definition 13.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

Lemma 13.3. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic space over S. Let E be a perfect object of D(OV )
supported on j−1(T ) where T = |X| \ |U |. Then Rj∗E is a perfect object of D(OX).

Proof. Being perfect is local on Xétale. Thus it suffices to check that Rj∗E is
perfect when restricted to U and V . We have Rj∗E|V = E by Lemma 9.6 which is
perfect. We have Rj∗E|U = 0 because E|V \j−1(T ) = 0 (use Lemma 3.1). �

Lemma 13.4. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Let T be a closed subset of |X| \ |U |
and let (T,E,m) be a triple as in Definition 13.1. If

(1) approximation holds for (j−1T,E|V ,m), and
(2) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).

Proof. Let P → E|V be an approximation of the triple (j−1T,E|V ,m) over V .
Then Rj∗P is a perfect object of D(OX) by Lemma 13.3. On the other hand,
Rj∗P = j!P by Lemma 9.6. We see that j!P is supported on T for example by
(9.0.2). Hence we obtain an approximation Rj∗P = j!P → j!(E|V )→ E. �

Lemma 13.5. Let S be a scheme. Let X be an algebraic space over S which
is representable by an affine scheme. Then approximation holds for every triple
(T,E,m) as in Definition 13.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Let X0 be an affine scheme representing X. Let T0 ⊂ X0 by the closed
subset corresponding to T . Let ε : Xétale → X0,Zar be the morphism (4.0.1). We
may write E = ε∗E0 for some object E0 of DQCoh(OX0), see Lemma 4.2. Then E0 is
m-pseudo-coherent, see Lemma 12.2. Comparing stalks of cohomology sheaves (see
proof of Lemma 4.1) we see that Hi(E0) is supported on T0 for i ≥ m− r + 1. By
Derived Categories of Schemes, Lemma 12.4 there exists an approximation P0 → E0

of (T0, E0,m). By Lemma 12.4 we see that P = ε∗P0 is a perfect object of D(OX).
Pulling back we obtain an approximation P = ε∗P0 → ε∗E0 = E as desired. �

Lemma 13.6. Let S be a scheme. Let (U ⊂ X, j : V → X) be an elementary
distinguished square of algebraic spaces over S. Assume U quasi-compact, V affine,
and U×X V quasi-compact. If approximation by perfect complexes holds on U , then
approximation by perfect complexes holds on X.
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Proof. Let T ⊂ |X| be a closed subset with X \ T → X quasi-compact. Let rU
be the integer of Definition 13.2 adapted to the pair (U, T ∩ |U |). Set T ′ = T \ |U |.
Endow T ′ with the induced reduced subspace structure. Since |T ′| is contained in
|X| \ |U | we see that j−1(T ′) → T ′ is an isomorphism. Moreover, V \ j−1(T ′) is
quasi-compact as it is the fibre product of U ×X V with X \ T over X and we’ve
assumed U ×X V quasi-compact and X \ T → X quasi-compact. Let r′ be the
number of affines needed to cover V \ j−1(T ′). We claim that r = max(rU , r

′)
works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 13.5 guarantees the existence of an approximation P → E|V of
(T ′, E|V ,m) on V . Applying Lemma 13.4 we see that (T ′, E,m) can be approxi-
mated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ |U |, E|U ,m). This
in particular gives a surjection Ht(P ) → Ht(E|U ). In the rest of the proof we
will use the equivalence of Lemma 4.2 (and the compatibilities of Remark 6.3) for
the representable algebraic spaces V and U ×X V . We will also use the fact that
(m− r)-pseudo-coherence, resp. perfectness on the Zariski site and étale site agree,
see Lemmas 12.2 and 12.4. Thus we can use the results of Derived Categories of
Schemes, Section 11 for the open immersion U ×X V ⊂ V . In this way Derived
Categories of Schemes, Lemma 11.8 implies there exists a perfect objectQ inD(OV )
supported on j−1(T ) and an isomorphism Q|U×XV → (P⊕P [1])|U×XV . By Derived
Categories of Schemes, Lemma 11.5 we can replace Q by Q⊗L I and assume that
the map

Q|U×XV −→ (P ⊕ P [1])|U×XV −→ P |U×XV −→ E|U×XV

lifts to Q→ E|V . By Lemma 9.7 we find an morphism a : R → E of D(OX) such
that a|U is isomorphic to P ⊕ P [1]→ E|U and a|V isomorphic to Q→ E|V . Thus
R is perfect and supported on T and the map Ht(R) → Ht(E) is surjective on
restriction to U . Choose a distinguised triangle

R→ E → E′ → R[1]

Then E′ is (m−r)-pseudo-coherent (Cohomology on Sites, Lemma 34.4), Hi(E′)|U =
0 for i ≥ t, and Hi(E′) is supported on T for i ≥ m− r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distringuished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′

and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]
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using TR3. Then R′′ is a perfect complex (Cohomology on Sites, Lemma 36.6)
supported on T . An easy diagram chase shows that R′′ → E is the desired approx-
imation. �

Theorem 13.7. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Lemma 8.3 and Lemmas 13.6
and 13.5. �

14. Generating derived categories

This section is the analogue of Derived Categories of Schemes, Section 13. However,
we first prove the following lemma which is the analogue of Derived Categories of
Schemes, Lemma 11.9.

Lemma 14.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W ⊂ X be a quasi-compact open. Let T ⊂ |X| be a
closed subset such that X \ T → X is a quasi-compact morphism. Let E be an
object of DQCoh(OX). Let α : P → E|W be a map where P is a perfect object of
D(OW ) supported on T ∩W . Then there exists a map β : R → E where R is a
perfect object of D(OX) supported on T such that P is a direct summand of R|W
in D(OW ) compatible α and β|W .

Proof. We will use the induction principle of Lemma 8.6 to prove this. Thus we
immediately reduce to the case where we have an elementary distinguished square
(W ⊂ X, f : V → X) with V affine and P → E|W as in the statement of the
lemma. In the rest of the proof we will use Lemma 4.2 (and the compatibilities of
Remark 6.3) for the representable algebraic spaces V and W ×X V . We will also
use the fact that perfectness on the Zariski site and étale site agree, see Lemma
12.4.

By Derived Categories of Schemes, Lemma 11.8 we can choose a perfect object Q
in D(OV ) supported on f−1T and an isomorphism Q|W×XV → (P ⊕ P [1])|W×XV .
By Derived Categories of Schemes, Lemma 11.5 we can replace Q by Q⊗L I (still
supported on f−1T ) and assume that the map

Q|W×XV → (P ⊕ P [1])|W×V −→ P |W×XV −→ E|W×XV

lifts to Q→ E|V . By Lemma 9.7 we find an morphism a : R → E of D(OX) such
that a|W is isomorphic to P ⊕P [1]→ E|W and a|V isomorphic to Q→ E|V . Thus
R is perfect and supported on T as desired. �

Remark 14.2. The proof of Lemma 14.1 shows that

R|W = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]

for some m ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf of R|W
equals that of P . By repeating the construction for the map P⊕n1 [1] ⊕ . . . ⊕
P⊕nm [m] → R|W , taking cones, and using induction we can achieve equality of
cohomology sheaves of R|W and P above any given degree.

Lemma 14.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let W be a quasi-compact open subspace of X. Let P be a
perfect object of D(OW ). Then P is a direct summand of the restriction of a perfect
object of D(OX).
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Proof. Special case of Lemma 14.1. �

Theorem 14.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The category DQCoh(OX) can be generated by a single
perfect object. More precisely, there exists a perfect object P of D(OX) such that
for E ∈ DQCoh(OX) the following are equivalent

(1) E = 0, and
(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Lemma 8.3

If X is affine, then OX is a perfect generator. This follows from Lemma 4.2 and
Derived Categories of Schemes, Lemma 3.4.

Assume that (U ⊂ X, f : V → X) is an elementary distinguished square with
U quasi-compact such that the theorem holds for U and V is an affine scheme.
Let P be a perfect object of D(OU ) which is a generator for DQCoh(OU ). Using
Lemma 14.3 we may choose a perfect object Q of D(OX) whose restriction to U
is a direct sum one of whose summands is P . Say V = Spec(A). Let Z ⊂ V
be the reduced closed subscheme which is the inverse image of X \ U and maps
isomorphically to it (see Definition 8.1). This is a retrocompact closed subset of V .
Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be the perfect
object corresponding to the Koszul complex on f1, . . . , fr over A. Note that since
K is supported on Z, the pushforward K ′ = Rf∗K is a perfect object of D(OX)
whose restriction to V is K (see Lemmas 13.3 and 9.6). We claim that Q ⊕K ′ is
a generator for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Lemma 9.6 we have K ′ = f!K and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 13.2 (using also Lemma 4.2)
the vanishing of these groups implies that E|V is isomorphic to R(U ×X V →
V )∗E|U×XV . This implies that E = R(U → X)∗E|U (small detail omitted). If this
is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

The following result is an strengthening of Theorem 14.4 proved using exactly the
same methods. Let T ⊂ |X| be a closed subset where X is an algebraic space. Let’s
denote DT (OX) the strictly full, saturated, triangulated subcategory consisting of
complexes whose cohomology sheaves are supported on T .

Lemma 14.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. With notation as above, the category DQCoh,T (OX) is generated by a
single perfect object.

Proof. We will prove this using the induction principle of Lemma 8.3. The prop-
erty is true for representable quasi-compact and quasi-separated objects of the site
Xspaces,étale by Derived Categories of Schemes, Lemma 13.5.
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Assume that (U ⊂ X, f : V → X) is an elementary distinguished square such
that the lemma holds for U and V is affine. To finish the proof we have to show
that the result holds for X. Let P be a perfect object of D(OU ) supported on
T ∩U which is a generator for DQCoh,T∩U (OU ). Using Lemma 14.1 we may choose
a perfect object Q of D(OX) supported on T whose restriction to U is a direct
sum one of whose summands is P . Write V = Spec(B). Let Z = X \ U . Then
f−1Z is a closed subset of V such that V \ f−1Z is quasi-compact. As X is quasi-
separated, it follows that f−1Z ∩ f−1T = f−1(Z ∩ T ) is a closed subset of V such
that W = V \ f−1(Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B
such that f−1(Z ∩ T ) = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect object
corresponding to the Koszul complex on g1, . . . , gs over B. Note that since K is
supported on f−1(Z ∩ T ) ⊂ V closed, the pushforward K ′ = R(V → X)∗K is a
perfect object of D(OX) whose restriction to V is K (see Lemmas 13.3 and 9.6).
We claim that Q⊕K ′ is a generator for DQCoh,T (OX).

Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from
any shift of Q⊕K ′ into E. By Lemma 9.6 we have K ′ = R(V → X)!K and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Derived Categories of Schemes, Lemma 13.2 we have E|V = Rj∗E|W where
j : W → V is the inclusion. Picture

W
j

// V Z ∩ Too

��
V \ f−1Z

j′

OO

j′′

::

Z

bb

Since E is supported on T we see that E|W is supported on f−1T ∩W = f−1T ∩
(V \ f−1Z) which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj
′
∗(E|U∩V )) = Rj′′∗ (E|U∩V )

Here the second equality is part (1) of Cohomology, Lemma 30.9 which applies
because V is a scheme and E has quasi-coherent cohomology sheaves hence push-
forward along the quasi-compact open immersion j′ agrees with pushforward on
the underlying schemes, see Remark 6.3. This implies that E = R(U → X)∗E|U
(small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

15. Compact and perfect objects

This section is the analogue of Derived Categories of Schemes, Section 14.

Proposition 15.1. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S. An object of DQCoh(OX) is compact if and only
if it is perfect.

Proof. By Cohomology on Sites, Lemma 39.1 the perfect objects even define com-
pact objects of D(OX). Conversely, let K be a compact object of DQCoh(OX). To
show that K is perfect, it suffices to show that K|U is perfect for every affine scheme
U étale over X, see Cohomology on Sites, Lemma 36.2. Observe that j : U → X is
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a quasi-compact and separated morphism. Hence Rj∗ : DQCoh(OU )→ DQCoh(OX)
commutes with direct sums, see Lemma 6.2. Thus the adjointness of restriction to
U and Rj∗ implies that K|U is a perfect object of DQCoh(OU ). Hence we reduce
to the case that X is affine, in particular a quasi-compact and quasi-separated
scheme. Via Lemma 4.2 and 12.4 we reduce to the case of schemes, i.e., to Derived
Categories of Schemes, Proposition 14.1. �

The following result is a strengthening of Proposition 15.1. Let T ⊂ |X| be a closed
subset where X is an algebraic space. As before DT (OX) denotes the the strictly
full, saturated, triangulated subcategory consisting of complexes whose cohomol-
ogy sheaves are supported on T . Since taking direct sums commutes with taking
cohomology sheaves, it follows that DT (OX) has direct sums and that they are
equal to direct sums in D(OX).

Lemma 15.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that |X| \ T is quasi-
compact. An object of DQCoh,T (OX) is compact if and only if it is perfect as an
object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Cohomology on Sites, Lemma 39.1 the
perfect objects define compact objects of D(OX) hence a fortiori of any subcategory
preserved under taking direct sums. For the converse we will use there exists
a generator E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see
Lemma 14.5. Hence by the above, E is compact. Then it follows from Derived
Categories, Proposition 34.6 that E is a classical generator of the full subcategory
of compact objects of DQCoh,T (OX). Thus any compact object can be constructed
out of E by a finite sequence of operations consisting of (a) taking shifts, (b) taking
finite direct sums, (c) taking cones, and (d) taking direct summands. Each of these
operations preserves the property of being perfect and the result follows. �

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 15.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let T ⊂ |X| be a closed subset such that the complement
U ⊂ X is quasi-compact. Let α : P → E be a morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX-modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E) is an
object of D. See Lemma 12.9 for quasi-coherence. It is clear that K is supported on
T as formation of RHom commutes with restriction to opens. The map α defines
an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result
for the map α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 14.5. Write

K = hocolimKn
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as in Derived Categories, Lemma 34.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn also in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α. By Derived Categories, Lemma 34.4 applied
to the morphism OX [0] → Kn in the ambient category D(OX) we see that αn
factors as OX [0]→ Q→ Kn where Q is an object of 〈E〉. We conclude that Q is a
perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. �

16. Derived categories as module categories

The section is the analogue of Derived Categories of Schemes, Section 15.

Lemma 16.1. Let S be a scheme. Let X be an algebraic space over S. Let K•

be a complex of OX-modules whose cohomology sheaves are quasi-coherent. Let
(E, d) = HomCompdg(OX)(K

•,K•) be the endomorphism differential graded algebra.
Then the functor

−⊗L
E K

• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 25.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property P . Let F• be a
filtration on P as in Differential Graded Algebra, Section 13. Then we have

P ⊗E K• = hocolim FiP ⊗E K•

Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 16.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let K, L be objects of D(OX) with K perfect and L in
Db

QCoh(OX). Then ExtnD(OX)(K,L) is nonzero for only a finite number of n.

Proof. Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∧ ⊗L
OX

L)

where K∧ is the “dual” perfect complex to K, see Cohomology on Sites, Lemma
36.9. Note that P = K∧ ⊗L

OX
L is in DQCoh(X) by Lemmas 5.5 and 12.5 (to

see that a perfect complex has quasi-coherent cohomology sheaves). On the other
hand, the spectral sequence

Ep,q1 = Hp(K∧ ⊗L
OX

Hq(L))⇒ Hp+q(K∧ ⊗L
OX

L) = Hp+q(P ),

the boundedness of L, and the finite tor amplitude of K∧ show that P has only
finitely many nonzero cohomology sheaves. It follows that Hn(X,P ) = 0 for n� 0.
But also Hn(X,P ) = 0 for n � 0 by Cohomology of Spaces, Lemma 6.3 and the
spectral sequence expressing Hn(X,P •) in terms of Hp(X,Hq(P •)) using that the
cohomology sheaves of P are quasi-coherent. �
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The following is the analogue of Derived Categories of Schemes, Theorem 15.3.

Theorem 16.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Then there exist a differential graded algebra (E, d) with
only a finite number of nonzero cohomology groups Hi(E) such that DQCoh(OX) is
equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gen-
erates DQCoh(OX). Such a thing exists by Theorem 14.4 and the existence of
K-injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K
•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 25. Since K• is K-injective we have

(16.3.1) Hn(E) = ExtnD(OX)(K
•,K•)

for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 16.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 25.3. Since K• is perfect, it defines a
compact object ofD(OX), see Proposition 15.1. Combined with (16.3.1) the functor
above is fully faithful as follows from Differential Graded Algebra, Lemmas 25.5.
It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)

by Differential Graded Algebra, Lemmas 25.4 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma 16.1
that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)

and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 7.2. �

17. Cohomology and base change, IV

This section is the analogue of Derived Categories of Schemes, Section 16.

Lemma 17.1. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. For E in DQCoh(OX) and K in
DQCoh(OY ) we have

Rf∗(E)⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY

K → Rf∗(E ⊗L
OX

Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY

K) = Lf∗(Rf∗(E))⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E. See Cohomology on Sites, Lemmas 18.4 and
19.1. To check it is an isomorphism we may work étale locally on Y . Hence we
reduce to the case that Y is an affine scheme.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗
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and ⊗L preserve direct sums by construction and Rf∗ commutes with direct sums
(for complexes with quasi-coherent cohomology sheaves) by Lemma 6.2. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is an
equivalence by Lemma 4.2 and Derived Categories of Schemes, Lemma 3.4. Let

T be the property for K ∈ D(A) that the statement of the lemma holds for K̃.
The discussion above and More on Algebra, Remark 45.11 shows that it suffices to
prove T holds for A[k]. This finishes the proof, as the statement of the lemma is
clear for shifts of the structure sheaf. �

Definition 17.2. Let S be a scheme. Let B be an algebraic space over S. Let X,
Y be algebraic spaces over B. We say X and Y are Tor independent over B if and
only if for every commutative diagram

Spec(k)

y

�� b ##

x
// X

��
Y // B

of geometric points the rings OX,x and OY,y are Tor independent over OB,b (see

More on Algebra, Definition 47.1).

The following lemma shows in particular that this definition agrees with our defi-
nition in the case of representable algebraic spaces.

Lemma 17.3. Let S be a scheme. Let B be an algebraic space over S. Let X, Y
be algebraic spaces over B. The following are equivalent

(1) X and Y are Tor independent over B,
(2) for every commutative diagram

U

��

// W

��

V

��

oo

X // B Yoo

with étale vertical arrows U and V are Tor independent over W ,
(3) for some commutative diagram as in (2) with (a) W → B étale surjective,

(b) U → X ×B W étale surjective, (c) V → Y ×B W étale surjective, the
spaces U and V are Tor independent over W , and

(4) for some commutative diagram as in (3) with U , V , W schemes, the
schemes U and V are Tor independent over W in the sense of Derived
Categories of Schemes, Definition 16.2.

Proof. For an étale morphism ϕ : U → X of algebraic spaces and geometric point
u the map of local rings OX,ϕ(u) → OU,u is an isomorphism. Hence the equivalence
of (1) and (2) follows. So does the implication (1) ⇒ (3). Assume (3) and pick a
diagram of geometric points as in Definition 17.2. The assumptions imply that we
can first lift b to a geometric point w of W , then lift the geometric point (x, b) to
a geometric point u of U , and finally lift the geometric point (y, b) to a geometric
point v of V . Use Properties of Spaces, Lemma 16.4 to find the lifts. Using the
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remark on local rings above we conclude that the condition of the definition is
satisfied for the given diagram.

Having made these initial points, it is clear that (4) comes down to the statement
that Definition 17.2 agrees with Derived Categories of Schemes, Definition 16.2
when X, Y , and B are schemes.

Let x, b, y be as in Definition 17.2 lying over the points x, y, b. Recall that OX,x =
OshX,x (Properties of Spaces, Lemma 19.1) and similarly for the other two. By
Algebra, Lemma 145.28 we see thatOX,x is a strict henselization ofOX,x⊗OB,b

OB,b.
In particular, the ring map

OX,x ⊗OB,b
OB,b −→ OX,x

is flat (More on Algebra, Lemma 34.1). By More on Algebra, Lemma 47.3 we see
that

Tor
OB,b

i (OX,x,OY,y)⊗OX,x⊗OB,b
OY,y

(OX,x ⊗OB,b
OY,y) = Tor

OB,b

i (OX,x,OY,y)

Hence it follows that if X and Y are Tor independent over B as schemes, then X
and Y are Tor independent as algebraic spaces over B.

For the converse, we may assume X, Y , and B are affine. Observe that the ring
map

OX,x ⊗OB,b
OY,y −→ OX,x ⊗OB,b

OY,y
is flat by the observations given above. Moreover, the image of the map on spectra
includes all primes s ⊂ OX,x⊗OB,b

OY,y lying over mx and my. Hence from this and
the displayed formula of Tor’s above we see that if X and Y are Tor independent
over B as algebraic spaces, then

Tor
OB,b

i (OX,x,OY,y)s = 0

for all i > 0 and all s as above. By More on Algebra, Lemma 47.4 applied to the
ring maps Γ(B,OB) → Γ(X,OX) and Γ(B,OB) → Γ(X,OX) this implies that X
and Y are Tor independent over B. �

Lemma 17.4. Let S be a scheme. Let g : Y ′ → Y be a morphism of algebraic
spaces over S. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic spaces over S. Consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

If X and Y ′ are Tor independent over Y , then for all E ∈ DQCoh(OX) we have
Rf ′∗Lh

∗E = Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology on Sites, Remark 19.2
to get a canonical base change map Lg∗Rf∗E → Rf ′∗Lh

∗E. To check this is an
isomorphism we may work étale locally on Y ′. Hence we may assume g : Y ′ → Y is
a morphism of affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lh

∗E = Rf∗(Rh∗Lh
∗E)

is an isomorphism, see Lemma 6.4 (and use Lemmas 5.4, 5.5, and 6.1 to see that the
objects Rf ′∗Lh

∗E and Lg∗Rf∗E have quasi-coherent cohomology sheaves). Note
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that h is affine as well (Morphisms of Spaces, Lemma 20.5). By Lemma 6.5 the
map becomes a map

Rf∗E ⊗L
OY

g∗OY ′ −→ Rf∗(E ⊗L
OX

h∗OX′)

Observe that h∗OX′ = f∗g∗OY ′ . Thus by Lemma 17.1 it suffices to prove that
Lf∗g∗OY ′ = f∗g∗OY ′ . This follows from our assumption that X and Y ′ are Tor
independent over Y . Namely, to check it we may work étale locally on X, hence we
may also assume X is affine. Say X = Spec(A), Y = Spec(R) and Y ′ = Spec(R′).
Our assumption implies that A and R′ are Tor independent over R (see Lemma

17.3 and More on Algebra, Lemma 47.4), i.e., TorRi (A,R′) = 0 for i > 0. In other
words A⊗L

R R
′ = A⊗R R′ which exactly means that Lf∗g∗OY ′ = f∗g∗OY ′ . �

The following two lemmas remain true if we replace G with a bounded complex of
quasi-coherent OX -modules each flat over S.

Lemma 17.5. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E ∈ DQCoh(OX). Let G be a
quasi-coherent OX-module flat over Y . Then formation of

Rf∗(E ⊗L
OX
G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

in other words X ′ = Y ′ ×Y X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗(E ⊗L
OX
G) = Rf ′∗(E

′ ⊗L
OX′
G′)

To prove this, note that in Cohomology on Sites, Remark 19.2 we have constructed
an arrow

Lg∗Rf∗(E ⊗L
OX
G) −→ R(f ′)∗(Lh

∗(E ⊗L
OX
G)) = R(f ′)∗(E

′ ⊗L
OX′

lh∗G))

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗(E ⊗L
OX
G) −→ Rf ′∗(E

′ ⊗L
OX′
G′)

To check this map is an isomorphism we may work étale locally on Y ′. Hence we
may assume g : Y ′ → Y is a morphism of affine schemes. In this case, we will
use the induction principle to prove this map is always an isomorphism for any
quasi-compact and quasi-separated algebraic space X over Y (Lemma 8.3).

If X is a scheme (for example affine), then the result holds. Namekly, E comes
from an object of the derived category of the underlying scheme by Lemma 4.2.
Furthermore, the constructions Rf∗ (derived pushforward) and Lg∗ (derived pull-
back) are (in the current situation) compatible with pulling back from the Zariski
site (Remark 6.3). Thus in this case the result follows from the case of schemes
which is Derived Categories of Schemes, Lemma 16.4.
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The induction step. Let (U ⊂ X, f : V → X) be an elementary distinguished
square with U , V , U ×X V quasi-compact such that the result holds for the restric-
tion of E and G to U , V , and U ×X V . Denote a = f |U , b = f |V and c = f |U×XV .
Let a′ : U ′ → Y ′, b′ : V ′ → Y ′ and c′ : U ′ ×X′ V ′ → Y ′ be the base changes
of a, b, and c. Note that formation of RHom commutes with restriction (Coho-
mology on Sites, Lemma 26.3). Set H = E ⊗L

OX
G and H ′ = E′ ⊗L

OX′
G′. Using

the distinguished triangles from relative Mayer-Vietoris (Lemma 9.3) we obtain a
commutative diagram

Lg∗Rf∗H //

��

Rf ′∗H
′

��
Lg∗Ra∗H|U ⊕ Lg∗Rb∗H|V //

��

Ra′∗H
′|U ′ ⊕Rb′∗H ′|V ′

��
Lg∗Rc∗H|U×XV

//

��

Rc′∗H
′|U ′×X′V

′

��
Lg∗Rf∗H[1] // Rf ′∗H

′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 4.3) and the proof of the lemma is finished. �

Lemma 17.6. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let E ∈ D(OX) be perfect. Let G
be a quasi-coherent OX-module flat over Y . Then formation of

Rf∗RHom(E,G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : Y ′ → Y be a morphism of
algebraic spaces and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
Y ′

g // Y

in other words X ′ = Y ′ ×Y X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗RHom(E,G) = Rf ′∗RHom(E′,G′)
To prove this, note that in Cohomology on Sites, Remark 26.10 we have constructed
an arrow

Lg∗Rf∗RHom(E,G) −→ R(f ′)∗RHom(Lh∗E,Lh∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗RHom(E,G)→ Rf ′∗RHom(E′,G′)
With these preliminaries out of the way, we deduce the result from Lemma 17.5.
Namely, since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology on Sites, Lemma 36.9, such that RHom(E,G) = Edual ⊗L

OX
G. We
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omit the verification that the base change map of Lemma 17.5 for Edual agrees with
the base change map for E constructed above. �

18. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation.

Lemma 18.1. Let S be a scheme. Let Y be a Noetherian algebraic space over S.
Let f : X → Y be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the scheme theoretic support of Hi(E) is proper over Y for all i,
(3) E has finite tor dimension as an object of D(f−1OY ).

Then Rf∗E is a perfect object of D(OY ).

Proof. By Lemma 7.1 we see that Rf∗E is an object of Db
Coh(OY ). Hence Rf∗E

is pseudo-coherent (Lemma 12.6). Hence it suffices to show that Rf∗E has finite
tor dimension, see Cohomology on Sites, Lemma 36.4. By Lemma 12.7 it suffices
to check that Rf∗(E) ⊗L

OY
F has universally bounded cohomology for all quasi-

coherent sheaves F on Y . Bounded from above is clear as Rf∗(E) is bounded from
above. Let T ⊂ X be the union of the supports of Hi(E) for all i. Then T is proper
over Y by assumptions (1) and (2). In particular there exists a quasi-compact open
subspace X ′ ⊂ X containing T . Setting f ′ = f |X′ we have Rf∗(E) = Rf ′∗(E|X′)
because E restricts to zero on X \ T . Thus we may replace X by X ′ and assume
f is quasi-compact. We have assumed f is quasi-separated. Thus

Rf∗(E)⊗L
OY
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OY
f−1F

)
by Lemma 17.1 and Cohomology on Sites, Lemma 18.5. By assumption (3) the
complex E⊗L

f−1OY
f−1F has cohomology sheaves in a given finite range, say [a, b].

Then Rf∗ of it has cohomology in the range [a,∞) and we win. �

19. Computing Ext groups and base change

The results in this section will be used to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems.

Lemma 19.1. Let S be a scheme. Let B be a Noetherian algebraic space over S.
Let f : X → B be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) be perfect. Let G be a coherent OX-module flat
over B with scheme theoretic support proper over B. Then K = Rf∗(E ⊗L

OX
G) is

a perfect object of D(OB) and there are functorial isomorphisms

Hi(B,K ⊗L
OB
F) −→ Hi(X,E ⊗L

OX
(G ⊗OX

f∗F))

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. We have

G ⊗L
OX

Lf∗F = G ⊗L
f−1OB

f−1F = G ⊗f−1OB
f−1F = G ⊗OX

f∗F
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the first equality by Cohomology on Sites, Lemma 18.5, the second as G is a flat
f−1OB-module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G ⊗L

OX
Lf∗F)

= Hi(B,Rf∗(E ⊗L
OX
G ⊗L

OX
Lf∗F))

= Hi(B,Rf∗(E ⊗L
OX
G)⊗L

OB
F)

= Hi(B,K ⊗L
OB
F)

The first equality by the above, the second by Leray (Cohomology on Sites, Remark
14.4), and the third equality by Lemma 17.1. The object K is perfect by Lemma
18.1. We check the lemma applies. Locally E is isomorphic to a finite complex of
finite free OX -modules. Hence locally E ⊗L

OX
G is isomorphic to a finite complex

whose terms are finite direct sums of copies of G. This immediately implies the
hypotheses on the cohomology sheaves Hi(E ⊗L

OX
G). The hypothesis on finite tor

dimension follows as G is flat over f−1OB .

The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

Hi(X,E ⊗L
OX

(G ⊗OX
f∗F3))

δ

��
Hi+1(B,K ⊗L

OB
F1) // Hi+1(X,E ⊗L

OX
(G ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX
f∗F1 → G ⊗OX

f∗F2 → G ⊗OX
f∗F3 → 0

This sequence is exact because G is flat over B. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 19.2. Let S be a scheme. Let B be a Noetherian algebraic space over S.
Let f : X → B be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) be perfect. Let G be a coherent OX-module flat
over B with scheme theoretic support proper over B. Then

K = Rf∗RHom(E,G)

is a perfect object of D(OB) and there are functorial isomorphisms

Hi(B,K ⊗L
OB
F) −→ ExtiOX

(E,G ⊗OX
f∗F)

for F quasi-coherent on B compatible with boundary maps (see proof).

Proof. Since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology on Sites, Lemma 36.9. Observe that RHom(E,G) = Edual⊗L

OX
G and

that

ExtiOX
(E,G ⊗OX

f∗F) = Hi(X,Edual ⊗L
OX

(G ⊗OX
f∗F))

by construction of Edual. Thus the perfectness of K and the isomorphisms follow
from the corresponding results of Lemma 19.1 applied to Edual and G.
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The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(B,K ⊗L
OB
F3) //

δ

��

ExtiOX
(E,G ⊗OX

f∗F3)

δ

��
Hi+1(B,K ⊗L

OB
F1) // Exti+1

OX
(E,G ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OB
F1 → K ⊗L

OB
F2 → K ⊗L

OB
F3 → K ⊗L

OB
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX
f∗F1 → G ⊗OX

f∗F2 → G ⊗OX
f∗F3 → 0

This sequence is exact because G is flat over B. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 19.3. Let S be a scheme. Let B be a Noetherian algebraic space over S.
Let f : X → B be a morphism of algebraic spaces which is locally of finite type and
quasi-separated. Let E ∈ D(OX) and G an OX-module. Assume

(1) E ∈ D−Coh(OX), and
(2) G is a coherent OX-module flat over B with scheme theoretic support proper

over B.

Then for every m ∈ Z there exists a perfect object K of D(OB) and functorial maps

αiF : ExtiOX
(E,G ⊗OX

f∗F) −→ Hi(B,K ⊗L
OB
F)

for F quasi-coherent on B compatible with boundary maps (see proof) such that αiF
is an isomorphism for i ≤ m.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1) (possible by Theorem 13.7). Then the induced map

ExtiOX
(E,G ⊗OX

f∗F) −→ ExtiOX
(P,G ⊗OX

f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX
(C,G ⊗OX

f∗F) resp. Exti+1
OX

(C,G ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in
degrees ≥ −m− 1 these Ext-groups are zero for i ≤ m+ 1 by Derived Categories,
Lemma 27.3. This reduces us to the case that E is a perfect complex which is
Lemma 19.2.

The statement on boundaries is explained in the proof of Lemma 19.2. �
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20. Limits and derived categories

In this section we collect some results about the derived category of an algebraic
space which is the limit of an inverse system of algebraic spaces. More precisely,
we will work in the following setting.

Situation 20.1. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms fi′i : Xi′ → Xi.
We denote fi : X → Xi the projection. We assume that Xi is quasi-compact and
quasi-separated for all i ∈ I. We also choose an element 0 ∈ I.

Lemma 20.2. In Situation 20.1. Let E0 and K0 be objects of D(OX0
). Set Ei =

Lf∗i0E0 and Ki = Lf∗i0K0 for i ≥ 0 and set E = Lf∗0E0 and K = Lf∗0K0. Then
the map

colimi≥0 HomD(OXi
)(Ei,Ki) −→ HomD(OX)(E,K)

is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OX0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OX0) has finite tor dimension.

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the canonical map

colimi≥0 HomD(OUi
)(Ei|Ui

,Ki|Ui
) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = X ×X0 U0 and Ui = Xi ×X0 U0. We will prove P
holds for each U0 by the induction principle of Lemma 8.3. Condition (2) of this
lemma follows immediately from Mayer-Vietoris for hom in the derived category,
see Lemma 9.4. Thus it suffices to prove the lemma when X0 is affine.

If X0 is affine, then the result follows from the case of schemes, see Derived Cate-
gories of Schemes, Lemma 19.2. To see this use the equivalence of Lemma 4.2 and
use the translation of properties explained in Lemmas 12.2, 12.3, and 12.4. �

Lemma 20.3. In Situation 20.1 the category of perfect objects of D(OX) is the
colimit of the categories of perfect objects of D(OXi).

Proof. For every quasi-compact and quasi-separated object U0 of (X0)spaces,étale
consider the condition P that the functor

colimi≥0Dperf (OUi
) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and
where U = X ×X0

U0 and Ui = Xi ×X0
U0. We will prove P holds for every U0

by the induction principle of Lemma 8.3. First, we observe that we already know
the functor is fully faithful by Lemma 20.2. Thus it suffices to prove essential
surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have
an elementary distinguished square (U0 ⊂ X0, V0 → X0) and that P holds for U0,
V0, and U0×X0 V0. Let E be a perfect object of D(OX). We can find i ≥ 0 and EU,i
perfect on Ui and EV,i perfect on Vi whose pullback to U and V are isomorphic to
E|U and E|V . Denote

a : EU,i → (R(X → Xi)∗E)|Ui
and b : EV,i → (R(X → Xi)∗E)|Vi
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the maps adjoint to the isomorphisms L(U → Ui)
∗EU,i → E|U and L(V →

Vi)
∗EV,i → E|V . By fully faithfulness, after increasing i, we can find an isomor-

phism c : EU,i|Ui×Xi
Vi → EV,i|Ui×Xi

Vi which pulls back to the identifications

L(U → Ui)
∗EU,i|U×XV → E|U×XV → L(V → Vi)

∗EV,i|U×XV .

Apply Lemma 9.7 to get an object Ei on Xi and a map d : Ei → R(X → Xi)∗E
which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei is
perfect and that d is adjoint to an isomorphism L(X → Xi)

∗Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when X0 is affine. This follows from the case of schemes, see
Derived Categories of Schemes, Lemma 19.3. To see this use the equivalence of
Lemma 4.2 and use the translation of Lemma 12.4. �

21. Cohomology and base change, V

A final section on cohomology and base change continueing the discussion of Sec-
tions 17 and 18. An easy to grok special case is given in Remark 21.2.

Lemma 21.1. Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G be a finitely presented OX-module, flat over Y , with support proper over Y .
Then

K = Rf∗(E ⊗L
OX
G)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 17.5. Thus it suffices to show that
K is a perfect object. If Y is Noetherian, then this follows from Lemma 19.1. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.

The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 7.1 there exists an i and an algebraic space Xi of finite presentation over Ri
whose base change to R is X. By Limits of Spaces, Lemma 7.2 we may assume after
increasing i, that there exists a finitely presented OXi

-module Gi whose pullback to
X is G. After increasing i we may assume Gi is flat over Ri, see Limits of Spaces,
Lemma 6.11. After increasing i we may assume the support of Gi is proper over Ri,
see Limits of Spaces, Lemma 12.3. Finally, by Lemma 12.4 we may, after increasing
i, assume there exists a perfect object Ei of D(OXi

) whose pullback to X is E.
Applying Lemma 19.1 to Xi → Spec(Ri), Ei, Gi and using the base change property
already shown we obtain the result. �

Remark 21.2. Let R be a ring. Let X be an algebraic space of finite presentation
over R. Let G be a finitely presented OX -module flat over R with scheme theoretic
support proper over R. By Lemma 21.1 there exists a finite complex of finite
projective R-modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.
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Lemma 21.3. Let S be a scheme. Let f : X → Y be a morphism of finite
presentation between algebraic spaces over S. Let E ∈ D(OX) be a perfect object.
Let G be a finitely presented OX-module, flat over Y , with support proper over Y .
Then

K = Rf∗RHom(E,G)

is a perfect object of D(OY ) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 17.6. Thus it suffices to show that
K is a perfect object. If Y is Noetherian, then this follows from Lemma 19.2. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.

The question is local on Y , hence we may assume Y is affine. Say Y = Spec(R). We
write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits of Spaces,
Lemma 7.1 there exists an i and an algebraic space Xi of finite presentation over Ri
whose base change to R is X. By Limits of Spaces, Lemma 7.2 we may assume after
increasing i, that there exists a finitely presented OXi

-module Gi whose pullback to
X is G. After increasing i we may assume Gi is flat over Ri, see Limits of Spaces,
Lemma 6.11. After increasing i we may assume the support of Gi is proper over Ri,
see Limits of Spaces, Lemma 12.3. Finally, by Lemma 12.4 we may, after increasing
i, assume there exists a perfect object Ei of D(OXi) whose pullback to X is E.
Applying Lemma 19.2 to Xi → Spec(Ri), Ei, Gi and using the base change property
already shown we obtain the result. �
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