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1. Introduction

In this chapter we discuss derived categories of modules on schemes. Most of the
material discussed here can be found in [TT90], [BN93], [BV03], and [LN07]. Of
course there are many other references.

2. Conventions

If A is an abelian category and M is an object of A then we also denote M the
object of K(A) and/or D(A) corresponding to the complex which has M in degree
0 and is zero in all other degrees.

If we have a ring A, then K(A) denotes the homotopy category of complexes of
A-modules and D(A) the associated derived category. Similarly, if we have a ringed
space (X,OX) the symbol K(OX) denotes the homotopy category of complexes of
OX -modules and D(OX) the associated derived category.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 DERIVED CATEGORIES OF SCHEMES

3. Derived category of quasi-coherent modules

In this section we discuss the relationship between quasi-coherent modules and all
modules on a scheme X. A reference is [TT90, Appendix B]. By the discussion in
Schemes, Section 24 the embedding QCoh(OX) ⊂ Mod(OX) exhibits QCoh(OX) as
a weak Serre subcategory of the category of OX -modules. Denote

DQCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are quasi-coherent, see
Derived Categories, Section 13. Thus we obtain a canonical functor

(3.0.1) D(QCoh(OX)) −→ DQCoh(OX)

see Derived Categories, Equation (13.1.1).

Lemma 3.1. Let X be a scheme. Then DQCoh(OX) has direct sums.

Proof. By Injectives, Lemma 13.4 the derived category D(OX) has direct sums
and they are computed by taking termwise direct sums of any representatives.
Thus it is clear that the cohomology sheaf of a direct sum is the direct sum of the
cohomology sheaves as taking direct sums is an exact functor (in any grothendieck
abelian category). The lemma follows as the direct sum of quasi-coherent sheaves
is quasi-coherent, see Schemes, Section 24. �

The following lemma will help us to “compute” a right derived functor on an object
of DQCoh(OX).

Lemma 3.2. Let X be a scheme. Let E be an object of DQCoh(OX). Then there
exists an inverse system I•n of complexes of OX-modules such that

(1) I• = limn I•n represents E,
(2) I•n is a bounded below complex of injectives,
(3) I• → I•n induces an identification τ≥−nE → I•n in D(OX),
(4) the transition maps I•n+1 → I•n are termwise split surjections, and
(5) I• is a K-injective complex of OX-modules.

Moreover, E is the derived limit of the inverse system of its canonical truncations
τ≥−nE.

Proof. Denote Hi = Hi(E) the ith cohomology sheaf of E. Let B be the set of
affine open subsets of X. Then Hp(U,Hi) = 0 for all p > 0, all i ∈ Z, and all
U ∈ B, see Cohomology of Schemes, Lemma 2.2. Thus the lemma follows from
Cohomology, Lemmas 31.2 and 31.3. �

Lemma 3.3. Let X be a scheme. Let F : Mod(OX) → Ab be an additive functor
and N ≥ 0 an integer. Assume that

(1) F commutes with countable direct products,
(2) RpF (F) = 0 for all p ≥ N and F quasi-coherent.

Then for E ∈ DQCoh(OX) the maps RpF (E) → RpF (τ≥p−N+1E) are isomor-
phisms.

Proof. By shifting the complex we see it suffices to prove the assertion for p = 0.
Write En = τ≥−nE. We have E = R limEn, see Lemma 3.2. Thus RF (E) =
R limRF (En) in D(Ab) by Injectives, Lemma 13.6. Thus we have a short exact
sequence

0→ R1 limR−1F (En)→ R0F (E)→ limR0F (En)→ 0
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DERIVED CATEGORIES OF SCHEMES 3

see More on Algebra, Remark 61.16. To finish the proof we will show that the term
on the left is zero and that the term on the right equals R0F (EN−1).

We have a distinguished triangle

H−n(E)[n]→ En → En−1 → H−n(E)[n+ 1]

(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we
have

RpF (H−n(E)[n]) = Rp+nF (H−n(E)) = 0

for p+ n ≥ N and

RpF (H−n(E)[n+ 1]) = Rp+n+1F (H−n(E)) = 0

for p+ n+ 1 ≥ N . We conclude that

RpF (En)→ RpF (En−1)

is an isomorphism for all n� p and an isomorphism for n ≥ N for p = 0. Thus the
systems RpF (En) all satisfy the ML condition and R1 lim gives zero (see discussion
in More on Algebra, Section 61). Moreover, the system R0F (τ≥−nE) is constant
starting with n = N − 1 as desired. �

The following lemma is the key ingredient to many of the results in this chapter.

Lemma 3.4. Let X = Spec(A) be an affine scheme. All the functors in the diagram

D(QCoh(OX))
(3.0.1)

// DQCoh(OX)

RΓ(X,−)xx
D(A)

˜
ff

are equivalences of triangulated categories. Moreover, for E in DQCoh(OX) we have
H0(X,E) = H0(X,H0(E)).

Proof. The functor RΓ(X,−) gives a functor D(OX) → D(A) and hence by re-
striction a functor

(3.4.1) RΓ(X,−) : DQCoh(OX) −→ D(A).

We will show this functor is quasi-inverse to (3.0.1) via the equivalence between
quasi-coherent modules on X and the category of A-modules.

Elucidation. Denote (Y,OY ) the one point space with sheaf of rings given by A.
Denote π : (X,OX) → (Y,OY ) the obvious morphism of ringed spaces. Then
RΓ(X,−) can be identified with Rπ∗ and the functor (3.0.1) via the equivalence
Mod(OY ) = ModA = QCoh(OX) can be identified with Lπ∗ = π∗ =˜(see Modules,
Lemma 10.5 and Schemes, Lemmas 7.1 and 7.5). Thus the functors

D(A)
//
DQCoh(OX)oo

are adjoint (by Cohomology, Lemma 29.1). In particular we obtain canonical ad-
junction mappings

a : ˜RΓ(X,E) −→ E

for E in D(OX) and

b : M• −→ RΓ(X, M̃•)

for M• a complex of A-modules.

http://localhost:8080/tag/06Z0


4 DERIVED CATEGORIES OF SCHEMES

Let E be an object of DQCoh(OX). We may apply Lemma 3.3 to the functor
F (−) = Γ(X,−) with N = 1 by Cohomology of Schemes, Lemma 2.2. Hence

R0Γ(X,E) = R0Γ(X, τ≥0E) = Γ(X,H0(E))

(the last equality by definition of the canonical truncation). Using this we will show
that the adjunction mappings a and b induce isomorphisms H0(a) and H0(b). Thus
a and b are quasi-isomorphisms (as the statement is invariant under shifts) and the
lemma is proved.

In both cases we use that ˜ is an exact functor (Schemes, Lemma 5.4). Namely,
this implies that

H0
(

˜RΓ(X,E)
)

= ˜R0Γ(X,E) = ˜Γ(X,H0(E))

which is equal to H0(E) because H0(E) is quasi-coherent. Thus H0(a) is an iso-
morphism. For the other direction we have

H0(RΓ(X, M̃•)) = R0Γ(X, M̃•) = Γ(X,H0(M̃•)) = Γ(X, H̃0(M•)) = H0(M•)

which proves that H0(b) is an isomorphism. �

Lemma 3.5. Let X = Spec(A) be an affine scheme. If K• is a K-flat complex of

A-modules, then K̃• is a K-flat complex of OX-modules.

Proof. By More on Algebra, Lemma 45.5 we see that K•⊗AAp is a K-flat complex
of Ap-modules for every p ∈ Spec(A). Hence we conclude from Cohomology, Lemma

27.4 (and Schemes, Lemma 5.4) that K̃• is K-flat. �

Lemma 3.6. Let f : Y → X be a morphism of schemes.

(1) The functor Lf∗ sends DQCoh(OX) into DQCoh(OY ).
(2) If X and Y are affine and f is given by the ring map A → B, then the

diagram

D(B) // DQCoh(OY )

D(A) //

−⊗L
AB

OO

DQCoh(OX)

Lf∗

OO

commutes.

Proof. We first prove the diagram

D(B) // D(OY )

D(A) //

−⊗L
AB

OO

D(OX)

Lf∗

OO

commutes. This is clear from Lemma 3.5 and the constructions of the functors in
question. To see (1) let E be an object of DQCoh(OX). To see that Lf∗E has
quasi-coherent cohomology sheaves we may work locally on X. Note that Lf∗ is
compatible with restricting to open subschemes. Hence we can assume that f is a
morphism of affine schemes as in (2). Then we can apply Lemma 3.4 to see that E
comes from a complex of A-modules. By the commutativity of the first diagram of
the proof the same holds for Lf∗E and we conclude (1) is true. �

http://localhost:8080/tag/08DV
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DERIVED CATEGORIES OF SCHEMES 5

Lemma 3.7. Let X be a scheme.

(1) For objects K,L of DQCoh(OX) the derived tensor product K ⊗L
OX

L is in
DQCoh(OX).

(2) If X = Spec(A) is affine then

M̃• ⊗L
OX

K̃• = ˜M• ⊗L
A K

•

for any pair of complexes of A-modules K•, M•.

Proof. The equality of (2) follows immediately from Lemma 3.5 and the construc-
tion of the derived tensor product. To see (1) let K,L be objects of DQCoh(OX).
To check that K ⊗L L is in DQCoh(OX) we may work locally on X, hence we may
assume X = Spec(A) is affine. By Lemma 3.4 we may represent K and L by
complexes of A-modules. Then part (2) implies the result. �

4. Total direct image

The following lemma is the analogue of Cohomology of Schemes, Lemma 4.4.

Lemma 4.1. Let f : X → S be a morphism of schemes. Assume that f is quasi-
separated and quasi-compact.

(1) The functor Rf∗ sends DQCoh(OX) into DQCoh(OS).
(2) If S is quasi-compact, there exists an integer N = N(X,S, f) such that

for an object E of DQCoh(OX) with Hm(E) = 0 for m > 0 we have
Hm(Rf∗E) = 0 for m > N .

(3) In fact, if S is quasi-compact we can find N = N(X,S, f) such that for
every morphism of schemes S′ → S the same conclusion holds for the
functor R(f ′)∗ where f ′ : X ′ → S′ is the base change of f .

Proof. Let E be an object of DQCoh(OX). To prove (1) we have to show that
Rf∗E has quasi-coherent cohomology sheaves. This question is local on S, hence
we may assume S is quasi-compact. Pick N = N(X,S, f) as in Cohomology of
Schemes, Lemma 4.4. Thus Rpf∗F = 0 for all quasi-coherent OX -modules F and
all p ≥ N . In particular, for any affine open U ⊂ S we have Hp(f−1(U),F) = 0
for p ≥ N , see Cohomology of Schemes, Lemma 4.5.

Let E be an object of DQCoh(OX). Choose I• = lim I•n as in Lemma 3.2. As I•
is K-injective Rf∗E is represented by f∗I• = lim f∗I•n. Let U ⊂ S be any affine
open. The cohomology Hm(f∗I•n(U)) of

f∗Im−1
n (U)→ f∗Imn (U)→ f∗Im+1

n (U)

is equal toHm(f−1(U), τ≥−nE) because I•n is a bounded below complex of injectives
representing τ≥−nE. We have a distinguished triangle

H−n(E)[n]→ τ≥−nE → τ≥−n+1E → H−n(E)[n+ 1]

(Derived Categories, Remark 12.4) in D(OX). Since H−n(E) is quasi-coherent we
have Hm(f−1(U), H−n(E)[n]) = 0 for n + m ≥ N by our choice of N . Similarly,
Hm(f−1(U), H−n(E)[n+ 1]) = 0 for n+m+ 1 ≥ N . We conclude that

Hm(f∗I•n(U))→ Hm(f∗I•n−1(U))

is an isomorphism for all n ≥ N −m. Thus Cohomology, Lemma 31.1 applies to
show that the mth cohomology sheaf of lim f∗I•n agrees with the mth cohomology

http://localhost:8080/tag/08DX
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6 DERIVED CATEGORIES OF SCHEMES

sheaf of f∗I•n for n ≥ N −m. Since these cohomology sheaves are quasi-coherent
by Cohomology of Schemes, Lemma 4.4 we get (1).

Finally, we show that (2) and (3) hold with our choice of N . Namely, the stabi-
lization proven above gives that Hm(Rf∗E) is equal to Hm(Rf∗(τ≥−nE)) for all n
large enough which means we can work with objects in D+(OX) in order to prove
(2) and (3). In this case we can for example use the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

(Derived Categories, Lemma 21.3) and the vanishing of Rpf∗H
q(E) for p ≥ N to

conclude. Some details omitted. �

Lemma 4.2. Let f : X → S be a quasi-separated and quasi-compact morphism of
schemes. Then Rf∗ : DQCoh(OX)→ DQCoh(OS) commutes with direct sums.

Proof. Let Ei be a family of objects of DQCoh(OX) and set E =
⊕
Ei. We want

to show that the map ⊕
Rf∗Ei −→ Rf∗E

is an isomorphism. We will show it induces an isomorphism on cohomology sheaves
in degree 0 which will imply the lemma. Choose an integer N as in Lemma 4.1.
Then R0f∗E = R0f∗τ≥−NE and R0f∗Ei = R0f∗τ≥−NEi by the lemma cited.
Observe that τ≥−NE =

⊕
τ≥−NEi. Thus we may assume all of the Ei have

vanishing cohomology sheaves in degrees < −N . Next we use the spectral sequences

Rpf∗H
q(E)⇒ Rp+qf∗E and Rpf∗H

q(Ei)⇒ Rp+qf∗Ei

(Derived Categories, Lemma 21.3) to reduce to the case of a direct sum of quasi-
coherent sheaves. This case is handled by Cohomology of Schemes, Lemma 6.1. �

Lemma 4.3. Let f : X → S be an affine morphism of schemes. Then Rf∗ :
DQCoh(OX)→ DQCoh(OS) reflects isomorphisms.

Proof. The statement means that a morphism α : E → F of DQCoh(OX) is
an isomorphism if Rf∗α is an isomorphism. We may check this on cohomology
sheaves. In particular, the question is local on S. Hence we may assume S and
therefore X is affine. In this case the statement is clear from the description of the
derived categories DQCoh(OX) and DQCoh(OS) given in Lemma 3.4. Some details
omitted. �

Lemma 4.4. Let f : X → S be an affine morphism of schemes. For E in
DQCoh(OS) we have Rf∗Lf

∗E = E ⊗L
OS

f∗OX .

Proof. Since f is affine the map f∗OX → Rf∗OX is an isomorphism (Cohomology
of Schemes, Lemma 2.3). There is a canonical map E ⊗L f∗OX = E ⊗L Rf∗OX →
Rf∗Lf

∗E adjoint to the map

Lf∗(E ⊗L Rf∗OX) = Lf∗E ⊗L Lf∗Rf∗OX −→ Lf∗E ⊗L OX = Lf∗E

coming from 1 : Lf∗E → Lf∗E and the canonical map Lf∗Rf∗OX → OX . To
check the map so constructed is an isomorphism we may work locally on S. Hence
we may assume S and therefore X is affine. In this case the statement is clear
from the description of the derived categories DQCoh(OX) and DQCoh(OS) and the
functor Lf∗ given in Lemmas 3.4 and 3.6. Some details omitted. �
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5. Derived category of coherent modules

Let X be a locally Noetherian scheme. In this case the category Coh(OX) ⊂
Mod(OX) of coherent OX -modules is a weak Serre subcategory, see Homology,
Section 9 and Cohomology of Schemes, Lemma 9.2. Denote

DCoh(OX) ⊂ D(OX)

the subcategory of complexes whose cohomology sheaves are coherent, see Derived
Categories, Section 13. Thus we obtain a canonical functor

(5.0.1) D(Coh(OX)) −→ DCoh(OX)

see Derived Categories, Equation (13.1.1).

Lemma 5.1. Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E be an object of Db

Coh(OX) such that
the scheme theoretic support of Hi(E) is proper over S for all i. Then Rf∗E is an
object of Db

Coh(OS).

Proof. Consider the spectral sequence

Rpf∗H
q(E)⇒ Rp+qf∗E

see Derived Categories, Lemma 21.3. By assumption and Cohomology of Schemes,
Remark 17.3 the sheaves Rpf∗H

q(E) are coherent. Hence Rp+qf∗E is coherent,
i.e., E ∈ DCoh(OS). Boundedness from below is trivial. Boundedness from above
follows from Cohomology of Schemes, Lemma 4.4 or from Lemma 4.1. �

6. The coherator

Let X be a scheme. The coherator is a functor

QX : Mod(OX) −→ QCoh(OX)

which is right adjoint to the inclusion functor QCoh(OX) → Mod(OX). It exists
for any scheme X and moreover the adjunction mapping QX(F)→ F is an isomor-
phism for every quasi-coherent module F , see Properties, Proposition 21.4. Since
QX is left exact (as a right adjoint) we can consider its right derived extension

RQX : D(OX) −→ D(QCoh(OX)).

As this functor is constructed by applying QX to a K-injective replacement we see
that RQX is a right adjoint to the canonical functor D(QCoh(OX))→ D(OX).

Lemma 6.1. Let f : X → Y be an affine morphism of schemes. Then f∗ defines
a derived functor f∗ : D(QCoh(OX)) → D(QCoh(OY )). This functor has the
property that

D(QCoh(OX))

f∗

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

http://localhost:8080/tag/08E2
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8 DERIVED CATEGORIES OF SCHEMES

Proof. The functor f∗ : QCoh(OX) → QCoh(OY ) is exact, see Cohomology of
Schemes, Lemma 2.3. Hence f∗ defines a derived functor f∗ : D(QCoh(OX)) →
D(QCoh(OY )) by simply applying f∗ to any representative complex, see Derived
Categories, Lemma 17.8. For any complex of OX -modules F• there is a canonical
map f∗F• → Rf∗F•. To finish the proof we show this is a quasi-isomorphism
when F• is a complex with each Fn quasi-coherent. As the statement is invariant
under shifts it suffices to show that H0(f∗(F•)) → R0f∗F• is an isomorphism.
The statement is local on Y hence we may assume Y affine. By Lemma 4.1 we
have R0f∗F• = R0f∗τ≥−nF• for all sufficiently large n. Thus we may assume F•
bounded below. As each Fn is f∗-acyclic by Cohomology of Schemes, Lemma 2.3
we see that f∗F• → Rf∗F• is a quasi-isomorphism by Leray’s acyclicity lemma
(Derived Categories, Lemma 17.7). �

Lemma 6.2. Let f : X → Y be a morphism of schemes. Assume that

(1) f is quasi-compact, quasi-separated, and flat, and
(2) denoting

Φ : D(QCoh(OX))→ D(QCoh(OY ))

the right derived functor of f∗ : QCoh(OX)→ QCoh(OY ) the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.

Then RQY ◦Rf∗ = Φ ◦RQX .

Proof. Since f is quasi-compact and quasi-separated, we see that f∗ preserve quasi-
coherence, see Schemes, Lemma 24.1. Recall that QCoh(OX) is a Grothendieck
abelian category (Properties, Proposition 21.4). Hence any K in D(QCoh(OX)) can
be represented by a K-injective complex I• of QCoh(OX), see Injectives, Theorem
12.6. Then we can define Φ(K) = f∗I•.

Since f is flat, the functor f∗ is exact. Hence f∗ defines f∗ : D(OY ) → D(OX)
and also f∗ : D(QCoh(OY ))→ D(QCoh(OX)). The functor f∗ = Lf∗ : D(OY )→
D(OX) is left adjoint to Rf∗ : D(OX) → D(OY ), see Cohomology, Lemma 29.1.
Similarly, the functor f∗ : D(QCoh(OY )) → D(QCoh(OX)) is left adjoint to Φ :
D(QCoh(OX))→ D(QCoh(OY )) by Derived Categories, Lemma 28.4.

Let A be an object of D(QCoh(OY )) and E an object of D(OX). Then

HomD(QCoh(OY ))(A,RQY (Rf∗E)) = HomD(OY )(A,Rf∗E)

= HomD(OX)(f
∗A,E)

= HomD(QCoh(OX))(f
∗A,RQX(E))

= HomD(QCoh(OY ))(A,Φ(RQX(E)))

This implies what we want. �

Lemma 6.3. Let X = Spec(A) be an affine scheme. Then

(1) QX : Mod(OX) → QCoh(OX) is the functor which sends F to the quasi-
coherent OX-module associated to the A-module Γ(X,F),

http://localhost:8080/tag/08D8
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(2) RQX : D(OX)→ D(QCoh(OX)) is the functor which sends E to the com-
plex of quasi-coherent OX-modules associated to the object RΓ(X,E) of
D(A),

(3) restricted to DQCoh(OX) the functor RQX defines a quasi-inverse to (3.0.1).

Proof. The functor QX is the functor

F 7→ ˜Γ(X,F)

by Schemes, Lemma 7.1. This immediately implies (1) and (2). The third assertion
follows from (the proof of) Lemma 3.4. �

Definition 6.4. Let X be a scheme. Let E be an object of D(OX). Let T ⊂ X
be a closed subset. We say E is supported on T if the cohomology sheaves Hi(E)
are supported on T .

Proposition 6.5. Let X be a quasi-compact scheme with affine diagonal. Then
the functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. In this proof we will denote iX : D(QCoh(OX)) → DQCoh(OX) the func-
tor of the lemma. Let E be an object of DQCoh(OX) and let A be an object of
D(QCoh(OX)). We have to show that the adjunction maps

RQX(iX(A))→ A and E → iX(RQX(E))

are isomorphisms. We will prove this by induction on n: the smallest integer n ≥ 0
such that E and iX(A) are supported on a closed subset of X which is contained
in the union of n affine opens of X.

Base case: n = 0. In this case E = 0, hence the map E → iX(RQX(E)) is
an isomorphism. Similarly iX(A) = 0. Thus the cohomology sheaves of iX(A)
are zero. Since the inclusion functor QCoh(OX) → Mod(OX) is fully faithful and
exact, we conclude that the cohomology objects of A are zero, i.e., A = 0 and
RQX(iX(A))→ A is an isomorphism as well.

Induction step. Suppose that E and iX(A) are supported on a closed subset T of
X contained in U1 ∪ . . . ∪ Un with Ui ⊂ X affine open. Set U = Un. The inclusion
morphism j : U → X is flat and affine (Morphisms, Lemma 13.11). Consider the
distinguished triangles

A→ j∗(A|U )→ A′ → A[1] and E → Rj∗(E|U )→ E′ → E[1]

where j∗ is as in Lemma 6.1. Note that E → Rj∗(E|U ) is a quasi-isomorphism over
U = Un. Since iX ◦j∗ = Rj∗◦iU by Lemma 6.1 and since iX(A)|U = iU (A|U ) we see
that iX(A)→ iX(j∗(A|U )) is a quasi-isomorphism over U . Hence iX(A′) and E′ are
supported on the closed subset T \U of X which is contained in U1∪ . . .∪Un−1. By
induction hypothesis the statement is true for A′ and E′. By Derived Categories,
Lemma 4.3 it suffices to prove the maps

RQX(iX(j∗(A|U )))→ j∗(A|U ) and Rj∗(E|U )→ iX(RQX(Rj∗E|U ))

are isomorphisms. By Lemmas 6.1 and 6.2 we have

RQX(iX(j∗(A|U ))) = RQX(Rj∗(iU (A|U ))) = j∗RQU (iU (A|U ))

http://localhost:8080/tag/08DA
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10 DERIVED CATEGORIES OF SCHEMES

and

iX(RQX(Rj∗(E|U ))) = iX(j∗RQU (E|U )) = Rj∗(iU (RQU (E|U )))

Finally, the maps

RQU (iU (A|U ))→ A|U and E|U → iU (RQU (E|U ))

are isomorphisms by Lemma 6.3. The result follows. �

Remark 6.6. Analyzing the proof of Proposition 6.5 we see that we have shown
the following. Let X be a quasi-compact and quasi-separated scheme. Suppose
that for every affine open U ⊂ X the right derived functor

Φ : D(QCoh(OU ))→ D(QCoh(OX))

of the left exact functor j∗ : QCoh(OU ) → QCoh(OX) fits into a commutative
diagram

D(QCoh(OU ))

Φ

��

iU
// DQCoh(OU )

Rj∗

��
D(QCoh(OX))

iX // DQCoh(OX)

Then the functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

7. The coherator for Noetherian schemes

In the case of Noetherian schemes we can use the following lemma.

Lemma 7.1. Let X be a Noetherian scheme. Let J be an injective object of
QCoh(OX). Then J is a flasque sheaf of OX-modules.

Proof. Let U ⊂ X be an open subset and let s ∈ J (U) be a section. Let I ⊂ X
be the quasi-coherent sheaf of ideals defining the reduced induced scheme structure
on X \U (see Schemes, Definition 12.5). By Cohomology of Schemes, Lemma 10.4
the section s corresponds to a map σ : In → J for some n. As J is an injective
object of QCoh(OX) we can extend σ to a map s̃ : OX → J . Then s̃ corresponds
to a global section of J restricting to s. �

Lemma 7.2. Let f : X → Y be a morphism of Noetherian schemes. Then f∗
on quasi-coherent sheaves has a right derived extension Φ : D(QCoh(OX)) →
D(QCoh(OY )) such that the diagram

D(QCoh(OX))

Φ

��

// DQCoh(OX)

Rf∗

��
D(QCoh(OY )) // DQCoh(OY )

commutes.
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Proof. Since X and Y are Noetherian schemes the morphism is quasi-compact and
quasi-separated (see Properties, Lemma 5.4 and Schemes, Remark 21.18). Thus f∗
preserve quasi-coherence, see Schemes, Lemma 24.1. Next, Let K be an object of
D(QCoh(OX)). Since QCoh(OX) is a Grothendieck abelian category (Properties,
Proposition 21.4), we can represent K by a K-injective complex I• such that each
In is an injective object of QCoh(OX), see Injectives, Theorem 12.6. Thus we see
that the functor Φ is defined by setting

Φ(K) = f∗I•

where the right hand side is viewed as an object of D(QCoh(OY )). To finish the
proof of the lemma it suffices to show that the canonical map

f∗I• −→ Rf∗I•

is an isomorphism in D(OY ). To see this it suffices to prove the map induces an
isomorphism on cohomology sheaves. Pick any m ∈ Z. Let N = N(X,Y, f) be as
in Lemma 4.1. Consider the short exact sequence

0→ σ≥m−N−1I• → I• → σ≤m−N−2I• → 0

of complexes of quasi-coherent sheaves on X. By Lemma 4.1 we see that the
cohomology sheaves of Rf∗σ≤m−N−2I• are zero in degrees ≥ m − 1. Thus we see
that Rmf∗I• is isomorphic to Rmf∗σ≥m−N−1I•. In other words, we may assume
that I• is a bounded below complex of injective objects of QCoh(OX). This follows
from Leray’s acyclicity lemma (Derived Categories, Lemma 17.7) via Cohomology,
Lemma 13.5 and Lemma 7.1. �

Proposition 7.3. Let X be a Noetherian scheme. Then the functor (3.0.1)

D(QCoh(OX)) −→ DQCoh(OX)

is an equivalence with quasi-inverse given by RQX .

Proof. This follows using the exact same argument as in the proof of Proposition
6.5 using Lemma 7.2. See discussion in Remark 6.6. �

8. Koszul complexes

Let A be a ring and let f1, . . . , fr be a sequence of elements of A. We have defined
the Koszul complex K•(f1, . . . , fr) in More on Algebra, Definition 20.2. It is a
chain complex sitting in degrees r, . . . , 0. We turn this into a cochain complex
K•(f1, . . . , fr) by setting K−n(f1, . . . , fr) = Kn(f1, . . . , fr) and using the same
differentials. In the rest of this section all the complexes will be cochain complexes.

We define a complex I•(f1, . . . , fr) such that we have a distinguished triangle

I•(f1, . . . , fr)→ A→ K•(f1, . . . , fr)→ I•(f1, . . . , fr)[1]

in K(A). In other words, we set

Ii(f1, . . . , fr) =

{
Ki−1(f1, . . . , fr) if i ≤ 0

0 else

and we use the negative of the differential on K•(f1, . . . , fr). The maps in the
distinguished triangle are the obvious ones. Note that I0(f1, . . . , fr) = A⊕r → A is
given by multiplication by fi on the ith factor. Hence I•(f1, . . . , fr) → A factors
as

I•(f1, . . . , fr)→ I → A
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12 DERIVED CATEGORIES OF SCHEMES

where I = (f1, . . . , fr). In fact, there is a short exact sequence

0→ H−1(K•(f1, . . . , fs))→ H0(I•(f1, . . . , fs))→ I → 0

and for every i < 0 we have Hi(I•(f1, . . . , fr)) = Hi−1(K•(f1, . . . , fr). Observe
that given a second sequence g1, . . . , gr of elements of A there are canonical maps

I•(f1g1, . . . , frgr)→ I•(f1, . . . , fr) and K•(f1g1, . . . , frgr)→ K•(f1, . . . , fr)

compatible with the maps described above. The first of these maps is given by
multiplication by gi on the ith summand of I0(f1g1, . . . , frgr) = A⊕r. In particular,
given f1, . . . , fr we obtain an inverse system of complexes

(8.0.1) I•(f1, . . . , fr)← I•(f2
1 , . . . , f

2
r )← I•(f3

1 , . . . , f
3
r )← . . .

which will play an important role in that which is to follow. To easily formulate
the following lemmas we fix some notation.

Situation 8.1. Here A is a ring and f1, . . . , fr is a sequence of elements of A. We set
X = Spec(A) and U = D(f1)∪ . . .∪D(fr) ⊂ X. We denote U : U =

⋃
i=1,...,rD(fi)

the given open covering of U .

Our first lemma is that the complexes above can be used to compute the cohomology
of quasi-coherent sheaves on U . Suppose given a complex I• of A-modules and an
A-module M . Then we define HomA(I•,M) to be the complex with nth term
HomA(I−n,M) and differentials given as the contragredients of the differentials on
I•.

Lemma 8.2. In Situation 8.1. Let M be an A-module and denote F the associated
OX-module. Then there is a canonical isomorphism of complexes

colime HomA(I•(fe1 , . . . , f
e
r ),M) −→ Č•alt(U ,F)

functorial in M .

Proof. Recall that the alternating Čech complex is the subcomplex of the usual
Čech complex given by alternating cochains, see Cohomology, Section 24. As usual
we view a p-cochain in Č•alt(U ,F) as an alternating function s on {1, . . . , r}p+1

whose value si0...ip at (i0, . . . , ip) lies in Mfi0 ...fip
= F(Ui0...ip). On the other hand,

a p-cochain t in HomA(I•(fe1 , . . . , f
e
r ),M) is given by a map t : ∧p+1(A⊕r) → M .

Write [i] ∈ A⊕r for the ith basis element and write

[i0, . . . , ip] = [i0] ∧ . . . ∧ [ip] ∈ ∧p+1(A⊕r)

Then we send t as above to s with

si0...ip =
t([i0, . . . , ip])

fei0 . . . f
e
ip

It is clear that s so defined is an alternating cochain. The construction of this map
is compatible with the transition maps of the system as the transition map

I•(fe1 , . . . , f
e
r )← I•(fe+1

1 , . . . , fe+1
r ),

of the (8.0.1) sends [i0, . . . , ip] to fi0 . . . fip [i0, . . . , ip]. It is clear from the description
of the localizations Mfi0 ...fip

in Algebra, Lemma 9.9 that these maps define an

http://localhost:8080/tag/08CZ
http://localhost:8080/tag/08D0


DERIVED CATEGORIES OF SCHEMES 13

isomorphism of cochain modules in degree p in the limit. To finish the proof we
have to show that the map is compatible with differentials. To see this recall that

d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip

=
∑p+1

j=0
(−1)j

t([i0, . . . , îj , . . . ip+1])

fei0 . . . f̂
e
ij
. . . feip+1

On the other hand, we have

d(t)([i0, . . . , ip+1])

fei0 . . . f
e
ip+1

=
t(d[i0, . . . , ip+1])

fei0 . . . f
e
ip+1

=

∑
j(−1)jfeij t([i0, . . . , îj , . . . ip+1])

fei0 . . . f
e
ip+1

The two formulas agree by inspection. �

Suppose given a finite complex I• of A-modules and a complex of A-modules M•.
We obtain a double complex H•,• = HomA(I•,M•) where Hp,q = HomA(Ip,Mq).
The first differential comes from the differential on HomA(I•,Mq) and the second
from the differential on M•. Associated to this double complex is the total complex
with degree n term given by⊕

p+q=n
HomA(Ip,Mq)

and differential as in Homology, Definition 22.3. As our complex I• has only finitely
many nonzero terms, the direct sum displayed above is finite. The conventions for
taking the total complex associated to a Čech complex of a complex are as in
Cohomology, Section 26.

Lemma 8.3. In Situation 8.1. Let M• be a complex of A-modules and denote F•
the associated complex of OX-modules. Then there is a canonical isomorphism of
complexes

colime Tot(HomA(I•(fe1 , . . . , f
e
r ),M•)) −→ Tot(Č•alt(U ,F•))

functorial in M•.

Proof. Immediate from Lemma 8.2 and our conventions for taking associated total
complexes. �

Lemma 8.4. In Situation 8.1. Let F• be a complex of quasi-coherent OX-modules.
Then there is a canonical isomorphism

Tot(Č•alt(U ,F•)) −→ RΓ(U,F•)
in D(A) functorial in F•.

Proof. Let B be the set of affine opens of U . Since the higher cohomology groups
of a quasi-coherent module on an affine scheme are zero (Cohomology of Schemes,
Lemma 2.2) this is a special case of Cohomology, Lemma 32.2. �

In Situation 8.1 denote Ie the object of D(OX) corresponding to the complex of
A-modules I•(fe1 , . . . , f

e
r ) via the equivalence of Lemma 3.4. The maps (8.0.1) give

a system
I1 ← I2 ← I3 ← . . .
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14 DERIVED CATEGORIES OF SCHEMES

Moreover, there is a compatible system of maps Ie → OX which become isomor-
phisms when restricted to U . Thus we see that for every object E of D(OX) there
is a canonical map

(8.4.1) colime HomD(OX)(Ie, E) −→ H0(U,E)

constructed by sending a map Ie → E to its restriction to U and using that
HomD(OU )(OU , E|U ) = H0(U,E).

Proposition 8.5. In Situation 8.1. For every object E of DQCoh(OX) the map
(8.4.1) is an isomorphism.

Proof. By Lemma 3.4 we may assume that E is given by a complex of quasi-
coherent sheaves F•. Let M• = Γ(X,F•) be the corresponding complex of A-
modules. By Lemmas 8.3 and 8.4 we have quasi-isomorphisms

colime Tot(HomA(I•(fe1 , . . . , f
e
r ),M•)) −→ Tot(Č•alt(U ,F•)) −→ RΓ(U,F•)

Taking H0 on both sides we obtain

colime HomD(A)(I
•(fe1 , . . . , f

e
r ),M•) = H0(U,E)

Since HomD(A)(I
•(fe1 , . . . , f

e
r ),M•) = HomD(OX)(Ie, E) by Lemma 3.4 the lemma

follows. �

In Situation 8.1 denote Ke the object of D(OX) corresponding to the complex
of A-modules K•(fe1 , . . . , f

e
r ) via the equivalence of Lemma 3.4. Thus we have

distinguished triangles

Ie → OX → Ke → Ie[1]

and a system

K1 ← K2 ← K3 ← . . .

compatible with the system (Ie). Moreover, there is a compatible system of maps

Ke → H0(Ke) = OX/(fe1 , . . . , fer )

Lemma 8.6. In Situation 8.1. Let E be an object of DQCoh(OX). Assume that
Hi(E)|U = 0 for i = −r+ 1, . . . , 0. Then given s ∈ H0(X,E) there exists an e ≥ 0
and a morphism Ke → E such that s is in the image of H0(X,Ke)→ H0(X,E).

Proof. Since U is covered by r affine opens we have Hj(U,F) = 0 for j ≥ r and
any quasi-coherent module (Cohomology of Schemes, Lemma 4.2). By Lemma 3.3
we see that H0(U,E) is equal to H0(U, τ≥−r+1E). There is a spectral sequence

Hj(U,Hi(τ≥−r+1E))⇒ Hi+j(U, τ≥−NE)

see Derived Categories, Lemma 21.3. Hence H0(U,E) = 0 by our assumed van-
ishing of cohomology sheaves of E. We conclude that s|U = 0. Think of s as a
morphism OX → E in D(OX). By Proposition 8.5 the composition Ie → OX → E
is zero for some e. By the distinguished triangle Ie → OX → Ke → Ie[1] we obtain
a morphism Ke → E such that s is the composition OX → Ke → E. �
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9. Pseudo-coherent and perfect complexes

In this section we make the connection between the general notions defined in Co-
homology, Sections 35, 36, 37, and 38 and the corresponding notions for complexes
of modules in More on Algebra, Sections 50, 51, and 56.

Lemma 9.1. Let X be a scheme. If E is an m-pseudo-coherent object of D(OX),
then Hi(E) is a quasi-coherent OX-module for i > m. If E is pseudo-coherent,
then E is an object of DQCoh(OX).

Proof. LocallyHi(E) is isomorphic toHi(E•) with E• strictly perfect. The sheaves
E i are direct summands of finite free modules, hence quasi-coherent. The lemma
follows. �

Lemma 9.2. Let X be a locally ringed space. A direct summand of a free OX-
module is finite locally free.

Proof. Omitted. �

Lemma 9.3. Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then E is an m-
pseudo-coherent (resp. pseudo-coherent) as an object of D(OX) if and only if M•

is m-pseudo-coherent (resp. pseudo-coherent) as a complex of A-modules.

Proof. It is immediate from the definitions that if M• is m-pseudo-coherent, so
is E. To prove the converse, assume E is m-pseudo-coherent. As X = Spec(A) is
quasi-compact with a basis for the topology given by standard opens, we can find
a standard open covering X = D(f1) ∪ . . . ∪D(fn) and strictly perfect complexes
E•i on D(fi) and maps αi : E•i → E|Ui inducing isomorphisms on Hj for j > m and
surjections onHm. By Cohomology, Lemma 35.8 after refining the open covering we

may assume αi is given by a map of complexes E•i → M̃•|Ui for each i. By Lemma
9.2 the terms Eni are finite locally free modules. Hence after refining the open
covering we may assume each Eni is a finite free OUi

-module. From the definition
it follows that M•fi is an m-pseudo-coherent complex of Afi-modules. We conclude
by applying More on Algebra, Lemma 50.14.

The case “pseudo-coherent” follows from the fact that E is pseudo-coherent if and
only if E is m-pseudo-coherent for all m (by definition) and the same is true for
M• by More on Algebra, Lemma 50.5. �

Lemma 9.4. Let X be a Noetherian scheme. Let E be an object of DQCoh(OX).
For m ∈ Z the following are equivalent

(1) Hi(E) is coherent for i ≥ m and zero for i� 0, and
(2) E is m-pseudo-coherent.

In particular, E is pseudo-coherent if and only if E is an object of D−Coh(OX).

Proof. As X is quasi-compact we see that in both (1) and (2) the object E is
bounded above. Thus the question is local on X and we may assume X is affine.
Say X = Spec(A) for some Noetherian ring A. In this case E corresponds to
a complex of A-modules M• by Lemma 3.4. By Lemma 9.3 we see that E is m-
pseudo-coherent if and only if M• is m-pseudo-coherent. On the other hand, Hi(E)
is coherent if and only if Hi(M•) is a finite A-module (Properties, Lemma 16.1).
Thus the result follows from More on Algebra, Lemma 50.16. �
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Lemma 9.5. Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then

(1) E has tor amplitude in [a, b] if and only if M• has tor amplitude in [a, b].
(2) E has finite tor dimension if and only if M• has finite tor dimension.

Proof. Part (2) follows trivially from part (1). In the proof of (1) we will use the
equivalence D(A) = DQCoh(X) of Lemma 3.4 without further mention. Assume
M• has tor amplitude in [a, b]. Then K• is isomorphic in D(A) to a complex K• of
flat A-modules with Ki = 0 for i 6∈ [a, b], see More on Algebra, Lemma 51.3. Then

E is isomorphic to K̃•. Since each K̃i is a flat OX -module, we see that E has tor
amplitude in [a, b] by Cohomology, Lemma 37.3.

Assume that E has tor amplitude in [a, b]. Then E is bounded whence M• is in
K−(A). Thus we may replace M• by a bounded above complex of A-modules. We
may even choose a projective resolution and assume that M• is a bounded above
complex of free A-modules. Then for any A-module N we have

E ⊗L
OX

Ñ ∼= M̃• ⊗L
OX

Ñ ∼= ˜M• ⊗A N
in D(OX). Thus the vanishing of cohomology sheaves of the left hand side implies
M• has tor amplitude in [a, b]. �

Lemma 9.6. Let X be a quasi-separated scheme. Let E be an object of DQCoh(OX).
Let a ≤ b. The following are equivalent

(1) E has tor amplitude in [a, b], and
(2) for all F in QCoh(OX) we have Hi(E ⊗L

OX
F) = 0 for i 6∈ [a, b].

Proof. It is clear that (1) implies (2). Assume (2). Let U ⊂ X be an affine open.
As X is quasi-separated the morphism j : U → X is quasi-compact and separated,
hence j∗ transforms quasi-coherent modules into quasi-coherent modules (Schemes,
Lemma 24.1). Thus the functor QCoh(OX)→ QCoh(OU ) is essentially surjective.
It follows that condition (2) implies the vanishing of Hi(E|U⊗L

OU
G) for i 6∈ [a, b] for

all quasi-coherent OU -modules G. Write U = Spec(A) and let M• be the complex of
A-modules corresponding to E|U by Lemma 3.4. We have just shown that M•⊗L

AN
has vanishing cohomology groups outside the range [a, b], in other words M• has
tor amplitude in [a, b]. By Lemma 9.5 we conclude that E|U has tor amplitude in
[a, b]. This proves the lemma. �

Lemma 9.7. Let X = Spec(A) be an affine scheme. Let M• be a complex of
A-modules and let E be the corresponding object of D(OX). Then E is a perfect
object of D(OX) if and only if M• is perfect as an object of D(A).

Proof. This is a logical consequence of Lemmas 9.3 and 9.5, Cohomology, Lemma
38.4, and More on Algebra, Lemma 56.2. �

As a consequence of our description of pseudo-coherent complexes on schemes we
can prove certain internal homs are quasi-coherent.

Lemma 9.8. Let X be a scheme.

(1) If L is in D+
QCoh(OX) and K in D(OX) is pseudo-coherent, then RHom(K,L)

is in DQCoh(OX).
(2) If L is in DQCoh(OX) and K in D(OX) is perfect, then RHom(K,L) is in

DQCoh(OX).
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(3) If X = Spec(A) is affine and K,L ∈ D(A) then

RHom(K̃, L̃) = ˜RHom(K,L)

in the following two cases
(a) K is pseudo-coherent and L is bounded below,
(b) K is perfect and L arbitrary.

(4) If X = Spec(A) and K,L are in D(A), then the nth cohomology sheaf of

RHom(K̃, L̃) is the sheaf associated to the presheaf

X ⊃ D(f) 7−→ ExtnAf
(K ⊗A Af , L⊗A Af )

for f ∈ A.

Proof. The construction of the internal hom in the derived category of OX com-
mutes with localization (see Cohomology, Section 34). Hence to prove (1) and (2)
we may replace X by an affine open. By Lemmas 3.4, 9.3, and 9.7 in order to prove
(1) and (2) it suffices to prove (3).

Part (3) follows from the computation of the internal hom of Cohomology, Lemma
35.10 by representing K by a bounded above (resp. finite) complex of finite projec-
tive A-modules and L by a bounded above (resp. arbitrary) complex of A-modules.

To prove (4) recall that on any ringed space the nth cohomology sheaf ofRHom(A,B)
is the sheaf associated to the presheaf

U 7→ HomD(U)(A|U , B|U [n]) = ExtnD(OU )(A|U , B|U )

See Cohomology, Section 34. On the other hand, the restriction of K̃ to a principal
open D(f) is the image of K⊗AAf and similarly for L. Hence (4) follows from the
equivalence of categories of Lemma 3.4. �

10. Descent finiteness properties of complexes

This section is the analogue of Descent, Section 6 for objects of the derived category
of a scheme. The easiest such result is probably the following.

Lemma 10.1. Let f : X → Y be a surjective flat morphism of schemes (or more
generally locally ringed spaces). Let E ∈ D(OY ). Let a, b ∈ Z. Then E has
tor-amplitude in [a, b] if and only if Lf∗E has tor-amplitude in [a, b].

Proof. Pullback always preserves tor-amplitude, see Cohomology, Lemma 37.4.
We may check tor-amplitude in [a, b] on stalks, see Cohomology, Lemma 37.5. A
flat local ring homomorphism is faithfully flat by Algebra, Lemma 38.16. Thus the
result follows from More on Algebra, Lemma 51.14. �

Lemma 10.2. Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈
DQCoh(OX). Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗i E
is m-pseudo-coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
36.3. Conversely, assume that Lf∗i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fpqc covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering is
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given by a single surjective flat morphism {f : Y → X} of affine schemes. In this
case the result follows from More on Algebra, Lemma 50.15 via Lemmas 3.4 and
9.3. �

Lemma 10.3. Let {fi : Xi → X} be an fppf covering of schemes. Let E ∈ D(OX).
Let m ∈ Z. Then E is m-pseudo-coherent if and only if each Lf∗i E is m-pseudo-
coherent.

Proof. Pullback always preserves m-pseudo-coherence, see Cohomology, Lemma
36.3. Conversely, assume that Lf∗i E is m-pseudo-coherent for all i. Let U ⊂ X
be an affine open. It suffices to prove that E|U is m-pseudo-coherent. Since {fi :
Xi → X} is an fppf covering, we can find finitely many affine open Vj ⊂ Xa(j) such
that fa(j)(Vj) ⊂ U and U =

⋃
fa(j)(Vj). Set V =

∐
Vi. Thus we may replace X by

U and {fi : Xi → X} by {V → U} and assume that X is affine and our covering
is given by a single surjective flat morphism {f : Y → X} of finite presentation.

Since f is flat the derived functor Lf∗ is just given by f∗ and f∗ is exact. Hence
Hi(Lf∗E) = f∗Hi(E). Since Lf∗E is m-pseudo-coherent, we see that Lf∗E ∈
D−(OY ). Since f is surjective and flat, we see that E ∈ D−(OX). Let i ∈ Z be
the largest integer such that Hi(E) is nonzero. If i < m, then we are done. Other-
wise, f∗Hi(E) is a finite type OY -module by Cohomology, Lemma 36.9. Then by
Descent, Lemma 6.2 the OX -module Hi(E) is of finite type. Thus, after replacing
X by the members of a finite affine open covering, we may assume there exists a
map

α : O⊕nX [−i] −→ E

such that Hi(α) is a surjection. Let C be the cone of α in D(OX). Pulling back to
Y and using Cohomology, Lemma 36.4 we find that Lf∗C is m-pseudo-coherent.
Moreover Hj(C) = 0 for j ≥ i. Thus by induction on i we see that C is m-pseudo-
coherent. Using Cohomology, Lemma 36.4 again we conclude. �

Lemma 10.4. Let {fi : Xi → X} be an fpqc covering of schemes. Let E ∈ D(OX).
Then E is perfect if and only if each Lf∗i E is perfect.

Proof. Pullback always preserves perfect complexes, see Cohomology, Lemma 38.5.
Conversely, assume that Lf∗i E is perfect for all i. Then the cohomology sheaves of
each Lf∗i E are quasi-coherent, see Lemma 9.1 and Cohomology, Lemma 38.4. Since
the morphisms fi is flat we see that Hp(Lf∗i E) = f∗i H

p(E). Thus the cohomology
sheaves of E are quasi-coherent by Descent, Proposition 5.2. Having said this
the lemma follows formally from Cohomology, Lemma 38.4 and Lemmas 10.1 and
10.2. �

Lemma 10.5. Let i : Z → X be a morphism of ringed spaces such that i is a closed
immersion of underlying topological spaces and such that i∗OZ is pseudo-coherent
as an OX-module. Let E ∈ D(OX). Then E is m-pseudo-coherent if and only if
Ri∗E is m-pseudo-coherent.

Proof. Throughout this proof we will use that i∗ is an exact functor, and hence
that Ri∗ = i∗, see Modules, Lemma 6.1.

Assume E is m-pseudo-coherent. Let x ∈ X. We will find a neighbourhood of x
such that i∗E is m-peudo-coherent on it. If x 6∈ Z then this is clear. Thus we may
assume x ∈ Z. We will use that U ∩ Z for x ∈ U ⊂ X open form a fundamental
system of neighbourhoods of x in Z. After shrinking X we may assume E is
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bounded above. We will argue by induction on the largest integer p such that
Hp(E) is nonzero. If p < m, then there is nothing to prove. If p ≥ m, then Hp(E)
is an OZ-module of finite type, see Cohomology, Lemma 36.9. Thus we may choose,
after shrinking X, a map O⊕nZ [−p]→ E which induces a surjection O⊕nZ → Hp(E).
Choose a distinguished triangle

O⊕nZ [−p]→ E → C → O⊕nZ [−p+ 1]

We see that Hj(C) = 0 for j ≥ p and that C is m-pseudo-coherent by Cohomology,
Lemma 36.4. By induction we see that i∗C is m-pseudo-coherent on X. Since i∗OZ
is m-pseudo-coherent on X as well, we conclude from the distinguished triangle

i∗O⊕nZ [−p]→ i∗E → i∗C → i∗O⊕nZ [−p+ 1]

and Cohomology, Lemma 36.4 that i∗E is m-pseudo-coherent.

Assume that i∗E is m-pseudo-coherent. Let z ∈ Z. We will find a neighbourhood
of z such that E is m-peudo-coherent on it. We will use that U ∩Z for z ∈ U ⊂ X
open form a fundamental system of neighbourhoods of z in Z. After shrinking X
we may assume i∗E and hence E is bounded above. We will argue by induction on
the largest integer p such that Hp(E) is nonzero. If p < m, then there is nothing
to prove. If p ≥ m, then Hp(i∗E) = i∗H

p(E) is an OX -module of finite type, see
Cohomology, Lemma 36.9. Choose a complex E• of OZ-modules representing E.
We may choose, after shrinking X, a map α : O⊕nX [−p] → i∗E• which induces a

surjection O⊕nX → i∗H
p(E•). By adjunction we find a map α : O⊕nZ [−p] → E•

which induces a surjection O⊕nZ → Hp(E•). Choose a distinguished triangle

O⊕nZ [−p]→ E → C → O⊕nZ [−p+ 1]

We see that Hj(C) = 0 for j ≥ p. From the distinguished triangle

i∗O⊕nZ [−p]→ i∗E → i∗C → i∗O⊕nZ [−p+ 1]

the fact that i∗OZ is pseudo-coherent and Cohomology, Lemma 36.4 we conclude
that i∗C is m-pseudo-coherent. By induction we conclude that C is m-pseudo-
coherent. By Cohomology, Lemma 36.4 again we conclude that E is m-pseudo-
coherent. �

Lemma 10.6. Let f : X → Y be a finite morphism of schemes such that f∗OX is
pseudo-coherent as an OY -module1. Let E ∈ DQCoh(OX). Then E is m-pseudo-
coherent if and only if Rf∗E is m-pseudo-coherent.

Proof. This is a translation of More on Algebra, Lemma 50.11 into the language
of schemes. To do the translation, use Lemmas 3.4 and 9.3. �

11. Lifting complexes

Let U ⊂ X be an open subspace of a ringed space and denote j : U → X the
inclusion morphism. The functor D(OX)→ D(OU ) is essentially surjective as Rj∗
is a right inverse to restriction. In this section we extend this to complexes with
quasi-coherent cohomology sheaves, etc.

1This means that f is pseudo-coherent, see More on Morphisms, Definition 40.2.
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Lemma 11.1. Let X be a scheme and let j : U → X be a quasi-compact open
immersion. The functors

DQCoh(OX)→ DQCoh(OU ) and D+
QCoh(OX)→ D+

QCoh(OU )

are essentially surjective. If X is quasi-compact, then the functors

D−QCoh(OX)→ D−QCoh(OU ) and Db
QCoh(OX)→ Db

QCoh(OU )

are essentially surjective.

Proof. The argument preceding the lemma applies for the first case because Rj∗
maps DQCoh(OU ) into DQCoh(OX) by Lemma 4.1. It is clear that Rj∗ maps
D+

QCoh(OU ) into D+
QCoh(OX) which implies the statement on bounded below com-

plexes. Finally, Lemma 4.1 guarantees that Rj∗ maps D−QCoh(OU ) into D−QCoh(OX)
if X is quasi-compact. Combining these two we obtain the last statement. �

Lemma 11.2. Let X be an affine scheme and let U ⊂ X be a quasi-compact open
subscheme. For any pseudo-coherent object E of D(OU ) there exists a bounded
above complex of finite free OX-modules whose restriction to U is isomorphic to E.

Proof. By Lemma 9.1 we see that E is an object of DQCoh(OU ). By Lemma 11.1
we may assume E = E′|U for some object E′ of DQCoh(OX). Write X = Spec(A).
By Lemma 3.4 we can find a complex M• of A-modules whose associated complex
of OX -modules is a representative of E′.

Choose f1, . . . , fr ∈ A such that U = D(f1) ∪ . . . ∪ D(fr). By Lemma 9.3 the
complexes M•fj are pseudo-coherent complexes of Afj -modules. Let n be an integer.

Assume we have a map of complexes α : F • → M• where F • is bounded above,
F i = 0 for i < n, each F i is a finite free R-module, such that

Hi(αfj ) : Hi(F •fj )→ Hi(M•fj )

is an isomorphism for i > n and surjective for i = n. Picture

Fn //

α

��

Fn+1

α

��

// . . .

Mn−1 // Mn // Mn+1 // . . .

Since each M•fj has vanishing cohomology in large degrees we can find such a map

for n � 0. By induction on n we are going to extend this to a map of complexes
F • →M• such that Hi(αfj ) is an isomorphism for all i. The lemma will follow by

taking F̃ •.

The induction step will be to extend the diagram above by adding Fn−1. Let C•

be the cone on α (Derived Categories, Definition 9.1). The long exact sequence of
cohomology shows that Hi(C•fj ) = 0 for i ≥ n. By More on Algebra, Lemma 50.2

we see that C•fj is (n − 1)-pseudo-coherent. By More on Algebra, Lemma 50.3 we

see that H−1(C•fj ) is a finite Afj -module. Choose a finite free A-module Fn−1 and

an A-module β : Fn−1 → C−1 such that the composition Fn−1 → Cn−1 → Cn

is zero and such that Fn−1
fj

surjects onto Hn−1(C•fj ). (Some details omitted; hint:

clear denominators.) Since Cn−1 = Mn−1 ⊕ Fn we can write β = (αn−1,−dn−1).
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The vanishing of the composition Fn−1 → Cn−1 → Cn implies these maps fit into
a morphism of complexes

Fn−1

αn−1

��

dn−1

// Fn //

α

��

Fn+1

α

��

// . . .

. . . // Mn−1 // Mn // Mn+1 // . . .

Moreover, these maps define a morphism of distinguished triangles

(Fn → . . .) //

��

(Fn−1 → . . .) //

��

Fn−1 //

β

��

(Fn → . . .)[1]

��
(Fn → . . .) // M• // C• // (Fn → . . .)[1]

Hence our choice of β implies that the map of complexes (F−1 → . . .)→M• induces
an isomorphism on cohomology localized at fj in degrees ≥ n and a surjection in
degree −1. This finishes the proof of the lemma. �

Lemma 11.3. Let X be a quasi-compact and quasi-separated scheme. Let E ∈
Db

QCoh(OX). There exists an integer n0 > 0 such that ExtnD(OX)(E , E) = 0 for
every finite locally free OX-module E and every n ≥ n0.

Proof. Recall that ExtnD(OX)(E , E) = HomD(OX)(E , E[n]). We have Mayer-Vietoris
for morphisms in the derived category, see Cohomology, Lemma 30.6. Thus if
X = U ∪ V and the result of the lemma holds for E|U , E|V , and E|U∩V for some
bound n0, then the result holds for E with bound n0 + 1. Thus it suffices to prove
the lemma when X is affine, see Cohomology of Schemes, Lemma 4.1.

Assume X = Spec(A) is affine. Choose a complex of A-modules M• whose as-
sociated complex of quasi-coherent modules represents E, see Lemma 3.4. Write

E = P̃ for some A-module P . Since E is finite locally free, we see that P is a finite
projective A-module. We have

HomD(OX)(E , E[n]) = HomD(A)(P,M
•[n])

= HomK(A)(P,M
•[n])

= HomA(P,Hn(M•))

The first equality by Lemma 3.4, the second equality by Derived Categories, Lemma
19.8, and the final equality because HomA(P,−) is an exact functor. As E and hence
M• is bounded we get zero for all sufficiently large n. �

Lemma 11.4. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
For every perfect object E of D(OU ) there exists an integer r and a finite locally free
sheaf F on U such that F [−r]⊕ E is the restriction of a perfect object of D(OX).

Proof. Say X = Spec(A). Recall that a perfect complex is pseudo-coherent, see
Cohomology, Lemma 38.4. By Lemma 11.2 we can find a bounded above complex
F• of finite free A-modules such that E is isomorphic to F•|U in D(OU ). By
Cohomology, Lemma 38.4 and since U is quasi-compact, we see that E has finite
tor dimension, say E has tor amplitude in [a, b]. Pick r < a and set

F = Ker(Fr → Fr+1) = Im(Fr−1 → Fr).
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Since E has tor amplitude in [a, b] we see that F|U is flat (Cohomology, Lemma
37.2). Hence F|U is flat and of finite presentation, thus finite locally free (Proper-
ties, Lemma 18.2). It follows that

(F → Fr → Fr+1 → . . .)|U
is a strictly perfect complex on U representing E. We obtain a distinguished triangle

F|U [−r − 1]→ E → (Fr → Fr+1 → . . .)|U → F|U [−r]
Note that (Fr → Fr+1 → . . .) is a perfect complex on X. To finish the proof it
suffices to pick r such that the map F|U [−r−1]→ E is zero in D(OU ), see Derived
Categories, Lemma 4.10. By Lemma 11.3 this holds if r � 0. �

Lemma 11.5. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
Let E,E′ be objects of DQCoh(OX) with E perfect. For every map α : E|U → E′|U
there exist maps

E
β←− E1

γ−→ E′

of perfect complexes on X such that β : E1 → E restricts to an isomorphism on U
and such that α = γ|U ◦ β|−1

U . Moreover we can assume E1 = E ⊗L
OX

I for some
perfect complex I on X.

Proof. Write X = Spec(A). Write U = D(f1) ∪ . . . ∪ D(fr). Choose finite com-
plex of finite projective A-modules M• representing E (Lemma 9.7). Choose a
complex of A-modules (M ′)• representing E′ (Lemma 3.4). In this case the com-
plex H• = HomA(M•, (M ′)•) is a complex of A-modules whose associated complex
of quasi-coherent OX -modules represents RHom(E,E′), see Cohomology, Lemma
35.9. Then α determines an element s of H0(U,RHom(E,E′)), see Cohomology,
Lemma 34.1. There exists an e and a map

ξ : I•(fe1 , . . . , f
e
r )→ HomA(M•, (M ′)•)

corresponding to s, see Proposition 8.5. Letting E1 be the object corresponding to
complex of quasi-coherent OX -modules associated to

Tot(I•(fe1 , . . . , f
e
r )⊗AM•)

we obtain E1 → E using the canonical map I•(fe1 , . . . , f
e
r )→ A and E1 → E′ using

ξ and Cohomology, Lemma 34.1. �

Lemma 11.6. Let X be an affine scheme. Let U ⊂ X be a quasi-compact open.
For every perfect object F of D(OU ) the object F ⊕ F [1] is the restriction of a
perfect object of D(OX).

Proof. By Lemma 11.4 we can find a perfect object E of D(OX) such that E|U =
F [r]⊕ F for some finite locally free OU -module F . By Lemma 11.5 we can find a
morphism of perfect complexes α : E1 → E such that (E1)|U ∼= E|U and such that
α|U is the map (

idF [r] 0
0 0

)
: F [r]⊕ F → F [r]⊕ F

Then the cone on α is a solution. �

Lemma 11.7. Let X be a quasi-compact and quasi-separated scheme. Let f ∈
Γ(X,OX). For any morphism α : E → E′ in DQCoh(OX) such that

(1) E is perfect, and
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(2) E′ is supported on T = V (f)

there exists an n ≥ 0 such that fnα = 0.

Proof. We have Mayer-Vietoris for morphisms in the derived category, see Coho-
mology, Lemma 30.6. Thus if X = U ∪V and the result of the lemma holds for f |U ,
f |V , and f |U∩V , then the result holds for f . Thus it suffices to prove the lemma
when X is affine, see Cohomology of Schemes, Lemma 4.1.

Let X = Spec(A). Then f ∈ A. We will use the equivalence D(A) = DQCoh(X)
of Lemma 3.4 without further mention. Represent E by a finite complex of finite
projective A-modules P •. This is possible by Lemma 9.7. Let t be the largest
integer such that P t is nonzero. The distinguished triangle

P t[−t]→ P • → σ≤t−1P
• → P t[−t+ 1]

shows that by induction on the length of the complex P • we can reduce to the
case where P • has a single nonzero term. This and the shift functor reduces us
to the case where P • consists of a single finite projective A-module P in degree
0. Represent E′ by a complex M• of A-modules. Then α corresponds to a map
P → H0(M•). Since the module H0(M•) is supported on V (f) by assumption (2)
we see that every element of H0(M•) is annihilated by a power of f . Since P is a
finite A-module the map fnα : P → H0(M•) is zero for some n as desired. �

Lemma 11.8. Let X be an affine scheme. Let T ⊂ X be a closed subset such that
X \ T is quasi-compact. Let U ⊂ X be a quasi-compact open. For every perfect
object F of D(OU ) supported on T ∩ U the object F ⊕ F [1] is the restriction of a
perfect object E of D(OX) supported in T .

Proof. Say T = V (g1, . . . , gs). After replacing gj by a power we may assume
multiplication by gj is zero on F , see Lemma 11.7. Choose E as in Lemma 11.6.
Note that gj : E → E restricts to zero on U . Choose a distinguished triangle

E
g1−→ E → C1 → E[1]

By Derived Categories, Lemma 4.10 the object C1 restricts to F⊕F [1]⊕F [1]⊕F [2]
on U . Moreover, g1 : C1 → C1 has square zero by Derived Categories, Lemma 4.5.
Namely, the diagram

E //

0

��

C1

g1

��

// E[1]

0

��
E // C1

// E[1]

is commutative since the compositions E
g1−→ E → C1 and C1 → E[1]

g1−→ E[1] are
zero. Continuing, setting Ci+1 equal to the cone of the map gi : Ci → Ci we obtain
a perfect complex Cs on X supported on T whose restriction to U gives

F ⊕ F [1]⊕s ⊕ F [2]⊕(s
2) ⊕ . . .⊕ F [s]

Choose a morphisms of perfect complexes β : C ′ → Cs and γ : C ′ → Cs as
in Lemma 11.5 such that β|U is an isomorphism and such that γ|U ◦ β|−1

U is the
morphism

F ⊕ F [1]⊕s ⊕ F [2]⊕(s
2) ⊕ . . .⊕ F [s]→ F ⊕ F [1]⊕s ⊕ F [2]⊕(s

2) ⊕ . . .⊕ F [s]

http://localhost:8080/tag/08EK


24 DERIVED CATEGORIES OF SCHEMES

which is the identity on all summands except for F where it is zero. By Lemma
11.5 we also have C ′ = Cs⊗L I for some perfect complex I on X. Hence the nullity
of g2

j idCs implies the same thing for C ′. Thus C ′ is supported on T as well. Then
Cone(γ) is a solution. �

A special case of the following lemma can be found in [Nee96].

Lemma 11.9. Let X be a quasi-compact and quasi-separated scheme. Let U ⊂ X
be a quasi-compact open. Let T ⊂ X be a closed subset with X \ T retro-compact
in X. Let E be an object of DQCoh(OX). Let α : P → E|U be a map where
P is a perfect object of D(OU ) supported on T ∩ U . Then there exists a map
β : R → E where R is a perfect object of D(OX) supported on T such that P is a
direct summand of R|U in D(OU ) compatible α and β|U .

Proof. Since X is quasi-compact there exists an integer m such that X = U ∪V1∪
. . .∪ Vm for some affine opens Vj of X. Arguing by induction on m we see that we
may assume m = 1. In other words, we may assume that X = U ∪V with V affine.
By Lemma 11.8 we can choose a perfect object Q in D(OV ) supported on T ∩ V
and an isomorphism Q|U∩V → (P ⊕ P [1])|U∩V . By Lemma 11.5 we can replace Q
by Q⊗L I (still supported on T ∩ V ) and assume that the map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V
lifts to Q→ E|V . By Cohomology, Lemma 30.10 we find an morphism a : R → E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T as desired. �

Remark 11.10. The proof of Lemma 11.9 shows that

R|U = P ⊕ P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]

for somem ≥ 0 and nj ≥ 0. Thus the highest degree cohomology sheaf ofR|U equals
that of P . By repeating the construction for the map P⊕n1 [1]⊕ . . .⊕ P⊕nm [m]→
R|U , taking cones, and using induction we can achieve equality of cohomology
sheaves of R|U and P above any given degree.

12. Approximation by perfect complexes

In this section we discuss the observation, due to Neeman and Lipman, that a
pseudo-coherent complex can be “approximated” by perfect complexes.

Definition 12.1. Let X be a scheme. Consider triples (T,E,m) where

(1) T ⊂ X is a closed subset,
(2) E is an object of DQCoh(OX), and
(3) m ∈ Z.

We say approximation holds for the triple (T,E,m) if there exists a perfect object
P of D(OX) supported on T and a map α : P → E which induces isomorphisms
Hi(P )→ Hi(E) for i > m and a surjection Hm(P )→ Hm(E).

Approximation cannot hold for every triple. Namely, it is clear that if approxima-
tion holds for the triple (T,E,m), then

(1) E is m-pseudo-coherent, see Cohomology, Definition 36.1, and
(2) the cohomology sheaves Hi(E) are supported on T for i ≥ m.

http://localhost:8080/tag/09IM
http://localhost:8080/tag/09IN
http://localhost:8080/tag/08EM


DERIVED CATEGORIES OF SCHEMES 25

Moreover, the “support” of a perfect complex is a closed subscheme whose comple-
ment is retrocompact in X (details omitted). Hence we cannot expect approxima-
tion to hold without this assumption on T . This partly explains the conditions in
the following definition.

Definition 12.2. Let X be a scheme. We say approximation by perfect complexes
holds on X if for any closed subset T ⊂ X with X \ T retro-compact in X there
exists an integer r such that for every triple (T,E,m) as in Definition 12.1 with

(1) E is (m− r)-pseudo-coherent, and
(2) Hi(E) is supported on T for i ≥ m− r

approximation holds.

We will prove that approximation by perfect complexes holds for quasi-compact
and quasi-separated schemes. It seems that the second condition is necessary for
our method of proof. It is possible that the first condition may be weakened to “E
is m-pseudo-coherent” by carefuly analyzing the arguments below.

Lemma 12.3. Let X be a scheme. Let U ⊂ X be an open subscheme. Let (T,E,m)
be a triple as in Definition 12.1. If

(1) T ⊂ U ,
(2) approximation holds for (T,E|U ,m), and
(3) the sheaves Hi(E) for i ≥ m are supported on T ,

then approximation holds for (T,E,m).

Proof. Let j : U → X be the inclusion morphism. If P → E|U is an approxi-
mation of the triple (T,E|U ,m) over U , then j!P = Rj∗P → j!(E|U ) → E is an
approximation of (T,E,m) over X. See Cohomology, Lemmas 30.9 and 38.9. �

Lemma 12.4. Let X be an affine scheme. Then approximation holds for every
triple (T,E,m) as in Definition 12.1 such that there exists an integer r ≥ 0 with

(1) E is m-pseudo-coherent,
(2) Hi(E) is supported on T for i ≥ m− r + 1,
(3) X \ T is the union of r affine opens.

In particular, approximation by perfect complexes holds for affine schemes.

Proof. Say X = Spec(A). Write T = V (f1, . . . , fr). (The case r = 0, i.e., T = X
follows immediately from Lemma 9.3 and the definitions.) Let (T,E,m) be a triple
as in the lemma. Let t be the largest integer such that Ht(E) is nonzero. We
will proceed by induction on t. The base case is t < m; in this case the result is
trivial. Now suppose that t ≥ m. By Cohomology, Lemma 36.9 the sheaf Ht(E)
is of finite type. Since it is quasi-coherent it is generated by finitely many sections
(Properties, Lemma 16.1). For every s ∈ Γ(X,Ht(E)) = Ht(X,E) (see proof of
Lemma 3.4) we can find an e > 0 and a morphism Ke[−t] → E such that s is
in the image of H0(Ke) = Ht(Ke[−t]) → Ht(E), see Lemma 8.6. Taking a finite
direct sum of these maps we obtain a map P → E where P is a perfect complex
supported on T , where Hi(P ) = 0 for i > t, and where Ht(P ) → E is surjective.
Choose a distinguished triangle

P → E → E′ → P [1]

Then E′ is m-pseudo-coherent (Cohomology, Lemma 36.4), Hi(E′) = 0 for i ≥
t, and Hi(E′) is supported on T for i ≥ m − r + 1. By induction we find an
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approximation P ′ → E′ of (T,E′,m). Fit the composition P ′ → E′ → P [1] into a
distringuished triangle P → P ′′ → P ′ → P [1] and extend the morphisms P ′ → E′

and P [1]→ P [1] into a morphism of distinguished triangles

P //

��

P ′′

��

// P ′

��

// P [1]

��
P // E // E′ // P [1]

using TR3. Then P ′′ is a perfect complex (Cohomology, Lemma 38.6) supported
on T . An easy diagram chase shows that P ′′ → E is the desired approximation. �

Lemma 12.5. Let X be a scheme. Let X = U ∪ V be an open covering with U
quasi-compact, V affine, and U ∩ V quasi-compact. If approximation by perfect
complexes holds on U , then approximation holds on X.

Proof. Let T ⊂ X be a closed subset with X \ T retro-compact in X. Let rU
be the integer of Definition 12.2 adapted to the pair (U, T ∩ U). Set T ′ = T \ U .
Note that T ′ ⊂ V and that V \ T ′ = (X \ T ) ∩ U ∩ V is quasi-compact by our
assumption on T . Let r′ be the number of affines needed to cover V \T ′. We claim
that r = max(rU , r

′) works for the pair (X,T ).

To see this choose a triple (T,E,m) such that E is (m − r)-pseudo-coherent and
Hi(E) is supported on T for i ≥ m − r. Let t be the largest integer such that
Ht(E)|U is nonzero. (Such an integer exists as U is quasi-compact and E|U is
(m− r)-pseudo-coherent.) We will prove that E can be approximated by induction
on t.

Base case: t ≤ m− r′. This means that Hi(E) is supported on T ′ for i ≥ m− r′.
Hence Lemma 12.4 guarantees the existence of an approximation P → E|V of
(T ′, E|V ,m) on V . Applying Lemma 12.3 we see that (T ′, E,m) can be approxi-
mated. Such an approximation is also an approximation of (T,E,m).

Induction step. Choose an approximation P → E|U of (T ∩ U,E|U ,m). This in
particular gives a surjection Ht(P ) → Ht(E|U ). By Lemma 11.8 we can choose
a perfect object Q in D(OV ) supported on T ∩ V and an isomorphism Q|U∩V →
(P ⊕P [1])|U∩V . By Lemma 11.5 we can replace Q by Q⊗L I and assume that the
map

Q|U∩V → (P ⊕ P [1])|U∩V −→ P |U∩V −→ E|U∩V
lifts to Q→ E|V . By Cohomology, Lemma 30.10 we find an morphism a : R → E
of D(OX) such that a|U is isomorphic to P ⊕ P [1] → E|U and a|V isomorphic to
Q→ E|V . Thus R is perfect and supported on T and the map Ht(R)→ Ht(E) is
surjective on restriction to U . Choose a distinguised triangle

R→ E → E′ → R[1]

Then E′ is (m − r)-pseudo-coherent (Cohomology, Lemma 36.4), Hi(E′)|U = 0
for i ≥ t, and Hi(E′) is supported on T for i ≥ m − r. By induction we find an
approximation R′ → E′ of (T,E′,m). Fit the composition R′ → E′ → R[1] into a
distringuished triangle R → R′′ → R′ → R[1] and extend the morphisms R′ → E′
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and R[1]→ R[1] into a morphism of distinguished triangles

R //

��

R′′

��

// R′

��

// R[1]

��
R // E // E′ // R[1]

using TR3. Then R′′ is a perfect complex (Cohomology, Lemma 38.6) supported
on T . An easy diagram chase shows that R′′ → E is the desired approximation. �

Theorem 12.6. Let X be a quasi-compact and quasi-separated scheme. Then
approximation by perfect complexes holds on X.

Proof. This follows from the induction principle of Cohomology of Schemes, Lemma
4.1 and Lemmas 12.5 and 12.4. �

13. Generating derived categories

In this section we prove that the derived category DQCoh(OX) of a quasi-compact
and quasi-separated scheme can be generated by a single perfect object. We urge
the reader to read the proof of this result in the wonderful paper by Bondal and
van den Bergh, see [BV03].

Lemma 13.1. Let X be a quasi-compact and quasi-separated scheme. Let U be a
quasi-compact open subscheme. Let P be a perfect object of D(OU ). Then P is a
direct summand of the restriction of a perfect object of D(OX).

Proof. Special case of Lemma 11.9. �

Lemma 13.2. In Situation 8.1 denote j : U → X the open immersion and let K
be the perfect object of D(OX) corresponding to the Koszul complex on f1, . . . , fr
over A. For E ∈ DQCoh(OX) the following are equivalent

(1) E = Rj∗(E|U ), and
(2) HomD(OX)(K[n], E) = 0 for all n ∈ Z.

Proof. Choose a distinguished triangle E → Rj∗(E|U ) → N → E[1]. Observe
that

HomD(OX)(K[n], Rj∗(E|U )) = HomD(OU )(K|U [n], E) = 0

for all n as K|U = 0. Thus it suffices to prove the result for N . In other words,
we may assume that E restricts to zero on U . Observe that there are distinguished
triangles

K•(fe11 , . . . , f
e′i
i , . . . , f

er
r )→ K•(fe11 , . . . , f

e′i+e
′′
i

i , . . . , ferr )→ K•(fe11 , . . . , f
e′′i
i , . . . , ferr )→ . . .

of Koszul complexes, see More on Algebra, Lemma 20.11. Hence if HomD(OX)(K[n], E) =
0 for all n ∈ Z then the same thing is true for the K replaced by Ke as in Lemma
8.6. Thus our lemma follows immediately from that one and the fact that E is
determined by the complex of A-modules RΓ(X,E), see Lemma 3.4. �

Theorem 13.3. Let X be a quasi-compact and quasi-separated scheme. The cate-
gory DQCoh(OX) can be generated by a single perfect object. More precisely, there
exists a perfect object P of D(OX) such that for E ∈ DQCoh(OX) the following are
equivalent

(1) E = 0, and

http://localhost:8080/tag/08ES
http://localhost:8080/tag/09IQ
http://localhost:8080/tag/09IR
http://localhost:8080/tag/09IS


28 DERIVED CATEGORIES OF SCHEMES

(2) HomD(OX)(P [n], E) = 0 for all n ∈ Z.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 4.1

If X is affine, then OX is a perfect generator. This follows from Lemma 3.4.

Assume that X = U ∪ V is an open covering with U quasi-compact such that the
theorem holds for U and V is an affine open. Let P be a perfect object of D(OU )
which is a generator for DQCoh(OU ). Using Lemma 13.1 we may choose a perfect
object Q of D(OX) whose restriction to U is a direct sum one of whose summands is
P . Say V = Spec(A). Let Z = X \U . This is a closed subset of V with V \Z quasi-
compact. Choose f1, . . . , fr ∈ A such that Z = V (f1, . . . , fr). Let K ∈ D(OV ) be
the perfect object corresponding to the Koszul complex on f1, . . . , fr over A. Note
that since K is supported on Z ⊂ V closed, the pushforward K ′ = R(V → X)∗K
is a perfect object of D(OX) whose restriction to V is K (see Cohomology, Lemma
38.9). We claim that Q⊕K ′ is a generator for DQCoh(OX).

Let E be an object of DQCoh(OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 30.9 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Lemma 13.2 the vanishing of these groups implies that E|V is isomorphic
to R(U ∩ V → V )∗E|U∩V . This implies that E = R(U → X)∗E|U (small detail
omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

Here is an example.

Lemma 13.4. Let A be a ring. Let X = P1
A. Then

E = OX ⊕OX(−1)

is a generator (Derived Categories, Definition 33.1) of DQCoh(X).

Proof. Write X = Proj(A[X0, X1]). Let U = D+(X0) = Spec(A[x]) where x =
X0/X1. Let j : V = D+(X1) → P1 be the inclusion morphism. Consider the
complex

K = (OX(−1)
X1−−→ OX)

The restriction of K to U = Spec(A[x] is isomorphic to the Koszul complex A[x]
x−→

A[x] and the restriction to V is zero.

Let L be an object of DQCoh(X) with HomD(OX)(K,L[n]) = 0 for all n ∈ Z. By
Derived Categories of Schemes, Lemma 13.2 this implies that L|U is the pushforward
of a complex living on U∩V . This implies L = Rj∗(L|V ) (small argument omitted).
Then

HomD(OX)(OX , L) = HomD(OX)(OX , Rj∗(L|V ))

= HomD(OV )(OV , L|V )

= Hn(V,L|V )
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Thus if in addition HomD(OX)(OX , L[n]) = 0 for all n, then we find Hn(V,L|V ) = 0
for all n and since V is affine this means L|V = 0 which in turn implies L = 0. The
lemma follows as K and OX are in 〈E〉, see Derived Categories, Lemma 33.2. �

The following result is an strengthening of Theorem 13.3 proved using exactly the
same methods. Let T ⊂ X be a closed subset of a scheme X. Let’s denote DT (OX)
the strictly full, saturated, triangulated subcategory consisting of complexes whose
cohomology sheaves are supported on T .

Lemma 13.5. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. With notation as above, the
category DQCoh,T (OX) is generated by a single perfect object.

Proof. We will prove this using the induction principle of Cohomology of Schemes,
Lemma 4.1.

Assume X = Spec(A) is affine. In this case there exist f1, . . . , fr ∈ A such that T =
V (f1, . . . , fr). Let K be the Koszul complex on f1, . . . , fr as in Lemma 13.2. Then
K is a perfect object with cohomology supported on T and hence a perfect object
of DQCoh,T (OX). On the other hand, if E ∈ DQCoh,T (OX) and Hom(K,E[n]) = 0
for all n, then Lemma 13.2 tells us that E = Rj∗(E|X\T ) = 0. Hence K generates
DQCoh,T (OX), (by our definition of generators of triangulated categories in Derived
Categories, Definition 33.1).

Assume that X = U ∪ V is an open covering with U quasi-compact such that the
lemma holds for U and V is an affine open. Let P be a perfect object of D(OU )
supported on T ∩ U which is a generator for DQCoh,T∩U (OU ). Using Lemma 11.9
we may choose a perfect object Q of D(OX) supported on T whose restriction
to U is a direct sum one of whose summands is P . Write V = Spec(B). Let
Z = X \ U . Then Z is a closed subset of V such that V \ Z is quasi-compact.
As X is quasi-separated, it follows that Z ∩ T is a closed subset of V such that
W = V \ (Z ∩ T ) is quasi-compact. Thus we can choose g1, . . . , gs ∈ B such that
Z ∩ T = V (g1, . . . , gr). Let K ∈ D(OV ) be the perfect object corresponding to the
Koszul complex on g1, . . . , gs over B. Note that since K is supported on (Z∩T ) ⊂ V
closed, the pushforward K ′ = R(V → X)∗K is a perfect object of D(OX) whose
restriction to V is K (see Cohomology, Lemma 38.9). We claim that Q ⊕K ′ is a
generator for DQCoh,T (OX).

Let E be an object of DQCoh,T (OX) such that there are no nontrivial maps from any
shift of Q⊕K ′ into E. By Cohomology, Lemma 30.9 we have K ′ = R(V → X)!K
and hence

HomD(OX)(K
′[n], E) = HomD(OV )(K[n], E|V )

Thus by Lemma 13.2 we have E|V = Rj∗E|W where j : W → V is the inclusion.
Picture

W
j
// V Z ∩ Too

��
U ∩ V

j′

OO

j′′

;;

Z

bb

Since E is supported on T we see that E|W is supported on T ∩W = T ∩ U ∩ V
which is closed in W . We conclude that

E|V = Rj∗(E|W ) = Rj∗(Rj
′
∗(E|U∩V )) = Rj′′∗ (E|U∩V )
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where the second equality is part (1) of Cohomology, Lemma 30.9. This implies
that E = R(U → X)∗E|U (small detail omitted). If this is the case then

HomD(OX)(Q[n], E) = HomD(OU )(Q|U [n], E|U )

which contains HomD(OU )(P [n], E|U ) as a direct summand. Thus by our choice of
P the vanishing of these groups implies that E|U is zero. Whence E is zero. �

14. Compact and perfect objects

Let X be a Noetherian scheme of finite dimension. By Cohomology, Proposi-
tion 21.6 and Cohomology on Sites, Lemma 39.4 the sheaves of modules j!OU
are compact objects of D(OX) for all opens U ⊂ X. These sheaves are typically
not quasi-coherent, hence these do not give perfect object of the derived category
D(OX). However, if we restrict ourselves to complexes with quasi-coherent coho-
mology sheaves, then this does not happen. Here is the precise statement.

Proposition 14.1. Let X be a quasi-compact and quasi-separated scheme. An
object of DQCoh(OX) is compact if and only if it is perfect.

Proof. By Cohomology, Lemma 39.1 the perfect objects define compact objects
of D(OX). Conversely, let K be a compact object of DQCoh(OX). To show that
K is perfect, it suffices to show that K|U is perfect for every affine open U ⊂ X,
see Cohomology, Lemma 38.2. Observe that j : U → X is a quasi-compact and
separated morphism. Hence Rj∗ : DQCoh(OU ) → DQCoh(OX) commutes with
direct sums, see Lemma 4.2. Thus the adjointness of restriction to U and Rj∗
implies that K|U is a compact object of DQCoh(OU ). Hence we reduce to the case
that X is affine.

Assume X = Spec(A) is affine. By Lemma 3.4 the problem is translated into the
same problem for D(A). For D(A) the result is More on Algebra, Proposition
57.2. �

The following result is a strengthening of Proposition 14.1. Let T ⊂ X be a
closed subset of a scheme X. As before DT (OX) denotes the the strictly full, satu-
rated, triangulated subcategory consisting of complexes whose cohomology sheaves
are supported on T . Since taking direct sums commutes with taking cohomology
sheaves, it follows that DT (OX) has direct sums and that they are equal to direct
sums in D(OX).

Lemma 14.2. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that X \ T is quasi-compact. An object of DQCoh,T (OX) is
compact if and only if it is perfect as an object of D(OX).

Proof. We observe that DQCoh,T (OX) is a triangulated category with direct sums
by the remark preceding the lemma. By Cohomology, Lemma 39.1 the perfect
objects define compact objects of D(OX) hence a fortiori of any subcategory pre-
served under taking direct sums. For the converse we will use there exists a gen-
erator E ∈ DQCoh,T (OX) which is a perfect complex of OX -modules, see Lemma
13.5. Hence by the above, E is compact. Then it follows from Derived Categories,
Proposition 34.6 that E is a classical generator of the full subcategory of compact
objects of DQCoh,T (OX). Thus any compact object can be constructed out of E by
a finite sequence of operations consisting of (a) taking shifts, (b) taking finite direct
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sums, (c) taking cones, and (d) taking direct summands. Each of these operations
preserves the property of being perfect and the result follows. �

The following lemma is an application of the ideas that go into the proof of the
preceding lemma.

Lemma 14.3. Let X be a quasi-compact and quasi-separated scheme. Let T ⊂ X
be a closed subset such that U = X \ T is quasi-compact. Let α : P → E be a
morphism of DQCoh(OX) with either

(1) P is perfect and E supported on T , or
(2) P pseudo-coherent, E supported on T , and E bounded below.

Then there exists a perfect complex of OX-modules I and a map I → OX [0] such
that I ⊗L P → E is zero and such that I|U → OU [0] is an isomorphism.

Proof. Set D = DQCoh,T (OX). In both cases the complex K = RHom(P,E) is an
object of D. See Lemma 9.8 for quasi-coherence. It is clear that K is supported on
T as formation of RHom commutes with restriction to opens. The map α defines
an element of H0(K) = HomD(OX)(OX [0],K). Then it suffices to prove the result
for the map α : OX [0]→ K.

Let E ∈ D be a perfect generator, see Lemma 13.5. Write

K = hocolimKn

as in Derived Categories, Lemma 34.3 using the generator E. Since the functor
D → D(OX) commutes with direct sums, we see that K = hocolimKn also in
D(OX). Since OX is a compact object of D(OX) we find an n and a morphism
αn : OX → Kn which gives rise to α. By Derived Categories, Lemma 34.4 applied
to the morphism OX [0] → Kn in the ambient category D(OX) we see that αn
factors as OX [0]→ Q→ Kn where Q is an object of 〈E〉. We conclude that Q is a
perfect complex supported on T .

Choose a distinguished triangle

I → OX [0]→ Q→ I[1]

By construction I is perfect, the map I → OX [0] restricts to an isomorphism over
U , and the composition I → K is zero as α factors through Q. This proves the
lemma. �

15. Derived categories as module categories

In this section we draw some conclusions of what has gone before. Before we do so
we need a couple more lemmas.

Lemma 15.1. Let X be a scheme. Let K• be a complex of OX-modules whose
cohomology sheaves are quasi-coherent. Let (E, d) = HomCompdg(OX)(K

•,K•) be
the endomorphism differential graded algebra. Then the functor

−⊗L
E K

• : D(E, d) −→ D(OX)

of Differential Graded Algebra, Lemma 25.3 has image contained in DQCoh(OX).

Proof. Let P be a differential graded E-module with property (P) and let F• be
a filtration on P as in Differential Graded Algebra, Section 13. Then we have

P ⊗E K• = hocolim FiP ⊗E K•
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Each of the FiP has a finite filtration whose graded pieces are direct sums of E[k].
The result follows easily. �

The following lemma can be strengthened (there is a uniformity in the vanishing
over all L with nonzero cohomology sheaves only in a fixed range).

Lemma 15.2. Let X be a quasi-compact and quasi-separated scheme. Let K, L be
objects of D(OX) with K perfect and L in Db

QCoh(OX). Then ExtnD(OX)(K,L) is
nonzero for only a finite number of n.

Proof. Since K is perfect we have

ExtiD(OX)(K,L) = Hi(X,K∧ ⊗L
OX

L)

where K∧ is the “dual” perfect complex to K, see Cohomology, Lemma 38.10. Note
that P = K∧ ⊗L

OX
L is in DQCoh(X) by Lemmas 3.7 and 9.1 (to see that a perfect

complex has quasi-coherent cohomology sheaves). On the other hand, the spectral
sequence

Ep,q1 = Hp(K∧ ⊗L
OX

Hq(L))⇒ Hp+q(K∧ ⊗L
OX

L) = Hp+q(P ),

the boundedness of L, and the finite tor amplitude of K∧ show that P has only
finitely many nonzero cohomology sheaves. It follows that Hn(X,P ) = 0 for n� 0.
But also Hn(X,P ) = 0 for n� 0 by Cohomology of Schemes, Lemma 4.3 and the
spectral sequence expressing Hn(X,P •) in terms of Hp(X,Hq(P •)) using that the
cohomology sheaves of P are quasi-coherent. �

The following result is taken from [BV03].

Theorem 15.3. Let X be a quasi-compact and quasi-separated scheme. Then
there exist a differential graded algebra (E, d) with only a finite number of nonzero
cohomology groups Hi(E) such that DQCoh(OX) is equivalent to D(E, d).

Proof. Let K• be a K-injective complex of O-modules which is perfect and gen-
erates DQCoh(OX). Such a thing exists by Theorem 13.3 and the existence of
K-injective resolutions. We will show the theorem holds with

(E,d) = HomCompdg(OX)(K
•,K•)

where Compdg(OX) is the differential graded category of complexes of O-modules.
Please see Differential Graded Algebra, Section 25. Since K• is K-injective we have

(15.3.1) Hn(E) = ExtnD(OX)(K
•,K•)

for all n ∈ Z. Only a finite number of these Exts are nonzero by Lemma 15.2.
Consider the functor

−⊗L
E K

• : D(E,d) −→ D(OX)

of Differential Graded Algebra, Lemma 25.3. Since K• is perfect, it defines a
compact object ofD(OX), see Proposition 14.1. Combined with (15.3.1) the functor
above is fully faithful as follows from Differential Graded Algebra, Lemmas 25.5.
It has a right adjoint

RHom(K•,−) : D(OX) −→ D(E,d)

by Differential Graded Algebra, Lemmas 25.4 which is a left quasi-inverse functor
by generalities on adjoint functors. On the other hand, it follows from Lemma 15.1
that we obtain

−⊗L
E K

• : D(E,d) −→ DQCoh(OX)
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and by our choice of K• as a generator of DQCoh(OX) the kernel of the adjoint
restricted to DQCoh(OX) is zero. A formal argument shows that we obtain the
desired equivalence, see Derived Categories, Lemma 7.2. �

Remark 15.4. Let X be a quasi-compact and quasi-separated scheme over a ring
R. By the construction of the proof of Theorem 15.3 there exists a differential
graded algebra (A,d) overR such thatDQCoh(X) isR-linearly equivalent toD(A,d)
as a triangulated category. One may ask: how unique is (A,d)? The answer is (only)
slightly better than just saying that (A,d) is well defined up to derived equivalence.
Namely, suppose that (B, d) is a second such pair. Then we have

(A,d) = HomCompdg(OX)(K
•,K•)

and

(B, d) = HomCompdg(OX)(L
•, L•)

for some K-injective complexes K• and L• of OX -modules corresponding to perfect
generators of DQCoh(OX). Set

Ω = HomCompdg(OX)(K
•, L•) Ω′ = HomCompdg(OX)(L

•,K•)

Then Ω is a differential graded Bopp ⊗R A-module and Ω′ is a differential graded
Aopp ⊗R B-module. Moreover, the equivalence

D(A,d)→ DQCoh(OX)→ D(B, d)

is given by the functor − ⊗L
A Ω′ and similarly for the quasi-inverse. Thus we are

in the situation of Differential Graded Algebra, Remark 27.10. If we ever need this
remark we will provide a precise statement with a detailed proof here.

16. Cohomology and base change, IV

This section continues the discussion of Cohomology of Schemes, Section 20.

Lemma 16.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of schemes. For E in DQCoh(OX) and K in DQCoh(OY ) we have

Rf∗(E)⊗L
OY

K = Rf∗(E ⊗L
OX

Lf∗K)

Proof. Without any assumptions there is a map Rf∗(E) ⊗L
OY

K → Rf∗(E ⊗L
OX

Lf∗K). Namely, it is the adjoint to the canonical map

Lf∗(Rf∗(E)⊗L
OY

K) = Lf∗(Rf∗(E))⊗L
OX

Lf∗K −→ E ⊗L
OX

Lf∗K

coming from the map Lf∗Rf∗E → E. See Cohomology, Lemmas 28.2 and 29.1.
To check it is an isomorphism we may work locally on Y . Hence we reduce to the
case that Y is affine.

Suppose that K =
⊕
Ki is a direct sum of some complexes Ki ∈ DQCoh(OY ). If

the statement holds for each Ki, then it holds for K. Namely, the functors Lf∗

and ⊗L preserve direct sums by construction and Rf∗ commutes with direct sums
(for complexes with quasi-coherent cohomology sheaves) by Lemma 4.2. Moreover,
suppose that K → L→M → K[1] is a distinguished triangle in DQCoh(Y ). Then
if the statement of the lemma holds for two of K,L,M , then it holds for the third
(as the functors involved are exact functors of triangulated categories).

Assume Y affine, say Y = Spec(A). The functor ˜ : D(A) → DQCoh(OY ) is an
equivalence (Lemma 3.4). Let T be the property for K ∈ D(A) that the statement
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of the lemma holds for K̃. The discussion above and More on Algebra, Remark
45.11 shows that it suffices to prove T holds for A[k]. This finishes the proof, as
the statement of the lemma is clear for shifts of the structure sheaf. �

Definition 16.2. Let S be a scheme. Let X, Y be schemes over S. We say X and
Y are Tor independent over S if for every x ∈ X and y ∈ Y mapping to the same
point s ∈ S the rings OX,x and OY,y are Tor independent over OS,s (see More on
Algebra, Definition 47.1).

Lemma 16.3. Let g : S′ → S be a morphism of schemes. Let f : X → S be
quasi-compact and quasi-separated. Consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

If X and S′ are Tor independent over S, then for all E ∈ DQCoh(OX) we have
Rf ′∗Lh

∗E = Lg∗Rf∗E.

Proof. For any object E of D(OX) we can use Cohomology, Remark 29.2 to get a
canonical base change map Lg∗Rf∗E → Rf ′∗Lh

∗E. To check this is an isomorphism
we may work locally on S′. Hence we may assume g : S′ → S is a morphism of
affine schemes. In particular, g is affine and it suffices to show that

Rg∗Lg
∗Rf∗E → Rg∗Rf

′
∗Lh

∗E = Rf∗(Rh∗Lh
∗E)

is an isomorphism, see Lemma 4.3 (and use Lemmas 3.6, 3.7, and 4.1 to see that the
objects Rf ′∗Lh

∗E and Lg∗Rf∗E have quasi-coherent cohomology sheaves). Note
that h is affine as well (Morphisms, Lemma 13.8). By Lemma 4.4 the map becomes
a map

Rf∗E ⊗L
OS

g∗OS′ −→ Rf∗(E ⊗L
OX

h∗OX′)

Observe that h∗OX′ = f∗g∗OS′ . Thus by Lemma 16.1 it suffices to prove that
Lf∗g∗OS′ = f∗g∗OS′ . This follows from our assumption that X and S′ are Tor
independent over S. Namely, to check it we may work locally on X, hence we may
also assume X is affine. Say X = Spec(A), S = Spec(R) and S′ = Spec(R′). Our
assumption implies that A and R′ are Tor independent over R (More on Algebra,

Lemma 47.4), i.e., TorRi (A,R′) = 0 for i > 0. In other words A ⊗L
R R

′ = A ⊗R R′
which exactly means that Lf∗g∗OS′ = f∗g∗OS′ (use Lemma 3.6). �

The following two lemmas remain true if we replace G with a bounded complex of
quasi-coherent OX -modules each flat over S.

Lemma 16.4. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E ∈ DQCoh(OX). Let G be a quasi-coherent OX-module flat over
S. Then formation of

Rf∗(E ⊗L
OX
G)

commutes with arbitrary base change (see proof for precise statement).
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Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

in other words X ′ = S′ ×S X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗(E ⊗L
OX
G) = Rf ′∗(E

′ ⊗L
OX′
G′)

To prove this, note that in Cohomology, Remark 29.2 we have constructed an arrow

Lg∗Rf∗(E ⊗L
OX
G) −→ R(f ′)∗(Lh

∗(E ⊗L
OX
G)) = R(f ′)∗(E

′ ⊗L
OX

Lh∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗(E ⊗L
OX
G) −→ Rf ′∗(E

′ ⊗L
OX′
G′)

To check this map is an isomorphism we may work locally on S′. Hence we may
assume g : S′ → S is a morphism of affine schemes. In this case, we will use
the induction principle to prove this map is always an isomorphism for any quasi-
compact and quasi-separated X over S (Cohomology of Schemes, Lemma 4.1).

Suppose X = Spec(A) is affine. The functor ˜ : D(A)→ DQCoh(OX) is an equiva-
lence (Lemma 3.4). Let T be the property for K ∈ D(A) that the canonical arrow

above is an isomorphism for E = K̃. If we have T (Ki) for a family of objects
Ki, then we have T (

⊕
Ki). Namely, derived tensor product and derived pullback

commute with direct sums and the same holds for total direct image in this case
by Lemma 4.2. Moreover, if T holds for two out of three objects of a distinguished
triangle, then it holds for the third (Derived Categories, Lemma 4.3). By More on
Algebra, Remark 45.11 this shows that it suffices to prove T holds for A[k]. This
reduces us to the case E = OX . In this case we are saying that Lg∗f∗G = g∗f∗G
(by flatness of G over S) equals f ′∗h

∗G which holds by Cohomology of Schemes,
Lemma 5.1.

The induction step. Suppose that X = U ∪ V is an open covering with U , V ,
U ∩ V quasi-compact such that the result holds for the restriction of E and G to
U , V , and U ∩ V . Denote a = f |U , b = f |V and c = f |U∩V . Let a′ : U ′ → S′,
b′ : V ′ → S′ and c′ : U ′ ∩ V ′ → S′ be the base changes of a, b, and c. Note that
formation of − ⊗L − commutes with restriction to opens. Set H = E ⊗L

OX
G and

H ′ = E′ ⊗L
OX′
G′. Using the distinguished triangles from relative Mayer-Vietoris
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(Cohomology, Lemma 30.8) we obtain a commutative diagram

Lg∗Rf∗H //

��

Rf ′∗H
′

��
Lg∗Ra∗H|U ⊕ Lg∗Rb∗H|V //

��

Ra′∗H
′|U ′ ⊕Rb′∗H ′|V ′

��
Lg∗Rc∗H|U∩V //

��

Rc′∗H
′|U ′∩V ′

��
Lg∗Rf∗H[1] // Rf ′∗H

′[1]

Since the 2nd and 3rd horizontal arrows are isomorphisms so is the first (Derived
Categories, Lemma 4.3) and the proof of the lemma is finished. �

Lemma 16.5. Let f : X → S be a quasi-compact and quasi-separated morphism
of schemes. Let E ∈ D(OX) be perfect. Let G be a quasi-coherent OX-module flat
over S. Then formation of

Rf∗RHom(E,G)

commutes with arbitrary base change (see proof for precise statement).

Proof. The statement means the following. Let g : S′ → S be a morphism of
schemes and consider the base change diagram

X ′
h
//

f ′

��

X

f

��
S′

g // S

in other words X ′ = S′ ×S X. Set E′ = Lh∗E and G′ = h∗G (here we do not use
the derived pullback). The lemma asserts that we have

Lg∗Rf∗RHom(E,G) = Rf ′∗RHom(E′,G′)

To prove this, note that in Cohomology, Remark 34.10 we have constructed an
arrow

Lg∗Rf∗RHom(E,G) −→ R(f ′)∗RHom(Lh∗E,Lh∗G)

which we can compose with the map Lh∗G → h∗G to get a canonical map

Lg∗Rf∗RHom(E,G)→ Rf ′∗RHom(E′,G′)

With these preliminaries out of the way, we deduce the result from Lemma 16.4.
Namely, since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology, Lemma 38.10, such that RHom(E,G) = Edual ⊗L

OX
G. We omit the

verification that the base change map of Lemma 16.4 for Edual agrees with the base
change map for E constructed above. �
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17. Producing perfect complexes

The following lemma is our main technical tool for producing perfect complexes.
Later versions of this result will reduce to this by Noetherian approximation, see
Section 20.

Lemma 17.1. Let S be a Noetherian scheme. Let f : X → S be a morphism of
schemes which is locally of finite type. Let E ∈ D(OX) such that

(1) E ∈ Db
Coh(OX),

(2) the scheme theoretic support of Hi(E) is proper over S for all i,
(3) E has finite tor dimension as an object of D(f−1OS).

Then Rf∗E is a perfect object of D(OS).

Proof. By Lemma 5.1 we see that Rf∗E is an object of Db
Coh(OS). Hence Rf∗E

is pseudo-coherent (Lemma 9.4). Hence it suffices to show that Rf∗E has finite tor
dimension, see Cohomology, Lemma 38.4. By Lemma 9.6 it suffices to check that
Rf∗(E)⊗L

OS
F has universally bounded cohomology for all quasi-coherent sheaves

F on S. Bounded from above is clear as Rf∗(E) is bounded from above. Let
T ⊂ X be the union of the supports of Hi(E) for all i. Then T is proper over S by
assumptions (1) and (2). In particular there exists a quasi-compact open X ′ ⊂ X
containing T . Setting f ′ = f |X′ we have Rf∗(E) = Rf ′∗(E|X′) because E restricts
to zero on X \ T . Thus we may replace X by X ′ and assume f is quasi-compact.
Moreover, f is quasi-separated by Morphisms, Lemma 16.7. Now

Rf∗(E)⊗L
OS
F = Rf∗

(
E ⊗L

OX
Lf∗F

)
= Rf∗

(
E ⊗L

f−1OS
f−1F

)
by Lemma 16.1 and Cohomology, Lemma 28.3. By assumption (3) the complex
E ⊗L

f−1OS
f−1F has cohomology sheaves in a given finite range, say [a, b]. Then

Rf∗ of it has cohomology in the range [a,∞) and we win. �

18. Cohomology, Ext groups, and base change

The results in this section will be used to verify one of Artin’s criteria for Quot
functors, Hilbert schemes, and other moduli problems.

Lemma 18.1. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G be
a coherent OX-module flat over S with scheme theoretic support proper over S.
Then K = Rf∗(E ⊗L

OX
G) is a perfect object of D(OS) and there are functorial

isomorphisms

Hi(S,K ⊗L
OS
F) −→ Hi(X,E ⊗L

OX
(G ⊗OX

f∗F))

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. We have

G ⊗L
OX

Lf∗F = G ⊗L
f−1OS

f−1F = G ⊗f−1OS
f−1F = G ⊗OX

f∗F
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the first equality by Cohomology, Lemma 28.3, the second as G is a flat f−1OS-
module, and the third by definition of pullbacks. Hence we obtain

Hi(X,E ⊗L
OX

(G ⊗OX
f∗F)) = Hi(X,E ⊗L

OX
G ⊗L

OX
Lf∗F)

= Hi(S,Rf∗(E ⊗L
OX
G ⊗L

OX
Lf∗F))

= Hi(S,Rf∗(E ⊗L
OX
G)⊗L

OS
F)

= Hi(S,K ⊗L
OS
F)

The first equality by the above, the second by Leray (Cohomology, Lemma 14.1),
and the third equality by Lemma 16.1. The object K is perfect by Lemma 17.1.
We check the lemma applies: Locally E is isomorphic to a finite complex of finite
free OX -modules. Hence locally E ⊗L

OX
G is isomorphic to a finite complex whose

terms are finite direct sums of copies G. This immediately implies the hypotheses
on the cohomology sheaves Hi(E ⊗L

OX
G). The hypothesis on the tor dimension

also follows as G is flat over f−1OS .

The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 of quasi-coherent OS-modules, the isomorphisms
fit into commutative diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

Hi(X,E ⊗L
OX

(G ⊗OX
f∗F3))

δ

��
Hi+1(S,K ⊗L

OS
F1) // Hi+1(X,E ⊗L

OX
(G ⊗OX

f∗F1))

where the boundary maps come from the distinguished triangle

K ⊗L
OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX
f∗F1 → G ⊗OX

f∗F2 → G ⊗OX
f∗F3 → 0

This sequence is exact because G is flat over S. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 18.2. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) be perfect. Let G be
a coherent OX-module flat over S with scheme theoretic support proper over S.
Then K = Rf∗RHom(E,G) is a perfect object of D(OS) and there are functorial
isomorphisms

Hi(S,K ⊗L
OS
F) −→ ExtiOX

(E,G ⊗OX
f∗F)

for F quasi-coherent on S compatible with boundary maps (see proof).

Proof. Since E is a perfect complex there exists a dual perfect complex Edual, see
Cohomology, Lemma 38.10. Observe that RHom(E,G) = Edual ⊗L

OX
G and that

ExtiOX
(E,G ⊗OX

f∗F) = Hi(X,Edual ⊗L
OX

(G ⊗OX
f∗F))

by construction of Edual. Thus the perfectness of K and the isomorphisms follow
from the corresponding results of Lemma 18.1 applied to Edual and G.
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The statement on boundary maps means the following: Given a short exact se-
quence 0 → F1 → F2 → F3 → 0 then the isomorphisms fit into commutative
diagrams

Hi(S,K ⊗L
OS
F3) //

δ

��

ExtiOX
(E,G ⊗OX

f∗F3)

δ

��
Hi+1(S,K ⊗L

OS
F1) // Exti+1

OX
(E,G ⊗OX

f∗F1)

where the boundary maps come from the distinguished triangle

K ⊗L
OS
F1 → K ⊗L

OS
F2 → K ⊗L

OS
F3 → K ⊗L

OS
F1[1]

and the distinguished triangle in D(OX) associated to the short exact sequence

0→ G ⊗OX
f∗F1 → G ⊗OX

f∗F2 → G ⊗OX
f∗F3 → 0

This sequence is exact because G is flat over S. We omit the verification of the
commutativity of the displayed diagram. �

Lemma 18.3. Let S be a Noetherian scheme. Let f : X → S be a morphism
of schemes which is locally of finite type. Let E ∈ D(OX) and G an OX-module.
Assume

(1) E ∈ D−Coh(OX), and
(2) G is a coherent OX-module flat over S with scheme theoretic support is

proper over S.

Then for every m ∈ Z there exists a perfect object K of D(OS) and functorial maps

αiF : ExtiOX
(E,G ⊗OX

f∗F) −→ Hi(S,K ⊗L
OS
F)

for F quasi-coherent on S compatible with boundary maps (see proof) such that αiF
is an isomorphism for i ≤ m.

Proof. We may replace X by a quasi-compact open neighbourhood of the support
of G, hence we may assume X is Noetherian. In this case X and f are quasi-compact
and quasi-separated. Choose an approximation P → E by a perfect complex P of
(X,E,−m− 1) (possible by Theorem 12.6). Then the induced map

ExtiOX
(E,G ⊗OX

f∗F) −→ ExtiOX
(P,G ⊗OX

f∗F)

is an isomorphism for i ≤ m. Namely, the kernel, resp. cokernel of this map is a
quotient, resp. submodule of

ExtiOX
(C,G ⊗OX

f∗F) resp. Exti+1
OX

(C,G ⊗OX
f∗F)

where C is the cone of P → E. Since C has vanishing cohomology sheaves in
degrees ≥ −m− 1 these Ext-groups are zero for i ≤ m+ 1 by Derived Categories,
Lemma 27.3. This reduces us to the case that E is a perfect complex which is
Lemma 18.2.

The statement on boundaries is explained in the proof of Lemma 18.2. �
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19. Limits and derived categories

In this section we collect some results about the derived category of a scheme which
is the limit of an inverse system of schemes. More precisely, we will work in the
following setting.

Situation 19.1. Let S = limi∈I Si be a limit of a directed system of schemes over
S with affine transition morphisms fi′i : Si′ → Si. We assume that Si is quasi-
compact and quasi-separated for all i ∈ I. We denote fi : S → Si the projection.
We also fix an element 0 ∈ I.

Lemma 19.2. In Situation 19.1. Let E0 and K0 be objects of D(OS0
). Set Ei =

Lf∗i0E0 and Ki = Lf∗i0K0 for i ≥ 0 and set E = Lf∗0E0 and K = Lf∗0K0. Then
the map

colimi≥0 HomD(OSi
)(Ei,Ki) −→ HomD(OS)(E,K)

is an isomorphism if either

(1) E0 is perfect and K0 ∈ DQCoh(OS0), or
(2) E0 is pseudo-coherent and K0 ∈ DQCoh(OS0

) has finite tor dimension.

Proof. For every open U0 ⊂ S0 consider the condition P that the canonical map

colimi≥0 HomD(OUi
)(Ei|Ui ,Ki|Ui) −→ HomD(OU )(E|U ,K|U )

is an isomorphism, where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We will prove P
holds for all quasi-compact opens U0 by the induction principle of Cohomology of
Schemes, Lemma 4.1. Condition (2) of this lemma follows immediately from Mayer-
Vietoris for hom in the derived category, see Cohomology, Lemma 30.6. Thus it
suffices to prove the lemma when S0 is affine.

Assume S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and S = Spec(A). We will
use Lemma 3.4 without further mention.

In case (1) the object E•0 corresponds to a finite complex of finite projective A0-
modules, see Lemma 9.7. We may represent the object K0 by a K-flat complex K•0
of A0-modules. In this situation we are trying to prove

colimi≥0 HomD(Ai)(E
•
0 ⊗A0 Ai,K

•
0 ⊗A0 Ai) −→ HomD(A)(E

•
0 ⊗A0 A,K

•
0 ⊗A0 A)

Because E•0 is a bounded above complex of projective modules we can rewrite this
as

colimi≥0 HomK(A0)(E
•
0 ,K

•
0 ⊗A0

Ai) −→ HomK(A0)(E
•
0 ,K

•
0 ⊗A0

A)

Since there are only a finite number of nonzero modules En0 and since these are all
finitely presented modules, this map is an isomorphism.

In case (2) the object E0 corresponds to a bounded above complex E•0 of finite free
A0-modules, see Lemma 9.3. We may represent K0 by a finite complex K•0 of flat
A0-modules, see Lemma 9.5 and More on Algebra, Lemma 51.3. In particular K•0
is K-flat and we can argue as before to arrive at the map

colimi≥0 HomK(A0)(E
•
0 ,K

•
0 ⊗A0

Ai) −→ HomK(A0)(E
•
0 ,K

•
0 ⊗A0

A)

It is clear that this map is an isomorphism (only a finite number of terms are
involved since K•0 is bounded). �

Lemma 19.3. In Situation 19.1 the category of perfect objects of D(OS) is the
colimit of the categories of perfect objects of D(OSi).
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Proof. For every open U0 ⊂ S0 consider the condition P that the functor

colimi≥0Dperf (OUi
) −→ Dperf (OU )

is an equivalence where perf indicates the full subcategory of perfect objects and

where U = f−1
0 (U0) and Ui = f−1

i0 (U0). We will prove P holds for all quasi-compact
opens U0 by the induction principle of Cohomology of Schemes, Lemma 4.1. First,
we observe that we already know the functor is fully faithful by Lemma 19.2. Thus
it suffices to prove essential surjectivity.

We first check condition (2) of the induction principle. Thus suppose that we have
S0 = U0 ∪ V0 and that P holds for U0, V0, and U0 ∩ V0. Let E be a perfect object
of D(OS). We can find i ≥ 0 and EU,i perfect on Ui and EV,i perfect on Vi whose
pullback to U and V are isomorphic to E|U and E|V . Denote

a : EU,i → (Rfi,∗E)|Ui
and b : EV,i → (Rfi,∗E)|Vi

the maps adjoint to the isomorphisms Lf∗i EU,i → E|U and Lf∗i EV,i → E|V . By
fully faithfulness, after increasing i, we can find an isomorphism c : EU,i|Ui∩Vi

→
EV,i|Ui∩Vi

which pulls back to the identifications

Lf∗i EU,i|U∩V → E|U∩V → Lf∗i EV,i|U∩V .
Apply Cohomology, Lemma 30.10 to get an object Ei on Si and a map d : Ei →
Rfi,∗E which restricts to the maps a and b over Ui and Vi. Then it is clear that Ei
is perfect and that d is adjoint to an isomorphism Lf∗i Ei → E.

Finally, we check condition (1) of the induction principle, in other words, we check
the lemma holds when S0 is affine. Say S0 = Spec(A0), Si = Spec(Ai), and
S = Spec(A). Using Lemmas 3.4 and 9.7 we see that we have to show that

Dperf (A) = colimDperf (Ai)

This is clear from the fact that perfect complexes over rings are given by finite
complexes of finite projective (hence finitely presented) modules. �

20. Cohomology and base change, V

A final section on cohomology and base change continueing the discussion of Sec-
tions 16 and 17. An easy to grok special case is given in Remark 20.2.

Lemma 20.1. Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G be a finitely presented OX-module, flat over S,
with support proper over S. Then

K = Rf∗(E ⊗L
OX
G)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 16.4. Thus it suffices to show that
K is a perfect object. If S is Noetherian, then this follows from Lemma 18.1. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say S = Spec(R).
We write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits,
Lemma 9.1 there exists an i and a scheme Xi of finite presentation over Ri whose
base change to R is X. By Limits, Lemma 9.2 we may assume after increasing
i, that there exists a finitely presented OXi

-module Gi whose pullback to X is G.
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After increasing i we may assume Gi is flat over Ri, see Limits, Lemma 9.3. After
increasing i we may assume the support of Gi is proper over Ri, see Limits, Lemma
12.7. Finally, by Lemma 19.3 we may, after increasing i, assume there exists a
perfect object Ei of D(OXi

) whose pullback to X is E. Applying Lemma 18.1 to
Xi → Spec(Ri), Ei, Gi and using the base change property already shown we obtain
the result. �

Remark 20.2. Let R be a ring. Let X be a scheme of finite presentation over R.
Let G be a finitely presented OX -module flat over R with scheme theoretic support
proper over R. By Lemma 20.1 there exists a finite complex of finite projective
R-modules M• such that we have

RΓ(XR′ ,GR′) = M• ⊗R R′

functorially in the R-algebra R′.

Lemma 20.3. Let f : X → S be a morphism of finite presentation. Let E ∈
D(OX) be a perfect object. Let G be a finitely presented OX-module, flat over S,
with support proper over S. Then

K = Rf∗RHom(E,G)

is a perfect object of D(OS) and its formation commutes with arbitrary base change.

Proof. The statement on base change is Lemma 16.5. Thus it suffices to show that
K is a perfect object. If S is Noetherian, then this follows from Lemma 18.2. We
will reduce to this case by Noetherian approximation. We encourage the reader to
skip the rest of this proof.

The question is local on S, hence we may assume S is affine. Say S = Spec(R).
We write R = colimRi as a filtered colimit of Noetherian rings Ri. By Limits,
Lemma 9.1 there exists an i and a scheme Xi of finite presentation over Ri whose
base change to R is X. By Limits, Lemma 9.2 we may assume after increasing
i, that there exists a finitely presented OXi

-module Gi whose pullback to X is G.
After increasing i we may assume Gi is flat over Ri, see Limits, Lemma 9.3. After
increasing i we may assume the support of Gi is proper over Ri, see Limits, Lemma
12.7. Finally, by Lemma 19.3 we may, after increasing i, assume there exists a
perfect object Ei of D(OXi) whose pullback to X is E. Applying Lemma 18.2 to
Xi → Spec(Ri), Ei, Gi and using the base change property already shown we obtain
the result. �
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