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1. Algebra

This first section just contains some assorted questions.

Exercise 1.1. Let A be a ring, and m a maximal ideal. In A[X] let m; = (m, X)
and my = (m, X — 1). Show that

AlX]w, = AlX]n,-

Exercise| 1.2. Find an example of a non Noetherian ring R such that every finitely
generated ideal of R is finitely presented as an R-module. (A ring is said to be
coherent if the last property holds.)

Exercise 1.3. Suppose that (A, m, k) is a Noetherian local ring. For any finite
A-module M define (M) to be the minimum number of generators of M as an
A-module. This number equals dimy M/mM = dim; M ® 4 k by NAK.
(1) Show that (M ®a N) =r(M)r(N).
(2) Let I C A be an ideal with 7(I) > 1. Show that r(I%) < r(I).
(3) Conclude that if every ideal in A is a flat module, then A is a PID (or a
field).

Exercise| 1.4. Let k be a field. Show that the following pairs of k-algebras are not
isomorphic:

(1) k[xq1,...,x,] and k[z1, ..., Tpy1] for any n > 1.
(2) kla,b,c,d,e, f]/(ab+ cd+ ef) and k[z1,...,x,] for n = 5.
(3) k[a,b,c,d,e, f]/(ab+ cd + ef) and klx1,...,z,] for n =6.

Remark| 1.5. Of course the idea of this exercise is to find a simple argument in
each case rather than applying a “big” theorem. Nonetheless it is good to be guided
by general principles.

Exercise 1.6. Algebra. (Silly and should be easy.)

(1) Give an example of a ring A and a nonsplit short exact sequence of A-
modules
0— M, — My — M3 — 0.

(2) Give an example of a nonsplit sequence of A-modules as above and a faith-
fully flat A — B such that

0— M ®4B— My®4B— M3z®4 B —0.
is split as a sequence of B-modules.

Exercise| 1.7. Suppose that k is a field having a primitive nth root of unity (.
This means that (" =1, but ("™ # 1 for 0 < m < n.

(1) Show that the characteristic of k is prime to n.
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EXERCISES 3

(2) Suppose that a € k is an element of k& which is not an dth power in k for
any divisor d of n, in > d > 1. Show that k[z]/(z™ — a) is a field. (Hint:
Consider a splitting field for 2™ — a and use Galois theory.)

Exercise 1.8. Let v : k[z] \ {0} — Z be a map with the following properties:
v(fg) = v(f) + v(g) whenever f, g not zero, and v(f + g) > min(v(f),v(g))
whenever f, g, f + g are not zero, and v(c) = 0 for all ¢ € k*.
(1) Show that if f, g, and f + g are nonzero and v(f) # v(g) then we have
equality v(f + g) = min(v(f),v(g)).
(2) Show that if f = > a;a", f # 0, then v(f) > min({iv(z)}a,20). When
does equality hold?

(3) Show that if v attains a negative value then v(f) = —ndeg(f) for some
n € N.
(4) Suppose v(z) > 0. Show that {f | f =0, or v(f) > 0} is a prime ideal of

(5) Describe all possible v.

Let A be a ring. An idempotent is an element e € A such that e? = e. The elements
1 and 0 are always idempotent. A nontrivial idempotent is an idempotent which is
not equal to zero. Two idempotents e, ¢’ € A are called orthogonal if ee’ = 0.

Exercise| 1.9. Let A be a ring. Show that A is a product of two nonzero rings if
and only if A has a nontrivial idempotent.

Exercise| 1.10. Let A be a ring and let I C A be a locally nilpotent ideal. Show
that the map A — A/I induces a bijection on idempotents. (Hint: It may be easier
to prove this when I is nilpotent. Do this first. Then use “absolute Noetherian
reduction” to reduce to the nilpotent case.)

2. Colimits

Definition 2.1. A directed partially ordered set is a nonempty set I endowed with
a partial ordering < such that given any pair i,5 € I there exists a k € I such
that i < k and j < k. A system of rings over I is given by a ring A; for each
i € I and a map of rings ¢;; : A; = A; whenever ¢ < j such that the composition
A — Aj — Ay is equal to A; — Ay, whenever 1 < j < k.

One similarly defines systems of groups, modules over a fixed ring, vector spaces

over a field, etc.

Exercise 2.2. Let I be a directed partially ordered set and let (A;, ¢;;) be a system
of rings over I. Show that there exists a ring A and maps ¢; : A; — A such that
@ 0 @i = ; for all ¢ < j with the following universal property: Given any ring
B and maps 1; : A; — B such that 1, o ¢;; = 1; for all ¢ < j, then there exists a
unique ring map v : A — B such that ¢; = ¥ o ;.

Definition 2.3. The ring A constructed in Exercise [2.2]is called the colimit of the
system. Notation colim A4;.

Exercise 2.4. Let (I,>) be a directed partially ordered set and let (4;, ¢;;) be a
system of rings over I with colimit A. Prove that there is a bijection

Spec(A) = {(pi)ier | i © A; and p; = ¢} (p;) Vi < 5} €[], Spec(ay)
The set on the right hand side is the limit of the sets Spec(4;). Notation lim Spec(4;).
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4 EXERCISES

Exercise 2.5. Let (I,>) be a directed partially ordered set and let (A4;,¢;;) be
a system of rings over I with colimit A. Suppose that Spec(A;) — Spec(A4;) is
surjective for all ¢ < j. Show that Spec(A) — Spec(A4;) is surjective for all 4. (Hint:
You can try to use Tychonoff, but there is also a basically trivial direct algebraic
proof based on Algebra, Lemma [16.9])

Exercise 2.6. Let A C B be an integral ring extension. Prove that Spec(B) —
Spec(A) is surjective. Use the exercises above, the fact that this holds for a finite
ring extension (proved in the lectures), and by proving that B = colim B; is a
directed colimit of finite extensions A C B;.

Exercise 2.7. Let (I,>) be a partially ordered set which is directed. Let A be a
ring and let (N;, ¢; ) be a directed system of A-modules indexed by I. Suppose
that M is another A-module. Prove that

COIimieI M ®A Nz =M ®A (Colimiel Nz)

Definition 2.8. A module M over R is said to be of finite presentation over R if
it is isomorphic to the cokernel of a map of finite free modules R®"* — R,

Exercise| 2.9. Prove that any module over any ring is

(1) the colimit of its finitely generated submodules, and
(2) in some way a colimit of finitely presented modules.

3. Additive and abelian categories

Exercise| 3.1. Let k be a field. Let C be the category of filtered vector spaces
over k, see Homology, Definition for the definition of a filtered object of any
category.
(1) Show that this is an additive category (explain carefuly what the direct
sum of two objects is).
(2) Let f: (V,F) — (W, F) be a morphism of C. Show that f has a kernel and
cokernel (explain precisely what the kernel and cokernel of f are).
(3) Give an example of a map of C such that the canonical map Coim(f) —
Im(f) is not an isomorphism.

Exercise| 3.2. Let R be a Noetherian domain. Let C be the category of finitely
generated torsion free R-modules.
(1) Show that this is an additive category.
(2) Let f: N — M be a morphism of C. Show that f has a kernel and cokernel
(make sure you define precisely what the kernel and cokernel of f are).
(3) Give an example of a Noetherian domain R and a map of C such that the
canonical map Coim(f) — Im(f) is not an isomorphism.

Exercise| 3.3. Give an example of a category which is additive and has kernels
and cokernels but which is not as in Exercises B.1] and 3.2
4. Flat ring maps

Exercise| 4.1. Let S be a multiplicative subset of the ring A.

(1) For an A-module M show that S™!M = S™1A®4 M.
(2) Show that S~1A is flat over A.
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Exercise| 4.2. Find an injection M; — My of A-modules such that M; @ N —
My ® N is not injective in the following cases:

(1) A=k[z,y] and N = (z,y) C A. (Here and below k is a field.)
(2) A=klz,y] and N = A/(z,y).

Exercise| 4.3. Give an example of a ring A and a finite A-module M which is a
flat but not a projective A-module.

Remark]| 4.4. If M is of finite presentation and flat over A, then M is projective
over A. Thus your example will have to involve a ring A which is not Noetherian.
I know of an example where A is the ring of C*°-functions on R.

Exercise 4.5. Find a flat but not free module over Z,).

Exercise 4.6. Flat deformations.

(1) Suppose that k is a field and k[e] is the ring of dual numbers k[e] = k[z]/(z?)
and e = Z. Show that for any k-algebra A there is a flat k[e]-algebra B such
that A is isomorphic to B/eB.

(2) Suppose that k =F, = Z/pZ and

A= k[$1,$2,$37$4,$5, 376}/(55117»55571?7552,5515)’1'16))-

Show that there exists a flat Z /p?Z-algebra B such that B/pB is isomorphic
to A. (So here p plays the role of €.)
(3) Now let p =2 and consider the same question for k = Fy = Z/2Z and
A = k[z1, 2, w3, 74, 5, 6] / (27, 25, 23, 25, 43, 45, 1172 + T3y + T5T6).

However, in this case show that there does not exist a flat Z/4Z-algebra B
such that B/2B is isomorphic to A. (Find the trick! The same example
works in arbitrary characteristic p > 0, except that the computation is
more difficult.)

Exercise 4.7. Let (A, m, k) be a local ring and let & C &’ be a finite field extension.
Show there exists a flat, local map of local rings A — B such that mg = mB and
B/mB is isomorphic to k' as k-algebra. (Hint: first do the case where k C k' is
generated by a single element.)

Remark| 4.8. The same result holds for arbitrary field extensions k C K.

5. The Spectrum of a ring
Exercise 5.1. Compute Spec(Z) as a set and describe its topology.

Exercise 5.2. Let A be any ring. For f € A we define D(f) :={p C A| f &€ p}.
Prove that the open subsets D(f) form a basis of the topology of Spec(A).

Exercise 5.3. Prove that the map I — V/(I) defines a natural bijection
{I ¢ A with I =VT} — {T C Spec(A) closed}

Definition 5.4. A topological space X is called quasi-compact if for any open
covering X = |J,.;U; there is a finite subset {i1,...,4,} C I such that X =
Uij,U...U,,.

icl

Exercise 5.5. Prove that Spec(A) is quasi-compact for any ring A.
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Definition 5.6. A topological space X is said to verify the separation axiom Ty if
for any pair of points z,y € X, x # y there is an open subset of X containing one
but not the other. We say that X is Hausdorff if for any pair x,y € X, x # y there
are disjoint open subsets U,V such that x € U and y € V.

Exercise 5.7. Show that Spec(A) is not Hausdorff in general. Prove that Spec(A)
is Ty. Give an example of a topological space X that is not Tj.

Remark|/ 5.8. Usually the word compact is reserved for quasi-compact and Haus-
dorff spaces.

Definition 5.9. A topological space X is called irreducible if X is not empty and
if X =277 UZy with Z7,Zy C X closed, then either Z; = X or Zs = X. A subset
T C X of a topological space is called irreducible if it is an irreducible topological
space with the topology induced from X. This definition implies T is irreducible if
and only if the closure T of T in X is irreducible.

Exercise 5.10. Prove that Spec(A) is irreducible if and only if Nil(A) is a prime
ideal and that in this case it is the unique minimal prime ideal of A.

Exercise 5.11. Prove that a closed subset T' C Spec(A) is irreducible if and only
if it is of the form T' = V/(p) for some prime ideal p C A.

Definition 5.12. A point x of an irreducible topological space X is called a generic
point of X if X is equal to the closure of the subset {z}.

Exercise| 5.13. Show that in a Tj space X every irreducible closed subset has at
most one generic point.

Exercise 5.14. Prove that in Spec(A) every irreducible closed subset does have a
generic point. In fact show that the map p — {p} is a bijection of Spec(A) with
the set of irreducible closed subsets of X.

Exercise 5.15. Give an example to show that an irreducible subset of Spec(Z)
does not neccesarily have a generic point.

Definition 5.16. A topological space X is called Noetherian if any decreasing
sequence Z; D Za D Zs D ... of closed subsets of X stabilizes. (It is called
Artinian if any increasing sequence of closed subsets stabilizes.)

Exercise| 5.17. Show that if the ring A is Noetherian then the topological space
Spec(A) is Noetherian. Give an example to show that the converse is false. (The
same for Artinian if you like.)

Definition/ 5.18. A maximal irreducible subset T C X is called an irreducible
component of the space X. Such an irreducible component of X is automatically a
closed subset of X.

Exercise|5.19. Prove that any irreducible subset of X is contained in an irreducible
component of X.

Exercise|5.20. Prove that a Noetherian topological space X has only finitely many
irreducible components, say Xi,...,X,, and that X = X; UX,U...UX,. (Note
that any X is always the union of its irreducible components, but that if X = R
with its usual topology for instance then the irreducible components of X are the
one point subsets. This is not terribly interesting.)
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Exercise 5.21. Show that irreducible components of Spec(A) correspond to min-
imal primes of A.

Definition 5.22. A point z € X is called closed if {x} = {z}. Let x,y be points
of X. We say that x is a specialization of y, or that y is a generalization of x if

z € {y}.

Exercise 5.23. Show that closed points of Spec(A) correspond to maximal ideals
of A.

Exercise 5.24. Show that p is a generalization of q in Spec(A) if and only if p C g.
Characterize closed points, maximal ideals, generic points and minimal prime ideals
in terms of generalization and specialization. (Here we use the terminology that a
point of a possibly reducible topological space X is called a generic point if it is a
generic points of one of the irreducible components of X.)

Exercise 5.25. Let I and J be ideals of A. What is the condition for V(I) and
V(J) to be disjoint?

Definition 5.26. A topological space X is called connected if it is nonempty and
not the union of two nonempty disjoint open subsets. A connected component
of X is a maximal connected subset. Any point of X is contained in a connected
component of X and any connected component of X is closed in X. (But in general
a connected component need not be open in X.)

Exercise 5.27. Let A be a nonzero ring. Show that Spec(A) is disconnected iff
A= B x C for certain nonzero rings B, C.

Exercise 5.28. Let T be a connected component of Spec(A). Prove that T is
stable under generalization. Prove that T is an open subset of Spec(A) if A is
Noetherian. (Remark: This is wrong when A is an infinite product of copies of Fa
for example. The spectrum of this ring consists of infinitely many closed points.)

Exercise 5.29. Compute Spec(k[z]), i.e., describe the prime ideals in this ring,
describe the possible specializations, and describe the topology. (Work this out
when k is algebraically closed but also when k is not.)

Exercise 5.30. Compute Spec(k[z,y]), where k is algebraically closed. [Hint: use
the morphism ¢ : Spec(k[z,y]) — Spec(k[z]); if ¢(p) = (0) then localize with
respect to S = {f € k[z] | f # 0} and use result of lecture on localization and
Spec.] (Why do you think algebraic geometers call this affine 2-space?)

Exercise 5.31. Compute Spec(Z[y]). [Hint: as above.] (Affine 1-space over Z.)

6. Localization

Exercise| 6.1. Let A be a ring. Let S C A be a multiplicative subset. Let M
be an A-module. Let N C S™'M be an S~!A-submodule. Show that there exists
an A-submodule N’ C M such that N = S~!N’. (This useful result applies in
particular to ideals of S~ A.)

Exercise| 6.2. Let A be a ring. Let M be an A-module. Let m € M.
(1) Show that I = {a € A | am = 0} is an ideal of A.

(2) For a prime p of A show that the image of m in M, is zero if and only if
I¢p.
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(3) Show that m is zero if and only if the image of m is zero in M, for all
primes p of A.

(4) Show that m is zero if and only if the image of m is zero in My, for all
maximal ideals m of A.

(5) Show that M = 0 if and only if M, is zero for all maximal ideals m.

Exercise 6.3. Find a pair (4, f) where A is a domain with three or more pairwise
distinct primes and f € A is an element such that the principal localization Ay =
{1, f, f%, ...} 1A is a field.

Exercise| 6.4. Let A be a ring. Let M be a finite A-module. Let S C A be a
multiplicative set. Assume that S™'M = 0. Show that there exists an f € S such
that the principal localization My = {1, f, f2,...} 7'M is zero.

Exercise 6.5. Give an example of a triple (A, I, S) where Aisaring, 0 # I # A is
a proper nonzero ideal, and S C A is a multiplicative subset such that A/I = S~1A
as A-algebras.

7. Nakayama’s Lemma

Exercise| 7.1. Let A be a ring. Let I be an ideal of A. Let M be an A-module.
Let x1,...,x, € M. Assume that

(1) M/IM is generated by z1,...,Zn,

(2) M is a finite A-module,

(3) I is contained in every maximal ideal of A.

Show that x1,...,x, generate M. (Suggested solution: Reduce to a localization at
a maximal ideal of A using Exercise [6.2] and exactness of localization. Then reduce
to the statement of Nakayama’s lemma in the lectures by looking at the quotient
of M by the submodule generated by z1,...,2,.)

8. Length

Definition 8.1. Let A be a ring. Let M be an A-module. The length of M as an
R-module is

length , (M) =sup{n |30=My C M; C...C M, =M, M; # M;:1}.
In other words, the supremum of the lengths of chains of submodules.

Exercise| 8.2. Show that a module M over a ring A has length 1 if and only if it
is isomorphic to A/m for some maximal ideal m in A.

Exercise| 8.3. Compute the length of the following modules over the following
rings. Briefly(!) explain your answer. (Please feel free to use additivity of the
length function in short exact sequences, see Algebra, Lemma [50.3]).

(1) The length of Z/120Z over Z.

(2) The length of Clz]/(z1%° + x + 1) over Clx].

(3) The length of R[x]/(x* + 222 + 1) over R]z].
Exercise 8.4. Let A = k[z,y] (s, be the local ring of the affine plane at the origin.
Make any assumption you like about the field k. Suppose that f = 3 + 29?4 4100
and g = y® — 2%9%9. What is the length of A/(f,g) as an A-module? (Possible way
to proceed: think about the ideal that f and g generate in quotients of the form
Ajm% = k[z,y]/(xz,y)™ for varying n. Try to find n such that A/(f,g) + m’} =
A/(f,g) +m;"! and use NAK.)
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9. Singularities

Exercise 9.1. Let k be any field. Suppose that A = k[z,y]]/(f) and B =
E[[u,v]]/(g), where f = zy and g = uv + § with § € (u,v)®. Show that A and
B are isomorphic rings.

Remark| 9.2. A singularity on a curve over a field k is called an ordinary double
point if the complete local ring of the curve at the point is of the form &'[[x, y]]/(f),
where (a) k" is a finite separable extension of k, (b) the initial term of f has degree
two, i.e., it looks like ¢ = ax? + bxy + cy? for some a, b, ¢ € k' not all zero, and (c) q
is a nondegenerate quadratic form over &’ (in char 2 this means that b is not zero).
In general there is one isomorphism class of such rings for each isomorphism class
of pairs (K, q).

10. Hilbert Nullstellensatz

Exercise|10.1. A silly argument using the complex numbers! Let C be the complex
number field. Let V' be a vector space over C. The spectrum of a linear operator
T :V — V is the set of complex numbers A € C such that the operator T' — Aidy
is not invertible.
(1) Show that C(X) = f.f.(C[X]) has uncountable dimension over C.
(2) Show that any linear operator on V has a nonempty spectrum if the di-
mension of V is finite or countable.
(3) Show that if a finitely generated C-algebra R is a field, then the map C — R
is an isomorphism.
(4) Show that any maximal ideal m of Clxy,...,x,] is of the form (z; —
Q1,...,T, — ) for some o; € C.

Remark| 10.2. Let k be a field. Then for every integer n € N and every maximal
ideal m C k[x1,...,2,] the quotient k[z1,...,z,]/m is a finite field extension of k.
This will be shown later in the course. Of course (please check this) it implies a
similar statement for maximal ideals of finitely generated k-algebras. The exercise
above proves it in the case k = C.

Exercisel 10.3. Let k be a field. Please use Remark [10.21

(1) Let R be a k-algebra. Suppose that dimy R < oo and that R is a domain.
Show that R is a field.

(2) Suppose that R is a finitely generated k-algebra, and f € R not nilpotent.
Show that there exists a maximal ideal m C R with f ¢ m.

(3) Show by an example that this statement fails when R is not of finite type
over a field.

(4) Show that any radical ideal I C Clzy,...,x,] is the intersection of the
maximal ideals containing it.

Remark| 10.4. This is the Hilbert Nullstellensatz. Namely it says that the closed
subsets of Spec(k[z1,...,2,]) (which correspond to radical ideals by a previous
exercise) are determined by the closed points contained in them.

Exercise 10.5. Let A = C[z11, T12, T21, T22, Y11, Y12, Y21, Y22). Let I be the ideal
of A generated by the entries of the matrix XY, with

X<9611 CU12> and Y<yu 912)'
T21  X22 Y21 Y22
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Find the irreducible components of the closed subset V(I) of Spec(A). (I mean
describe them and give equations for each of them. You do not have to prove that
the equations you write down define prime ideals.) Hints:

(1) You may use the Hilbert Nullstellensatz, and it suffices to find irreducible
locally closed subsets which cover the set of closed points of V(I).

(2) There are two easy components.

(3) An image of an irreducible set under a continuous map is irreducible.

11. Dimension

Exercise| 11.1. Construct a ring A with finitely many prime ideals having dimen-
sion > 1.

Exercise 11.2. Let f € C|[z,y] be a nonconstant polynomial. Show that C[z,y]/(f)
has dimension 1.

Exercise 11.3. Let (R,m) be a Noetherian local ring. Let n > 1. Let m’ =
(m,z1,...,zy,) in the polynomial ring R[z1,...,z,]|. Show that

dim(R[z1, ..., 2p)w ) = dim(R) + n.

12. Catenary rings

Definition 12.1. A Noetherian ring A is said to be catenary if for any triple of
prime ideals p; C po C ps we have

ht(ps/p1) = ht(ps/p2) + ht(p2/p1).
Here ht(p/q) means the height of p/q in the ring A/q.
Exercise| 12.2. Show that a Noetherian local domain of dimension 2 is catenary.

Exercise| 12.3. Let k be a field. Show that a finite type k-algebra is catenary.

13. Fraction fields

Exercise 13.1. Consider the domain
Qlr,s,1]/(s* = (r = 1)(r = 2)(r = 3),8* = (r + 1)(r + 2)(r + 3)).

Find a domain of the form Q[z,y]/(f) with isomorphic field of fractions.

14. Transcendence degree

Exercise 14.1. Let k C K C K’ be field extensions with K’ algebraic over K.
Prove that trdeg,(K) = trdeg,(K’). (Hint: Show that if z1,...,24 € K are
algebraically independent over k and d < trdeg;, (K’) then k(z1,...,24) C K cannot
be algebraic.)
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15. Finite locally free modules

Definition 15.1. Let A be a ring. Recall that a finite locally free A-module M is a
module such that for every p € Spec(A) there exists an f € A, f ¢ p such that My
is a finite free Ay-module. We say M is an invertible module if M is finite locally
free of rank 1, i.e., for every p € Spec(A) there exists an f € A, f & p such that
My = Ay as an Ap-module.

Exercise| 15.2. Prove that the tensor product of finite locally free modules is finite
locally free. Prove that the tensor product of two invertible modules is invertible.

Definition 15.3. Let A be a ring. The class group of A, sometimes called the
Picard group of A is the set Pic(A) of isomorphism classes of invertible A-modules
endowed with a group operation defined by tensor product (see Exercise [15.2)).

Note that the class group of A is trivial exactly when every invertible module is
isomorphic to a free module of rank 1.

Exercise| 15.4. Show that the class groups of the following rings are trivial

(1) a polynomial ring A = k[z] where k is a field,

(2) the integers A = Z,

(3) a polynomial ring A = k[z,y] where k is a field, and
(4) the quotient k[z,y]/(xy) where k is a field.

Exercise 15.5. Show that the class group of the ring A = k[z,y]/(y? — f(z))
where k is a field of characteristic not 2 and where f(z) = (z —t1) ... (x —t,,) with
t1,...,t, € k distinct and n > 3 an odd integer is not trivial. (Hint: Show that the
ideal (y,x — t1) defines a nontrivial element of Pic(A).)

Exercise| 15.6. Let A be a ring,.

(1) Suppose that M is a finite locally free A-module, and suppose that ¢ :
M — M is an endomorphism. Define/construct the trace and determinant
of ¢ and prove that your construction is “functorial in the triple (4, M, ¢)”.

(2) Show that if M, N are finite locally free A-modules, and if ¢ : M — N and
1 : N — M then Trace(po)) = Trace(pop) and Det(po1p) = Det(pop).

(3) In case M is finite locally free show that Det defines a multiplicative map
Enda(M) — A.

Exercise| 15.7. Now suppose that B is an A-algebra which is finite locally free as
an A-module, in other words B is a finite locally free A-algebra.

(1) Define Tracep,s and Normp, using Trace and Det as defined above.

(2) Let b € B and let 7 : Spec(B) — Spec(A) be the induced morphism. Show
that 7(V (b)) = V(Normp,a(b)). (Recall that V/(f) = {p | f € p}.)

(3) (Base change.) Suppose that i : A — A’ is a ring map. Set B'= B®4 A’.
Indicate why i(Normp,a(b)) equals Normp: 4/ (b® 1).

(4) Compute Normp,4(b) when B=AxAxAx...xAand b= (a1,...,a,).

(5) Compute the norm of y —y* under the finite flat map Q[z] — Q[y], = — y™.
(Hint: use the “base change” A = Q[z] C A’ = Q((n)(2'/™).)
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16. Glueing

Exercise| 16.1. Suppose that A is a ring and M is an A-module. Let f;, i € I be
a collection of elements of A such that

Spec(4) = | D(f:).

(1) Show that if My, is a finite Af,-module, then M is a finite A-module.
(2) Show that if My, is a flat Ay,-module, then M is a flat A-module. (This is
kind of silly if you think about it right.)

Remark| 16.2. In algebraic geometric language this means that the property of
“being finitely generated” or “being flat” is local for the Zariski topology (in a suit-
able sense). You can also show this for the property “being of finite presentation”.

Exercise 16.3. Suppose that A — B is a ring map. Let f; € A,7 € [ and g; € B,
j € J be collections of elements such that

Spec(A) = JD(f;) and  Spec(B) = D(g;)-
Show that if Ay, — By, is of finite type for all 4, j then A — B is of finite type.

17. Going up and going down

Definition 17.1. Let ¢ : A — B be a homomorphism of rings. We say that the
going-up theorem holds for ¢ if the following condition is satisfied:
(GU) for any p,p’ € Spec(A) such that p C p’, and for any P € Spec(B) lying
over p, there exists P’ € Spec(B) lying over p’ such that P C P’.
Similarly, we say that the going-down theorem holds for ¢ if the following condition
is satisfied:
(GD) for any p,p’ € Spec(A) such that p C p’, and for any P’ € Spec(B) lying
over p’, there exists P € Spec(B) lying over p such that P C P'.

Exercise 17.2. In each of the following cases determine whether (GU), (GD)
holds, and explain why. (Use any Prop/Thm/Lemma you can find, but check the
hypotheses in each case.)

(1) kis a field, A =k, B = kx].
k is a field, A = k[z], B = k[z,y].
A=17Z, B=17[1/11].
k is an algebraically closed field, A = k[x,y], B = k[z,y, z]/(2® —y, 2% — ).
A=17, B=17[i,1/(2+1).
A=17, B=127[i1/(14+ 7).
k is an algebraically closed field, A = k[z], B = k[x,y,1/(zy —1)]/(v* — y).

Exercise| 17.3. Let k& be an algebraically closed field. Compute the image in
Spec(k[x,y]) of the following maps:
(1) Spec(k[z,yz~1]) — Spec(k[z,y]), where k[x,y] C k[z,yz~] C klz,y,z~1].
(Hint: To avoid confusion, give the element yx~! another name.)
(2) Spec(k[z,y,a,b]/(ax — by — 1)) — Spec(k[z,y]).
(3) Spec(k[t,1/(t —1)]) — Spec(k[z,y]), induced by z + 2, and y > ¢3.
(4) k = C (complex numbers), Spec(k[s, t]/(s*>+t>—1)) — Spec(k[z, y]), where
€T 82, Y > 2.
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Remark| 17.4. Finding the image as above usually is done by using elimination
theory.

18. Fitting ideals

Exercise| 18.1. Let R be a ring and let M be a finite R-module. Choose a pre-
sentation

 R— R®™ s M —0.

JjeJ
of M. Note that the map R®" — M is given by a sequence of elements x1,...,T,
of M. The elements z; are generators of M. The map @jGJR — RO is given
by a n x J matrix A with coefficients in R. In other words, A = (ai;)i=1,...n,jeJ-
The columns (aij,...,an;), j € J of A are said to be the relations. Any vector
(r;) € R®™ such that > 7x; = 0 is a linear combination of the columns of A. Of
course any finite R-module has a lot of different presentations.

(1) Show that the ideal generated by the (n — k) x (n — k) minors of A is
independent of the choice of the presentation. This ideal is the kth fitting
ideal of M. Notation Fity(M).

(2) Show that Fito(M) C Fity(M) C Fito(M) C .... (Hint: Use that a
determinant can be computed by expanding along a column.)

(3) Show that the following are equivalent:

(a) Fit,—1(M) = (0) and Fit,(M) = R, and
(b) M is locally free of rank r.

19. Hilbert functions

Definition 19.1. A numerical polynomial is a polynomial f(x) € Q[z] such that
f(n) € Z for every integer n.

Definition 19.2. A graded module M over a ring A is an A-module M endowed
with a direct sum decomposition €p,, ., M, into A-submodules. We will say that M
is locally finite if all of the M,, are finite A-modules. Suppose that A is a Noetherian
ring and that ¢ is a Fuler-Poincaré function on finite A-modules. This means that
for every finitely generated A-module M we are given an integer (M) € Z and for
every short exact sequence

0— M —M-—M —0

we have p(M) = (M) + o(M’). The Hilbert function of a locally finite graded
module M (with respect to ¢) is the function x,(M,n) = ¢(M,). We say that
M has a Hilbert polynomial if there is some numerical polynomial P, such that
Xo(M,n) = P,(n) for all sufficiently large integers n.

Definition 19.3. A graded A-algebrais a graded A-module B = &, -, B,, together
with an A-bilinear map B

BxB— B, (b,b)—s bV

that turns B into an A-algebra so that B, - B,, C By, Finally, a graded module
M over a graded A-algebra B is given by a graded A-module M together with a
(compatible) B-module structure such that B,, - My C M,,+4. Now you can define
homomorphisms of graded modules/rings, graded submodules, graded ideals, exact
sequences of graded modules, etc, etc.
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Exercise| 19.4. Let A =k a field. What are all possible Euler-Poincaré functions
on finite A-modules in this case?

Exercise| 19.5. Let A = Z. What are all possible Euler-Poincaré functions on
finite A-modules in this case?

Exercise 19.6. Let A = k[z,y]/(xy) with k algebraically closed. What are all
possible Euler-Poincaré functions on finite A-modules in this case?

Exercise| 19.7. Suppose that A is Noetherian. Show that the kernel of a map of
locally finite graded A-modules is locally finite.

Exercise 19.8. Let k be a field and let A = k and B = k[z,y] with grading
determined by deg(z) = 2 and deg(y) = 3. Let ¢(M) = dimg(M). Compute the
Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in this
case?

Exercise 19.9. Let k be a field and let A = k and B = k[z, y]/(2?, xy) with grading
determined by deg(z) = 2 and deg(y) = 3. Let (M) = dimy(M). Compute the
Hilbert function of B as a graded k-module. Is there a Hilbert polynomial in this
case?

Exercise 19.10. Let k be a field and let A = k. Let (M) = dimy(M). Fix d € N.
Consider the graded A-algebra B = k[z,y, z]/(z? +y? +2%), where z,y, z each have
degree 1. Compute the Hilbert function of B. Is there a Hilbert polynomial in this
case?

20. Proj of a ring

Definition 20.1. Let R be a graded ring. A homogeneous ideal is simply an ideal
I C R which is also a graded submodule of R. Equivalently, it is an ideal generated
by homogeneous elements. Equivalently, if f € I and

f=fh+f+.. . +fn

is the decomposition of f into homogeneous pieces in R then f; € I for each i.

Definition 20.2. We define the homogeneous spectrum Proj(R) of the graded ring
R to be the set of homogeneous, prime ideals p of R such that Ry ¢ p. Note that
Proj(R) is a subset of Spec(R) and hence has a natural induced topology.

Definition 20.3. Let R = ©g>¢Rq be a graded ring, let f € R4 and assume that
d > 1. We define R(s) to be the subring of R consisting of elements of the form
r/f™ with r homogeneous and deg(r) = nd. Furthermore, we define

Dy (f) = {p € Proj(R)|f & p}.
Finally, for a homogeneous ideal I C R we define Vi (I) = V(I) N Proj(R).

Exercise 20.4. On the topology on Proj(R). With definitions and notation as
above prove the following statements.
(1) Show that D, (f) is open in Proj(R).
(2) Show that Dy (') = D+ (f) (1 Dy (F).
(3) Let g = go + ...+ gm be an element of R with g; € R;. Express D(g) N
Proj(R) in terms of D4 (g;), ¢ > 1 and D(go) NProj(R). No proof necessary.
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(4) Let g € Ry be a homogeneous element of degree 0. Express D(g) NProj(R)
in terms of D4 (f,) for a suitable family f, € R of homogeneous elements
of positive degree.

(5) Show that the collection {D(f)} of opens forms a basis for the topology
of Proj(R).

(6) Show that there is a canonical bijection D (f) — Spec(R(s)). (Hint: Imi-
tate the proof for Spec but at some point thrown in the radical of an ideal.)

(7) Show that the map from (6] is a homeomorphism.

(8) Give an example of an R such that Proj(R) is not quasi-compact. No proof
necessary.

(9) Show that any closed subset T' C Proj(R) is of the form V. (I) for some
homogeneous ideal I C R.

Remark 20.5. There is a continuous map Proj(R) — Spec(Ry).

Exercise 20.6. If R = A[X] with deg(X) = 1, show that the natural map
Proj(R) — Spec(A) is a bijection and in fact a homeomorphism.

Exercise 20.7. Blowing up: part I. In this exercise R = Bl;(A) = AQI®?®.. ..
Consider the natural map b : Proj(R) — Spec(A4). Set U = Spec(A) — V(I). Show
that

b:b ' (U) —U
is a homeomorphism. Thus we may think of U as an open subset of Proj(R). Let
Z C Spec(A) be an irreducible closed subscheme with generic point £ € Z. Assume
that £ € V(I), in other words Z ¢ V(I), in other words £ € U, in other words
ZNU # (0. We define the strict transform Z' of Z to be the closure of the unique
point £ lying above €. Another way to say this is that Z’ is the closure in Proj(R)
of the locally closed subset ZNU C U C Proj(R).

Exercise 20.8. Blowing up: Part II. Let A = k[x,y] where k is a field, and let
I = (z,y). Let R be the blow up algebra for A and I.

(1) Show that the strict transforms of Z; = V({z}) and Zy = V({y}) are
disjoint.

(2) Show that the strict transforms of Z; = V({x}) and Zy = V({x — 3?}) are
not disjoint.

(3) Find an ideal J C A such that V(J) = V(I) and such that the strict
transforms of Z; = V({z}) and Zy = V({z — y?}) are disjoint.

Exercise| 20.9. Let R be a graded ring.
(1) Show that Proj(R) is empty if R,, = (0) for all n >> 0.
(2) Show that Proj(R) is an irreducible topological space if R is a domain and
R, is not zero. (Recall that the empty topological space is not irreducible.)

Exercise| 20.10. Blowing up: Part III. Consider A, [ and U, Z as in the definition
of strict transform. Let Z = V (p) for some prime ideal p. Let A = A/p and let T
be the image of I in A.
(1) Show that there exists a surjective ring map R := Bl;(A) — R := Bl;(A).
(2) Show that the ring map above induces a bijective map from Proj(R) onto
the strict transform Z’ of Z. (This is not so easy. Hint: Use 5(b) above.)
(3) Conclude that the strict transform Z’ = V, (P) where P C R is the homo-
geneous ideal defined by P; = I9 N p.
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(4) Suppose that Z; = V(p) and Z> = V(q) are irreducible closed subsets
defined by prime ideals such that Z; ¢ Z5, and Zo ¢ Z;. Show that
blowing up the ideal I = p+ q separates the strict transforms of Z; and Z5,
i.e., Z] N Z5 = 0. (Hint: Consider the homogeneous ideal P and @ from
part (¢) and consider V(P + Q).)

21. Cohen-Macaulay rings of dimension 1

Definition 21.1. A Noetherian local ring A is said to be Cohen-Macaulay of di-
mension d if it has dimension d and there exists a system of parameters z1,...,2q
for A such that z; is a nonzerodivisor in A/(x1,...,2,-1) fori=1,...,d.

Exercise| 21.2. Cohen-Macaulay rings of dimension 1. Part I: Theory.

(1) Let (A,m) be a local Noetherian with dim A = 1. Show that if x € m is
not a zerodivisor then
(a) dimA/xA = 0, in other words A/zA is Artinian, in other words {z}

is a system of parameters for A.

(b) A is has no embedded prime.

(2) Conversely, let (A, m) be a local Noetherian ring of dimension 1. Show that
if A has no embedded prime then there exists a nonzerodivisor in m.

Exercise| 21.3. Cohen-Macaulay rings of dimension 1. Part II: Examples.
(1) Let A be the local ring at (z,y) of k[z,y]/ (22, zy).
(a) Show that A has dimension 1.
(b) Prove that every element of m C A is a zerodivisor.
(¢) Find z € m such that dim A/zA = 0 (no proof required).
(2) Let A be the local ring at (x,y) of k[z,y]/(2?). Find a nonzerodivisor in m
(no proof required).

Exercise 21.4. Local rings of embedding dimension 1. Suppose that (4, m, k) is
a Noetherian local ring of embedding dimension 1, i.e.,

dimg m/m? = 1.

Show that the function f(n) = dimgm™/m™*! is either constant with value 1, or
its values are
1,1,...,1,0,0,0,0,0,. ..

Exercise 21.5. Regular local rings of dimension 1. Suppose that (A, m, k) is a
regular Noetherian local ring of dimension 1. Recall that this means that A has
dimension 1 and embedding dimension 1, i.e.,

dimy, m/m? = 1.
Let 2 € m be any element whose class in m/m? is not zero.

(1) Show that for every element y of m there exists an integer n such that y
can be written as y = ux™ with u € A* a unit.

(2) Show that x is a nonzerodivisor in A.

(3) Conclude that A is a domain.

Exercise 21.6. Let (A, m, k) be a Noetherian local ring with associated graded
Grm(A).
(1) Suppose that z € m? maps to a nonzero divisor Z € m?¢/m
of Gry(A). Show that x is a nonzerodivisor.

d+1 in degree d
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(2) Suppose the depth of A is at least 1. Namely, suppose that there exists
a nonzerodivisor y € m. In this case we can do better: assume just that
x € m? maps to the element 7 € m?/m?*! in degree d of Gry(A) which is
a nonzerodivisor on sufficiently high degrees: 9N such that for all n > N
the map of multiplication by &

mn/anrl N mn+d/mn+d+1

is injective. Then show that x is a nonzerodivisor.

Exercise 21.7. Suppose that (4, m, k) is a Noetherian local ring of dimension 1.
Assume also that the embedding dimension of A is 2, i.e., assume that

dimy, m/m? = 2.

Notation: f(n) = dim, m"/m"*!. Pick generators z,y € m and write Gry(A4) =
k[Z, ]/ for some homogeneous ideal I.

(1) Show that there exists a homogeneous element F' € k[Z, §] such that I C (F)
with equality in all sufficiently high degrees.

(2) Show that f(n) <n+ 1.

(3) Show that if f(n) < n+ 1 then n > deg(F).

(4) Show that if f(n) <n+1, then f(n+1) < f(n).

(5) Show that f(n) = deg(F) for all n >> 0.

Exercise| 21.8. Cohen-Macaulay rings of dimension 1 and embedding dimension
2. Suppose that (A, m, k) is a Noetherian local ring which is Cohen-Macaulay of
dimension 1. Assume also that the embedding dimension of A is 2, i.e., assume
that

dimy, m/m? = 2.
Notations: f, F, x,y € m, I as in Ex. 6 above. Please use any results from the
problems above.

(1) Suppose that z € m is an element whose class in m/m? is a linear form
aZ + By € k[Z, §] which is coprime with f.
(a) Show that z is a nonzerodivisor on A.
(b) Let d = deg(F). Show that m" = z"*1=dmd=1 for all sufficiently large
n. (Hint: First show 2"T1=9md=1 — m"? /m"*! is surjective by what
you know about Grpy(A). Then use NAK.)
(2) What condition on k guarantees the existence of such a z? (No proof
required; it’s too easy.)
Now we are going to assume there exists a z as above. This turns out to be
a harmless assumption (in the sense that you can reduce to the situation
where it holds in order to obtain the results in parts (d) and (e) below).
Now show that m¢ = 2=t 1md=1 for all ¢ > d.
Conclude that I = (F).
Conclude that the function f has values

2,3,4,....d—1,d,d,d,d,d,d,d,...

B~ w
NN

A~~~
(@)

Remark| 21.9. This suggests that a local Noetherian Cohen-Macaulay ring of
dimension 1 and embedding dimension 2 is of the form B/FB, where B is a 2-
dimensional regular local ring. This is more or less true (under suitable “niceness”
properties of the ring).
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22. Infinitely many primes

A section with a collection of strange questions on rings where infinitely many
primes are not invertible.

Exercise| 22.1. Give an example of a finite type Z-algebra R with the following
two properties:

(1) There is no ring map R — Q.

(2) For every prime p there exists a maximal ideal m C R such that R/m = F,.

Exercise 22.2. For f € Z[z, u] we define f,(z) = f(z,2”) mod p € F,[z]. Give an
example of an f € Z[x, u] such that the following two properties hold:

(1) There exist infinitely many p such that f, does not have a zero in F,,.
(2) For all p >> 0 the polynomial f, either has a linear or a quadratic factor.

Exercise 22.3. For f € Z[z,y,u,v] we define fp(z,y) = f(z,y,2P,y?) mod p €
F,lz,y]. Give an “interesting” example of an f such that f, is reducible for all
p >> 0. For example, f = zv — yu with f, = zy? — 2Py = zy(aP~! — yP~1) is
“uninteresting”; any f depending only on xz,u is “uninteresting”, etc.

Remark 22.4. Let h € Z[y] be a monic polynomial of degree d. Then:
(1) The map A = Z[z] — B = Z[y],  — h is finite locally free of rank d.
(2) For all primes p the map A, = F,[z] — B, = F,[y], y — h(y) mod p is
finite locally free of rank d.

Exercise 22.5. Let h, A, B, A,, B, be as in the remark. For f € Z[z,u] we define
fp(x) = f(z,27) mod p € Fy[z]. For g € Z[y, v] we define g,(y) = g(y,y”) mod p €
Fyly.
(1) Give an example of a h and g such that there does not exist a f with the
property
fo=Normg,a,(9p)-
(2) Show that for any choice of h and g as above there exists a nonzero f such
that for all p we have

Normp,/a,(gp) divides f,.

If you want you can restrict to the case h = y”, even with n = 2, but it is
true in general.
(3) Discuss the relevance of this to Exercises 6 & 7 of the previous set.

Exercise| 22.6. Unsolved problems. They may be really hard or they may be easy.
I don’t know.

(1) Is there any f € Z[x, u] such that f, is irreducible for an infinite number of
p? (Hint: Yes, this happens for f(z,u) =u —x — 1 and also for f(z,u) =
u? — 2% +1.)

(2) Let f € Z[z,u] nonzero, and suppose deg, (f,) = dp+d’ for all large p. (In
other words deg, (f) = d and the coefficient ¢ of u¢ in f has deg,(c) = d'.)
Suppose we can write d = d; + ds and d’' = d} + d, with dy,dy > 0 and
dy,d} > 0 such that for all sufficiently large p there exists a factorization

fo = fipfop
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with deg,(f1,,) = dip + dj. Is it true that f comes about via a norm
construction as in Exercise 47 (More precisely, are there a h and g such
that Normp ,a,(gp) divides f, for all p >> 0.)

(3) Analogous question to the one in (b) but now with f € Z[z1, z2, uz, ug| irre-
ducible and just assuming that f,(z1,z2) = f(z1, 22,27, 25) mod p factors
for all p >> 0.

23. Filtered derived category

In order to do the exercises in this section, please read the material in Homology,
Section We will say A is a filtered object of A, to mean that A comes endowed
with a filtration F' which we omit from the notation.

Exercise| 23.1. Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite and that each gr?(I) is an injective object
of A. Show that there exists an isomorphism I = @ grP(I) with filtration FP(I)
corresponding to @5, 8?7 (1).

Exercise| 23.2. Let A be an abelian category. Let I be a filtered object of A.
Assume that the filtration on I is finite. Show the following are equivalent:

(1) For any solid diagram

s
s
s
¥
I

of filtered objects with (i) the filtrations on A and B are finite, and (ii)
gr(a) injective the dotted arrow exists making the diagram commute.
(2) Each grPI is injective.

Note that given a morphism « : A — B of filtered objects with finite filtrations to
say that gr(«) injective is the same thing as saying that « is a strict monomorphism
in the category Fil(A). Namely, being a monomorphism means Ker(a) = 0 and
strict means that this also implies Ker(gr(a)) = 0. See Homology, Lemma
(We only use the term “injective” for a morphism in an abelian category, although it
makes sense in any additive category having kernels.) The exercises above justifies
the following definition.

Definition 23.3. Let A be an abelian category. Let I be a filtered object of A.
Assume the filtration on I is finite. We say I is filtered injective if each grP(I) is an
injective object of A.

We make the following definition to avoid having to keep saying “with a finite
filtration” everywhere.

Definition 23.4. Let A be an abelian category. We denote Fil (A) the full sub-
category of Fil(.\A) whose objects consist of those A € Ob(Fil(A)) whose filtration
is finite.

Exercise| 23.5. Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Fil/(A4). Show that there exists a strict monomorphism
a: A — I of Ainto a filtered injective object I of Fil/ (A).
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Definition 23.6. Let A be an abelian category. Let a: K®* — L® be a morphism
of complexes of Fil(A). We say that « is a filtered quasi-isomorphism if for each
p € Z the morphism gr?(K*®) — grP(L*®) is a quasi-isomorphism.

Definition 23.7. Let A be an abelian category. Let K*® be a complex of Fil/ (A).
We say that K* is filtered acyclic if for each p € Z the complex gr?(K*®) is acyclic.

Exercise| 23.8. Let A be an abelian category. Let o : K®* — L*® be a morphism
of bounded below complexes of Fil/(A). (Note the superscript f.) Show that the
following are equivalent:

(1) «is a filtered quasi-isomorphism,

(2) for each p € Z the map «: FPK® — FPL® is a quasi-isomorphism,

(3) for each p € Z the map « : K*/FPK® — L*/FPL® is a quasi-isomorphism,

and
(4) the cone of a (see Derived Categories, Definition is a filtered acyclic
complex.

Moreover, show that if « is a filtered quasi-isomorphism then « is also a usual
quasi-isomorphism.

Exercise| 23.9. Let A be an abelian category. Assume A has enough injectives.
Let A be an object of Fil/(A). Show there exists a complex I*® of Fil/(A), and a
morphism A[0] — I*® such that

(1) each I? is filtered injective,

(2) I? =0 for p < 0, and

(3) A[0] — I°® is a filtered quasi-isomorphism.
Exercise| 23.10. Let A be an abelian category. Assume A has enough injectives.
Let K* be a bounded below complex of objects of Fil’ (A). Show there exists a
filtered quasi-isomorphism « : K*®* — I*® with I*® a complex of Fil/ (A) having filtered

injective terms I, and bounded below. In fact, we may choose « such that each
a™ is a strict monomorphism.

Exercise| 23.11. Let A be an abelian category. Consider a solid diagram

l 7/
/s

gl

2B

I.
of complexes of Fil/ (4). Assume K*, L* and I* are bounded below and assume each
1™ is a filtered injective object. Also assume that « is a filtered quasi-isomorphism.

(1) There exists a map of complexes 8 making the diagram commute up to
homotopy.

(2) If « is a strict monomorphism in every degree then we can find a 8 which
makes the diagram commute.

Exercise| 23.12. Let A be an abelian category. Let K°®, K® be complexes of
Fil/ (A). Assume

(1) K* bounded below and filtered acyclic, and
(2) I* bounded below and consisting of filtered injective objects.

Then any morphism K*® — I*® is homotopic to zero.
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Exercise| 23.13. Let A be an abelian category. Consider a solid diagram

K.?L.

P
L Bi

I.

of complexes of Fil/(A). Assume K*, L* and I* bounded below and each I" a
filtered injective object. Also assume « a filtered quasi-isomorphism. Any two
morphisms [y, B2 making the diagram commute up to homotopy are homotopic.

24. Regular functions

Exercise| 24.1. In this exercise we try to see what happens with regular functions
over non-algebraically closed fields. Let k be a field. Let Z C k™ be a Zariski locally
closed subset, i.e., there exist ideals I C J C k[z1,...,x,] such that

Z={a€k™| fla)=0V fel, g€, gla)+#0}.

A function ¢ : Z — k is said to be regular if for every z € Z there exists a Zariski
open neighbourhood z € U C Z and polynomials f,g € k[z1,...,z,] such that
g(u) # 0 for all u € U and such that p(u) = f(u)/g(u) for all uw € U.

(1) If k = k and Z = k™ show that regular functions are given by polynomials.
(Only do this if you haven’t seen this argument before.)

(2) If k is finite show that (a) every function ¢ is regular, (b) the ring of regular
functions is finite dimensional over k. (If you like you can take Z = k™ and
even n = 1.)

(3) If k = R give an example of a regular function on Z = R which is not given
by a polynomial.

(4) If k = Q, give an example of a regular function on Z = Q, which is not
given by a polynomial.

25. Sheaves

A morphism f: X — Y of a category C is an monomorphism if for every pair of
morphisms a,b: W — X we have foa = fob= a=0>. A monomorphism in the
category of sets is an injective map of sets.

Exercise| 25.1. Carefully prove that a map of sheaves of sets is an monomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are injective.

A morphism f : X — Y of a category C is an isomorphism if there exists a morphism
g:Y — X such that fog =idy and go f = idx. An isomorphism in the category
of sets is a bijective map of sets.

Exercise| 25.2. Carefully prove that a map of sheaves of sets is an isomorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are bijective.

A morphism f : X — Y of a category C is an epimorphism if for every pair of
morphisms a,b : Y — Z we have ao f = bo f = a = b. An epimorphism in the
category of sets is a surjective map of sets.
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Exercise| 25.3. Carefully prove that a map of sheaves of sets is an epimorphism
(in the category of sheaves of sets) if and only if the induced maps on all the stalks
are surjective.

Exercise|25.4. Let f : X — Y be a map of topological spaces. Prove pushforward
f+ and pullback f~! for sheaves of sets form an adjoint pair of functors.

Exercise 25.5. Let j : U — X be an open immersion. Show that j~! has a left
adjoint 7, on the category of sheaves of sets. Characterize the stalks of j(G). (Hint:
ji is called extension by zero when you do this for abelian sheaves... )

Exercise| 25.6. Let X = R with the usual topology. Let Ox = Z/2ZX. Let
i: Z = {0} = X be the inclusion and let Oz = Z/2Z . Prove the following (the
first three follow from the definitions but if you are not clear on the definitions you
should elucidate them):

(1) 4.0z is a skyscraper sheaf.

(2) There is a canonical surjective map from Z/2Z — i,Z/2Z . Denote the

kernel T C Ox.
(3) Z is an ideal sheaf of Ox.
(4) The sheaf Z on X cannot be locally generated by sections (as in Modules,

Definition [8.1})

Exercise| 25.7. Let X be a topological space. Let F be an abelian sheaf on X.
Show that F is the quotient of a (possibly very large) direct sum of sheaves all of
whose terms are of the form

3(Zy)
where U C X is open and Z;; denotes the constant sheaf with value Z on U.

Remark| 25.8. Let X be a topological space. In the category of abelian sheaves
the direct sum of a family of sheaves {F;};cr is the sheaf associated to the presheaf
U — @&F;(U). Consequently the stalk of the direct sum at a point z is the direct
sum of the stalks of the F; at z.

Exercise| 25.9. Let X be a topological space. Suppose we are given a collection
of abelian groups A, indexed by x € X. Show that the rule U — [] ., A, with
obvious restriction mappings defines a sheaf G of abelian groups. Show, by an
example, that usually it is not the case that G, = A, for z € X.

Exercise| 25.10. Let X, A,, G be as in Exercise Let B be a basis for the
topology of X, see Topology, Definition For U € B let Ay be a subgroup
Ay € G(U) = [],cpy Ae- Assume that for U C V with U,V € B the restriction
maps Ay into Ay. For U C X open set

for every z in U there exists V € B
FU) = {(Sx)xEU v }

x € V C U such that (sy)yecv € Ay
Show that F defines a sheaf of abelian groups on X. Show, by an example, that it
is usually not the case that F(U) = Ay for U € B.

26. Schemes

Let LRS be the category of locally ringed spaces. An affine scheme is an object in
LRS isomorphic in LRS to a pair of the form (Spec(A), Ogpec(a))- A scheme is an
object (X,Ox) of LRS such that every point € X has an open neighbourhood
U C X such that the pair (U, Ox|y) is an affine scheme.
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Exercise| 26.1. Find a 1-point locally ringed space which is not a scheme.

Exercise| 26.2. Suppose that X is a scheme whose underlying topological space
has 2 points. Show that X is an affine scheme.

Exercise| 26.3. Suppose that X is a scheme whose underlying topological space is
a finite discrete set. Show that X is an affine scheme.

Exercise| 26.4. Show that there exists a non-affine scheme having three points.

Exercise| 26.5. Suppose that X is a quasi-compact scheme. Show that X has a
closed point.

Remark 26.6. When (X,Ox) is a ringed space and U C X is an open subset
then (U,Ox|y) is a ringed space. Notation: Oy = Ox|y. There is a canonical
morphisms of ringed spaces

j:(U,0y) — (X,0x).

If (X,0x) is a locally ringed space, so is (U, Oy) and j is a morphism of locally
ringed spaces. If (X, Ox) is a scheme so is (U, Oy) and j is a morphism of schemes.
We say that (U, Oy) is an open subscheme of (X,Ox) and that j is an open im-
mersion. More generally, any morphism j' : (V,Oy) — (X, Ox) that is isomorphic
to a morphism j : (U,Opy) — (X, Ox) as above is called an open immersion.

Exercise 26.7. Give an example of an affine scheme (X, Ox) and an open U C X
such that (U, Ox|U) is not an affine scheme.

Exercise 26.8. Given an example of a pair of affine schemes (X, Ox), (Y, Oy), an
open subscheme (U, Ox|y) of X and a morphism of schemes (U, Ox|v) — (Y, Oy)
that does not extend to a morphism of schemes (X, Ox) — (Y, Oy).

Exercise 26.9. (This is pretty hard.) Given an example of a scheme X, and open
subscheme U C X and a closed subscheme Z C U such that Z does not extend to
a closed subscheme of X.

Exercise| 26.10. Give an example of a scheme X, a field K, and a morphism of
ringed spaces Spec(K) — X which is NOT a morphism of schemes.

Exercise 26.11. Do all the exercises in [Har77, Chapter II], Sections 1 and 2...
Just kidding!

Definition 26.12. A scheme X is called integral if X is nonempty and for every
nonempty affine open U C X the ring T'(U, Ox) = Ox(U) is a domain.

Exercise| 26.13. Give an example of a morphism of integral schemes f: X — Y
such that the induced maps Oy, f(;) — Ox . are surjective for all z € X, but f is
not a closed immersion.

Exercise| 26.14. Give an example of a fibre product X Xg Y such that X and Y
are affine but X xgY is not.

Remark]| 26.15. It turns out this cannot happen with S separated. Do you know
why?

Exercise| 26.16. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over Q such that Spec(C) Xgspec(q) V' is not integral.
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Exercise| 26.17. Give an example of a scheme V which is integral 1-dimensional
scheme of finite type over a field k such that Spec(k’) Xgpec(x) V' is not reduced for
some finite field extension k C &'

Remark| 26.18. If your scheme is affine then dimension is the same as the Krull
dimension of the underlying ring. So you can use last semesters results to compute
dimension.

27. Morphisms

An important question is, given a morphism 7 : X — S, whether the morphism
has a section or a rational section. Here are some example exercises.

Exercise| 27.1. Consider the morphism of schemes
7 : X = Spec(Cl[z,t,1/xt]) — S = Spec(C]t]).

(1) Show there does not exist a morphism o : S — X such that 7 oo = idy.
(2) Show there does exist a nonempty open U C S and a morphism o : U — X
such that 7 oo = idy.

Exercise| 27.2. Consider the morphism of schemes

7 : X = Spec(Clz, t]/(z* +t)) — S = Spec(CJt]).
Show there does not exist a nonempty open U C S and a morphism ¢ : U — X
such that 7 oo = idy.

Exercise 27.3. Let A, B,C € CJt] be nonzero polynomials. Consider the mor-
phism of schemes
7 : X = Spec(Clz,y,t]/(A + Bz® + Cy?)) — S = Spec(C[t]).

Show there does exist a nonempty open U C S and a morphism o : U — X
such that 7 o 0 = idy. (Hint: Symbolically, write x = X/Z, y = Y/Z for some
X,Y, Z € CJt] of degree < d for some d, and work out the condition that this solves
the equation. Then show, using dimension theory, that if d >> 0 you can find
nonzero X,Y, Z solving the equation.)

Remark| 27.4. Exercise [27.3|is a special case of “T'sen’s theorem”. Exercise
shows that the method is limited to low degree equations (conics when the base
and fibre have dimension 1).

Exercise| 27.5. Consider the morphism of schemes

7 : X = Spec(Clz, y,t]/(1 + tz* + t?y*)) — S = Spec(CJt])
Show there does not exist a nonempty open U C S and a morphism ¢ : U — X
such that 7 oo = idy.
Exercisel 27.6. Consider the schemes
X = Spec(C[{z:}3_1, s, 1] /(14525 + s> 25 +tas +sta) + s*tas + 2 g+ stad +s*2x3))
and

S = Spec(CJs, t])

and the morphism of schemes
m: X — S5

Show there does not exist a nonempty open U C S and a morphism ¢ : U — X
such that 7 oo = idy.
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Exercise 27.7. (For the number theorists.) Give an example of a closed subscheme

Z C Spec <Z[$v w(z — 1)1(2x - 1)]>

such that the morphism Z — Spec(Z) is finite and surjective.

Exercise| 27.8. If you do not like number theory, you can try the variant where
you look at
1

Spec <Fp[t,x, x(x—t)(ta:—l)]) — Spec(F,[t])
and you try to find a closed subscheme of the top scheme which maps finite surjec-
tively to the bottom one. (There is a theoretical reason for having a finite ground
field here; although it may not be necessary in this particular case.)

Remark 27.9. The interpretation of the results of Exercise and is that
given the morphism X — S all of whose fibres are nonempty, there exists a finite
surjective morphism S’ — S such that the base change Xg+ — S’ does have a
section. This is not a general fact, but it holds if the base is the spectrum of a
dedekind ring with finite residue fields at closed points, and the morphism X — S
is flat with geometrically irreducible generic fibre. See Exercise below for an
example where it doesn’t work.

Exercise 27.10. Prove there exist a f € C[z, ] which is not divisible by ¢ — « for
any a € C such that there does not exist any Z C Spec(Clz,t,1/f]) which maps
finite surjectively to Spec(CJt]). (I think that f(x,t) = (zt — 2)(x — t + 3) works.
To show any candidate has the required property is not so easy I think.)

28. Tangent Spaces

Definition 28.1. For any ring R we denote Rle] the ring of dual numbers. As an
R-module it is free with basis 1, e. The ring structure comes from setting €2 = 0.

Exercise| 28.2. Let f: X — S be a morphism of schemes. Let € X be a point,
let s = f(x). Consider the solid commutative diagram

/\

Spec(r(x)) —— Spec(r(z)[€]) =

~ 1]

Spec(k(s)) ——= S

with the curved arrow being the canonical morphism of Spec(k(x)) into X. If
k(z) = k(s) show that the set of dotted arrows which make the diagram commute
are in one to one correspondence with the set of linear maps

Do ()

m2 +m,Ox
In other words: describe such a bijection. (This works more generally if x(z) D k(s)
is a separable algebraic extension.)

Hom,,{(x)(

Definition 28.3. Let f: X — S be a morphism of schemes. Let x € X. We dub
the set of dotted arrows of Exercise the tangent space of X over S and we
denote it T'x,g,. An element of this space is called a tangent vector of X/S at x.
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Exercise| 28.4. For any field K prove that the diagram
Spec(K) ——— Spec(K|[eq])

l l

Spec(K[e2) — Spec(K[e1, €2]/(e1€2))
is a pushout diagram in the category of schemes. (Here €2 = 0 as before.)

Exercise| 28.5. Let f : X — S be a morphism of schemes. Let z € X. Define
addition of tangent vectors, using Exercise and a suitable morphism
Spec(K[e]) — Spec(K|[e1, €a]/(€1€2)).

Similarly, define scalar multiplication of tangent vectors (this is easier). Show that
T'x/s,» becomes a k(z)-vector space with your constructions.
Exercise 28.6. Let k be a field. Consider the structure morphism f: X = Al —
Spec(k) = S.

(1) Let € X be a closed point. What is the dimension of T'x/g 7

(2) Let n € X be the generic point. What is the dimension of T'x/g ,?

)
(3) Consider now X as a scheme over Spec(Z). What are the dimensions of
TX/Z,Q: and TX/Z,T]?

Remark| 28.7. Exercise [28.6] explains why it is necessary to consider the tangent
space of X over S to get a good notion.
Exercise| 28.8. Consider the morphism of schemes
f X = Spec(Fp(t)) — Spec(Fp(tF)) = S
Compute the tangent space of X/S at the unique point of X. Isn’t that weird?

What do you think happens if you take the morphism of schemes corresponding to
F,[t"] > F,[f]?

Exercise 28.9. Let k be a field. Compute the tangent space of X/k at the point
x = (0,0) where X = Spec(k[z,y]/(z% — v?)).

Exercise| 28.10. Let f : X — Y be a morphism of schemes over S. Let x € X
be a point. Set y = f(x). Assume that the natural map x(y) — &(z) is bijective.
Show, using the definition, that f induces a natural linear map

df : Txyse — Tyys,y-
Match it with what happens on local rings via Exercise in case k(x) = Kk(s).
Exercise| 28.11. Let k£ be an algebraically closed field. Let
f:A}Y — AP
(@1, an) > (fi(@i), - f(@)

be a morphism of schemes over k. This is given by m polynomials fi,..., f, in n
variables. Consider the matrix
- (2)
8.’131‘

Let € A} be a closed point. Set y = f(x). Show that the map on tangent spaces
Tap iz = Tap i,y 1s given by the value of the matrix A at the point z.
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29. Quasi-coherent Sheaves

Definition 29.1. Let X be a scheme. A sheaf 7 of Ox-modules is quasi-coherent
if for every affine open Spec(R) = U C X the restriction F|y is of the form M for
some R-module M.

It is enough to check this conditions on the members of an affine open covering of
X. See Schemes, Section [24] for more results.

Definition 29.2. Let X be a topological space. Let z,2' € X. We say z is a
specialization of ' if and only if x € {z'}.

Exercise| 29.3. Let X be a scheme. Let z,2' € X. Let F be a quasi-coherent
sheaf of Ox-modules. Suppose that (a) z is a specialization of 2’ and (b) F,s # 0.
Show that F, # 0.

Exercise| 29.4. Find an example of a scheme X, points z,z’ € X, a sheaf of
Ox-modules F such that (a) z is a specialization of z’ and (b) F,s # 0 and F, = 0.

Definition 29.5. A scheme X is called locally Noetherian if and only if for ev-
ery point x € X there exists an affine open Spec(R) = U C X such that R is
Noetherian. A scheme is Noetherian if it is locally Noetherian and quasi-compact.

If X is locally Noetherian then any affine open of X is the spectrum of a Noetherian
ring, see Properties, Lemma [5.2

Definition 29.6. Let X be alocally Noetherian scheme. Let F be a quasi-coherent
sheaf of Ox-modules. We say J is coherent if for every point x € X there exists
an affine open Spec(R) = U C X such that F|y is isomorphic to M for some finite
R-module M.

Exercise 29.7. Let X = Spec(R) be an affine scheme.

(1) Let f € R. Let G be a quasi-coherent sheaf of Ops-modules on the open
subscheme D(f). Show that G = Fl|y for some quasi-coherent sheaf of
Ox-modules F.

(2) Let I C R be an ideal. Let ¢ : Z — X be the closed subscheme of X
corresponding to I. Let G be a quasi-coherent sheaf of Oz-modules on the
closed subscheme Z. Show that G = ¢*F for some quasi-coherent sheaf of
Ox-modules F. (Why is this silly?)

(3) Assume that R is Noetherian. Let f € R. Let G be a coherent sheaf of
Op(sy-modules on the open subscheme D(f). Show that G = F|y for some
coherent sheaf of Ox-modules F.

Remark| 29.8. If U — X is a quasi-compact immersion then any quasi-coherent
sheaf on U is the restriction of a quasi-coherent sheaf on X. If X is a Noetherian
scheme, and U C X is open, then any coherent sheaf on U is the restriction of a
coherent sheaf on X. Of course the exercise above is easier, and shouldn’t use these
general facts.

30. Proj and projective schemes

Exercise| 30.1. Give examples of graded rings S such that
(1) Proj(S) is affine and nonempty, and
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(2) Proj(S) is integral, nonempty but not isomorphic to P’} for any n > 0, any
ring A.

Exercise 30.2. Give an example of a nonconstant morphism of schemes P — Pg
over Spec(C).

Exercise| 30.3. Give an example of an isomorphism of schemes
P¢ — Proj(C[Xo, X1, Xo] /(X3 + X7 + X3))

Exercise 30.4. Give an example of a morphism of schemes f : X — AL =
Spec(CIT]) such that the (scheme theoretic) fibre X; of f over t € Ag is (a)
isomorphic to P& when ¢ is a closed point not equal to 0, and (b) not isomorphic
to P& when ¢ = 0. We will call Xq the special fibre of the morphism. This can be
done in many, many ways. Try to give examples that satisfy (each of) the following
additional restraints (unless it isn’t possible):

an you do it with special fibre projective?
1) C do it with ial fib jective?
(2) Can you do it with special fibre irreducible and projective?
(3) Can you do it with special fibre integral and projective?
(4) Can you do it with special fibre smooth and projective?
(5) Can you do it with f a flat morphism? This just means that for every affine
open Spec(A) C X the induced ring map C[t] — A is flat, which in this
case means that any nonzero polynomial in ¢ is a nonzerodivisor on A.
) Can you do it with f a flat and projective morphism?
) Can you do it with f flat, projective and special fibre reduced?
8) Can you do it with f flat, projective and special fibre irreducible?
) Can you do it with f flat, projective and special fibre integral?

What do you think happens when you replace P& with another variety over C?
(This can get very hard depending on which of the variants above you ask for.)

Exercise| 30.5. Let n > 1 be any positive integer. Give an example of a surjective
morphism X — P¢ with X affine.

Exercise| 30.6. Maps of Proj. Let R and S be graded rings. Suppose we have a
ring map
Yv:R—S

and an integer e > 1 such that ¢)(Ry) C Sy, for all d > 0. (By our conventions this
is not a homomorphism of graded rings, unless e = 1.)

(1) For which elements p € Proj(.S) is there a well-defined corresponding point
in Proj(R)? In other words, find a suitable open U C Proj(S) such that 1
defines a continuous map ry : U — Proj(R).

(2) Give an example where U # Proj(.5).

(3) Give an example where U = Proj(S).

(4) (Do not write this down.) Convince yourself that the continuous map U —
Proj(R) comes canonically with a map on sheaves so that r, is a morphism
of schemes:

Proj(S) > U — Proj(R).

(5) What can you say about this map if R = ;- Sae (as a graded ring with
Se, Sae, ete in degree 1, 2, etc) and ¢ is the inclusion mapping?
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Notation. Let R be a graded ring as above and let n > 0 be an integer. Let
X = Proj(R). Then there is a unique quasi-coherent O x-module Ox (n) on X such
that for every homogeneous element f € R of positive degree we have Ox/|p, (y) is
the quasi-coherent sheaf associated to the R(s) = (Ry)o-module (Ry), (=elements
homogeneous of degree n in Ry = R[1/f]). See [Har?7, page 116+]. Note that
there are natural maps

Ox(n1) ®oy Ox(ng) — Ox(n1 + n2)

Exercise| 30.7. Pathologies in Proj. Give examples of R as above such that
(1) Ox(1) is not an invertible Ox-module.
(2) Ox(1) is invertible, but the natural map Ox (1) ®o, Ox(1) = Ox(2) is
NOT an isomorphism.

Exercise 30.8. Let S be a graded ring. Let X = Proj(S). Show that any finite
set of points of X is contained in a standard affine open.

Exercise 30.9. Let S be a graded ring. Let X = Proj(S). Let Z,Z' C X be two
closed subschemes. Let ¢ : Z — Z’ be an isomorphism. Assume Z N Z’' = (). Show
that for any z € Z there exists an affine open U C X such that z € U, ¢(z) € U
and ¢(ZNU)=Z'NU. (Hint: Use Exercise and something akin to Schemes,

Lemma )

31. Morphisms from surfaces to curves

Exercise/31.1. Let R be aring. Let R — k be a map from R to a field. Let n > 0.
Show that

Morgpec(r) (Spec(k), PR) = ("7 \ {0})/k*
where k* acts via scalar multiplication on k"*!. From now on we denote (x¢ :

... &) the morphism Spec(k) — P} corresponding to the equivalence class of the
element (zo,...,z,) € k"1 \ {0}.

Exercise 31.2. Let k be a field. Let Z C P? be a irreducible closed subscheme.
Show that either (a) Z is a closed point, or (b) there exists an homogeneous ir-
reducible F' € k[Xo, X1, X2] of degree > 0 such that Z = V,.(F), or (c¢) Z = P3.
(Hint: Look on a standard affine open.)

Exercise| 31.3. Let k be a field. Let Z1, Z C Pi be irreducible closed subschemes
of the form V, (F) for some homogeneous irreducible F; € k[Xo, X1, Xs] of degree
> 0. Show that Z; N Zs is not empty. (Hint: Use dimension theory to estimate the
dimension of the local ring of k[Xo, X1, X5]/(F1, F) at 0.)

Exercise| 31.4. Show there does not exist a nonconstant morphism of schemes
PZ — P{ over Spec(C). Here a constant morphism is one whose image is a single
point. (Hint: If the morphism is not constant consider the fibres over 0 and co and
argue that they have to meet to get a contradiction.)

Exercise 31.5. Let k be a field. Suppose that X C P3 is a closed subscheme given
by a single homogeneous equation F € k[X(, X1, X2, X3]. In other words,

X = Proj(k[Xo, X1, X2, X3]/(F)) C P}
as explained in the course. Assume that
F=XG+X1H
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for some homogeneous polynomials G, H € k[Xy, X1, X2, X3] of positive degree.
Show that if Xy, X1, G, H have no common zeros then there exists a nonconstant
morphism

X — P}

of schemes over Spec(k) which on field points (see Exercise [31.1)) looks like (x¢ :
x1:x9:x3) — (2o : ©1) whenever xg or z; is not zero.

32. Invertible sheaves

Definition 32.1. Let X be a locally ringed space. An invertible Ox-module on
X is a sheaf of Ox-modules £ such that every point has an open neighbourhood
U C X such that L]y is isomorphic to Oy as Op-module. We say that £ is trivial
if it is isomorphic to Ox as a Ox-module.

Exercisel 32.2. General facts.

(1) Show that an invertible Ox-module on a scheme X is quasi-coherent.
(2) Suppose X — Y is a morphism of ringed spaces, and £ an invertible Oy-
module. Show that f*L£ is an invertible Ox module.

Exercise| 32.3. Algebra.

(1) Show that an invertible Ox-module on an affine scheme Spec(A) corre-
sponds to an A-module M which is (i) finite, (ii) projective, (iii) locally
free of rank 1, and hence (iv) flat, and (v) finitely presented. (Feel free to
quote things from last semesters course; or from algebra books.)

(2) Suppose that A is a domain and that M is a module as in (a). Show that M
is isomorphic as an A-module to an ideal I C A such that 1A, is principal
for every prime p.

Definition 32.4. Let R be a ring. An invertible module M is an R-module M
such that M is an invertible sheaf on the spectrum of R. We say M is trivial if
M = R as an R-module.

In other words, M is invertible if and only if it satisfies all of the following conditions:
it is flat, of finite presentation, projective, and locally free of rank 1. (Of course it
suffices for it to be locally free of rank 1).

Exercise| 32.5. Simple examples.

(1) Let k be a field. Let A = k[x]. Show that X = Spec(A) has only trivial in-
vertible Ox-modules. In other words, show that every invertible A-module
is free of rank 1.

(2) Let A be the ring

A={feklz]| f0)=f1)}

Show there exists a nontrivial invertible A-module, unless k¥ = F5. (Hint:
Think about Spec(A) as identifying 0 and 1 in A} = Spec(k[x]).)

(3) Same question as in for the ring A = k[z? 23] C k[z] (except now
k =Fy works as well).

Exercise| 32.6. Higher dimensions.
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Prove that every invertible sheaf on two dimensional affine space is trivial.
More precisely, let A2 = Spec(k[z,y]) where k is a field. Show that every
invertible sheaf on A7 is trivial. (Hint: One way to do this is to consider
the corresponding module M, to look at M ®y, . k(2)[y], and then use
Exercise to find a generator for this; then you still have to think.
Another way to is to use Exercise [32.3] and use what we know about ideals
of the polynomial ring: primes of height one are generated by an irreducible
polynomial; then you still have to think.)

Prove that every invertible sheaf on any open subscheme of two dimensional
affine space is trivial. More precisely, let U C Az be an open subscheme
where k is a field. Show that every invertible sheaf on U is trivial. Hint:
Show that every invertible sheaf on U extends to one on A?. Not easy; but
you can find it in [Har77].

Find an example of a nontrivial invertible sheaf on a punctured cone over a
field. More precisely, let k be a field and let C = Spec(k[z, y, 2]/ (xy — 22)).
Let U = C'\ {(z,y,2)}. Find a nontrivial invertible sheaf on U. Hint: It
may be easier to compute the group of isomorphism classes of invertible
sheaves on U than to just find one. Note that U is covered by the opens
Spec(k[z,y, z,1/z]/(zy — 2?)) and Spec(k[z,y, z,1/y]/(zy — 2?)) which are
“easy” to deal with.

Definition 32.7. Let X be a locally ringed space. The Picard group of X is the
set Pic(X) of isomorphism classes of invertible Ox-modules with addition given
by tensor product. See Modules, Definition For a ring R we set Pic(R) =
Pic(Spec(R)).

Exercise| 32.8. Let R be a ring.

(1)

(2)

Show that if R is a Noetherian normal domain, then Pic(R) = Pic(R][t]).
[Hint: There is a map R[t] — R, t — 0 which is a left inverse to the map
R — RJ[t]. Hence it suffices to show that any invertible R[t]-module M such
that M/tM = R is free of rank 1. Let K = f.f.(R). Pick a trivialization
K[t] = M ®pgpy K[t] which is possible by Exercise . Adjust it so
it agrees with the trivialization of M/tM above. Show that it is in fact a
trivialization of M over R[t] (this is where normality comes in).]

Let k be a field. Show that Pic(k[2z?, 23,t]) # Pic(k[z?, 27]).

33. Cech Cohomology

Exercise 33.1. Cech cohomology. Here k is a field.

(1)

Let X be a scheme with an open covering U : X = U; U Us, with U; =
Spec(klz]), Uz = Spec(kly]) with Uy N Uz = Spec(k[z,1/z]) and with open
immersions U; N Us — Uy resp. Uy N Uy — Uy determined by x +— z resp.
y — z (and I really mean this). (We’ve seen in the lectures that such an X
exists; it is the affine line zith zero doubled.) Compute H(U,O); eg. give
a basis for it as a k-vectorspace.

For each element in H'(U,O) construct an exact sequence of sheaves of
O x-modules

0—-0x - E—-0x—0
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such that the boundary §(1) € H'(U,©) equals the given element. (Part
of the problem is to make sense of this. See also below. It is also OK to
show abstractly such a thing has to exist.)

Definition 33.2. (Definition of delta.) Suppose that
0—=F = F2—=F3—=0

is a short exact sequence of abelian sheaves on any topological space X. The
boundary map ¢ : H(X, F3) — H'(X, F;) is defined as follows. Take an element
T € H°(X,F3). Choose an open covering U : X = J,c; U; such that for each i
there exists a section 7; € JF» lifting the restriction of 7 to U;. Then consider the
assignment

(40, 11) — T,

U, — Tiy

igiy

Uigiy *

This is clearly a 1-coboundary in the Cech complex C*(U, F,). But we observe that
(thinking of F; as a subsheaf of F3) the RHS always is a section of Fy over Uj;,.
Hence we see that the assignment defines a 1-cochain in the complex C*(U, F2).

The cohomology class of this 1-cochain is by definition (7).

34. Divisors
We collect all relevant definitions here in one spot for convenience.

Definition 34.1. Throughout, let S be any scheme and let X be a Noetherian,
integral scheme.
(1) A Weil divisor on X is a formal linear combination ¥n;[Z;] of prime divisors
Z; with integer coefficients.
(2) A prime divisoris a closed subscheme Z C X, which is integral with generic
point £ € Z such that Ox ¢ has dimension 1. We will use the notation
Ox,z = Ox ¢ when { € Z C X is as above. Note that Ox z C K(X) is a
subring of the function field of X.
(3) The Weil divisor associated to a rational function f € K(X)* is the sum
Svz(f)[Z]. Here vz(f) is defined as follows
(a) If f € O% z then vz(f) =0.
(b) If f € Ox,z then

vz(f) =lengthy ,(Ox,z/(f)).

(c) If f = ¢ with a,b € Ox 7 then

vz(f) = lengthy, ,(Ox z/(a)) —lengthy  , (Ox,z/(b)).

(4) An effective Cartier divisor on a scheme S is a closed subscheme D C S such
that every point d € D has an affine open neighbourhood Spec(A) =U C S
in S so that D NU = Spec(A/(f)) with f € A a nonzerodivisor.

(5) The Weil divisor [D] associated to an effective Cartier divisor D C X of
our Noetherian integral scheme X is defined as the sum vz (D)[Z] where
vz (D) is defined as follows

(a) If the generic point & of Z is not in D then vz (D) = 0.
(b) If the generic point £ of Z is in D then

vz(D) = lengthy, ,(Ox,z/(f))

where f € Ox 7z = Ox ¢ is the nonzerodivisor which defines D in an
affine neighbourhood of ¢ (as in (4) above).
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(6) Let S be a scheme. The sheaf of total quotient rings Kg is the sheaf of Og-
algebras which is the sheafification of the pre-sheaf K’ defined as follows.
For U C S open we set K'(U) = S;;'Og(U) where Sy C Og(U) is the
multiplicative subset consisting of sections f € Og(U) such that the germ
of f in Og,, is a nonzerodivisor for every u € U. In particular the elements
of Sy are all nonzerodivisors. Thus Og is a subsheaf of g, and we get a
short exact sequence

0— 0% = Ks— Ks5/0% — 0.

(7) A Cartier divisor on a scheme S is a global section of the quotient sheaf
Kt/O%.

(8) The Weil divisor associated to a Cartier divisor T € T'(X, K% /O%) over our
Noetherian integral scheme X is the sum Yvyz(7)[Z] where vz (7) is defined
as by the following recipe

(a) If the germ of 7 at the generic point £ of Z is zero — in other words
the image of 7 in the stalk (*/O*)¢ is “zero” — then vz(7) = 0.

(b) Find an affine open neighbourhood Spec(A) = U C X so that 7|y is
the image of a section f € K(U) and moreover f = a/b with a,b € A.
Then we set

vz(f) = lengthy, ,(Ox,z/(a)) —lengthy  , (Ox z/(b)).

Remarks 34.2. Here are some trivial remarks.

(1) On a Noetherian integral scheme X the sheaf Ky is constant with value
the function field K (X).
(2) To make sense out of the definitions above one needs to show that

lengthy (O/(ab)) = lengthy(O/(a)) + lengthy, (O/ (b))

for any pair (a,b) of nonzero elements of a Noetherian 1-dimensional local
domain O. This will be done in the lectures.

Exercise 34.3. (On any scheme.) Describe how to assign a Cartier divisor to an
effective Cartier divisor.

Exercise 34.4. (On an integral scheme.) Describe how to assign a Cartier divisor
D to a rational function f such that the Weil divisor associated to D and to f
agree. (This is silly.)

Exercise| 34.5. Give an example of a Weil divisor on a variety which is not the
WEeil divisor associated to any Cartier divisor.

Exercise| 34.6. Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor but such that nD is the Weil divisor
associated to a Cartier divisor for some n > 1.

Exercise| 34.7. Give an example of a Weil divisor D on a variety which is not the
Weil divisor associated to any Cartier divisor and such that nD is NOT the Weil
divisor associated to a Cartier divisor for any n > 1. (Hint: Consider a cone, for
example X : xy — zw = 0 in A}. Try to show that D = [z = 0,z = 0] works.)

Exercise| 34.8. On a separated scheme X of finite type over a field: Give an
example of a Cartier divisor which is not the difference of two effective Cartier
divisors. Hint: Find some X which does not have any nonempty effective Cartier
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Cartier divisors for example the scheme constructed in [Har77, IIT Exercise 5.9].
There is even an example with X a variety — namely the variety of Exercise [34.9

Exercise| 34.9. Example of a nonprojective proper variety. Let k be a field. Let
L C P$ be aline and let C C P} be a nonsingular conic. Assume that C N L = ().
Choose an isomorphism ¢ : L — C. Let X be the k-variety obtained by glueing C
to L via . In other words there is a surjective proper birational morphism

W:Pi—)X

and an open U C X such that 7 : 771(U) — U is an isomorphism, 7—1(U) =
P$\ (L UC) and such that 7| = 7|c o ¢. (These conditions do not yet uniquely
define X. In order to do this you need to specify the structure sheaf of X along
points of Z = X \ U.) Show X exists, is a proper variety, but is not projective.
(Hint: For existence use the result of Exercise m For non-projectivity use that
Pic(P3}) = Z to show that X cannot have an ample invertible sheaf.)

35. Differentials

Definitions and results. Kéahler differentials.

(1) Let R — A be a ring map. The module of Kihler differentials of A over R
is denoted €24 /. It is generated by the elements da, a € A subject to the
relations:

d(a; + a2) = da; +dae, d(aija2) = ardas + asda;, dr=20
The canonical universal R-derivation d : A — Q 4, maps a — da.
(2) Consider the short exact sequence
0—-1—-ARrA—A—0

which defines the ideal I. There is a canonical derivation d : A — I/I?
which maps a to the class of a ® 1 — 1 ® a. This is another presentation of
the module of derivations of A over R, in other words

(I/1%,d) = (Qa/r, d).
(3) For multiplicative subsets S C R and S4 C A such that Sk maps into Sy
we have
-1
nglA/sglR =5, Qa/r-
(4) If A is a finitely presented R-algebra then Q4 is a finitely presented A-
module. Hence in this case the fitting ideals of 24, are defined. (See
exercise set 6 of last semester.)

(5) Let f: X — S be a morphism of schemes. There is a quasi-coherent sheaf
of Ox-modules x/5 and a Og-linear derivation

d:Ox —>QX/S

such that for any affine opens Spec(4) = U C X, Spec(R) =V C S with
f(U) C V we have

I'(Spec(4),Q2x/s) = Qa/r
compatibly with d.
Exercise 35.1. Let k[e] be the ring of dual numbers over the field k, i.e., €2 = 0.
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(1) Consider the ring map
R =kle] = A= k[z, €]/ (ex)

Show that the fitting ideals of Q4,r are (starting with the zeroth fitting
ideal)
(e),A,A,...
(2) Consider the map R = k[t] - A = k[z,y,t]/(x(y—t)(y—1),z(z—1t)). Show
that the fitting ideals of of Q4,p in A are (assume characteristic k is zero
for simplicity)

2z —t)2y —t— DA, (x,y,t)N(x,y —1,t), A, A,...

So the 0-the fitting ideal is cut out by a single element of A, the 1st fitting
ideal defines two closed points of Spec(A), and the others are all trivial.

(3) Consider the map R = k[t] — A = k[z,y,t]/(zy —t™). Compute the fitting
ideals of Q4 /.

Remark 35.2. The kth fitting ideal of Qx /s is commonly used to define the
singular scheme of the morphism X — S when X has relative dimension k over
S. But as part (a) shows, you have to be careful doing this when your family does
not have “constant” fibre dimension, e.g., when it is not flat. As part (b) shows,
flatness doesn’t guarantee it works either (and yes this is a flat family). In “good
cases” — such as in (c¢) — for families of curves you expect the 0-th fitting ideal to
be zero and the 1st fitting ideal to define (scheme-theoretically) the singular locus.

Exercise| 35.3. Suppose that R is a ring and
A = k[l‘h...,mn}/(fl,...,fn).

Note that we are assuming that A is presented by the same number of equations
as variables. Thus the matrix of partial derivatives

(0fi/Ox;)
is n X n, i.e., a square matrix. Assume that its determinant is invertible as an
element in A. Note that this is exactly the condition that says that Q4,r = (0)
in this case of n-generators and n relations. Let m : B’ — B be a surjection of
R-algebras whose kernel J has square zero (as an ideal in B’). Let ¢ : A — B
be a homomorphism of R-algebras. Show there exists a unique homomorphism of
R-algebras ¢’ : A — B’ such that ¢ = wo .

Exercise| 35.4. Find a generalization of the result of the previous exercise to the
case where A = R[z, y]/(f).

36. Schemes, Final Exam, Fall 2007

These were the questions in the final exam of a course on Schemes, in the Spring
of 2007 at Columbia University.

Exercise 36.1 (Definitions). Provide definitions of the following concepts.
(1) X is a scheme
(2) the morphism of schemes f : X — Y is finite

(3) the morphisms of schemes f: X — Y is of finite type

(4) the scheme X is Noetherian

(5) the Ox-module £ on the scheme X is invertible
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(6) the genus of a nonsingular projective curve over an algebraically closed field

Exercise 36.2. Let X = Spec(Z[z,y]), and let F be a quasi-coherent O x-module.
Suppose that F is zero when restricted to the standard affine open D(x).

(1) Show that every global section s of F is killed by some power of z, i.e.,
z"s = 0 for some n € N.
(2) Do you think the same is true if we do not assume that F is quasi-coherent?

Exercise 36.3. Suppose that X — Spec(R) is a proper morphism and that R is
a discrete valuation ring with residue field k. Suppose that X Xgpec(r) Spec(k) is
the empty scheme. Show that X is the empty scheme.

Exercise| 36.4. Consider the projectiveﬂ variety
P' x P' = Pg Xspec(c) PG

over the field of complex numbers C. It is covered by four affine pieces, corre-
sponding to pairs of standard affine pieces of Pg. For example, suppose we use
homogeneous coordinates X, X7 on the first factor and Yy, Y; on the second. Set
x = X1/Xo, and y = Y1/Yy. Then the 4 affine open pieces are the spectra of the
rings
Cle,yl, Cla™hyl, Cloy™], Clhy 'l

Let X C P! x P! be the closed subscheme which is the closure of the closed subset
of the first affine piece given by the equation

ot +1) =2 - 1.

(1) Show that X is contained in the union of the first and the last of the 4
affine open pieces.

(2) Show that X is a nonsingular projective curve.

(3) Consider the morphism pry : X — P! (projection onto the first factor). On
the first affine piece it is the map (z,y) — z. Briefly explain why it has
degree 3.

(4) Compute the ramification points and ramification indices for the map prs :
X — PL

(5) Compute the genus of X.

Exercise 36.5. Let X — Spec(Z) be a morphism of finite type. Suppose that
there is an infinite number of primes p such that X Xgpec(z) Spec(Fy) is not empty.
(1) Show that X Xgpec(z) Spec(Q) is not empty.
(2) Do you think the same is true if we replace the condition “finite type” by
the condition “locally of finite type”?

37. Schemes, Final Exam, Spring 2009

These were the questions in the final exam of a course on Schemes, in the Spring
of 2009 at Columbia University.

Exercisel 37.1. Let X be a Noetherian scheme. Let F be a coherent sheaf on X.
Let x € X be a point. Assume that Supp(F) = {z}.

(1) Show that x is a closed point of X.

1The projective embedding is ((XV()7 X1), (Yo7 Y1)) — ()(03/()7 )(()le7 X1 Yo, X1Y1) in other words
(z,y) = (Ly,z,zy).
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(2) Show that HY(X,F) is not zero.
(3) Show that F is generated by global sections.
(4) Show that H?(X,F) =0 for p > 0.

Remark 37.2. Let k be a field. Let P? = Proj(k[Xo, X1, X2]). Any invertible
sheaf on P? is isomorphic to Op2 (n) for some n € Z. Recall that

L(P}, Op: (n)) = k[Xo, X1, X,

is the degree n part of the polynomial ring. For a quasi-coherent sheaf 7 on P? set
F(n) = F ®o,, Opz(n) as usual.
k

Exercise 37.3. Let k be a field. Let € be a vector bundle on P?, i.e., a finite locally
free OPi -module. We say & is split if £ is isomorphic to a direct sum invertible
Opz-modules.
(1) Show that & is split if and only if £(n) is split.
(2) Show that if € is split then H*(P%,&(n)) =0 for all n € Z.
(3) Let
¢:Opz — Op2(1) ® Op2 (1) ® Opz (1)
be given by linear forms Lo, L1, Ly € T'(P}, Opz(1)). Assume L; # 0 for
some 4. What is the condition on Lg, L1, Lo such that the cokernel of @ is
a vector bundle? Why?
(4) Given an example of such a .
(5) Show that Coker(¢y) is not split (if it is a vector bundle).

Remark 37.4. Freely use the following facts on dimension theory (and add more
if you need more).

(1) The dimension of a scheme is the supremum of the length of chains of
irreducible closed subsets.

(2) The dimension of a finite type scheme over a field is the maximum of the
dimensions of its affine opens.

(3) The dimension of a Noetherian scheme is the maximum of the dimensions
of its irreducible components.

(4) The dimension of an affine scheme coincides with the dimension of the
corresponding ring.

(5) Let k be a field and let A be a finite type k-algebra. If A is a domain, and
x # 0, then dim(A) = dim(A/zA) + 1.

Exercise| 37.5. Let k be a field. Let X be a projective, reduced scheme over k.
Let f: X — P} be a morphism of schemes over k. Assume there exists an integer
d > 0 such that for every point ¢ € P}, the fibre X; = f~!(¢) is irreducible of
dimension d. (Recall that an irreducible space is not empty.)

(1) Show that dim(X) =d+ 1.

(2) Let Xy C X be an irreducible component of X of dimension d 4+ 1. Prove

that for every t € P}, the fibre X, has dimension d.
(3) What can you conclude about X; and X from the above?
(4) Show that X is irreducible.

Remark| 37.6. Given a projective scheme X over a field £ and a coherent sheaf F
on X we set ' ‘
(X, F) = Z J(=1)" dimy, H' (X, F).

i>
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Exercise 37.7. Let k be a field. Write P = Proj(k[Xo, X1, X2, X3]). Let C C P}
be a type (5,6) complete intersection curve. This means that there exist F €
k[Xo, Xl, XQ, Xg}g, and G € k[Xo, Xl, XQ, X3]6 such that

C= Proj(k[XOa X17 X2u X3]/(F7 G))

is a variety of dimension 1. (Variety implies reduced and irreducible, but feel free
to assume C is nonsingular if you like.) Let i : C — P3 be the corresponding closed
immersion. Being a complete intersection also implies that

()
F (F,G)

0 — Op3 (—11) ~— Op3 (=5) & Op3 (—6) Ops i»Oc 0

is an exact sequence of sheaves. Please use these facts to:
(1) compute x(C,i*Opsz(n)) for any n € Z, and
(2) compute the dimension of H'(C, O¢).

Exercise| 37.8. Let k be a field. Consider the rings
A = klz,y]/(zy)
B = k[u, v]/(uv)
C = k[t,t™'] x k[s, s ]
and the k-algebra maps

A—C, z~(t,0), y—(0,s)
B—C, uw (t750), v~ (0,571

It is a true fact that these maps induce isomorphisms A,., — C and B4, — C.
Hence the maps A — C and B — C identify Spec(C) with open subsets of Spec(A)
and Spec(B). Let X be the scheme obtained by glueing Spec(A) and Spec(B) along
Spec(C):

X = Spec(4) HSpeC(C) Spec(B).

As we saw in the course such a scheme exists and there are affine opens Spec(A) C X
and Spec(B) C X whose overlap is exactly Spec(C) identified with an open of each
of these using the maps above.

(1) Why is X separated?

(2) Why is X of finite type over k?

(3) Compute H!'(X,Ox), or what is its dimension?

(4) What is a more geometric way to describe X7

38. Schemes, Final Exam, Fall 2010

These were the questions in the final exam of a course on Schemes, in the Fall of
2010 at Columbia University.

Exercise 38.1 (Definitions). Provide definitions of the following concepts.

(1) a separated scheme,

) a quasi-compact morphism of schemes,
) an affine morphism of schemes,

) a multiplicative subset of a ring,

) a Noetherian scheme,
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(6) a variety.

Exercise 38.2. Prime avoidance.

(1) Let A be aring. Let I C A be an ideal and let qq, q2 be prime ideals such
that I ¢ q;. Show that I ¢ q; U qa.

(2) What is a geometric interpretation of (1)7

(3) Let X = Proj(S) for some graded ring S. Let 1,22 € X. Show that there
exists a standard open D, (F') which contains both x; and z5.

Exercise| 38.3. Why is a composition of affine morphisms affine?

Exercise 38.4 (Examples). Give examples of the following:
(1) A reducible projective scheme over a field k.
(2) A scheme with 100 points.
(3) A non-affine morphism of schemes.

Exercise| 38.5. Chevalley’s theorem and the Hilbert Nullstellensatz.

(1) Let p C Z[x1,...,2,] be a maximal ideal. What does Chevalley’s theorem
imply about p N Z7?
(2) In turn, what does the Hilbert Nullstellensatz imply about «(p)?

Exercise 38.6. Let A be a ring. Let S = A[X] as a graded A-algebra where X
has degree 1. Show that Proj(S) = Spec(A) as schemes over A.

Exercise 38.7. Let A — B be a finite ring map. Show that Spec(B) is a H-
projective scheme over Spec(A).

Exercise| 38.8. Give an example of a scheme X over a field k£ such that X is
irreducible and such that for some finite extension k C k the base change X =
X Xgpec(k) Spec(k’) is connected but reducible.

39. Schemes, Final Exam, Spring 2011

These were the questions in the final exam of a course on Schemes, in the Spring
of 2011 at Columbia University.

Exercise 39.1 (Definitions). Provide definitions of the italicized concepts.
(1) a separated scheme,
(2) a universally closed morphism of schemes,
(3) A dominates B for local rings A, B contained in a common field,
(4) the dimension of a scheme X,
(5) the codimension of an irreducible closed subscheme Y of a scheme X,

Exercise 39.2 (Results). State something formally equivalent to the fact discussed
in the course.

(1) The valuative criterion of properness for a morphism X — Y of varieties
for example.

(2) The relationship between dim(X) and the function field k(X) of X for a
variety X over a field k.

(3) Fill in the blank: The category of nonsingular projective curves over k and
nonconstant morphisms is anti-equivalent to ..........

(4) Noether normalization.

(5) Jacobian criterion.


http://localhost:8080/tag/069S
http://localhost:8080/tag/069T
http://localhost:8080/tag/069U
http://localhost:8080/tag/069V
http://localhost:8080/tag/069W
http://localhost:8080/tag/069X
http://localhost:8080/tag/069Y
http://localhost:8080/tag/06A0
http://localhost:8080/tag/06A1

40 EXERCISES

Exercise 39.3. Let k be a field. Let F' € k[X(, X1, X2] be a homogeneous form
of degree d. Assume that C = V. (F) C P% is a smooth curve over k. Denote
1:C — PZ the corresponding closed immersion.

(1) Show that there is a short exact sequence
0 — Opz2(—d) = Opz = i.0c = 0

of coherent sheaves on Pi: tell me what the maps are and briefly why it is
exact.

(2) Conclude that H°(C,O¢) = k.

(3) Compute the genus of C.

(4) Assume now that P = (0:0: 1) is not on C. Prove that 7 : C — P}, given
by (ao : a1 : a2) — (ap : a1) has degree d.

(5) Assume k is algebraically closed, assume all ramification indices (the “e;”)
are 1 or 2, and assume the characteristic of k is not equal to 2. How many
ramification points does 7 : C — P} have?

(6) In terms of F', what do you think is a set of equations of the set of ramifi-
cation points of 77?7

(7) Can you guess K7

Exercise| 39.4. Let k be a field. Let X be a “triangle” over k, i.e., you get X by
glueing three copies of A}, to each other by identifying 0 on the first copy to 1 on the
second copy, 0 on the second copy to 1 on the first copy, and 0 on the third copy to 1
on the first copy. It turns out that X is isomorphic to Spec(k[z,y]/(zy(z+y+1)));
feel free to use this. Compute the Picard group of X.

Exercise| 39.5. Let k be a field. Let 7 : X — Y be a finite birational morphism of
curves with X a projective nonsingular curve over k. It follows from the material
in the course that Y is a proper curve and that 7 is the normalization morphism
of Y. We have also seen in the course that there exists a dense open V' C Y such
that U = 7=1(V) is a dense open in X and 7 : U — V is an isomorphism.

(1) Show that there exists an effective Cartier divisor D C X such that D C U
and such that Ox (D) is ample on X.
(2) Let D be as in (1). Show that E = w(D) is an effective Cartier divisor on
Y.
(3) Briefly indicate why
(a) the map Oy — m.Ox has a coherent cokernel ) which is supported
inY\V, and
(b) for every n there is a corresponding map Oy (nE) — m,.Ox (nD) whose
cokernel is isomorphic to Q.
(4) Show that dimy H°(X,Ox(nD)) — dimy H°(Y, Oy (nE)) is bounded (by
what?) and conclude that the invertible sheaf Oy (nE) has lots of sections
for large n (why?).

40. Schemes, Final Exam, Fall 2011

These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2011 at Columbia University.

Exercise 40.1 (Definitions). Provide definitions of the italicized concepts.

(1) a Noetherian ring,
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(2) a Noetherian scheme,

(3) a finite ring homomorphism,
(4) a finite morphism of schemes,
(5) the dimension of a ring.

Exercise 40.2 (Results). State something formally equivalent to the fact discussed
in the course.
(1
(2
(3
(4

Zariski’s Main Theorem.
Noether normalization.
Chinese remainder theorem.
Going up for finite ring maps.

—_— T —

Exercise 40.3. Let (A, m, ) be a Noetherian local ring whose residue field has
characteristic not 2. Suppose that m is generated by three elements z, y, z and that
22 +y2+22=0in A.

(1) What are the possible values of dim(A)?

(2) Give an example to show that each value is possible.

(3) Show that A is a domain if dim(A) = 2. (Hint: look at @,,-, m"/m"*1.)

Exercise/40.4. Let A be aring. Let S C T' C A be multiplicative subsets. Assume
that
{algnsS =0} ={alanT =0}
Show that S™'A — T—!A is an isomorphism.
Exercise| 40.5. Let k be an algebraically closed field. Let
Vo = {A € Mat(3 x 3,k) | rank(A) = 1} € Mat(3 x 3,k) = k°.
(1) Show that Vj is the set of closed points of a (Zariski) locally closed subset
V CAj.
(2) Is V irreducible?
(3) What is dim(V)?

Exercise 40.6. Prove that the ideal (22, 2y, y?) in C[z,y] cannot be generated by
2 elements.

Exercise 40.7. Let f € C[z,y] be a nonconstant polynomial. Show that for some
a, B € C the C-algebra map

Clt] — Clz,y]/(f), t+—az+ By
is finite.

Exercise 40.8. Show that given finitely many points p1,...,p, € C? the scheme
AL\ {p1,...,pn} is a union of two affine opens.

Exercise 40.9. Show that there exists a surjective morphism of schemes A& —
P{. (Surjective just means surjective on underlying sets of points.)

Exercise| 40.10. Let k& be an algebraically closed field. Let A C B be an ex-
tension of domains which are both finite type k-algebras. Prove that the image
of Spec(B) — Spec(A) contains a nonempty open subset of Spec(A) using the
following steps:

(1) Prove it if A — B is also finite.
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(2) Prove it in case the fraction field of B is a finite extension of the fraction
field of A.
(3) Reduce the statement to the previous case.

41. Schemes, Final Exam, Fall 2013

These were the questions in the final exam of a course on Commutative Algebra,
in the Fall of 2013 at Columbia University.

Exercise 41.1 (Definitions). Provide definitions of the italicized concepts.

(1) a radical ideal of a ring,

(2) a finite type ring homomorphism,
(3) a differential a la Weil,

(4) a scheme.

Exercise 41.2 (Results). State something formally equivalent to the fact discussed
in the course.

(1) result on hilbert polynomials of graded modules.

(2) dimension of a Noetherian local ring (R, m) and €p,,-, m"/m" 1.
(3) Riemann-Roch. B

(4) Clifford’s theorem.

(5) Chevalley’s theorem.

Exercise| 41.3. Let A — B be a ring map. Let S C A be a multiplicative subset.
Assume that A — B is of finite type and S™'A — S~!B is surjective. Show that
there exists an f € S such that Ay — By is surjective.

Exercise| 41.4. Give an example of an injective local homomorphism A — B of
local rings, such that Spec(B) — Spec(A) is not surjective.

Situation 41.5 (Notation plane curve). Let k be an algebraically closed field.
Let F(Xo, X1, X2) € k[Xo, X1, X2] be an irreducible polynomial homogenenous of
degree d. We let
D=V(F)cP?

be the projective plane curve given by the vanishing of F. Set © = X; /X, and y =
Xo/Xo and f(z,y) = Xy “F(Xo, X1, X2) = F(1,2,y). We denote K the fraction
field of the domain kfz,y]/(f). We let C be the abstract curve corresponding to
K. Recall (from the lectures) that there is a surjective map C' — D which is
bijective over the nonsingular locus of D and an isomorphism if D is nonsingular.
Set f, = 0f/0x and f, = 0f/0y. Finally, we denote w = dz/f, = —dy/f, the
element of g/, discussed in the lectures. Denote K¢ the divisor of zeros and poles
of w.

Exercise| 41.6. In Situation assume d > 3 and that the curve D has exactly
one singular point, namely P = (1 : 0 : 0). Assume further that we have the
expansion

fz,y) = xy + h.ot

around P = (0,0). Then C has two points v and w lying over over P characterized
by
v(iz)=1v(y) >1 and w(x)>1l,w(y) =1
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(1) Show that the element w = dx/f, = —dy/ f. of Qg has a first order pole
at both v and w. (The behaviour of w at nonsingular points is as discussed
in the lectures.)

(2) In the lectures we have shown that w vanishes to order d — 3 at the divisor
Xo = 0 pulled back to C' under the map C — D. Combined with the
information of (1) what is the degree of the divisor of zeros and poles of w
on C?

(3) What is the genus of the curve C?

Exercisel 41.7. In Situation M1.5 assume d = 5 and that the curve C = D is
nonsingular. In the lectures we have shown that the genus of C' is 6 and that the
linear system K¢ is given by
L(Kc) ={hw | h € k[z,y], deg(h) <2}

where deg indicates total degreeﬂ Let Py, P>, P3, Py, Ps € D be pairwise distinct
points lying in the affine open Xy # 0. We denote > P, = Py + Py + P3 + P, + Ps
the corresponding divisor of C.

(1) Describe L(Kc — > P;) in terms of polynomials.

(2) What are the possibilities for (> P;)?

Exercisel 41.8. Write down an F as in Situation 415 with d = 100 such that the
genus of C' is 0.

Exercise 41.9. Let k be an algebraically closed field. Let K/k be finitely generated
field extension of transcendence degree 1. Let C' be the abstract curve corresponding
to K. Let V C K be a g and let @ : ' = P" be the corresponding morphism.
Show that the image of C' is contained in a quadri(ﬂ if d is V is a complete linear
system and d is large enough relative to the genus of C. (Extra credit: good bound
on the degree needed.)

Exercise 41.10. Notation as in Situation Let U C P? be the open subscheme
whose complement is D. Describe the k-algebra A = Op: (U). Give an upper bound
for the number of generators of A as a k-algebra.

42. Schemes, Final Exam, Spring 2014

These were the questions in the final exam of a course on Schemes, in the Fall of
2014 at Columbia University.

Exercise 42.1 (Definitions). Let (X, Ox) be a scheme. Provide definitions of the
italicized concepts.

(1) the local ring of X at a point x,

(2) a quasi-coherent sheaf of Ox-modules,

(3) a coherent sheaf of Ox-modules (please assume X is locally Noetherian,
(4) an affine open of X,

(5) a finite morphism of schemes X — Y.

Exercise 42.2 (Theorems). Precisely state a nontrivial fact discussed in the lec-
tures related to each item.

2Weget < 2becaused—3=5—-—3=2.
SA quadric is a degree 2 hypersurface, i.e., the zero set in P” of a degree 2 homogeneous
polynomial.
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(1) on birational invariance of pluri-genera of varieties,

(2) being an affine morphism is a local property,

(3) the topology of a scheme theoretic fibre of a morphism, and
(4) valuative criterion of properness.

Exercise 42.3. Let X = A% where C is the field of complex numbers. A line will
mean a closed subscheme of X defined by one linear equation ax 4 by 4+ ¢ = 0 for
some a, b, c € C with (a,b) # (0,0). A curve will mean an irreducible (so nonempty)
closed subscheme C' C X of dimension 1. A gquadric will mean a curve defined by
one quadratic equation az? + bxy + cy? +dx +ey+ f = 0 for some a, b, ¢, d, e, f € C
and (a,b,c) # (0,0,0).
(1) Find a curve C such that every line has nonempty intersection with C.
(2) Find a curve C such that every line and every quadric has nonempty inter-
section with C.
(3) Show that for every curve C there exists another curve such that CNC’ = ().

Exercise 42.4. Let k be a field. Let b: X — AZ be the blow up of the affine plane
in the origin. In other words, if A? = Spec(k[z,y]), then X = Proj(€P,,>o m")
where m = (z,y) C k[z,y]. Prove the following statements

(1) the scheme theoretic fibre E of b over the origin is isomorphic to P},
(2) E is an effective Cartier divisor on X,
(3) the restriction of Ox(—FE) to E is a line bundle of degree 1.

(Recall that Ox (—FE) is the ideal sheaf of F in X.)

Exercise| 42.5. Let k be a field. Let X be a projective variety over k. Show there
exists an affine variety U over k and a surjective morphism of varieties U — X.

Exercise|42.6. Let k be a field of characteristic p > 0 different from 2, 3. Consider
the closed subscheme X of P} defined by

Zi:O,...JL XZ = 07 Zi:o,...,n XZ? = 0’ Zi:o,.,,,n Xz3 =0

For which pairs (n,p) is this variety singular?
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