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1. Introduction

In this chapter we put material related to limits of algebraic spaces. A first topic is
the characterization of algebraic spaces F locally of finite presentation over the base
S as limit preserving functors. We continue with a study of limits of inverse systems
over directed partially ordered sets with affine transition maps. We discuss absolute
Noetherian approximation for quasi-compact and quasi-separated algebraic spaces
following [CLO12]. Another approach is due to David Rydh (see [Ryd08]) whose
results also cover absolute Noetherian approximation for certain algebraic stacks.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 LIMITS OF ALGEBRAIC SPACES

3. Morphisms of finite presentation

In this section we generalize Limits, Proposition 5.1 to morphisms of algebraic
spaces. The motivation for the following definition comes from the proposition just
cited.

Definition 3.1. Let S be a scheme.

(1) A functor F : (Sch/S)oppfppf → Sets is said to be locally of finite presentation
or limit preserving if for every affine scheme T over S which is a limit
T = limTi of a directed inverse system of affine schemes Ti over S, we have

F (T ) = colimF (Ti).

We sometimes say that F is locally of finite presentation over S.
(2) Let F,G : (Sch/S)oppfppf → Sets. A transformation of functors a : F → G is

locally of finite presentation if for every scheme T over S and every y ∈ G(T )
the functor

Fy : (Sch/T )oppfppf −→ Sets, T ′/T 7−→ {x ∈ F (T ′) | a(x) = y|T ′}

is locally of finite presentation over T 1. We sometimes say that F is rela-
tively limit preserving over G.

The functor Fy is in some sense the fiber of a : F → G over y, except that it is a
presheaf on the big fppf site of T . A formula for this functor is:

(3.1.1) Fy = F |(Sch/T )fppf
×G|(Sch/T )fppf

∗

Here ∗ is the final object in the category of (pre)sheaves on (Sch/T )fppf (see Sites,
Example 10.2) and the map ∗ → G|(Sch/T )fppf

is given by y. Note that if j :
(Sch/T )fppf → (Sch/S)fppf is the localization functor, then the formula above
becomes Fy = j−1F ×j−1G ∗ and j!Fy is just the fiber product F ×G,y T . (See Sites,
Section 24, for information on localization, and especially Sites, Remark 24.9 for
information on j! for presheaves.)

At this point we temporarily have two definitions of what it means for a morphism
X → Y of algebraic spaces over S to be locally of finite presentation. Namely, one
by Morphisms of Spaces, Definition 27.1 and one using that X → Y is a transfor-
mation of functors so that Definition 3.1 applies. We will show in Proposition 3.9
that these two definitions agree.

Lemma 3.2. Let S be a scheme. Let a : F → G be a transformation of functors
(Sch/S)oppfppf → Sets. The following are equivalent

(1) F is relatively limit preserving over G, and
(2) for every every affine scheme T over S which is a limit T = limTi of a

directed inverse system of affine schemes Ti over S the diagram of sets

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) // G(T )

is a fibre product diagram.

1The characterization (2) in Lemma 3.2 may be easier to parse.
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Proof. Assume (1). Consider T = limi∈I Ti as in (2). Let (y, xT ) be an element
of the fibre product colimiG(Ti) ×G(T ) F (T ). Then y comes from yi ∈ G(Ti) for
some i. Consider the functor Fyi on (Sch/Ti)fppf as in Definition 3.1. We see that
xT ∈ Fyi(T ). Moreover T = limi′≥i Ti′ is a directed system of affine schemes over
Ti. Hence (1) implies that xT the image of a unique element x of colimi′≥i Fyi(Ti′).
Thus x is the unique element of colimF (Ti) which maps to the pair (y, xT ). This
proves that (2) holds.

Assume (2). Let T be a scheme and yT ∈ G(T ). We have to show that FyT is limit
preserving. Let T ′ = limi∈I T

′
i be an affine scheme over T which is the directed

limit of affine scheme T ′i over T . Let xT ′ ∈ FyT . Pick i ∈ I which is possible as I is
a directed partially ordered set. Denote yi ∈ F (T ′i ) the image of yT ′ . Then we see
that (yi, xT ′) is an element of the fibre product colimiG(T ′i ) ×G(T ′) F (T ′). Hence
by (2) we get a unique element x of colimi F (T ′i ) mapping to (yi, xT ′). It is clear
that x defines an element of colimi Fy(T ′i ) mapping to xT ′ and we win. �

Lemma 3.3. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : G → H be transformations of functors. If a and b are
locally of finite presentation, then

b ◦ a : F −→ H

is locally of finite presentation.

Proof. Let T = limi∈I Ti as in characterization (2) of Lemma 3.2. Consider the
diagram

colimi F (Ti) //

a

��

F (T )

a

��
colimiG(Ti) //

b

��

G(T )

b

��
colimiH(Ti) // H(T )

By assumption the two squares are fibre product squares. Hence the outer rectangle
is a fibre product diagram too which proves the lemma. �

Lemma 3.4. Let S be a scheme contained in Schfppf . Let F,G,H : (Sch/S)oppfppf →
Sets. Let a : F → G, b : H → G be transformations of functors. Consider the fibre
product diagram

H ×b,G,a F
b′
//

a′

��

F

a

��
H

b // G

If a is locally of finite presentation, then the base change a′ is locally of finite
presentation.

Proof. Omitted. Hint: This is formal. �

Lemma 3.5. Let T be an affine scheme which is written as a limit T = limi∈I Ti
of a directed inverse system of affine schemes.
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(1) Let V = {Vj → T}j=1,...,m be a standard fppf covering of T , see Topologies,
Definition 7.5. Then there exists an index i and a standard fppf covering
Vi = {Vi,j → Ti}j=1,...,m whose base change T ×Ti Vi to T is isomorphic to
V.

(2) Let Vi, V ′i be a pair of standard fppf coverings of Ti. If f : T×Ti
V → T×Ti

V ′i
is a morphism of coverings of T , then there exists an index i′ ≥ i and a
morphism fi′ : Ti′ ×Ti V → Ti′ ×Ti V ′i whose base change to T is f .

(3) If f, g : V → V ′i are morphisms of standard fppf coverings of Ti whose base
changes fT , gT to T are equal then there exists an index i′ ≥ i such that
fTi′ = gTi′ .

In other words, the category of standard fppf coverings of T is the colimit over I of
the categories of standard fppf coverings of Ti

Proof. By Limits, Lemma 9.1 the category of schemes of finite presentation over
T is the colimit over I of the categories of finite presentation over Ti. By Limits,
Lemmas 7.2 and 7.6 the same is true for category of schemes which are affine, flat
and of finite presentation over T . To finish the proof of the lemma it suffices to show
that if {Vj,i → Ti}j=1,...,m is a finite family of flat finitely presented morphisms with
Vj,i affine, and the base change

∐
j T ×Ti

Vj,i → T is surjective, then for some i′ ≥ i
the morphism

∐
Ti′ ×Ti

Vj,i → Ti′ is surjective. Denote Wi′ ⊂ Ti′ , resp. W ⊂ T
the image. Of course W = T by assumption. Since the morphisms are flat and of
finite presentation we see that Wi is a quasi-compact open of Ti, see Morphisms,
Lemma 26.9. Moreover, W = T ×Ti Wi (formation of image commutes with base
change). Hence by Limits, Lemma 3.8 we conclude that Wi′ = Ti′ for some large
enough i′ and we win. �

Lemma 3.6. Let S be a scheme contained in Schfppf . Let F : (Sch/S)oppfppf → Sets

be a functor. If F is locally of finite presentation over S then its sheafification F#

is locally of finite presentation over S.

Proof. Assume F is locally of finite presentation. It suffices to show that F+ is
locally of finite presentation, since F# = (F+)+, see Sites, Theorem 10.10. Let T
be an affine scheme over S, and let T = limTi be written as the directed limit of an
inverse system of affine S schemes. Recall that F+(T ) is the colimit of Ȟ0(V, F )
where the limit is over all coverings of T in (Sch/S)fppf . Any fppf covering of an
affine scheme can be refined by a standard fppf covering, see Topologies, Lemma
7.4. Hence we can write

F+(T ) = colimV standard covering T Ȟ
0(V, F ).

By Lemma 3.5 we may rewrite this as

colimi∈I colimVi standard covering Ti Ȟ
0(T ×Ti Vi, F ).

(The order of the colimits is irrelevant by Categories, Lemma 14.9.) Given a stan-
dard fppf covering Vi = {Vj → Ti}j=1,...,m of Ti we see that

T ×Ti Vj = limi′≥i Ti′ ×T Vj
by Limits, Lemma 2.3, and similarly

T ×Ti (Vj ×Ti Vj′) = limi′≥i Ti′ ×T (Vj ×Ti Vj′).

As the presheaf F is locally of finite presentation this means that

Ȟ0(T ×Ti Vi, F ) = colimi′≥i Ȟ
0(Ti′ ×Ti Vi, F ).

http://localhost:8080/tag/049O
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Hence the colimit expression for F+(T ) above collapses to

colimi∈I colimV standard covering Ti
Ȟ0(V, F ). = colimi∈I F

+(Ti).

In other words F+(T ) = colimi F
+(Ti) and hence the lemma holds. �

Lemma 3.7. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Assume
that

(1) F is a sheaf, and
(2) there exists an fppf covering {Uj → S}j∈J such that F |(Sch/Uj)fppf

is locally
of finite presentation.

Then F is locally of finite presentation.

Proof. Let T be an affine scheme over S. Let I be a directed partially ordered set,
and let Ti be an inverse system of affine schemes over S such that T = limTi. We
have to show that the canonical map colimF (Ti)→ F (T ) is bijective.

Choose some 0 ∈ I and choose a standard fppf covering {V0,k → T0}k=1,...,m which
refines the pullback {Uj×S T0 → T0} of the given fppf covering of S. For each i ≥ 0
we set Vi,k = Ti ×T0

V0,k, and we set Vk = T ×T0
V0,k. Note that Vk = limi≥0 Vi,k,

see Limits, Lemma 2.3.

Suppose that x, x′ ∈ colimF (Ti) map to the same element of F (T ). Say x, x′ are
given by elements xi, x

′
i ∈ F (Ti) for some i ∈ I (we may choose the same i for

both as I is directed). By assumption (2) and the fact that xi, x
′
i map to the same

element of F (T ) this implies that

xi|Vi′,k = x′i|Vi′,k

for some suitably large i′ ∈ I. We can choose the same i′ for each k as k ∈
{1, . . . ,m} ranges over a finite set. Since {Vi′,k → Ti′} is an fppf covering and F
is a sheaf this implies that xi|Ti′ = x′i|Ti′ as desired. This proves that the map
colimF (Ti)→ F (T ) is injective.

To show surjectivity we argue in a similar fashion. Let x ∈ F (T ). By assumption
(2) for each k we can choose a i such that x|Vk

comes from an element xi,k ∈ F (Vi,k).
As before we may choose a single i which works for all k. By the injectivity proved
above we see that

xi,k|Vi′,k×T
i′
Vi′,l = xi,l|Vi′,k×T

i′
Vi′,l

for some large enough i′. Hence by the sheaf condition of F the elements xi,k|Vi′,k

glue to an element xi′ ∈ F (Ti′) as desired. �

Lemma 3.8. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets be functors. If a : F → G is a transformation which is locally of finite presenta-
tion, then the induced transformation of sheaves F# → G# is of finite presentation.

Proof. Suppose that T is a scheme and y ∈ G#(T ). We have to show the functor
F#
y : (Sch/T )oppfppf → Sets constructed from F# → G# and y as in Definition 3.1 is

locally of finite presentation. By Equation (3.1.1) we see that F#
y is a sheaf. Choose

an fppf covering {Vj → T}j∈J such that y|Vj
comes from an element yj ∈ F (Vj).

Note that the restriction of F# to (Sch/Vj)fppf is just F#
yj . If we can show that

F#
yj is locally of finite presentation then Lemma 3.7 guarantees that F#

y is locally

of finite presentation and we win. This reduces us to the case y ∈ G(T ).

http://localhost:8080/tag/049P
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Let y ∈ G(T ). In this case we claim that F#
y = (Fy)#. This follows from Equation

(3.1.1). Thus this case follows from Lemma 3.6. �

Proposition 3.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. The following are equivalent:

(1) The morphism f is a morphism of algebraic spaces which is locally of finite
presentation, see Morphisms of Spaces, Definition 27.1.

(2) The morphism f : X → Y is locally of finite presentation as a transforma-
tion of functors, see Definition 3.1.

Proof. Assume (1). Let T be a scheme and let y ∈ Y (T ). We have to show that
T ×X Y is locally of finite presentation over T in the sense of Definition 3.1. Hence
we are reduced to proving that if X is an algebraic space which is locally of finite
presentation over S as an algebraic space, then it is locally of finite presentation as
a functor X : (Sch/S)oppfppf → Sets. To see this choose a presentation X = U/R, see
Spaces, Definition 9.3. It follows from Morphisms of Spaces, Definition 27.1 that
both U and R are schemes which are locally of finite presentation over S. Hence
by Limits, Proposition 5.1 we have

U(T ) = colimU(Ti), R(T ) = colimR(Ti)

whenever T = limi Ti in (Sch/S)fppf . It follows that the presheaf

(Sch/S)oppfppf −→ Sets, W 7−→ U(W )/R(W )

is locally of finite presentation. Hence by Lemma 3.6 its sheafification X = U/R is
locally of finite presentation too.

Assume (2). Choose a scheme V and a surjective étale morphism V → Y . Next,
choose a scheme U and a surjective étale morphism U → V ×Y X. By Lemma
3.4 the transformation of functors V ×Y X → V is locally of finite presentation.
By Morphisms of Spaces, Lemma 36.8 the morphism of algebraic spaces U →
V ×Y X is locally of finite presentation, hence locally of finite presentation as
a transformation of functors by the first part of the proof. By Lemma 3.3 the
composition U → V ×Y X → V is locally of finite presentation as a transformation
of functors. Hence the morphism of schemes U → V is locally of finite presentation
by Limits, Proposition 5.1 (modulo a set theoretic remark, see last paragraph of
the proof). This means, by definition, that (1) holds.

Set theoretic remark. Let U → V be a morphism of (Sch/S)fppf . In the state-
ment of Limits, Proposition 5.1 we characterize U → V as being locally of finite
presentation if for all directed inverse systems (Ti, fii′) of affine schemes over V we
have U(T ) = colimV (Ti), but in the current setting we may only consider affine
schemes Ti over V which are (isomorphic to) an object of (Sch/S)fppf . So we have
to make sure that there are enough affines in (Sch/S)fppf to make the proof work.
Inspecting the proof of (2)⇒ (1) of Limits, Proposition 5.1 we see that the question
reduces to the case that U and V are affine. Say U = Spec(A) and V = Spec(B).
By construction of (Sch/S)fppf the spectrum of any ring of cardinality ≤ |B| is
isomorphic to an object of (Sch/S)fppf . Hence it suffices to observe that in the
”only if” part of the proof of Algebra, Lemma 123.2 only A-algebras of cardinality
≤ |B| are used. �

http://localhost:8080/tag/04AK
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Remark 3.10. Here is an important special case of Proposition 3.9. Let S be a
scheme. Let X be an algebraic space over S. Then X is locally of finite presentation
over S if and only ifX, as a functor (Sch/S)opp → Sets, is limit preserving. Compare
with Limits, Remark 5.2.

4. Limits of algebraic spaces

The following lemma explains how we think of limits of algebraic spaces in this
chapter. We will use (without further mention) that the base change of an affine
morphism of algebraic spaces is affine (see Morphisms of Spaces, Lemma 20.5).

Lemma 4.1. Let S be a scheme. Let I be a directed partially ordered set. Let
(Xi, fii′) be an inverse system over I in the category of algebraic spaces over S. If
the morphisms fii′ : Xi → Xi′ are affine, then the limit X = limiXi (as an fppf
sheaf) is an algebraic space. Moreover,

(1) each of the morphisms fi : X → Xi is affine,
(2) for any i ∈ I and any morphism of algebraic spaces T → Xi we have

X ×Xi T = limi′≥iXi′ ×Xi T.

as algebraic spaces over S.

Proof. Part (2) is a formal consequence of the existence of the limit X = limXi

as an algebraic space over S. Choose an element 0 ∈ I (this is possible as a
directed partially ordered set is nonempty). Choose a scheme U0 and a surjective
étale morphism U0 → X0. Set R0 = U0 ×X0 U0 so that X0 = U0/R0. For i ≥ 0
set Ui = Xi ×X0

U0 and Ri = Xi ×X0
R0 = Ui ×Xi

Ui. By Limits, Lemma 2.2
we see that U = limi≥0 Ui and R = limi≥0Ri are schemes. Moreover, the two
morphisms s, t : R → U are the base change of the two projections R0 → U0 by
the morphism U → U0, in particular étale. The morphism R → U ×S U defines
an equivalence relation as directed a limit of equivalence relations is an equivalence
relation. Hence the morphism R → U ×S U is an étale equivalence relation. We
claim that the natural map

(4.1.1) U/R −→ limXi

is an isomorphism of fppf sheaves on the category of schemes over S. The claim
implies X = limXi is an algebraic space by Spaces, Theorem 10.5.

Let Z be a scheme and let a : Z → limXi be a morphism. Then a = (ai) where
ai : Z → Xi. Set W0 = Z ×a0,X0

U0. Note that W0 = Z ×ai,Xi
Ui for all i ≥ 0 by

our choice of Ui → Xi above. Hence we obtain a morphism W0 → limi≥0 Ui = U .
Since W0 → Z is surjective and étale, we conclude that (4.1.1) is a surjective
map of sheaves. Finally, suppose that Z is a scheme and that a, b : Z → U/R
are two morphisms which are equalized by (4.1.1). We have to show that a = b.
After replacing Z by the members of an fppf covering we may assume there exist
morphisms a′, b′ : Z → U which give rise to a and b. The condition that a, b are
equalized by (4.1.1) means that for each i ≥ 0 the compositions a′i, b

′
i : Z → U → Ui

are equal as morphisms into Ui/Ri = Xi. Hence (a′i, b
′
i) : Z → Ui ×S Ui factors

through Ri, say by some morphism ci : Z → Ri. Since R = limi≥0Ri we see that
c = lim ci : Z → R is a morphism which shows that a, b are equal as morphisms of
Z into U/R.

http://localhost:8080/tag/05N0
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Part (1) follows as we have seen above that Ui ×Xi
X = U and U → Ui is affine by

construction. �

Lemma 4.2. Let S be a scheme. Let I be a directed partially ordered set. Let
(Xi, fii′) be an inverse system over I of algebraic spaces over S with affine transition
maps. Let X = limiXi. Let 0 ∈ I. Suppose that T → X0 is a morphism of algebraic
spaces. Then

T ×X0
X = limi≥0 T ×X0

Xi

as algebraic spaces over S.

Proof. The limit X is an algebraic space by Lemma 4.1. The equality is formal,
see Categories, Lemma 14.9. �

5. Descending properties

This section is the analogue of Limits, Section 3.

Situation 5.1. Let S be a scheme. Let X = limi∈I Xi be a limit of a directed
system of algebraic spaces over S with affine transition morphisms (Lemma 4.1).
We assume that Xi is quasi-compact and quasi-separated for all i ∈ I. We also
choose an element 0 ∈ I.

The following lemma holds a little bit more generally (namely when we just assume
each Xi is a decent algebraic space).

Lemma 5.2. In Situation 5.1 we have |X| = lim |Xi|.

Proof. There is a canonical map |X| → lim |Xi|. Choose an affine scheme U0 and
a surjective étale morphism U0 → X0. Set Ui = Xi ×X0 U0 and U = X ×X0 U0.
Set Ri = Ui ×Xi Ui and R = U ×X U . Recall that U = limUi and R = limRi, see
proof of Lemma 4.1. Recall that |X| = |U |/|R| and |Xi| = |Ui|/|Ri|. By Limits,
Lemma 3.2 we have |U | = lim |Ui| and |R| = lim |Ri|.

Surjectivity of |X| → lim |Xi|. Let (xi) ∈ lim |Xi|. Denote Si ⊂ |Ui| the inverse
image of xi. This is a finite nonempty set by Properties of Spaces, Lemma 12.3.
Hence limSi is nonempty, see Categories, Lemma 21.5. Let (ui) ∈ limSi ⊂ lim |Ui|.
By the above this determines a point u ∈ |U | which maps to an x ∈ |X| mapping
to the given element (xi) of lim |Xi|.

Injectivity of |X| → lim |Xi|. Suppose that x, x′ ∈ |X| map to the same point of
lim |Xi|. Choose lifts u, u′ ∈ |U | and denote ui, u

′
i ∈ |Ui| the images. For each i let

Ti ⊂ |Ri| be the set of points mapping to (ui, u
′
i) ∈ |Ui|×|Ui|. This is a finite set by

Properties of Spaces, Lemma 12.3 which is nonempty as we’ve assumed that x and
x′ map to the same point of Xi. Hence limTi is nonempty, see Categories, Lemma
21.5. As before let r ∈ |R| = lim |Ri| be a point corresponding to an element of
limTi. Then r maps to (u, u′) in |U | × |U | by construction and we see that x = x′

in |X| as desired. �

Lemma 5.3. In Situation 5.1, if each Xi is nonempty, then |X| is nonempty.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0. Set
Ui = Xi ×X0 U0 and U = X ×X0 U0. Then each Ui is a nonempty affine scheme.
Hence U = limUi is nonempty (Limits, Lemma 3.4) and thus X is nonempty. �

http://localhost:8080/tag/07SH
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Lemma 5.4. Notation and assumptions as in Situation 5.1. Suppose that F0 is a
quasi-coherent sheaf on X0. Set Fi = f∗0iF0 for i ≥ 0 and set F = f∗0F0. Then

Γ(X,F) = colimi≥0 Γ(Xi,Fi)

Proof. Choose a surjective étale morphism U0 → X0 where U0 is an affine scheme
(Properties of Spaces, Lemma 6.3). Set Ui = Xi ×X0

U0. Set R0 = U0 ×X0
U0

and Ri = R0 ×X0
Xi. In the proof of Lemma 4.1 we have seen that there exists

a presentation X = U/R with U = limUi and R = limRi. Note that Ui and
U are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Hence Limits, Lemma 3.3 implies that

F(U) = colimFi(Ui) and F(R) = colimFi(Ri).

The lemma follows as Γ(X,F) = Ker(F(U) → F(R)) and similarly Γ(Xi,Fi) =
Ker(Fi(Ui)→ Fi(Ri)) �

Lemma 5.5. Notation and assumptions as in Situation 5.1. For any quasi-compact
open subspace U ⊂ X there exists an i and a quasi-compact open Ui ⊂ Xi whose
inverse image in X is U .

Proof. Follows formally from the construction of limits in Lemma 4.1 and the
corresponding result for schemes: Limits, Lemma 3.8. �

The following lemma will be superseded by the stronger Lemma 6.9.

Lemma 5.6. Notation and assumptions as in Situation 5.1. Let f0 : Y0 → Z0 be
a morphism of algebraic spaces over X0. Assume (a) Y0 → X0 and Z0 → X0 are
representable, (b) Y0, Z0 quasi-compact and quasi-separated, (c) f0 locally of finite
presentation, and (d) Y0 ×X0

X → Z0 ×X0
X an isomorphism. Then there exists

an i ≥ 0 such that Y0 ×X0 Xi → Z0 ×X0 Xi is an isomorphism.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
Set Ui = U0 ×X0

Xi and U = U0 ×X0
X. Apply Limits, Lemma 7.9 to see that

Y0 ×X0
Ui → Z0 ×X0

Ui is an isomorphism of schemes for some i ≥ 0 (details
omitted). As Ui → Xi is surjective étale, it follows that Y0 ×X0 Xi → Z0 ×X0 Xi is
an isomorphism (details omitted). �

Lemma 5.7. Notation and assumptions as in Situation 5.1. If X is separated,
then Xi is separated for some i ∈ I.

Proof. Choose an affine scheme U0 and a surjective étale morphism U0 → X0.
For i ≥ 0 set Ui = U0 ×X0

Xi and set U = U0 ×X0
X. Note that Ui and U are

affine schemes which come equipped with surjective étale morphisms Ui → Xi and
U → X. Set Ri = Ui ×Xi Ui and R = U ×X U with projections si, ti : Ri → Ui
and s, t : R → U . Note that Ri and R are quasi-compact separated schemes (as
the algebraic spaces Xi and X are quasi-separated). The maps si : Ri → Ui
and s : R → U are of finite type. By definition Xi is separated if and only
if (ti, si) : Ri → Ui × Ui is a closed immersion, and since X is separated by
assumption, the morphism (t, s) : R→ U × U is a closed immersion. Since R→ U
is of finite type, there exists an i such that the morphism R → Ui × U is a closed
immersion (Limits, Lemma 3.13). Fix such an i ∈ I. Apply Limits, Lemma 7.4 to
the system of morphisms Ri′ → Ui × Ui′ for i′ ≥ i (this is permissible as indeed
Ri′ = Ri ×Ui×Ui

Ui × Ui′) to see that Ri′ → Ui × Ui′ is a closed immersion for
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i′ sufficiently large. This implies immediately that Ri′ → Ui′ × Ui′ is a closed
immersion finishing the proof of the lemma. �

Lemma 5.8. Notation and assumptions as in Situation 5.1. If X is affine, then
there exists an i such that Xi is affine.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set U = U0 ×X0

X and Ui = U0 ×X0
Xi for i ≥ 0. Since the transition

morphisms are affine, the algebraic spaces Ui and U are affine. Thus U → X is an
étale morphism of affine schemes. Hence we can write X = Spec(A), U = Spec(B)
and

B = A[x1, . . . , xn]/(g1, . . . , gn)

such that ∆ = det(∂gλ/∂xµ) is invertible in B, see Algebra, Lemma 138.2. Set
Ai = OXi

(Xi). We have A = colimAi by Lemma 5.4. After increasing 0 we may
assume we have g1,i, . . . , gn,i ∈ Ai[x1, . . . , xn] mapping to g1, . . . , gn. Set

Bi = Ai[x1, . . . , xn]/(g1,i, . . . , gn,i)

for all i ≥ 0. Increasing 0 if necessary we may assume that ∆i = det(∂gλ,i/∂xµ) is
invertible in Bi for all i ≥ 0. Thus Ai → Bi is an étale ring map. After increasing
0 we may assume also that Spec(Bi) → Spec(Ai) is surjective, see Limits, Lemma
7.11. Increasing 0 yet again we may choose elements h1,i, . . . , hn,i ∈ OUi

(Ui) which
map to the classes of x1, . . . , xn in B = OU (U) and such that gλ,i(hν,i) = 0 in
OUi(Ui). Thus we obtain a commutative diagram

(5.8.1)

Xi

��

Uioo

��
Spec(Ai) Spec(Bi)oo

By construction Bi = B0 ⊗A0 Ai and B = B0 ⊗A0 A. Consider the morphism

f0 : U0 −→ X0 ×Spec(A0) Spec(B0)

This is a morphism of quasi-compact and quasi-separated algebraic spaces repre-
sentable, separated and étale overX0. The base change of f0 toX is an isomorphism
by our choices. Hence Lemma 5.6 guarantees that there exists an i such that the
base change of f0 to Xi is an isomorphism, in other words the diagram (5.8.1) is
cartesian. Thus Descent, Lemma 35.1 applied to the fppf covering {Spec(Bi) →
Spec(Ai)} combined with Descent, Lemma 33.1 give that Xi → Spec(Ai) is repre-
sentable by a scheme affine over Spec(Ai) as desired. (Of course it then also follows
that Xi = Spec(Ai) but we don’t need this.) �

Lemma 5.9. Notation and assumptions as in Situation 5.1. If X is a scheme,
then there exists an i such that Xi is a scheme.

Proof. Choose a finite affine open covering X =
⋃
Wj . By Lemma 5.5 we can find

an i ∈ I and open subspaces Wj,i ⊂ Xi whose base change to X is Wj → X. By
Lemma 5.8 we may assume that each Wj,i is an affine scheme. This means that Xi

is a scheme (see for example Properties of Spaces, Section 10). �

Lemma 5.10. Let S be a scheme. Let B be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over B with affine transition
morphisms. Let Y → X be a morphism of algebraic spaces over B.
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(1) If Y → X is a closed immersion, Xi quasi-compact, and Y → B locally of
finite type, then Y → Xi is a closed immersion for i large enough.

(2) If Y → X is an immersion, Xi quasi-separated, Y → B locally of finite type,
and Y quasi-compact, then Y → Xi is an immersion for i large enough.

(3) If Y → X is an isomorphism, Xi quasi-compact, Xi → B locally of finite
type, the transition morphisms Xi′ → Xi are closed immersions, and Y →
B is locally of finite presentation, then Y → Xi is an isomorphism for i
large enough.

(4) If Y → X is a monomorphism, Xi quasi-separated, Y → B locally of finite
type, and Y quasi-compact, then Y → Xi is a monomorphism for i large
enough.

Proof. Proof of (1). Choose 0 ∈ I. As X0 is quasi-compact, we can choose an
affine scheme W and an étale morphism W → B such that the image of |X0| → |B|
is contained in |W | → |B|. Choose an affine scheme U0 and an étale morphism
U0 → X0 ×B W such that U0 → X0 is surjective. (This is possible by our choice
of W and the fact that X0 is quasi-compact; details omitted.) Let V → Y , resp.
U → X, resp. Ui → Xi be the base change of U0 → X0 (for i ≥ 0). It suffices to
prove that V → Ui is a closed immersion for i sufficiently large. Thus we reduce
to proving the result for V → U = limUi over W . This follows from the case of
schemes, which is Limits, Lemma 3.13.

Proof of (2). Choose 0 ∈ I. Choose a quasi-compact open subspace X ′0 ⊂ X0 such
that Y → X0 factors through X ′0. After replacing Xi by the inverse image of X ′0 for
i ≥ 0 we may assume all X ′i are quasi-compact and quasi-separated. Let U ⊂ X be
a quasi-compact open such that Y → X factors through a closed immersion Y → U
(U exists as Y is quasi-compact). By Lemma 5.5 we may assume that U = limUi
with Ui ⊂ Xi quasi-compact open. By part (1) we see that Y → Ui is a closed
immersion for some i. Thus (2) holds.

Proof of (3). Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale
morphism U0 → X0. Set Ui = Xi ×X0 U0, U = X ×X0 U0 = Y ×X0 U0. Then
U = limUi is a limit of affine schemes, the transition maps of the system are closed
immersions, and U → U0 is of finite presentation (because U → B is locally of finite
presentation and U0 → B is locally of finite type and Morphisms of Spaces, Lemma
27.9). Thus we’ve reduced to the following algebra fact: If A = limAi is a directed
colimit of R-algebras with surjective transition maps and A of finite presentation
over A0, then A = Ai for some i. Namely, write A = A0/(f1, . . . , fn). Pick i such
that f1, . . . , fn map to zero under the surjective map A0 → Ai.

Proof of (4). Set Zi = Y ×Xi
Y . As the transition morphisms Xi′ → Xi are affine

hence separated, the transition morphisms Zi′ → Zi are closed immersions, see
Morphisms of Spaces, Lemma 4.5. We have limZi = Y ×X Y = Y as Y → X is a
monomorphism. Choose 0 ∈ I. Since Y → X0 is locally of finite type (Morphisms
of Spaces, Lemma 23.6) the morphism Y → Z0 is locally of finite presentation
(Morphisms of Spaces, Lemma 27.10). The morphisms Zi → Z0 are locally of finite
type (they are closed immersions). Finally, Zi = Y ×Xi

Y is quasi-compact as Xi

is quasi-separated and Y is quasi-compact. Thus part (3) applies to Y = limi≥0 Zi
over Z0 and we conclude Y = Zi for some i. This proves (4) and the lemma. �
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Lemma 5.11. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y is quasi-separated,
(2) Xi is quasi-compact and quasi-separated,
(3) the morphism X → Y is separated.

Then Xi → Y is separated for all i large enough.

Proof. Let 0 ∈ I. Choose an affine scheme W and an étale morphism W → Y such
that the image of |W | → |Y | contains the image of |X0| → |Y |. This is possible
as X0 is quasi-compact. It suffices to check that W ×Y Xi → W is separated
for some i ≥ 0 because the diagonal of W ×Y Xi over W is the base change of
Xi → Xi ×Y Xi by the surjective étale morphism (Xi ×Y Xi)×Y W → Xi ×Y Xi.
Since Y is quasi-separated the algebraic spaces W ×Y Xi are quasi-compact (as
well as quasi-separated). Thus we may base change to W and assume Y is an
affine scheme. When Y is an affine scheme, we have to show that Xi is a separated
algebraic space for i large enough and we are given that X is a separated algebraic
space. Thus this case follows from Lemma 5.7. �

Lemma 5.12. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) X → Y affine.

Then Xi → Y is affine for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y .
Then X ×Y W is affine and it suffices to check that Xi ×Y W is affine for some i
(Morphisms of Spaces, Lemma 20.3). This follows from Lemma 5.8. �

Lemma 5.13. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are finite,
(4) Xi → Y locally of finite type
(5) X → Y integral.

Then Xi → Y is finite for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X ×Y W is finite over W and it suffices to check that Xi×Y W is finite over W for
some i (Morphisms of Spaces, Lemma 41.3). By Lemma 5.9 this reduces us to the
case of schemes. In the case of schemes it follows from Limits, Lemma 3.16. �

Lemma 5.14. Let S be a scheme. Let Y be an algebraic space over S. Let
X = limXi be a directed limit of algebraic spaces over Y with affine transition
morphisms. Assume

(1) Y quasi-compact and quasi-separated,
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(2) Xi quasi-compact and quasi-separated,
(3) the transition morphisms Xi′ → Xi are closed immersions,
(4) Xi → Y locally of finite type
(5) X → Y is a closed immersion.

Then Xi → Y is a closed immersion for i large enough.

Proof. Choose an affine scheme W and a surjective étale morphism W → Y . Then
X×Y W is a closed subspace of W and it suffices to check that Xi×Y W is a closed
subspace W for some i (Morphisms of Spaces, Lemma 12.1). By Lemma 5.9 this
reduces us to the case of schemes. In the case of schemes it follows from Limits,
Lemma 3.17. �

6. Descending properties of morphisms

This section is the analogue of Section 5 for properties of morphisms. We will work
in the following situation.

Situation 6.1. Let S be a scheme. Let B = limBi be a limit of a directed system
of algebraic spaces over S with affine transition morphisms (Lemma 4.1). Let 0 ∈ I
and let f0 : X0 → Y0 be a morphism of algebraic spaces over B0. Assume B0, X0,
Y0 are quasi-compact and quasi-separated. Let fi : Xi → Yi be the base change of
f0 to Bi and let f : X → Y be the base change of f0 to B.

Lemma 6.2. With notation and assumptions as in Situation 6.1. If

(1) f is étale,
(2) f0 is locally of finite presentation,

then fi is étale for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0

X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Xi → Yi is étale if
and only if Ui → Vi is étale and similarlyX → Y is étale if and only if U → V is étale
(Morphisms of Spaces, Definition 36.1). Since f0 is locally of finite presentation, so
is the morphism U0 → V0. Hence the lemma follows from Limits, Lemma 7.8. �

Lemma 6.3. With notation and assumptions as in Situation 6.1. If

(1) f is surjective,
(2) f0 is locally of finite presentation,

http://localhost:8080/tag/084W
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then fi is surjective for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0

X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
the limit of the morphisms Ui → Vi is U → V , and the morphisms Ui → Xi ×Yi

Vi
and U → X×Y V are surjective (as base changes of U0 → X0×Y0

V0). In particular,
we see that Xi → Yi is surjective if and only if Ui → Vi is surjective and similarly
X → Y is surjective if and only if U → V is surjective. Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from the case
of schemes (Limits, Lemma 7.11). �

Lemma 6.4. Notation and assumptions as in Situation 6.1. If

(1) f is universally injective,
(2) f0 is locally of finite type,

then fi is universally injective for some i ≥ 0.

Proof. Recall that a morphism X → Y is universally injective if and only if the
diagonal X → X ×Y X is surjective (Morphisms of Spaces, Definition 19.3 and
Lemma 19.2). Observe that X0 → X0 ×Y0 X0 is of locally of finite presentation
(Morphisms of Spaces, Lemma 27.10). Hence the lemma follows from Lemma 6.3
by considering the morphism X0 → X0 ×Y0

X0. �

Lemma 6.5. Notation and assumptions as in Situation 6.1. If f is affine, then fi
is affine for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0

Yi and V = V0×Y0
Y . Since f is affine we see that V ×YX = limVi×Yi

Xi

is affine. By Lemma 5.8 we see that Vi ×Yi
Xi is affine for some i ≥ 0. For this i

the morphism fi is affine (Morphisms of Spaces, Lemma 20.3). �

Lemma 6.6. Notation and assumptions as in Situation 6.1. If

(1) f is finite,
(2) f0 is locally of finite type,

then fi is finite for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0×Y0

Yi and V = V0×Y0
Y . Since f is finite we see that V ×Y X = limVi×Yi

Xi

is a scheme finite over V . By Lemma 5.8 we see that Vi ×Yi
Xi is affine for some
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i ≥ 0. Increasing i if necessary we find that Vi ×Yi
Xi → Vi is finite by Limits,

Lemma 7.3. For this i the morphism fi is finite (Morphisms of Spaces, Lemma
41.3). �

Lemma 6.7. Notation and assumptions as in Situation 6.1. If

(1) f is a closed immersion,
(2) f0 is locally of finite type,

then fi is a closed immersion for some i ≥ 0.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = V0 ×Y0

Yi and V = V0 ×Y0
Y . Since f is a closed immersion we see that

V ×Y X = limVi ×Yi
Xi is a closed subscheme of the affine scheme V . By Lemma

5.8 we see that Vi ×Yi
Xi is affine for some i ≥ 0. Increasing i if necessary we find

that Vi ×Yi Xi → Vi is a closed immersion by Limits, Lemma 7.4. For this i the
morphism fi is a closed immersion (Morphisms of Spaces, Lemma 41.3). �

Lemma 6.8. Notation and assumptions as in Situation 6.1. If f is separated, then
fi is separated for some i ≥ 0.

Proof. Apply Lemma 6.7 to the diagonal morphism ∆X0/Y0
: X0 → X0 ×Y0 X0.

(Diagonal morphisms are locally of finite type and the fibre product X0 ×Y0
X0 is

quasi-compact and quasi-separated. Some details omitted.) �

Lemma 6.9. Notation and assumptions as in Situation 6.1. If

(1) f is a isomorphism,
(2) f0 is locally of finite presentation,

then fi is a isomorphism for some i ≥ 0.

Proof. Being an isomorphism is equivalent to being étale, universally injective,
and surjective, see Morphisms of Spaces, Lemma 45.2. Thus the lemma follows
from Lemmas 6.2, 6.3, and 6.4. �

Lemma 6.10. Notation and assumptions as in Situation 6.1. If

(1) f is a monomorphism,
(2) f0 is locally of finite type,

then fi is a monomorphism for some i ≥ 0.

Proof. Recall that a morphism is a monomorphism if and only if the diagonal is
an isomorphism. The morphism X0 → X0 ×Y0 X0 is locally of finite presentation
by Morphisms of Spaces, Lemma 27.10. Since X0 ×Y0

X0 is quasi-compact and
quasi-separated we conclude from Lemma 6.9 that ∆i : Xi → Xi ×Yi

Xi is an
isomorphism for some i ≥ 0. For this i the morphism fi is a monomorphism. �

Lemma 6.11. Notation and assumptions as in Situation 6.1. Let F0 be a quasi-
coherent OX0

-module and denote Fi the pullback to Xi and F the pullback to X.
If

(1) F is flat over Y ,
(2) F0 is of finite presentation, and
(3) f0 is locally of finite presentation,

then Fi is flat over Yi for some i ≥ 0. In particular, if f0 is locally of finite
presentation and f is flat, then fi is flat for some i ≥ 0.
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Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0.
Choose an affine scheme U0 and a surjective étale morphism U0 → V0 ×Y0 X0.
Diagram

U0

��

// V0

��
X0

// Y0

The vertical arrows are surjective and étale by construction. We can base change
this diagram to Bi or B to get

Ui

��

// Vi

��
Xi

// Yi

and

U

��

// V

��
X // Y

Note that Ui, Vi, U, V are affine schemes, the vertical morphisms are surjective étale,
and the limit of the morphisms Ui → Vi is U → V . Recall that Fi is flat over Yi
if and only if Fi|Ui

is flat over Vi and similarly F is flat over Y if and only if F|U
is flat over V (Morphisms of Spaces, Definition 28.1). Since f0 is locally of finite
presentation, so is the morphism U0 → V0. Hence the lemma follows from Limits,
Lemma 9.3. �

Lemma 6.12. Assumptions and notation as in Situation 6.1. If

(1) f is proper, and
(2) f0 is locally of finite type,

then there exists an i such that fi is proper.

Proof. Choose an affine scheme V0 and a surjective étale morphism V0 → Y0. Set
Vi = Yi ×Y0 V0 and V = Y ×Y0 V0. It suffices to prove that the base change of fi
to Vi is proper, see Morphisms of Spaces, Lemma 37.2. Thus we may assume Y0 is
affine.

By Lemma 6.8 we see that fi is separated for some i ≥ 0. Replacing 0 by i we
may assume that f0 is separated. Observe that f0 is quasi-compact. Thus f0 is
separated and of finite type. By Cohomology of Spaces, Lemma 17.1 we can choose
a diagram

X0

  

X ′0

��

π
oo // Pn

Y0

}}
Y0

where X ′0 → Pn
Y0

is an immersion, and π : X ′0 → X0 is proper and surjective.
Introduce X ′ = X ′0 ×Y0

Y and X ′i = X ′0 ×Y0
Yi. By Morphisms of Spaces, Lemmas

37.4 and 37.3 we see that X ′ → Y is proper. Hence X ′ → Pn
Y is a closed immersion

(Morphisms of Spaces, Lemma 37.6). By Morphisms of Spaces, Lemma 37.7 it
suffices to prove that X ′i → Yi is proper for some i. By Lemma 6.7 we find that
X ′i → Pn

Yi
is a closed immersion for i large enough. Then X ′i → Yi is proper and

we win. �

http://localhost:8080/tag/08K1
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7. Descending relative objects

The following lemma is typical of the type of results in this section.

Lemma 7.1. Let S be a scheme. Let I be a directed partially ordered set. Let
(Xi, fii′) be an inverse system over I of algebraic spaces over S. Assume

(1) the morphisms fii′ : Xi → Xi′ are affine,
(2) the spaces Xi are quasi-compact and quasi-separated.

Let X = limiXi. Then the category of algebraic spaces of finite presentation over
X is the colimit over I of the categories of algebraic spaces of finite presentation
over Xi.

Proof. Pick 0 ∈ I. Choose a surjective étale morphism U0 → X0 where U0 is
an affine scheme (Properties of Spaces, Lemma 6.3). Set Ui = Xi ×X0

U0. Set
R0 = U0 ×X0

U0 and Ri = R0 ×X0
Xi. Denote si, ti : Ri → Ui and s, t : R → U

the two projections. In the proof of Lemma 4.1 we have seen that there exists a
presentation X = U/R with U = limUi and R = limRi. Note that Ui and U
are affine and that Ri and R are quasi-compact and separated (as Xi is quasi-
separated). Let Y be an algebraic space over S and let Y → X be a morphism
of finite presentation. Set V = U ×X Y . This is an algebraic space of finite
presentation over U . Choose an affine scheme W and a surjective étale morphism
W → V . Then W → Y is surjective étale as well. Set R′ = W ×Y W so that
Y = W/R′ (see Spaces, Section 9). Note that W is a scheme of finite presentation
over U and that R′ is a scheme of finite presentation over R (details omitted). By
Limits, Lemma 9.1 we can find an index i and a morphism of schemes Wi → Ui of
finite presentation whose base change to U gives W → U . Similarly we can find,
after possibly increasing i, a scheme R′i of finite presentation over Ri whose base
change to R is R′. The projection morphisms s′, t′ : R′ → W are morphisms over
the projection morphisms s, t : R→ U . Hence we can view s′, resp. t′ as a morphism
between schemes of finite presentation over U (with structure morphism R′ → U
given by R′ → R followed by s, resp. t). Hence we can apply Limits, Lemma 9.1
again to see that, after possibly increasing i, there exist morphisms s′i, t

′
i : R′i →Wi,

whose base change to U is S′, t′. By Limits, Lemmas 7.8 and 7.10 we may assume
that s′i, t

′
i are étale and that j′i : R′i →Wi×Xi

Wi is a monomorphism (here we view
j′i as a morphism of schemes of finite presentation over Ui via one of the projections
– it doesn’t matter which one). Setting Yi = Wi/R

′
i (see Spaces, Theorem 10.5) we

obtain an algebraic space of finite presentation over Xi whose base change to X is
isomorphic to Y .

This shows that every algebraic space of finite presentation over X comes from an
algebraic space of finite presentation over some Xi, i.e., it shows that the functor
of the lemma is essentially surjective. To show that it is fully faithful, consider
an index 0 ∈ I and two algebraic spaces Y0, Z0 of finite presentation over X0.
Set Yi = Xi ×X0

Y0, Y = X ×X0
Y0, Zi = Xi ×X0

Z0, and Z = X ×X0
Z0.

Let α : Y → Z be a morphism of algebraic spaces over X. Choose a surjective
étale morphism V0 → Y0 where V0 is an affine scheme. Set Vi = V0 ×Y0 Yi and
V = V0×Y0

Y which are affine schemes endowed with surjective étale morphisms to
Yi and Y . The composition V → Y → Z → Z0 comes from a (essentially unique)
morphism Vi → Z0 for some i ≥ 0 by Proposition 3.9 (applied to Z0 → X0 which

http://localhost:8080/tag/07SK
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is of finite presentation by assumption). After increasing i the two compositions

Vi ×Yi Vi → Vi → Z0

are equal as this is true in the limit. Hence we obtain a (essentially unique) mor-
phism Yi → Z0. Since this is a morphism over X0 it induces a morphism into
Zi = Z0 ×X0

Xi as desired. �

Lemma 7.2. With notation and assumptions as in Lemma 7.1. The category
of OX-modules of finite presentation is the colimit over I of the categories OXi-
modules of finite presentation.

Proof. Choose 0 ∈ I. Choose an affine scheme U0 and a surjective étale morphism
U0 → X0. Set Ui = Xi ×X0

U0. Set R0 = U0 ×X0
U0 and Ri = R0 ×X0

Xi. Denote
si, ti : Ri → Ui and s, t : R → U the two projections. In the proof of Lemma
4.1 we have seen that there exists a presentation X = U/R with U = limUi and
R = limRi. Note that Ui and U are affine and that Ri and R are quasi-compact
and separated (as Xi is quasi-separated). Moreover, it is also true that R ×s,U,t
R = colimRi ×si,Ui,ti Ri. Thus we know that QCoh(OU ) = colim QCoh(OUi

),
QCoh(OR) = colim QCoh(ORi

), and QCoh(OR×s,U,tR) = colim QCoh(ORi×si,Ui,ti
Ri

)

by Limits, Lemma 9.2. We have QCoh(OX) = QCoh(U,R, s, t, c) and QCoh(OXi
) =

QCoh(Ui, Ri, si, ti, ci), see Properties of Spaces, Proposition 30.1. Thus the result
follows formally. �

8. Absolute Noetherian approximation

The following result is [CLO12, Theorem 1.2.2]. A key ingredient in the proof is
Decent Spaces, Lemma 8.5.

Proposition 8.1. Let X be a quasi-compact and quasi-separated algebraic space
over Spec(Z). There exist a directed partially ordered set I and an inverse system
of algebraic spaces (Xi, fii′) over I such that

(1) the transition morphisms fii′ are affine
(2) each Xi is quasi-separated and of finite type over Z, and
(3) X = limXi.

Proof. We apply Decent Spaces, Lemma 8.5 to get open subspaces Up ⊂ X,
schemes Vp, and morphisms fp : Vp → Up with properties as stated. Note that
fn : Vn → Un is an étale morphism of algebraic spaces whose restriction to the
inverse image of Tn = (Vn)red is an isomorphism. Hence fn is an isomorphism,
for example by Morphisms of Spaces, Lemma 45.2. In particular Un is a quasi-
compact and separated scheme. Thus we can write Un = limUn,i as a directed
limit of schemes of finite type over Z with affine transition morphisms, see Limits,
Proposition 4.4. Thus, applying descending induction on p, we see that we have
reduced to the problem posed in the following paragraph.

Here we have U ⊂ X, U = limUi, Z ⊂ X, and f : V → X with the following
properties

(1) X is a quasi-compact and quasi-separated algebraic space,
(2) V is a quasi-compact and separated scheme,
(3) U ⊂ X is a quasi-compact open subspace,
(4) (Ui, gii′) is a directed system of quasi-separated algebraic spaces of finite

type over Z with affine transition morphisms whose limit is U ,
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(5) Z ⊂ X is a closed subspace such that |X| = |U | q |Z|,
(6) f : V → X is a surjective étale morphism such that f−1(Z) → Z is an

isomorphism.

Problem: Show that the conclusion of the proposition holds for X.

Note that W = f−1(U) ⊂ V is a quasi-compact open subscheme étale over U .
Hence we may apply Lemmas 7.1 and 6.2 to find an index 0 ∈ I and an étale
morphism W0 → U0 of finite presentation whose base change to U produces W .
Setting Wi = W0 ×U0

Ui we see that W = limi≥0Wi. After increasing 0 we may
assume the Wi are schemes, see Lemma 5.9. Moreover, Wi is of finite type over Z.

Apply Limits, Lemma 4.3 to W = limi≥0Wi and the inclusion W ⊂ V . Replace
I by the directed partially ordered set J found in that lemma. This allows us to
write V as a directed limit V = limVi of finite type schemes over Z with affine
transition maps such that each Vi contains Wi as an open subscheme (compatible
with transition morphisms). For each i we can form the push out

Wi
//

∆

��

Vi

��
Wi ×Ui

Wi
// Ri

in the category of schemes. Namely, the left vertical and upper horizontal arrows are
open immersions of schemes. In other words, we can construct Ri as the glueing of
Vi and Wi×Ui

Wi along the common open Wi (see Schemes, Section 14). Note that
the étale projection maps Wi×Ui

Wi →Wi extend to étale morphisms si, ti : Ri →
Vi. It is clear that the morphism ji = (ti, si) : Ri → Vi × Vi is an étale equivalence
relation on Vi. Note that Wi×Ui Wi is quasi-compact (as Ui is quasi-separated and
Wi quasi-compact) and Vi is quasi-compact, hence Ri is quasi-compact. For i ≥ i′
the diagram

(8.1.1)

Ri //

si

��

Ri′

si′

��
Vi // Vi′

is cartesian because

(Wi′ ×Ui′ Wi′)×Ui′ Ui = Wi′ ×Ui′ Ui ×Ui
Ui ×Ui′ Wi′ = Wi ×Ui

Wi.

Consider the algebraic space Xi = Vi/Ri (see Spaces, Theorem 10.5). As Vi is
of finite type over Z and Ri is quasi-compact we see that Xi is quasi-separated
and of finite type over Z (see Properties of Spaces, Lemma 6.5 and Morphisms of
Spaces, Lemmas 8.5 and 23.4). As the construction of Ri above is compatible with
transition morphisms, we obtain morphisms of algebraic spaces Xi → Xi′ for i ≥ i′.
The commutative diagrams

Vi //

��

Vi′

��
Xi

// Xi′

are cartesian as (8.1.1) is cartesian, see Groupoids, Lemma 18.7. Since Vi → Vi′ is
affine, this implies that Xi → Xi′ is affine, see Morphisms of Spaces, Lemma 20.3.
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Thus we can form the limit X ′ = limXi by Lemma 4.1. We claim that X ∼= X ′

which finishes the proof of the proposition.

Proof of the claim. Set R = limRi. By construction the algebraic space X ′ comes
equipped with a surjective étale morphism V → X ′ such that

V ×X′ V ∼= R

(use Lemma 4.1). By construction limWi ×Ui
Wi = W ×U W and V = limVi so

that R is the union of W ×U W and V glued along W . Property (6) implies the
projections V ×X V → V are isomorphisms over f−1(Z) ⊂ V . Hence the scheme
V ×X V is the union of the opens ∆V/X(V ) and W ×U W which intersect along
∆W/X(W ). We conclude that there exists a unique isomorphism R ∼= V ×X V
compatible with the projections to V . Since V → X and V → X ′ are surjective
étale we see that

X = V/V ×X V = V/R = V/V ×X′ V = X ′

by Spaces, Lemma 9.1 and we win. �

9. Applications

The following lemma can also be deduced directly from Decent Spaces, Lemma 8.5
without passing through absolute Noetherian approximation.

Lemma 9.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Every quasi-coherent OX-module is a filtered colimit of
finitely presented OX-modules.

Proof. We may view as an algebraic space over Spec(Z), see Spaces, Definition
16.2 and Properties of Spaces, Definition 3.1. Thus we may apply Proposition 8.1
and write X = limXi with Xi of finite presentation over Z. Thus Xi is a Noetherian
algebraic space, see Morphisms of Spaces, Lemma 27.6. The morphism X → Xi is
affine, see Lemma 4.1. Conclusion by Cohomology of Spaces, Lemma 14.2. �

The rest of this section consists of straightforward applications of Lemma 9.1.

Lemma 9.2. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a quasi-coherent OX-module. Then F is the
directed colimit of its finite type quasi-coherent submodules.

Proof. If G,H ⊂ F are finite type quasi-coherent OX -submodules then the image
of G ⊕H → F is another finite type quasi-coherent OX -submodule which contains
both of them. In this way we see that the system is directed. To show that F is the
colimit of this system, write F = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 9.1. Then the images Gi = Im(Fi → F) are
finite type quasi-coherent subsheaves of F . Since F is the colimit of these the result
follows. �

Lemma 9.3. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let F be a finite type quasi-coherent OX-module. Then we
can write F = limFi where each Fi is an OX-module of finite presentation and all
transition maps Fi → Fi′ surjective.
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Proof. Write F = colimGi as a filtered colimit of finitely presented OX -modules
(Lemma 9.1). We claim that Gi → F is surjective for some i. Namely, choose an
étale surjection U → X where U is an affine scheme. Choose finitely many sections
sk ∈ F(U) generating F|U . Since U is affine we see that sk is in the image of
Gi → F for i large enough. Hence Gi → F is surjective for i large enough. Choose
such an i and let K ⊂ Gi be the kernel of the map Gi → F . Write K = colimKa as
the filtered colimit of its finite type quasi-coherent submodules (Lemma 9.2). Then
F = colimGi/Ka is a solution to the problem posed by the lemma. �

Let X be an algebraic space. In the following lemma we use the notion of a finitely
presented quasi-coherent OX-algebra A. This means that for every affine U =

Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is of finite presentation as an R-algebra.

Lemma 9.4. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is a directed
colimit of finitely presented quasi-coherent OX-algebras.

Proof. First we write A = colimi Fi as a directed colimit of finitely presented
quasi-coherent sheaves as in Lemma 9.1. For each i let Bi = Sym(Fi) be the
symmetric algebra on Fi over OX . Write Ii = Ker(Bi → A). Write Ii = colimj Fi,j
where Fi,j is a finite type quasi-coherent submodule of Ii, see Lemma 9.2. Set
Ii,j ⊂ Ii equal to the Bi-ideal generated by Fi,j . Set Ai,j = Bi/Ii,j . Then Ai,j is
a quasi-coherent finitely presented OX -algebra. Define (i, j) ≤ (i′, j′) if i ≤ i′ and
the map Bi → Bi′ maps the ideal Ii,j into the ideal Ii′,j′ . Then it is clear that
A = colimi,j Ai,j . �

Let X be an algebraic space. In the following lemma we use the notion of a quasi-
coherent OX-algebra A of finite type. This means that for every affine U = Spec(R)

étale over X we have A|U = Ã where A is a (commutative) R-algebra which is of
finite type as an R-algebra.

Lemma 9.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a quasi-coherent OX-algebra. Then A is the
directed colimit of its finite type quasi-coherent OX-subalgebras.

Proof. Omitted. Hint: Compare with the proof of Lemma 9.2. �

Let X be an algebraic space. In the following lemma we use the notion of a finite
(resp. integral) quasi-coherent OX-algebra A. This means that for every affine

U = Spec(R) étale over X we have A|U = Ã where A is a (commutative) R-algebra
which is finite (resp. integral) as an R-algebra.

Lemma 9.6. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be a finite quasi-coherent OX-algebra. Then A =
colimAi is a directed colimit of finite and finitely presented quasi-coherent OX-
algebras with surjective transition maps.

Proof. By Lemma 9.3 there exists a finitely presented OX -module F and a sur-
jection F → A. Using the algebra structure we obtain a surjection

Sym∗OX
(F) −→ A
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Denote J the kernel. Write J = colim Ei as a filtered colimit of finite type OX -
submodules Ei (Lemma 9.2). Set

Ai = Sym∗OX
(F)/(Ei)

where (Ei) indicates the ideal sheaf generated by the image of Ei → Sym∗OX
(F).

Then each Ai is a finitely presented OX -algebra, the transition maps are surjective,
and A = colimAi. To finish the proof we still have to show that Ai is a finite OX -
algebra for i sufficiently large. To do this we choose an étale surjective map U → X
where U is an affine scheme. Take generators f1, . . . , fm ∈ Γ(U,F). As A(U)
is a finite OX(U)-algebra we see that for each j there exists a monic polynomial
Pj ∈ O(U)[T ] such that Pj(fj) is zero in A(U). Since A = colimAi by construction,
we have Pj(fj) = 0 in Ai(U) for all sufficiently large i. For such i the algebras Ai
are finite. �

Lemma 9.7. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let A be an integral quasi-coherent OX-algebra. Then

(1) A is the directed colimit of its finite quasi-coherent OX-subalgebras, and
(2) A is a directed colimit of finite and finitely presented OX-algebras.

Proof. By Lemma 9.5 we have A = colimAi where Ai ⊂ A runs through the
quasi-coherent OX -sub algebras of finite type. Any finite type quasi-coherent OX -
subalgebra of A is finite (use Algebra, Lemma 35.5 on affine schemes étale over X).
This proves (1).

To prove (2), write A = colimFi as a colimit of finitely presented OX -modules
using Lemma 9.1. For each i, let Ji be the kernel of the map

Sym∗OX
(Fi) −→ A

For i′ ≥ i there is an induced map Ji → Ji′ and we have A = colim Sym∗OX
(Fi)/Ji.

Moreover, the quasi-coherent OX -algebras Sym∗OX
(Fi)/Ji are finite (see above).

Write Ji = colim Eik as a colimit of finitely presented OX -modules. Given i′ ≥ i
and k there exists a k′ such that we have a map Eik → Ei′k′ making

Ji // Ji′

Eik

OO

// Ei′k′

OO

commute. This follows from Cohomology of Spaces, Lemma 4.3. This induces a
map

Aik = Sym∗OX
(Fi)/(Eik) −→ Sym∗OX

(Fi′)/(Ei′k′) = Ai′k′
where (Eik) denotes the ideal generated by Eik. The quasi-coherent OX -algebras
Aki are of finite presentation and finite for k large enough (see proof of Lemma
9.6). Finally, we have

colimAik = colimAi = A
Namely, the first equality was shown in the proof of Lemma 9.6 and the second
equality because A is the colimit of the modules Fi. �

Lemma 9.8. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. Let U ⊂ X be a quasi-compact open. Let F be a quasi-
coherent OX-module. Let G ⊂ F|U be a quasi-coherent OU -submodule which is of
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finite type. Then there exists a quasi-coherent submodule G′ ⊂ F which is of finite
type such that G′|U = G.

Proof. Denote j : U → X the inclusion morphism. As X is quasi-separated and
U quasi-compact, the morphism j is quasi-compact. Hence j∗G ⊂ j∗F|U are quasi-
coherent modules on X (Morphisms of Spaces, Lemma 11.2). Let H = Ker(j∗G ⊕
F → j∗F|U ). Then H|U = G. By Lemma 9.2 we can find a finite type quasi-
coherent submodule H′ ⊂ H such that H′|U = H|U = G. Set G′ = Im(H′ → F) to
conclude. �

10. Relative approximation

The title of this section refers to the following result.

Lemma 10.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that

(1) X is quasi-compact and quasi-separated, and
(2) Y is quasi-separated.

Then X = limXi is a limit of a directed system of algebraic spaces Xi of finite
presentation over Y with affine transition morphisms over Y .

Proof. Since |f |(|X|) is quasi-compact we may replace Y by a quasi-compact open
subspace whose set of points contains |f |(|X|). Hence we may assume Y is quasi-
compact as well. Write X = limXa and Y = limYb as in Proposition 8.1, i.e.,
with Xa and Yb of finite type over Z and with affine transition morphisms. By
Proposition 3.9 we find that for each b there exists an a and a morphism fa,b :
Xa → Yb making the diagram

X

��

// Y

��
Xa

// Yb

commute. Moreover the same proposition implies that, given a second triple
(a′, b′, fa′,b′), there exists an a′′ ≥ a′ such that the compositions Xa′′ → Xa → Xb

and Xa′′ → Xa′ → Xb′ → Xb are equal. Consider the set of triples (a, b, fa,b)
endowed with the partial ordering

(a, b, fa,b) ≥ (a′, b′, fa′,b′)⇔ a ≥ a′, b′ ≥ b, and fa′,b′ ◦ ha,a′ = gb′,b ◦ fa,b
where ha,a′ : Xa → Xa′ and gb′,b : Yb′ → Yb are the transition morphisms. The
remarks above show that this system is directed. It follows formally from the
equalities X = limXa and Y = limYb that

X = lim(a,b,fa,b)Xa ×fa,b,Yb
Y.

where the limit is over our directed system above. The transition morphisms Xa×Yb

Y → Xa′ ×Yb′ Y are affine as the composition

Xa ×Yb
Y → Xa ×Yb′ Y → Xa′ ×Yb′ Y

where the first morphism is a closed immersion (by Morphisms of Spaces, Lemma
4.5) and the second is a base change of an affine morphism (Morphisms of Spaces,
Lemma 20.5) and the composition of affine morphisms is affine (Morphisms of
Spaces, Lemma 20.4). The morphisms fa,b are of finite presentation (Morphisms of
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Spaces, Lemmas 27.7 and 27.9) and hence the base changes Xa ×fa,b,Sb
S → S are

of finite presentation (Morphisms of Spaces, Lemma 27.3). �

11. Finite type closed in finite presentation

This section is the analogue of Limits, Section 8.

Lemma 11.1. Let S be a scheme. Let f : X → Y be an affine morphism of alge-
braic spaces over S. If Y quasi-compact and quasi-separated, then X is a directed
limit X = limXi with each Xi affine and of finite presentation over Y .

Proof. Consider the quasi-coherent OY -module A = f∗OX . By Lemma 9.4 we
can write A = colimAi as a directed colimit of finitely presented OY -algebras Ai.
Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8. By construction

Xi → Y is affine and of finite presentation and X = limXi. �

Lemma 11.2. Let S be a scheme. Let f : X → Y be an integral morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = limXi where Xi are finite and of finite
presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma 9.7
we can write A = colimAi as a directed colimit of finite and finitely presented
OY -algebras Ai. Set Xi = Spec

Y
(Ai), see Morphisms of Spaces, Definition 20.8.

By construction Xi → Y is finite and of finite presentation and X = limXi. �

Lemma 11.3. Let S be a scheme. Let f : X → Y be a finite morphism of
algebraic spaces over S. Assume Y quasi-compact and quasi-separated. Then X
can be written as a directed limit X = limXi where the transition maps are closed
immersions and the objects Xi are finite and of finite presentation over Y .

Proof. Consider the finite quasi-coherent OY -module A = f∗OX . By Lemma 9.6
we can write A = colimAi as a directed colimit of finite and finitely presented OY -
algebras Ai with surjective transition maps. Set Xi = Spec

Y
(Ai), see Morphisms of

Spaces, Definition 20.8. By construction Xi → Y is finite and of finite presentation,
the transition maps are closed immersions, and X = limXi. �

Lemma 11.4. Let S be a scheme. Let f : X → Y be a closed immersion of alge-
braic spaces over S. Assume Y quasi-compact and quasi-separated. Then X can be
written as a directed limit X = limXi where the transition maps are closed immer-
sions and the morphisms Xi → Y are closed immersions of finite presentation.

Proof. Let I ⊂ OY be the quasi-coherent sheaf of ideals defining X as a closed
subspace of Y . By Lemma 9.2 we can write I = colim Ii as the filtered colimit of its
finite type quasi-coherent submodules. Let Xi be the closed subspace of X cut out
by Ii. Then Xi → Y is a closed immersion of finite presentation, and X = limXi.
Some details omitted. �

Lemma 11.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is locally of finite type and quasi-affine, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ over Y .
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Proof. By Morphisms of Spaces, Lemma 21.6 we can find a factorization X →
Z → Y where X → Z is a quasi-compact open immersion and Z → Y is affine.
Write Z = limZi with Zi affine and of finite presentation over Y (Lemma 11.1). For
some 0 ∈ I we can find a quasi-compact open U0 ⊂ Z0 such that X is isomorphic
to the inverse image of U0 in Z (Lemma 5.5). Let Ui be the inverse image of U0 in
Zi, so U = limUi. By Lemma 5.10 we see that X → Ui is a closed immersion for
some i large enough. Setting X ′ = Ui finishes the proof. �

Lemma 11.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume:

(1) f is of locally of finite type.
(2) X is quasi-compact and quasi-separated, and
(3) Y is quasi-compact and quasi-separated.

Then there exists a morphism of finite presentation f ′ : X ′ → Y and a closed
immersion X → X ′ of algebraic spaces over Y .

Proof. By Proposition 8.1 we can write X = limiXi with Xi quasi-separated of
finite type over Z and with transition morphisms fii′ : Xi → Xi′ affine. Consider
the commutative diagram

X //

!!

Xi,Y
//

��

Xi

��
Y // Spec(Z)

Note thatXi is of finite presentation over Spec(Z), see Morphisms of Spaces, Lemma
27.7. Hence the base change Xi,Y → Y is of finite presentation by Morphisms of
Spaces, Lemma 27.3. Observe that limXi,Y = X × Y and that X → X × Y is
a monomorphism. By Lemma 5.10 we see that X → Xi,Y is a monomorphism
for i large enough. Fix such an i. Note that X → Xi,Y is locally of finite type
(Morphisms of Spaces, Lemma 23.6) and a monomorphism, hence separated and
locally quasi-finite (Morphisms of Spaces, Lemma 26.10). Hence X → Xi,Y is
representable. Hence X → Xi,Y is quasi-affine because we can use the principle
Spaces, Lemma 5.8 and the result for morphisms of schemes More on Morphisms,
Lemma 31.2. Thus Lemma 11.5 gives a factorization X → X ′ → Xi,Y with X → X ′

a closed immersion and X ′ → Xi,Y of finite presentation. Finally, X ′ → Y is of
finite presentation as a composition of morphisms of finite presentation (Morphisms
of Spaces, Lemma 27.2). �

Proposition 11.7. Let S be a scheme. f : X → Y be a morphism of algebraic
spaces over S. Assume

(1) f is of finite type and separated, and
(2) Y is quasi-compact and quasi-separated.

Then there exists a separated morphism of finite presentation f ′ : X ′ → Y and a
closed immersion X → X ′ over Y .

Proof. By Lemma 11.6 there is a closed immersion X → Z with Z/Y of finite
presentation. Let I ⊂ OZ be the quasi-coherent sheaf of ideals defining X as
a closed subscheme of Y . By Lemma 9.2 we can write I as a directed colimit
I = colima∈A Ia of its quasi-coherent sheaves of ideals of finite type. Let Xa ⊂
Z be the closed subspace defined by Ia. These form an inverse system indexed
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by A. The transition morphisms Xa → Xa′ are affine because they are closed
immersions. Each Xa is quasi-compact and quasi-separated since it is a closed
subspace of Z and Z is quasi-compact and quasi-separated by our assumptions.
We have X = limaXa as follows directly from the fact that I = colima∈A Ia. Each
of the morphisms Xa → Z is of finite presentation, see Morphisms, Lemma 22.7.
Hence the morphisms Xa → Y are of finite presentation. Thus it suffices to show
that Xa → Y is separated for some a ∈ A. This follows from Lemma 5.11 as we
have assumed that X → Y is separated. �

12. Approximating proper morphisms

Lemma 12.1. Let S be a scheme. Let f : X → Y be a proper morphism of algebraic
spaces over S with Y quasi-compact and quasi-separated. Then X = limXi with
Xi → Y proper and of finite presentation.

Proof. By Proposition 11.7 we can find a closed immersion X → X ′ with X ′

separated and of finite presentation over Y . By Lemma 11.4 we can write X =
limXi with Xi → X ′ a closed immersion of finite presentation. We claim that for
all i large enough the morphism Xi → Y is proper which finishes the proof.

To prove this we may assume that Y is an affine scheme, see Morphisms of Spaces,
Lemma 37.2. Next, we use the weak version of Chow’s lemma, see Cohomology of
Spaces, Lemma 17.1, to find a diagram

X ′

!!

X ′′

��

π
oo // Pn

Y

}}
Y

where X ′′ → Pn
Y is an immersion, and π : X ′′ → X ′ is proper and surjective.

Denote X ′i ⊂ X ′′, resp. π−1(X) the scheme theoretic inverse image of Xi ⊂ X ′,
resp. X ⊂ X ′. Then limX ′i = π−1(X). Since π−1(X)→ Y is proper (Morphisms of
Spaces, Lemmas 37.4), we see that π−1(X)→ Pn

Y is a closed immersion (Morphisms
of Spaces, Lemmas 37.6 and 12.3). Hence for i large enough we find that X ′i → Pn

Y

is a closed immersion by Lemma 5.14. Thus X ′i is proper over Y . For such i the
morphism Xi → Y is proper by Morphisms of Spaces, Lemma 37.7. �

Lemma 12.2. Let f : X → Y be a proper morphism of algebraic spaces over Z
with Y quasi-compact and quasi-separated. Then (X → Y ) = lim(Xi → Yi) with Yi
of finite presentation over Z and Xi → Yi proper and of finite presentation.

Proof. By Lemma 12.1 we can write X = limk∈K Xk with Xk → Y proper and of
finite presentation. Next, by absolute Noetherian approximation (Proposition 8.1)
we can write Y = limj∈J Yj with Yj of finite presentation over Z. For each k there
exists a j and a morphism Xk,j → Yj of finite presentation with Xk

∼= Y ×Yj
Xk,j

as algebraic spaces over Y , see Lemma 7.1. After increasing j we may assume
Xk,j → Yj is proper, see Lemma 6.12. The set I will be consist of these pairs (k, j)
and the corresponding morphism is Xk,j → Yj . For every k′ ≥ k we can find a
j′ ≥ j and a morphism Xj′,k′ → Xj,k over Yj′ → Yj whose base change to Y gives
the morphism Xk′ → Xk (follows again from Lemma 7.1). These morphisms form
the transition morphisms of the system. Some details omitted. �
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Recall the scheme theoretic support of a finite type quasi-coherent module, see
Morphisms of Spaces, Definition 15.4.

Lemma 12.3. Assumptions and notation as in Situation 6.1. Let F0 be a quasi-
coherent OX0

-module. Denote F and Fi the pullbacks of F0 to X and Xi. Assume

(1) f0 is locally of finite type,
(2) F0 is of finite type,
(3) the scheme theoretic support of F is proper over Y .

Then the scheme theoretic support of Fi is proper over Yi for some i.

Proof. We may replace X0 by the scheme theoretic support of F0. By Morphisms
of Spaces, Lemma 15.2 this guarantees that Xi is the support of Fi and X is the
support of F . Then, if Z ⊂ X denotes the scheme theoretic support of F , we see
that Z → X is a universal homeomorphism. We conclude that X → Y is proper
as this is true for Z → Y by assumption, see Morphisms, Lemma 42.8. By Lemma
6.12 we see that Xi → Y is proper for some i. Then it follows that the scheme
theoretic support Zi of Fi is proper over Y by Morphisms of Spaces, Lemmas 37.5
and 37.4. �

13. Embedding into affine space

Some technical lemmas to be used in the proof of Chow’s lemma later.

Lemma 13.1. Let S be a scheme. Let f : U → X be a morphism of algebraic
spaces over S. Assume U is an affine scheme, f is locally of finite type, and X
quasi-separated and locally separated. Then there exists an immersion U → An

X

over X.

Proof. Say U = Spec(A). Write A = colimAi as a filtered colimit of finite type
Z-subalgebras. For each i the morphism U → Ui = Spec(Ai) induces a morphism

U −→ X × Ui
over X. In the limit the morphism U → X × U is an immersion as X is locally
separated, see Morphisms of Spaces, Lemma 4.6. By Lemma 5.10 we see that
U → X × Ui is an immersion for some i. Since Ui is isomorphic to a closed
subscheme of An

Z the lemma follows. �

Remark 13.2. We have seen in Examples, Section 22 that Lemma 13.1 does not
hold if we drop the assumption thatX be locally separated. This raises the question:
Does Lemma 13.1 hold if we drop the assumption that X be quasi-separated? If
you know the answer, please email stacks.project@gmail.com.

Lemma 13.3. Let S be a scheme. Let f : Y → X be a morphism of algebraic
spaces over S. Assume X Noetherian and f of finite presentation. Then there
exists a dense open V ⊂ Y and an immersion V → An

X .

Proof. The assumptions imply that Y is Noetherian (Morphisms of Spaces, Lemma
27.6). Then Y is quasi-separated, hence has a dense open subscheme (Properties of
Spaces, Proposition 10.3). Thus we may assume that Y is a Noetherian scheme. By
removing intersections of irreducible components of Y (use Topology, Lemma 8.2
and Properties, Lemma 5.5) we may assume that Y is a disjoint union of irreducible
Noetherian schemes. Since there is an immersion

An
X qAm

X −→ A
max(n,m)+1
X

http://localhost:8080/tag/08K2
http://localhost:8080/tag/088L
http://localhost:8080/tag/088M
mailto:stacks.project@gmail.com
http://localhost:8080/tag/088N


28 LIMITS OF ALGEBRAIC SPACES

(details omitted) we see that it suffices to prove the result in case Y is irreducible.

Assume Y is an irreducible scheme. Let T ⊂ |X| be the closure of the image of
f : Y → X. Note that since |Y | and |X| are sober topological spaces (Properties
of Spaces, Lemma 12.4) T is irreducible with a unique generic point ξ which is
the image of the generic point η of Y . Let I ⊂ X be a quasi-coherent sheaf of
ideals cutting out the reduced induced space structure on T (Properties of Spaces,
Definition 9.5). Since OY,η is an Artinian local ring we see that for some n > 0 we
have f−1InOY,η = 0. As f−1IOY is a finite type quasi-coherent ideal we conclude
that f−1InOV = 0 for some nonempty open V ⊂ Y . Let Z ⊂ X be the closed
subspace cut out by In. By construction V → Y → X factors through Z. Because
An
Z → An

X is an immersion, we may replace X by Z and Y by V . Hence we reach
the situation where Y and X are irreducible and Y → X maps the generic point of
Y onto the generic point of X.

Assume Y and X are irreducible, Y is a scheme, and Y → X maps the generic
point of Y onto the generic point of X. By Properties of Spaces, Proposition 10.3
X has a dense open subscheme U ⊂ X. Choose a nonempty affine open V ⊂ Y
whose image in X is contained in U . By Morphisms, Lemma 40.2 we may factor
V → U as V → An

U → U . Composing with An
U → An

X we obtain the desired
immersion. �

14. Sections with support in a closed subset

This section is the analogue of Properties, Section 22.

Lemma 14.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space. Let U ⊂ X be an open subspace. The following are equivalent:

(1) U → X is quasi-compact,
(2) U is quasi-compact, and
(3) there exists a finite type quasi-coherent sheaf of ideals I ⊂ OX such that
|X| \ |U | = |V (I)|.

Proof. Let W be an affine scheme and let ϕ : W → X be a surjective étale
morphism, see Properties of Spaces, Lemma 6.3. If (1) holds, then ϕ−1(U) → W
is quasi-compact, hence ϕ−1(U) is quasi-compact, hence U is quasi-compact (as
|ϕ−1(U)| → |U | is surjective). If (2) holds, then ϕ−1(U) is quasi-compact because
ϕ is quasi-compact since X is quasi-separated (Morphisms of Spaces, Lemma 8.9).
Hence ϕ−1(U)→W is a quasi-compact morphism of schemes by Properties, Lemma
22.1. It follows that U → X is quasi-compact by Morphisms of Spaces, Lemma 8.7.
Thus (1) and (2) are equivalent.

Assume (1) and (2). By Properties of Spaces, Lemma 9.3 there exists a unique
quasi-coherent sheaf of ideals J cutting out the reduced induced closed subspace
structure on |X| \ |U |. Note that J |U = OU which is an OU -modules of finite type.
As U is quasi-compact it follows from Lemma 9.2 that there exists a quasi-coherent
subsheaf I ⊂ J which is of finite type and has the property that I|U = J |U . Then
|X|\|U | = |V (I)| and we obtain (3). Conversely, if I is as in (3), then ϕ−1(U) ⊂W
is a quasi-compact open by the lemma for schemes (Properties, Lemma 22.1) applied
to ϕ−1I on W . Thus (2) holds. �
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Lemma 14.2. Let S be a scheme. Let X be an algebraic space over S. Let I ⊂ OX
be a quasi-coherent sheaf of ideals. Let F be a quasi-coherent OX-module. Consider
the sheaf of OX-modules F ′ which associates to every object U of Xétale the module

F ′(U) = {s ∈ F(U) | Is = 0}

Assume I is of finite type. Then

(1) F ′ is a quasi-coherent sheaf of OX-modules,
(2) for affine U in Xétale we have F ′(U) = {s ∈ F(U) | I(U)s = 0}, and
(3) F ′x = {s ∈ Fx | Ixs = 0}.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 22.2. �

Definition 14.3. Let S be a scheme. Let X be an algebraic space over S. Let
I ⊂ OX be a quasi-coherent sheaf of ideals of finite type. Let F be a quasi-
coherent OX -module. The subsheaf F ′ ⊂ F defined in Lemma 14.2 above is called
the subsheaf of sections annihilated by I.

Lemma 14.4. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let I ⊂ OY be a quasi-coherent
sheaf of ideals of finite type. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be
the subsheaf of sections annihilated by f−1IOX . Then f∗F ′ ⊂ f∗F is the subsheaf
of sections annihilated by I.

Proof. Omitted. Hint: The assumption that f is quasi-compact and quasi-separated
implies that f∗F is quasi-coherent (Morphisms of Spaces, Lemma 11.2) so that
Lemma 14.2 applies to I and f∗F . �

Next we come to the sheaf of sections supported in a closed subset. Again this isn’t
always a quasi-coherent sheaf, but if the complement of the closed is “retrocompact”
in the given algebraic space, then it is.

Lemma 14.5. Let S be a scheme. Let X be an algebraic space over S. Let T ⊂ |X|
be a closed subset and let U ⊂ X be the open subspace such that T q |U | = |X|.
Let F be a quasi-coherent OX-module. Consider the sheaf of OX-modules F ′ which
associates to every object ϕ : W → X of Xétale the module

F ′(W ) = {s ∈ F(W ) | the support of s is contained in |ϕ|−1(T )}

If U → X is quasi-compact, then

(1) for W affine there exist a finitely generated ideal I ⊂ OX(W ) such that
|ϕ|−1(T ) = V (I),

(2) for W and I as in (1) we have F ′(W ) = {x ∈ F(W ) | Inx = 0 for some n},
(3) F ′ is a quasi-coherent sheaf of OX-modules.

Proof. It is clear that the rule defining F ′ gives a subsheaf of F . Hence we may
work étale locally on X to verify the other statements. Thus the lemma reduces to
the case of schemes which is Properties, Lemma 22.5. �

Definition 14.6. Let S be a scheme. Let X be an algebraic space over S. Let
T ⊂ |X| be a closed subset whose complement corresponds to an open subspace
U ⊂ X with quasi-compact inclusion morphism U → X. Let F be a quasi-coherent
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OX -module. The quasi-coherent subsheaf F ′ ⊂ F defined in Lemma 14.5 above is
called the subsheaf of sections supported on T .

Lemma 14.7. Let S be a scheme. Let f : X → Y be a quasi-compact and quasi-
separated morphism of algebraic spaces over S. Let T ⊂ |Y | be a closed subset.
Assume |Y | \ T corresponds to an open subspace V ⊂ Y such that V → Y is
quasi-compact. Let F be a quasi-coherent OX-module. Let F ′ ⊂ F be the subsheaf
of sections supported on |f |−1T . Then f∗F ′ ⊂ f∗F is the subsheaf of sections
supported on T .

Proof. Omitted. Hints: |X| \ |f |−1T is the support of the open subspace U =
f−1V ⊂ X. Since V → Y is quasi-compact, so is U → X (by base change). The
assumption that f is quasi-compact and quasi-separated implies that f∗F is quasi-
coherent. Hence Lemma 14.5 applies to T and f∗F as well as to |f |−1T and F . The
equality of the given quasi-coherent modules is immediate from the definitions. �

15. Characterizing affine spaces

This section is the analogue of Limits, Section 10.

Lemma 15.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is surjective and finite, and assume that X is affine.
Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 16.2). Note that a finite morphism is affine and
universally closed, see Morphisms of Spaces, Lemma 41.7. By Morphisms of Spaces,
Lemma 9.8 we see that Y is a separated algebraic space. As f is surjective and X
is quasi-compact we see that Y is quasi-compact.

By Lemma 11.3 we can write X = limXa with each Xa → Y finite and of finite
presentation. By Lemma 5.8 we see that Xa is affine for a large enough. Hence we
may and do assume that f : X → Y is finite, surjective, and of finite presentation.

By Proposition 8.1 we may write Y = limYi as a directed limit of algebraic spaces
of finite presentation over Z. By Lemma 7.1 we can find 0 ∈ I and a morphism
X0 → Y0 of finite presentation such that Xi = X0 ×Y0

Yi for i ≥ 0 and such that
X = limiXi. By Lemma 6.6 we see that Xi → Yi is finite for i large enough. By
Lemma 6.3 we see that Xi → Yi is surjective for i large enough. By Lemma 5.8
we see that Xi is affine for i large enough. Hence for i large enough we can apply
Cohomology of Spaces, Lemma 16.1 to conclude that Yi is affine. This implies that
Y is affine and we conclude. �

Proposition 15.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume that f is surjective and integral, and assume that X is
affine. Then Y is affine.

Proof. We may and do view f : X → Y as a morphism of algebraic space over
Spec(Z) (see Spaces, Definition 16.2). Note that integral morphisms are affine and
universally closed, see Morphisms of Spaces, Lemma 41.7. By Morphisms of Spaces,
Lemma 9.8 we see that Y is a separated algebraic space. As f is surjective and X
is quasi-compact we see that Y is quasi-compact.

Consider the sheaf A = f∗OX . This is a quasi-coherent sheaf of OY -algebras, see
Morphisms of Spaces, Lemma 11.2. By Lemma 9.1 we can write A = colimi Fi as
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a filtered colimit of finite type OY -modules. Let Ai ⊂ A be the OY -subalgebra
generated by Fi. Since the map of algebras OY → A is integral, we see that each
Ai is a finite quasi-coherent OY -algebra. Hence

Xi = Spec
Y

(Ai) −→ Y

is a finite morphism of algebraic spaces. (Insert future reference to Spec construc-
tion for algebraic spaces here.) It is clear that X = limiXi. Hence by Lemma 5.8
we see that for i sufficiently large the scheme Xi is affine. Moreover, since X → Y
factors through each Xi we see that Xi → Y is surjective. Hence we conclude that
Y is affine by Lemma 15.1. �

The following corollary of the result above can be found in [CLO12].

Lemma 15.3. Let S be a scheme. Let X be an algebraic space over S. If Xred is
a scheme, then X is a scheme.

Proof. Let U ′ ⊂ Xred be an open affine subscheme. Let U ⊂ X be the open
subspace corresponding to the open |U ′| ⊂ |Xred| = |X|. Then U ′ → U is surjective
and integral. Hence U is affine by Proposition 15.2. Thus every point is contained
in an open subscheme of X, i.e., X is a scheme. �

Lemma 15.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is integral and induces a bijection |X| → |Y |. Then X is
a scheme if and only if Y is a scheme.

Proof. An integral morphism is representable by definition, hence if Y is a scheme,
so is X. Conversely, assume that X is a scheme. Let U ⊂ X be an affine open. An
integral morphism is closed and |f | is bijective, hence |f |(|U |) ⊂ |Y | is open as the
complement of |f |(|X| \ |U |). Let V ⊂ Y be the open subspace with |V | = |f |(|U |),
see Properties of Spaces, Lemma 4.8. Then U → V is integral and surjective, hence
V is an affine scheme by Proposition 15.2. This concludes the proof. �

Lemma 15.5. Let S be a scheme. Let f : X → B and B′ → B be morphisms of
algebraic spaces over S. Assume

(1) B′ → B is a closed immersion,
(2) |B′| → |B| is bijective,
(3) X ×B B′ → B′ is a closed immersion, and
(4) X → B is of finite type or B′ → B is of finite presentation.

Then f : X → B is a closed immersion.

Proof. Assumptions (1) and (2) imply that Bred = B′red. Set X ′ = X×BB′. Then
X ′ → X is closed immersion and X ′red = Xred. Let U → B be an étale morphism
with U affine. Then X ′ ×B U → X ×B U is a closed immersion of algebraic spaces
inducing an isomorphism on underlying reduced spaces. Since X ′×B U is a scheme
(as B′ → B and X ′ → B′ are representable) so is X ×B U by Lemma 15.3. Hence
X → B is representable too. Thus we reduce to the case of schemes, see Morphisms,
Lemma 45.5. �

16. Finite cover by a scheme

As an application of Zariski’s main theorem and the limit results of this chapter, we
prove that given any quasi-compact and quasi-separated algebraic space X, there
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is a scheme Y and a surjective, finite morphism Y → X. The following lemma will
be obsoleted by the full result later on.

Lemma 16.1. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S.

(1) There exists a surjective integral morphism Y → X where Y is a scheme,
(2) given a surjective étale morphism U → X we may choose Y → X such that

for every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X
factors through U .

Proof. Part (1) is the special case of part (2) where U = X. Choose a surjective
étale morphism U ′ → U where U ′ is a scheme. It is clear that we may replace U
by U ′ and hence we may assume U is a scheme. Since X is quasi-compact, there
exist finitely many affine opens Ui ⊂ U such that U ′ =

∐
Ui → X is surjective.

After replacing U by U ′ again, we see that we may assume U is affine. Since X is
quasi-separated, hence reasonable, there exists an integer d bounding the degree of
the geometric fibres of U → X (see Decent Spaces, Lemma 5.1). We will prove the
lemma by induction on d for all quasi-compact and separated schemes U mapping
surjective and étale onto X. If d = 1, then U = X and the result holds with Y = U .
Assume d > 1.

We apply Morphisms of Spaces, Lemma 46.2 and we obtain a factorization

U
j

//

  

Y

π~~
X

with π integral and j a quasi-compact open immersion. We may and do assume
that j(U) is scheme theoretically dense in Y . Note that

U ×X Y = U qW

where the first summand is the image of U → U×XY (which is closed by Morphisms
of Spaces, Lemma 4.6 and open because it is étale as a morphism between algebraic
spaces étale over Y ) and the second summand is the (open and closed) complement.
The image V ⊂ Y of W is an open subspace containing Y \ U .

The étale morphism W → Y has geometric fibres of cardinality < d. Namely, this
is clear for geometric points of U ⊂ Y by inspection. Since |U | ⊂ |Y | is dense,
it holds for all geometric points of Y for example by Decent Spaces, Lemma 8.1
(the degree of the fibres of a quasi-compact étale morphism does not go up under
specialization). Thus we may apply the induction hypothesis to W → V and find a
surjective integral morphism Z → V with Z a scheme, which Zariski locally factors
through W . Choose a factorization Z → Z ′ → Y with Z ′ → Y integral and Z → Z ′

open immersion (Morphisms of Spaces, Lemma 46.2). After replacing Z ′ by the
scheme theoretic closure of Z in Z ′ we may assume that Z is scheme theoretically
dense in Z ′. After doing this we have Z ′ ×Y V = Z. Finally, let T ⊂ Y be the
induced closed subspace structure on Y \ V . Consider the morphism

Z ′ q T −→ X

This is a surjective integral morphism by construction. Since T ⊂ U it is clear that
the morphism T → X factors through U . On the other hand, let z ∈ Z ′ be a point.
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If z 6∈ Z, then z maps to a point of Y \V ⊂ U and we find a neighbourhood of z on
which the morphism factors through U . If z ∈ Z, then we have a neighbourhood
V ⊂ Z which factors through W ⊂ U ×X Y and hence through U . �

Proposition 16.2. Let S be a scheme. Let X be a quasi-compact and quasi-
separated algebraic space over S.

(1) There exists a surjective finite morphism Y → X of finite presentation
where Y is a scheme,

(2) given a surjective étale morphism U → X we may choose Y → X such that
for every y ∈ Y there is an open neighbourhood V ⊂ Y such that V → X
factors through U .

Proof. Part (1) is the special case of (2) with U = X. Let Y → X be as in Lemma
16.1. Choose a finite affine open covering Y =

⋃
Vj such that Vj → X factors

through U . We can write Y = limYi with Yi → X finite and of finite presentation,
see Lemma 11.2. For large enough i the algebraic space Yi is a scheme, see Lemma
5.9. For large enough i we can find affine opens Vi,j ⊂ Yi whose inverse image in Y
recovers Vj , see Lemma 5.5. For even larger i the morphisms Vj → U over X come
from morphisms Vi,j → U over X, see Proposition 3.9. This finishes the proof. �
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