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1. Introduction

In this chapter, we discuss some advanced results on flat modules and flat mor-
phisms of schemes. Most of these results can be found in the paper [GR71] by
Raynaud and Gruson.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 MORE ON FLATNESS

Before reading this chapter we advise the reader to take a look at the following
results (this list also serves as a pointer to previous results):

(1) General discussion on flat modules in Algebra, Section 38.
(2) The relationship between Tor-groups and flatness, see Algebra, Section 72.
(3) Criteria for flatness, see Algebra, Section 95 (Noetherian case), Algebra,

Section 97 (Artinian case), Algebra, Section 124 (non-Noetherian case),
and finally More on Morphisms, Section 13.

(4) Generic flatness, see Algebra, Section 114 and Morphisms, Section 28.
(5) Openness of the flat locus, see Algebra, Section 125 and More on Mor-

phisms, Section 12.
(6) Flattening, see More on Algebra, Sections 9, 10, 11, 12, and 13.
(7) Additional results in More on Algebra, Sections 14, 15, 17, and 18.

2. Lemmas on étale localization

In this section we list some lemmas on étale localization which will be useful later
in this chapter. Please skip this section on a first reading.

Lemma 2.1. Let i : Z → X be a closed immersion of affine schemes. Let Z ′ → Z
be an étale morphism with Z ′ affine. Then there exists an étale morphism X ′ → X
with X ′ affine such that Z ′ ∼= Z ×X X ′ as schemes over Z.

Proof. See Algebra, Lemma 138.11. �

Lemma 2.2. Let

X

��

X ′oo

��
S S′oo

be a commutative diagram of schemes with X ′ → X and S′ → S étale. Let s′ ∈ S′
be a point. Then

X ′ ×S′ Spec(OS′,s′) −→ X ×S Spec(OS′,s′)
is étale.

Proof. This is true because X ′ → XS′ is étale as a morphism of schemes étale
over X, see Morphisms, Lemma 37.18 and the base change of an étale morphism is
étale, see Morphisms, Lemma 37.4. �

Lemma 2.3. Let X → T → S be morphisms of schemes with T → S étale. Let F
be a quasi-coherent OX-module. Let x ∈ X be a point. Then

F flat over S at x⇔ F flat over T at x

In particular F is flat over S if and only if F is flat over T .

Proof. As an étale morphism is a flat morphism (see Morphisms, Lemma 37.12)
the implication “⇐” follows from Algebra, Lemma 38.3. For the converse assume
that F is flat at x over S. Denote x̃ ∈ X ×S T the point lying over x in X and
over the image of x in T in T . Then (X ×S T → X)∗F is flat at x̃ over T via
pr2 : X ×S T → T , see Morphisms, Lemma 26.6. The diagonal ∆T/S : T → T ×S T
is an open immersion; combine Morphisms, Lemmas 36.13 and 37.5. So X is
identified with open subscheme of X ×S T , the restriction of pr2 to this open is the
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MORE ON FLATNESS 3

given morphism X → T , the point x̃ corresponds to the point x in this open, and
(X ×S T → X)∗F restricted to this open is F . Whence we see that F is flat at x
over T . �

Lemma 2.4. Let T → S be an étale morphism. Let t ∈ T with image s ∈ S. Let
M be a OT,t-module. Then

M flat over OS,s ⇔M flat over OT,t.

Proof. We may replace S by an affine neighbourhood of s and after that T by an

affine neighbourhood of t. Set F = (Spec(OT,t)→ T )∗M̃ . This is a quasi-coherent
sheaf (see Schemes, Lemma 24.1 or argue directly) on T whose stalk at t is M
(details omitted). Apply Lemma 2.3. �

Lemma 2.5. Let S be a scheme and s ∈ S a point. Denote OhS,s (resp. OshS,s) the

henselization (resp. strict henselization), see Algebra, Definition 145.18. Let Msh

be a OshS,s-module. The following are equivalent

(1) Msh is flat over OS,s,
(2) Msh is flat over OhS,s, and

(3) Msh is flat over OshS,s.
If Msh = Mh ⊗OhS,s O

sh
S,s this is also equivalent to

(4) Mh is flat over OS,s, and
(5) Mh is flat over OhS,s.

If Mh = M ⊗OS,s OhS,s this is also equivalent to

(6) M is flat over OS,s.

Proof. We may assume that S is an affine scheme. It is shown in Algebra, Lemmas
145.21 and 145.27 that OhS,s and OshS,s are filtered colimits of the rings OT,t where

T → S is étale and affine. Hence the local ring maps OS,s → OhS,s → OshS,s are flat

as directed colimits of étale ring maps, see Algebra, Lemma 38.2. Hence (3) ⇒ (2)
⇒ (1) and (5) ⇒ (4) follow from Algebra, Lemma 38.3. Of course these maps are
faithfully flat, see Algebra, Lemma 38.16. Hence the equivalences (6) ⇔ (5) and
(5) ⇔ (3) follow from Algebra, Lemma 38.7. Thus it suffices to show that (1) ⇒
(2) ⇒ (3) and (4) ⇒ (5).

Assume (1). By Lemma 2.4 we see that Msh is flat over OT,t for any étale neigh-
bourhood (T, t) → (S, s). Since OhS,s and OshS,s are directed colimits of local rings

of the form OT,t (see above) we conclude that Msh is flat over OhS,s and OshS,s by

Algebra, Lemma 38.5. Thus (1) implies (2) and (3). Of course this implies also
(2) ⇒ (3) by replacing OS,s by OhS,s. The same argument applies to prove (4) ⇒
(5). �

Lemma 2.6. Let g : T → S be a finite flat morphism of schemes. Let G be a
quasi-coherent OS-module. Let t ∈ T be a point with image s ∈ S. Then

t ∈WeakAss(g∗G)⇔ s ∈WeakAss(G)

Proof. The implication “⇐” follows immediately from Divisors, Lemma 6.4. As-
sume t ∈ WeakAss(g∗G). Let Spec(A) ⊂ S be an affine open neighbourhood of s.
Let G be the quasi-coherent sheaf associated to the A-module M . Let p ⊂ A be the
prime ideal corresponding to s. As g is finite flat we have g−1(Spec(A)) = Spec(B)
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4 MORE ON FLATNESS

for some finite flat A-algebra B. Note that g∗G is the quasi-coherent OSpec(B)-
module associated to the B-module M ⊗A B and g∗g

∗G is the quasi-coherent
OSpec(A)-module associated to the A-module M ⊗A B. By Algebra, Lemma 75.4

we have Bp
∼= A⊕np for some integer n ≥ 0. Note that n ≥ 1 as we assumed there

exists at least one point of T lying over s. Hence we see by looking at stalks that

s ∈WeakAss(G)⇔ s ∈WeakAss(g∗g
∗G)

Now the assumption that t ∈ WeakAss(g∗G) implies that s ∈ WeakAss(g∗g
∗G) by

Divisors, Lemma 6.3 and hence by the above s ∈WeakAss(G). �

Lemma 2.7. Let h : U → S be an étale morphism of schemes. Let G be a quasi-
coherent OS-module. Let u ∈ U be a point with image s ∈ S. Then

u ∈WeakAss(h∗G)⇔ s ∈WeakAss(G)

Proof. After replacing S and U by affine neighbourhoods of s and u we may assume
that g is a standard étale morphism of affines, see Morphisms, Lemma 37.14. Thus
we may assume S = Spec(A) and X = Spec(A[x, 1/g]/(f)), where f is monic
and f ′ is invertible in A[x, 1/g]. Note that A[x, 1/g]/(f) = (A[x]/(f))g is also the
localization of the finite free A-algebra A[x]/(f). Hence we may think of U as an
open subscheme of the scheme T = Spec(A[x]/(f)) which is finite locally free over
S. This reduces us to Lemma 2.6 above. �

3. The local structure of a finite type module

The key technical lemma that makes a lot of the arguments in this chapter work is
the geometric Lemma 3.2.

Lemma 3.1. Let f : X → S be a finite type morphism of affine schemes. Let
F be a finite type quasi-coherent OX-module. Let x ∈ X with image s = f(x)
in S. Set Fs = F|Xs . Then there exist a closed immersion i : Z → X of finite
presentation, and a quasi-coherent finite type OZ-module G such that i∗G = F and
Zs = Supp(Fs).

Proof. Say the morphism f : X → S is given by the ring map A → B and
that F is the quasi-coherent sheaf associated to the B-module M . By Morphisms,
Lemma 16.2 we know that A → B is a finite type ring map, and by Properties,
Lemma 16.1 we know that M is a finite B-module. In particular the support of
F is the closed subscheme of Spec(B) cut out by the annihilator I = {x ∈ B |
xm = 0 ∀m ∈ M} of M , see Algebra, Lemma 39.5. Let q ⊂ B be the prime ideal
corresponding to x and let p ⊂ A be the prime ideal corresponding to s. Note that
Xs = Spec(B ⊗A κ(p)) and that Fs is the quasi-coherent sheaf associated to the
B ⊗A κ(p) module M ⊗A κ(p). By Morphisms, Lemma 5.3 the support of Fs is
equal to V (I(B ⊗A κ(p))). Since B ⊗A κ(p) is of finite type over κ(p) there exist
finitely many elements f1, . . . , fm ∈ I such that

I(B ⊗A κ(p)) = (f1, . . . , fn)(B ⊗A κ(p)).

Denote i : Z → X the closed subscheme cut out by (f1, . . . , fm), in a formula
Z = Spec(B/(f1, . . . , fm)). Since M is annihilated by I we can think of M as
an B/(f1, . . . , fm)-module. In other words, F is the pushforward of a finite type
module on Z. As Zs = Supp(Fs) by construction, this proves the lemma. �
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MORE ON FLATNESS 5

Lemma 3.2. Let f : X → S be morphism of schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image s = f(x)
in S. Set Fs = F|Xs and n = dimx(Supp(Fs)). Then we can construct

(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′
eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′-module G,

such that the following properties hold

(1) X ′, Z ′, Y ′, S′ are affine schemes,
(2) i is a closed immersion of finite presentation,
(3) i∗(G) ∼= g∗F ,
(4) π is finite and π−1({y′}) = {z′},
(5) the extension κ(s′) ⊂ κ(y′) is purely transcendental,
(6) h is smooth of relative dimension n with geometrically integral fibres.

Proof. Let V ⊂ S be an affine neighbourhood of s. Let U ⊂ f−1(V ) be an affine
neighbourhood of x. Then it suffices to prove the lemma for f |U : U → V and F|U .
Hence in the rest of the proof we assume that X and S are affine.

First, suppose that Xs = Supp(Fs), in particular n = dimx(Xs). Apply More on
Morphisms, Lemmas 33.2 and 33.3. This gives us a commutative diagram

X

��

X ′
g

oo

π

��
Y ′

h
��

S S′
eoo

and point x′ ∈ X ′. We set Z ′ = X ′, i = id, and G = g∗F to obtain a solution in
this case.

In general choose a closed immersion Z → X and a sheaf G on Z as in Lemma
3.1. Applying the result of the previous paragraph to Z → S and G we obtain a
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6 MORE ON FLATNESS

diagram

X

f

��

Zoo

f |Z

��

Z ′
g

oo

π

��
Y ′

h
��

S S S′
eoo

and point z′ ∈ Z ′ satisfying all the required properties. We will use Lemma 2.1 to
embed Z ′ into a scheme étale over X. We cannot apply the lemma directly as we
want X ′ to be a scheme over S′. Instead we consider the morphisms

Z ′ // Z ×S S′ // X ×S S′

The first morphism is étale by Morphisms, Lemma 37.18. The second is a closed
immersion as a base change of a closed immersion. Finally, as X, S, S′, Z, Z ′

are all affine we may apply Lemma 2.1 to get an étale morphism of affine schemes
X ′ → X ×S S′ such that

Z ′ = (Z ×S S′)×(X×SS′) X
′ = Z ×X X ′.

As Z → X is a closed immersion of finite presentation, so is Z ′ → X ′. Let x′ ∈ X ′
be the point corresponding to z′ ∈ Z ′. Then the completed diagram

X

��

X ′

��

oo Z ′
i

oo

π

��
Y ′

h
��

S S′
eoo S′

is a solution of the original problem. �

Lemma 3.3. Assumptions and notation as in Lemma 3.2. If f is locally of finite
presentation then π is of finite presentation. In this case the following are equivalent

(1) F is an OX-module of finite presentation in a neighbourhood of x,
(2) G is an OZ′-module of finite presentation in a neighbourhood of z′, and
(3) π∗G is an OY ′-module of finite presentation in a neighbourhood of y′.

Still assuming f locally of finite presentation the following are equivalent to each
other

(a) Fx is an OX,x-module of finite presentation,
(b) Gz′ is an OZ′,z′-module of finite presentation, and
(c) (π∗G)y′ is an OY ′,y′-module of finite presentation.

Proof. Assume f locally of finite presentation. Then Z ′ → S is locally of finite
presentation as a composition of such, see Morphisms, Lemma 22.3. Note that
Y ′ → S is also locally of finite presentation as a composition of a smooth and
an étale morphism. Hence Morphisms, Lemma 22.11 implies π is locally of finite
presentation. Since π is finite we conclude that it is also separated and quasi-
compact, hence π is actually of finite presentation.
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MORE ON FLATNESS 7

To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is a OX′ -
module of finite presentation in a neighbourhood of x′. The pullback of a module
of finite presentation is of finite presentation, see Modules, Lemma 11.4. Hence (1)
⇒ (4). The étale morphism g is open, see Morphisms, Lemma 37.13. Hence for
any open neighbourhood U ′ ⊂ X ′ of x′, the image g(U ′) is an open neighbourhood
of x and the map {U ′ → g(U ′)} is an étale covering. Thus (4) ⇒ (1) by Descent,
Lemma 6.3. Using Descent, Lemma 6.10 and some easy topological arguments (see
More on Morphisms, Lemma 33.4) we see that (4) ⇔ (2) ⇔ (3).

To prove the equivalence of (a), (b), (c) consider the ring maps

OX,x → OX′,x′ → OZ′,z′ ← OY ′,y′

The first ring map is faithfully flat. Hence Fx is of finite presentation over OX,x
if and only if g∗Fx′ is of finite presentation over OX′,x′ , see Algebra, Lemma 80.2.
The second ring map is surjective (hence finite) and finitely presented by assump-
tion, hence g∗Fx′ is of finite presentation over OX′,x′ if and only if Gz′ is of finite
presentation over OZ′,z′ , see Algebra, Lemma 7.4. Because π is finite, of finite
presentation, and π−1({y′}) = {x′} the ring homomorphism OY ′,y′ ← OZ′,z′ is
finite and of finite presentation, see More on Morphisms, Lemma 33.4. Hence Gz′
is of finite presentation over OZ′,z′ if and only if π∗Gy′ is of finite presentation over
OY ′,y′ , see Algebra, Lemma 7.4. �

Lemma 3.4. Assumptions and notation as in Lemma 3.2. The following are equiv-
alent

(1) F is flat over S in a neighbourhood of x,
(2) G is flat over S′ in a neighbourhood of z′, and
(3) π∗G is flat over S′ in a neighbourhood of y′.

The following are equivalent also

(a) Fx is flat over OS,s,
(b) Gz′ is flat over OS′,s′ , and
(c) (π∗G)y′ is flat over OS′,s′ .

Proof. To prove the equivalence of (1), (2), and (3) we also consider: (4) g∗F is
flat over S in a neighbourhood of x′. We will use Lemma 2.3 to equate flatness
over S and S′ without further mention. The étale morphism g is flat and open, see
Morphisms, Lemma 37.13. Hence for any open neighbourhood U ′ ⊂ X ′ of x′, the
image g(U ′) is an open neighbourhood of x and the map U ′ → g(U ′) is surjective
and flat. Thus (4) ⇔ (1) by Morphisms, Lemma 26.11. Note that

Γ(X ′, g∗F) = Γ(Z ′,G) = Γ(Y ′, π∗G)

Hence the flatness of g∗F , G and π∗G over S′ are all equivalent (this uses that X ′,
Z ′, Y ′, and S′ are all affine). Some omitted topological arguments (compare More
on Morphisms, Lemma 33.4) regarding affine neighbourhoods now show that (4)
⇔ (2) ⇔ (3).

http://localhost:8080/tag/057U


8 MORE ON FLATNESS

To prove the equivalence of (a), (b), (c) consider the commutative diagram of local
ring maps

OX′,x′ ι
// OZ′,z′ OY ′,y′α

oo OS′,s′
β
oo

OX,x

γ

OO

OS,s
ϕoo

ε

OO

We will use Lemma 2.4 to equate flatness over OS,s and OS′,s′ without further
mention. The map γ is faithfully flat. Hence Fx is flat over OS,s if and only if
g∗Fx′ is flat over OS′,s′ , see Algebra, Lemma 38.8. As OS′,s′ -modules the modules
g∗Fx′ , Gz′ , and π∗Gy′ are all isomorphic, see More on Morphisms, Lemma 33.4.
This finishes the proof. �

4. One step dévissage

In this section we explain what is a one step dévissage of a module. A one step
dévissage exist étale locally on base and target. We discuss base change, Zariski
shrinking and étale localization of a one step dévissage.

Definition 4.1. Let S be a scheme. Let X be locally of finite type over S. Let F
be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A one step
dévissage of F/X/S over s is given by morphisms of schemes over S

X Z
ioo π // Y

and a quasi-coherent OZ-module G of finite type such that

(1) X, S, Z and Y are affine,
(2) i is a closed immersion of finite presentation,
(3) F ∼= i∗G,
(4) π is finite, and
(5) the structure morphism Y → S is smooth with geometrically irreducible

fibres of dimension dim(Supp(Fs)).
In this case we say (Z, Y, i, π,G) is a one step dévissage of F/X/S over s.

Note that such a one step dévissage can only exist if X and S are affine. In the
definition above we only require X to be (locally) of finite type over S and we
continue working in this setting below. In [GR71] the authors use consistently the
setup where X → S is locally of finite presentation and F quasi-coherent OX -
module of finite type. The advantage of this choice is that it “makes sense” to ask
for F to be of finite presentation as an OX -module, whereas in our setting it “does
not make sense”. Please see More on Morphisms, Section 38 for a discussion; the
observations made there show that in our setup we may consider the condition of F
being “locally of finite presentation relative to S”, and we could work consistently
with this notion. Instead however, we will rely on the results of Lemma 3.3 and the
observations in Remark 6.3 to deal with this issue in an ad hoc fashion whenever
it comes up.

Definition 4.2. Let S be a scheme. Let X be locally of finite type over S. Let F
be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s in S. A one step dévissage of F/X/S at x is a system (Z, Y, i, π,G, z, y), where
(Z, Y, i, π,G) is a one step dévissage of F/X/S over s and

(1) dimx(Supp(Fs)) = dim(Supp(Fs)),

http://localhost:8080/tag/05H4
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MORE ON FLATNESS 9

(2) z ∈ Z is a point with i(z) = x and π(z) = y,
(3) we have π−1({y}) = {z},
(4) the extension κ(s) ⊂ κ(y) is purely transcendental.

A one step dévissage of F/X/S at x can only exist if X and S are affine. Condition
(1) assures us that Y → S has relative dimension equal to dimx(Supp(Fs)) via
condition (5) of Definition 4.1.

Lemma 4.3. Let f : X → S be morphism of schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX-module. Let x ∈ X with image s = f(x)
in S. Then there exists a commutative diagram of pointed schemes

(X,x)

f

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

such that (S′, s′) → (S, s) and (X ′, x′) → (X,x) are elementary étale neighbour-
hoods, and such that g∗F/X ′/S′ has a one step dévissage at x′.

Proof. This is immediate from Definition 4.2 and Lemma 3.2. �

Lemma 4.4. Let S, X, F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one
step dévissage of F/X/S over s. Let (S′, s′) → (S, s) be any morphism of pointed
schemes. Given this data let X ′, Z ′, Y ′, i′, π′ be the base changes of X,Z, Y, i, π via
S′ → S. Let F ′ be the pullback of F to X ′ and let G′ be the pullback of G to Z ′. If
S′ is affine, then (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over s′.

Proof. Fibre products of affines are affine, see Schemes, Lemma 17.2. Base change
preserves closed immersions, morphisms of finite presentation, finite morphisms,
smooth morphisms, morphisms with geometrically irreducible fibres, and mor-
phisms of relative dimension n, see Morphisms, Lemmas 2.4, 22.4, 44.6, 35.5,
30.2, and More on Morphisms, Lemma 22.2. We have i′∗G′ ∼= F ′ because push-
forward along the finite morphism i commutes with base change, see Cohomology
of Schemes, Lemma 5.1. We have dim(Supp(Fs)) = dim(Supp(F ′s′)) by Morphisms,
Lemma 29.3 because

Supp(Fs)×s s′ = Supp(F ′s′).

This proves the lemma. �

Lemma 4.5. Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be a
one step dévissage of F/X/S at x. Let (S′, s′) → (S, s) be a morphism of pointed
schemes which induces an isomorphism κ(s) = κ(s′). Let (Z ′, Y ′, i′, π′,G′) be as
constructed in Lemma 4.4 and let x′ ∈ X ′ (resp. z′ ∈ Z ′, y′ ∈ Y ′) be the unique
point mapping to both x ∈ X (resp. z ∈ Z, y ∈ Y ) and s′ ∈ S′. If S′ is affine, then
(Z ′, Y ′, i′, π′,G′, z′, y′) is a one step dévissage of F ′/X ′/S′ at x′.

Proof. By Lemma 4.4 (Z ′, Y ′, i′, π′,G′) is a one step dévissage of F ′/X ′/S′ over
s′. Properties (1) – (4) of Definition 4.2 hold for (Z ′, Y ′, i′, π′,G′, z′, y′) as the
assumption that κ(s) = κ(s′) insures that the fibres X ′s′ , Z

′
s′ , and Y ′s′ are isomorphic

to Xs, Zs, and Ys. �
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10 MORE ON FLATNESS

Definition 4.6. Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y)
be a one step dévissage of F/X/S at x. Let us define a standard shrinking of this
situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X, Z ′ ⊂ Z, and Y ′ ⊂ Y such
that s ∈ S′, x ∈ X ′, z ∈ Z ′, and y ∈ Y ′ and such that

(Z ′, Y ′, i|Z′ , π|Z′ ,G|Z′ , z, y)

is a one step dévissage of F|X′/X ′/S′ at x.

Lemma 4.7. With assumption and notation as in Definition 4.6 we have:

(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,
Z ′ = ZS′ and Y ′ = YS′ we obtain a standard shrinking.

(2) Let W ⊂ Y be a standard open neighbourhood of y. Then there exists a
standard shrinking with Y ′ = W ×S S′.

(3) Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemma 4.5 and the fact that the inverse image
of a standard open under a morphism of affine schemes is a standard open, see
Algebra, Lemma 16.4.

Let W ⊂ Y as in (2). Because Y → S is smooth it is open, see Morphisms, Lemma
35.10. Hence we can find a standard open neighbourhood S′ of s contained in
the image of W . Then the fibres of WS′ → S′ are nonempty open subschemes
of the fibres of Y → S over S′ and hence geometrically irreducible too. Setting
Y ′ = WS′ and Z ′ = π−1(Y ′) we see that Z ′ ⊂ Z is a standard open neighbourhood
of z. Let h ∈ Γ(Z,OZ) be a function such that Z ′ = D(h). As i : Z → X is a
closed immersion, we can find a function h ∈ Γ(X,OX) such that i](h) = h. Take
X ′ = D(h) ⊂ X. In this way we obtain a standard shrinking as in (2).

Let U ⊂ X be as in (3). We may after shrinking U assume that U is a standard
open. By More on Morphisms, Lemma 33.4 there exists a standard open W ⊂ Y
neighbourhood of y such that π−1(W ) ⊂ i−1(U). Apply (2) to get a standard
shrinking X ′, S′, Z ′, Y ′ with Y ′ = WS′ . Since Z ′ ⊂ π−1(W ) ⊂ i−1(U) we may
replace X ′ by X ′ ∩ U (still a standard open as U is also standard open) without
violating any of the conditions defining a standard shrinking. Hence we win. �

Lemma 4.8. Let S, X, F , x, s be as in Definition 4.2. Let (Z, Y, i, π,G, z, y) be a
one step dévissage of F/X/S at x. Let

(Y, y)

��

(Y ′, y′)oo

��
(S, s) (S′, s′)oo

http://localhost:8080/tag/05H9
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be a commutative diagram of pointed schemes such that the horizontal arrows are
elementary étale neighbourhoods. Then there exists a commutative diagram

(X ′′, x′′)

uu ��

(Z ′′, z′′)oo

tt ��
(X,x)

��

(Z, z)oo

��

(S′′, s′′)

uu

(Y ′′, y′′)

tt

oo

(S, s) (Y, y)oo

of pointed schemes with the following properties:

(1) (S′′, s′′)→ (S′, s′) is an elementary étale neighbourhood and the morphism
S′′ → S is the composition S′′ → S′ → S,

(2) Y ′′ is an open subscheme of Y ′ ×S′ S′′,
(3) Z ′′ = Z ×Y Y ′′,
(4) (X ′′, x′′)→ (X,x) is an elementary étale neighbourhood, and
(5) (Z ′′, Y ′′, i′′, π′′,G′′, z′′, y′′) is a one step dévissage at x′′ of the sheaf F ′′.

Here F ′′ (resp. G′′) is the pullback of F (resp. G) via the morphism X ′′ → X (resp.
Z ′′ → Z) and i′′ : Z ′′ → X ′′ and π′′ : Z ′′ → Y ′′ are as in the diagram.

Proof. Let (S′′, s′′) → (S′, s′) be any elementary étale neighbourhood with S′′

affine. Let Y ′′ ⊂ Y ′ ×S′ S′′ be any affine open neighbourhood containing the point
y′′ = (y′, s′′). Then we obtain an affine (Z ′′, z′′) by (3). Moreover ZS′′ → XS′′

is a closed immersion and Z ′′ → ZS′′ is an étale morphism. Hence Lemma 2.1
applies and we can find an étale morphism X ′′ → XS′ of affines such that Z ′′ ∼=
X ′′ ×XS′ ZS′ . Denote i′′ : Z ′′ → X ′′ the corresponding closed immersion. Setting
x′′ = i′′(z′′) we obtain a commutative diagram as in the lemma. Properties (1),
(2), (3), and (4) hold by construction. Thus it suffices to show that (5) holds for a
suitable choice of (S′′, s′′)→ (S′, s′) and Y ′′.

We first list those properties which hold for any choice of (S′′, s′′)→ (S′, s′) and Y ′′

as in the first paragraph. As we have Z ′′ = X ′′ ×X Z by construction we see that
i′′∗G′′ = F ′′ (with notation as in the statement of the lemma), see Cohomology of
Schemes, Lemma 5.1. Set n = dim(Supp(Fs)) = dimx(Supp(Fs)). The morphism
Y ′′ → S′′ is smooth of relative dimension n (because Y ′ → S′ is smooth of relative
dimension n as the composition Y ′ → YS′ → S′ of an étale and smooth morphism
of relative dimension n and because base change preserves smooth morphisms of
relative dimension n). We have κ(y′′) = κ(y) and κ(s) = κ(s′′) hence κ(y′′) is a
purely transcendental extension of κ(s′′). The morphism of fibres X ′′s′′ → Xs is an
étale morphism of affine schemes over κ(s) = κ(s′′) mapping the point x′′ to the
point x and pulling back Fs to F ′′s′′ . Hence

dim(Supp(F ′′s′′)) = dim(Supp(Fs)) = n = dimx(Supp(Fs)) = dimx′′(Supp(F ′′s′′))
because dimension is invariant under étale localization, see Descent, Lemma 17.2.
As π′′ : Z ′′ → Y ′′ is the base change of π we see that π′′ is finite and as κ(y) = κ(y′′)
we see that π−1({y′′}) = {z′′}.
At this point we have verified all the conditions of Definition 4.1 except we have
not verified that Y ′′ → S′′ has geometrically irreducible fibres. Of course in general
this is not going to be true, and it is at this point that we will use that κ(s) ⊂ κ(y)
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is purely transcendental. Namely, let T ⊂ Y ′s′ be the irreducible component of Y ′s′
containing y′ = (y, s′). Note that T is an open subscheme of Y ′s′ as this is a smooth
scheme over κ(s′). By Varieties, Lemma 5.14 we see that T is geometrically con-
nected because κ(s′) = κ(s) is algebraically closed in κ(y′) = κ(y). As T is smooth
we see that T is geometrically irreducible. Hence More on Morphisms, Lemma 32.3
applies and we can find an elementary étale morphism (S′′, s′′) → (S′, s′) and an
affine open Y ′′ ⊂ Y ′S′′ such that all fibres of Y ′′ → S′′ are geometrically irreducible
and such that T = Y ′′s′′ . After shrinking (first Y ′′ and then S′′) we may assume
that both Y ′′ and S′′ are affine. This finishes the proof of the lemma. �

Lemma 4.9. Let S, X, F , s be as in Definition 4.1. Let (Z, Y, i, π,G) be a one
step dévissage of F/X/S over s. Let ξ ∈ Ys be the (unique) generic point. Then
there exists an integer r > 0 and an OY -module map

α : O⊕rY −→ π∗G

such that

α : κ(ξ)⊕r −→ (π∗G)ξ ⊗OY,ξ κ(ξ)

is an isomorphism. Moreover, in this case we have

dim(Supp(Coker(α)s)) < dim(Supp(Fs)).

Proof. By assumption the schemes S and Y are affine. Write S = Spec(A) and
Y = Spec(B). As π is finite the OY -module π∗G is a finite type quasi-coherent OY -

module. Hence π∗G = Ñ for some finite B-module N . Let p ⊂ B be the prime ideal
corresponding to ξ. To obtain α set r = dimκ(p)N ⊗B κ(p) and pick x1, . . . , xr ∈ N
which form a basis of N ⊗B κ(p). Take α : B⊕r → N to be the map given by
the formula α(b1, . . . , br) =

∑
bixi. It is clear that α : κ(p)⊕r → N ⊗B κ(p) is an

isomorphism as desired. Finally, suppose α is any map with this property. Then
N ′ = Coker(α) is a finite B-module such that N ′⊗κ(p) = 0. By Nakayama’s lemma
(Algebra, Lemma 19.1) we see that N ′p = 0. Since the fibre Ys is geometrically
irreducible of dimension n with generic point ξ and since we have just seen that ξ
is not in the support of Coker(α) the last assertion of the lemma holds. �

5. Complete dévissage

In this section we explain what is a complete dévissage of a module and prove that
such exist. The material in this section is mainly bookkeeping.

Definition 5.1. Let S be a scheme. Let X be locally of finite type over S. Let F
be a quasi-coherent OX -module of finite type. Let s ∈ S be a point. A complete

http://localhost:8080/tag/05HF
http://localhost:8080/tag/05HH
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dévissage of F/X/S over s is given by a diagram

X Z1
i1
oo

π1

��
Y1 Z2

i2
oo

π2

��
Y2 Z3
oo

��... ...oo

��
Yn

of schemes over S, finite type quasi-coherent OZk -modules Gk, and OYk -module
maps

αk : O⊕rkYk
−→ πk,∗Gk, k = 1, . . . , n

satisfying the following properties:

(1) (Z1, Y1, i1, π1,G1) is a one step dévissage of F/X/S over s,
(2) the map αk induces an isomorphism

κ(ξk)⊕rk −→ (πk,∗Gk)ξk ⊗OYk,ξk κ(ξk)

where ξk ∈ (Yk)s is the unique generic point,
(3) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk) is a one step dévissage of

Coker(αk−1)/Yk−1/S over s,
(4) Coker(αn) = 0.

In this case we say that (Zk, Yk, ik, πk,Gk, αk)k=1,...,n is a complete dévissage of
F/X/S over s.

Definition 5.2. Let S be a scheme. Let X be locally of finite type over S. Let F
be a quasi-coherent OX -module of finite type. Let x ∈ X be a point with image
s ∈ S. A complete dévissage of F/X/S at x is given by a system

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n

such that (Zk, Yk, ik, πk,Gk, αk) is a complete dévissage of F/X/S over s, and such
that

(1) (Z1, Y1, i1, π1,G1, z1, y1) is a one step dévissage of F/X/S at x,
(2) for k = 2, . . . , n the system (Zk, Yk, ik, πk,Gk, zk, yk) is a one step dévissage

of Coker(αk−1)/Yk−1/S at yk−1.

Again we remark that a complete dévissage can only exist if X and S are affine.

Lemma 5.3. Let S, X, F , s be as in Definition 5.1. Let (S′, s′) → (S, s) be
any morphism of pointed schemes. Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete
dévissage of F/X/S over s. Given this data let X ′, Z ′k, Y

′
k, i
′
k, π
′
k be the base changes

of X,Zk, Yk, ik, πk via S′ → S. Let F ′ be the pullback of F to X ′ and let G′k be
the pullback of Gk to Z ′k. Let α′k be the pullback of αk to Y ′k. If S′ is affine, then
(Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k)k=1,...,n is a complete dévissage of F ′/X ′/S′ over s′.

http://localhost:8080/tag/05HI
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Proof. By Lemma 4.4 we know that the base change of a one step dévissage is a one
step dévissage. Hence it suffices to prove that formation of Coker(αk) commutes
with base change and that condition (2) of Definition 5.1 is preserved by base
change. The first is true as π′k,∗G′k is the pullback of πk,∗Gk (by Cohomology of

Schemes, Lemma 5.1) and because ⊗ is right exact. The second because by the
same token we have

(πk,∗Gk)ξk ⊗OYk,ξk κ(ξk)⊗κ(ξk) κ(ξ′k) ∼= (π′k,∗G′k)ξ′k ⊗OY ′k,ξ′k κ(ξ′k)

with obvious notation. �

Lemma 5.4. Let S, X, F , x, s be as in Definition 5.2. Let (S′, s′) → (S, s)
be a morphism of pointed schemes which induces an isomorphism κ(s) = κ(s′).
Let (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n be a complete dévissage of F/X/S at x.
Let (Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k)k=1,...,n be as constructed in Lemma 5.3 and let x′ ∈ X ′

(resp. z′k ∈ Z ′, y′k ∈ Y ′) be the unique point mapping to both x ∈ X (resp. zk ∈ Zk,
yk ∈ Yk) and s′ ∈ S′. If S′ is affine, then (Z ′k, Y

′
k, i
′
k, π
′
k,G′k, α′k, z′k, y′k)k=1,...,n is a

complete dévissage of F ′/X ′/S′ at x′.

Proof. Combine Lemma 5.3 and Lemma 4.5. �

Definition 5.5. Let S, X, F , x, s be as in Definition 5.2. Consider a complete
dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=1,...,n of F/X/S at x. Let us define a stan-
dard shrinking of this situation to be given by standard opens S′ ⊂ S, X ′ ⊂ X,
Z ′k ⊂ Zk, and Y ′k ⊂ Yk such that sk ∈ S′, xk ∈ X ′, zk ∈ Z ′, and yk ∈ Y ′ and such
that

(Z ′k, Y
′
k, i
′
k, π
′
k,G′k, α′k, zk, yk)k=1,...,n

is a one step dévissage of F ′/X ′/S′ at x where G′k = Gk|Z′k and F ′ = F|X′ .

Lemma 5.6. With assumption and notation as in Definition 5.5 we have:

(1) If S′ ⊂ S is a standard open neighbourhood of s, then setting X ′ = XS′ ,
Z ′k = ZS′ and Y ′k = YS′ we obtain a standard shrinking.

(2) Let W ⊂ Yn be a standard open neighbourhood of y. Then there exists a
standard shrinking with Y ′n = W ×S S′.

(3) Let U ⊂ X be an open neighbourhood of x. Then there exists a standard
shrinking with X ′ ⊂ U .

Proof. Part (1) is immediate from Lemmas 5.4 and 4.7.

Proof of (2). For convenience denote X = Y0. We apply Lemma 4.7 (2) to find a
standard shrinking S′, Y ′n−1, Z

′
n, Y

′
n of the one step dévissage of Coker(αn−1)/Yn−1/S

at yn−1 with Y ′n = W ×S S′. We may repeat this procedure and find a standard
shrinking S′′, Y ′′n−2, Z

′′
n−1, Y

′′
n−1 of the one step dévissage of Coker(αn−2)/Yn−2/S

at yn−2 with Y ′′n−1 = Y ′n−1×S S′′. We may continue in this manner until we obtain

S(n), Y
(n)
0 , Z

(n)
1 , Y

(n)
1 . At this point it is clear that we obtain our desired standard

shrinking by taking S(n), X(n), Z
(n−k)
k ×SS(n), and Y

(n−k)
k ×SS(n) with the desired

property.

Proof of (3). We use induction on the length of the complete dévissage. First
we apply Lemma 4.7 (3) to find a standard shrinking S′, X ′, Z ′1, Y

′
1 of the one

step dévissage of F/X/S at x with X ′ ⊂ U . If n = 1, then we are done. If
n > 1, then by induction we can find a standard shrinking S′′, Y ′′1 , Z ′′k , and Y ′′k of
the complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of Coker(α1)/Y1/S at

http://localhost:8080/tag/05HK
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x such that Y ′′1 ⊂ Y ′1 . Using Lemma 4.7 (2) we can find S′′′ ⊂ S′, X ′′′ ⊂ X ′, Z ′′′1

and Y ′′′1 = Y ′′1 ×S S′′′ which is a standard shrinking. The solution to our problem
is to take

S′′′, X ′′′, Z ′′′1 , Y
′′′
1 , Z ′′2 ×S S′′′, Y ′′2 ×S S′′′, . . . , Z ′′n ×S S′′′, Y ′′n ×S S′′′

This ends the proof of the lemma. �

Proposition 5.7. Let S be a scheme. Let X be locally of finite type over S. Let
x ∈ X be a point with image s ∈ S. There exists a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x.

Proof. We prove this by induction on the integer d = dimx(Supp(Fs)). By Lemma
4.3 there exists a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neigh-
bourhoods and such that g∗F/X ′/S′ has a one step dévissage at x′. The local
nature of the problem implies that we may replace (X,x) → (S, s) by (X ′, x′) →
(S′, s′). Thus after doing so we may assume that there exists a one step dévissage
(Z1, Y1, i1, π1,G1) of F/X/S at x.

We apply Lemma 4.9 to find a map

α1 : O⊕r1Y1
−→ π1,∗G1

which induces an isomorphism of vector spaces over κ(ξ1) where ξ1 ∈ Y1 is the
unique generic point of the fibre of Y1 over s. Moreover dimy1(Supp(Coker(α1)s)) <
d. It may happen that the stalk of Coker(α1)s at y1 is zero. In this case we may
shrink Y1 by Lemma 4.7 (2) and assume that Coker(α1) = 0 so we obtain a complete
dévissage of length zero.

Assume now that the stalk of Coker(α1)s at y1 is not zero. In this case, by induction,
there exists a commutative diagram

(5.7.1)

(Y1, y1)

��

(Y ′1 , y
′
1)

h
oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that h∗Coker(α1)/Y ′1/S

′ has a complete dévissage

(Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n

http://localhost:8080/tag/05HR
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at y′1. (In particular i2 : Z2 → Y ′1 is a closed immersion into Y ′2 .) At this point we
apply Lemma 4.8 to S,X,F , x, s, the system (Z1, Y1, i1, π1,G1) and diagram (5.7.1).
We obtain a diagram

(X ′′, x′′)

tt ��

(Z ′′1 , z
′′
1 )oo

tt ��
(X,x)

��

(Z1, z1)oo

��

(S′′, s′′)

tt

(Y ′′1 , y
′′
1 )

tt

oo

(S, s) (Y1, y1)oo

with all the properties as listed in the referenced lemma. In particular Y ′′1 ⊂
Y ′1 ×S′ S′′. Set X1 = Y ′1 ×S′ S′′ and let F1 denote the pullback of Coker(α1). By
Lemma 5.4 the system

(5.7.2) (Zk ×S′ S′′, Yk ×S′ S′′, i′′k , π′′k ,G′′k , α′′k , z′′k , y′′k )k=2,...,n

is a complete dévissage of F1 to X1. Again, the nature of the problem allows us to
replace (X,x)→ (S, s) by (X ′′, x′′)→ (S′′, s′′). In this we see that we may assume:

(a) There exists a one step dévissage (Z1, Y1, i1, π1,G1) of F/X/S at x,
(b) there exists an α1 : O⊕r1Y1

→ π1,∗G1 such that α⊗ κ(ξ1) is an isomorphism,
(c) Y1 ⊂ X1 is open, y1 = x1, and F1|Y1

∼= Coker(α1), and
(d) there exists a complete dévissage (Zk, Yk, ik, πk,Gk, αk, zk, yk)k=2,...,n of
F1/X1/S at x1.

To finish the proof all we have to do is shrink the one step dévissage and the
complete dévissage such that they fit together to a complete dévissage. (We suggest
the reader do this on their own using Lemmas 4.7 and 5.6 instead of reading the
proof that follows.) Since Y1 ⊂ X1 is an open neighbourhood of x1 we may apply
Lemma 5.6 (3) to find a standard shrinking S′, X ′1, Z

′
2, Y

′
2 , . . . , Y

′
n of the datum (d)

so that X ′1 ⊂ Y1. Note that X ′1 is also a standard open of the affine scheme Y1.
Next, we shrink the datum (a) as follows: first we shrink the base S to S′, see
Lemma 4.7 (1) and then we shrink the result to S′′, X ′′, Z ′′1 , Y ′′1 using Lemma 4.7
(2) such that eventually Y ′′1 = X ′1 ×S S′′ and S′′ ⊂ S′. Then we see that

Z ′′1 , Y
′′
1 , Z

′
2 ×S′ S′′, Y ′2 ×S′ S′′, . . . , Y ′n ×S′ S′′

gives the complete dévissage we were looking for. �

Some more bookkeeping gives the following consequence.

Lemma 5.8. Let X → S be a finite type morphism of schemes. Let F be a finite
type quasi-coherent OX-module. Let s ∈ S be a point. There exists an elementary
étale neighbourhood (S′, s′) → (S, s) and étale morphisms hi : Yi → XS′ , i =
1, . . . , n such that for each i there exists a complete dévissage of Fi/Yi/S′ over s′,
where Fi is the pullback of F to Yi and such that Xs = (XS′)s′ ⊂

⋃
hi(Yi).

Proof. For every point x ∈ Xs we can find a diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

http://localhost:8080/tag/05HU
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of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x′. As X → S is of
finite type the fibre Xs is quasi-compact, and since each g : X ′ → X as above is
open we can cover Xs by a finite union of g(X ′s′). Thus we can find a finite family
of such diagrams

(X,x)

��

(X ′i, x
′
i)gi

oo

��
(S, s) (S′i, s

′
i)

oo

i = 1, . . . , n

such that Xs =
⋃
gi(X

′
i). Set S′ = S′1 ×S . . .×S S′n and let Yi = Xi ×S′i S

′ be the

base change of X ′i to S′. By Lemma 5.3 we see that the pullback of F to Yi has a
complete dévissage over s and we win. �

6. Translation into algebra

It may be useful to spell out algebraically what it means to have a complete
dévissage. We introduce the following notion (which is not that useful so we give
it an impossibly long name).

Definition 6.1. Let R → S be a ring map. Let q be a prime of S lying over the
prime p of R. A elementary étale localization of the ring map R→ S at q is given
by a commutative diagram of rings and accompanying primes

S // S′

R

OO

// R′

OO q q′

p p′

such that R → R′ and S → S′ are étale ring maps and κ(p) = κ(p′) and κ(q) =
κ(q′).

Definition 6.2. Let R → S be a finite type ring map. Let r be a prime of R.
Let N be a finite S-module. A complete dévissage of N/S/R over r is given by
R-algebra maps

A1 A2 ... An

S

??

B1

`` >>

...

`` ??

...

__ >>

Bn

aa

finite Ai-modules Mi and Bi-module maps αi : B⊕rii →Mi such that

(1) S → A1 is surjective and of finite presentation,
(2) Bi → Ai+1 is surjective and of finite presentation,
(3) Bi → Ai is finite,
(4) R→ Bi is smooth with geometrically irreducible fibres,
(5) N ∼= M1 as S-modules,
(6) Coker(αi) ∼= Mi+1 as Bi-modules,
(7) αi : κ(pi)

⊕ri →Mi ⊗Bi κ(pi) is an isomorphism where pi = rBi, and
(8) Coker(αn) = 0.

In this situation we say that (Ai, Bi,Mi, αi)i=1,...,n is a complete dévissage of
N/S/R over r.

http://localhost:8080/tag/05HW
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Remark 6.3. Note that the R-algebras Bi for all i and Ai for i ≥ 2 are of finite
presentation over R. If S is of finite presentation over R, then it is also the case that
A1 is of finite presentation over R. In this case all the ring maps in the complete
dévissage are of finite presentation. See Algebra, Lemma 6.2. Still assuming S of
finite presentation over R the following are equivalent

(1) M is of finite presentation over S,
(2) M1 is of finite presentation over A1,
(3) M1 is of finite presentation over B1,
(4) each Mi is of finite presentation both as an Ai-module and as a Bi-module.

The equivalences (1) ⇔ (2) and (2) ⇔ (3) follow from Algebra, Lemma 7.4. If M1

is finitely presented, so is Coker(α1) (see Algebra, Lemma 5.3) and hence M2, etc.

Definition 6.4. Let R→ S be a finite type ring map. Let q be a prime of S lying
over the prime r of R. Let N be a finite S-module. A complete dévissage of N/S/R
at q is given by a complete dévissage (Ai, Bi,Mi, αi)i=1,...,n of N/S/R over r and
prime ideals qi ⊂ Bi lying over r such that

(1) κ(r) ⊂ κ(qi) is purely transcendental,
(2) there is a unique prime q′i ⊂ Ai lying over qi ⊂ Bi,
(3) q = q′1 ∩ S and qi = q′i+1 ∩Ai,
(4) R→ Bi has relative dimension dimqi(Supp(Mi ⊗R κ(r))).

Remark 6.5. Let A→ B be a finite type ring map and let N be a finite B-module.
Let q be a prime of B lying over the prime r of A. Set X = Spec(B), S = Spec(A)

and F = Ñ on X. Let x be the point corresponding to q and let s ∈ S be the point
corresponding to p. Then

(1) if there exists a complete dévissage of F/X/S over s then there exists a
complete dévissage of N/B/A over p, and

(2) there exists a complete dévissage of F/X/S at x if and only if there exists
a complete dévissage of N/B/A at q.

There is just a small twist in that we omitted the condition on the relative dimension
in the formulation of “a complete dévissage of N/B/A over p” which is why the
implication in (1) only goes in one direction. The notion of a complete dévissage
at q does have this condition built in. In any case we will only use that existence
for F/X/S implies the existence for N/B/A.

Lemma 6.6. Let R → S be a finite type ring map. Let M be a finite S-module.
Let q be a prime ideal of S. There exists an elementary étale localization R′ →
S′, q′, p′ of the ring map R→ S at q such that there exists a complete dévissage of
(M ⊗S S′)/S′/R′ at q′.

Proof. This is a reformulation of Proposition 5.7 via Remark 6.5 �

7. Localization and universally injective maps

Lemma 7.1. Let R→ S be a ring map. Let N be a S-module. Assume

(1) R is a local ring with maximal ideal m,
(2) S = S/mS is Noetherian, and
(3) N = N/mRN is a finite S-module.

Let Σ ⊂ S be the multiplicative subset of elements which are not a zerodivisor on N .
Then Σ−1S is a semi-local ring whose spectrum consists of primes q ⊂ S contained
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in an element of AssS(N). Moreover, any maximal ideal of Σ−1S corresponds to
an associated prime of N over S.

Proof. Note that AssS(N) = AssS(N), see Algebra, Lemma 62.13. This is a finite

set by Algebra, Lemma 62.5. Say {q1, . . . , qr} = AssS(N). We have Σ = S \ (
⋃
qi)

by Algebra, Lemma 62.9. By the description of Spec(Σ−1S) in Algebra, Lemma
16.5 and by Algebra, Lemma 14.2 we see that the primes of Σ−1S correspond to the
primes of S contained in one of the qi. Hence the maximal ideals of Σ−1S correspond
one-to-one with the maximal (w.r.t. inclusion) elements of the set {q1, . . . , qr}. This
proves the lemma. �

Lemma 7.2. Assumption and notation as in Lemma 7.1. Assume moreover that

(1) S is local and R→ S is a local homomorphism,
(2) S is essentially of finite presentation over R,
(3) N is finitely presented over S, and
(4) N is flat over R.

Then each s ∈ Σ defines a universally injective R-module map s : N → N , and the
map N → Σ−1N is R-universally injective.

Proof. By Algebra, Lemma 124.4 the sequence 0→ N → N → N/sN → 0 is exact
and N/sN is flat over R. This implies that s : N → N is universally injective, see
Algebra, Lemma 38.11. The map N → Σ−1N is universally injective as the directed
colimit of the maps s : N → N . �

Lemma 7.3. Let R → S be a ring map. Let N be an S-module. Let S → S′ be a
ring map. Assume

(1) R→ S is a local homomorphism of local rings
(2) S is essentially of finite presentation over R,
(3) N is of finite presentation over S,
(4) N is flat over R,
(5) S → S′ is flat, and
(6) the image of Spec(S′)→ Spec(S) contains all primes q of S lying over mR

such that q is an associated prime of N/mRN .

Then N → N ⊗S S′ is R-universally injective.

Proof. Set N ′ = N ⊗R S′. Consider the commutative diagram

N

��

// N ′

��
Σ−1N // Σ−1N ′

where Σ ⊂ S is the set of elements which are not a zerodivisor on N/mRN . If we
can show that the map N → Σ−1N ′ is universally injective, then N → N ′ is too
(see Algebra, Lemma 79.10).

By Lemma 7.1 the ring Σ−1S is a semi-local ring whose maximal ideals correspond
to associated primes of N/mRN . Hence the image of Spec(Σ−1S′)→ Spec(Σ−1S)
contains all these maximal ideals by assumption. By Algebra, Lemma 38.15 the
ring map Σ−1S → Σ−1S′ is faithfully flat. Hence Σ−1N → Σ−1N ′, which is the
map

N ⊗S Σ−1S −→ N ⊗S Σ−1S′
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is universally injective, see Algebra, Lemmas 79.11 and 79.8. Finally, we apply
Lemma 7.2 to see that N → Σ−1N is universally injective. As the composition
of universally injective module maps is universally injective (see Algebra, Lemma
79.9) we conclude that N → Σ−1N ′ is universally injective and we win. �

Lemma 7.4. Let R → S be a ring map. Let N be an S-module. Let S → S′ be a
ring map. Assume

(1) R→ S is of finite presentation and N is of finite presentation over S,
(2) N is flat over R,
(3) S → S′ is flat, and
(4) the image of Spec(S′) → Spec(S) contains all primes q such that q is an

associated prime of N ⊗R κ(p) where p is the inverse image of q in R.

Then N → N ⊗S S′ is R-universally injective.

Proof. By Algebra, Lemma 79.12 it suffices to show that Nq → (N ⊗R S′)q is a
Rp-universally injective for any prime q of S lying over p in R. Thus we may apply
Lemma 7.3 to the ring maps Rp → Sq → S′q and the module Nq. �

The reader may want to compare the following lemma to Algebra, Lemmas 95.1
and 124.4. In each case the conclusion is that the map u : M → N is universally
injective with flat cokernel.

Lemma 7.5. Let (R,m) be a local ring. Let u : M → N be an R-module map. If
M is a projective R-module, N is a flat R-module, and u : M/mM → N/mN is
injective then u is universally injective.

Proof. By Algebra, Theorem 82.4 the module M is free. If we show the result
holds for every finitely generated direct summand of M , then the lemma follows.
Hence we may assume that M is finite free. Write N = colimiNi as a directed
colimit of finite free modules, see Algebra, Theorem 78.4. Note that u : M → N
factors through Ni for some i (as M is finite free). Denote ui : M → Ni the
corresponding R-module map. As u is injective we see that ui : M/mM → Ni/mNi
is injective and remains injective on composing with the maps Ni/mNi → Ni′/mNi′

for all i′ ≥ i. As M and Ni′ are finite free over the local ring R this implies that
M → Ni′ is a split injection for all i′ ≥ i. Hence for any R-module Q we see that
M ⊗R Q→ Ni′ ⊗R Q is injective for all i′ ≥ i. As −⊗R Q commutes with colimits
we conclude that M ⊗R Q→ Ni′ ⊗R Q is injective as desired. �

Lemma 7.6. Assumption and notation as in Lemma 7.1. Assume moreover that
N is projective as an R-module. Then each s ∈ Σ defines a universally injective
R-module map s : N → N , and the map N → Σ−1N is R-universally injective.

Proof. Pick s ∈ Σ. By Lemma 7.5 the map s : N → N is universally injective.
The map N → Σ−1N is universally injective as the directed colimit of the maps
s : N → N . �

8. Completion and Mittag-Leffler modules

Lemma 8.1. Let R be a ring. Let I ⊂ R be an ideal. Let A be a set. Assume R is
Noetherian and complete with respect to I. The completion (

⊕
α∈AR)∧ is flat and

Mittag-Leffler.
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Proof. By More on Algebra, Lemma 19.1 the map (
⊕

α∈AR)∧ →
∏
α∈AR is

universally injective. Thus, by Algebra, Lemmas 79.7 and 86.7 it suffices to show
that

∏
α∈AR is flat and Mittag-Leffler. By Algebra, Proposition 87.5 (and Algebra,

Lemma 87.4) we see that
∏
α∈AR is flat. Thus we conclude because a product of

copies of R is Mittag-Leffler, see Algebra, Lemma 88.3. �

Lemma 8.2. Let R be a ring. Let I ⊂ R be an ideal. Let M be an R-module.
Assume

(1) R is Noetherian and I-adically complete,
(2) M is flat over R, and
(3) M/IM is a projective R/I-module.

Then the I-adic completion M∧ is a flat Mittag-Leffler R-module.

Proof. Choose a surjection F → M where F is a free R-module. By Algebra,
Lemma 93.20 the module M∧ is a direct summand of the module F∧. Hence it
suffices to prove the lemma for F . In this case the lemma follows from Lemma
8.1. �

In Lemmas 8.3 and 8.4 the assumption that S be Noetherian holds if R → S is of
finite type, see Algebra, Lemma 30.1.

Lemma 8.3. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module, and
(4) for any finite R-module Q, any q ∈ AssS(Q⊗R N) satisfies IS + q 6= S.

Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. We have to show that for any finite R-module Q the map Q ⊗R N →
Q ⊗R N∧ is injective, see Algebra, Theorem 79.3. As there is a canonical map
Q ⊗R N∧ → (Q ⊗R N)∧ it suffices to prove that the canonical map Q ⊗R N →
(Q⊗RN)∧ is injective. Hence we may replace N by Q⊗RN and it suffices to prove
the injectivity for the map N → N∧.

Let K = Ker(N → N∧). It suffices to show that Kq = 0 for q ∈ Ass(N) as N is
a submodule of

∏
q∈Ass(N)Nq, see Algebra, Lemma 62.18. Pick q ∈ Ass(N). By

the last assumption we see that there exists a prime q′ ⊃ IS + q. Since Kq is a
localization of Kq′ it suffices to prove the vanishing of Kq′ . Note that K =

⋂
InN ,

hence Kq′ ⊂
⋂
InNq′ . Hence Kq′ = 0 by Algebra, Lemma 49.4. �

Lemma 8.4. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is a Noetherian ring,
(2) S is a Noetherian ring,
(3) N is a finite S-module,
(4) N is flat over R, and
(5) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q 6= S.
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Then the map N → N∧ of N into the I-adic completion of N is universally injective
as a map of R-modules.

Proof. This follows from Lemma 8.3 because Algebra, Lemma 64.5 and Remark
64.6 guarantee that the set of associated primes of tensor products N ⊗R Q are
contained in the set of associated primes of the modules N ⊗R κ(p). �

9. Projective modules

The following lemma can be used to prove projectivity by Noetherian induction on
the base, see Lemma 9.2.

Lemma 9.1. Let R be a ring. Let I ⊂ R be an ideal. Let R → S be a ring map,
and N an S-module. Assume

(1) R is Noetherian and I-adically complete,
(2) R→ S is of finite type,
(3) N is a finite S-module,
(4) N is flat over R,
(5) N/IN is projective as a R/I-module, and
(6) for any prime q ⊂ S which is an associated prime of N ⊗R κ(p) where

p = R ∩ q we have IS + q 6= S.

Then N is projective as an R-module.

Proof. By Lemma 8.4 the map N → N∧ is universally injective. By Lemma 8.2
the module N∧ is Mittag-Leffler. By Algebra, Lemma 86.7 we conclude that N
is Mittag-Leffler. Hence N is countably generated, flat and Mittag-Leffler as an
R-module, whence projective by Algebra, Lemma 90.1. �

Lemma 9.2. Let R be a ring. Let R→ S be a ring map. Assume

(1) R is Noetherian,
(2) R→ S is of finite type and flat, and
(3) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. Consider the set

{I ⊂ R | S/IS not projective as R/I-module}

We have to show this set is empty. To get a contradiction assume it is nonempty.
Then it contains a maximal element I. Let J =

√
I be its radical. If I 6= J ,

then S/JS is projective as a R/J-module, and S/IS is flat over R/I and J/I is
a nilpotent ideal in R/I. Applying Algebra, Lemma 74.5 we see that S/IS is a
projective R/I-module, which is a contradiction. Hence we may assume that I is
a radical ideal. In other words we are reduced to proving the lemma in case R is a
reduced ring and S/IS is a projective R/I-module for every nonzero ideal I of R.

Assume R is a reduced ring and S/IS is a projective R/I-module for every nonzero
ideal I of R. By generic flatness, Algebra, Lemma 114.1 (applied to a localization
Rg which is a domain) or the more general Algebra, Lemma 114.7 there exists a
nonzero f ∈ R such that Sf is free as an Rf -module. Denote R∧ = limR/(fn) the
(f)-adic completion of R. Note that the ring map

R −→ Rf ×R∧
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is a faithfully flat ring map, see Algebra, Lemma 93.3. Hence by faithfully flat
descent of projectivity, see Algebra, Theorem 92.5 it suffices to prove that S⊗RR∧
is a projective R∧-module. To see this we will use the criterion of Lemma 9.1.
First of all, note that S/fS = (S⊗RR∧)/f(S⊗RR∧) is a projective R/(f)-module
and that S ⊗R R∧ is flat and of finite type over R∧ as a base change of such.
Next, suppose that p∧ is a prime ideal of R∧. Let p ⊂ R be the corresponding
prime of R. As R → S has geometrically integral fibre rings, the same is true for
the fibre rings of any base change. Hence q∧ = p∧(S ⊗R R∧), is a prime ideals
lying over p∧ and it is the unique associated prime of S ⊗R κ(p∧). Thus we win if
f(S ⊗R R∧) + q∧ 6= S ⊗R R∧. This is true because p∧ + fR∧ 6= R∧ as f lies in the
radical of the f -adically complete ring R∧ and because R∧ → S⊗RR∧ is surjective
on spectra as its fibres are nonempty (irreducible spaces are nonempty). �

Lemma 9.3. Let R be a ring. Let R→ S be a ring map. Assume

(1) R→ S is of finite presentation and flat, and
(2) every fibre ring S ⊗R κ(p) is geometrically integral over κ(p).

Then S is projective as an R-module.

Proof. We can find a cocartesian diagram of rings

S0
// S

R0

OO

// R

OO

such that R0 is of finite type over Z, the map R0 → S0 is of finite type and flat with
geometrically integral fibres, see More on Morphisms, Lemmas 26.4, 26.6, 26.7, and
26.11. By Lemma 9.2 we see that S0 is a projective R0-module. Hence S = S0⊗R0R
is a projective R-module, see Algebra, Lemma 91.1. �

Remark 9.4. Lemma 9.3 is a key step in the development of results in this chapter.
The analogue of this lemma in [GR71] is [GR71, I Proposition 3.3.1]: If R → S
is smooth with geometrically integral fibres, then S is projective as an R-module.
This is a special case of Lemma 9.3, but as we will later improve on this lemma
anyway, we do not gain much from having a stronger result at this point. We briefly
sketch the proof of this as it is given in [GR71].

(1) First reduce to the case where R is Noetherian as above.
(2) Since projectivity descends through faithfully flat ring maps, see Algebra,

Theorem 92.5 we may work locally in the fppf topology on R, hence we
may assume that R→ S has a section σ : S → R. (Just by the usual trick
of base changing to S.) Set I = Ker(S → R).

(3) Localizing a bit more on R we may assume that I/I2 is a free R-module and
that the completion S∧ of S with respect to I is isomorphic toR[[t1, . . . , tn]],
see Morphisms, Lemma 35.20. Here we are using that R→ S is smooth.

(4) To prove that S is projective as an R-module, it suffices to prove that S is
flat, countably generated and Mittag-Leffler as an R-module, see Algebra,
Lemma 90.1. The first two properties are evident. Thus it suffices to
prove that S is Mittag-Leffler as an R-module. By Algebra, Lemma 88.4
the module R[[t1, . . . , tn]] is Mittag-Leffler over R. Hence Algebra, Lemma
86.7 shows that it suffices to show that the S → S∧ is universally injective
as a map of R-modules.
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(5) Apply Lemma 7.4 to see that S → S∧ is R-universally injective. Namely,
as R → S has geometrically integral fibres, any associated point of any
fibre ring is just the generic point of the fibre ring which is in the image of
Spec(S∧)→ Spec(S).

There is an analogy between the proof as sketched just now, and the development
of the arguments leading to the proof of Lemma 9.3. In both a completion plays an
essential role, and both times the assumption of having geometrically integral fibres
assures one that the map from S to the completion of S is R-universally injective.

10. Flat finite type modules, Part I

In some cases given a ring map R→ S of finite presentation and a finite S-module
N the flatness of N over R implies that N is of finite presentation. In this section
we prove this is true “pointwise”. We remark that the first proof of Proposition
10.3 uses the geometric results of Section 3 but not the existence of a complete
dévissage.

Lemma 10.1. Let (R,m) be a local ring. Let R → S be a finitely presented flat
ring map with geometrically integral fibres. Write p = mS. Let q ⊂ S be a prime
ideal lying over m. Let N be a finite S-module. There exist r ≥ 0 and an S-module
map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) α is R-universally injective and Coker(α)q is R-flat,
(3) α is injective and Coker(α)q is R-flat,
(4) αp is an isomorphism and Coker(α)q is R-flat, and
(5) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p)N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix an α. The most interesting implication is (1) ⇒ (2) which we prove first.
Assume (1). Because S/mS is a domain with fraction field κ(p) we see that
(S/mS)⊕r → Np/mNp = N⊗S κ(p) is injective. Hence by Lemmas 7.5 and 9.3. the
map S⊕r → Np is R-universally injective. It follows that S⊕r → N is R-universally
injective, see Algebra, Lemma 79.10. Then also the localization αq is R-universally
injective, see Algebra, Lemma 79.13. We conclude that Coker(α)q is R-flat by
Algebra, Lemma 79.7.

The implication (2) ⇒ (3) is immediate. If (3) holds, then αp is injective as a
localization of an injective module map. By Nakayama’s lemma (Algebra, Lemma
19.1) αp is surjective too. Hence (3)⇒ (4). If (4) holds, then αp is an isomorphism,
so α is injective as Sq → Sp is injective. Namely, elements of S\p are nonzerodivisors
on S by a combination of Lemmas 7.6 and 9.3. Hence (4) ⇒ (5). Finally, if (5)
holds, then Nq is R-flat as an extension of flat modules, see Algebra, Lemma 38.12.
Hence (5) ⇒ (1) and the proof is finished. �

Lemma 10.2. Let (R,m) be a local ring. Let R → S be a ring map of finite
presentation. Let N be a finite S-module. Let q be a prime of S lying over m.
Assume that Nq is flat over R, and assume there exists a complete dévissage of
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N/S/R at q. Then N is a finitely presented S-module, free as an R-module, and
there exists an isomorphism

N ∼= B⊕r11 ⊕ . . .⊕B⊕rnn

as R-modules where each Bi is a smooth R-algebra with geometrically irreducible
fibres.

Proof. Let (Ai, Bi,Mi, αi, qi)i=1,...,n be the given complete dévissage. We prove
the lemma by induction on n. Note that N is finitely presented as an S-module if
and only if M1 is finitely presented as an B1-module, see Remark 6.3. Note that
Nq
∼= (M1)q1

asR-modules because (a)Nq
∼= (M1)q′1 where q′1 is the unique prime in

A1 lying over q1 and (b) (A1)q′1 = (A1)q1
by Algebra, Lemma 40.11, so (c) (M1)q′1

∼=
(M1)q1 . Hence (M1)q1 is a flat R-module. Thus we may replace (S,N) by (B1,M1)

in order to prove the lemma. By Lemma 10.1 the map α1 : B⊕r11 → M1 is R-
universally injective and Coker(α1)q is R-flat. Note that (Ai, Bi,Mi, αi, qi)i=2,...,n

is a complete dévissage of Coker(α1)/B1/R at q1. Hence the induction hypothesis
implies that Coker(α1) is finitely presented as a B1-module, free as an R-module,
and has a decomposition as in the lemma. This implies that M1 is finitely presented
as a B1-module, see Algebra, Lemma 5.3. It further implies that M1

∼= B⊕r11 ⊕
Coker(α1) as R-modules, hence a decomposition as in the lemma. Finally, B1 is
projective as an R-module by Lemma 9.3 hence free as an R-module by Algebra,
Theorem 82.4. This finishes the proof. �

Proposition 10.3. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)

which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is an OV -module of finite presentation and flat over OS′,s′ .

First proof. This proof is longer but does not use the existence of a complete
dévissage. The problem is local around x and s, hence we may assume that X
and S are affine. During the proof we will finitely many times replace S by an
elementary étale neighbourhood of (S, s). The goal is then to find (after such a
replacement) an open V ⊂ X ×S Spec(OS,s) containing x such that F|V is flat
over S and finitely presented. Of course we may also replace S by Spec(OS,s) at
any point of the proof, i.e., we may assume S is a local scheme. We will prove the
lemma by induction on the integer n = dimx(Supp(Fs)).

We can choose

(1) elementary étale neighbourhoods g : (X ′, x′)→ (X,x), e : (S′, s′)→ (S, s),
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(2) a commutative diagram

X

f

��

X ′

��

g
oo Z ′

i
oo

π

��
Y ′

h
��

S S′
eoo S′

(3) a point z′ ∈ Z ′ with i(z′) = x′, y′ = π(z′), h(y′) = s′,
(4) a finite type quasi-coherent OZ′ -module G,

as in Lemma 3.2. We are going to replace S by Spec(OS′,s′), see remarks in first
paragraph of the proof. Consider the diagram

XOS′,s′

f

��

X ′OS′,s′

��

g
oo Z ′OS′,s′i

oo

π

��
Y ′OS′,s′

hxx
Spec(OS′,s′)

Here we have base changed the schemes X ′, Z ′, Y ′ over S′ via Spec(OS′,s′) → S′

and the scheme X over S via Spec(OS′,s′) → S. It is still the case that g is étale,
see Lemma 2.2. After replacing X by XOS′,s′ , X

′ by X ′OS′,s′ , Z
′ by Z ′OS′,s′ , and

Y ′ by Y ′OS′,s′ we may assume we have a diagram as Lemma 3.2 where in addition

S = S′ is a local scheme with closed point s. By Lemmas 3.3 and 3.4 the result for
Y ′ → S, the sheaf π∗G, and the point y′ implies the result for X → S, F and x.
Hence we may assume that S is local and X → S is a smooth morphism of affines
with geometrically irreducible fibres of dimension n.

The base case of the induction: n = 0. As X → S is smooth with geometrically
irreducible fibres of dimension 0 we see that X → S is an open immersion, see
Descent, Lemma 21.2. As S is local and the closed point is in the image of X → S
we conclude that X = S. Thus we see that F corresponds to a finite flat OS,s
module. In this case the result follows from Algebra, Lemma 75.4 which tells us
that F is in fact finite free.

The induction step. Assume the result holds whenever the dimension of the support

in the closed fibre is < n. Write S = Spec(A), X = Spec(B) and F = Ñ for some
B-module N . Note that A is a local ring; denote its maximal ideal m. Then p = mB
is the unique minimal prime lying over m as X → S has geometrically irreducible
fibres. Finally, let q ⊂ B be the prime corresponding to x. By Lemma 10.1 we can
choose a map

α : B⊕r → N

such that κ(p)⊕r → N ⊗B κ(p) is an isomorphism. Moreover, as Nq is A-flat
the lemma also shows that α is injective and that Coker(α)q is A-flat. Set Q =
Coker(α). Note that the support of Q/mQ does not contain p. Hence it is certainly
the case that dimq(Supp(Q/mQ)) < n. Combining everything we know about Q
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we see that the induction hypothesis applies to Q. It follows that there exists
an elementary étale morphism (S′, s) → (S, s) such that the conclusion holds for
Q⊗AA′ over B⊗AA′ where A′ = OS′,s′ . After replacing A by A′ we have an exact
sequence

0→ B⊕r → N → Q→ 0

(here we use that α is injective as mentioned above) of finite B-modules and we
also get an element g ∈ B, g 6∈ q such that Qg is finitely presented over Bg and flat
over A. Since localization is exact we see that

0→ B⊕rg → Ng → Qg → 0

is still exact. As Bg and Qg are flat over A we conclude that Ng is flat over A, see
Algebra, Lemma 38.12, and as Bg and Qg are finitely presented over Bg the same
holds for Ng, see Algebra, Lemma 5.3. �

Second proof. We apply Proposition 5.7 to find a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

of pointed schemes such that the horizontal arrows are elementary étale neighbour-
hoods and such that g∗F/X ′/S′ has a complete dévissage at x. (In particular S′

and X ′ are affine.) By Morphisms, Lemma 26.11 we see that g∗F is flat at x′ over
S and by Lemma 2.3 we see that it is flat at x′ over S′. Via Remark 6.5 we deduce
that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
has a complete dévissage at the prime of Γ(X ′,OX′) corresponding to x′. We may
base change this complete dévissage to the local ring OS′,s′ of Γ(S′,OS′) at the
prime corresponding to s′. Thus Lemma 10.2 implies that

Γ(X ′,F ′)⊗Γ(S′,OS′ ) OS′,s′

is flat over OS′,s′ and of finite presentation over Γ(X ′,OX′) ⊗Γ(S′,OS′ ) OS′,s′ . In
other words, the restriction of F to X ′×S′ Spec(OS′,s′) is of finite presentation and
flat over OS′,s′ . Since the morphism X ′ ×S′ Spec(OS′,s′) → X ×S Spec(OS′,s′) is
étale (Lemma 2.2) its image V ⊂ X ×S Spec(OS′,s′) is an open subscheme, and by
étale descent the restriction of F to V is of finite presentation and flat over OS′,s′ .
(Results used: Morphisms, Lemma 37.13, Descent, Lemma 6.3, and Morphisms,
Lemma 26.11.) �

Lemma 10.4. Let f : X → S be a morphism of schemes which is locally of finite
type. Let F be a quasi-coherent OX-module of finite type. Let s ∈ S. Then the set

{x ∈ Xs | F flat over S at x}
is open in the fibre Xs.

Proof. Suppose x ∈ U . Choose an elementary étale neighbourhood (S′, s′) →
(S, s) and open V ⊂ X×S Spec(OS′,s′) as in Proposition 10.3. Note that Xs′ = Xs

as κ(s) = κ(s′). If x′ ∈ V ∩Xs′ , then the pullback of F to X ×S S′ is flat over S′

at x′. Hence F is flat at x′ over S, see Morphisms, Lemma 26.11. In other words
Xs ∩ V ⊂ U is an open neighbourhood of x in U . �
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Lemma 10.5. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that the
pullback of F to V is flat over OS′,s′ .

Proof. (The only difference between this and Proposition 10.3 is that we do not
assume f is of finite presentation.) The question is local on X and S, hence we
may assume X and S are affine. Write X = Spec(B), S = Spec(A) and write
B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion i : X → An

S .
Denote t = i(x) ∈ An

S . We may apply Proposition 10.3 to An
S → S, the sheaf i∗F

and the point t. We obtain an elementary étale neighbourhood (S′, s′) → (S, s)
and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗F to W is flat over OS′,s′ . This means that V :=
W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. �

Lemma 10.6. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ .

Proof. For every point x ∈ Xs we can use Proposition 10.3 to find an elementary
étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S Spec(OSx,sx) such
that x ∈ Xs = X ×S sx is contained in Vx and such that the pullback of F to Vx
is an OVx -module of finite presentation and flat over OSx,sx . In particular we may
view the fibre (Vx)sx as an open neighbourhood of x in Xs. Because Xs is quasi-
compact we can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the
union of the (Vxi)sxi . Choose an elementary étale neighbourhood (S′, s′) → (S, s)

which dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms,
Lemma 27.4. Set V =

⋃
Vi where Vi is the inverse images of the open Vxi via the

morphism
X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )

By construction V contains Xs and by construction the pullback of F to V is an
OV -module of finite presentation and flat over OS′,s′ . �

Lemma 10.7. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let s ∈ S. Assume that
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(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and an open
subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the fibre Xs = X ×S s′ such that the pullback of F to V is flat over
OS′,s′ .

Proof. (The only difference between this and Lemma 10.6 is that we do not assume
f is of finite presentation.) For every point x ∈ Xs we can use Lemma 10.5 to find
an elementary étale neighbourhood (Sx, sx) → (S, s) and an open Vx ⊂ X ×S
Spec(OSx,sx) such that x ∈ Xs = X ×S sx is contained in Vx and such that the
pullback of F to Vx is flat over OSx,sx . In particular we may view the fibre (Vx)sx as
an open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the (Vxi)sxi . Choose

an elementary étale neighbourhood (S′, s′) → (S, s) which dominates each of the
neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 27.4. Set V =

⋃
Vi

where Vi is the inverse images of the open Vxi via the morphism

X ×S Spec(OS′,s′) −→ X ×S Spec(OSxi ,sxi )
By construction V contains Xs and by construction the pullback of F to V is flat
over OS′,s′ . �

Lemma 10.8. Let S be a scheme. Let X be locally of finite type over S. Let x ∈ X
with image s ∈ S. If X is flat at x over S, then there exists an elementary étale
neighbourhood (S′, s′)→ (S, s) and an open subscheme

V ⊂ X ×S Spec(OS′,s′)
which contains the unique point of X ×S Spec(OS′,s′) mapping to x such that V →
Spec(OS′,s′) is flat and of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S are affine.
Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other words
we obtain a closed immersion i : X → An

S . Denote t = i(x) ∈ An
S . We may apply

Proposition 10.3 to An
S → S, the sheaf F = i∗OX and the point t. We obtain an

elementary étale neighbourhood (S′, s′)→ (S, s) and an open subscheme

W ⊂ An
OS′,s′

such that the pullback of i∗OX is flat and of finite presentation. This means that
V := W ∩

(
X ×S Spec(OS′,s′)

)
is the desired open subscheme. �

Lemma 10.9. Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX-module of finite type. If x ∈ X and F is flat at x
over S, then Fx is an OX,x-module of finite presentation.

Proof. Let s = f(x). By Proposition 10.3 there exists an elementary étale neigh-
bourhood (S′, s′) → (S, s) such that the pullback of F to X ×S Spec(OS′,s′) is of
finite presentation in a neighbourhood of the point x′ ∈ Xs′ = Xs corresponding
to x. The ring map

OX,x −→ OX×SSpec(OS′,s′ ),x′ = OX×SS′,x′

http://localhost:8080/tag/05I6
http://localhost:8080/tag/05I7


30 MORE ON FLATNESS

is flat and local as a localization of an étale ring map. Hence Fx is of finite presen-
tation over OX,x by descent, see Algebra, Lemma 80.2 (and also that a flat local
ring map is faithfully flat, see Algebra, Lemma 38.16). �

Lemma 10.10. Let f : X → S be a morphism which is locally of finite type. Let
x ∈ X with image s ∈ S. If f is flat at x over S, then OX,x is essentially of finite
presentation over OS,s.

Proof. We may assume X and S affine. Write X = Spec(B), S = Spec(A)
and write B = A[x1, . . . , xn]/I. In other words we obtain a closed immersion
i : X → An

S . Denote t = i(x) ∈ An
S . We may apply Lemma 10.9 to An

S → S, the
sheaf F = i∗OX and the point t. We conclude that OX,x is of finite presentation
over OAn

S ,t
which implies what we want. �

Lemma 10.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Let U ⊂ S be open. Assume

(1) f is locally of finite presentation,
(2) F is of finite type and flat over S,
(3) U ⊂ S is retrocompact and scheme theoretically dense,
(4) F|f−1U is of finite presentation.

Then F is of finite presentation.

Proof. The problem is local on X and S, hence we may assume X and S affine.
Write S = Spec(A) and X = Spec(B). Let N be a finite B-module such that F
is the quasi-coherent sheaf associated to N . We have U = D(f1) ∪ . . . ∪ D(fn)
for some fi ∈ A, see Algebra, Lemma 28.1. As U is schematically dense the
map A → Af1 × . . . × Afn is injective. Pick a prime q ⊂ B lying over p ⊂ A
corresponding to x ∈ X mapping to s ∈ S. By Lemma 10.9 the module Nq is
of finite presentation over Bq. Choose a surjection ϕ : B⊕m → N of B-modules.
Choose k1, . . . , kt ∈ Ker(ϕ) and set N ′ = B⊕m/

∑
Bkj . There is a canonical

surjection N ′ → N and N is the filtered colimit of the B-modules N ′ constructed
in this manner. Thus we see that we can choose k1, . . . , kt such that (a) N ′fi

∼= Nfi ,

i = 1, . . . , n and (b) N ′q
∼= Nq. This in particular implies that N ′q is flat over A.

By openness of flatness, see Algebra, Theorem 125.4 we conclude that there exists
a g ∈ B, g 6∈ q such that N ′g is flat over A. Consider the commutative diagram

N ′g //

��

Ng

��∏
N ′gfi

// ∏Ngfi

The bottom arrow is an isomorphism by choice of k1, . . . , kt. The left vertical arrow
is an injective map as A →

∏
Afi is injective and N ′g is flat over A. Hence the

top horizontal arrow is injective, hence an isomorphism. This proves that Ng is of
finite presentation over Bg. We conclude by applying Algebra, Lemma 23.2. �

Lemma 10.12. Let f : X → S be a morphism of schemes. Let U ⊂ S be open.
Assume

(1) f is locally of finite type and flat,
(2) U ⊂ S is retrocompact and scheme theoretically dense,
(3) f |f−1U : f−1U → U is locally of finite presentation.
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Then f is of locally of finite presentation.

Proof. The question is local on X and S, hence we may assume X and S affine.
Choose a closed immersion i : X → An

S and apply Lemma 10.11 to i∗OX . Some
details omitted. �

11. Flat finitely presented modules

In some cases given a ring map R→ S of finite presentation and a finitely presented
S-module N the flatness of N over R implies that N is projective as an R-module,
at least after replacing S by an étale extension. In this section we collect a some
results of this nature.

Lemma 11.1. Let R be a ring. Let R → S be a finitely presented flat ring map
with geometrically integral fibres. Let q ⊂ S be a prime ideal lying over the prime
r ⊂ R. Set p = rS. Let N be a finitely presented S-module. There exists r ≥ 0 and
an S-module map

α : S⊕r −→ N

such that α : κ(p)⊕r → N ⊗S κ(p) is an isomorphism. For any such α the following
are equivalent:

(1) Nq is R-flat,
(2) there exists an f ∈ R, f 6∈ r such that αf : S⊕rf → Nf is Rf -universally

injective and a g ∈ S, g 6∈ q such that Coker(α)g is R-flat,
(3) αr is Rr-universally injective and Coker(α)q is R-flat
(4) αr is injective and Coker(α)q is R-flat,
(5) αp is an isomorphism and Coker(α)q is R-flat, and
(6) αq is injective and Coker(α)q is R-flat.

Proof. To obtain α set r = dimκ(p)N ⊗S κ(p) and pick x1, . . . , xr ∈ N which form
a basis of N ⊗S κ(p). Define α(s1, . . . , sr) =

∑
sixi. This proves the existence.

Fix a choice of α. We may apply Lemma 10.1 to the map αr : S⊕rr → Nr. Hence
we see that (1), (3), (4), (5), and (6) are all equivalent. Since it is also clear that
(2) implies (3) we see that all we have to do is show that (1) implies (2).

Assume (1). By openness of flatness, see Algebra, Theorem 125.4, the set

U1 = {q′ ⊂ S | Nq′ is flat over R}
is open in Spec(S). It contains q by assumption and hence p. Because S⊕r and N
are finitely presented S-modules the set

U2 = {q′ ⊂ S | αq′ is an isomorphism}
is open in Spec(S), see Algebra, Lemma 76.2. It contains p by (5). As R → S is
finitely presented and flat the map Φ : Spec(S) → Spec(R) is open, see Algebra,
Proposition 40.8. For any prime r′ ∈ Φ(U1 ∩ U2) we see that there exists a prime
q′ lying over r′ such that Nq′ is flat and such that αq′ is an isomorphism, which
implies that α⊗κ(p′) is an isomorphism where p′ = r′S. Thus αr′ is Rr′ -universally
injective by the implication (1) ⇒ (3). Hence if we pick f ∈ R, f 6∈ r such that
D(f) ⊂ Φ(U1∩U2) then we conclude that αf isRf -universally injective, see Algebra,
Lemma 79.12. The same reasoning also shows that for any q′ ∈ U1∩Φ−1(Φ(U1∩U2))
the module Coker(α)q′ is R-flat. Note that q ∈ U1 ∩ Φ−1(Φ(U1 ∩ U2)). Hence we
can find a g ∈ S, g 6∈ q such that D(g) ⊂ U1 ∩ Φ−1(Φ(U1 ∩ U2)) and we win. �
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Lemma 11.2. Let R→ S be a ring map of finite presentation. Let N be a finitely
presented S-module flat over R. Let r ⊂ R be a prime ideal. Assume there exists a
complete dévissage of N/S/R over r. Then there exists an f ∈ R, f 6∈ r such that

Nf ∼= B⊕r11 ⊕ . . .⊕B⊕rnn

as R-modules where each Bi is a smooth Rf -algebra with geometrically irreducible
fibres. Moreover, Nf is projective as an Rf -module.

Proof. Let (Ai, Bi,Mi, αi)i=1,...,n be the given complete dévissage. We prove the
lemma by induction on n. Note that the assertions of the lemma are entirely about
the structure of N as an R-module. Hence we may replace N by M1, and we may
think of M1 as a B1-module. See Remark 6.3 in order to see why M1 is of finite
presentation as a B1-module. By Lemma 11.1 we may, after replacing R by Rf for

some f ∈ R, f 6∈ r, assume the map α1 : B⊕r11 → M1 is R-universally injective.
Since M1 and B⊕r11 are R-flat and finitely presented as B1-modules we see that
Coker(α1) is R-flat (Algebra, Lemma 79.7) and finitely presented as a B1-module.
Note that (Ai, Bi,Mi, αi)i=2,...,n is a complete dévissage of Coker(α1). Hence the
induction hypothesis implies that, after replacing R by Rf for some f ∈ R, f 6∈ r, we
may assume that Coker(α1) has a decomposition as in the lemma and is projective.
In particular M1 = B⊕r11 ⊕ Coker(α1). This proves the statement regarding the
decomposition. The statement on projectivity follows as B1 is projective as an
R-module by Lemma 9.3. �

Remark 11.3. There is a variant of Lemma 11.2 where we weaken the flatness
condition by assuming only that N is flat at some given prime q lying over r
but where we strengthen the dévissage condition by assuming the existence of a
complete dévissage at q. Compare with Lemma 10.2.

The following is the main result of this section.

Proposition 11.4. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite presentation, and
(3) F is flat at x over S.

Then there exists a commutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo

whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. By openness of flatness, see More on Morphisms, Theorem 12.1 we may
replace X by an open neighbourhood of x and assume that F is flat over S. Next,
we apply Proposition 5.7 to find a diagram as in the statement of the proposition
such that g∗F/X ′/S′ has a complete dévissage over s′. (In particular S′ and X ′

are affine.) By Morphisms, Lemma 26.11 we see that g∗F is flat over S and by
Lemma 2.3 we see that it is flat over S′. Via Remark 6.5 we deduce that

Γ(X ′, g∗F)/Γ(X ′,OX′)/Γ(S′,OS′)
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has a complete dévissage over the prime of Γ(S′,OS′) corresponding to s′. Thus
Lemma 11.2 implies that the result of the proposition holds after replacing S′ by a
standard open neighbourhood of s′. �

In the rest of this section we prove a number of variants on this result. The first is
a “global” version.

Lemma 11.5. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite presentation, and
(3) F is flat over S at every point of the fibre Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module.

Proof. For every point x ∈ Xs we can use Proposition 11.4 to find a commutative
diagram

(X,x)

��

(Yx, yx)
gx
oo

��
(S, s) (Sx, sx)oo

whose horizontal arrows are elementary étale neighbourhoods such that Yx, Sx are
affine and such that Γ(Yx, g

∗
xF) is a projective Γ(Sx,OSx)-module. In particular

gx(Yx)∩Xs is an open neighbourhood of x in Xs. Because Xs is quasi-compact we
can find a finite number of points x1, . . . , xn ∈ Xs such that Xs is the union of the
gxi(Yxi) ∩ Xs. Choose an elementary étale neighbourhood (S′, s′) → (S, s) which
dominates each of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma
27.4. We may also assume that S′ is affine. Set X ′ =

∐
Yxi ×Sxi S

′ and endow it

with the obvious morphism g : X ′ → X. By construction g(X ′) contains Xs and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗Γ(Sxi ,OSxi ) Γ(S′,OS′).

This is a projective Γ(S′,OS′)-module, see Algebra, Lemma 91.1. �

The following two lemmas are reformulations of the results above in case F = OX .

Lemma 11.6. Let f : X → S be locally of finite presentation. Let x ∈ X with
image s ∈ S. If f is flat at x over S, then there exists a commutative diagram of
pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)oo
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whose horizontal arrows are elementary étale neighbourhoods such that X ′, S′ are
affine and such that Γ(X ′,OX′) is a projective Γ(S′,OS′)-module.

Proof. This is a special case of Proposition 11.4. �

Lemma 11.7. Let f : X → S be of finite presentation. Let s ∈ S. If X is flat
over S at all points of Xs, then there exists an elementary étale neighbourhood
(S′, s′)→ (S, s) and a commutative diagram of schemes

X

��

X ′
g

oo

��
S S′oo

with g étale, Xs ⊂ g(X ′), such that X ′, S′ are affine, and such that Γ(X ′,OX′) is
a projective Γ(S′,OS′)-module.

Proof. This is a special case of Lemma 11.5. �

The following lemmas explain consequences of Proposition 11.4 in case we only
assume the morphism and the sheaf are of finite type (and not necessarily of finite
presentation).

Lemma 11.8. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite presentation,
(2) F is of finite type, and
(3) F is flat at x over S.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. To prove the lemma we may replace (S, s) by any elementary étale neigh-
bourhood, and we may also replace S by Spec(OS,s). Hence by Proposition 10.3
we may assume that F is finitely presented and flat over S in a neighbourhood of
x. In this case the result follows from Proposition 11.4 because Algebra, Theorem
82.4 assures us that projective = free over a local ring. �

Lemma 11.9. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
sheaf on X. Let x ∈ X with image s ∈ S. Assume that

(1) f is locally of finite type,
(2) F is of finite type, and
(3) F is flat at x over S.
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Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of pointed schemes

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, κ(x) = κ(x′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 11.8 is that we do not assume f is of
finite presentation.) The problem is local on X and S. Hence we may assume X
and S are affine, say X = Spec(B) and S = Spec(A). Since B is a finite type A-
algebra we can find a surjection A[x1, . . . , xn]→ B. In other words, we can choose
a closed immersion i : X → An

S . Set t = i(x) and G = i∗F . Note that Gt ∼= Fx are
OS,s-modules. Hence G is flat over S at t. We apply Lemma 11.8 to the morphism
An
S → S, the point t, and the sheaf G. Thus we can find an elementary étale

neighbourhood (S′, s′)→ (S, s) and a commutative diagram of pointed schemes

(An
S , t)

��

(Y, y)
h

oo

��
(S, s) (Spec(OS′,s′), s′)oo

such that Y → An
OS′,s′ is étale, κ(t) = κ(y), the scheme Y is affine, and such that

Γ(Y, h∗G) is a projective OS′,s′ -module. Then a solution to the original problem is
given by the closed subscheme X ′ = Y ×An

S
X of Y . �

Lemma 11.10. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite presentation,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine
of finite presentation over OS′,s′ , the sheaf g∗F is of finite presentation over OX′ ,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.
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Proof. For every point x ∈ Xs we can use Lemma 11.8 to find an elementary étale
neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine
of finite presentation over OSx,sx , the sheaf g∗xF is of finite presentation over OYx ,
and such that Γ(Yx, g

∗
xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).

Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 27.4. Set

X ′ =
∐

Yxi ×Spec(OSxi ,sxi ) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′s′)
and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗OSxi ,sxi OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. Some
minor details omitted. �

Lemma 11.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent sheaf on X. Let s ∈ S. Assume that

(1) f is of finite type,
(2) F is of finite type, and
(3) F is flat over S at all points of Xs.

Then there exists an elementary étale neighbourhood (S′, s′) → (S, s) and a com-
mutative diagram of schemes

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is affine,
and such that Γ(X ′, g∗F) is a free OS′,s′-module.

Proof. (The only difference with Lemma 11.10 is that we do not assume f is of
finite presentation.) For every point x ∈ Xs we can use Lemma 11.9 to find an
elementary étale neighbourhood (Sx, sx)→ (S, s) and a commutative diagram

(X,x)

��

(Yx, yx)
gx

oo

��
(S, s) (Spec(OSx,sx), sx)oo

such that Yx → X ×S Spec(OSx,sx) is étale, κ(x) = κ(yx), the scheme Yx is affine,
and such that Γ(Yx, g

∗
xF) is a free OSx,sx -module. In particular gx((Yx)sx) is an

open neighbourhood of x in Xs. Because Xs is quasi-compact we can find a finite
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number of points x1, . . . , xn ∈ Xs such that Xs is the union of the gxi((Yxi)sxi ).

Choose an elementary étale neighbourhood (S′, s′)→ (S, s) which dominates each
of the neighbourhoods (Sxi , sxi), see More on Morphisms, Lemma 27.4. Set

X ′ =
∐

Yxi ×Spec(OSxi ,sxi ) Spec(OS′,s′)

and endow it with the obvious morphism g : X ′ → X. By construction Xs = g(X ′s′)
and

Γ(X ′, g∗F) =
⊕

Γ(Yxi , g
∗
xiF)⊗OSxi ,sxi OS′,s′ .

This is a free OS′,s′ -module as a direct sum of base changes of free modules. �

12. Flat finite type modules, Part II

The following lemma will be superseded by the stronger Lemma 12.3 below.

Lemma 12.1. Let (R,m) be a local ring. Let R → S be of finite presentation.
Let N be a finitely presented S-module which is free as an R-module. Let M be an
R-module. Let q be a prime of S lying over m. Then

(1) if q ∈WeakAssS(M ⊗R N) then m ∈WeakAssR(M) and q ∈ AssS(N),

(2) if m ∈ WeakAssR(M) and q ∈ AssS(N) is a maximal element then q ∈
WeakAssS(M ⊗R N).

Here S = S/mS, q = qS, and N = N/mN .

Proof. Suppose that q 6∈ AssS(N). By Algebra, Lemmas 62.9, 62.5, and 14.2 there

exists an element g ∈ q which is not a zerodivisor on N . Let g ∈ q be an element
which maps to g in q. By Lemma 7.6 the map g : N → N is R-universally injective.
In particular we see that g : M ⊗R N →M ⊗R N is injective. Clearly this implies
that q 6∈WeakAssS(M ⊗R N). We conclude that q ∈WeakAssS(M ⊗R N) implies
q ∈ AssS(N).

Assume q ∈WeakAssS(M⊗RN). Let z ∈M⊗RN be an element whose annihilator
in S has radical q. As N is a free R-module, we can find a finite free direct summand
F ⊂ N such that z ∈ M ⊗R F . The radical of the annihilator of z ∈ M ⊗R F in
R is m (by our assumption on z and because q lies over m). Hence we see that
m ∈WeakAss(M ⊗R F ) which implies that m ∈WeakAss(M) by Algebra, Lemma
65.3. This finishes the proof of (1).

Assume that m ∈ WeakAssR(M) and q ∈ AssS(N) is a maximal element. Let
y ∈M be an element whose annihilator I = AnnR(y) has radical m. Then R/I ⊂M
and by flatness of N over R we get N/IN = R/I ⊗R N ⊂ M ⊗R N . Hence it is
enough to show that q ∈WeakAss(N/IN). Write q = (g1, . . . , gn) for some gi ∈ S.
Choose lifts gi ∈ q. Consider the map

Ψ : N/IN −→ N/IN⊕n, z 7−→ (g1z, . . . , gnz).

We may think of this as a map of free R/I-modules. As the ring R/I is auto-
associated (since m/I is locally nilpotent) and since Ψ⊗R/m isn’t injective (since
q ∈ Ass(N)) we see by More on Algebra, Lemma 8.4 that Ψ isn’t injective. Pick
z ∈ N/IN nonzero in the kernel of Ψ. The annihilator of z contains I and gi,

whence its radical J =
√

AnnS(z) contains q. Let q′ ⊃ J be a minimal prime
over J . Then q′ ∈ WeakAss(M ⊗R N) (by definition) and by (1) we see that
q′ ∈ Ass(N). Then since q ⊂ q′ by construction the maximality of q implies q = q′

whence q ∈WeakAss(M ⊗R N). This proves part (2) of the lemma. �
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Lemma 12.2. Let S be a scheme. Let f : X → S be locally of finite type. Let
x ∈ X with image s ∈ S. Let F be a finite type quasi-coherent sheaf on X. Let G
be a quasi-coherent sheaf on S. If F is flat at x over S, then

x ∈WeakAssX(F ⊗OX f∗G)⇔ s ∈WeakAssS(G) and x ∈ AssXs(Fs).

Proof. The question is local on X and S, hence we may assume X and S are
affine. Write X = Spec(B), S = Spec(A) and write B = A[x1, . . . , xn]/I. In other
words we obtain a closed immersion i : X → An

S over S. Denote t = i(x) ∈ An
S .

Note that i∗F is a finite type quasi-coherent sheaf on An
S which is flat at t over S

and note that
i∗(F ⊗OX f∗G) = i∗F ⊗OAn

S
p∗G

where p : An
S → S is the projection. Note that t is a weakly associated point of

i∗(F ⊗OX f∗G) if and only if x is a weakly associated point of F ⊗OX f∗G, see
Divisors, Lemma 6.3. Similarly x ∈ AssXs(Fs) if and only if t ∈ AssAn

s
((i∗F)s)

(see Algebra, Lemma 62.13). Hence it suffices to prove the lemma in case X = An
S .

In particular we may assume that X → S is of finite presentation.

Recall that AssXs(Fs) is a locally finite subset of the locally Noetherian scheme
Xs, see Divisors, Lemma 2.5. After replacing X by a suitable affine neighbourhood
of x we may assume that

(∗) if x′ ∈ AssXs(Fs) and x x′ then x = x′.

(Proof omitted. Hint: using Algebra, Lemma 14.2 invert a function which does not
vanish at x but does vanish in all the finitely many points of AssXs(Fs) which are
specializations of x but not equal to x.) In words, no point of AssXs(Fs) is a proper
specialization of x.

Suppose given a commutative diagram

(X,x)

��

(X ′, x′)
g

oo

��
(S, s) (S′, s′)

eoo

of pointed schemes whose horizontal arrows are elementary étale neighbourhoods.
Then it suffices to prove the statement for x′, s′, g∗F and e∗G, see Lemma 2.7. Note
that property (∗) is preserved by such an étale localization by the same lemma
(if there is a proper specialization x′  x′′ on X ′s′ then this maps to a proper
specialization on Xs because the fibres of an étale morphism are discrete). We
may also replace S by the spectrum of its local ring as the condition of being
an associated point of a quasi-coherent sheaf depends only on the stalk of the
sheaf. Again property (∗) is preserved by this as well. Thus we may first apply
Proposition 10.3 to reduce to the case where F is of finite presentation and flat over
S, whereupon we may use Proposition 11.4 to reduce to the case that X → S is
a morphism of affines and Γ(X,F) is a finitely presented Γ(X,OX)-module which
is projective as a Γ(S,OS)-module. Localizing S once more we may assume that
Γ(S,OS) is a local ring such that s corresponds to the maximal ideal. In this case
Algebra, Theorem 82.4 guarantees that Γ(X,F) is free as an Γ(S,OS)-module. The
implication x ∈ WeakAssX(F ⊗OX f∗G) ⇒ s ∈ WeakAssS(G) and x ∈ AssXs(Fs)
follows from part (1) of Lemma 12.1. The converse implication follows from part
(2) of Lemma 12.1 as property (∗) insures that the prime corresponding to x gives
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rise to a maximal element of AssS(N) exactly as in the statement of part (2) of
Lemma 12.1. �

Lemma 12.3. Let R→ S be a ring map which is essentially of finite type. Let N
be a localization of a finite S-module flat over R. Let M be an R-module. Then

WeakAssS(M ⊗R N) =
⋃

p∈WeakAssR(M)
AssS⊗Rκ(p)(N ⊗R κ(p))

Proof. This lemma is a translation of Lemma 12.2 into algebra. Details of trans-
lation omitted. �

Lemma 12.4. Let f : X → S be a morphism which is locally of finite type. Let
F be a finite type quasi-coherent sheaf on X which is flat over S. Let G be a
quasi-coherent sheaf on S. Then we have

WeakAssX(F ⊗OX f∗G) =
⋃

s∈WeakAssS(G)
AssXs(Fs)

Proof. Immediate consequence of Lemma 12.2. �

Theorem 12.5. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX-module. Assume

(1) X → S is locally of finite presentation,
(2) F is an OX-module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is an OU -module of
finite presentation and flat over S.

Proof. Let x ∈ X be such that F is flat at x over S. We have to find an open
neighbourhood of x such that F restricts to a S-flat finitely presented module on
this neighbourhood. The problem is local on X and S, hence we may assume that
X and S are affine. As Fx is a finitely presented OX,x-module by Lemma 10.9 we
conclude from Algebra, Lemma 122.5 there exists a finitely presented OX -module
F ′ and a map ϕ : F ′ → F which induces an isomorphism ϕx : F ′x → Fx. In
particular we see that F ′ is flat over S at x, hence by openness of flatness More
on Morphisms, Theorem 12.1 we see that after shrinking X we may assume that
F ′ is flat over S. As F is of finite type after shrinking X we may assume that
ϕ is surjective, see Modules, Lemma 9.4 or alternatively use Nakayama’s lemma
(Algebra, Lemma 19.1). By Lemma 12.4 we have

WeakAssX(F ′) ⊂
⋃

s∈WeakAss(S)
AssXs(F ′s)

As WeakAss(S) is finite by assumption and since AssXs(F ′s) is finite by Divisors,
Lemma 2.5 we conclude that WeakAssX(F ′) is finite. Using Algebra, Lemma 14.2
we may, after shrinking X once more, assume that WeakAssX(F ′) is contained in
the generalization of x. Now consider K = Ker(ϕ). We have WeakAssX(K) ⊂
WeakAssX(F ′) (by Divisors, Lemma 5.4) but on the other hand, ϕx is an isomor-
phism, also ϕx′ is an isomorphism for all x′  x. We conclude that WeakAssX(K) =
∅ whence K = 0 by Divisors, Lemma 5.5. �

Lemma 12.6. Let R → S be a ring map of finite presentation. Let M be a finite
S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}
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is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
a finitely presented Sg-module flat over R.

Proof. Follows immediately from Theorem 12.5. �

Lemma 12.7. Let f : X → S be a morphism of schemes which is locally of finite
type. Assume the set of weakly associated points of S is locally finite in S. Then
the set of points x ∈ X where f is flat is an open subscheme U ⊂ X and U → S is
flat and locally of finite presentation.

Proof. The problem is local on X and S, hence we may assume that X and S
are affine. Then X → S corresponds to a finite type ring map A → B. Choose
a surjection A[x1, . . . , xn] → B and consider B as an A[x1, . . . , xn]-module. An
application of Lemma 12.6 finishes the proof. �

Lemma 12.8. Let f : X → S be a morphism of schemes which is locally of finite
type and flat. If S is integral, then f is locally of finite presentation.

Proof. Special case of Lemma 12.7. �

Proposition 12.9. Let R be a domain. Let R → S be a ring map of finite type.
Let M be a finite S-module.

(1) If S is flat over R, then S is a finitely presented R-algebra.
(2) If M is flat as an R-module, then M is finitely presented as an S-module.

Proof. Part (1) is a special case of Lemma 12.8. For Part (2) choose a surjection
R[x1, . . . , xn] → S. By Lemma 12.6 we find that M is finitely presented as an
R[x1, . . . , xn]-module. We conclude by Algebra, Lemma 6.4. �

Remark 12.10 (Finite type version of Theorem 12.5). Let f : X → S be a
morphism of schemes. Let F be a quasi-coherent OX -module. Assume

(1) X → S is locally of finite type,
(2) F is an OX -module of finite type, and
(3) the set of weakly associated points of S is locally finite in S.

Then U = {x ∈ X | F flat at x over S} is open in X and F|U is flat over S and
locally finitely presented relative to S (see More on Morphisms, Definition 38.1).
If we ever need this result in the stacks project we will convert this remark into a
lemma with a proof.

Remark 12.11 (Algebra version of Remark 12.10). Let R → S be a ring map of
finite type. Let M be a finite S-module. Assume WeakAssS(S) is finite. Then

U = {q ⊂ S |Mq flat over R}

is open in Spec(S) and for every g ∈ S such that D(g) ⊂ U the localization Mg is
flat over R and an Sg-module finitely presented relative to R (see More on Algebra,
Definition 58.2). If we ever need this result in the stacks project we will convert
this remark into a lemma with a proof.
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13. Examples of relatively pure modules

In the short section we discuss some examples of results that will serve as motivation
for the notion of a relatively pure module and the concept of an impurity which we
will introduce later. Each of the examples is stated as a lemma. Note the similarity
with the condition on associated primes to the conditions appearing in Lemmas
7.4, 8.3, 8.4, and 9.1. See also Algebra, Lemma 64.1 for a discussion.

Lemma 13.1. Let R be a local ring with maximal ideal m. Let R → S be a ring
map. Let N be an S-module. Assume

(1) N is projective as an R-module, and
(2) S/mS is Noetherian and N/mN is a finite S/mS-module.

Then for any prime q ⊂ S which is an associated prime of N⊗Rκ(p) where p = R∩q
we have q + mS 6= S.

Proof. Note that the hypotheses of Lemmas 7.1 and 7.6 are satisfied. We will
use the conclusions of these lemmas without further mention. Let Σ ⊂ S be the
multiplicative set of elements which are not zerodivisors on N/mN . The map
N → Σ−1N is R-universally injective. Hence we see that any q ⊂ S which is
an associated prime of N ⊗R κ(p) is also an associated prime of Σ−1N ⊗R κ(p).
Clearly this implies that q corresponds to a prime of Σ−1S. Thus q ⊂ q′ where q′

corresponds to an associated prime of N/mN and we win. �

The following lemma gives another (slightly silly) example of this phenomenon.

Lemma 13.2. Let R be a ring. Let I ⊂ R be an ideal. Let R→ S be a ring map.
Let N be an S-module. If N is I-adically complete, then for any R-module M and
for any prime q ⊂ S which is an associated prime of N ⊗RM we have q+ IS 6= S.

Proof. Let S∧ denote the I-adic completion of S. Note that N is an S∧-module,
hence also N ⊗R M is an S∧-module. Let z ∈ N ⊗R M be an element such that
q = AnnS(z). Since z 6= 0 we see that AnnS∧(z) 6= S∧. Hence qS∧ 6= S∧. Hence
there exists a maximal ideal m ⊂ S∧ with qS∧ ⊂ m. Since IS∧ ⊂ m by Algebra,
Lemma 93.11 we win. �

Note that the following lemma gives an alternative proof of Lemma 13.1 as a pro-
jective module over a local ring is free, see Algebra, Theorem 82.4.

Lemma 13.3. Let R be a local ring with maximal ideal m. Let R → S be a ring
map. Let N be an S-module. Assume N is isomorphic as an R-module to a direct
sum of finite R-modules. Then for any R-module M and for any prime q ⊂ S
which is an associated prime of N ⊗RM we have q + mS 6= S.

Proof. Write N =
⊕

i∈IMi with each Mi a finite R-module. Let M be an R-
module and let q ⊂ S be an associated prime of N ⊗R M such that q + mS = S.
Let z ∈ N ⊗R M be an element with q = AnnS(z). After modifying the direct
sum decomposition a little bit we may assume that z ∈M1⊗RM for some element
1 ∈ I. Write 1 = f +

∑
xjgj for some f ∈ q, xj ∈ m, and gj ∈ S. For any g ∈ S

denote g′ the R-linear map

M1 → N
g−→ N →M1

where the first arrow is the inclusion map, the second arrow is multiplication by
g and the third arrow is the projection map. Because each xj ∈ R we obtain the
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equality

f ′ +
∑

xjg
′
j = idM1

∈ EndR(M1)

By Nakayama’s lemma (Algebra, Lemma 19.1) we see that f ′ is surjective, hence
by Algebra, Lemma 15.4 we see that f ′ is an isomorphism. In particular the map

M1 ⊗RM → N ⊗RM
f−→ N ⊗RM →M1 ⊗RM

is an isomorphism. This contradicts the assumption that fz = 0. �

Lemma 13.4. Let R be a henselian local ring with maximal ideal m. Let R→ S be
a ring map. Let N be an S-module. Assume N is countably generated and Mittag-
Leffler as an R-module. Then for any R-module M and for any prime q ⊂ S which
is an associated prime of N ⊗RM we have q + mS 6= S.

Proof. This lemma reduces to Lemma 13.3 by Algebra, Lemma 145.32. �

Suppose f : X → S is a morphism of schemes and F is a quasi-coherent module on
X. Let ξ ∈ AssX/S(F) and let Z = {ξ}. Picture

ξ_

��

Z //

��

X

f

��
f(ξ) S

Note that f(Z) ⊂ {f(ξ)} and that f(Z) is closed if and only if equality holds, i.e.,

f(Z) = {f(ξ)}. It follows from Lemma 13.1 that if S, X are affine, the fibres Xs are
Noetherian, F is of finite type, and Γ(X,F) is a projective Γ(S,OS)-module, then

f(Z) = {f(ξ)} is a closed subset. Slightly different analogous statements holds for
the cases described in Lemmas 13.2, 13.3, and 13.4.

14. Impurities

We want to formalize the phenomenon of which we gave examples in Section 13
in terms of specializations of points of AssX/S(F). We also want to work locally
around a point s ∈ S. In order to do so we make the following definitions.

Situation 14.1. Here S, X are schemes and f : X → S is a finite type morphism.
Also, F is a finite type quasi-coherent OX -module. Finally s is a point of S.

In this situation consider a morphism g : T → S, a point t ∈ T with g(t) = s, a
specialization t′  t, and a point ξ ∈ XT in the base change of X lying over t′.
Picture

(14.1.1)

ξ_

��
t′ // t_

��
s

XT

��

// X

��
T

g

��

g // S

S

Moreover, denote FT the pullback of F to XT .
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Definition 14.2. In Situation 14.1 we say a diagram (14.1.1) defines an impurity

of F above s if ξ ∈ AssXT /T (FT ) and {ξ}∩Xt = ∅. We will indicate this by saying
“let (g : T → S, t′  t, ξ) be an impurity of F above s”.

Lemma 14.3. In Situation 14.1. If there exists an impurity of F above s, then
there exists an impurity (g : T → S, t′  t, ξ) of F above s such that g is locally of
finite presentation and t a closed point of the fibre of g above s.

Proof. Let (g : T → S, t′  t, ξ) be any impurity of F above s. We apply Limits,

Lemma 13.1 to t ∈ T and Z = {ξ} to obtain an open neighbourhood V ⊂ T of t, a
commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

As t′ specializes to t we may replace T by the open neighbourhood V of t. Thus
we have a commutative diagram

XT

��

// XT ′

��

// X

��
T

a // T ′
b // S

where b ◦ a = g. Let ξ′ ∈ XT ′ denote the image of ξ. By Divisors, Lemma 7.2
we see that ξ′ ∈ AssXT ′/T ′(FT ′). Moreover, by construction the closure of {ξ′} is
contained in the closed subset Z ′ which avoids the fibre Xa(t). In this way we see
that (T ′ → S, a(t′) a(t), ξ′) is an impurity of F above s.

Thus we may assume that g : T → S is locally of finite presentation. Let Z = {ξ}.
By assumption Zt = ∅. By More on Morphisms, Lemma 19.1 this means that
Zt′′ = ∅ for t′′ in an open subset of {t}. Since the fibre of T → S over s is a
Jacobson scheme, see Morphisms, Lemma 17.10 we find that there exist a closed
point t′′ ∈ {t} such that Zt′′ = ∅. Then (g : T → S, t′  t′′, ξ) is the desired
impurity. �

Lemma 14.4. In Situation 14.1. Let (g : T → S, t′  t, ξ) be an impurity of
F above s. Assume S is affine and that T is written T = limi∈I Ti as a directed
colimit of affine schemes over S. Then for some i the triple (Ti → S, t′i  ti, ξi) is
an impurity of F above s.

Proof. The notation in the statement means this: Let fi : T → Ti be the projection
morphisms, let ti = fi(t) and t′i = fi(t

′). Finally ξi ∈ XTi is the image of ξ. By
Divisors, Lemma 7.2 it is true that ξi is a point of the relative assassin of FTi over Ti.

Thus the only point is to show that {ξi} ∩Xti = ∅ for some i. Set Z = {ξ}. Apply
Limits, Lemma 13.1 to this situation to obtain an open neighbourhood V ⊂ T of
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t, a commutative diagram

V

��

a
// T ′

b

��
T

g // S,

and a closed subscheme Z ′ ⊂ XT ′ such that

(1) the morphism b : T ′ → S is locally of finite presentation,
(2) we have Z ′ ∩Xa(t) = ∅, and
(3) Z ∩XV maps into Z ′ via the morphism XV → XT ′ .

We may assume V is an affine open of T , hence by Limits, Lemmas 3.8 and 3.10 we
can find an i and an affine open Vi ⊂ Ti with V = f−1

i (Vi). By Limits, Proposition
5.1 after possibly increasing i a bit we can find a morphism ai : Vi → T ′ such that
a = ai◦fi|V . The induced morphism XTi → XT ′ maps ξi into Z ′. As Z ′∩Xa(t) = ∅
we conclude that (Ti → S, t′i  ti, ξi) is an impurity of F above s. �

Lemma 14.5. In Situation 14.1. If there exists an impurity (g : T → S, t′  t, ξ)
of F above s with g quasi-finite at t, then there exists an impurity (g : T → S, t′  
t, ξ) such that (T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. Let (g : T → S, t′  t, ξ) be an impurity of F above s such that g is
quasi-finite at t. After shrinking T we may assume that g is locally of finite type.
Apply More on Morphisms, Lemma 30.1 to T → S and t 7→ s. This gives us a
diagram

T

��

T ×S Uoo

��

Voo

{{
S Uoo

where (U, u) → (S, s) is an elementary étale neighbourhood and V ⊂ T ×S U is
an open neighbourhood of v = (t, u) such that V → U is finite and such that v
is the unique point of V lying over u. Since the morphism V → T is étale hence
flat we see that there exists a specialization v′  v such that v′ 7→ t′. Note that
κ(t′) ⊂ κ(v′) is finite separable. Pick any point ζ ∈ Xv′ mapping to ξ ∈ Xt′ . By

Divisors, Lemma 7.2 we see that ζ ∈ AssXV /V (FV ). Moreover, the closure {ζ} does

not meet the fibre Xv as by assumption the closure {ξ} does not meet Xt. In other
words (V → S, v′  v, ζ) is an impurity of F above S.

Next, let u′ ∈ U ′ be the image of v′ and let θ ∈ XU be the image of ζ. Then θ 7→ u′

and u′  u. By Divisors, Lemma 7.2 we see that θ ∈ AssXU/U (F). Moreover, as

π : XV → XU is finite we see that π
(
{ζ}
)

= {π(ζ)}. Since v is the unique point of

V lying over u we see that Xu ∩ {π(ζ)} = ∅ because Xv ∩ {ζ} = ∅. In this way we
conclude that (U → S, u′  u, θ) is an impurity of F above s and we win. �

Lemma 14.6. In Situation 14.1. Assume that S is locally Noetherian. If there
exists an impurity of F above s, then there exists an impurity (g : T → S, t′  t, ξ)
of F above s such that g is quasi-finite at t.

Proof. We may replace S by an affine neighbourhood of s. By Lemma 14.3 we
may assume that we have an impurity (g : T → S, t′  t, ξ) of such that g is locally
of finite type and t a closed point of the fibre of g above s. We may replace T by
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the reduced induced scheme structure on {t′}. Let Z = {ξ} ⊂ XT . By assumption
Zt = ∅ and the image of Z → T contains t′. By More on Morphisms, Lemma 20.1
there exists a nonempty open V ⊂ Z such that for any w ∈ f(V ) any generic point
ξ′ of Vw is in AssXT /T (FT ). By More on Morphisms, Lemma 19.2 there exists a
nonempty open W ⊂ T with W ⊂ f(V ). By More on Morphisms, Lemma 35.7
there exists a closed subscheme T ′ ⊂ T such that t ∈ T ′, T ′ → S is quasi-finite at
t, and there exists a point z ∈ T ′ ∩W , z  t which does not map to s. Choose
any generic point ξ′ of the nonempty scheme Vz. Then (T ′ → S, z  t, ξ′) is the
desired impurity. �

In the following we will use the henselization Sh = Spec(OhS,s) of S at s, see Étale

Cohomology, Definition 33.2. Since Sh → S maps to closed point of Sh to s and
induces an isomorphism of residue fields, we will indicate s ∈ Sh this closed point
also. Thus (Sh, s)→ (S, s) is a morphism of pointed schemes.

Lemma 14.7. In Situation 14.1. If there exists an impurity (Sh → S, s′  s, ξ)
of F above s then there exists an impurity (T → S, t′  t, ξ) of F above s where
(T, t)→ (S, s) is an elementary étale neighbourhood.

Proof. We may replace S by an affine neighbourhood of s. Say S = Spec(A)
and s corresponds to the prime p ⊂ A. Then OhS,s = colim(T,t) Γ(T,OT ) where
the limit is over the opposite of the cofiltered category of affine elementary étale
neighbourhoods (T, t) of (S, s), see More on Morphisms, Lemma 27.5 and its proof.
Hence Sh = limi Ti and we win by Lemma 14.4. �

Lemma 14.8. In Situation 14.1 the following are equivalent

(1) there exists an impurity (Sh → S, s′  s, ξ) of F above s where Sh is the
henselization of S at s,

(2) there exists an impurity (T → S, t′  t, ξ) of F above s such that (T, t)→
(S, s) is an elementary étale neighbourhood, and

(3) there exists an impurity (T → S, t′  t, ξ) of F above s such that T → S
is quasi-finite at t.

Proof. As an étale morphism is locally quasi-finite it is clear that (2) implies (3).
We have seen that (3) implies (2) in Lemma 14.5. We have seen that (1) implies
(2) in Lemma 14.7. Finally, if (T → S, t′  t, ξ) is an impurity of F above s
such that (T, t)→ (S, s) is an elementary étale neighbourhood, then we can choose
a factorization Sh → T → S of the structure morphism Sh → S. Choose any
point s′ ∈ Sh mapping to t′ and choose any ξ′ ∈ Xs′ mapping to ξ ∈ Xt′ . Then
(Sh → S, s′  s, ξ′) is an impurity of F above s. We omit the details. �

15. Relatively pure modules

The notion of a module pure relative to a base was introduced in [GR71].

Definition 15.1. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX -module.

(1) Let s ∈ S. We say F is pure along Xs if there is no impurity (g : T → S, t′  
t, ξ) of F above s with (T, t)→ (S, s) an elementary étale neighbourhood.

(2) We say F is universally pure along Xs if there does not exist any impurity
of F above s.

(3) We say that X is pure along Xs if OX is pure along Xs.
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(4) We say F is universally S-pure, or universally pure relative to S if F is
universally pure along Xs for every s ∈ S.

(5) We say F is S-pure, or pure relative to S if F is pure along Xs for every
s ∈ S.

(6) We say that X is S-pure or pure relative to S if OX is pure relative to S.

We intentionally restrict ourselves here to morphisms which are of finite type and
not just morphisms which are locally of finite type, see Remark 15.2 for a discus-
sion. In the situation of the definition Lemma 14.8 tells us that the following are
equivalent

(1) F is pure along Xs,
(2) there is no impurity (g : T → S, t′  t, ξ) with g quasi-finite at t,
(3) there does not exist any impurity of the form (Sh → S, s′  s, ξ), where

Sh is the henselization of S at s.

If we denote Xh = X×SSh and Fh the pullback of F to Xh, then we can formulate
the last condition in the following more positive way:

(4) All points of AssXh/Sh(Fh) specialize to points of Xs.

In particular, it is clear that F is pure along Xs if and only if the pullback of F to
X ×S Spec(OS,s) is pure along Xs.

Remark 15.2. Let f : X → S be a morphism which is locally of finite type and
F a quasi-coherent finite type OX -module. In this case it is still true that (1)
and (2) above are equivalent because the proof of Lemma 14.5 does not use that
f is quasi-compact. It is also clear that (3) and (4) are equivalent. However, we
don’t know if (1) and (3) are equivalent. In this case it may sometimes be more
convenient to define purity using the equivalent conditions (3) and (4) as is done in
[GR71]. On the other hand, for many applications it seems that the correct notion
is really that of being universally pure.

A natural question to ask is if the property of being pure relative to the base is
preserved by base change, i.e., if being pure is the same thing as being universally
pure. It turns out that this is true over Noetherian base schemes (see Lemma 15.5),
or if the sheaf is flat (see Lemmas 17.3 and 17.4). It is not true in general, even if
the morphism and the sheaf are of finite presentation, see Examples, Section 32 for
a counter example. First we match our usage of “universally” to the usual notion.

Lemma 15.3. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. The following are
equivalent

(1) F is universally pure along Xs, and
(2) for every morphism of pointed schemes (S′, s′)→ (S, s) the pullback FS′ is

pure along Xs′ .

In particular, F is universally pure relative to S if and only if every base change
FS′ of F is pure relative to S′.

Proof. This is formal. �

Lemma 15.4. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. If S′ → S is quasi-finite at s′ and F is pure
along Xs, then FS′ is pure along Xs′ .
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Proof. It (T → S′, t′  t, ξ) is an impurity of FS′ above s′ with T → S′ quasi-finite
at t, then (T → S, t′ → t, ξ) is an impurity of F above s with T → S quasi-finite at
t, see Morphisms, Lemma 21.12. Hence the lemma follows immediately from the
characterization (2) of purity given following Definition 15.1. �

Lemma 15.5. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. If OS,s is Noetherian
then F is pure along Xs if and only if F is universally pure along Xs.

Proof. First we may replace S by Spec(OS,s), i.e., we may assume that S is Noe-
therian. Next, use Lemma 14.6 and characterization (2) of purity given in discussion
following Definition 15.1 to conclude. �

Purity satisfies flat descent.

Lemma 15.6. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a finite type quasi-coherent OX-module. Let s ∈ S. Let (S′, s′) → (S, s)
be a morphism of pointed schemes. Assume S′ → S is flat at s′.

(1) If FS′ is pure along Xs′ , then F is pure along Xs.
(2) If FS′ is universally pure along Xs′ , then F is universally pure along Xs.

Proof. Let (T → S, t′  t, ξ) be an impurity of F above s. Set T1 = T ×S S′, and
let t1 be the unique point of T1 mapping to t and s′. Since T1 → T is flat at t1,
see Morphisms, Lemma 26.7, there exists a specialization t′1  t1 lying over t′  t,
see Algebra, Section 40. Choose a point ξ1 ∈ Xt′1

which corresponds to a generic
point of Spec(κ(t′1)⊗κ(t′) κ(ξ)), see Schemes, Lemma 17.5. By Divisors, Lemma 7.2
we see that ξ1 ∈ AssXT1/T1

(FT1). As the Zariski closure of {ξ1} in XT1 maps into

the Zariski closure of {ξ} in XT we conclude that this closure is disjoint from Xt1 .
Hence (T1 → S′, t′1  t1, ξ1) is an impurity of FS′ above s′. In other words we have
proved the contrapositive to part (2) of the lemma. Finally, if (T, t) → (S, s) is
an elementary étale neighbourhood, then (T1, t1) → (S′, s′) is an elementary étale
neighbourhood too, and in this way we see that (1) holds. �

Lemma 15.7. Let i : Z → X be a closed immersion of schemes of finite type over
a scheme S. Let s ∈ S. Let F be a finite type, quasi-coherent sheaf on Z. Then F
is (universally) pure along Zs if and only if i∗F is (universally) pure along Xs.

Proof. Omitted. �

16. Examples of relatively pure sheaves

Here are some example cases where it is possible to see what purity means.

Lemma 16.1. Let f : X → S be a proper morphism of schemes. Then every finite
type, quasi-coherent OX-module F is universally pure relative to S. In particular
X is universally pure relative to S.

Proof. Let (g : T → S, t′  t, ξ) be an impurity of F above s ∈ S. Since f is
proper, it is universally closed. Hence fT : XT → T is closed. Since fT (ξ) = t′ this

implies that t ∈ f({ξ}) which is a contradiction. �

Lemma 16.2. Let f : X → S be a separated, finite type morphism of schemes. Let
F be a finite type, quasi-coherent OX-module. Assume that Supp(Fs) is finite for
every s ∈ S. Then the following are equivalent
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(1) F is pure relative to S,
(2) the scheme theoretic support of F is finite over S, and
(3) F is universally pure relative to S.

In particular, given a quasi-finite separated morphism X → S we see that X is pure
relative to S if and only if X → S is finite.

Proof. Let Z ⊂ X be the scheme theoretic support of F , see Morphisms, Definition
5.5. Then Z → S is a separated, finite type morphism of schemes with finite fibres.
Hence it is separated and quasi-finite, see Morphisms, Lemma 21.10. By Lemma
15.7 it suffices to prove the lemma for Z → S and the sheaf F viewed as a finite
type quasi-coherent module on Z. Hence we may assume that X → S is separated
and quasi-finite and that Supp(F) = X.

It follows from Lemma 16.1 and Morphisms, Lemma 44.10 that (2) implies (3).
Trivially (3) implies (1). Assume (1) holds. We will prove that (2) holds. It is clear
that we may assume S is affine. By More on Morphisms, Lemma 31.3 we can find
a diagram

X

f ��

j
// T

π
��

S

with π finite and j a quasi-compact open immersion. If we show that j is closed,
then j is a closed immersion and we conclude that f = π ◦ j is finite. To show that
j is closed it suffices to show that specializations lift along j, see Schemes, Lemma
19.8. Let x ∈ X, set t′ = j(x) and let t′  t be a specialization. We have to
show t ∈ j(X). Set s′ = f(x) and s = π(t) so s′  s. By More on Morphisms,
Lemma 30.4 we can find an elementary étale neighbourhood (U, u)→ (S, s) and a
decomposition

TU = T ×S U = V qW
into open and closed subschemes, such that V → U is finite and there exists a
unique point v of V mapping to u, and such that v maps to t in T . As V → T is
étale, we can lift generalizations, see Morphisms, Lemmas 26.8 and 37.12. Hence
there exists a specialization v′  v such that v′ maps to t′ ∈ T . In particular we
see that v′ ∈ XU ⊂ TU . Denote u′ ∈ U the image of t′. Note that v′ ∈ AssXU/U (F)
because Xu′ is a finite discrete set and Xu′ = Supp(Fu′). As F is pure relative to
S we see that v′ must specialize to a point in Xu. Since v is the only point of V
lying over u (and since no point of W can be a specialization of v′) we see that
v ∈ Xu. Hence t ∈ X. �

Lemma 16.3. Let f : X → S be a finite type, flat morphism of schemes with
geometrically integral fibres. Then X is universally pure over S.

Proof. Let ξ ∈ X with s′ = f(ξ) and s′  s a specialization of S. If ξ is
an associated point of Xs′ , then ξ is the unique generic point because Xs′ is an
integral scheme. Let ξ0 be the unique generic point of Xs. As X → S is flat we
can lift s′  s to a specialization ξ′  ξ0 in X, see Morphisms, Lemma 26.8.
The ξ  ξ′ because ξ is the generic point of Xs′ hence ξ  ξ0. This means that
(idS , s

′ → s, ξ) is not an impurity of OX above s. Since the assumption that f is
finite type, flat with geometrically integral fibres is preserved under base change,
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we see that there doesn’t exist an impurity after any base change. In this way we
see that X is universally S-pure. �

Lemma 16.4. Let f : X → S be a finite type, affine morphism of schemes. Let F
be a finite type quasi-coherent OX-module such that f∗F is locally projective on S,
see Properties, Definition 19.1. Then F is universally pure over S.

Proof. After reducing to the case where S is the spectrum of a henselian local ring
this follows from Lemma 13.1. �

17. A criterion for purity

We first prove that given a flat family of finite type quasi-coherent sheaves the
points in the relative assassin specialize to points in the relative assassins of nearby
fibres (if they specialize at all).

Lemma 17.1. Let f : X → S be a morphism of schemes of finite type. Let
F be a quasi-coherent OX-module of finite type. Let s ∈ S. Assume that F is
flat over S at all points of Xs. Let x′ ∈ AssX/S(F) with f(x′) = s′ such that
s′  s is a specialization in S. If x′ specializes to a point of Xs, then x′  x with
x ∈ AssXs(Fs).

Proof. Let x′  t be a specialization with t ∈ Xs. We may replace X by an
affine neighbourhood of t and S by an affine neighbourhood of s. Choose a closed
immersion i : X → An

S . Then it suffices to prove the lemma for the module i∗F on
An
S and the point i(x′). Hence we may assume X → S is of finite presentation.

Let x′  t be a specialization with t ∈ Xs. Set A = OS,s, B = OX,t, and N = Ft.
Note that B is essentially of finite presentation over A and that N is a finite B-
module flat over A. Also N is a finitely presented B-module by Lemma 10.9. Let
q′ ⊂ B be the prime ideal corresponding to x′ and let p′ ⊂ A be the prime ideal
corresponding to s′. The assumption x′ ∈ AssX/S(F) means that q′ is an associated
prime of N ⊗A κ(p′). Let Σ ⊂ B be the multiplicative subset of elements which are
not zerodivisors on N/mAN . By Lemma 7.2 the map N → Σ−1N is universally
injective. In particular, we see that N ⊗A κ(p′) → Σ−1N ⊗A κ(p′) is injective
which implies that q′ is an associated prime of Σ−1N ⊗A κ(p′) and hence q′ is in
the image of Spec(Σ−1B) → Spec(B). Thus Lemma 7.1 implies that q′ ⊂ q for
some prime q ∈ AssB(N/mAN) (which in particular implies that mA = A ∩ q). If
x ∈ Xs denotes the point corresponding to q, then x ∈ AssXs(Fs) and x′  x as
desired. �

Lemma 17.2. Let f : X → S be a morphism of schemes of finite type. Let F be
a quasi-coherent OX-module of finite type. Let s ∈ S. Let (S′, s′) → (S, s) be an
elementary étale neighbourhood and let

X

��

X ′
g

oo

��
S S′oo

be a commutative diagram of morphisms of schemes. Assume

(1) F is flat over S at all points of Xs,
(2) X ′ → S′ is of finite type,
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(3) g∗F is pure along X ′s′ ,
(4) g : X ′ → X is étale, and
(5) g(X ′) contains AssXs(Fs).

In this situation F is pure along Xs if and only if the image of X ′ → X ×S S′
contains the points of AssX×SS′/S′(F×S S′) lying over points in S′ which specialize
to s′.

Proof. Since the morphism S′ → S is étale, we see that if F is pure along Xs,
then F ×S S′ is pure along Xs, see Lemma 15.4. Since purity satisfies flat descent,
see Lemma 15.6, we see that if F ×S S′ is pure along Xs′ , then F is pure along Xs.
Hence we may replace S by S′ and assume that S = S′ so that g : X ′ → X is an
étale morphism between schemes of finite type over S. Moreover, we may replace
S by Spec(OS,s) and assume that S is local.

First, assume that F is pure along Xs. In this case every point of AssX/S(F)
specializes to a point of Xs by purity. Hence by Lemma 17.1 we see that every point
of AssX/S(F) specializes to a point of AssXs(Fs). Thus every point of AssX/S(F)
is in the image of g (as the image is open and contains AssXs(Fs)).
Conversely, assume that g(X ′) contains AssX/S(F). Let Sh = Spec(OhS,s) be the

henselization of S at s. Denote gh : (X ′)h → Xh the base change of g by Sh → S,
and denote Fh the pullback of F to Xh. By Divisors, Lemma 7.2 and Remark
7.3 the relative assassin AssXh/Sh(Fh) is the inverse image of AssX/S(F) via the

projection Xh → X. As we have assumed that g(X ′) contains AssX/S(F) we

conclude that the base change gh((X ′)h) = g(X ′) ×S Sh contains AssXh/Sh(Fh).
In this way we reduce to the case where S is the spectrum of a henselian local
ring. Let x ∈ AssX/S(F). To finish the proof of the lemma we have to show that
x specializes to a point of Xs, see criterion (4) for purity in discussion following
Definition 15.1. By assumption there exists a x′ ∈ X ′ such that g(x′) = x. As
g : X ′ → X is étale, we see that x′ ∈ AssX′/S(g∗F), see Lemma 2.7 (applied to
the morphism of fibres X ′w → Xw where w ∈ S is the image of x′). Since g∗F is
pure along X ′s we see that x′  y for some y ∈ X ′s. Hence x = g(x′)  g(y) and
g(y) ∈ Xs as desired. �

Lemma 17.3. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module. Let s ∈ S. Assume

(1) f is of finite type,
(2) F is of finite type,
(3) F is flat over S at all points of Xs, and
(4) F is pure along Xs.

Then F is universally pure along Xs.

Proof. We first make a preliminary remark. Suppose that (S′, s′) → (S, s) is an
elementary étale neighbourhood. Denote F ′ the pullback of F to X ′ = X×SS′. By
the discussion following Definition 15.1 we see that F ′ is pure along X ′s′ . Moreover,
F ′ is flat over S′ along X ′s′ . Then it suffices to prove that F ′ is universally pure
along X ′s′ . Namely, given any morphism (T, t) → (S, s) of pointed schemes the
fibre product (T ′, t′) = (T ×S S′, (t, s′)) is flat over (T, t) and hence if FT ′ is pure
along Xt′ then FT is pure along Xt by Lemma 15.6. Thus during the proof we may
always replace (s, S) by an elementary étale neighbourhood. We may also replace
S by Spec(OS,s) due to the local nature of the problem.
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Choose an elementary étale neighbourhood (S′, s′) → (S, s) and a commutative
diagram

X

��

X ′
g

oo

��
S Spec(OS′,s′)oo

such that X ′ → X ×S Spec(OS′,s′) is étale, Xs = g((X ′)s′), the scheme X ′ is
affine, and such that Γ(X ′, g∗F) is a free OS′,s′ -module, see Lemma 11.11. Note
that X ′ → Spec(OS′,s′) is of finite type (as a quasi-compact morphism which is the
composition of an étale morphism and the base change of a finite type morphism).
By our preliminary remarks in the first paragraph of the proof we may replace S
by Spec(OS′,s′). Hence we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite type over S, where g is étale, Xs ⊂ g(X ′), with S local with
closed point s, with X ′ affine, and with Γ(X ′, g∗F) a free Γ(S,OS)-module. Note
that in this case g∗F is universally pure over S, see Lemma 16.4.

In this situation we apply Lemma 17.2 to deduce that AssX/S(F) ⊂ g(X ′) from our
assumption that F is pure along Xs and flat over S along Xs. By Divisors, Lemma
7.2 and Remark 7.3 we see that for any morphism of pointed schemes (T, t)→ (S, s)
we have

AssXT /T (FT ) ⊂ (XT → X)−1(AssX/S(F)) ⊂ g(X ′)×S T = gT (X ′T ).

Hence by Lemma 17.2 applied to the base change of our displayed diagram to (T, t)
we conclude that FT is pure along Xt as desired. �

Lemma 17.4. Let f : X → S be a finite type morphism of schemes. Let F be a
finite type quasi-coherent OX-module. Assume F is flat over S. In this case F is
pure relative to S if and only if F is universally pure relative to S.

Proof. Immediate consequence of Lemma 17.3 and the definitions. �

Lemma 17.5. Let I be a directed partially ordered set. Let (Si, gii′) be an inverse
system of affine schemes over I. Set S = limi Si and s ∈ S. Denote gi : S → Si
the projections and set si = gi(s). Suppose that f : X → S is a morphism of
finite presentation, F a quasi-coherent OX-module of finite presentation which is
pure along Xs and flat over S at all points of Xs. Then there exists an i ∈ I, a
morphism of finite presentation Xi → Si, a quasi-coherent OXi-module Fi of finite
presentation which is pure along (Xi)si and flat over Si at all points of (Xi)si such
that X ∼= Xi ×Si S and such that the pullback of Fi to X is isomorphic to F .

Proof. Let U ⊂ X be the set of points where F is flat over S. By More on
Morphisms, Theorem 12.1 this is an open subscheme of X. By assumption Xs ⊂ U .
As Xs is quasi-compact, we can find a quasi-compact open U ′ ⊂ U with Xs ⊂ U ′.
By Limits, Lemma 9.1 we can find an i ∈ I and a morphism of finite presentation
fi : Xi → Si whose base change to S is isomorphic to fi. Fix such a choice and set
Xi′ = Xi×Si Si′ . Then X = limi′ Xi′ with affine transition morphisms. By Limits,
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Lemma 9.2 we can, after possible increasing i assume there exists a quasi-coherent
OXi -module Fi of finite presentation whose base change to S is isomorphic to F .
By Limits, Lemma 3.8 after possibly increasing i we may assume there exists an
open U ′i ⊂ Xi whose inverse image in X is U ′. Note that in particular (Xi)si ⊂ U ′i .
By Limits, Lemma 9.3 (after increasing i once more) we may assume that Fi is flat
on U ′i . In particular we see that Fi is flat along (Xi)si .

Next, we use Lemma 11.5 to choose an elementary étale neighbourhood (S′i, s
′
i)→

(Si, si) and a commutative diagram of schemes

Xi

��

X ′igi
oo

��
Si S′i
oo

such that gi is étale, (Xi)si ⊂ gi(X ′i), the schemes X ′i, S
′
i are affine, and such that

Γ(X ′i, g
∗
iFi) is a projective Γ(S′i,OS′i)-module. Note that g∗iFi is universally pure

over S′i, see Lemma 16.4. We may base change the diagram above to a diagram
with morphisms (S′i′ , s

′
i′)→ (Si′ , si′) and gi′ : X ′i′ → Xi′ over Si′ for any i′ ≥ i and

we may base change the diagram to a diagram with morphisms (S′, s′) → (S, s)
and g : X ′ → X over S.

At this point we can use our criterion for purity. Set W ′i ⊂ Xi ×Si S′i equal to the
image of the étale morphism X ′i → Xi ×Si S′i. For every i′ ≥ i we have similarly
the image W ′i′ ⊂ Xi′ ×Si′ S

′
i′ and we have the image W ′ ⊂ X ×S S′. Taking images

commutes with base change, hence W ′i′ = W ′i ×S′i S
′
i′ and W ′ = Wi×S′i S

′. Because
F is pure along Xs the Lemma 17.2 implies that

(17.5.1) f−1(Spec(OS′,s′)) ∩AssX×SS′/S′(F ×S S
′) ⊂W ′

By More on Morphisms, Lemma 20.5 we see that

E = {t ∈ S′ | AssXt(Ft) ⊂W ′} and Ei′ = {t ∈ S′i′ | AssXt(Fi′,t) ⊂W ′i′}
are locally constructible subsets of S′ and S′i′ . By More on Morphisms, Lemma
20.4 we see that Ei′ is the inverse image of Ei under the morphism S′i′ → S′i and
that E is the inverse image of Ei under the morphism S′ → S′i. Thus Equation
(17.5.1) is equivalent to the assertion that Spec(OS′,s′) maps into Ei. As OS′,s′ =
colimi′≥iOS′

i′ ,s
′
i′

we see that Spec(OS′
i′ ,s
′
i′

) maps into Ei for some i′ ≥ i, see Limits,

Lemma 3.7. Then, applying Lemma 17.2 to the situation over Si′ , we conclude that
Fi′ is pure along (Xi′)si′ . �

Lemma 17.6. Let f : X → S be a morphism of finite presentation. Let F be a
quasi-coherent OX-module of finite presentation flat over S. Then the set

U = {s ∈ S | F is pure along Xs}
is open in S.

Proof. Let s ∈ U . Using Lemma 11.5 we can find an elementary étale neighbour-
hood (S′, s′)→ (S, s) and a commutative diagram

X

��

X ′
g

oo

��
S S′oo
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such that g is étale, Xs ⊂ g(X ′), the schemes X ′, S′ are affine, and such that
Γ(X ′, g∗F) is a projective Γ(S′,OS′)-module. Note that g∗F is universally pure
over S′, see Lemma 16.4. Set W ′ ⊂ X ×S S′ equal to the image of the étale
morphism X ′ → X ×S S′. Note that W is open and quasi-compact over S′. Set

E = {t ∈ S′ | AssXt(Ft) ⊂W ′}.
By More on Morphisms, Lemma 20.5 E is a constructible subset of S′. By Lemma
17.2 we see that Spec(OS′,s′) ⊂ E. By Morphisms, Lemma 23.4 we see that E
contains an open neighbourhood V ′ of s′. Applying Lemma 17.2 once more we see
that for any point s1 in the image of V ′ in S the sheaf F is pure along Xs1 . Since
S′ → S is étale the image of V ′ in S is open and we win. �

18. How purity is used

Here are some examples of how purity can be used. The first lemma actually uses
a slightly weaker form of purity.

Lemma 18.1. Let f : X → S be a morphism of finite type. Let F be a quasi-
coherent sheaf of finite type on X. Assume S is local with closed point s. Assume
F is pure along Xs and that F is flat over S. Let ϕ : F → G of quasi-coherent
OX-modules. Then the following are equivalent

(1) the map on stalks ϕx is injective for all x ∈ AssXs(Fs), and
(2) ϕ is injective.

Proof. Let K = Ker(ϕ). Our goal is to prove that K = 0. In order to do this
it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We have
WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 5.4. As F is flat we see
from Lemma 12.4 that WeakAssX(F) ⊂ AssX/S(F). By purity any point x′ of
AssX/S(F) is a generalization of a point of Xs, and hence is the specialization of
a point x ∈ AssXs(Fs), by Lemma 17.1. Hence the injectivity of ϕx implies the
injectivity of ϕx′ , whence Kx′ = 0. �

Proposition 18.2. Let f : X → S be an affine, finitely presented morphism of
schemes. Let F be a quasi-coherent OX-module of finite presentation, flat over S.
Then the following are equivalent

(1) f∗F is locally projective on S, and
(2) F is pure relative to S.

In particular, given a ring map A→ B of finite presentation and a finitely presented

B-module N flat over A we have: N is projective as an A-module if and only if Ñ
on Spec(B) is pure relative to Spec(A).

Proof. The implication (1) ⇒ (2) is Lemma 16.4. Assume F is pure relative to
S. Note that by Lemma 17.3 this implies F remains pure after any base change.
By Descent, Lemma 6.7 it suffices to prove f∗F is fpqc locally projective on S.
Pick s ∈ S. We will prove that the restriction of f∗F to an étale neighbourhood
of s is locally projective. Namely, by Lemma 11.5, after replacing S by an affine
elementary étale neighbourhood of s, we may assume there exists a diagram

X

��

X ′
g

oo

~~
S
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of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 16.4. Hence by Lemma 17.2 we see that the
open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 20.5 E is a constructible subset of S. We have
seen that Spec(OS,s) ⊂ E. By Morphisms, Lemma 23.4 we see that E contains an
open neighbourhood of s. Hence after replacing S by an affine neighbourhood of s
we may assume that AssX/S(F) ⊂ g(X ′). By Lemma 7.4 this means that

Γ(X,F) −→ Γ(X ′, g∗F)

is Γ(S,OS)-universally injective. By Algebra, Lemma 86.7 we conclude that Γ(X,F)
is Mittag-Leffler as an Γ(S,OS)-module. Since Γ(X,F) is countably generated and
flat as a Γ(S,OS)-module, we conclude it is projective by Algebra, Lemma 90.1. �

We can use the proposition to improve some of our earlier results. The following
lemma is an improvement of Proposition 11.4.

Lemma 18.3. Let f : X → S be a morphism which is locally of finite presentation.
Let F be a quasi-coherent OX-module which is of finite presentation. Let x ∈ X
with s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S S′ which contains
x′ = (x, s′) such that Γ(U ′,F|U ′) is a projective Γ(S′,OS′)-module.

Proof. During the proof we may replace X by an open neighbourhood of x and
we may replace S by an elementary étale neighbourhood of s. Hence, by openness
of flatness (see More on Morphisms, Theorem 12.1) we may assume that F is flat
over S. We may assume S and X are affine. After shrinking X some more we
may assume that any point of AssXs(Fs) is a generalization of x. This property
is preserved on replacing (S, s) by an elementary étale neighbourhood. Hence we
may apply Lemma 11.5 to arrive at the situation where there exists a diagram

X

��

X ′
g

oo

~~
S

of schemes affine and of finite presentation over S, where g is étale, Xs ⊂ g(X ′),
and with Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that in this case g∗F is
universally pure over S, see Lemma 16.4.

Let U ⊂ g(X ′) be an affine open neighbourhood of x. We claim that F|U is pure
along Us. If we prove this, then the lemma follows because F|U will be pure relative
to S after shrinking S, see Lemma 17.6, whereupon the projectivity follows from
Proposition 18.2. To prove the claim we have to show, after replacing (S, s) by an
arbitrary elementary étale neighbourhood, that any point ξ of AssU/S(F|U ) lying
over some s′ ∈ S, s′  s specializes to a point of Us. Since U ⊂ g(X ′) we can find a
ξ′ ∈ X ′ with g(ξ′) = ξ. Because g∗F is pure over S, using Lemma 17.1, we see there
exists a specialization ξ′  x′ with x′ ∈ AssX′s(g

∗Fs). Then g(x′) ∈ AssXs(Fs)
(see for example Lemma 2.7 applied to the étale morphism X ′s → Xs of Noetherian
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schemes) and hence g(x′) x by our choice of X above! Since x ∈ U we conclude
that g(x′) ∈ U . Thus ξ = g(ξ′) g(x′) ∈ Us as desired. �

The following lemma is an improvement of Lemma 11.9.

Lemma 18.4. Let f : X → S be a morphism which is locally of finite type.
Let F be a quasi-coherent OX-module which is of finite type. Let x ∈ X with
s = f(x) ∈ S. If F is flat at x over S there exists an affine elementary étale
neighbourhood (S′, s′) → (S, s) and an affine open U ′ ⊂ X ×S Spec(OS′,s′) which
contains x′ = (x, s′) such that Γ(U ′,F|U ′) is a free OS′,s′-module.

Proof. The question is Zariski local on X and S. Hence we may assume that X
and S are affine. Then we can find a closed immersion i : X → An

S over S. It is
clear that it suffices to prove the lemma for the sheaf i∗F on An

S and the point
i(x). In this way we reduce to the case where X → S is of finite presentation.
After replacing S by Spec(OS′,s′) and X by an open of X ×S Spec(OS′,s′) we may
assume that F is of finite presentation, see Proposition 10.3. In this case we may
appeal to Lemma 18.3 and Algebra, Theorem 82.4 to conclude. �

Lemma 18.5. Let A → B be a local ring map of local rings which is essentially
of finite type. Let N be a finite B-module which is flat as an A-module. If A is
henselian, then N is a filtered colimit

N = colimi Fi

of free A-modules Fi such that all transition maps ui : Fi → Fi′ of the system induce
injective maps ui : Fi/mAFi → Fi′/mAFi′ . Also, N is a Mittag-Leffler A-module.

Proof. We can find a morphism of finite type X → S = Spec(A) and a point x ∈ X
lying over the closed point s of S and a finite type quasi-coherent OX -module F
such that Fx ∼= N as an A-module. After shrinking X we may assume that each
point of AssXs(Fs) specializes to x. By Lemma 18.4 we see that there exists a
fundamental system of affine open neighbourhoods Ui ⊂ X of x such that Γ(Ui,F)
is a free A-module Fi. Note that if Ui′ ⊂ Ui, then

Fi/mAFi = Γ(Ui,s,Fs) −→ Γ(Ui′,s,Fs) = Fi′/mAFi′

is injective because a section of the kernel would be supported at a closed subset of
Xs not meeting x which is a contradiction to our choice of X above. Since the maps
Fi → Fi′ are A-universally injective (Lemma 7.5) it follows that N is Mittag-Leffler
by Algebra, Lemma 86.8. �

19. Flattening functors

Let S be a scheme. Recall that a functor F : (Sch/S)opp → Sets is called limit
preserving if for every directed inverse system {Ti}i∈I of affine schemes with limit
T we have F (T ) = colimi F (Ti).

Situation 19.1. Let f : X → S be a morphism of schemes. Let u : F → G be a
homomorphism of quasi-coherent OX -modules. For any scheme T over S we will
denote uT : FT → GT the base change of u to T , in other words, uT is the pullback
of u via the projection morphism XT = X ×S T → X. In this situation we can
consider the functor

(19.1.1) Fiso : (Sch/S)opp −→ Sets, T −→
{
{∗} if uT is an isomorphism,
∅ else.
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There are variants Finj , Fsurj , Fzero where we ask that uT is injective, surjective,
or zero.

Lemma 19.2. In Situation 19.1.

(1) Each of the functors Fiso, Finj, Fsurj, Fzero satisfies the sheaf property for
the fpqc topology.

(2) If f is quasi-compact and G is of finite type, then Fsurj is limit preserving.
(3) If f is quasi-compact and F of finite type, then Fzero is limit preserving.
(4) If f is quasi-compact, F is of finite type, and G is of finite presentation,

then Fiso is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and ui = uTi . Note that {Xi → XT }i∈I is an fpqc covering of XT , see
Topologies, Lemma 8.7. In particular, for every x ∈ XT there exists an i ∈ I and
an xi ∈ Xi mapping to x. Since OXT ,x → OXi,xi is flat, hence faithfully flat (see
Algebra, Lemma 38.16) we conclude that (ui)xi is injective, surjective, bijective, or
zero if and only if (uT )x is injective, surjective, bijective, or zero. Whence part (1)
of the lemma.

Proof of (2). Assume f quasi-compact and G of finite type. Let T = limi∈I Ti be a
directed limit of affine S-schemes and assume that uT is surjective. Set Xi = XTi =
X ×S Ti and ui = uTi : Fi = FTi → Gi = GTi . To prove part (2) we have to show
that ui is surjective for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since f is
quasi-compact the scheme Xi0 is quasi-compact. Hence we may choose affine opens
W1, . . . ,Wm ⊂ X and an affine open covering Xi0 = U1,i0 ∪ . . . ∪ Um,i0 such that
Uj,i0 maps into Wj under the projection morphism Xi0 → X. For any i ∈ I let Uj,i
be the inverse image of Uj,i0 . Setting Uj = limi Uj,i we see that XT = U1∪ . . .∪Um
is an affine open covering of XT . Now it suffices to show, for a given j ∈ {1, . . . ,m}
that ui|Uj,i is surjective for some i = i(j) ∈ I. Using Properties, Lemma 16.1 this
translates into the following algebra problem: Let A be a ring and let u : M → N
be an A-module map. Suppose that R = colimi∈I Ri is a directed colimit of A-
algebras. If N is a finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is surjective,
then for some i the map u⊗ 1 : M ⊗ARi → N ⊗ARi is surjective. This is Algebra,
Lemma 123.3 part (2).

Proof of (3). Exactly the same arguments as given in the proof of (2) reduces this to
the following algebra problem: Let A be a ring and let u : M → N be an A-module
map. Suppose that R = colimi∈I Ri is a directed colimit of A-algebras. If M is a
finite A-module and if u⊗ 1 : M ⊗A R→ N ⊗A R is zero, then for some i the map
u⊗ 1 : M ⊗A Ri → N ⊗A Ri is zero. This is Algebra, Lemma 123.3 part (1).

Proof of (4). Assume f quasi-compact and F ,G of finite presentation. Arguing
in exactly the same manner as in the previous paragraph (using in addition also
Properties, Lemma 16.2) part (3) translates into the following algebra statement:
Let A be a ring and let u : M → N be an A-module map. Suppose that R =
colimi∈I Ri is a directed colimit of A-algebras. Assume M is a finite A-module, N
is a finitely presented A-module, and u⊗1 : M ⊗AR→ N ⊗AR is an isomorphism.
Then for some i the map u⊗ 1 : M ⊗A Ri → N ⊗A Ri is an isomorphism. This is
Algebra, Lemma 123.3 part (3). �

Situation 19.3. Let (A,mA) be a local ring. Denote C the category whose objects
are A-algebras A′ which are local rings such that the algebra structure A → A′ is
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a local homomorphism of local rings. A morphism between objects A′, A′′ of C is
a local homomorphism A′ → A′′ of A-algebras. Let A→ B be a local ring map of
local rings and let M be a B-module. If A′ is an object of C we set B′ = B⊗AA′ and
we set M ′ = M ⊗A A′ as a B′-module. Given A′ ∈ Ob(C), consider the condition

(19.3.1) ∀q ∈ V (mA′B
′ + mBB

′) ⊂ Spec(B′) : M ′q is flat over A′.

Note the similarity with More on Algebra, Equation (12.1.1). In particular, if
A′ → A′′ is a morphism of C and (19.3.1) holds for A′, then it holds for A′′, see
More on Algebra, Lemma 12.2. Hence we obtain a functor

(19.3.2) Flf : C −→ Sets, A′ −→
{
{∗} if (19.3.1) holds,
∅ else.

Lemma 19.4. In Situation 19.3.

(1) If A′ → A′′ is a flat morphism in C then Ffl(A
′) = Flf (A′′).

(2) If A→ B is essentially of finite presentation and M is a B-module of finite
presentation, then Ffl is limit preserving: If {Ai}i∈I is a directed system
of objects of C, then Ffl(colimiAi) = colimi Ffl(Ai).

Proof. Part (1) is a special case of More on Algebra, Lemma 12.3. Part (2) is a
special case of More on Algebra, Lemma 12.4. �

Lemma 19.5. In Situation 19.3 suppose that B → C is a local map of local A-
algebras and that M ∼= N as B-modules. Denote F ′lf : C → Sets the functor

associated to the pair (C,N). If B → C is finite, then Flf = F ′lf .

Proof. Let A′ be an object of C. Set C ′ = C ⊗A A′ and N ′ = N ⊗A A′ similarly
to the definitions of B′, M ′ in Situation 19.3. Note that M ′ ∼= N ′ as B′-modules.
The assumption that B → C is finite has two consequences: (a) mC =

√
mBC and

(b) B′ → C ′ is finite. Consequence (a) implies that

V (mA′C
′ + mCC

′) = (Spec(C ′)→ Spec(B′))
−1
V (mA′B

′ + mBB
′).

Suppose q ⊂ V (mA′B
′ + mBB

′). Then M ′q is flat over A′ if and only if the C ′q-
module N ′q is flat over A′ (because these are isomorphic as A′-modules) if and only
if for every maximal ideal r of C ′q the module N ′r is flat over A′ (see Algebra, Lemma
38.19). As B′q → C ′q is finite by (b), the maximal ideals of C ′q correspond exactly to
the primes of C ′ lying over q (see Algebra, Lemma 35.20) and these primes are all
contained in V (mA′C

′ + mCC
′) by the displayed equation above. Thus the result

of the lemma holds. �

Lemma 19.6. In Situation 19.3 suppose that B → C is a flat local homomorphism
of local rings. Set N = M ⊗B C. Denote F ′lf : C → Sets the functor associated to

the pair (C,N). Then Flf = F ′lf .

Proof. Let A′ be an object of C. Set C ′ = C⊗AA′ and N ′ = N⊗AA′ = M ′⊗B′C ′
similarly to the definitions of B′, M ′ in Situation 19.3. Note that

V (mA′B
′ + mBB

′) = Spec(κ(mB)⊗A κ(mA′))

and similarly for V (mA′C
′ + mCC

′). The ring map

κ(mB)⊗A κ(mA′) −→ κ(mC)⊗A κ(mA′)

is faithfully flat, hence V (mA′C
′+mCC

′)→ V (mA′B
′+mBB

′) is surjective. Finally,
if r ∈ V (mA′C

′ + mCC
′) maps to q ∈ V (mA′B

′ + mBB
′), then M ′q is flat over A′
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if and only if N ′r is flat over A′ because B′ → C ′ is flat, see Algebra, Lemma 38.8.
The lemma follows formally from these remarks. �

Situation 19.7. Let f : X → S be a smooth morphism with geometrically irre-
ducible fibres. Let F be a quasi-coherent OX -module of finite type. For any scheme
T over S we will denote FT the base change of F to T , in other words, FT is the
pullback of F via the projection morphism XT = X×S T → X. Note that XT → T
is smooth with geometrically irreducible fibres, see Morphisms, Lemma 35.5 and
More on Morphisms, Lemma 22.2. Let p ≥ 0 be an integer. Given a point t ∈ T
consider the condition

(19.7.1) FT is free of rank p in a neighbourhood of ξt

where ξt is the generic point of the fibre Xt. This condition for all t ∈ T is stable
under base change, and hence we obtain a functor

(19.7.2) Hp : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT satisfies (19.7.1) ∀t ∈ T,
∅ else.

Lemma 19.8. In Situation 19.7.

(1) The functor Hp satisfies the sheaf property for the fpqc topology.
(2) If F is of finite presentation, then functor Hp is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc1 covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi satisfies (19.7.1)
for all i. Pick t ∈ T and let ξt ∈ XT denote the generic point of Xt. We have
to show that F is free in a neighbourhood of ξt. For some i ∈ I we can find a
ti ∈ Ti mapping to t. Let ξi ∈ Xi denote the generic point of Xti , so that ξi maps
to ξt. The fact that Fi is free of rank p in a neighbourhood of ξi implies that
(Fi)xi ∼= O

⊕p
Xi,xi

which implies that FT,ξt ∼= O
⊕p
XT ,ξt

as OXT ,ξt → OXi,xi is flat, see
for example Algebra, Lemma 75.5. Thus there exists an affine neighbourhood U
of ξt in XT and a surjection O⊕pU → FU = FT |U , see Modules, Lemma 9.4. After
shrinking T we may assume that U → T is surjective. Hence U → T is a smooth
morphism of affines with geometrically irreducible fibres. Moreover, for every t′ ∈ T
we see that the induced map

α : O⊕pU,ξt′ −→ FU,ξt′
is an isomorphism (since by the same argument as before the module on the right
is free of rank p). It follows from Lemma 10.1 that

Γ(U,O⊕pU )⊗Γ(T,OT ) OT,t′ −→ Γ(U,FU )⊗Γ(T,OT ) OT,t′
is injective for every t′ ∈ T . Hence we see the surjection α is an isomorphism. This
finishes the proof of (1).

Assume that F is of finite presentation. Let T = limi∈I Ti be a directed limit of
affine S-schemes and assume that FT satisfies (19.7.1). Set Xi = XTi = X ×S Ti
and denote Fi the pullback of F to Xi. Let U ⊂ XT denote the open subscheme
of points where FT is flat over T , see More on Morphisms, Theorem 12.1. By
assumption every generic point of every fibre is a point of U , i.e., U → T is a
smooth surjective morphism with geometrically irreducible fibres. We may shrink

1It is quite easy to show that Hp is a sheaf for the fppf topology using that flat morphisms
of finite presentation are open. This is all we really need later on. But it is kind of fun to prove

directly that it also satisfies the sheaf condition for the fpqc topology.
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U a bit and assume that U is quasi-compact. Using Limits, Lemma 3.8 we can
find an i ∈ I and a quasi-compact open Ui ⊂ Xi whose inverse image in XT is
U . After increasing i we may assume that Fi|Ui is flat over Ti, see Limits, Lemma
9.3. In particular, Fi|Ui is finite locally free hence defines a locally constant rank
function ρ : Ui → {0, 1, 2, . . .}. Let (Ui)p ⊂ Ui denote the open and closed subset
where ρ has value p. Let Vi ⊂ Ti be the image of (Ui)p; note that Vi is open and
quasi-compact. By assumption the image of T → Ti is contained in Vi. Hence there
exists an i′ ≥ i such that Ti′ → Ti factors through Vi by Limits, Lemma 3.8. Then
Fi′ satisfies (19.7.1) as desired. Some details omitted. �

Situation 19.9. Let f : X → S be a morphism of schemes which is of finite type.
Let F be a quasi-coherent OX -module of finite type. For any scheme T over S we
will denote FT the base change of F to T , in other words, FT is the pullback of F
via the projection morphism XT = X ×S T → X. Note that XT → T is of finite
type and that FT is an OXT -module of finite type, see Morphisms, Lemma 16.4
and Modules, Lemma 9.2. Let n ≥ 0. We say that FT is flat over T in dimensions
≥ n if for every t ∈ T the closed subset Z ⊂ Xt of points where FT is not flat over
T (see Lemma 10.4) satisfies dim(Z) < n for all t ∈ T . Note that if this is the case,
and if T ′ → T is a morphism, then FT ′ is also flat in dimensions ≥ n over T ′, see
Morphisms, Lemmas 26.6 and 29.3. Hence we obtain a functor
(19.9.1)

Fn : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T in dim ≥ n,
∅ else.

Lemma 19.10. In Situation 19.9.

(1) The functor Fn satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fn is limit preserving.

Proof. Let {Ti → T}i∈I be an fpqc covering of schemes over S. Set Xi = XTi =
X ×S Ti and denote Fi the pullback of F to Xi. Assume that Fi is flat over Ti in
dimensions ≥ n for all i. Let t ∈ T . Choose an index i and a point ti ∈ Ti mapping
to t. Consider the cartesian diagram

XSpec(OT,t)

��

XSpec(OTi,ti )

��

oo

Spec(OT,t) Spec(OTi,ti)oo

As the lower horizontal morphism is flat we see from More on Morphisms, Lemma
12.2 that the set Zi ⊂ Xti where Fi is not flat over Ti and the set Z ⊂ Xt where
FT is not flat over T are related by the rule Zi = Zκ(ti). Hence we see that FT is
flat over T in dimensions ≥ n by Morphisms, Lemma 29.3.

Assume that f is quasi-compact and locally of finite presentation and that F is of
finite presentation. In this paragraph we first reduce the proof of (2) to the case
where f is of finite presentation. Let T = limi∈I Ti be a directed limit of affine S-
schemes and assume that FT is flat in dimensions ≥ n. Set Xi = XTi = X×STi and
denote Fi the pullback of F to Xi. We have to show that Fi is flat in dimensions
≥ n for some i. Pick i0 ∈ I and replace I by {i | i ≥ i0}. Since Ti0 is affine (hence
quasi-compact) there exist finitely many affine opens Wj ⊂ S, j = 1, . . . ,m and an
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affine open overing Ti0 =
⋃
j=1,...,m Vj,i0 such that Ti0 → S maps Vj,i0 into Wj . For

i ≥ i0 denote Vj,i the inverse image of Vj,i0 in Ti. If we can show, for each j, that
there exists an i such that FVj,i0 is flat in dimensions ≥ n, then we win. In this way
we reduce to the case that S is affine. In this case X is quasi-compact and we can
choose a finite affine open covering X = W1 ∪ . . . ∪Wm. In this case the result for
(X → S,F) is equivalent to the result for (

∐
Wj ,

∐
F|Wj ). Hence we may assume

that f is of finite presentation.

Assume f is of finite presentation and F is of finite presentation. Let U ⊂ XT

denote the open subscheme of points where FT is flat over T , see More on Mor-
phisms, Theorem 12.1. By assumption the dimension of every fibre of Z = XT \U
over T has dimension ≤ n. By Limits, Lemma 14.3 we can find a closed subscheme
Z ⊂ Z ′ ⊂ XT such that dim(Z ′t) < n for all t ∈ T and such that Z ′ → XT is of
finite presentation. By Limits, Lemmas 9.1 and 7.4 there exists an i ∈ I and a
closed subscheme Z ′i ⊂ Xi of finite presentation whose base change to T is Z ′. By
Limits, Lemma 14.1 we may assume all fibres of Z ′i → Ti have dimension < n. By
Limits, Lemma 9.3 we may assume that Fi|Xi\T ′i is flat over Ti. This implies that

Fi is flat in dimensions ≥ n; here we use that Z ′ → XT is of finite presentation,
and hence the complement XT \ Z ′ is quasi-compact! Thus part (2) is proved and
the proof of the lemma is complete. �

Situation 19.11. Let f : X → S be a morphism of schemes. Let F be a quasi-
coherent OX -module. For any scheme T over S we will denote FT the base change
of F to T , in other words, FT is the pullback of F via the projection morphism
XT = X ×S T → X. Since the base change of a flat module is flat we obtain a
functor

(19.11.1) Fflat : (Sch/S)opp −→ Sets, T −→
{
{∗} if FT is flat over T,
∅ else.

Lemma 19.12. In Situation 19.11.

(1) The functor Fflat satisfies the sheaf property for the fpqc topology.
(2) If f is quasi-compact and locally of finite presentation and F is of finite

presentation, then the functor Fflat is limit preserving.

Proof. Part (1) follows from the following statement: If T ′ → T is a surjective flat
morphism of schemes over S, then FT ′ is flat over T ′ if and only if FT is flat over
T , see More on Morphisms, Lemma 12.2. Part (2) follows from Limits, Lemma 9.3
after reducing to the case where X and S are affine (compare with the proof of
Lemma 19.10). �

20. Flattening stratifications

Just the definitions and an important baby case.

Definition 20.1. Let X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that the universal flattening of F exists if the functor Fflat
defined in Situation 19.11 is representable by a scheme S′ over S. We say that the
universal flattening of X exists if the universal flattening of OX exists.
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Note that if the universal flattening S′2 of F exists, then the morphism S′ → S is a
monomorphism of schemes such that FS′ is flat over S′ and such that a morphism
T → S factors through S′ if and only if FT is flat over T .

We define (compare with Topology, Remark 27.4) a (locally finite, scheme theoretic)
stratification of a scheme S to be given by closed subschemes Zi ⊂ S indexed by a
partially ordered set I such that S =

⋃
Zi (set theoretically), such that every point

of S has a neighbourhood meeting only a finite number of Zi, and such that

Zi ∩ Zj =
⋃

k≤i,j
Zk.

Setting Si = Zi \
⋃
j<i Zj the actual stratification is the decomposition S =

∐
Si

into locally closed subschemes. We often only indicate the strata Si and leave the
construction of the closed subschemes Zi to the reader. Given a stratification we
obtain a monomorphism

S′ =
∐

i∈I
Si −→ S.

We will call this the monomorphism associated to the stratification. With this
terminology we can define what it means to have a flattening stratification.

Definition 20.2. Let X → S be a morphism of schemes. Let F be a quasi-coherent
OX -module. We say that F has a flattening stratification if the functor Fflat defined
in Situation 19.11 is representable by a monomorphism S′ → S associated to a
stratification of S by locally closed subschemes. We say that X has a flattening
stratification if OX has a flattening stratification.

When a flattening stratification exists, it is often important to understand the index
set labeling the strata and its partial ordering. This often has to do with ranks of
modules, as in the baby case below.

Lemma 20.3. Let S be a scheme. Let F be a finite type, quasi-coherent OS-module.
The closed subschemes

S = Z−1 ⊃ Z0 ⊃ Z1 ⊃ Z2 . . .

defined by the fitting ideals of F have the following properties

(1) The intersection
⋂
Zr is empty.

(2) The functor (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT is locally generated by ≤ r sections
∅ otherwise

is representable by the open subscheme S \ Zr.
(3) The functor Fr : (Sch/S)opp → Sets defined by the rule

T 7−→
{
{∗} if FT locally free rank r
∅ otherwise

is representable by the locally closed subscheme Zr−1 \ Zr of S.

If F is of finite presentation, then Zr → S, S \Zr → S, and Zr−1 \Zr → S are of
finite presentation.

2The scheme S′ is sometimes called the universal flatificator. In [GR71] it is called the plat-
ificateur universel. Existence of the universal flattening should not be confused with the type of

results discussed in More on Algebra, Section 18.

http://localhost:8080/tag/05P7
http://localhost:8080/tag/05P8


62 MORE ON FLATNESS

Proof. We refer to More on Algebra, Section 5 for the construction of the fitting
ideals in the algebraic setting. Here we will construct the sequence

0 = I−1 ⊂ I0 ⊂ I1 ⊂ . . . ⊂ OS
of fitting ideals of F as an OS-module. Namely, if U ⊂ X is open, and⊕

i∈I
OU → O⊕nU → F|U → 0

is a presentation of F over U , then Ir|U is generated by the (n−r)× (n−r)-minors
of the matrix defining the first arrow of the presentation. In particular, Ir is locally

generated by sections, whence quasi-coherent. If U = Spec(A) and F|U = M̃ , then
Ir|U is the ideal sheaf associated to the fitting ideal Fitr(M) as in More on Algebra,
Definition 5.3. Let Zr ⊂ S be the closed subscheme corresponding to Ir.

For any morphism g : T → S we see from More on Algebra, Lemma 5.6 that FT is
locally generated by ≤ r sections if and only if Ir · OT = OT . This proves (2).

For any morphism g : T → S we see from More on Algebra, Lemma 5.7 that FT is
free of rank r if and only if Ir · OT = OT and Ir−1 · OT = 0. This proves (3).

The final statement of the lemma follows from the fact that if F is of finite presen-
tation, then each of the morphisms Zr → S is of finite presentation as Ir is locally
generated by finitely many minors. This implies that Zr−1 \ Zr is a retrocompact
open in Zr and hence the morphism Zr−1 \ Zr → Zr is of finite presentation as
well. �

Lemma 20.3 notwithstanding the following lemma does not hold if F is a finite type
quasi-coherent module. Namely, the stratification still exists but it isn’t true that
it represents the functor Fflat in general.

Lemma 20.4. Let S be a scheme. Let F be a quasi-coherent OS-module of finite
presentation. There exists a flattening stratification S′ =

∐
r≥0 Sr for F (relative

to idS : S → S) such that F|Sr is locally free of rank r. Moreover, each Sr → S is
of finite presentation.

Proof. Suppose that g : T → S is a morphism of schemes such that the pullback
FT = g∗F is flat. Then FT is a flat OT -module of finite presentation. Hence FT is
finite locally free, see Properties, Lemma 18.2. Thus T =

∐
r≥0 Tr, where FT |Tr is

locally free of rank r. This implies that

Fflat =
∐

r≥0
Fr

in the category of Zariski sheaves on Sch/S where Fr is as in Lemma 20.3. It follows
that Fflat is represented by

∐
r≥0(Zr−1 \ Zr) where Zr is as in Lemma 20.3. �

21. Flattening stratification over an Artinian ring

A flatting stratification exists when the base scheme is the spectrum of an Artinian
ring.

Lemma 21.1. Let S be the spectrum of an Artinian ring. For any scheme X over
S, and any quasi-coherent OX-module there exists a universal flattening. In fact
the universal flattening is given by a closed immersion S′ → S, and hence is a
flattening stratification for F as well.
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Proof. Choose an affine open covering X =
⋃
Ui. Then Fflat is the product of the

functors associated to each of the pairs (Ui,F|Ui). Hence it suffices to prove the
result for each (Ui,F|Ui). In the affine case the lemma follows immediately from
More on Algebra, Lemma 10.2. �

22. Flattening a map

Theorem 22.3 is the key to further flattening statements.

Lemma 22.1. Let S be a scheme. Let g : X ′ → X be a flat morphism of schemes
over S with X locally of finite type over S. Let F be a finite type OX-module which
is flat over S. If AssX/S(F) ⊂ g(X ′) then the canonical map

F −→ g∗g
∗F

is injective, and remains injective after any base change.

Proof. The final assertion means that FT → (gT )∗g
∗
TFT is injective for any mor-

phism T → S. The assumption AssX/S(F) ⊂ g(X ′) is preserved by base change,
see Divisors, Lemma 7.2 and Remark 7.3. The same holds for the assumption of
flatness and finite type. Hence it suffices to prove the injectivity of the displayed
arrow. Let K = Ker(F → g∗g

∗F). Our goal is to prove that K = 0. In order to
do this it suffices to prove that WeakAssX(K) = ∅, see Divisors, Lemma 5.5. We
have WeakAssX(K) ⊂ WeakAssX(F), see Divisors, Lemma 5.4. As F is flat we
see from Lemma 12.4 that WeakAssX(F) ⊂ AssX/S(F). By assumption any point
x of AssX/S(F) is the image of some x′ ∈ X ′. Since g is flat the local ring map
OX,x → OX′,x′ is faithfully flat, hence the map

Fx −→ g∗Fx′ = Fx ⊗OX,x OX′,x′

is injective (see Algebra, Lemma 79.11). This implies that Kx = 0 as desired. �

Lemma 22.2. Let A be a ring. Let u : M → N be a surjective map of A-modules.
If M is projective as an A-module, then there exists an ideal I ⊂ A such that for
any ring map ϕ : A→ B the following are equivalent

(1) u⊗ 1 : M ⊗A B → N ⊗A B is an isomorphism, and
(2) ϕ(I) = 0.

Proof. As M is projective we can find a projective A-module C such that F =
M ⊕ C is a free R-module. By replacing u by u ⊕ 1 : F = M ⊕ C → N ⊕ C we
see that we may assume M is free. In this case let I be the ideal of A generated
by coefficients of all the elements of Ker(u) with respect to some (fixed) basis of
M . The reason this works is that, since u is surjective and ⊗AB is right exact,
Ker(u⊗ 1) is the image of Ker(u)⊗A B in M ⊗A B. �

Theorem 22.3. In Situation 19.1 assume

(1) f is of finite presentation,
(2) F is of finite presentation, flat over S, and pure relative to S, and
(3) u is surjective.

Then Fiso is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if G is of finite presentation.
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Proof. We will use without further mention that F is universally pure over S, see
Lemma 17.3. By Lemma 19.2 and Descent, Lemmas 33.2 and 35.1 the question is
local for the étale topology on S. Hence it suffices to prove, given s ∈ S, that there
exists an étale neighbourhood of (S, s) so that the theorem holds.

Using Lemma 11.5 and after replacing S by an elementary étale neighbourhood of
s we may assume there exists a commutative diagram

X

��

X ′
g

oo

~~
S

of schemes of finite presentation over S, where g is étale, Xs ⊂ g(X ′), the schemes
X ′ and S are affine, Γ(X ′, g∗F) a projective Γ(S,OS)-module. Note that g∗F is
universally pure over S, see Lemma 16.4. Hence by Lemma 17.2 we see that the
open g(X ′) contains the points of AssX/S(F) lying over Spec(OS,s). Set

E = {t ∈ S | AssXt(Ft) ⊂ g(X ′)}.

By More on Morphisms, Lemma 20.5 E is a constructible subset of S. We have seen
that Spec(OS,s) ⊂ E. By Morphisms, Lemma 23.4 we see that E contains an open
neighbourhood of s. Hence after replacing S by a smaller affine neighbourhood of
s we may assume that AssX/S(F) ⊂ g(X ′).

Since we have assumed that u is surjective we have Fiso = Finj . From Lemma 22.1
it follows that u : F → G is injective if and only if g∗u : g∗F → g∗G is injective,
and the same remains true after any base change. Hence we have reduced to the
case where, in addition to the assumptions in the theorem, X → S is a morphism
of affine schemes and Γ(X,F) is a projective Γ(S,OS)-module. This case follows
immediately from Lemma 22.2.

To see that Z is of finite presentation if G is of finite presentation, combine Lemma
19.2 part (4) with Limits, Remark 5.2. �

Lemma 22.4. Let f : X → S be a morphism of schemes which is of finite presen-
tation, flat, and pure. Let Y be a closed subscheme of X. Let F = f∗Y be the Weil
restriction functor of Y along f , defined by

F : (Sch/S)opp → Sets, T 7→
{
{∗} if YT → XT is an isomorphism,
∅ else.

Then F is representable by a closed immersion Z → S. Moreover Z → S is of
finite presentation if Y → S is.

Proof. Let I be the ideal sheaf defining Y in X and let u : OX → OX/I be
the surjection. Then for an S-scheme T , the closed immersion YT → XT is an
isomorphism if and only if uT is an isomorphism. Hence the result follows from
Theorem 22.3. �

23. Flattening in the local case

In this section we start applying the earlier material to obtain a shadow of the
flattening stratification.
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Theorem 23.1. In Situation 19.3 assume A is henselian, B is essentially of finite
type over A, and M is a finite B-module. Then there exists an ideal I ⊂ A such that
A/I corepresents the functor Flf on the category C. In other words given a local
homomorphism of local rings ϕ : A → A′ with B′ = B ⊗A A′ and M ′ = M ⊗A A′
the following are equivalent:

(1) ∀q ∈ V (mA′B
′ + mBB

′) ⊂ Spec(B′) : M ′q is flat over A′, and
(2) ϕ(I) = 0.

If B is essentially of finite presentation over A and M of finite presentation over
B, then I is a finitely generated ideal.

Proof. Choose a finite type ring map A→ C and a finite C-module N and a prime
q of C such that B = Cq and M = Nq. In the following, when we say “the theorem
holds for (N/C/A, q) we mean that it holds for (A → B,M) where B = Cq and
M = Nq. By Lemma 19.6 the functor Flf is unchanged if we replace B by a local
ring flat over B. Hence, since A is henselian, we may apply Lemma 6.6 and assume
that there exists a complete dévissage of N/C/A at q.

Let (Ai, Bi,Mi, αi, qi)i=1,...,n be such a complete dévissage of N/C/A at q. Let
q′i ⊂ Ai be the unique prime lying over qi ⊂ Bi as in Definition 6.4. Since C → A1

is surjective and N ∼= M1 as C-modules, we see by Lemma 19.5 it suffices to prove
the theorem holds for (M1/A1/A, q

′
1). Since B1 → A1 is finite and q1 is the only

prime of B1 over q′1 we see that (A1)q′1 → (B1)q1
is finite (see Algebra, Lemma

40.11 or More on Morphisms, Lemma 33.4). Hence by Lemma 19.5 it suffices to
prove the theorem holds for (M1/B1/A, q1).

At this point we may assume, by induction on the length n of the dévissage, that
the theorem holds for (M2/B2/A, q2). (If n = 1, then M2 = 0 which is flat over
A.) Reversing the last couple of steps of the previous paragraph, using that M2

∼=
Coker(α2) as B1-modules, we see that the theorem holds for (Coker(α1)/B1/A, q1).

Let A′ be an object of C. At this point we use Lemma 10.1 to see that if (M1⊗AA′)q′
is flat over A′ for a prime q′ of B1 ⊗A A′ lying over mA′ , then (Coker(α1)⊗A A′)q′
is flat over A′. Hence we conclude that Flf is a subfunctor of the functor F ′lf
associated to the module Coker(α1)q1

over (B1)q1
. By the previous paragraph we

know F ′lf is corepresented by A/J for some ideal J ⊂ A. Hence we may replace A

by A/J and assume that Coker(α1)q1
is flat over A.

Since Coker(α1) is a B1-module for which there exist a complete dévissage of
N1/B1/A at q1 and since Coker(α1)q1

is flat over A by Lemma 10.2 we see that
Coker(α1) is free as an A-module, in particular flat as an A-module. Hence
Lemma 10.1 implies Flf (A′) is nonempty if and only if α ⊗ 1A′ is injective. Let
N1 = Im(α1) ⊂M1 so that we have exact sequences

0→ N1 →M1 → Coker(α1)→ 0 and B⊕r11 → N1 → 0

The flatness of Coker(α1) implies the first sequence is universally exact (see Algebra,
Lemma 79.5). Hence α⊗1A′ is injective if and only if B⊕r11 ⊗AA′ → N1⊗AA′ is an
isomorphism. Finally, Theorem 22.3 applies to show this functor is corepresentable
by A/I for some ideal I and we conclude Flf is corepresentable by A/I also.

To prove the final statement, suppose that A→ B is essentially of finite presentation
and M of finite presentation over B. Let I ⊂ A be the ideal such that Flf is
corepresented by A/I. Write I =

⋃
Iλ where Iλ ranges over the finitely generated
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ideals contained in I. Then, since Flf (A/I) = {∗} we see that Flf (A/Iλ) = {∗} for
some λ, see Lemma 19.4 part (2). Clearly this implies that I = Iλ. �

Remark 23.2. Here is a scheme theoretic reformulation of Theorem 23.1. Let
(X,x) → (S, s) be a morphism of pointed schemes which is locally of finite type.
Let F be a finite type quasi-coherent OX -module. Assume S henselian local with
closed point s. There exists a closed subscheme Z ⊂ S with the following property:
for any morphism of pointed schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to x ∈ Xs, and
(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is of finite presentation at x and Fx of finite presentation over
OX,x, then Z → S is of finite presentation.

At this point we can obtain some very general results completely for free from the
result above. Note that perhaps the most interesting case is when E = Xs!

Lemma 23.3. Let S be the spectrum of a henselian local ring with closed point
s. Let X → S be a morphism of schemes which is locally of finite type. Let F be
a finite type quasi-coherent OX-module. Let E ⊂ Xs be a subset. There exists a
closed subscheme Z ⊂ S with the following property: for any morphism of pointed
schemes (T, t)→ (S, s) the following are equivalent

(1) FT is flat over T at all points of the fibre Xt which map to a point of
E ⊂ Xs, and

(2) Spec(OT,t)→ S factors through Z.

Moreover, if X → S is locally of finite presentation, F is of finite presentation, and
E ⊂ Xs is closed and quasi-compact, then Z → S is of finite presentation.

Proof. For x ∈ Xs denote Zx ⊂ S the closed subscheme we found in Remark 23.2.
Then it is clear that Z =

⋂
x∈E Zx works!

To prove the final statement assume X locally of finite presentation, F of finite
presentation and Z closed and quasi-compact. First, choose finitely many affine
opens Wj ⊂ X such that E ⊂

⋃
Wj . It clearly suffices to prove the result for each

morphism Wj → S with sheaf F|Xj and closed subset E ∩ Wj . Hence we may
assume X is affine. In this case, More on Algebra, Lemma 12.4 shows that the
functor defined by (1) is “limit preserving”. Hence we can show that Z → S is of
finite presentation exactly as in the last part of the proof of Theorem 23.1. �

Remark 23.4. Tracing the proof of Lemma 23.3 to its origins we find a long and
winding road. But if we assume that

(1) f is of finite type,
(2) F is a finite type OX -module,
(3) E = Xs, and
(4) S is the spectrum of a Noetherian complete local ring.

then there is a proof relying completely on more elementary algebra as follows:
first we reduce to the case where X is affine by taking a finite affine open cover.
In this case Z exists by More on Algebra, Lemma 13.3. The key step in this
proof is constructing the closed subscheme Z step by step inside the truncations
Spec(OS,s/mns ). This relies on the fact that flattening stratifications always exist
when the base is Artinian, and the fact that OS,s = limOS,s/mns .
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24. Variants of a lemma

In this section we discuss variants of Algebra, Lemma 124.4.

Situation 24.1. Let ϕ : A→ B be a local ring homomorphism of local rings which
is essentially of finite type. Let M be a flat A-module, N a finite B-module and
u : N →M an A-module map such that u : N/mAN →M/mAM is injective.

In this situation it is our goal to show (Lemma 24.6) that u is A-universally injective,
N is of finite presentation over B, and N is flat as an A-module. If this is true, we
will say the lemma holds in the given situation.

Lemma 24.2. If in Situation 24.1 the ring A is Noetherian then the lemma holds.

Proof. Applying Algebra, Lemma 95.1 we see that u is injective and that N/u(M)
is flat over A. Then u is A-universally injective (Algebra, Lemma 38.11) and N is
A-flat (Algebra, Lemma 38.12). Since B is Noetherian in this case we see that N
is of finite presentation. �

Lemma 24.3. Let A0 be a local ring. If the lemma holds for every Situation 24.1
with A = A0, with B a localization of a polynomial algebra over A, and N of finite
presentation over B, then the lemma holds for every Situation 24.1 with A = A0.

Proof. Let A → B, u : N → M be as in Situaiton 24.1. Write B = C/I where
C is the localization of a polynomial algebra over A at a prime. If we can show
that N is finitely presented as a C-module, then a fortiori this shows that N is
finitely presented as a B-module (see Algebra, Lemma 6.4). Hence we may assume
that B is the localization of a polynomial algebra. Next, write N = B⊕n/K for
some submodule K ⊂ B⊕n. Since B/mAB is Noetherian (as it is essentially of
finite type over a field), there exist finitely many elements k1, . . . , ks ∈ K such that
for K ′ =

∑
Bki and N ′ = B⊕n/K ′ the canonical surjection N ′ → N induces an

isomorphism N ′/mAN
′ ∼= N/mAN . Now, if the lemma holds for the composition

u′ : N ′ → M , then u′ is injective, hence N ′ = N and u′ = u. Thus the lemma
holds for the original situation. �

Lemma 24.4. If in Situation 24.1 the ring A is henselian then the lemma holds.

Proof. It suffices to prove this when B is essentially of finite presentation over
A and N is of finite presentation over B, see Lemma 24.3. Let us temporarily
make the additional assumption that N is flat over A. Then N is a filtered colimit
N = colimi Fi of free A-modules Fi such that the transition maps uii′ : Fi → Fi′

are injective modulo mA, see Lemma 18.5. Each of the compositions ui : Fi → M
is A-universally injective by Lemma 7.5 wherefore u = colimui is A-universally
injective as desired.

Assume A is a henselian local ring, B is essentially of finite presentation over A,
N of finite presentation over B. By Theorem 23.1 there exists a finitely generated
ideal I ⊂ A such that N/IN is flat over A/I and such that N/I2N is not flat over
A/I2 unless I = 0. The result of the previous paragraph shows that the lemma
holds for u mod I : N/IN →M/IM over A/I. Consider the commutative diagram

0 // M ⊗A I/I2 // M/I2M // M/IM // 0

N ⊗A I/I2 //

u

OO

N/I2N //

u

OO

N/IN //

u

OO

0
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whose rows are exact by right exactness of ⊗ and the fact that M is flat over A.
Note that the left vertical arrow is the map N/IN ⊗A/I I/I2 →M/IM ⊗A/I I/I2,
hence is injective. A diagram chase shows that the lower left arrow is injective,
i.e., Tor1

A/I2(I/I2,M/I2) = 0 see Algebra, Remark 72.8. Hence N/I2N is flat over

A/I2 by Algebra, Lemma 95.8 a contradiction unless I = 0. �

The following lemma discusses the special case of Situation 24.1 where M has a
B-module structure and u is B-linear. This is the case most often used in practice
and it is significantly easier to prove than the general case.

Lemma 24.5. Let A → B be a local ring homomorphism of local rings which is
essentially of finite type. Let u : N → M be a B-module map. If N is a finite
B-module, M is flat over A, and u : N/mAN → M/mAM is injective, then u is
A-universally injective, N is of finite presentation over B, and N is flat over A.

Proof. Let A → Ah be the henselization of A. Let B′ be the localization of
B ⊗A Ah at the maximal ideal mB ⊗ Ah + B ⊗ mAh . Since B → B′ is flat (hence
faithfully flat, see Algebra, Lemma 38.16), we may replace A→ B with Ah → B′,
the module M by M ⊗B B′, the module N by N ⊗B B′, and u by u ⊗ idB′ , see
Algebra, Lemmas 80.2 and 38.8. Thus we may assume that A is a henselian local
ring. In this case our lemma follows from the more general Lemma 24.4. �

Lemma 24.6. Let ϕ : A → B be a local ring homomorphism of local rings which
is essentially of finite type. Let M be a flat A-module, N a finite B-module and
u : N →M an A-module map such that u : N/mAN →M/mAM is injective. Then
u is A-universally injective, N is of finite presentation over B, and N is flat over
A.

Proof. Omitted. Proof will be added soon. �

25. Flat finite type modules, Part III

The following result is one of the main results of this chapter.

Theorem 25.1. Let f : X → S be locally of finite type. Let F be a quasi-coherent
OX-module of finite type. Let x ∈ X with image s ∈ S. The following are equivalent

(1) F is flat at x over S, and
(2) for every x′ ∈ AssXs(Fs) which specializes to x we have that F is flat at x′

over S.

Proof. It is clear that (1) implies (2) as Fx′ is a localization of Fx for every point
which specializes to x. Set A = OS,s, B = OX,x and N = Fx. Let Σ ⊂ B be the
multiplicative subset of B of elements which act as nonzerodivisors on N/mAN .
Assumption (2) implies that Σ−1N is A-flat by the description of Spec(Σ−1N) in
Lemma 7.1. On the other hand, the map N → Σ−1N is injective modulo mA by
construction. Hence applying Lemma 24.5 we win. �

Now we apply this directly to obtain the following useful results.

Lemma 25.2. Let S be a local scheme with closed point s. Let f : X → S be
locally of finite type. Let F be a finite type OX-module. Assume that

(1) every point of AssX/S(F) specializes to a point of the closed fibre Xs
3,

3For example this holds if f is finite type and F is pure along Xs, or if f is proper.
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(2) F is flat over S at every point of Xs.

Then F is flat over S.

Proof. This is immediate from the fact that it suffices to check for flatness at
points of the relative assassin of F over S by Theorem 25.1. �

26. Universal flattening

If f : X → S is a proper, finitely presented morphism of schemes then one can find
a universal flattening of f . In this section we discuss this and some of its variants.

Lemma 26.1. In Situation 19.7. For each p ≥ 0 the functor Hp (19.7.2) is
representable by a locally closed immersion Sp → S. If F is of finite presentation,
then Sp → S is of finite presentation.

Proof. For each S we will prove the statement for all p ≥ 0 concurrently. The
functor Hp is a sheaf for the fppf topology by Lemma 19.8. Hence combining
Descent, Lemma 35.1, More on Morphisms, Lemma 37.1 , and Descent, Lemma
20.1 we see that the question is local for the étale topology on S. In particular, the
question is Zariski local on S.

For s ∈ S denote ξs the unique generic point of the fibre Xs. Note that for
every s ∈ S the restriction Fs of F is locally free of some rank p(s) ≥ 0 in some
neighbourhood of ξs. (As Xs is irreducible and smooth this follows from generic
flatness for Fs over Xs, see Algebra, Lemma 114.1 although this is overkill.) For
future reference we note that

p(s) = dimκ(ξs)(Fξs ⊗OX,ξs κ(ξs)).

In particular Hp(s)(s) is nonempty and Hq(s) is empty if q 6= p(s).

Let U ⊂ X be an open subscheme. As f : X → S is smooth, it is open. It is
immediate from (19.7.2) that the functor Hp for the pair (f |U : U → f(U),F|U )
and the functor Hp for the pair (f |f−1(f(U)),F|f−1(f(U))) are the same. Hence to
prove the existence of Sp over f(U) we may always replace X by U .

Pick s ∈ S. There exists an affine open neighbourhood U of ξs such that F|U can
be generated by at most p(s) elements. By the arguments above we see that in
order to prove the statement for Hp(s) in an neighbourhood of s we may assume
that F is generated by p(s) elements, i.e., that there exists a surjection

u : O⊕p(s)X −→ F
In this case it is clear that Hp(s) is equal to Fiso (19.1.1) for the map u (this follows
immediately from Lemma 18.1 but also from Lemma 11.1 after shrinking a bit more
so that both S and X are affine.) Thus we may apply Theorem 22.3 to see that
Hp(s) is representable by a closed immersion in a neighbourhood of s.

The result follows formally from the above. Namely, the arguments above show
that locally on S the function s 7→ p(s) is bounded. Hence we may use induction
on p = maxs∈S p(s). The functor Hp is representable by a closed immersion Sp → S
by the above. Replace S by S \ Sp which drops the maximum by at least one and
we win by induction hypothesis.

To see that Sp → S is of finite presentation if F is of finite presentation combine
Lemma 19.8 part (2) with Limits, Remark 5.2. �
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Lemma 26.2. In Situation 19.9. Let h : X ′ → X be an étale morphism. Set
F ′ = h∗F and f ′ = f ◦h. Let F ′n be (19.9.1) associated to (f ′ : X ′ → S,F ′). Then
Fn is a subfunctor of F ′n and if h(X ′) ⊃ AssX/S(F), then Fn = F ′n.

Proof. Let T → S be any morphism. Then hT : X ′T → XT is étale as a base
change of the étale morphism g. For t ∈ T denote Z ⊂ Xt the set of points where
FT is not flat over T , and similarly denote Z ′ ⊂ X ′t the set of points where F ′T is

not flat over T . As F ′T = h∗TFT we see that Z ′ = h−1
t (Z), see Morphisms, Lemma

26.11. Hence Z ′ → Z is an étale morphism, so dim(Z ′) ≤ dim(Z) (for example
by Descent, Lemma 17.2 or just because an étale morphism is smooth of relative
dimension 0). This implies that Fn ⊂ F ′n.

Finally, suppose that h(X ′) ⊃ AssX/S(F) and that T → S is a morphism such
that F ′n(T ) is nonempty, i.e., such that F ′T is flat in dimensions ≥ n over T . Pick
a point t ∈ T and let Z ⊂ Xt and Z ′ ⊂ X ′t be as above. To get a contradiction
assume that dim(Z) ≥ n. Pick a generic point ξ ∈ Z corresponding to a component
of dimension ≥ n. Let x ∈ AssXt(Ft) be a generalization of ξ. Then x maps to a
point of AssX/S(F) by Divisors, Lemma 7.2 and Remark 7.3. Thus we see that x
is in the image of hT , say x = hT (x′) for some x′ ∈ X ′T . But x′ 6∈ Z ′ as x ξ and
dim(Z ′) < n. Hence F ′T is flat over T at x′ which implies that FT is flat at x over
T (by Morphisms, Lemma 26.11). Since this holds for every such x we conclude
that FT is flat over T at ξ by Theorem 25.1 which is the desired contradiction. �

Lemma 26.3. Assume that X → S is a smooth morphism of affine schemes with
geometrically irreducible fibres of dimension d and that F is a quasi-coherent OX-
module of finite presentation. Then Fd =

∐
p=0,...,cHp for some c ≥ 0 with Fd as

in (19.9.1) and Hp as in (19.7.2).

Proof. As X is affine and F is quasi-coherent of finite presentation we know that
F can be generated by c ≥ 0 elements. Then dimκ(x)(Fx ⊗ κ(x)) in any point
x ∈ X never exceeds c. In particular Hp = ∅ for p > c. Moreover, note that there
certainly is an inclusion

∐
Hp → Fd. Having said this the content of the lemma is

that, if a base change FT is flat in dimensions ≥ d over T and if t ∈ T , then FT is
free of some rank r in an open neighbourhood U ⊂ XT of the unique generic point
ξ of Xt. Namely, then Hr contains the image of U which is an open neighbourhood
of t. The existence of U follows from More on Morphisms, Lemma 13.7. �

Lemma 26.4. In Situation 19.9. Let s ∈ S let d ≥ 0. Assume

(1) there exists a complete dévissage of F/X/S over some point s ∈ S,
(2) X is of finite presentation over S,
(3) F is an OX-module of finite presentation, and
(4) F is flat in dimensions ≥ d+ 1 over S.

Then after possibly replacing S by an open neighbourhood of s the functor Fd
(19.9.1) is representable by a monomorphism Zd → S of finite presentation.

Proof. A preliminary remark is that X, S are affine schemes and that it suffices to
prove Fd is representable by a closed subscheme on the category of affine schemes
over S. Hence throughout the proof of the lemma we work in the category of affine
schemes over S.

Let (Zk, Yk, ik, πk,Gk, αk)k=1,...,n be a complete dévissage of F/X/S over s, see
Definition 5.1. We will use induction on the length n of the dévissage. Recall that
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Yk → S is smooth with geometrically irreducible fibres, see Definition 4.1. Let dk be
the relative dimension of Yk over S. Recall that ik,∗Gk = Coker(αk) and that ik is a
closed immersion. By the definitions referenced above we have d1 = dim(Supp(Fs))
and

dk = dim(Supp(Coker(αk−1)s)) = dim(Supp(Gk,s))
for k = 2, . . . , n. It follows that d1 > d2 > . . . > dn ≥ 0 because αk is an
isomorphism in the generic point of (Yk)s.

Note that i1 is a closed immersion and F = i1,∗G1. Hence for any morphism of
schemes T → S with T affine, we have FT = i1,T,∗G1,T and i1,T is still a closed
immersion of schemes over T . Thus FT is flat in dimensions ≥ d over T if and only
if G1,T is flat in dimensions ≥ d over T . Because π1 : Z1 → Y1 is finite we see in the
same manner that G1,T is flat in dimensions ≥ d over T if and only if π1,T,∗G1,T is
flat in dimensions ≥ d over T . The same arguments work for “flat in dimensions
≥ d + 1” and we conclude in particular that π1,∗G1 is flat over S in dimensions
≥ d+ 1 by our assumption on F .

Suppose that d1 > d. It follows from the discussion above that in particular π1,∗G1

is flat over S at the generic point of (Y1)s. By Lemma 11.1 we may replace S by an
affine neighbourhood of s and assume that α1 is S-universally injective. Because
α1 is S-universally injective, for any morphism T → S with T affine, we have a
short exact sequence

0→ O⊕r1Y1,T
→ π1,T,∗G1,T → Coker(α1)T → 0

and still the first arrow is T -universally injective. Hence the set of points of (Y1)T
where π1,T,∗G1,T is flat over T is the same as the set of points of (Y1)T where
Coker(α1)T is flat over S. In this way the question reduces to the sheaf Coker(α1)
which has a complete dévissage of length n− 1 and we win by induction.

If d1 < d then Fd is represented by S and we win.

The last case is the case d1 = d. This case follows from a combination of Lemma
26.3 and Lemma 26.1. �

Theorem 26.5. In Situation 19.9. Assume moreover that f is of finite presenta-
tion, that F is an OX-module of finite presentation, and that F is pure relative to
S. Then Fn is representable by a monomorphism Zn → S of finite presentation.

Proof. The functor Fn is a sheaf for the fppf topology by Lemma 19.10. Hence
combining Descent, Lemma 35.1, More on Morphisms, Lemma 37.1 , and Descent,
Lemmas 19.29 and 19.11 we see that the question is local for the étale topology on
S.

In particular the situation is local for the Zariski topology on S and we may assume
that S is affine. In this case the dimension of the fibres of f is bounded above, hence
we see that Fn is representable for n large enough. Thus we may use descending
induction on n. Suppose that we know Fn+1 is representable by a monomorphism
Zn+1 → S of finite presentation. Consider the base change Xn+1 = Zn+1×SX and
the pullback Fn+1 of F to Xn+1. The morphism Zn+1 → S is quasi-finite as it is a
monomorphism of finite presentation, hence Lemma 15.4 implies that Fn+1 is pure
relative to Zn+1. Since Fn is a subfunctor of Fn+1 we conclude that in order to
prove the result for Fn it suffices to prove the result for the corresponding functor
for the situation Fn+1/Xn+1/Zn+1. In this way we reduce to proving the result for
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Fn in case Sn+1 = S, i.e., we may assume that F is flat in dimensions ≥ n+ 1 over
S.

Fix n and assume F is flat in dimensions ≥ n+1 over S. To finish the proof we have
to show that Fn is representable by a monomorphism Zn → S of finite presentation.
Since the question is local in the étale topology on S it suffices to show that for
every s ∈ S there exists an elementary étale neighbourhood (S′, s′) → (S, s) such
that the result holds after base change to S′. Thus by Lemma 5.8 we may assume
there exist étale morphisms hj : Yj → X, j = 1, . . . ,m such that for each i there
exists a complete dévissage of Fj/Yj/S over s, where Fj is the pullback of F to Yj
and such that Xs ⊂

⋃
hj(Yj). Note that by Lemma 26.2 the sheaves Fj are still

flat over in dimensions ≥ n+1 over S. Set W =
⋃
hj(Yj), which is a quasi-compact

open of X. As F is pure along Xs we see that

E = {t ∈ S | AssXt(Ft) ⊂W}.
contains all generalizations of s. By More on Morphisms, Lemma 20.5 E is a
constructible subset of S. We have seen that Spec(OS,s) ⊂ E. By Morphisms,
Lemma 23.4 we see that E contains an open neighbourhood of s. Hence after
shrinking S we may assume that E = S. It follows from Lemma 26.2 that it suffices
to prove the lemma for the functor Fn associated to X =

∐
Yj and F =

∐
Fj . If

Fj,n denotes the functor for Yj → S and the sheaf Fi we see that Fn =
∏
Fj,n.

Hence it suffices to prove each Fj,n is representable by some monomorphism Zj,n →
S of finite presentation, since then

Zn = Z1,n ×S . . .×S Zm,n
Thus we have reduced the theorem to the special case handled in Lemma 26.4. �

We make explicit what the theorem means in terms of universal flattenings in the
following lemma.

Lemma 26.6. Let f : X → S be a morphism of schemes. Let F be a quasi-coherent
OX-module.

(1) If f is of finite presentation, F is an OX-module of finite presentation, and
F is pure relative to S, then there exists a universal flattening S′ → S of
F . Moreover S′ → S is a monomorphism of finite presentation.

(2) If f is of finite presentation and X is pure relative to S, then there exists
a universal flattening S′ → S of X. Moreover S′ → S is a monomorphism
of finite presentation.

(3) If f is proper and of finite presentation and F is an OX-module of finite
presentation, then there exists a universal flattening S′ → S of F . Moreover
S′ → S is a monomorphism of finite presentation.

(4) If f is proper and of finite presentation then there exists a universal flat-
tening S′ → S of X.

Proof. These statements follow immediately from Theorem 26.5 applied to F0 =
Fflat and the fact that if f is proper then F is automatically pure over the base,
see Lemma 16.1. �

27. Blowing up and flatness

In this section we begin our discussion of results of the form: “After a blowup the
strict transform becomes flat”. We will use the following (more or less standard)
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notation in this section. If X → S is a morphism of schemes, F is a quasi-coherent
module on X, and T → S is a morphism of schemes, then we denote FT the
pullback of F to the base change XT = X ×S T .

Remark 27.1. Let S be a quasi-compact and quasi-separated scheme. Let f :
X → S be a morphism of schemes. Let F be a quasi-coherent module on X. Let
U ⊂ S be a quasi-compact open subscheme. Given a U -admissible blowup S′ → S
we denote X ′ the strict transform of X and F ′ the strict transform of F which
we think of as a quasi-coherent module on X ′ (via Divisors, Lemma 19.2). Let P
be a property of F/X/S which is stable under strict transform (as above) for U -
admissible blowups. The general problem in this section is: Show (under auxiliary
conditions on F/X/S) there exists a U -admissible blowup S′ → S such that the
strict transform F ′/X ′/S′ has P .

The general strategy will be to use that a composition of U -admissible blowups is
a U -admissible blowup, see Divisors, Lemma 20.2. In fact, we will make use of the
more precise Divisors, Lemma 18.12 and combine it with Divisors, Lemma 19.6.
The result is that it suffices to find a sequence of U -admissible blowups

S = S0 ← S1 ← . . .← Sn

such that, setting F0 = F and X0 = X and setting Fi/Xi equal to the strict
transform of Fi−1/Xi−1, we arrive at Fn/Xn/Sn with property P .

In particular, choose a finite type quasi-coherent sheaf of ideals I ⊂ OS such that
V (I) = S \ U , see Properties, Lemma 22.1. Let S′ → S be the blowup in I
and let E ⊂ S′ be the exceptional divisor (Divisors, Lemma 18.4). Then we see
that we’ve reduced the problem to the case where there exists an effective Cartier
divisor D ⊂ S whose support is X \ U . In particular we may assume U is scheme
theoretically dense in S (Divisors, Lemma 9.4).

Suppose that P is local on S: If S =
⋃
Si is a finite open covering by quasi-compact

opens and P holds for FSi/XSi/Si then P holds for F/X/S. In this case the general
problem above is local on S as well, i.e., if given s ∈ S we can find a quasi-compact
open neighbourhood W of s such that the problem for FW /XW /W is solvable, then
the problem is solvable for F/X/S. This follows from Divisors, Lemmas 20.3 and
20.4.

Lemma 27.2. Let R be a local ring. Let M be a finite R-module. Let k ≥ 0.
Assume that Fitk(M) = (f) for some f ∈ R. Let M ′ be the quotient of M by
{x ∈M | fx = 0}. Then M ′ can be generated by k elements.

Proof. Choose generators x1, . . . , xn ∈M corresponding to the surjection R⊕n →
M . Since R is local if a set of elements E ⊂ (f) generates (f), then some e ∈ E
generates (f), see Algebra, Lemma 19.1. Hence we may pick z1, . . . , zn−k in the
kernel of R⊕n → M such that some (n − k) × (n − k) minor of the n × (n − k)
matrix A = (zij) is (f). After renumbering the xi we may assume the first minor
det(zij)1≤i,j≤n−k generates (f), i.e., det(zij)1≤i,j≤n−k = uf for some unit u ∈ R.
Every other minor is a multiple of f . By Algebra, Lemma 14.5 there exists a
n− k × n− k matrix B such that

AB = f

(
u1n−k×n−k

C

)
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for some matrix C with coefficients in R. This implies that for every i ≤ n− k the
element yi = uxi +

∑
j cjixj is annihilated by f . Since M/

∑
Ryi is generated by

the images of xn−k+1, . . . , xn we win. �

Lemma 27.3. Let R be a ring and let f ∈ R. Let r, d ≥ 0 be integers. Let R→ S
be a ring map and let M be an S-module. Assume

(1) R→ S is of finite presentation and flat,
(2) every fibre ring S ⊗R κ(p) is geometrically integral over R,
(3) M is a finite S-module,
(4) Mf is a finitely presented Sf -module,
(5) for all p ∈ R, f 6∈ p with q = pS the module Mq is free of rank r over Sq.

Then there exists a finitely generated ideal I ⊂ R with V (f) = V (I) such that for
all a ∈ I with R′ = R[ Ia ] the quotient

M ′ = (M ⊗R R′)/a-power torsion

over S′ = S ⊗R R′ satisfies the following: for every prime p′ ⊂ R′ there exists a
g ∈ S′, g 6∈ p′S′ such that M ′g is a free S′g-module of rank r.

Proof. Choose a surjection S⊕n → M , which is possible by (1). Choose a finite
submodule K ⊂ Ker(S⊕n →M) such that S⊕n/K →M becomes an isomorphism
after inverting f . This is possible by (2). Set M1 = S⊕n/K and suppose we can
prove the lemma for M1. Say I ⊂ R is the corresponding ideal. Then for a ∈ I the
map

M ′1 = (M1 ⊗R R′)/a-power torsion −→M ′ = (M ⊗R R′)/a-power torsion

is surjective. It is also an isomorphism after inverting a in R′ as R′a = Rf , see
Algebra, Lemma 56.3. But a is a nonzerodivisor on M ′1, whence the displayed map
is an isomorphism. Thus it suffices to prove the lemma in case M is a finitely
presented S-module.

Assume M is a finitely presented S-module satisfying (3). Then J = Fitr(M) ⊂ S
is a finitely generated ideal. By Lemma 9.3 we can write S as a direct summand of
a free R-module:

⊕
α∈AR = S ⊕ C. For any element h ∈ S writing h =

∑
aα in

the decomposition above, we say that the aα are the coefficents of h. Let I ′ ⊂ R
be the ideal generated by the coefficients of the elements of J . Multiplication by
an element of S defines an R-linear map S → S, hence I ′ is generated by the
coefficients of the generators of J , i.e., I ′ is a finitely generated ideal. We claim
that I = fI ′ works.

We first check that V (f) = V (I). The inclusion V (f) ⊂ V (I) is clear. Conversely,
if f 6∈ p, then q = pS is not an element of V (J) by property (3) and the fact that
formation of fitting ideals commute with base change (More on Algebra, Lemma
5.4). Hence there is an element of J which does not map to zero in S⊗Rκ(p). Thus
there exists an element of I ′ which is not contained in p, so p 6∈ V (fI ′) = V (I).

Let a ∈ I and let p′ ⊂ R′ = R[ Ia ] be a prime ideal. Set S′ = S ⊗S R′ and
q′ = p′S′. Every element g of JS′ = Fitr(M ⊗S S′) can be written as g =

∑
α cα

for some cα ∈ IS′. Since IR′ = aR′ we can write cα = ac′α for some c′α ∈ R′

and g = (
∑
c′α)a = g′a in S′. Moreover, we can find some g0 ∈ JS′ such that

a = cα for some α. For this element g0 = g′0a where g′0 is a unit in S′q′ . Thus we

see that JS′q′ is the principal ideal generated by the nonzerodivisor a. It follows
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from Lemma 27.2 that M ′q′ can be generated by r elements. Since M ′ is finite,

there exist m1, . . . ,mr ∈ M ′ and g ∈ S′, g 6∈ q′ such that the corresponding map
(S′)⊕r →M ′ becomes surjective after inverting g.

Finally, consider the finitely generated ideal J ′ = Fitk−1(M ′). Note that J ′S′g
is generated by the coefficients of relations between m1, . . . ,mr (compatibility of
fitting ideal with base change). Thus it suffices to show that J ′ = 0, see More on
Algebra, Lemma 5.7. Since R′a = Rf (see above) and M ′a = Mf we see from (3)
that J ′a maps to zero in Sq′′ for any prime q′′ ⊂ S′ of the form q′′ = p′′S′ where
p′′ ⊂ R′a. Since S′a ⊂

∏
q′′ as above S

′
q′′ (as (S′a)p′′ ⊂ S′q′′ by Lemma 7.4) we see

that J ′R′a = 0. Since a is a nonzerodivisor in R′ we conclude that J ′ = 0 and we
win. �

Lemma 27.4. Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S be
a quasi-compact open. Assume

(1) X → S is affine, of finite presentation, flat, geometrically integral fibres,
(2) F is a module of finite type,
(3) FU is of finite presentation,
(4) F is flat over S at all generic points of fibres lying over points of U .

Then there exists a U -admissible blowup S′ → S and an open subscheme V ⊂ XS′

such that (a) the strict transform F ′ of F restricts to a finitely locally free OV -
module and (b) V → S′ is surjective.

Proof. Given F/X/S and U ⊂ S with hypotheses as in the lemma, denote P
the property “F is flat over S at all generic points of fibres”. It is clear that P is
preserved under strict transform, see Divisors, Lemma 19.3 and Morphisms, Lemma
26.6. It is also clear that P is local on S. Hence any and all observations of Remark
27.1 apply to the problem posed by the lemma.

Consider the function r : U → Z≥0 which assigns to u ∈ U the integer

r(u) = dimκ(ξu)(Fξu ⊗ κ(ξu))

where ξu is the generic point of the fibre Xu. By More on Morphisms, Lemma 13.7
and the fact that the image of an open in XS in S is open, we see that r(u) is locally
constant. Accordingly U = U0 qU1 q . . .qUc is a finite disjoint union of open and
closed subschemes where r is constant with value i on Ui. By Divisors, Lemma 20.5
we can find a U -admissible blowup to decompose S into the disjoint union of two
schemes, the first containing U0 and the second U1 ∪ . . .∪Uc. Repeating this c− 1
more times we may assume that S is a disjoint union S = S0 q S1 q . . . q Sc with
Ui ⊂ Si. Thus we may assume the function r defined above is constant, say with
value r.

By Remark 27.1 we see that we may assume that we have an effective Cartier divisor
D ⊂ S whose support is S \ U . Another application of Remark 27.1 combined
with Divisors, Lemma 9.2 tells us we may assume that S = Spec(R) and D =
Spec(R/(f)) for some nonzerodivisor f ∈ R. This case is handled by Lemma
27.3. �

Lemma 27.5. Let A→ C be a finite locally free ring map of rank d. Let h ∈ C be
an element such that Ch is étale over A. Let J ⊂ C be an ideal. Set I = Fit0(C/J)
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where we think of C/J as a finite A-module. Then ICh = JJ ′ for some ideal
J ′ ⊂ Ch. If J is finitely generated so are I and J ′.

Proof. We will use basic properties of fitting ideals, see More on Algebra, Lemma
5.4. Then IC is the fitting ideal of C/J⊗AC. Note that C → C⊗AC, c 7→ 1⊗c has
a section (the multiplication map). By assumption C → C ⊗A C is étale at every
prime in the image of Spec(Ch) under this section. Hence the multiplication map
C ⊗A Ch → Ch is étale in particular flat, see Algebra, Lemma 138.9. Hence there
exists a Ch-algebra such that C ⊗A Ch ∼= Ch ⊕ C ′ as Ch-algebras, see Algebra,
Lemma 138.10. Thus (C/J) ⊗A Ch ∼= (Ch/Jh) ⊕ C ′/I ′ as Ch-modules for some
ideal I ′ ⊂ C ′. Hence ICh = JJ ′ with J ′ = Fit0(C ′/I ′) where we view C ′/J ′ as a
Ch-module. �

Lemma 27.6. Let A → B be an étale ring map. Let a ∈ A be a nonzerodivisor.
Let J ⊂ B be a finite type ideal with V (J) ⊂ V (aB). For every q ⊂ B there exists
a finite type ideal I ⊂ A with V (I) ⊂ V (a) and g ∈ B, g 6∈ q such that IBg = JJ ′

for some finite type ideal J ′ ⊂ Bg.

Proof. We may replace B by a principal localization at an element g ∈ B, g 6∈ q.
Thus we may assume that B is standard étale, see Algebra, Proposition 138.17.
Thus we may assume B is a localization of C = A[x]/(f) for some monic f ∈ A[x]
of some degree d. Say B = Ch for some h ∈ C. Choose elements h1, . . . , hn ∈
C which generate J over B. The condition V (J) ⊂ V (aB) signifies that am =∑
bihi in B for some large m. Set hn+1 = am. As in Lemma 27.5 we take

I = Fit0(C/(h1, . . . , hr+1)). Since the module C/(h1, . . . , hr+1) is annihilated by
am we see that adm ∈ I which implies that V (I) ⊂ V (a). �

Lemma 27.7. Let S be a quasi-compact and quasi-separated scheme. Let X → S
be a morphism of schemes. Let F be a quasi-coherent module on X. Let U ⊂ S be
a quasi-compact open. Assume there exist finitely many commutative diagrams

Xi
ji
//

��

X

��
S∗i

// Si
ei // S

where

(1) ei : Si → S are quasi-compact étale morphisms and S =
⋃
ei(Si),

(2) ji : Xi → X are étale morphisms and X =
⋃
ji(Xi),

(3) S∗i → Si is an e−1
i (U)-admissible blowup such that the strict transform F∗i

of j∗i F is flat over S∗i .

Then there exists a U -admissible blowup S′ → S such that the strict transform of
F is flat over S′.

Proof. We claim that the hypotheses of the lemma are preserved under U -admissible
blowups. Namely, suppose b : S′ → S is a U -admissible blowup in the quasi-
coherent sheaf of ideals I. Moreover, let S′i → Si be the blowup in the quasi-
coherent sheaf of ideals Ji. Then the collection of morphisms e′i : S′i = Si×SS′ → S′

and j′i : X ′i = Xi ×S S′ → X ×S S′ satisfy conditions (1), (2), (3) for the strict
transform F ′ of F relative to the blowup S′ → S. First, observe that S′i is the
blowup of Si in the pullback of I, see Divisors, Lemma 18.3. Second, consider the
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blowup S′∗i → S′i of S′i in the pullback of the ideal Ji. By Divisors, Lemma 18.10
we get a commutative diagram

S′∗i
//

  ��

S′i

��
S∗i

// Si

and all the morphisms in the diagram above are blowups. Hence by Divisors,
Lemmas 19.3 and 19.6 we see

the strict transform of (j′i)
∗F ′ under S′∗i → S′i

= the strict transform of j∗i F under S′∗i → Si

= the strict transform of F ′i under S′∗i → S′i

= the pullback of F∗i via Xi ×Si S′∗i → Xi

which is therefore flat over S′∗i (Morphisms, Lemma 26.6). Having said this, we
see that all observations of Remark 27.1 apply to the problem of finding a U -
admissible blowup such that the strict transform of F becomes flat over the base
under assumptions as in the lemma. In particular, we may assume that S \ U is
the support of an effective Cartier divisor D ⊂ S. Another application of Remark
27.1 combined with Divisors, Lemma 9.2 shows we may assume that S = Spec(A)
and D = Spec(A/(a)) for some nonzerodivisor a ∈ A.

Pick an i and s ∈ Si. Lemma 27.6 implies we can find an open neighbourhood s ∈
Wi ⊂ Si and a finite type quasi-coherent ideal I ⊂ OS such that I ·OWi

= JiJ ′i for
some finite type quasi-coherent ideal J ′i ⊂ OWi

and such that V (I) ⊂ V (a) = S\U .
Since Si is quasi-compact we can replace Si by a finite collection W1, . . . ,Wn of
these opens and assume that for each i there exists a quasi-coherent sheaf of ideals
Ii ⊂ OS such that Ii · OSi = JiJ ′i for some finite type quasi-coherent ideal J ′i ⊂
OSi . As in the discussion of the first paragraph of the proof, consider the blowup
S′ of S in the product I1 . . . In (this blowup is U -admissible by construction). The
base change of S′ → S to Si is the blowup in

Ji · J ′i I1 . . . Îi . . . In
which factors through the given blowup S∗i → Si (Divisors, Lemma 18.10). In the
notation of the diagram above this means that S′∗i = S′i. Hence after replacing S
by S′ we arrive in the situation that j∗i F is flat over Si. Hence j∗i F is flat over S,
see Lemma 2.3. By Morphisms, Lemma 26.11 we see that F is flat over S. �

Theorem 27.8. Let S be a quasi-compact and quasi-separated scheme. Let X
be a scheme over S. Let F be a quasi-coherent module on X. Let U ⊂ S be a
quasi-compact open. Assume

(1) X is quasi-compact,
(2) X is locally of finite presentation over S,
(3) F is a module of finite type,
(4) FU is of finite presentation, and
(5) FU is flat over U .

Then there exists a U -admissible blowup S′ → S such that the strict transform F ′
of F is an OX×SS′-module of finite presentation and flat over S′.
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Proof. We first prove that we can find a U -admissible blowup such that the strict
transform is flat. The question is étale local on the source and the target, see Lemma
27.7 for a precise statement. In particular, we may assume that S = Spec(R) and
X = Spec(A) are affine. For s ∈ S write Fs = F|Xs (pullback of F to the fibre).
As X → S is of finite type d = maxs∈S dim(Supp(Fs)) is an integer. We will do
induction on d.

Let x ∈ X be a point of X lying over s ∈ S with dimx(Supp(Fs)) = d. Apply
Lemma 3.2 to get g : X ′ → X, e : S′ → S, i : Z ′ → X ′, and π : Z ′ → Y ′. Observe
that Y ′ → S′ is a smooth morphism of affines with geometrically irreducible fibres
of dimension d. Because the problem is étale local it suffices to prove the theorem
for g∗F/X ′/S′. Because i : Z ′ → X ′ is a closed immersion of finite presentation
(and since strict transform commutes with affine pushforward, see Divisors, Lemma
19.4) it suffices to prove the flattening result for G. Since π is finite (hence also
affine) it suffices to prove the flattening result for π∗G/Y ′/S′. Thus we may assume
that X → S is a smooth morphism of affines with geometrically irreducible fibres
of dimension d.

Next, we apply a blow up as in Lemma 27.4. Doing so we reach the situation
where there exists an open V ⊂ X surjecting onto S such that F|V is finite locally
free. Let ξ ∈ X be the generic point of Xs. Let r = dimκ(ξ) Fξ ⊗ κ(ξ). Choose a

map α : O⊕rX → F which induces an isomorphism κ(ξ)⊕r → Fξ ⊗ κ(ξ). Because
F is locally free over V we find an open neighbourhood W of ξ where α is an
isomorphism. Shrink S to an affine open neighbourhood of s such that W → S
is surjective. Say F is the quasi-coherent module associated to the A-module N .
Since F is flat over S at all generic points of fibres (in fact at all points of W ), we
see that

αp : A⊕rp → Np

is universally injective for all primes p of R, see Lemma 10.1. Hence α is universally
injective, see Algebra, Lemma 79.12. Set H = Coker(α). By Divisors, Lemma 19.7
we see that, given a U -admissible blowup S′ → S the strict transforms of F ′ and
H′ fit into an exact sequence

0→ O⊕rX×SS′ → F
′ → H′ → 0

Hence Lemma 10.1 also shows that F ′ is flat at a point x′ if and only if H′ is
flat at that point. In particular HU is flat over U and HU is a module of finite
presentation. We may apply the induction hypothesis to H to see that there exists
a U -admissible blowup such that the strict transform H′ is flat as desired.

To finish the proof of the theorem we still have to show that F ′ is a module of
finite presentation (after possibly another U -admissible blowup). This follows from
Lemma 10.11 as we can assume U ⊂ S is scheme theoretically dense (see third
paragraph of Remark 27.1). This finishes the proof of the theorem. �

28. Applications

In this section we apply some of the results above.

Lemma 28.1. Let S be a quasi-compact and quasi-separated scheme. Let X be a
scheme over S. Let U ⊂ S be a quasi-compact open. Assume

(1) X → S is of finite type and quasi-separated, and
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(2) XU → U is flat and locally of finite presentation.

Then there exists a U -admissible blowup S′ → S such that the strict transform of
X is flat and of finite presentation over S′.

Proof. Since X → S is quasi-compact and quasi-separated by assumption, the
strict transform of X with respect to a blowing up S′ → S is also quasi-compact
and quasi-separated. Hence to prove the lemma it suffices to find a U -admissible
blowup such that the strict transform is flat and locally of finite presentation. Let
X = W1 ∪ . . . ∪Wn be a finite affine open covering. If we can find a U -admissible
blowup Si → S such that the strict transform of Wi is flat and locally of finite
presentation, then there exists a U -admissble blowing up S′ → S dominating all
Si → S which does the job (see Divisors, Lemma 20.4; see also Remark 27.1).
Hence we may assume X is affine.

Assume X is affine. By Morphisms, Lemma 40.2 we can choose an immersion
j : X → An

S over S. Let V ⊂ An
S be a quasi-compact open subscheme such that j

induces a closed immersion i : X → V over S. Apply Theorem 27.8 to V → S and
the quasi-coherent module i∗OX to obtain a U -admissible blowup S′ → S such that
the strict transform of i∗OX is flat over S′ and of finite presentation over OV×SS′ .
Let X ′ be the strict transform of X with respect to S′ → S. Let i′ : X ′ → V ×SS′ be
the induced morphism. Since taking strict transform commutes with pushforward
along affine morphisms (Divisors, Lemma 19.4), we see that i′∗OX′ is flat over S
and of finite presentation as a OV×SS′ -module. This implies the lemma. �

Lemma 28.2. Let ϕ : X → S be a separated morphism of finite type with S
quasi-compact and quasi-separated. Let U ⊂ S be a quasi-compact open such that
ϕ−1U → U is an isomorphism. Then there exists a U -admissible blowup S′ → S
such that the strict transform X ′ of X is isomorphic to an open subscheme of S′.

Proof. The discussion in Remark 27.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \U is the support of an effective Cartier di-
visor D. In particular U is scheme theoretically dense in S. Next, we do another
U -admissible blowup to get to the situation where X → S is flat and of finite pre-
sentation, see Lemma 28.1. In this case the result follows from More on Morphisms,
Lemma 31.4. �

The following lemma says that a proper modification can be dominated by a blowup.

Lemma 28.3. Let ϕ : X → S be a proper morphism with S quasi-compact and
quasi-separated. Let U ⊂ S be a quasi-compact open such that ϕ−1U → U is an
isomorphism. Then there exists a U -admissible blowup S′ → S which dominates
X, i.e., such that there exists a factorization S′ → X → S of the blowup morphism.

Proof. The discussion in Remark 27.1 applies. Thus we may do a first U -admissible
blowup and assume the complement S \ U is the support of an effective Cartier
divisor D. In particular U is scheme theoretically dense in S. Choose another
U -admissible blowup S′ → S such that the strict transform X ′ of X is an open
subscheme of S′, see Lemma 28.2. Since X ′ → S′ is proper, and U ⊂ S′ is dense,
we see that X ′ = S′. Some details omitted. �
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