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1. Introduction

In this chapter we put some lemmas that have become “obsolete” (see [Mil17]).

2. Obsolete algebra lemmas

Lemma 2.1. Let M be an R-module of finite presentation. For any surjection
α : R⊕n →M the kernel of α is a finite R-module.

Proof. This is a special case of Algebra, Lemma 5.3. �

The following technical lemma says that you can lift any sequence of relations from
a fibre to the whole space of a ring map which is essentially of finite type, in a
suitable sense.

Lemma 2.2. Let R → S be a ring map. Let p ⊂ R be a prime. Let q ⊂ S be a
prime lying over p. Assume Sq is essentially of finite type over Rp. Assume given

(1) an integer n ≥ 0,
(2) a prime a ⊂ κ(p)[x1, . . . , xn],
(3) a surjective κ(p)-homomorphism

ψ : (κ(p)[x1, . . . , xn])a −→ Sq/pSq,

and
(4) elements f1, . . . , fe in Ker(ψ).
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Then there exist

(1) an integer m ≥ 0,
(2) and element g ∈ S, g 6∈ q,
(3) a map

Ψ : R[x1, . . . , xn, xn+1, . . . , xn+m] −→ Sg,

and
(4) elements f1, . . . , fe, fe+1, . . . , fe+m of Ker(Ψ)

such that

(1) the following diagram commutes

R[x1, . . . , xn+m]

Ψ

��

xn+j 7→0
// (κ(p)[x1, . . . , xn])a

ψ

��
Sg // Sq/pSq

,

(2) the element fi, i ≤ n maps to a unit times f i in the local ring

(κ(p)[x1, . . . , xn+m])(a,xn+1,...,xn+m),

(3) the element fe+j maps to a unit times xn+j in the same local ring, and
(4) the induced map R[x1, . . . , xn+m]b → Sq is surjective, where b = Ψ−1(qSg).

Proof. We claim that it suffices to prove the lemma in case R and S are local with
maximal ideals p and q. Namely, suppose we have constructed

Ψ′ : Rp[x1, . . . , xn+m] −→ Sq

and f ′1, . . . , f
′
e+m ∈ Rp[x1, . . . , xn+m] with all the required properties. Then there

exists an element f ∈ R, f 6∈ p such that each ff ′k comes from an element fk ∈
R[x1, . . . , xn+m]. Moreover, for a suitable g ∈ S, g 6∈ q the elements Ψ′(xi) are
the image of elements yi ∈ Sg. Let Ψ be the R-algebra map defined by the rule
Ψ(xi) = yi. Since Ψ(fi) is zero in the localization Sq we may after possibly replacing
g assume that Ψ(fi) = 0. This proves the claim.

Thus we may assume R and S are local with maximal ideals p and q. Pick
y1, . . . , yn ∈ S such that yi mod pS = ψ(xi). Let yn+1, . . . , yn+m ∈ S be ele-
ments which generate an R-subalgebra of which S is the localization. These exist
by the assumption that S is essentially of finite type over R. Since ψ is surjective we
may write yn+j mod pS = ψ(hj) for some hj ∈ κ(p)[x1, . . . , xn]a. Write hj = gj/d,
gj ∈ κ(p)[x1, . . . , xn] for some common denominator d ∈ κ(p)[x1, . . . , xn], d 6∈ a.
Choose lifts Gj , D ∈ R[x1, . . . , xn] of gj and d. Set y′n+j = D(y1, . . . , yn)yn+j −
Gj(y1, . . . , yn). By construction y′n+j ∈ pS. It is clear that y1, . . . , yn, y

′
n, . . . , y

′
n+m

generate an R-subalgebra of S whose localization is S. We define

Ψ : R[x1, . . . , xn+m]→ S

to be the map that sends xi to yi for i = 1, . . . , n and xn+j to y′n+j for j = 1, . . . ,m.
Properties (1) and (4) are clear by construction. Moreover the ideal b maps onto
the ideal (a, xn+1, . . . , xn+m) in the polynomial ring κ(p)[x1, . . . , xn+m].

Denote J = Ker(Ψ). We have a short exact sequence

0→ Jb → R[x1, . . . , xn+m]b → Sq → 0.
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The surjectivity comes from our choice of y1, . . . , yn, y
′
n, . . . , y

′
n+m above. This

implies that

Jb/pJb → κ(p)[x1, . . . , xn+m](a,xn+1,...,xn+m) → Sq/pSq → 0

is exact. By construction xi maps to ψ(xi) and xn+j maps to zero under the last
map. Thus it is easy to choose fi as in (2) and (3) of the lemma. �

Remark 2.3 (Projective resolutions). Let R be a ring. For any set S we let F (S)
denote the free R-module on S. Then any left R-module has the following two step
resolution

F (M ×M)⊕ F (R×M)→ F (M)→M → 0.

The first map is given by the rule

[m1,m2]⊕ [r,m] 7→ [m1 +m2]− [m1]− [m2] + [rm]− r[m].

Lemma 2.4. Let A→ B be a finite type, flat ring map with A an integral domain.
Then B is a finitely presented A-algebra.

Proof. Special case of More on Flatness, Proposition 12.9. �

Lemma 2.5. Let R be a domain with fraction field K. Let S = R[x1, . . . , xn] be a
polynomial ring over R. Let M be a finite S-module. Assume that M is flat over R.
If for every subring R ⊂ R′ ⊂ K, R 6= R′ the module M ⊗R R′ is finitely presented
over S ⊗R R′, then M is finitely presented over S.

Proof. This lemma is true because M is finitely presented even without the as-
sumption that M ⊗R R′ is finitely presented for every R′ as in the statement of
the lemma. This follows from More on Flatness, Proposition 12.9. Originally this
lemma had an erroneous proof (thanks to Ofer Gabber for finding the gap) and
was used in an alternative proof of the proposition cited. To reinstate this lemma,
we need a correct argument in case R is a local normal domain using only results
from the chapters on commutative algebra; please email stacks.project@gmail.com
if you have an argument. �

3. Lemmas related to ZMT

The lemmas in this section were originally used in the proof of the (algebraic version
of) Zariski’s Main Theorem, Algebra, Theorem 119.13.

Lemma 3.1. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) +ϕ(a1)t+ . . .+ϕ(an)tn = 0. Set un = ϕ(an), un−1 = unt+ϕ(an−1), and so
on till u1 = u2t + ϕ(a1). Then all of un, un−1, . . . , u1 and unt, un−1t, . . . , u1t are
integral over R, and the ideals (ϕ(a0), . . . , ϕ(an)) and (un, . . . , u1) of S are equal.

Proof. We prove this by induction on n. As un = ϕ(an) we conclude from Algebra,
Lemma 119.1 that unt is integral over R. Of course un = ϕ(an) is integral over R.
Then un−1 = unt + ϕ(an−1) is integral over R (see Algebra, Lemma 35.7) and we
have

ϕ(a0) + ϕ(a1)t+ . . .+ ϕ(an−1)tn−1 + un−1t
n−1 = 0.

Hence by the induction hypothesis applied to the map S′ → S where S′ is the
integral closure of R in S and the displayed equation we see that un−1, . . . , u1 and
un−1t, . . . , u1t are all in S′ too. The statement on the ideals is immediate from the
shape of the elements and the fact that u1t+ ϕ(a0) = 0. �
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Lemma 3.2. Let ϕ : R → S be a ring map. Suppose t ∈ S satisfies the relation
ϕ(a0) +ϕ(a1)t+ . . .+ϕ(an)tn = 0. Let J ⊂ S be an ideal such that for at least one
i we have ϕ(ai) 6∈ J . Then there exists a u ∈ S, u 6∈ J such that both u and ut are
integral over R.

Proof. This is immediate from Lemma 3.1 since one of the elements ui will not be
in J . �

The following two lemmas are a way of describing closed subschemes of P1
R cut out

by one (nondegenerate) equation.

Lemma 3.3. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Assume that for every prime p of R at least one coefficient of F is not in p. Let
S = R[X,Y ]/(F ) as a graded ring. Then for all n ≥ d the R-module Sn is finite
locally free of rank d.

Proof. The R-module Sn has a presentation

R[X,Y ]n−d → R[X,Y ]n → Sn → 0.

Thus by Algebra, Lemma 76.3 it is enough to show that multiplication by F induces
an injective map κ(p)[X,Y ] → κ(p)[X,Y ] for all primes p. This is clear from the
assumption that F does not map to the zero polynomial mod p. The assertion on
ranks is clear from this as well. �

Lemma 3.4. Let k be a field. Let F,G ∈ k[X,Y ] be homogeneous of degrees
d, e. Assume F,G relatively prime. Then multiplication by G is injective on S =
k[X,Y ]/(F ).

Proof. This is one way to define “relatively prime”. If you have another definition,
then you can show it is equivalent to this one. �

Lemma 3.5. Let R be a ring. Let F (X,Y ) ∈ R[X,Y ] be homogeneous of degree
d. Let S = R[X,Y ]/(F ) as a graded ring. Let p ⊂ R be a prime such that some
coefficient of F is not in p. There exists an f ∈ R f 6∈ p, an integer e, and a
G ∈ R[X,Y ]e such that multiplication by G induces isomorphisms (Sn)f → (Sn+e)f
for all n ≥ d.

Proof. During the course of the proof we may replace R by Rf for f ∈ R, f 6∈ p
(finitely often). As a first step we do such a replacement such that some coefficient
of F is invertible in R. In particular the modules Sn are now locally free of rank d for
n ≥ d by Lemma 3.3. Pick any G ∈ R[X,Y ]e such that the image of G in κ(p)[X,Y ]
is relatively prime to the image of F (X,Y ) (this is possible for some e). Apply
Algebra, Lemma 76.3 to the map induced by multiplication by G from Sd → Sd+e.
By our choice of G and Lemma 3.4 we see Sd ⊗ κ(p) → Sd+e ⊗ κ(p) is bijective.
Thus, after replacing R by Rf for a suitable f we may assume that G : Sd → Sd+e

is bijective. This in turn implies that the image of G in κ(p′)[X,Y ] is relatively
prime to the image of F for all primes p′ of R. And then by Algebra, Lemma 76.3
again we see that all the maps G : Sd → Sd+e, n ≥ d are isomorphisms. �

Remark 3.6. Let R be a ring. Suppose that we have F ∈ R[X,Y ]d and G ∈
R[X,Y ]e such that, setting S = R[X,Y ]/(F ) we have (1) Sn is finite locally free of
rank d for all n ≥ d, and (2) multiplication by G defines isomorphisms Sn → Sn+e

for all n ≥ d. In this case we may define a finite, locally free R-algebra A as follows:
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(1) as an R-module A = Sed, and
(2) multiplication A×A→ A is given by the rule that H1H2 = H3 if and only

if GdH3 = H1H2 in S2ed.

This makes sense because multiplication by Gd induces a bijective map Sde → S2de.
It is easy to see that this defines a ring structure. Note the confusing fact that the
element Gd defines the unit element of the ring A.

Lemma 3.7. Let R be a ring, let f ∈ R. Suppose we have S, S′ and the solid
arrows forming the following commutative diagram of rings

S′′

!!

��

R //

==

��

S

��
Rf // S′ // Sf

Assume that Rf → S′ is finite. Then we can find a finite ring map R → S′′ and
dotted arrows as in the diagram such that S′ = (S′′)f .

Proof. Namely, suppose that S′ is generated by xi over Rf , i = 1, . . . , w. Let
Pi(t) ∈ Rf [t] be a monic polynomial such that Pi(xi) = 0. Say Pi has degree
di > 0. Write Pi(t) = tdi +

∑
j<di

(aij/f
n)tj for some uniform n. Also write the

image of xi in Sf as gi/f
n for suitable gi ∈ S. Then we know that the element ξi =

fndigdii +
∑
j<di

fn(di−j)aijg
j
i of S is killed by a power of f . Hence upon increasing

n to n′, which replaces gi by fn
′−ngi we may assume ξi = 0. Then S′ is generated

by the elements fnxi, each of which is a zero of the monic polynomial Qi(t) = tdi +∑
j<di

fn(di−j)aijt
j with coefficients in R. Also, by construction Qi(f

ngi) = 0 in S.

Thus we get a finite R-algebra S′′ = R[z1, . . . , zw]/(Q1(z1), . . . , Qw(zw)) which fits
into a commutative diagram as above. The map α : S′′ → S maps zi to fngi and
the map β : S′′ → S′ maps zi to fnxi. It may not yet be the case that β induces an
isomorphism (S′′)f ∼= S′. For the moment we only know that this map is surjective.
The problem is that there could be elements h/fn ∈ (S′′)f which map to zero in S′

but are not zero. In this case β(h) is an element of S such that fNβ(h) = 0 for some
N . Thus fNh is an element ot the ideal J = {h ∈ S′′ | α(h) = 0 and β(h) = 0} of
S′′. OK, and it is easy to see that S′′/J does the job. �

4. Formally smooth ring maps

Lemma 4.1. Let R be a ring. Let S be a R-algebra. If S is of finite presentation
and formally smooth over R then S is smooth over R.

Proof. See Algebra, Proposition 133.13. �

5. Simplicial methods

Lemma 5.1. Assumptions and notation as in Simplicial, Lemma 31.1. There
exists a section g : U → V to the morphism f and the composition g◦f is homotopy
equivalent to the identity on V . In particular, the morphism f is a homotopy
equivalence.
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http://localhost:8080/tag/00TO
http://localhost:8080/tag/01AA


6 OBSOLETE

Proof. Immediate from Simplicial, Lemmas 31.1 and 29.8. �

6. Obsolete lemmas on schemes

Lemmas that seem superfluous.

Lemma 6.1. Let (R,m, κ) be a local ring. Let X ⊂ Pn
R be a closed subscheme.

Assume that R = Γ(X,OX). Then the special fibre Xk is geometrically connected.

Proof. This is a special case of More on Morphisms, Theorem 36.4. �

Lemma 6.2. Let X be a Noetherian scheme. Let Z0 ⊂ X be an irreducible closed
subset with generic point ξ. Let P be a property of coherent sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ Z0 ⊂ X, Z 6= Z0 and every quasi-

coherent sheaf of ideals I ⊂ OZ we have P for (Z → X)∗I.
(4) There exists some coherent sheaf G on X such that

(a) Supp(G) = Z0,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf F on X whose support is contained
in Z0.

Proof. The proof is a variant on the proof of Cohomology of Schemes, Lemma
12.5. In exactly the same manner as in that proof we see that any coherent sheaf
whose support is strictly contained in Z0 has property P.

Consider a coherent sheaf G as in (3). By Cohomology of Schemes, Lemma 12.2
there exists a sheaf of ideals I on Z0 and a short exact sequence

0→ ((Z0 → X)∗I)
⊕r → G → Q→ 0

where the support of Q is strictly contained in Z0. In particular r > 0 and I
is nonzero because the support of G is equal to Z. Since Q has property P we
conclude that also ((Z0 → X)∗I)

⊕r
has property P. By (2) we deduce property P

for (Z0 → X)∗I. Slotting this into the proof of Cohomology of Schemes, Lemma
12.5 at the appropriate point gives the lemma. Some details omitted. �

Lemma 6.3. Let X be a Noetherian scheme. Let P be a property of coherent
sheaves on X such that

(1) For any short exact sequence of coherent sheaves if two out of three of them
have property P then so does the third.

(2) If P holds for a direct sum of coherent sheaves then it holds for both.
(3) For every integral closed subscheme Z ⊂ X with generic point ξ there exists

some coherent sheaf G such that
(a) Supp(G) = Z,
(b) Gξ is annihilated by mξ, and
(c) property P holds for G.

Then property P holds for every coherent sheaf on X.

Proof. This follows from Lemma 6.2 in exactly the same way that Cohomology of
Schemes, Lemma 12.6 follows from Cohomology of Schemes, Lemma 12.5. �

http://localhost:8080/tag/03H1
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7. Functor of quotients

Lemma 7.1. Let S = Spec(R) be an affine scheme. Let X be an algebraic space
over S. Let qi : F → Qi, i = 1, 2 be surjective maps of quasi-coherent OX-modules.
Assume Q1 flat over S. Let T → S be a quasi-compact morphism of schemes such
that there exists a factorization

FT
q2,T

""

q1,T

||
Q1,T Q2,T

oo

Then exists a closed subscheme Z ⊂ S such that (a) T → S factors through Z
and (b) q1,Z factors through q2,Z . If Ker(q2) is a finite type OX-module and X
quasi-compact, then we can take Z → S of finite presentation.

Proof. Apply Quot, Lemma 7.5 to the map Ker(q2)→ Q1. �

8. Spaces and fpqc coverings

The material here was made obsolete by Gabber’s argument showing that alge-
braic spaces satisfy the sheaf condition with respect to fpqc coverings. Please visit
Properties of Spaces, Section 14.

Lemma 8.1. Let S be a scheme. Let X be an algebraic space over S. Let {fi :
Ti → T}i∈I be a fpqc covering of schemes over S. Then the map

MorS(T,X) −→
∏

i∈I
MorS(Ti, X)

is injective.

Proof. Immediate consequence of Properties of Spaces, Proposition 14.1. �

Lemma 8.2. Let S be a scheme. Let X be an algebraic space over S. Let X =⋃
j∈J Xj be a Zariski covering, see Spaces, Definition 12.5. If each Xj satisfies the

sheaf property for the fpqc topology then X satisfies the sheaf property for the fpqc
topology.

Proof. This is true because all algebraic spaces satisfy the sheaf property for the
fpqc topology, see Properties of Spaces, Proposition 14.1. �

Lemma 8.3. Let S be a scheme. Let X be an algebraic space over S. If X is
Zariski locally quasi-separated over S, then X satisfies the sheaf condition for the
fpqc topology.

Proof. Immediate consequence of the general Properties of Spaces, Proposition
14.1. �

Remark 8.4. This remark used to discuss to what extend the original proof of
Lemma 8.3 (of December 18, 2009) generalizes.
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9. Very reasonable algebraic spaces

Material that is somewhat obsolete.

Lemma 9.1. Let S be a scheme. Let X be a reasonable algebraic space over S.
Then |X| is Kolmogorov (see Topology, Definition 7.4).

Proof. Follows from the definitions and Decent Spaces, Lemma 10.5. �

In the rest of this section we make some remarks about very reasonable algebraic
spaces. If there exists a scheme U and a surjective, étale, quasi-compact morphism
U → X, then X is very reasonable, see Decent Spaces, Lemma 4.7.

Lemma 9.2. A scheme is very reasonable.

Proof. This is true because the identity map is a quasi-compact, surjective étale
morphism. �

Lemma 9.3. Let S be a scheme. Let X be an algebraic space over S. If there
exists a Zariski open covering X =

⋃
Xi such that each Xi is very reasonable, then

X is very reasonable.

Proof. This is case (ε) of Decent Spaces, Lemma 5.2. �

Lemma 9.4. An algebraic space which is Zariski locally quasi-separated is very
reasonable. In particular any quasi-separated algebraic space is very reasonable.

Proof. This is one of the implications of Decent Spaces, Lemma 5.1. �

Lemma 9.5. Let S be a scheme. Let X, Y be algebraic spaces over S. Let Y → X
be a representable morphism. If X is very reasonable, so is Y .

Proof. This is case (ε) of Decent Spaces, Lemma 5.3. �

Remark 9.6. Very reasonable algebraic spaces form a strictly larger collection
than Zariski locally quasi-separated algebraic spaces. Consider an algebraic space
of the form X = [U/G] (see Spaces, Definition 14.4) where G is a finite group
acting without fixed points on a non-quasi-separated scheme U . Namely, in this
case U ×X U = U ×G and clearly both projections to U are quasi-compact, hence
X is very reasonable. On the other hand, the diagonal U ×X U → U × U is not
quasi-compact, hence this algebraic space is not quasi-separated. Now, take U
the infinite affine space over a field k of characteristic 6= 2 with zero doubled, see
Schemes, Example 21.4. Let 01, 02 be the two zeros of U . Let G = {+1,−1}, and
let −1 act by −1 on all coordinates, and by switching 01 and 02. Then [U/G] is
very reasonable but not Zariski locally quasi-separated (details omitted).

Warning: The following lemma should be used with caution, as the schemes Ui in
it are not necessarily separated or even quasi-separated.

Lemma 9.7. Let S be a scheme. Let X be a very reasonable algebraic space over
S. There exists a set of schemes Ui and morphisms Ui → X such that

(1) each Ui is a quasi-compact scheme,
(2) each Ui → X is étale,
(3) both projections Ui ×X Ui → Ui are quasi-compact, and
(4) the morphism

∐
Ui → X is surjective (and étale).

http://localhost:8080/tag/03IN
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Proof. Decent Spaces, Definition 6.1 says that there exist Ui → X such that (2),
(3) and (4) hold. Fix i, and set Ri = Ui ×X Ui, and denote s, t : Ri → Ui the
projections. For any affine open W ⊂ Ui the open W ′ = t(s−1(W )) ⊂ Ui is a
quasi-compact Ri-invariant open (see Groupoids, Lemma 17.2). Hence W ′ is a
quasi-compact scheme, W ′ → X is étale, and W ′ ×X W ′ = s−1(W ′) = t−1(W ′) so
both projections W ′ ×X W ′ → W ′ are quasi-compact. This means the family of
W ′ → X, where W ⊂ Ui runs through the members of affine open coverings of the
Ui gives what we want. �

10. Variants of cotangent complexes for schemes

This section gives an alternative construction of the cotangent complex of a mor-
phism of schemes. This section is currently in the obsolete chapter as we can get
by with the easier version discussed in Cotangent, Section 24 for applications.

Let f : X → Y be a morphism of schemes. Let CX/Y be the category whose objects
are commutative diagrams

(10.0.1)

X

��

Uoo

��

i
// A

��
Y Voo

of schemes where

(1) U is an open subscheme of X,
(2) V is an open subscheme of Y , and
(3) there exists an isomorphism A = V × Spec(P ) over V where P is a poly-

nomial algebra over Z (on some set of variables).

In other words, A is an (infinite dimensional) affine space over V . Morphisms are
given by commutative diagrams.

Notation. An object of CX/Y , i.e., a diagram (10.0.1), is often denoted U → A
where it is understood that (a) U is an open subscheme of X, (b) U → A is a
morphism over Y , (c) the image of the structure morphism A → Y is an open
V ⊂ Y , and (d) A→ V is an affine space. We’ll write U → A/V to indicate V ⊂ Y
is the image of A → Y . Recall that XZar denotes the small Zariski site X. There
are forgetful functors

CX/Y → XZar, (U → A) 7→ U and CX/Y 7→ YZar, (U → A/V ) 7→ V.

Lemma 10.1. Let X → Y be a morphism of schemes.

(1) The category CX/Y is fibred over XZar.
(2) The category CX/Y is fibred over YZar.
(3) The category CX/Y is fibred over the category of pairs (U, V ) where U ⊂ X,

V ⊂ Y are open and f(U) ⊂ V .

Proof. Ad (1). Given an object U → A of CX/Y and a morphism U ′ → U of
XZar consider the object i′ : U ′ → A of CX/Y where i′ is the composition of i and
U ′ → U . The morphism (U ′ → A) → (U → A) of CX/Y is strongly cartesian over
XZar.

Ad (2). Given an object U → A/V and V ′ → V we can set U ′ = U ∩ f−1(V ′) and
A′ = V ′×V A to obtain a strongly cartesian morphism (U ′ → A′)→ (U → A) over
V ′ → V .

http://localhost:8080/tag/08T7
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Ad (3). Denote (X/Y )Zar the category in (3). Given U → A/V and a morphism
(U ′, V ′)→ (U, V ) in (X/Y )Zar we can consider A′ = V ′×V A. Then the morphism
(U ′ → A′/V ′)→ (U → A/V ) is strongly cartesian in CX/Y over (X/Y )Zar. �

We obtain a topology τX on CX/Y by using the topology inherited from XZar (see
Stacks, Section 10). If not otherwise stated this is the topology on CX/Y we will
consider. To be precise, a family of morphisms {(Ui → Ai) → (U → A)} is a
covering of CX/Y if and only if

(1) U =
⋃
Ui, and

(2) Ai = A for all i.

We obtain the same collection of sheaves if we allow Ai ∼= A in (2). The functor u
defines a morphism of topoi π : Sh(CX/Y )→ Sh(XZar).

The site CX/Y comes with several sheaves of rings.

(1) The sheaf O given by the rule (U → A) 7→ O(A).
(2) The sheaf OX = π−1OX given by the rule (U → A) 7→ O(U).
(3) The sheaf OY given by the rule (U → A/V ) 7→ O(V ).

We obtain morphisms of ringed topoi

(10.1.1)

(Sh(CX/Y ),OX)
i
//

π

��

(Sh(CX/Y ),O)

(Sh(XZar),OX)

The morphism i is the identity on underlying topoi and i] : O → OX is the
obvious map. The map π is a special case of Cohomology on Sites, Situation
28.1. An important role will be played in the following by the derived functors
Li∗ : D(O) −→ D(OX) left adjoint to Ri∗ = i∗ : D(OX) → D(O) and Lπ! :
D(OX) −→ D(OX) left adjoint to π∗ = π−1 : D(OX)→ D(OX).

Remark 10.2. We obtain a second topology τY on CX/Y by taking the topology
inherited from YZar. There is a third topology τX→Y where a family of morphisms
{(Ui → Ai) → (U → A)} is a covering if and only if U =

⋃
Ui, V =

⋃
Vi

and Ai ∼= Vi ×V A. This is the topology inherited from the topology on the site
(X/Y )Zar whose underlying category is the category of pairs (U, V ) as in Lemma
10.1 part (3). The coverings of (X/Y )Zar are families {(Ui, Vi) → (U, V )} such
that U =

⋃
Ui and V =

⋃
Vi. There are morphisms of topoi

Sh(CX/Y ) = Sh(CX/Y , τX) Sh(CX/Y , τX→Y )oo // Sh(CX/Y , τY )

(recall that τX is our “default” topology). The pullback functors for these arrows
are sheafification and pushforward is the identity on underlying presheaves. The
diagram of topoi

Sh(XZar)

f

��

Sh(CX/Y )
π
oo Sh(CX/Y , τX→Y )oo

��
Sh(YZar) Sh(CX/Y , τY )oo

is not commutative. Namely, the pullback of a nonzero abelian sheaf on Y is a
nonzero abelian sheaf on (CX/Y , τX→Y ), but we can certainly find examples where
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such a sheaf pulls back to zero on X. Note that any presheaf F on YZar gives a
sheaf F on CY/X by the rule which assigns to (U → A/V ) the set F(V ). Even

if F happens to be a sheaf it isn’t true in general that F = π−1f−1F . This is
related to the noncommutativity of the diagram above, as we can describe F as
the pushforward of the pullback of F to Sh(CX/Y , τX→Y ) via the lower horizontal
and right vertical arrows. An example is the sheaf OY . But what is true is that
there is a map F → π−1f−1F which is transformed (as we shall see later) into an
isomorphism after applying π!.

11. Deformations and obstructions of flat modules

In this section we sketch a construction of a deformation theory for the stack of
coherent sheaves for any algebraic space X over a ring Λ. This material is obsolete
due to the improved discussion in Quot, Section 6.

Our setup will be the following. We assume given

(1) a ring Λ,
(2) an algebraic space X over Λ,
(3) a Λ-algebra A, set XA = X ×Spec(Λ) Spec(A), and
(4) a finitely presented OXA

-module F flat over A.

In this situation we will consider all possible surjections

0→ I → A′ → A→ 0

where A′ is a Λ-algebra whose kernel I is an ideal of square zero in A′. Given A′

we obtain a first order thickening XA → XA′ of algebraic spaces over Spec(Λ). For
each of these we consider the problem of lifting F to a finitely presented module F ′
on XA′ flat over A′. We would like to replicate the results of Deformation Theory,
Lemma 11.1 in this setting.

To be more precise let Lift(F , A′) denote the category of pairs (F ′, α) where F ′ is a
finitely presented module on XA′ flat over A′ and α : F ′|XA

→ F is an isomorphism.
Morphisms (F ′1, α1) → (F ′2, α2) are isomorphisms F ′1 → F ′2 which are compatible
with α1 and α2. The set of isomorphism classes of Lift(F , A′) is denoted Lift(F , A′).

Let G be a sheaf of OX ⊗Λ A-modules on Xétale flat over A. We introduce the
category Lift(G, A′) of pairs (G′, β) where G′ is a sheaf of OX ⊗Λ A

′-modules flat
over A′ and β is an isomorphism G′ ⊗A′ A→ G.

Lemma 11.1. Notation and assumptions as above. Let p : XA → X denote the
projection. Given A′ denote p′ : XA′ → X the projection. The functor p′∗ induces
an equivalence of categories between

(1) the category Lift(F , A′), and
(2) the category Lift(p∗F , A′).

Proof. FIXME. �

Let H be a sheaf of O⊗ΛA-modules on CX/Λ flat over A. We introduce the category
LiftO(H, A′) whose objects are pairs (H′, γ) where H′ is a sheaf of O⊗ΛA

′-modules
flat over A′ and γ : H′ ⊗A A′ → H is an isomorphism of O ⊗Λ A-modules.

Let G be a sheaf of OX⊗ΛA-modules on Xétale flat over A. Consider the morphisms
i and π of Cotangent, Equation (26.1.1). Denote G = π−1(G). It is simply given
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by the rule (U → A) 7→ G(U) hence it is a sheaf of OX ⊗Λ A-modules. Denote i∗G
the same sheaf but viewed as a sheaf of O ⊗Λ A-modules.

Lemma 11.2. Notation and assumptions as above. The functor π! induces an
equivalence of categories between

(1) the category LiftO(i∗G, A′), and
(2) the category Lift(G, A′).

Proof. FIXME. �

Lemma 11.3. Notation and assumptions as in Lemma 11.2. Consider the object

L = L(Λ, X,A,G) = Lπ!(Li
∗(i∗(G)))

of D(OX ⊗Λ A). Given a surjection A′ → A of Λ-algebras with square zero kernel
I we have

(1) The category Lift(G, A′) is nonempty if and only if a certain class ξ ∈
Ext2OX⊗A(L,G ⊗A I) is zero.

(2) If Lift(G, A′) is nonempty, then Lift(G, A′) is principal homogeneous under
Ext1OX⊗A(L,G ⊗A I).

(3) Given a lift G′, the set of automorphisms of G′ which pull back to idG is
canonically isomorphic to Ext0OX⊗A(L,G ⊗A I).

Proof. FIXME. �

Finally, we put everything together as follows.

Proposition 11.4. With Λ, X, A, F as above. There exists a canonical object
L = L(Λ, X,A,F) of D(XA) such that given a surjection A′ → A of Λ-algebras
with square zero kernel I we have

(1) The category Lift(F , A′) is nonempty if and only if a certain class ξ ∈
Ext2XA

(L,F ⊗A I) is zero.
(2) If Lift(F , A′) is nonempty, then Lift(F , A′) is principal homogeneous under

Ext1XA
(L,F ⊗A I).

(3) Given a lift F ′, the set of automorphisms of F ′ which pull back to idF is
canonically isomorphic to Ext0XA

(L,F ⊗A I).

Proof. FIXME. �

Lemma 11.5. In the situation of Proposition 11.4, if X → Spec(Λ) is locally of
finite type and Λ is Noetherian, then L is pseudo-coherent.

Proof. FIXME. �

12. Modifications

Here are some obsolete results on the category of Restricted Power Series, Equation
(13.0.1). Please visit Restricted Power Series, Section 13 for the current material.

Lemma 12.1. Let (A,m, κ) be a Noetherian local ring. The category of Restricted
Power Series, Equation (13.0.1) for A is equivalent to the category Restricted Power
Series, Equation (13.0.1) for the henselization Ah of A.

Proof. This is a special case of Restricted Power Series, Lemma 13.2. �
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13. Duplicate references

This section is a place where we collect duplicates.

Lemma 13.1. Let S be a scheme. Let X be an algebraic space over S. The map
{Spec(k)→ X monomorphism} → |X| is injective.

Proof. This is a duplicate of Properties of Spaces, Lemma 4.11. �

Theorem 13.2. Let S = Spec(K) with K a field. Let s be a geometric point of S.
Let G = Galκ(s) denote the absolute Galois group. Then there is an equivalence of
categories Sh(Sétale)→ G-Sets, F 7→ Fs.

Proof. This is a duplicate of Étale Cohomology, Theorem 57.3. �

Remark 13.3. You got here because of a duplicate tag. Please see Formal Defor-
mation Theory, Section 11 for the actual content.
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