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1. Introduction

The goal of this chapter is to discuss pushouts in the category of algebraic spaces.
This can be done with varying assumptions. A fairly general pushout construction
is given in [TT13]: one of the morphisms is affine and the other is a closed immer-
sion. We discuss a particular case of this in Section 2 where we assume one of the
morphisms is affine and the other is a thickening, a situation that often comes up
in deformation theory.

In Sections 3 and 4 we discuss diagrams

f−1(X \ Z) //

��

Y

f

��
X \ Z // X

where f is a quasi-compact and quasi-separated morphism of algebraic spaces,
Z → X is a closed immersion of finite presentation, the map f−1(Z) → Z is an
isomorphism, and f is flat along f−1(Z). In this situation we glue quasi-coherent
modules on X \ Z and Y (in Section 3) to quasi-coherent modules on X and we
glue algebraic spaces over X \ Z and Y (in Section 4) to algebraic spaces over X.

In Section 5 we discuss how proper birational morphisms of Noetherian algebraic
spaces give rise to coequalizer diagrams in algebraic spaces in some sense.

2. Pushouts in the category of algebraic spaces

This section is analogue of More on Morphisms, Section 11. We first prove a general
result on colimits and algebraic spaces. To do this we discuss a bit of notation. Let
S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram (see Categories,
Section 14). For each i we may consider the small étale site Xi,étale. For each
morphism i→ j of I we have the morphism Xi → Xj and hence a pullback functor
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2 PUSHOUTS OF ALGEBRAIC SPACES

Xj,étale → Xi,étale. Hence we obtain a pseudo functor from Iopp into the 2-category
of categories. Denote

limiXi,étale

the 2-limit (see insert future reference here). What does this mean concretely? An
object of this limit is a system of étale morphisms Ui → Xi over I such that for
each i→ j in I the diagram

Ui
//

��

Uj

��
Xi

// Xj

is cartesian. Morphisms between objects are defined in the obvious manner. Sup-
pose that fi : Xi → T is a family of morphisms such that for each i→ j the com-
position Xi → Xj → T is equal to fi. Then we get a functor Tétale → limXi,étale.
With this notation in hand we can formulate our lemma.

Lemma 2.1. Let S be a scheme. Let I → (Sch/S)fppf , i 7→ Xi be a diagram as
above. Assume that

(1) X = colimXi exists in the category of schemes,
(2)

∐
Xi → X is surjective,

(3) if U → X is étale and Ui = Xi ×X U , then U = colimUi in the category of
schemes, and

(4) the functor Xétale → limXi,étale is an equivalence.

Then X = colimXi in the category of algebraic spaces over S also.

Proof. Let Z be an algebraic space over S. Suppose that fi : Xi → Z is a family
of morphisms such that for each i → j the composition Xi → Xj → Z is equal to
fi. We have to construct a morphism of algebraic spaces f : X → Z such that we
can recover fi as the composition Xi → X → Z. Let W → Z be a surjective étale
morphism of a scheme to Z. For each i set Ui = W×Z,fiXi and denote hi : Ui →W
the projection. Then Ui → Xi forms an object of limXi,étale. By assumption (4) we
can find an étale morphism U → X and (functorial) isomorphisms Ui = Xi ×X U .
By assumption (3) there exists a morphism h : U →W such that the compositions
Ui → U →W are hi. Let g : U → Z be the composition of h with the map W → Z.
To finish the proof we have to show that g : U → Z descends to a morphism X → Z.
To do this, consider the morphism (h, h) : U ×X U → W ×Z W . Composing with
Ui ×Xi

Ui → U ×X U we obtain (hi, hi) which factors through W ×Z W . Since
U ×X U is the colimit of the schemes Ui ×Xi

Ui by (3) we see that (h, h) factors
through W ×Z W . Hence the two compositions U ×X U → U → W → Z are
equal. Because each Ui → Xi is surjective and assumption (2) we see that U → X
is surjective. As Z is a sheaf for the étale topology, we conclude that g : U → Z
descends to f : X → Z as desired. �

Lemma 2.2. Let S be a scheme. Let X → X ′ be a thickening of schemes over S
and let X → Y be an affine morphism of schemes over S. Let Y ′ = Y qXX

′ be the
pushout in the category of schemes (see More on Morphisms, Lemma 11.1). Then
Y ′ is also a pushout in the category of algebraic spaces over S.

Proof. This is an immediate consequence of Lemma 2.1 and More on Morphisms,
Lemmas 11.1, 11.2, and 11.4. �
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Lemma 2.3. Let S be a scheme. Let X → X ′ be a thickening of algebraic spaces
over S and let X → Y be an affine morphism of algebraic spaces over S. Then
there exists a pushout

X //

f

��

X ′

f ′

��
Y // Y qX X ′

in the category of algebraic spaces over S. Moreover Y ′ = Y qX X ′ is a thickening
of Y and

OY ′ = OY ×f∗OX
f ′∗OX′

as sheaves on Yétale = (Y ′)étale.

Proof. Choose a scheme V and a surjective étale morphism V → Y . Set U =
V ×Y X. This is a scheme affine over V with a surjective étale morphism U → X.
By More on Morphisms of Spaces, Lemma 8.6 there exists a U ′ → X ′ surjective
étale with U = U ′ ×X′ X. In particular the morphism of schemes U → U ′ is
a thickening too. Apply More on Morphisms, Lemma 11.1 to obtain a pushout
V ′ = V qU U

′ in the category of schemes.

We repeat this procedure to construct a pushout

U ×X U

��

// U ′ ×X′ U
′

��
V ×Y V // R′

in the category of schemes. Consider the morphisms

U ×X U → U → V ′, U ′ ×X′ U
′ → U ′ → V ′, V ×Y V → V → V ′

where we use the first projection in each case. Clearly these glue to give a morphism
t′ : R′ → V ′ which is étale by More on Morphisms, Lemma 11.4. Similarly, we
obtain s′ : R′ → V ′ étale. The morphism j′ = (t′, s′) : R′ → V ′×S V

′ is unramified
(as t′ is étale) and a monomorphism when restricted to the closed subscheme V ×Y

V ⊂ R′. As V ×Y V ⊂ R′ is a thickening it follows that j′ is a monomorphism too.
Finally, j′ is an equivalence relation as we can use the functoriality of pushouts of
schemes to construct a morphism c′ : R′×s′,V ′,t′ R

′ → R′ (details omitted). At this
point we set Y ′ = U ′/R′, see Spaces, Theorem 10.5.

We have morphisms X ′ = U ′/U ′ ×X′ U
′ → V ′/R′ = Y ′ and Y = V/V ×Y V →

V ′/R′ = Y ′. By construction these fit into the commutative diagram

X //

f

��

X ′

f ′

��
Y // Y ′

Since Y → Y ′ is a thickening we have Yétale = (Y ′)étale, see More on Morphisms of
Spaces, Lemma 8.6. The commutativity of the diagram gives a map of sheaves

OY ′ −→ OY ×f∗OX
f ′∗OX′

on this set. By More on Morphisms, Lemma 11.1 this map is an isomorphism when
we restrict to the scheme V ′, hence it is an isomorphism.

http://localhost:8080/tag/07VX


4 PUSHOUTS OF ALGEBRAIC SPACES

To finish the proof we show that the diagram above is a pushout in the category of
algebraic spaces. To see this, let Z be an algebraic space and let a′ : X ′ → Z and
b : Y → Z be morphisms of algebraic spaces. By Lemma 2.2 we obtain a unique
morphism h : V ′ → Z fitting into the commutative diagrams

U ′

��

// V ′

h

��
X ′

a′ // Z

and

V //

��

V ′

h

��
Y

b // Z

The uniqueness shows that h◦t′ = h◦s′. Hence h factors uniquely as V ′ → Y ′ → Z
and we win. �

In the following lemma we use the fibre product of categories as defined in Cate-
gories, Example 29.3.

Lemma 2.4. Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S.
Let Y ′ = Y qX X ′ be the pushout (see Lemma 2.3). Base change gives a functor

F : (Spaces/Y ′) −→ (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

given by V ′ 7−→ (V ′×Y ′Y, V
′×Y ′X

′, 1) which sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′)

(Sch/X ′). The functor F has a left adjoint

G : (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′) −→ (Spaces/Y ′)

which sends the triple (V,U ′, ϕ) to the pushout V q(V×Y X) U
′ in the category of

algebraic spaces over S. The functor G sends (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) into
(Sch/Y ′).

Proof. The proof is completely formal. Since the morphisms X → X ′ and X → Y
are representable it is clear that F sends (Sch/Y ′) into (Sch/Y )×(Sch/Y ′) (Sch/X ′).

Let us construct G. Let (V,U ′, ϕ) be an object of the fibre product category.
Set U = U ′ ×X′ X. Note that U → U ′ is a thickening. Since ϕ : V ×Y X →
U ′ ×X′ X = U is an isomorphism we have a morphism U → V over X → Y
which identifies U with the fibre product X ×Y V . In particular U → V is affine,
see Morphisms of Spaces, Lemma 20.5. Hence we can apply Lemma 2.3 to get a
pushout V ′ = V qU U

′. Denote V ′ → Y ′ the morphism we obtain in virtue of the
fact that V ′ is a pushout and because we are given morphisms V → Y and U ′ → X ′

agreeing on U as morphisms into Y ′. Setting G(V,U ′, ϕ) = V ′ gives the functor G.

If (V,U ′, ϕ) is an object of (Sch/Y ) ×(Sch/Y ′) (Sch/X ′) then U = U ′ ×X′ X is a
scheme too and we can form the pushout V ′ = V qU U

′ in the category of schemes
by More on Morphisms, Lemma 11.1. By Lemma 2.2 this is also a pushout in the
category of schemes, hence G sends (Sch/Y )×(Sch/Y ′) (Sch/X ′) into (Sch/Y ′).

Let us prove that G is a left adjoint to F . Let Z be an algebraic space over Y ′. We
have to show that

Mor(V ′, Z) = Mor((V,U ′, ϕ), F (Z))

where the morphism sets are taking in their respective categories. Let g′ : V ′ → Z
be a morphism. Denote g̃, resp. f̃ ′ the composition of g′ with the morphism V → V ′,
resp. U ′ → V ′. Base change g̃, resp. f̃ ′ by Y → Y ′, resp.X ′ → Y ′ to get a morphism
g : V → Z ×Y ′ Y , resp. f ′ : U ′ → Z ×Y ′ X

′. Then (g, f ′) is an element of the

http://localhost:8080/tag/07VY
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right hand side of the equation above (details omitted). Conversely, suppose that
(g, f ′) : (V,U ′, ϕ) → F (Z) is an element of the right hand side. We may consider

the composition g̃ : V → Z, resp. f̃ ′ : U ′ → Z of g, resp. f by Z ×Y ′ X
′ → Z,

resp. Z ×Y ′ Y → Z. Then g̃ and f̃ ′ agree as morphism from U to Z. By the
universal property of pushout, we obtain a morphism g′ : V ′ → Z, i.e., an element
of the left hand side. We omit the verification that these constructions are mutually
inverse. �

Lemma 2.5. Let S be a scheme. Let

A //

��

C

��

// E

��
B // D // F

be a commutative diagram of algebraic spaces over S. Assume that A,B,C,D
and A,B,E, F form cartesian squares and that B → D is surjective étale. Then
C,D,E, F is a cartesian square.

Proof. This is formal. �

Lemma 2.6. In the situation of Lemma 2.4 the functor F ◦G is isomorphic to the
identity functor.

Proof. We will prove that F ◦G is isomorphic to the identity by reducing this to
the corresponding statement of More on Morphisms, Lemma 11.2.

Choose a scheme Y1 and a surjective étale morphism Y1 → Y . Set X1 = Y1 ×Y X.
This is a scheme affine over Y1 with a surjective étale morphism X1 → X. By More
on Morphisms of Spaces, Lemma 8.6 there exists a X ′1 → X ′ surjective étale with
X1 = X ′1 ×X′ X. In particular the morphism of schemes X1 → X ′1 is a thickening
too. Apply More on Morphisms, Lemma 11.1 to obtain a pushout Y ′1 = Y1 qX1

X ′1
in the category of schemes. In the proof of Lemma 2.3 we constructed Y ′ as a
quotient of an étale equivalence relation on Y ′1 such that we get a commutative
diagram

(2.6.1)

X //

��

X ′

��

X1
//

��

>>

X ′1

��

>>

Y // Y ′

Y1
//

>>

Y ′1

>>

where all squares except the front and back squares are cartesian (the front and
back squares are pushouts) and the northeast arrows are surjective étale. Denote
F1, G1 the functors constructed in More on Morphisms, Lemma 11.2 for the front

http://localhost:8080/tag/07VZ
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square. Then the diagram of categories

(Sch/Y ′1)
F1

//

��

(Sch/Y1)×(Sch/Y ′1 ) (Sch/X ′1)

��

G1oo

(Spaces/Y ′)
F
// (Spaces/Y )×(Spaces/Y ′) (Spaces/X ′)

Goo

is commutative by simple considerations regarding base change functors and the
agreement of pushouts in schemes with pushouts in spaces of Lemma 2.2.

Let (V,U ′, ϕ) be an object of (Spaces/Y ) ×(Spaces/Y ′) (Spaces/X ′). Denote U =
U ′ ×X′ X so that G(V,U ′, ϕ) = V qU U ′. Choose a scheme V1 and a surjective
étale morphism V1 → Y1 ×Y V . Set U1 = V1 ×Y X. Then

U1 = V1 ×Y X −→ (Y1 ×Y V )×Y X = X1 ×Y V = X1 ×X X ×Y V = X1 ×X U

is surjective étale too. By More on Morphisms of Spaces, Lemma 8.6 there exists
a thickening U1 → U ′1 and a surjective étale morphism U ′1 → X ′1 ×X′ U

′ whose
base change to X1 ×X U is the displayed morphism. At this point (V1, U

′
1, ϕ1)

is an object of (Sch/Y1) ×(Sch/Y ′1 ) (Sch/X ′1). In the proof of Lemma 2.3 we con-
structed G(V,U ′, ϕ) = V qU U ′ as a quotient of an étale equivalence relation on
G1(V1, U

′
1, ϕ1) = V1 qU1

U ′1 such that we get a commutative diagram

(2.6.2)

U //

��

U ′

��

U1
//

��

??

U ′1

��

66

V // G(V,U ′, ϕ)

V1
//

??

G1(V1, U
′
1, ϕ1)

77

where all squares except the front and back squares are cartesian (the front and back
squares are pushouts) and the northeast arrows are surjective étale. In particular

G1(V1, U
′
1, ϕ1)→ G(V,U ′, ϕ)

is surjective étale.

Finally, we come to the proof of the lemma. We have to show that the adjunction
mapping (V,U ′, ϕ) → F (G(V,U ′, ϕ)) is an isomorphism. We know (V1, U

′
1, ϕ1) →

F1(G1(V1, U
′
1, ϕ1)) is an isomorphism by More on Morphisms, Lemma 11.2. Recall

that F and F1 are given by base change. Using the properties of (2.6.2) and
Lemma 2.5 we see that V → G(V,U ′, ϕ) ×Y ′ Y and U ′ → G(V,U ′, ϕ) ×Y ′ X

′ are
isomorphisms, i.e., (V,U ′, ϕ)→ F (G(V,U ′, ϕ)) is an isomorphism. �

Lemma 2.7. Let S be a base scheme. Let X → X ′ be a thickening of algebraic
spaces over S and let X → Y be an affine morphism of algebraic spaces over S.
Let Y ′ = Y qX X ′ be the pushout (see Lemma 2.3). Let V ′ → Y ′ be a morphism of

http://localhost:8080/tag/08KV
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algebraic spaces over S. Set V = Y ×Y ′ V
′, U ′ = X ′ ×Y ′ V

′, and U = X ×Y ′ V
′.

There is an equivalence of categories between

(1) quasi-coherent OV ′-modules flat over Y ′, and
(2) the category of triples (G,F ′, ϕ) where

(a) G is a quasi-coherent OV -module flat over Y ,
(b) F ′ is a quasi-coherent OU ′-module flat over X, and
(c) ϕ : (U → V )∗G → (U → U ′)∗F ′ is an isomorphism of OU -modules.

The equivalence maps G′ to ((V → V ′)∗G′, (U ′ → V ′)∗G′, can). Suppose G′ corre-
sponds to the triple (G,F ′, ϕ). Then

(a) G′ is a finite type OV ′-module if and only if G and F ′ are finite type OY

and OU ′-modules.
(b) if V ′ → Y ′ is locally of finite presentation, then G′ is an OV ′-module of

finite presentation if and only if G and F ′ are OY and OU ′-modules of
finite presentation.

Proof. A quasi-inverse functor assigns to the triple (G,F ′, ϕ) the fibre product

(V → V ′)∗G ×(U→V ′)∗F (U ′ → V ′)∗F ′

where F = (U → U ′)∗F ′. This works, because on affines étale over V ′ and Y ′ we
recover the equivalence of More on Algebra, Lemma 4.12. Details omitted.

Parts (a) and (b) reduce by étale localization (Properties of Spaces, Section 28) to
the case where V ′ and Y ′ are affine in which case the result follows from More on
Algebra, Lemmas 4.11 and 4.13. �

Lemma 2.8. In the situation of Lemma 2.6. If V ′ = G(V,U ′, ϕ) for some triple
(V,U ′, ϕ), then

(1) V ′ → Y ′ is locally of finite type if and only if V → Y and U ′ → X ′ are
locally of finite type,

(2) V ′ → Y ′ is flat if and only if V → Y and U ′ → X ′ are flat,
(3) V ′ → Y ′ is flat and locally of finite presentation if and only if V → Y and

U ′ → X ′ are flat and locally of finite presentation,
(4) V ′ → Y ′ is smooth if and only if V → Y and U ′ → X ′ are smooth,
(5) V ′ → Y ′ is étale if and only if V → Y and U ′ → X ′ are étale, and
(6) add more here as needed.

If W ′ is flat over Y ′, then the adjunction mapping G(F (W ′))→W ′ is an isomor-
phism. Hence F and G define mutually quasi-inverse functors between the category
of spaces flat over Y ′ and the category of triples (V,U ′, ϕ) with V → Y and U ′ → X ′

flat.

Proof. Choose a diagram (2.6.1) as in the proof of Lemma 2.6.

Proof of (1) – (5). Let (V,U ′, ϕ) be an object of (Spaces/Y )×(Spaces/Y ′)(Spaces/X ′).
Construct a diagram (2.6.2) as in the proof of Lemma 2.6. Then the base change of
G(V,U ′, ϕ)→ Y ′ to Y ′1 is G1(V1, U

′
1, ϕ1)→ Y ′1 . Hence (1) – (5) follow immediately

from the corresponding statements of More on Morphisms, Lemma 11.4 for schemes.

Suppose that W ′ → Y ′ is flat. Choose a scheme W ′1 and a surjective étale morphism
W ′1 → Y ′1 ×Y ′ W

′. Observe that W ′1 → W ′ is surjective étale as a composition of
surjective étale morphisms. We know that G1(F1(W ′1)) → W ′1 is an isomorphism
by More on Morphisms, Lemma 11.4 applied to W ′1 over Y ′1 and the front of the

http://localhost:8080/tag/07W3
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diagram (with functors G1 and F1 as in the proof of Lemma 2.6). Then the con-
struction of G(F (W ′)) (as a pushout, i.e., as constructed in Lemma 2.3) shows
that G1(F1(W ′1)) → G(F (W )) is surjective étale. Whereupon we conclude that
G(F (W )) → W is étale, see for example Properties of Spaces, Lemma 13.3. But
G(F (W )) → W is an isomorphism on underlying reduced algebraic spaces (by
construction), hence it is an isomorphism. �

3. Formal glueing of quasi-coherent modules

This section is the analogue of More on Algebra, Section 63. In the case of mor-
phisms of schemes, the result can be found in the paper by Joyet [Joy96]; this is a
good place to start reading. For a discussion of applications to descent problems
for stacks, see the paper by Moret-Bailly [MB96]. In the case of an affine morphism
of schemes there is a statement in the appendix of the paper [FR70] but one needs
to add the hypothesis that the closed subscheme is cut out by a finitely generated
ideal (as in the paper by Joyet) since otherwise the result does not hold. A gener-
alization of this material to (higher) derived categories with potential applications
to nonflat situations can be found in [Bha14, Section 5].

We start with a lemma on abelian sheaves supported on closed subsets.

Lemma 3.1. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and universally
injective. Let y be a geometric point of Y and x = f(y). We have

(Rf∗Q)x = Qy

in D(Ab) for any object Q of D(Yétale) supported on |f−1Z|.

Proof. Consider the commutative diagram of algebraic spaces

f−1Z
i′
//

f ′

��

Y

f

��
Z

i // X

By Cohomology of Spaces, Lemma 8.4 we can write Q = Ri′∗K
′ for some object

K ′ of D(f−1Zétale). By Morphisms of Spaces, Lemma 47.5 we have K ′ = (f ′)−1K
with K = Rf ′∗K

′. Then we have Rf∗Q = Rf∗Ri
′
∗K
′ = Ri∗Rf

′
∗K
′ = Ri∗K. Let z

be the geometric point of Z corresponding to x and let z′ be the geometric point
of f−1Z corresponding to y. We obtain the result of the lemma as follows

Qy = (Ri′∗K
′)y = K ′z′ = (f ′)−1Kz′ = Kz = Ri∗Kx = Rf∗Qx

The middle equality holds because of the description of the stalk of a pullback given
in Properties of Spaces, Lemma 16.9. �

Lemma 3.2. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X closed subspace such that f−1Z → Z is integral and universally
injective. Let y be a geometric point of Y and x = f(y). Let G be an abelian sheaf
on Y . Then the map of two term complexes

(f∗Gx → (f ◦ j′)∗(G|V )x) −→ (Gy → j′∗(G|V )y)

induces an isomorphism on kernels and an injection on cokernels. Here V = Y \
f−1Z and j′ : V → Y is the inclusion.

http://localhost:8080/tag/0AEQ
http://localhost:8080/tag/0AER
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Proof. Choose a distinguished triangle

G → Rj′∗G|V → Q→ G[1]

n D(Yétale). The cohomology sheaves of Q are supported on |f−1Z|. We apply Rf∗
and we obtain

Rf∗G → Rf∗Rj
′
∗G|V → Rf∗Q→ Rf∗G[1]

Taking stalks at x we obtain an exact sequence

0→ (R−1f∗Q)x → f∗Gx → (f ◦ j′)∗(G|V )x → (R0f∗Q)x

We can compare this with the exact sequence

0→ H−1(Q)y → Gy → j′∗(G|V )y → H0(Q)y

Thus we see that the lemma follows because Qy = Rf∗Qx by Lemma 3.1. �

Lemma 3.3. Let S be a scheme. Let X be an algebraic space over S. Let f : Y →
X be a quasi-compact and quasi-separated morphism. Let x be a geometric point
of X and let Spec(OX,x) → X be the canonical morphism. For a quasi-coherent
module G on Y we have

f∗Gx = Γ(Y ×X Spec(OX,x), p∗F)

where p : Y ×X Spec(OX,x)→ Y is the projection.

Proof. Observe that f∗Gx = Γ(Spec(OX,x), h∗f∗G) where h : Spec(OX,x) → X.
Hence the result is true because h is flat so that Cohomology of Spaces, Lemma
10.1 applies. �

Lemma 3.4. Let S be a scheme. Let X be an algebraic space over S. Let i : Z → X
be a closed immersion of finite presentation. Let Q ∈ DQCoh(OX) be supported on
|Z|. Let x be a geometric point of X and let Ix ⊂ OX,x be the stalk of the ideal
sheaf of Z. Then the cohomology modules Hn(Qx) are Ix-power torsion (see More
on Algebra, Definition 62.1).

Proof. Choose an affine scheme U and an étale morphism U → X such that x lifts
to a geometric point u of U . Then we can replace X by U , Z by U ×X Z, Q by the
restriction Q|U , and x by u. Thus we may assume that X = Spec(A) is affine. Let
I ⊂ A be the ideal defining Z. Since i : Z → X is of finite presentation, the ideal
I = (f1, . . . , fr) is finitely generated. The object Q comes from a complex of A-
modules M•, see Derived Categories of Spaces, Lemma 4.2 and Derived Categories
of Schemes, Lemma 3.4. Since the cohomology sheaves of Q are supported on Z
we see that the localization M•f is acyclic for each f ∈ I. Take x ∈ Hp(M•). By

the above we can find ni such that fni
i x = 0 in Hp(M•) for each i. Then with

n =
∑
ni we see that In annihilates x. Thus Hp(M•) is I-power torsion. Since the

ring map A→ OX,x is flat and since Ix = IOX,x we conclude. �

Lemma 3.5. Let S be a scheme. Let f : Y → X be a morphism of algebraic spaces
over S. Let Z ⊂ X be a closed subspace. Assume f−1Z → Z is an isomorphism
and that f is flat in every point of f−1Z. For any Q in DQCoh(OY ) supported on
|f−1Z| we have Lf∗Rf∗Q = Q.
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Proof. We show the canonical map Lf∗Rf∗Q→ Q is an isomorphism by checking
on stalks at y. If y is not in f−1Z, then both sides are zero and the result is true.
Assume the image x of y is in Z. By Lemma 3.1 we have Rf∗Qx = Qy and since
f is flat at y we see that

(Lf∗Rf∗Q)y = (Rf∗Q)x ⊗OX,x
OY,y = Qy ⊗OX,x

OY,y

Thus we have to check that the canonical map

Qy ⊗OX,x
OY,y −→ Qy

is an isomorphism in the derived category. Let Ix ⊂ OX,x be the stalk of the
ideal sheaf defining Z. Since Z → X is locally of finite presentation this ideal is
finitely generated and the cohomology groups of Qy are Iy = IxOY,y-power torsion
by Lemma 3.4 applied to Q on Y . It follows that they are also Ix-power torsion.
The ring map OX,x → OY,y is flat and induces an isomorphism after dividing by Ix
and Iy because we assumed that f−1Z → Z is an isomorphism. Hence we see that
the cohomology modules of Qy⊗OX,x

OY,y are equal to the cohomology modules of
Qy by More on Algebra, Lemma 63.2 which finishes the proof. �

Situation 3.6. Here S is a base scheme, f : Y → X is a quasi-compact and quasi-
separated morphism of algebraic spaces over S, and Z → X is a closed immersion
of finite presentation. We assume that f−1(Z)→ Z is an isomorphism and that f
is flat in every point x ∈ |f−1Z|. We set U = X \ Z and V = Y \ f−1(Z). Picture

V
j′
//

f |V
��

Y

f

��
U

j // X

In Situation 3.6 we define QCoh(Y → X,Z) as the category of triples (H,G, ϕ)
where H is a quasi-coherent sheaf of OU -modules, G is a quasi-coherent sheaf of
OY -modules, and ϕ : f∗H → G|V is an isomorphism of OV -modules. There is a
canonical functor

(3.6.1) QCoh(OX) −→ QCoh(Y → X,Z)

which maps F to the system (F|U , f∗F , can). By analogy with the proof given
in the affine case, we construct a functor in the opposite direction. To an object
(H,G, ϕ) we assign the OX -module

(3.6.2) Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )

Observe that j and j′ are quasi-compact morphisms as Z → X is of finite presen-
tation. Hence f∗, j∗, and (f ◦ j′)∗ transform quasi-coherent modules into quasi-
coherent modules (Morphisms of Spaces, Lemma 11.2). Thus the module (3.6.2) is
quasi-coherent.

Lemma 3.7. In Situation 3.6. The functor (3.6.2) is right adjoint to the functor
(3.6.1).

Proof. This follows easily from the adjointness of f∗ to f∗ and j∗ to j∗. Details
omitted. �

Lemma 3.8. In Situation 3.6. Let X ′ → X be a flat morphism of algebraic spaces.
Set Z ′ = X ′ ×X Z and Y ′ = X ′ ×X Y . The pullbacks QCoh(OX) → QCoh(OX′)

http://localhost:8080/tag/0AEV
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and QCoh(Y → X,Z) → QCoh(Y ′ → X ′, Z ′) are compatible with the functors
(3.6.2) and 3.6.1).

Proof. This is true because pullback commutes with pullback and because flat pull-
back commutes with pushforward along quasi-compact and quasi-separated mor-
phisms, see Cohomology of Spaces, Lemma 10.1. �

Proposition 3.9. In Situation 3.6 the functor (3.6.1) is an equivalence with quasi-
inverse given by (3.6.2).

Proof. We first treat the special case where X and Y are affine schemes and
where the morphism f is flat. Say X = Spec(R) and Y = Spec(S). Then f
corresponds to a flat ring map R → S. Moreover, Z ⊂ X is cut out by a finitely
generated ideal I ⊂ R. Choose generators f1, . . . , ft ∈ I. By the description of
quasi-coherent modules in terms of modules (Schemes, Section 7), we see that the
category QCoh(Y → X,Z) is canonically equivalent to the category Glue(R →
S, f1, . . . , ft) of More on Algebra, Remark 63.10 such that the functors (3.6.1) and
(3.6.2) correspond to the functors Can and H0. Hence the result follows from More
on Algebra, Proposition 63.15 in this case.

We return to the general case. Let F be a quasi-coherent module on X. We will
show that

α : F −→ Ker (j∗F|U ⊕ f∗f∗F → (f ◦ j′)∗f∗F|V )

is an isomorphism. Let (H,G, ϕ) be an object of QCoh(Y → X,Z). We will show
that

β : f∗Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ G

and

γ : j∗Ker (j∗H⊕ f∗G → (f ◦ j′)∗G|V ) −→ H

are isomorphisms. To see these statements are true it suffices to look at stalks. Let
y be a geometric point of Y mapping to the geometric point x of X.

Fix an object (H,G, ϕ) of QCoh(Y → X,Z). By Lemma 3.2 and a diagram chase
(omitted) the canonical map

Ker(j∗H⊕ f∗G → (f ◦ j′)∗G|V )x −→ Ker(j∗Hx ⊕ Gy → j′∗Gy)

is an isomorphism.

In particular, if y is a geometric point of V , then we see that j′∗Gy = Gy and
hence that this kernel is equal to Hx. This easily implies that αx, βx, and βy are
isomorphisms in this case.

Next, assume that y is a point of f−1Z. Let Ix ⊂ OX,x, resp. Iy ⊂ OY,y be
the stalk of the ideal cutting out Z, resp. f−1Z. Then Ix is a finitely generated
ideal, Iy = IxOY,y, and OX,x → OY,y is a flat local homomorphism inducing an
isomorphism OX,x/Ix = OY,y/Iy. At this point we can bootstrap using the diagram

http://localhost:8080/tag/0AF0
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of categories

QCoh(OX)
(3.6.1)

//

��

QCoh(Y → X,Z)

��

(3.6.2)
zz

ModOX,x

Can // Glue(OX,x → OY,y, f1, . . . , ft)

H0

ee

Namely, as in the first paragraph of the proof we identify

Glue(OX,x → OY,y, f1, . . . , ft) = QCoh(Spec(OY,y)→ Spec(OX,x), V (Ix))

The right vertical functor is given by pullback, and it is clear that the inner square
is commutative. Our computation of the stalk of the kernel in the third paragraph
of the proof combined with Lemma 3.3 implies that the outer square (using the
curved arrows) commutes. Thus we conclude using the case of a flat morphism of
affine schemes which we handled in the first paragraph of the proof. �

Lemma 3.10. In Situation 3.6 the functor Rf∗ induces an equivalence between
DQCoh,|f−1Z|(OY ) and DQCoh,|Z|(OX) with quasi-inverse given by Lf∗.

Proof. Since f is quasi-compact and quasi-separated we see that Rf∗ defines
a functor from DQCoh,|f−1Z|(OY ) to DQCoh,|Z|(OX), see Derived Categories of
Spaces, Lemma 6.1. By Derived Categories of Spaces, Lemma 5.4 we see that
Lf∗ maps DQCoh,|Z|(OX) into DQCoh,|f−1Z|(OY ). In Lemma 3.5 we have seen that
Lf∗Rf∗Q = Q for Q in DQCoh,|f−1Z|(OY ). By the dual of Derived Categories,
Lemma 7.2 to finish the proof it suffices to show that Lf∗K = 0 implies K = 0 for
K in DQCoh,|Z|(OX). This follows from the fact that f is flat at all points of f−1Z

and the fact that f−1Z → Z is surjective. �

Lemma 3.11. In Situation 3.6 there exists an fpqc covering {Xi → X}i∈I refining
the family {U → X,Y → X}.

Proof. For the definition and general properties of fpqc coverings we refer to
Topologies, Section 8. In particular, we can first choose an étale covering {Xi → X}
with Xi affine and by base changing Y , Z, and U to each Xi we reduce to the
case where X is affine. In this case U is quasi-compact and hence a finite union
U = U1 ∪ . . . ∪ Un of affine opens. Then Z is quasi-compact hence also f−1Z is
quasi-compact. Thus we can choose an affine scheme W and an étale morphism
h : W → Y such that h−1f−1Z → f−1Z is surjective. Say W = Spec(B) and
h−1f−1Z = V (J) where J ⊂ B is an ideal of finite type. By Pro-étale Cohomol-
ogy, Lemma 5.1 there exists a localization B → B′ such that points of Spec(B′)
correspond exactly to points of W = Spec(B) specializing to h−1f−1Z = V (J).
It follows that the composition Spec(B′) → Spec(B) = W → Y → X is flat as
by assumption f : Y → X is flat at all the points of f−1Z. Then {Spec(B′) →
X,U1 → X, . . . , Un → X} is an fpqc covering by Topologies, Lemma 8.2. �

http://localhost:8080/tag/0AFJ
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4. Formal glueing of algebraic spaces

In Situation 3.6 we consider the category Spaces(X → Y, Z) of commutative dia-
grams of algebraic spaces over S of the form

U ′

��

V ′oo

��

// Y ′

��
U Voo // Y

where both squares are cartesian. There is a canonical functor

(4.0.1) Spaces/X −→ Spaces(Y → X,Z)

which maps X ′ → X to the morphisms U ×X X ′ ← V ×X X ′ → Y ×X X ′.

Lemma 4.1. In Situation 3.6 the functor (4.0.1) restricts to an equivalence

(1) from the category of algebraic spaces affine over X to the full subcategory
of Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y affine,

(2) from the category of closed immersions X ′ → X to the full subcategory of
Spaces(Y → X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V ,
and Y ′ → Y closed immersions, and

(3) same statement as in (2) for finite morphisms.

Proof. The category of algebraic spaces affine over X is equivalent to the category
of quasi-coherent sheaves A of OX -algebras. The full subcategory of Spaces(Y →
X,Z) consisting of (U ′ ← V ′ → Y ′) with U ′ → U , V ′ → V , and Y ′ → Y affine is
equivalent to the category of algebra objects of QCoh(Y → X,Z). In both cases
this follows from Morphisms of Spaces, Lemma 20.7 with quasi-inverse given by
the relative spectrum construction (Morphisms of Spaces, Definition 20.8) which
commutes with arbitrary base change. Thus part (1) of the lemma follows from
Proposition 3.9.

Fully faithfulness in part (2) follows from part (1). For essential surjectivity, we
reduce by part (1) to proving that X ′ → X is a closed immersion if and only if
both U ×X X ′ → U and Y ×X X ′ → Y are closed immersions. By Lemma 3.11
{U → X,Y → X} can be refined by an fpqc covering. Hence the result follows
from Descent on Spaces, Lemma 10.15.

For (3) use the argument proving (2) and Descent on Spaces, Lemma 10.21. �

Lemma 4.2. In Situation 3.6 the functor (4.0.1) reflects isomorphisms.

Proof. By a formal argument with base change, this reduces to the following ques-
tion: A morphism a : X ′ → X of algebraic spaces such that U ×X X ′ → U and
Y ×XX

′ → Y are isomorphisms, is an isomorphism. The family {U → X,Y → X}
can be refined by an fpqc covering by Lemma 3.11. Hence the result follows from
Descent on Spaces, Lemma 10.13. �

Lemma 4.3. In Situation 3.6 the functor (4.0.1) is fully faithful on algebraic spaces
separated over X. More precisely, it induces a bijection

MorX(X ′1, X
′
2) −→ MorSpaces(Y→X,Z)(F (X ′1), F (X ′2))

whenever X ′2 → X is separated.

http://localhost:8080/tag/0AF4
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Proof. Since X ′2 → X is separated, the graph i : X ′1 → X ′1 ×X X ′2 of a morphism
X ′1 → X ′2 over X is a closed immersion, see Morphisms of Spaces, Lemma 4.6.
Moreover a closed immersion i : T → X ′1 ×X X ′2 is the graph of a morphism if and
only if pr1 ◦ i is an isomorphism. The same is true for

(1) the graph of a morphism U ×X X ′1 → U ×X X ′2 over U ,
(2) the graph of a morphism V ×X X ′1 → V ×X X ′2 over V , and
(3) the graph of a morphism Y ×X X ′1 → Y ×X X ′2 over Y .

Moreover, if morphisms as in (1), (2), (3) fit together to form a morphism in
the category Spaces(Y → X,Z), then these graphs fit together to give an object of
Spaces(Y ×X (X ′1×XX

′
2)→ X ′1×XX

′
2, Z×X (X ′1×XX

′
2)) whose triple of morphisms

are closed immersions. The proof is finished by applying Lemmas 4.1 and 4.2. �

5. Coequalizers and glueing

Let X be a Noeterian algebraic space and Z → X a closed subscheme. Let X ′ → X
be the blowing up in Z. In this section we show that X can be recovered from X ′,
Zn and glueing data where Zn is the nth infinitesimal neighbourhood of Z in X.

Lemma 5.1. Let S be a scheme. Let

Y
g

//

  

X

~~
B

be a commutative diagram of algebraic spaces over S. Assume B Noeterian, g
proper and surjective, and X → B separated of finite type. Let R = Y ×X Y with
projection morphisms t, s : R → Y . There exists a coequalizer X ′ of s, t : R → Y
in the category of algebraic spaces separated over B. The morphism X ′ → X is a
finite universal homeomorphism.

Proof. Denote h : R→ X the given morphism. The sheaves

g∗OY and h∗OR

are coherent OX -algebras (Cohomology of Spaces, Lemma 19.2). The X-morphisms
s, t induce OX -agebra maps s], t] from the first to the second. Set

A = Equalizer
(
s], t] : g∗OY −→ h∗OR

)
Then A is a coherent OX -algebra and we can define

X ′ = Spec
X

(A)

as in Morphisms of Spaces, Definition 20.8. By Morphisms of Spaces, Remark 20.9
and functoriality of the Spec construction there is a factorization

Y −→ X ′ −→ X

and the morphism g′ : Y → X ′ equalizes s and t. Since A is a coherent OX -module
it is clear that X ′ → X is a finite morphism of algebraic spaces. Since the surjective
morphism g : Y → X factors through X ′ we see that X ′ → X is surjective.

To check that X ′ → X is a universal homeomorphism, it suffices to check that it
is universally injective (as we’ve already seen that it is universally surjective and
universally closed). To check this it suffices to check that |X ′ ×X U | → |U | is
injective, for all U → X étale, see More on Morphisms of Spaces, Lemma 3.6. It
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suffices to check this in all cases where U is an affine scheme (minor detail omitted).
Since the construction of X ′ commutes with étale localization, we may replace U
by X. Hence it suffices to check that |X ′| → |X| is injective when X is moreover
an affine scheme. First observe that |Y | → |X ′| is surjective, because g′ : Y → X ′

is proper by Morphisms of Spaces, Lemma 37.6 (hence the image is closed) and
OX′ ⊂ g′∗OY by construction. Thus if x1, x2 ∈ |X ′| map to the same point in |X|,
then we can lift x1, x2 to points y1, y2 ∈ |Y | mapping to the same point of |X|.
Then we can find an r ∈ |R| with s(r) = y1 and t(r) = y2, see Properties of Spaces,
Lemma 4.3). Since g′ coequalizes s and t we conclude that x1 = x2 as desired.

To prove that X ′ is the coequalizer, let W → B be a separated morphism of
algebraic spaces over S and let a : Y → W be a morphism over B which equalizes
s and t. We will show that a factors in a unique manner through the morphism
g′ : Y → X ′. We will first reduce this to the case where W → B is separated
of finite type by a limit argument (we recommend the reader skip this argument).
Since Y is quasi-compact we can find a quasi-compact open subspace W ′ ⊂ W
such that a factors through W ′. After replacing W by W ′ we may assume W is
quasi-compact. By Limits of Spaces, Lemma 10.1 we can write W = limi∈I Wi

as a cofiltered limit with affine transition morphisms with Wi of finite type over
B. After shrinking I we may assume Wi → B is separated as well, see Limits of
Spaces, Lemma 6.8. Since W = limWi we have a = lim ai for some morphisms
ai : Y →Wi. If we can prove ai factors through g′ for all i, then the same thing is
true for a. This proves the reduction to the case of a finite type W .

Assume we have a : Y →W equalizing s and t with W → B separated and of finite
type. Consider

Γ ⊂ X ×B W

the scheme theoretic image of (g, a) : Y → X ×B W . Since g is proper we conclude
Y → Γ is surjective and the projection p : Γ → X is proper, see Morphisms of
Spaces, Lemma 37.8. Since both g and a equalize s and t, the morphism Y → Γ
also equalizes s and t.

We claim that p : Γ → X is a universal homeomorphism. As in the proof of the
corresponding fact for X ′ → X, it suffices to show that p is universally injective.
By More on Morphisms of Spaces, Lemma 3.6 it suffices to check |Γ ×X U | → |U |
is injective for every U → X étale. It suffices to check this for U affine (minor
details omitted). Taking scheme theoretic image commutes with étale localization
(Morphisms of Spaces, Lemma 16.3). Hence we may replace X by V and we
conclude it suffices to show that |Γ| → |X| is injective. If γ1, γ2 ∈ |Γ| map to the
same point in |X|, then we can lift γ1, γ2 to points y1, y2 ∈ |Y | mapping to the
same point of |X| (by surjectivity of Y → Γ we’ve seen above). Then we can find
an r ∈ |R| with s(r) = y1 and t(r) = y2, see Properties of Spaces, Lemma 4.3).
Since Y → Γ coequalizes s and t we conclude that γ1 = γ2 as desired.

As a proper universal homeomorphism the morphism p is finite (see for example
More on Morphisms of Spaces, Lemma 24.5). We conclude that

Γ = Spec(p∗OΓ).

Since Y → Γ equalizes s and t the map p∗OΓ → g∗OY factors through A and
we obtain a morphism X ′ → Γ by functoriality of the Spec construction. We can
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compose this morphism with the projection q : Γ→W to get the desired morphism
X ′ →W . We omit the proof of uniqueness of the factorization. �

We will work in the following situation.

Situation 5.2. Let S be a scheme. Let X → B be a separated finite type morphism
of algebraic spaces over S with B Noetherian. Let Z → X be a closed immersion
and let U ⊂ X be the complementary open subspace. Finally, let f : X ′ → X be a
proper morphism of algebraic spaces such that f−1(U)→ U is an isomorphism.

Lemma 5.3. In Situation 5.2 let Y = X ′ q Z and R = Y ×X Y with projections
t, s : R → Y . There exists a coequalizer X1 of s, t : R → Y in the category of
algebraic spaces separated over B. The morphism X1 → X is a finite universal
homeomorphism, an isomorphism over U and Z → X lifts to X1.

Proof. Existence of X1 and the fact that X1 → X is a finite universal homeomor-
phism is a special case of Lemma 5.1. The formation of X1 commutes with étale
localization on X (see proof of Lemma 5.1). Thus the morphisms Xn → X are
isomorphisms over U . It is immediate from the construction that Z → X lifts to
X1. �

In Situation 5.2 for n ≥ 1 let Zn ⊂ X be the nth order infinitesimal neighbourhood
of Z in X, i.e., the closed subscheme defined by the nth power of the sheaf of ideals
cutting out Z. Consider Yn = X ′ q Zn and Rn = Yn ×X Yn and the coequalizer

Rn
//
// Yn // Xn

// X

as in Lemma 5.3. The maps Yn → Yn+1 and Rn → Rn+1 induce morphisms

(5.3.1) X1 → X2 → X3 → . . .→ X

Each of these morphisms is a universal homeomorphism as the morphisms Xn → X
are universal homeomorphisms.

Lemma 5.4. In (5.3.1) for all n large enough, there exists an m such that Xn →
Xn+m factors through a closed immersion X → Xn+m.

Proof. Let’s look a bit more closely at the construction of Xn and how it changes
as we increase n. We have Xn = Spec(An) where An is the equalizer of s]n and

t]n going from gn,∗OYn
to hn,∗ORn

. Here gn : Yn = X ′ q Zn → X and hn : Rn =
Yn ×X Yn → X are the given morphisms. Let I ⊂ OX be the coherent sheaf of
ideals corresponding to Z. Then

gn,∗OYn = f∗OX′ ×OX/In

Similarly, we have a decomposition

Rn = X ′ ×X X ′ qX”×X Zn q Zn ×X Zn

Denote fn : X ′ ×X Zn → X the restriction of f and denote

A = Equalizer( f∗OX′
//
// (f × f)∗OX′×XX′ )

Then we see that

An = Equalizer( A×OX/In
//
// fn,∗OX′×XZn )

We have canonical maps

OX → . . .→ A3 → A2 → A1
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of coherent OX -algebras. The statement of the lemma means that for n large
enough there exists an m ≥ 0 such that the image of An+m → An is isomorphic to
OX .

Since Xn → X is an isomorphism over U we see that the kernel of OX → An is
supported on |Z|. Since X is Noetherian, the sequence of kernels Jn = Ker(OX →
An) stabilizes (Cohomology of Spaces, Lemma 12.1). Say Jn0 = Jn0+1 = . . . = J .
By Cohomology of Spaces, Lemma 12.2 we find that ItJ = 0 for some t ≥ 0. On the
other hand, there is an OX -algebra map An → OX/In and hence J ⊂ In for all n.
By Artin-Rees (Cohomology of Spaces, Lemma 12.3) we find that J ∩In ⊂ In−cJ
for some c ≥ 0 and all n� 0. We conclude that J = 0.

Pick n ≥ n0 as in the previous paragraph. Then OX → An is injective. Hence
it now suffices to find m ≥ 0 such that the image of An+m → An is equal to the
image of OX . Observe that An sits in a short exact sequence

0→ Ker(A → fn,∗OX′×XZn)→ An → OX/In → 0

and similarly for An+m. Hence it suffices to show

Ker(A → fn+m,∗OX′×XZn+m) ⊂ Im(In → A)

for some m ≥ 0. To do this we may work étale locally on X and since X is
Noetherian we may assume that X is a Noetherian affine scheme. Say X = Spec(R)

and I corresponds to the ideal I ⊂ R. Let A = Ã for a finite R-algebra A. Let

f∗OX′ = B̃ for a finite R-algebra B. Then R → A ⊂ B and these maps become
isomorphisms on inverting any element of I.

Note that fn,∗OX′×XZn
is equal to f∗(OX′/I

nOX′) in the notation used in Coho-
mology of Spaces, Section 20. By Cohomology of Spaces, Lemma 20.4 we see that
there exists a c ≥ 0 such that

Ker(B → Γ(X, f∗(OX′/I
n+m+cOX′))

is contained in In+mB. On the other hand, as R→ B is finite and an isomorphism
after inverting any element of I we see that In+mB ⊂ Im(In → B) for m large
enough (can be chosen independent of n). This finishes the proof as A ⊂ B. �

Remark 5.5. The meaning of Lemma 5.4 is the the system X1 → X2 → X3 → . . .
is essentially constant with value X. See Categories, Definition 22.1.
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