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1. Introduction

In future chapters we will use the existence of injectives and K-injective complexes
to do cohomology of sheaves of modules on ringed sites. In this chapter we explain
how to produce injectives and K-injective complexes first for modules on sites and
later more generally for Grothendieck abelian categories.

We observe that we already know that the category of abelian groups and the cat-
egory of modules over a ring have enough injectives, see More on Algebra, Sections
41 and 42

2. Baer’s argument for modules

There is another, more set-theoretic approach to showing that any R-module M can
be imbedded in an injective module. This approach constructs the injective module
by a transfinite colimit of push-outs. While this method is somewhat abstract and
more complicated than the one of More on Algebra, Section 42, it is also more
general. Apparently this method originates with Baer, and was revisited by Cartan
and Eilenberg in [CE56] and by Grothendieck in [Gro57]. There Grothendieck uses
it to show that many other abelian categories have enough injectives. We will get
back to the general case later (insert future reference here).
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2 INJECTIVES

We begin with a few set theoretic remarks. Let {Bβ}β∈α be an inductive system
of objects in some category C, indexed by an ordinal α. Assume that colimβ∈αBβ
exists in C. If A is an object of C, then there is a natural map

(2.0.1) colimβ∈α MorC(A,Bβ) −→ MorC(A, colimβ∈αBβ).

because if one is given a map A→ Bβ for some β, one naturally gets a map from A
into the colimit by composing with Bβ → colimβ∈αBα. Note that the left colimit
is one of sets! In general, (2.0.1) is neither injective or surjective.

Example 2.1. Consider the category of sets. Let A = N and Bn = {1, . . . , n}
be the inductive system indexed by the natural numbers where Bn → Bm for
n ≤ m is the obvious map. Then colimBn = N, so there is a map A → colimBn,
which does not factor as A → Bm for any m. Consequently, colim Mor(A,Bn) →
Mor(A, colimBn) is not surjective.

Example 2.2. Next we give an example where the map fails to be injective. Let
Bn = N/{1, 2, . . . , n}, that is, the quotient set of N with the first n elements
collapsed to one element. There are natural maps Bn → Bm for n ≤ m, so the
{Bn} form a system of sets over N. It is easy to see that colimBn = {∗}: it is the
one-point set. So it follows that Mor(A, colimBn) is a one-element set for every
set A. However, colim Mor(A,Bn) is not a one-element set. Consider the family
of maps A → Bn which are just the natural projections N → N/{1, 2, . . . , n} and
the family of maps A→ Bn which map the whole of A to the class of 1. These two
families of maps are distinct at each step and thus are distinct in colim Mor(A,Bn),
but they induce the same map A→ colimBn.

Nonetheless, if we map out of a finite set then (2.0.1) is an isomorphism always.

Lemma 2.3. Suppose that, in (2.0.1), C is the category of sets and A is a finite
set, then the map is a bijection.

Proof. Let f : A → colimBβ . The range of f is finite, containing say elements
c1, . . . , cr ∈ colimBβ . These all come from some elements in Bβ for β ∈ α large

by definition of the colimit. Thus we can define f̃ : A → Bβ lifting f at a finite
stage. This proves that (2.0.1) is surjective. Next, suppose two maps f : A →
Bγ , f

′ : A → Bγ′ define the same map A → colimBβ . Then each of the finitely
many elements of A gets sent to the same point in the colimit. By definition of the
colimit for sets, there is β ≥ γ, γ′ such that the finitely many elements of A get sent
to the same points in Bβ under f and f ′. This proves that (2.0.1) is injective. �

The most interesting case of the lemma is when α = ω, i.e., when the system
{Bβ} is a system {Bn}n∈N over the natural numbers as in Examples 2.1 and 2.2.
The essential idea is that A is “small” relative to the long chain of compositions
B1 → B2 → . . ., so that it has to factor through a finite step. A more general
version of this lemma can be found in Sets, Lemma 7.1. Next, we generalize this
to the category of modules.

Definition 2.4. Let C be a category, let I ⊂ Arrow(C), and let α be an ordinal. An
object A of C is said to be α-small with respect to I if whenever {Bβ} is a system
over α with transition maps in I, then the map (2.0.1) is an isomorphism.

In the rest of this section we shall restrict ourselves to the category of R-modules
for a fixed commutative ring R. We shall also take I to be the collection of injective
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INJECTIVES 3

maps, i.e., the monomorphisms in the category of modules over R. In this case, for
any system {Bβ} as in the definition each of the maps

Bβ → colimβ∈αBβ

is an injection. It follows that the map (2.0.1) is an injection. We can in fact
interpret the Bβ ’s as submodules of the module B = colimβ∈αBβ , and then we
have B =

⋃
β∈αBβ . This is not an abuse of notation if we identify Bα with the

image in the colimit. We now want to show that modules are always small for
“large” ordinals α.

Proposition 2.5. Let R be a ring. Let M be an R-module. Let κ the cardinality
of the set of submodules of M . If α is an ordinal whose cofinality is bigger than κ,
then M is α-small with respect to injections.

Proof. The proof is straightforward, but let us first think about a special case. If
M is finite, then the claim is that for any inductive system {Bβ} with injections
between them, parametrized by a limit ordinal, any map M → colimBβ factors
through one of the Bβ . And this we proved in Lemma 2.3.

Now we start the proof in the general case. We need only show that the map
(2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .

So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, we know that ⋃

f−1(Bβ) = f−1
(⋃

Bβ

)
= M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).

However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β

′ ∈ S are contained in f−1(Bα̃). It follows that
f−1(Bα̃) = M . In particular, the map f factors through Bα̃. �

From this lemma we will be able to deduce the existence of lots of injectives. Let
us recall the criterion of Baer.

Lemma 2.6. Let R be a ring. An R-module Q is injective if and only if in every
commutative diagram

a

��

// Q

R

??

for a ⊂ R an ideal, the dotted arrow exists.

Proof. Assume Q satisfies the assumption of the lemma. Let M ⊂ N be R-
modules, and let ϕ : M → Q be an R-module map. Arguing as in the proof of
More on Algebra, Lemma 41.1 we see that it suffices to prove that if M 6= N , then
we can find an R-module M ′, M ⊂ M ′ ⊂ N such that (a) the inclusion M ⊂ M ′
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4 INJECTIVES

is strict, and (b) ϕ can be extended to M ′. To find M ′, let x ∈ N , x 6∈ M . Let
ψ : R→ N , r 7→ rx. Set a = ψ−1(M). By assumption the morphism

a
ψ−→M

ϕ−→ Q

can be extended to a morphism ϕ′ : R→ Q. Note that ϕ′ annihilates the kernel of
ψ (as this is true for ϕ). Thus ϕ′ gives rise to a morphism ϕ′′ : Im(ψ)→ Q which
agrees with ϕ on the intersection M ∩ Im(ψ) by construction. Thus ϕ and ϕ′′ glue
to give an extension of ϕ to the strictly bigger module M ′ = F + Im(ψ). �

If M is an R-module, then in general we may have a semi-complete diagram as in
Lemma 2.6. In it, we can form the push-out

a

��

// Q

��
R // R⊕a Q.

Here the vertical map is injective, and the diagram commutes. The point is that
we can extend a→ Q to R if we extend Q to the larger module R⊕a Q.

The key point of Baer’s argument is to repeat this procedure transfinitely many
times. To do this we first define, given anR-moduleM the following (huge) pushout

(2.6.1)

⊕
a

⊕
ϕ∈HomR(a,M) a

//

��

M

��⊕
a

⊕
ϕ∈HomR(a,M)R

//M(M).

Here the top horizontal arrow maps the element a ∈ a in the summand correspond-
ing to ϕ to the element ϕ(a) ∈ M . The left vertical arrow maps a ∈ a in the
summand corresponding to ϕ simply to the element a ∈ R in the summand corre-
sponding to ϕ. The fundamental properties of this construction are formulated in
the following lemma.

Lemma 2.7. Let R be a ring.

(1) The construction M 7→ (M →M(M)) is functorial in M .
(2) The map M →M(M) is injective.
(3) For any ideal a and any R-module map ϕ : a → M there is an R-module

map ϕ′ : R→M(M) such that

a

��

ϕ
// M

��
R

ϕ′ //M(M)

commutes.

Proof. Parts (2) and (3) are immediate from the construction. To see (1), let
χ : M → N be an R-module map. We claim there exists a canonical commutative

http://localhost:8080/tag/05NW
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diagram⊕
a

⊕
ϕ∈HomR(a,M) a

//

�� ++

M

χ

++⊕
a

⊕
ϕ∈HomR(a,M)R

++

⊕
a

⊕
ψ∈HomR(a,N) a

//

��

N

⊕
a

⊕
ψ∈HomR(a,N)R

which induces the desired map M(M)→M(N). The middle east-south-east arrow
maps the summand a corresponding to ϕ via ida to the summand a corresponding
to ψ = χ ◦ ϕ. Similarly for the lower east-south-east arrow. Details omitted. �

The idea will now be to apply the functor M a transfinite number of times. We
define for each ordinal α a functor Mα on the category of R-modules, together
with a natural injection N →Mα(N). We do this by transfinite induction. First,
M1 = M is the functor defined above. Now, suppose given an ordinal α, and
suppose Mα′ is defined for α′ < α. If α has an immediate predecessor α̃, we let

Mα = M ◦Mα̃.

If not, i.e., if α is a limit ordinal, we let

Mα(N) = colimα′<α Mα′(N).

It is clear (e.g., inductively) that the Mα(N) form an inductive system over ordinals,
so this is reasonable.

Theorem 2.8. Let κ be the cardinality of the set of ideals in R, and let α be an
ordinal whose cofinality is greater than κ. Then Mα(N) is an injective R-module,
and N →Mα(N) is a functorial injective embedding.

Proof. By Baer’s criterion Lemma 2.6, it suffices to show that if a ⊂ R is an ideal,
then any map f : a → Mα(N) extends to R → Mα(N). However, we know since
α is a limit ordinal that

Mα(N) = colimβ<α Mβ(N),

so by Proposition 2.5, we find that

HomR(a,Mα(N)) = colimβ<α HomR(a,Mβ(N)).

This means in particular that there is some β′ < α such that f factors through the
submodule Mβ′(N), as

f : a→Mβ′(N)→Mα(N).

However, by the fundamental property of the functor M, see Lemma 2.7 part (3),
we know that the map a→Mβ′(N) can be extended to

R→M(Mβ′(N)) = Mβ′+1(N),

and the last object imbeds in Mα(N) (as β′ + 1 < α since α is a limit ordinal). In
particular, f can be extended to Mα(N). �

http://localhost:8080/tag/05NX


6 INJECTIVES

3. G-modules

We will see later (Differential Graded Algebra, Section 12) that the category of
modules over an algebra has functorial injective embeddings. The construction is
exactly the same as the construction in More on Algebra, Section 42.

Lemma 3.1. Let G be a topological group. The category ModG of discrete G-
modules, see Étale Cohomology, Definition 58.1 has functorial injective hulls.

Proof. By the remark above the lemma the category ModZ[G] has functorial in-
jective embeddings. Consider the forgetful functor v : ModG → ModZ[G]. This
functor is fully faithful, transforms injective maps into injective maps and has a
right adjoint, namely

u : M 7→ u(M) = {x ∈M | stabilizer of x is open}
Since it is true that v(M) = 0 ⇒ M = 0 we conclude by Homology, Lemma
25.5. �

4. Abelian sheaves on a space

Lemma 4.1. Let X be a topological space. The category of abelian sheaves on X
has enough injectives. In fact it has functorial injective embeddings.

Proof. For an abelian group A we denote j : A → J(A) the functorial injective
embedding constructed in More on Algebra, Section 42. Let F be an abelian sheaf
on X. By Sheaves, Example 7.5 the assignment

I : U 7→ I(U) =
∏

x∈U
J(Fx)

is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective abelian group the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.)
We have

MorAb(Fx, Ix) = MorAb(X)(F , ix,∗Ix).

see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is injective. Hence the
injectivity of I follows from Homology, Lemma 23.3. �

5. Sheaves of modules on a ringed space

Lemma 5.1. Let (X,OX) be a ringed space, see Sheaves, Section 25. The category
of sheaves of OX-modules on X has enough injectives. In fact it has functorial
injective embeddings.

Proof. For any ring R and any R-module M we denote j : M → JR(M) the
functorial injective embedding constructed in More on Algebra, Section 42. Let F
be a sheaf of OX -modules on X. By Sheaves, Examples 7.5 and 15.6 the assignment

I : U 7→ I(U) =
∏

x∈U
JOX,x

(Fx)

http://localhost:8080/tag/04JF
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is an abelian sheaf. There is a canonical map F → I given by mapping s ∈ F(U)
to
∏
x∈U j(sx) where sx ∈ Fx denotes the germ of s at x. This map is injective, see

Sheaves, Lemma 11.1 for example.

It remains to prove the following: Given a rule x 7→ Ix which assigns to each point
x ∈ X an injective OX,x-module the sheaf I : U 7→

∏
x∈U Ix is injective. Note that

I =
∏

x∈X
ix,∗Ix

is the product of the skyscraper sheaves ix,∗Ix (see Sheaves, Section 27 for notation.)
We have

HomOX,x
(Fx, Ix) = HomOX

(F , ix,∗Ix).

see Sheaves, Lemma 27.3. Hence it is clear that each ix,∗Ix is an injective OX -
module (see Homology, Lemma 25.1 or argue directly). Hence the injectivity of I
follows from Homology, Lemma 23.3. �

6. Abelian presheaves on a category

Let C be a category. Recall that this means that Ob(C) is a set. On the one hand,
consider abelian presheaves on C, see Sites, Section 2. On the other hand, consider
families of abelian groups indexed by elements of Ob(C); in other words presheaves
on the discrete category with underlying set of objects Ob(C). Let us denote this
discrete category simply Ob(C). There is a natural functor

i : Ob(C) −→ C

and hence there is a natural restriction or forgetful functor

v = ip : PAb(C) −→ PAb(Ob(C))

compare Sites, Section 5. We will denote presheaves on C by B and presheaves on
Ob(C) by A.

There are also two functors, namely ip and pi which assign an abelian presheaf on
C to an abelian presheaf on Ob(C), see Sites, Sections 5 and 18. Here we will use
u = pi which is defined (in the case at hand) as follows:

uA(U) =
∏

U ′→U
A(U ′).

So an element is a family (aφ)φ with φ ranging through all morphisms in C with
target U . The restriction map on uA corresponding to g : V → U maps our element
(aφ)φ to the element (ag◦ψ)ψ.

There is a canonical surjective map vuA → A and a canonical injective map B →
uvB. We leave it to the reader to show that

MorPAb(Ob(C))(B, uA) = MorPAb(C)(vB,A).

in this simple case; the general case is in Sites, Section 5. Thus the pair (u, v) is an
example of a pair of adjoint functors, see Categories, Section 24.

At this point we can list the following facts about the situation above.

(1) The functors u and v are exact. This follows from the explicit description
of these functors given above.

(2) In particular the functor v transforms injective maps into injective maps.
(3) The category PAb(Ob(C)) has enough injectives.
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(4) In fact there is a functorial injective embedding A 7→
(
A → J(A)

)
as in

Homology, Definition 23.5. Namely, we can take J(A) to be the presheaf
U 7→ J(A(U)), where J(−) is the functor constructed in More on Algebra,
Section 42 for the ring Z.

Putting all of this together gives us the following procedure for embedding objects
B of PAb(C)) into an injective object: B → uJ(vB). See Homology, Lemma 25.5.

Proposition 6.1. For abelian presheaves on a category there is a functorial injec-
tive embedding.

Proof. See discussion above. �

7. Abelian Sheaves on a site

Let C be a site. In this section we prove that there are enough injectives for abelian
sheaves on C.

Denote i : Ab(C) −→ PAb(C) the forgetful functor from abelian sheaves to abelian
presheaves. Let # : PAb(C) −→ Ab(C) denote the sheafification functor. Recall
that # is a left adjoint to i, that # is exact, and that iF# = F for any abelian
sheaf F . Finally, let G → J(G) denote the canonical embedding into an injective
presheaf we found in Section 6.

For any sheaf F in Ab(C) and any ordinal β we define a sheaf Jβ(F) by transfinite
induction. We set J0(F) = F . We define J1(F) = J(iF)#. Sheafification of the
canonical map iF → J(iF) gives a functorial map

F −→ J1(F)

which is injective as # is exact. We set Jα+1(F) = J1(Jα(F)). So that there are
canonical injective maps Jα(F)→ Jα+1(F). For a limit ordinal β, we define

Jβ(F) = colimα<β Jα(F).

Note that this is a directed colimit. Hence for any ordinals α < β we have an
injective map Jα(F)→ Jβ(F).

Lemma 7.1. With notation as above. Suppose that G1 → G2 is an injective map
of abelian sheaves on C. Let α be an ordinal and let G1 → Jα(F) be a morphism of
sheaves. There exists a morphism G2 → Jα+1(F) such that the following diagram
commutes

G1

��

// G2

��
Jα(F) // Jα+1(F)

Proof. This is because the map iG1 → iG2 is injective and hence iG1 → iJα(F)
extends to iG2 → J(iJα(F)) which gives the desired map after applying the sheafi-
fication functor. �

This lemma says that somehow the system {Jα(F)} is an injective embedding of
F . Of course we cannot take the limit over all α because they form a class and
not a set. However, the idea is now that you don’t have to check injectivity on all
injections G1 → G2, plus the following lemma.

http://localhost:8080/tag/01DK
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Lemma 7.2. Suppose that Gi, i ∈ I is set of abelian sheaves on C. There exists an
ordinal β such that for any sheaf F , any i ∈ I, and any map ϕ : Gi → Jβ(F) there
exists an α < β such that ϕ factors through Jα(F).

Proof. This reduces to the case of a single sheaf G by taking the direct sum of all
the Gi.

Consider the sets

S =
∐

U∈Ob(C)
G(U).

and

Tβ =
∐

U∈Ob(C)
Jβ(F)(U)

Then Tβ = colimα<β Tα with injective transition maps. A morphism G → Jβ(F)
factors through Jα(F) if and only if the associated map S → Tβ factors through
Tα. By Sets, Lemma 7.1 if the cofinality of β is bigger than the cardinality of S,
then the result of the lemma is true. Hence the lemma follows from the fact that
there are ordinals with arbitrarily large cofinality, see Sets, Proposition 7.2. �

Recall that for an object X of C we denote ZX the presheaf of abelian groups
Γ(U,ZX) = ⊕U→XZ, see Modules on Sites, Section 4. The sheaf associated to this

presheaf is denoted Z#
X , see Modules on Sites, Section 5. It can be characterized

by the property

(7.2.1) MorAb(C)(Z
#
X ,G) = G(X)

where the element ϕ of the left hand side is mapped to ϕ(1 · idX) in the right hand
side. We can use these sheaves to characterize injective abelian sheaves.

Lemma 7.3. Suppose J is a sheaf of abelian groups with the following property:

For all X ∈ Ob(C), for any abelian subsheaf S ⊂ Z#
X and any morphism ϕ : S → J ,

there exists a morphism Z#
X → J extending ϕ. Then J is an injective sheaf of

abelian groups.

Proof. Let F → G be an injective map of abelian sheaves. Suppose ϕ : F → J is
a morphism. Arguing as in the proof of More on Algebra, Lemma 41.1 we see that
it suffices to prove that if F 6= G, then we can find an abelian sheaf F ′, F ⊂ F ′ ⊂ G
such that (a) the inclusion F ⊂ F ′ is strict, and (b) ϕ can be extended to F ′. To
find F ′, let X be an object of C such that the inclusion F(X) ⊂ G(X) is strict.

Pick s ∈ G(X), s 6∈ F(X). Let ψ : Z#
X → G be the morphism corresponding to the

section s via (7.2.1). Set S = ψ−1(F). By assumption the morphism

S ψ−→ F ϕ−→ J

can be extended to a morphism ϕ′ : Z#
X → J . Note that ϕ′ annihilates the kernel

of ψ (as this is true for ϕ). Thus ϕ′ gives rise to a morphism ϕ′′ : Im(ψ) → J
which agrees with ϕ on the intersection F ∩ Im(ψ) by construction. Thus ϕ and ϕ′′

glue to give an extension of ϕ to the strictly bigger subsheaf F ′ = F + Im(ψ). �

Theorem 7.4. The category of sheaves of abelian groups on a site has enough injec-
tives. In fact there exists a functorial injective embedding, see Homology, Definition
23.5.
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Proof. Let Gi, i ∈ I be a set of abelian sheaves such that every subsheaf of every

Z#
X occurs as one of the Gi. Apply Lemma 7.2 to this collection to get an ordinal β.

We claim that for any sheaf of abelian groups F the map F → Jβ(F) is an injection
of F into an injective. Note that by construction the assingment F 7→

(
F → Jβ(F)

)
is indeed functorial.

The proof of the claim comes from the fact that by Lemma 7.3 it suffices to extend

any morphism γ : G → Jβ(F) from a subsheaf G of some Z#
X to all of Z#

X . Then by
Lemma 7.2 the map γ lifts into Jα(F) for some α < β. Finally, we apply Lemma
7.1 to get the desired extension of γ to a morphism into Jα+1(F)→ Jβ(F). �

8. Modules on a ringed site

Let C be a site. Let O be a sheaf of rings on C. By analogy with More on Algebra,
Section 42 let us try to prove that there are enough injective O-modules. First of
all, we pick an injective embedding⊕

U,I
jU !OU/I −→ J

where J is an injective abelian sheaf (which exists by the previous section). Here
the direct sum is over all objects U of C and over all O-submodules I ⊂ jU !OU .
Please see Modules on Sites, Section 19 to read about the functors restriction and
extension by 0 for the localization functor jU : C/U → C.
For any sheaf of O-modules F denote

F∨ = Hom(F ,J )

with its natural O-module structure. Insert here future reference to internal hom.
We will also need a canonical flat resolution of a sheaf of O-modules. This we can
do as follows: For any O-module F we denote

F (F) =
⊕

U∈Ob(C),s∈F(U)
jU !OU .

This is a flat sheaf of O-modules which comes equipped with a canonical surjection
F (F) → F , see Modules on Sites, Lemma 28.6. Moreover the construction F 7→
F (F) is functorial in F .

Lemma 8.1. The functor F 7→ F∨ is exact.

Proof. This because J is an injective abelian sheaf. �

There is a canonical map ev : F → (F∨)∨ given by evaluation: given x ∈ F(U) we
let ev(x) ∈ (F∨)∨ = Hom(F∨,J ) be the map ϕ 7→ ϕ(x).

Lemma 8.2. For any O-module F the evaluation map ev : F → (F∨)∨ is injective.

Proof. You can check this using the definition of J . Namely, if s ∈ F(U) is not
zero, then let jU !OU → F be the map ofO-modules it corresponds to via adjunction.
Let I be the kernel of this map. There exists a nonzero map F ⊃ jU !OU/I → J
which does not annihilate s. As J is an injective O-module, this extends to a map
ϕ : F → J . Then ev(s)(ϕ) = ϕ(s) 6= 0 which is what we had to prove. �

The canonical surjection F (F)→ F ofO-modules turns into a a canonical injection,
see above, of O-modules

(F∨)∨ −→ (F (F∨))∨.
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Set J(F) = (F (F∨))∨. The composition of ev with this the displayed map gives
F → J(F) functorially in F .

Lemma 8.3. Let O be a sheaf of rings. For every O-module F the O-module J(F)
is injective.

Proof. We have to show that the functor HomO(G, J(F)) is exact. Note that

HomO(G, J(F)) = HomO(G, (F (F∨))∨)

= HomO(G,Hom(F (F∨),J ))

= Hom(G ⊗O F (F∨),J )

Thus what we want follows from the fact that F (F∨) is flat and J is injective. �

Theorem 8.4. Let C be a site. Let O be a sheaf of rings on C. The category
of sheaves of O-modules on a site has enough injectives. In fact there exists a
functorial injective embedding, see Homology, Definition 23.5.

Proof. From the discussion in this section. �

Proposition 8.5. Let C be a category. Let O be a presheaf of rings on C. The
category PMod(O) of presheaves of O-modules has functorial injective embeddings.

Proof. We could prove this along the lines of the discussion in Section 6. But
instead we argue using the theorem above. Endow C with the structure of a site
by letting the set of coverings of an object U consist of all singletons {f : V → U}
where f is an isomorphism. We omit the verification that this defines a site. A
sheaf for this topology is the same as a presheaf (proof omitted). Hence the theorem
applies. �

9. Embedding abelian categories

In this section we show that an abelian category embeds in the category of abelian
sheaves on a site having enough points. The site will be the one described in the
following lemma.

Lemma 9.1. Let A be an abelian category. Let

Cov = {{f : V → U} | f is surjective}.

Then (A,Cov) is a site, see Sites, Definition 6.2.

Proof. Note that Ob(A) is a set by our conventions about categories. An iso-
morphism is a surjective morphism. The composition of surjective morphisms is
surjective. And the base change of a surjective morphism in A is surjective, see
Homology, Lemma 5.14. �

Let A be a pre-additive category. In this case the Yoneda embedding A → PSh(A),
X 7→ hX factors through a functor A → PAb(A).

Lemma 9.2. Let A be an abelian category. Let C = (A,Cov) be the site defined in
Lemma 9.1. Then X 7→ hX defines a fully faithful, exact functor

A −→ Ab(C).

Moreover, the site C has enough points.
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Proof. Suppose that f : V → U is a surjective morphism of A. Let K = Ker(f).
Recall that V ×U V = Ker((f,−f) : V ⊕ V → U), see Homology, Example 5.6. In
particular there exists an injection K ⊕ K → V ×U V . Let p, q : V ×U V → V
be the two projection morphisms. Note that p − q : V ×U V → V is a morphism
such that f ◦ (p− q) = 0. Hence p− q factors through K → V . Let us denote this
morphism by c : V ×U V → K. And since the composition K⊕K → V ×U V → K
is surjective, we conclude that c is surjective. It follows that

V ×U V
p−q−−→ V → U → 0

is an exact sequence of A. Hence for an object X of A the sequence

0→ HomA(U,X)→ HomA(V,X)→ HomA(V ×U V,X)

is an exact sequence of abelian groups, see Homology, Lemma 5.8. This means that
hX satisfies the sheaf condition on C.
The functor is fully faithful by Categories, Lemma 3.5. The functor is a left exact
functor between abelian categories by Homology, Lemma 5.8. To show that it is
right exact, let X → Y be a surjective morphism of A. Let U be an object of A,
and let s ∈ hY (U) = MorA(U, Y ) be a section of hY over U . By Homology, Lemma
5.14 the projection U ×Y X → U is surjective. Hence {V = U ×Y X → U} is a
covering of U such that s|V lifts to a section of hX . This proves that hX → hY is
a surjection of abelian sheaves, see Sites, Lemma 12.2.

The site C has enough points by Sites, Proposition 38.3. �

Remark 9.3. The Freyd-Mitchell embedding theorem says there exists a fully
faithful exact functor from any abelian category A to the category of modules
over a ring. Lemma 9.2 is not quite as strong. But the result is suitable for the
stacks project as we have to understand sheaves of abelian groups on sites in detail
anyway. Moreover, “diagram chasing” works in the category of abelian sheaves on
C, for example by working with sections over objects, or by working on the level
of stalks using that C has enough points. To see how to deduce the Freyd-Mitchell
embedding theorem from Lemma 9.2 see Remark 9.5.

Remark 9.4. If A is a “big” abelian category, i.e., if A has a class of objects,
then Lemma 9.2 does not work. In this case, given any set of objects E ⊂ Ob(A)
there exists an abelian full subcategory A′ ⊂ A such that Ob(A′) is a set and
E ⊂ Ob(A′). Then one can apply Lemma 9.2 to A′. One can use this to prove that
results depending on a diagram chase hold in A.

Remark 9.5. Let C be a site. Note that Ab(C) has enough injectives, see Theorem
7.4. (In the case that C has enough points this is straightforward because p∗I is an
injective sheaf if I is an injective Z-module and p is a point.) Also, Ab(C) has a
cogenerator (details omitted). Hence Lemma 9.2 proves that we have a fully faithful,
exact embedding A → B where B has a cogenerator and enough injectives. We can
apply this to Aopp and we get a fully faithful exact functor i : A → D = Bopp where
D has enough projectives and a generator. Hence D has a projective generator P .
Set R = MorD(P, P ). Then

A −→ ModR, X 7−→ HomD(P,X).

One can check this is a fully faithful, exact functor. In other words, one retrieves
the Freyd-Mitchell theorem mentioned in Remark 9.3 above.
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Remark 9.6. The arguments proving Lemmas 9.1 and 9.2 work also for exact
categories, see [Büh10, Appendix A] and [BBD82, 1.1.4]. We quickly review this
here and we add more details if we ever need it in the stacks project.

Let A be an additive category. A kernel-cokernel pair is a pair (i, p) of morphisms
of A with i : A→ B, p : B → C such that i is the kernel of p and p is the cokernel
of i. Given a set E of kernel-cokernel pairs we say i : A → B is an admissible
monomorphism if (i, p) ∈ E for some morphism p. Similarly we say a morphism
p : B → C is an admissible epimorphism if (i, p) ∈ E for some morphism i. The
pair (A, E) is said to be an exact category if the following axioms hold

(1) E is closed under isomorphisms of kernel-cokernel pairs,
(2) for any object A the morphism 1A is both an admissible epimorphism and

an admissible monomorphism,
(3) admissible monomorphisms are stable under composition,
(4) admissible epimorphisms are stable under composition,
(5) the push-out of an admissible monomorphism i : A→ B via any morphism

A → A′ exist and the induced morphism i′ : A′ → B′ is an admissible
monomorphism, and

(6) the base change of an admissible epimorphism p : B → C via any morphism
C ′ → C exist and the induced morphism p′ : B′ → C ′ is an admissible
epimorphism.

Given such a structure let C = (A,Cov) where coverings (i.e., elements of Cov)
are given by admissible epimorphisms. The axioms listed above immediately imply
that this is a site. Consider the functor

F : A −→ Ab(C), X 7−→ hX

exactly as in Lemma 9.2. It turns out that this functor is fully faithful, exact, and
reflects exactness. Moreover, any extension of objects in the essential image of F
is in the essential image of F .

10. Grothendieck’s AB conditions

This and the next few sections are mostly interesting for “big” abelian categories,
i.e., those categories listed in Categories, Remark 2.2. A good case to keep in mind
is the category of sheaves of modules on a ringed site.

Grothendieck proved the existence of injectives in great generality in the paper
[Gro57]. He used the following conditions to single out abelian categories with
special properties.

Definition 10.1. Let A be an abelian category. We name some conditions

AB3 A has direct sums,
AB4 A has AB3 and direct sums are exact,
AB5 A has AB3 and filtered colimits are exact.

Here are the dual notions

AB3* A has products,
AB4* A has AB3* and products are exact,
AB5* A has AB3* and filtered limits are exact.
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We say an object U of A is a generator if for every N ⊂M , N 6= M in A there exists
a morphism U →M which does not factor through N . We say A is a Grothendieck
abelian category if it has AB5 and a generator.

Discussion: A direct sum in an abelian category is a coproduct. If an abelian
category has direct sums (i.e., AB3), then it has colimits, see Categories, Lemma
14.11. Similarly if A has AB3* then it has limits, see Categories, Lemma 14.10.
Exactness of direct sums means the following: given an index set I and short exact
sequences

0→ Ai → Bi → Ci → 0, i ∈ I
in A then the sequence

0→
⊕

i∈I
Ai →

⊕
i∈I

Bi →
⊕

i∈I
Ci → 0

is exact as well. Without assuming AB4 it is only true in general that the sequence
is exact on the right (i.e., taking direct sums is a right exact functor if direct sums
exist). Similarly, exactness of filtered colimits means the following: given a directed
partially ordered set I and a system of short exact sequences

0→ Ai → Bi → Ci → 0

over I in A then the sequence

0→ colimi∈I Ai → colimi∈I Bi → colimi∈I Ci → 0

is exact as well. Without assuming AB5 it is only true in general that the sequence
is exact on the right (i.e., taking colimits is a right exact functor if colimits exist).
A similar explanation holds for AB4* and AB5*.

11. Injectives in Grothendieck categories

The existence of a generator implies that given an object M of a Grothendieck
abelian category A there is a set of subobjects. (This may not be true for a general
“big” abelian category.)

Definition 11.1. Let A be a Grothendieck abelian category. Let M be an object
of A. The size |M | of M is the cardinality of the set of subobjects of M .

Lemma 11.2. Let A be a Grothendieck abelian category. If 0 → M ′ → M →
M ′′ → 0 is a short exact sequence of A, then |M ′|, |M ′′| ≤ |M |.

Proof. Immediate from the definitions. �

Lemma 11.3. Let A be a Grothendieck abelian category with generator U .

(1) If |M | ≤ κ, then M is the quotient of a direct sum of at most κ copies of
U .

(2) For every cardinal κ there exists a set of isomorphism classes of objects M
with |M | ≤ κ.

Proof. For (1) choose for every proper subobject M ′ ⊂M a morphism ϕM ′ : U →
M whose image is not contained in M ′. Then

⊕
M ′⊂M ϕM ′ :

⊕
M ′⊂N U → M is

surjective. It is clear that (1) implies (2). �

Proposition 11.4. Let A be a Grothendieck abelian category. Let M be an object
of A. Let κ = |M |. If α is an ordinal whose cofinality is bigger than κ, then M is
α-small with respect to injections.
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Proof. Please compare with Proposition 2.5. We need only show that the map
(2.0.1) is a surjection. Let f : M → colimBβ be a map. Consider the subobjects
{f−1(Bβ)} of M , where Bβ is considered as a subobject of the colimit B =

⋃
β Bβ .

If one of these, say f−1(Bβ), fills M , then the map factors through Bβ .

So suppose to the contrary that all of the f−1(Bβ) were proper subobjects of M .
However, because A has AB5 we have

colim f−1(Bβ) = f−1 (colimBβ) = M.

Now there are at most κ different subobjects of M that occur among the f−1(Bα),
by hypothesis. Thus we can find a subset S ⊂ α of cardinality at most κ such that
as β′ ranges over S, the f−1(Bβ′) range over all the f−1(Bα).

However, S has an upper bound α̃ < α as α has cofinality bigger than κ. In
particular, all the f−1(Bβ′), β

′ ∈ S are contained in f−1(Bα̃). It follows that
f−1(Bα̃) = M . In particular, the map f factors through Bα̃. �

Lemma 11.5. Let A be a Grothendieck abelian category with generator U . An
object I of A is injective if and only if in every commutative diagram

M

��

// I

U

??

for M ⊂ U a subobject, the dotted arrow exists.

Proof. Please see Lemma 2.6 for the case of modules. Choose an injection A ⊂ B
and a morphism ϕ : A → I. Consider the set S of pairs (A′, ϕ′) consisting of
subobjects A ⊂ A′ ⊂ B and a morphism ϕ′ : A′ → I extending ϕ. Define a partial
ordering on this set in the obvious manner. Choose a totally ordered subset T ⊂ S.
Then

A′ = colimt∈T At
colimt∈T ϕt−−−−−−−→ I

is an upper bound. Hence by Zorn’s lemma the set S has a maximal element
(A′, ϕ′). We claim that A′ = B. If not, then choose a morphism ψ : U → B which
does not factor through A′. Set N = A′ ∩ ψ(U). Set M = ψ−1(N). Then the map

M → N → A′
ϕ′−→ I

can be extended to a morphism χ : U → I. Since χ|Ker(ψ) = 0 we see that χ factors
as

U → Im(ψ)
ϕ′′−−→ I

Since ϕ′ and ϕ′′ agree on N = A′ ∩ Im(ψ) we see that combined the define a
morphism A′ + Im(ψ)→ I contradicting the assumed maximality of A′. �

Theorem 11.6. Let A be a Grothendieck abelian category. Then A has functorial
injective embeddings.
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Proof. Please compare with the proof of Theorem 2.8. Choose a generator U of
A. For an object M we define M(M) by the following pushout diagram⊕

N⊂U
⊕

ϕ∈Hom(N,M)N
//

��

M

��⊕
N⊂U

⊕
ϕ∈Hom(U,M) U

//M(M).

Note that M → M(N) is a functor and that there exist functorial injective maps
M →M(M). By transfinite induction we define functors Mα(M) for every ordinal
α. Namely, set M0(M) = M . Given Mα(M) set Mα+1(M) = M(Mα(M)). For a
limit ordinal β set

Mβ(M) = colimα<β Mα(M).

Finally, choose an ordinal α whose cofinality is greater than |U |, see Sets, Proposi-
tion 7.2. We claim that M →Mα(M) is the desired functorial injective embedding.
Namely, if N ⊂ U is a subobject and ϕ : N →Mα(M) is a morphism, then we see
that ϕ factors through Mα′(M) for some α′ < α by Proposition 11.4. By construc-
tion of M(−) we see that ϕ extends to a morphism from U into Mα′+1(M) and
hence into Mα(M). By Lemma 11.5 we conclude that Mα(M) is injective. �

12. K-injectives in Grothendieck categories

The material in this section is taken from the paper [Ser03] authored by Serpé.
This paper generalizes some of the results of [Spa88] by Spaltenstein to general
Grothendieck abelian categories. Our Lemma 12.3 is only implicit in the paper by
Serpé. Our approach is to mimic Grothendieck’s proof of Theorem 11.6.

Lemma 12.1. Let A be a Grothendieck abelian category with generator U . Let c be
the function on cardinals defined by c(κ) = |

⊕
α∈κ U |. If π : M → N is a surjection

then there exists a subobject M ′ ⊂M which surjects onto N with |N ′| ≤ c(|N |).

Proof. For every proper subobject N ′ ⊂ N choose a morphism ϕN ′ : U →M such
that U →M → N does not factor through N ′. Set

N ′ = Im
(⊕

N ′⊂N
ϕN ′ :

⊕
N ′⊂N

U −→M
)

Then N ′ works. �

Lemma 12.2. Let A be a Grothendieck abelian category. There exists a cardinal
κ such that given any acyclic complex M• we have

(1) if M• is nonzero, there is a nonzero subcomplex N• which is bounded above,
acyclic, and |Nn| ≤ κ,

(2) there exists a surjection of complexes⊕
i∈I

M•i −→M•

where M•i is bounded above, acyclic, and |Mn
i | ≤ κ.

Proof. Choose a generator U of A. Denote c the function of Lemma 12.1. Set
κ = sup{cn(|U |), n = 1, 2, 3, . . .}. Let n ∈ Z and let ψ : U → Mn be a morphism.
In order to prove (1) and (2) it suffices to prove there exists a subcomplex N• ⊂M•
which is bounded above, acyclic, and |Nm| ≤ κ, such that ψ factors through Nn.
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To do this set Nn = Im(ψ), Nn+1 = Im(U → Mn → Mn+1), and Nm = 0 for
m ≥ n+ 2. Suppose we have constructed Nm ⊂Mm for all m ≥ k such that

(1) d(Nm) ⊂ Nm+1, m ≥ k,
(2) Im(Nm−1 → Nm) = Ker(Nm → Nm+1) for all m ≥ k + 1, and
(3) |Nm| ≤ cmax{n−m,0}(|U |).

for some k ≤ n. Because M• is acyclic, we see that the subobject d−1(Ker(Nk →
Nk+1)) ⊂ Mk−1 surjects onto Ker(Nk → Nk+1). Thus we can choose Nk−1 ⊂
Mk−1 surjecting onto Ker(Nk → Nk+1) with |Nk−1| ≤ cn−k+1(|U |) by Lemma
12.1. The proof is finished by induction on k. �

Lemma 12.3. Let A be a Grothendieck abelian category. Let κ be a cardinal as in
Lemma 12.2. Suppose that I• is a complex such that

(1) each Ij is injective, and
(2) for every bounded above acyclic complex M• such that |Mn| ≤ κ we have

HomK(A)(M
•, I•) = 0.

Then I• is an K-injective complex.

Proof. Let M• be an acyclic complex. We are going to construct by induction
on the ordinal α an acyclic subcomplex K•α ⊂ M• as follows. For α = 0 we set
N•0 = 0. For α > 0 we proceed as follows:

(1) If α = β + 1 and K•β = M• then we choose K•α = K•β .

(2) If α = β + 1 and K•β 6= M• then M•/K•β is a nonzero acyclic complex.

We choose a subcomplex N•α ⊂ M•/K•β as in Lemma 12.2. Finally, we let
K•α ⊂M• be the inverse image of N•α.

(3) If α is a limit ordinal we set N•β = colimN•α.

It is clear that M• = K•α for a suitably large ordinal α. We will prove that

HomK(A)(K
•
α, I
•)

is zero by transfinite induction on α. It holds for α = 0 since K•0 is zero. Suppose
it holds for β and α = β+ 1. In case (1) of the list above the result is clear. In case
(2) there is a short exact sequence of complexes

0→ K•β → K•α → N•α → 0

Since each component of I• is injective we see that we obtain an exact sequence

HomK(A)(K
•
β , I
•)→ HomK(A)(K

•
α, I
•)→ HomK(A)(N

•
α, I
•)

By induction the term on the left is zero and by assumption on I• the term on the
right is zero. Thus the middle group is zero too. Finally, suppose that α is a limit
ordinal. Then we see that

Hom•(K•α, I
•) = limβ<α Hom•(K•β , I

•)

with notation as in More on Algebra, Section 54. These complexes compute mor-
phisms in K(A) by More on Algebra, Equation (54.0.1). Note that the transition
maps in the system are surjective because Ij is surjective for each j. Moreover, for
a limit ordinal α we have equality of limit and value (see displayed formula above).
Thus we may apply Homology, Lemma 27.8 to conclude. �

Lemma 12.4. Let A be a Grothendieck abelian category. Let (K•i )i∈I be a set of
acyclic complexes. There exists a functor M• 7→M•(M•) and a natural transfor-
mation jM• : M• →M•(M•) such
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(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every i ∈ I and w : K•i → M• the morphism jM• ◦ w is homotopic to

zero.

Proof. For every i ∈ I choose a (termwise) injective map of complexes K•i → L•i
which is homotopic to zero with L•i quasi-isomorphic to zero. For example, take L•i
to be the cone on the identity of K•i . We define M•(M•) by the following pushout
diagram ⊕

i∈I
⊕

w:K•i→M•
K•i

//

��

M•

��⊕
i∈I
⊕

w:K•i→M•
L•i

//M•(M•).

Then M• →M•(M•) is a functor. The right vertical arrow defines the functorial
injective map jM• . The cokernel of jM• is isomorphic to the direct sum of the
cokernels of the maps K•i → L•i hence acyclic. Thus jM• is a quasi-isomorphism.
Part (2) holds by construction. �

Lemma 12.5. Let A be a Grothendieck abelian category. There exists a functor
M• 7→ N•(M•) and a natural transformation jM• : M• → N•(M•) such

(1) jM• is a (termwise) injective quasi-isomorphism, and
(2) for every n ∈ Z the map Mn → Nn(M•) factors through a subobject In ⊂

Nn(M•) where In is an injective object of A.

Proof. Choose a functorial injective embeddings iM : M → I(M), see Theorem
11.6. For every complex M• denote J•(M•) the complex with terms Jn(M•) =
I(Mn)⊕ I(Mn+1) and differential

dJ•(M•) =

(
0 1
0 0

)
There exists a canonical injective map of complexes uM• : M• → J•(M•) by
mapping Mn to I(Mn)⊕I(Mn+1) via the maps iMn : Mn → I(Mn) and iMn+1 ◦d :
Mn →Mn+1 → I(Mn+1). Hence a short exact sequence of complexes

0→M•
uM•−−−→ J•(M•)

vM•−−−→ Q•(M•)→ 0

functorial in M•. Set

N•(M•) = C(vM•)
•[−1].

Note that

Nn(M•) = Qn−1(M•)⊕ Jn(M•)

with differential (
−dn−1Q•(M•) −vnM•

0 dnJ•(M)

)
Hence we see that there is a map of complexes jM• : M• → N•(M•) induced by u.
It is injective and factors through an injective subobject by construction. The map
jM• is a quasi-isomorphism as one can prove by looking at the long exact sequence
of cohomology associated to the short exact sequences of complexes above. �
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Theorem 12.6. Let A be a Grothendieck abelian category. For every complex
M• there exists a quasi-isomorphism M• → I• where I• is a K-injective complex.
In fact, we may also assume that In is an injective object of A for all n. More-
over, there exists a functorial injective quasi-isomorphism into such a K-injective
complex.

Proof. Please compare with the proof of Theorem 2.8 and Theorem 11.6. Choose
a cardinal κ as in Lemmas 12.2 and 12.3. Choose a set (K•i )i∈I of bounded above,
acyclic complexes such that every bounded above acyclic complex K• such that
|Kn| ≤ κ is isomorphic to K•i for some i ∈ I. This is possible by Lemma 11.3.
Denote M•(−) the functor constructed in Lemma 12.4. Denote N•(−) the functor
constructed in Lemma 12.5. Both of these functors come with injective transfor-
mations id→M and id→ N.

By transfinite induction we define a sequence of functors Tα(−) and corresponding
transformations id → Tα. Namely we set T0(M•) = M•. If Tα is given then we
set

Tα+1(M•) = N•(M•(Tα(M•)))

If β is a limit ordinal we set

Tβ(M•) = colimα<β Tα(M•)

The transition maps of the system are injective quasi-isomorphisms. By AB5 we
see that the colimit is still quasi-isomorphic to M•. We claim that M• → Tα(M•)
does the job if the cofinality of α is larger than max(κ, |U |) where U is a generator
of A. Namely, it suffices to check conditions (1) and (2) of Lemma 12.3.

For (1) we use the criterion of Lemma 11.5. Suppose that M ⊂ U and ϕ : M →
Tn
α(M•) is a morphism for some n ∈ Z. By Proposition 11.4 we see that ϕ factor

through Tn
α′(M

•) for some α′ < α. In particular, by the construction of the functor
N•(−) we see that ϕ factors through an injective object of A which shows that ϕ
lifts to a morphism on U .

For (2) let w : K• → Tα(M•) be a morphism of complexes where K• is a bounded
above acyclic complex such that |Kn| ≤ κ. Then K• ∼= K•i for some i ∈ I.
Moreover, by Proposition 11.4 once again we see that w factor through Tn

α′(M
•)

for some α′ < α. In particular, by the construction of the functor M•(−) we see
that w is homotopic to zero. This finishes the proof. �

13. Additional remarks on Grothendieck abelian categories

In this section we put some results on Grothendieck abelian categories which are
folklore.

Lemma 13.1. Let A be a Grothendieck abelian category. Let F : Aopp → Sets be
a functor. Then F is representable if and only if F commutes with colimits, i.e.,

F (colimiNi) = limF (Ni)

for any diagram I → A, i ∈ I.

Proof. If F is representable, then it commutes with colimits by definition of col-
imits.

Assume that F commutes with colimits. Then F (M ⊕ N) = F (M)
∏
F (N) and

we can use this to define a group structure on F (M). Hence we get F : A → Ab
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which is additive and right exact, i.e., transforms a short exact sequence 0→ K →
L → M → 0 into an exact sequence F (K) ← F (L) ← F (M) ← 0 (compare with
Homology, Section 7).

Let U be a generator for A. Set A =
⊕

s∈F (U) U . Let suniv = (s)s∈F (U) ∈ F (A) =∏
s∈F (U) F (U). Let A′ ⊂ A be the largest subobject such that suniv restricts to zero

on A′. This exists because A is a grothendieck category and because F commutes
with colimits. Because F commutes with colimits there exists a unique element
suniv ∈ F (A/A′) which maps to suniv in F (A). We claim that A/A′ represents F ,
in other words, the Yoneda map

suniv : hA/A′ −→ F

is an isomorphism. Let M ∈ Ob(A) and s ∈ F (M). Consider the surjection

cM : AM =
⊕

ϕ∈HomA(U,M)
U −→M.

This gives F (cM )(s) = (sϕ) ∈
∏
ϕ F (U). Consider the map

ψ : AM =
⊕

ϕ∈HomA(U,M)
U −→

⊕
s∈F (U)

U = A

which maps the summand corresponding to ϕ to the summand corresponding to
sϕ by the identity map on U . Then suniv maps to (sϕ)ϕ by construction. in other
words the right square in the diagram

A′ // A
suniv

// F

K //

?

OO

AM

ψ

OO

// M

s

OO

commutes. Let K = Ker(AM → M). Since s restricts to zero on K we see
that ψ(K) ⊂ A′ by definition of A′. Hence there is an induced morphism M →
A/A′. This construction gives an inverse to the map hA/A′(M) → F (M) (details
omitted). �

Lemma 13.2. A Grothendieck abelian category has Ab3*.

Proof. Let Mi, i ∈ I be a family of objects of A indexed by a set I. The functor
F =

∏
i∈I hMi

commutes with colimits. Hence Lemma 13.1 applies. �

Remark 13.3. In the chapter on derived categories we consistently work with
“small” abelian categories (as is the convention in the Stacks project). For a “big”
abelian category A it isn’t clear that the derived category D(A) exists because it
isn’t clear that morphisms in the derived category are sets. In general this isn’t
true, see Examples, Lemma 52.1. However, if A is a Grothendieck abelian category,
and given K•, L• in K(A), then by Theorem 12.6 there exists a quasi-isomorphism
L• → I• to a K-injective complex I• and Derived Categories, Lemma 29.2 shows
that

HomD(A)(K
•, L•) = HomK(A)(K

•, I•)

which is a set. Some examples of Grothendieck abelian categories are the category
of modules over a ring, or more generally the category of sheaves of modules on a
ringed site.

Lemma 13.4. Let A be a Grothendieck abelian category. Then

http://localhost:8080/tag/07D8
http://localhost:8080/tag/079Q
http://localhost:8080/tag/07D9


INJECTIVES 21

(1) D(A) has both direct sums and products,
(2) direct sums are obtained by taking termwise direct sums of any complexes,
(3) products are obtained by taking termwise products of K-injective complexes.

Proof. Let K•i , i ∈ I be a family of objects of D(A) indexed by a set I. We claim
that the termwise direct sum

⊕
i∈I K

•
i is a direct sum in D(A). Namely, let I• be

a K-injective complex. Then we have

HomD(A)(
⊕

i∈I
K•i , I

•) = HomK(A)(
⊕

i∈I
K•i , I

•)

=
∏

i∈I
HomK(A)(K

•
i , I
•)

=
∏

i∈I
HomD(A)(K

•
i , I
•)

as desired. This is sufficient since any complex can be represented by a K-injective
complex by Theorem 12.6. To construct the product, choose a K-injective resolution
K•i → I•i for each i. Then we claim that

∏
i∈I I

•
i is a product in D(A). Namely,

let K• be an complex. Note that a product of K-injective complexes is K-injective
(follows immediately from the definition). Thus we have

HomD(A)(K
•,
∏

i∈I
I•i ) = HomK(A)(K

•,
∏

i∈I
I•i )

=
∏

i∈I
HomK(A)(K

•, I•i )

=
∏

i∈I
HomD(A)(K

•, I•i )

which proves the result. �

Remark 13.5. Let R be a ring. Suppose that Mn, n ∈ Z are R-modules. Denote
En = Mn[−n] ∈ D(R). We claim that E =

⊕
Mn[−n] is both the direct sum and

the product of the objects En in D(R). To see that it is the direct sum, take a
look at the proof of Lemma 13.4. To see that it is the direct product, take injective
resolutions Mn → I•n. By the proof of Lemma 13.4 we have∏

En =
∏

I•n[−n]

in D(R). Since products in ModR are exact, we see that
∏
I•n is quasi-isomorphic to

E. This works more generally in D(A) where A is a Grothendieck abelian category
with Ab4*.

Lemma 13.6. Let F : A → B be an additive functor of abelian categories. Assume

(1) A is a Grothendieck abelian category,
(2) B has exact countable products, and
(3) F commutes with countable products.

Then RF : D(A)→ D(B) commutes with derived limits.

Proof. Observe that RF exists as A has enough K-injectives (Theorem 12.6 and
Derived Categories, Lemma 29.5). The statement means that if K = R limKn,
then RF (K) = R limRF (Kn). See Derived Categories, Definition 32.1 for notation.
Since RF is an exact functor of triangulated categories it suffices to see that RF
commutes with countable products of objects of D(A). In the proof of Lemma 13.4
we have seen that products in D(A) are computed by taking products of K-injective
complexes and moreover that a product of K-injective complexes is K-injective.
Moreover, in Derived Categories, Lemma 32.2 we have seen that products in D(B)
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are computed by taking termwise products. Since RF is computed by applying F
to a K-injective representative and since we’ve assumed F commutes with countable
products, the lemma follows. �
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