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1. Introduction

In this document we define schemes. A basic reference is [DG67].

2. Locally ringed spaces

Recall that we defined ringed spaces in Sheaves, Section 25. Briefly, a ringed space
is a pair (X,OX) consisting of a topological space X and a sheaf of rings OX . A
morphism of ringed spaces f : (X,OX) → (Y,OY ) is given by a continuous map
f : X → Y and an f -map of sheaves of rings f ] : OY → OX . You can think of f ]

as a map OY → f∗OX , see Sheaves, Definition 21.7 and Lemma 21.8.
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2 SCHEMES

A good geometric example of this to keep in mind is C∞-manifolds and morphisms
of C∞-manifolds. Namely, if M is a C∞-manifold, then the sheaf C∞M of smooth
functions is a sheaf of rings on M . And any map f : M → N of manifolds is
smooth if and only if for every local section h of C∞N the composition h◦f is a local
section of C∞M . Thus a smooth map f gives rise in a natural way to a morphism of
ringed spaces

f : (M, C∞M ) −→ (N, C∞N )

see Sheaves, Example 25.2. It is instructive to consider what happens to stalks.
Namely, let m ∈ M with image f(m) = n ∈ N . Recall that the stalk C∞M,m is the
ring of germs of smooth functions at m, see Sheaves, Example 11.4. The algebra
of germs of functions on (M,m) is a local ring with maximal ideal the functions
which vanish at m. Similarly for C∞N,n. The map on stalks f ] : C∞N,n → C∞M,m maps

the maximal ideal into the maximal ideal, simply because f(m) = n.

In algebraic geometry we study schemes. On a scheme the sheaf of rings is not
determined by an intrinsic property of the space. The spectrum of a ring R (see
Algebra, Section 16) endowed with a sheaf of rings constructed out of R (see below),
will be our basic building block. It will turn out that the stalks of O on Spec(R)
are the local rings of R at its primes. There are two reasons to introduce locally
ringed spaces in this setting: (1) There is in general no mechanism that assigns
to a continuous map of spectra a map of the corresponding rings. This is why
we add as an extra datum the map f ]. (2) If we consider morphisms of these
spectra in the category of ringed spaces, then the maps on stalks may not be local
homomorphisms. Since our geometric intuition says it should we introduce locally
ringed spaces as follows.

Definition 2.1. Locally ringed spaces.

(1) A locally ringed space (X,OX) is a pair consisting of a topological space X
and a sheaf of rings OX all of whose stalks are local rings.

(2) Given a locally ringed space (X,OX) we say that OX,x is the local ring of X
at x. We denote mX,x or simply mx the maximal ideal of OX,x. Moreover,
the residue field of X at x is the residue field κ(x) = OX,x/mx.

(3) A morphism of locally ringed spaces (f, f ]) : (X,OX) → (Y,OY ) is a mor-
phism of ringed spaces such that for all x ∈ X the induced ring map
OY,f(x) → OX,x is a local ring map.

We will usually suppress the sheaf of rings OX in the notation when discussing
locally ringed spaces. We will simply refer to “the locally ringed space X”. We will
by abuse of notation think of X also as the underlying topological space. Finally
we will denote the corresponding sheaf of rings OX as the structure sheaf of X.
In addition, it is customary to denote the maximal ideal of the local ring OX,x by
mX,x or simply mx. We will say “let f : X → Y be a morphism of locally ringed
spaces” thereby suppressing the structure sheaves even further. In this case, we will
by abuse of notation think of f : X → Y also as the underlying continuous map of
topological spaces. The f -map corresponding to f will customarily be denoted f ].
The condition that f is a morphism of locally ringed spaces can then be expressed
by saying that for every x ∈ X the map on stalks

f ]x : OY,f(x) −→ OX,x
maps the maximal ideal mY,f(x) into mX,x.
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Let us use these notational conventions to show that the collection of locally ringed
spaces and morphisms of locally ringed spaces forms a category. In order to see
this we have to show that the composition of morphisms of locally ringed spaces
is a morphism of locally ringed spaces. OK, so let f : X → Y and g : Y → Z
be morphism of locally ringed spaces. The composition of f and g is defined in
Sheaves, Definition 25.3. Let x ∈ X. By Sheaves, Lemma 21.10 the composition

OZ,g(f(x))
g]−→ OY,f(x)

f]

−→ OX,x
is the associated map on stalks for the morphism g ◦ f . The result follows since a
composition of local ring homomorphisms is a local ring homomorphism.

A pleasing feature of the definition is the fact that the functor

Locally ringed spaces −→ Ringed spaces

reflects isomorphisms (plus more). Here is a less abstract statement.

Lemma 2.2. Let X, Y be locally ringed spaces. If f : X → Y is an isomorphism
of ringed spaces, then f is an isomorphism of locally ringed spaces.

Proof. This follows trivially from the corresponding fact in algebra: Suppose A, B
are local rings. Any isomorphism of rings A→ B is a local ring homomorphism. �

3. Open immersions of locally ringed spaces

Definition 3.1. Let f : X → Y be a morphism of locally ringed spaces. We say
that f is an open immersion if f is a homeomorphism of X onto an open subset of
Y , and the map f−1OY → OX is an isomorphism.

The following construction is parallel to Sheaves, Definition 31.2 (3).

Example 3.2. Let X be a locally ringed space. Let U ⊂ X be an open subset.
Let OU = OX |U be the restriction of OX to U . For u ∈ U the stalk OU,u is equal
to the stalk OX,u, and hence is a local ring. Thus (U,OU ) is a locally ringed space
and the morphism j : (U,OU )→ (X,OX) is an open immersion.

Definition 3.3. Let X be a locally ringed space. Let U ⊂ X be an open subset.
The locally ringed space (U,OU ) of Example 3.2 above is the open subspace of X
associated to U .

Lemma 3.4. Let f : X → Y be an open immersion of locally ringed spaces. Let
j : V = f(X) → Y be the open subspace of Y associated to the image of f . There
is a unique isomorphism f ′ : X ∼= V of locally ringed spaces such that f = j ◦ f ′.

Proof. Let f ′ be the homeomorphism between X and V induced by f . Then
f = j ◦ f ′ as maps of topological spaces. Since there is an isomorphism of sheaves
f ] : f−1(OY ) → OX , there is an isomorphism of rings f ] : Γ(U, f−1(OY )) →
Γ(U,OX) for each open subset U ⊂ X. Since OV = j−1OY and f−1 = f ′−1j−1

(Sheaves, Lemma 21.6) we see that f−1OY = f ′−1OV , hence Γ(U, f ′−1(OV )) →
Γ(U, f−1(OY )) for every U ⊂ X open. By composing these we get an isomorphism
of rings

Γ(U, f ′−1(OV ))→ Γ(U,OX)

for each open subset U ⊂ X, and therefore an isomorphism of sheaves f−1(OV )→
OX . In other words, we have an isomorphism f ′] : f ′−1(OV )→ OX and therefore
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4 SCHEMES

an isomorphism of locally ringed spaces (f ′, f ′]) : (X,OX)→ (V,OV ) (use Lemma
2.2). Note that f = j ◦ f ′ as morphisms of locally ringed spaces by construction.

Suppose we have another morphism f ′′ : (X,OX)→ (V,OY ) such that f = j ◦ f ′′.
At any point x ∈ X, we have j(f ′(x)) = j(f ′′(x)) from which it follows that
f ′(x) = f ′′(x) since j is the inclusion map; therefore f ′ and f ′′ are the same as
morphisms of topological spaces. On structure sheaves, for each open subset U ⊂ X
we have a commutative diagram

Γ(U, f−1(OY ))

∼=

��

∼= // Γ(U,OX)

Γ(U, f ′−1(OV ))

f ′]

88

f ′′]

AA

from which we see that f ′] and f ′′] define the same morphism of sheaves. �

From now on we do not distinguish between open subsets and their associated
subspaces.

Lemma 3.5. Let f : X → Y be a morphism of locally ringed spaces. Let U ⊂ X,
and V ⊂ Y be open subsets. Suppose that f(U) ⊂ V . There exists a unique
morphism of locally ringed spaces f |U : U → V such that the following diagram is
a commutative square of locally ringed spaces

U

f |U
��

// X

f

��
V // Y

Proof. Omitted. �

In the following we will use without further mention the following fact which follows
from the lemma above. Given any morphism f : Y → X of locally ringed spaces,
and any open subset U ⊂ X such that f(Y ) ⊂ U , then there exists a unique
morphism of locally ringed spaces Y → U such that the composition Y → U → X
is equal to f . In fact, we will even by abuse of notation write f : Y → U since this
rarely gives rise to confusion.

4. Closed immersions of locally ringed spaces

We follow our conventions introduced in Modules, Definition 13.1.

Definition 4.1. Let i : Z → X be a morphism of locally ringed spaces. We say
that i is an closed immersion if:

(1) The map i is a homeomorphism of Z onto a closed subset of X.
(2) The map OX → i∗OZ is surjective; let I denote the kernel.
(3) The OX -module I is locally generated by sections.

Lemma 4.2. Let f : Z → X be a morphism of locally ringed spaces. In order for
f to be a closed immersion it suffices if there exists an open covering X =

⋃
Ui

such that each f : f−1Ui → Ui is a closed immersion.

http://localhost:8080/tag/01HI
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Proof. Omitted. �

Example 4.3. Let X be a locally ringed space. Let I ⊂ OX be a sheaf of ideals
which is locally generated by sections as a sheaf of OX -modules. Let Z be the
support of the sheaf of rings OX/I. This is a closed subset of X, by Modules,
Lemma 5.3. Denote i : Z → X the inclusion map. By Modules, Lemma 6.1 there
is a unique sheaf of rings OZ on Z with i∗OZ = OX/I. For any z ∈ Z the local
ring OZ,z is equal to the quotient ring OX,i(z)/Ii(z) and nonzero, hence a local ring.
Thus i : (Z,OZ)→ (X,OX) is a closed immersion of locally ringed spaces.

Definition 4.4. Let X be a locally ringed space. Let I be a sheaf of ideals on X
which is locally generated by sections. The locally ringed space (Z,OZ) of Example
4.3 above is the closed subspace of X associated to the sheaf of ideals I.

Lemma 4.5. Let f : X → Y be a closed immersion of locally ringed spaces. Let I
be the kernel of the map OY → f∗OX . Let i : Z → Y be the closed subspace of Y
associated to I. There is a unique isomorphism f ′ : X ∼= Z of locally ringed spaces
such that f = i ◦ f ′.

Proof. Omitted. �

Lemma 4.6. Let X, Y be a locally ringed spaces. Let I ⊂ OX be a sheaf of ideals
locally generated by sections. Let i : Z → X be the associated closed subspace. A
morphism f : Y → X factors through Z if and only if the map f∗I → f∗OX = OY
is zero. If this is the case the morphism g : Y → Z such that f = i ◦ g is unique.

Proof. Clearly if f factors as Y → Z → X then the map f∗I → OY is zero.
Conversely suppose that f∗I → OY is zero. Pick any y ∈ Y , and consider the ring
map f ]y : OX,f(y) → OY,y. Since the composition If(y) → OX,f(y) → OY,y is zero

by assumption and since f ]y(1) = 1 we see that 1 6∈ If(y), i.e., If(y) 6= OX,f(y). We
conclude that f(Y ) ⊂ Z = Supp(OX/I). Hence f = i ◦ g where g : Y → Z is
continuous. Consider the map f ] : OX → f∗OY . The assumption f∗I → OY is
zero implies that the composition I → OX → f∗OY is zero by adjointness of f∗ and

f∗. In other words, we obtain a morphism of sheaves of rings f ] : OX/I → f∗OY .
Note that f∗OY = i∗g∗OY and that OX/I = i∗OZ . By Sheaves, Lemma 32.4 we
obtain a unique morphism of sheaves of rings g] : OZ → g∗OY whose pushforward

under i is f ]. We omit the verification that (g, g]) defines a morphism of locally
ringed spaces and that f = i ◦ g as a morphism of locally ringed spaces. The
uniqueness of (g, g]) was pointed out above. �

Lemma 4.7. Let f : X → Y be a morphism of locally ringed spaces. Let I ⊂ OY
be a sheaf of ideals which is locally generated by sections. Let i : Z → Y be the
closed subspace associated to the sheaf of ideals I. Let J be the image of the map
f∗I → f∗OY = OX . Then this ideal is locally generated by sections. Moreover,
let i′ : Z ′ → X be the associated closed subspace of X. There exists a unique
morphism of locally ringed spaces f ′ : Z ′ → Z such that the following diagram is a
commutative square of locally ringed spaces

Z ′

f ′

��

i′
// X

f

��
Z

i // Y
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Moreover, this diagram is a fibre square in the category of locally ringed spaces.

Proof. The ideal J is locally generated by sections by Modules, Lemma 8.2. The
rest of the lemma follows from the characterization, in Lemma 4.6 above, of what
it means for a morphism to factor through a closed subspace. �

5. Affine schemes

Let R be a ring. Consider the topological space Spec(R) associated to R, see
Algebra, Section 16. We will endow this space with a sheaf of rings OSpec(R) and
the resulting pair (Spec(R),OSpec(R)) will be an affine scheme.

Recall that Spec(R) has a basis of open sets D(f), f ∈ R which we call standard
opens, see Algebra, Definition 16.3. In addition, the intersection of two standard
opens is another: D(f) ∩D(g) = D(fg), f, g ∈ R.

Lemma 5.1. Let R be a ring. Let f ∈ R.

(1) If g ∈ R and D(g) ⊂ D(f), then
(a) f is invertible in Rg,
(b) ge = af for some e ≥ 1 and a ∈ R,
(c) there is a canonical ring map Rf → Rg, and
(d) there is a canonical Rf -module map Mf →Mg for any R-module M .

(2) Any open covering of D(f) can be refined to a finite open covering of the
form D(f) =

⋃n
i=1D(gi).

(3) If g1, . . . , gn ∈ R, then D(f) ⊂
⋃
D(gi) if and only if g1, . . . , gn generate

the unit ideal in Rf .

Proof. Recall that D(g) = Spec(Rg) (see Algebra, Lemma 16.6). Thus (a) holds
because f maps to an element of Rg which is not contained in any prime ideal, and
hence invertible, see Algebra, Lemma 16.2. Write the inverse of f in Rg as a/gd.
This means gd − af is annihilated by a power of g, whence (b). For (c), the map
Rf → Rg exists by (a) from the universal property of localization, or we can define
it by mapping b/fn to anb/gne. The equality Mf = M⊗RRf can be used to obtain
the map on modules, or we can define Mf →Mg by mapping x/fn to anx/gne.

Recall that D(f) is quasi-compact, see Algebra, Lemma 28.1. Hence the second
statement follows directly from the fact that the standard opens form a basis for
the topology.

The third statement follows directly from Algebra, Lemma 16.2. �

In Sheaves, Section 30 we defined the notion of a sheaf on a basis, and we showed
that it is essentially equivalent to the notion of a sheaf on the space, see Sheaves,
Lemmas 30.6 and 30.9. Moreover, we showed in Sheaves, Lemma 30.4 that it is
sufficient to check the sheaf condition on a cofinal system of open coverings for each
standard open. By the lemma above it suffices to check on the finite coverings by
standard opens.

Definition 5.2. Let R be a ring.

(1) A standard open covering of Spec(R) is a covering Spec(R) =
⋃n
i=1D(fi),

where f1, . . . , fn ∈ R.
(2) Suppose thatD(f) ⊂ Spec(R) is a standard open. A standard open covering

of D(f) is a covering D(f) =
⋃n
i=1D(gi), where g1, . . . , gn ∈ R.

http://localhost:8080/tag/01HS
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Let R be a ring. Let M be an R-module. We will define a presheaf M̃ on the basis
of standard opens. Suppose that U ⊂ Spec(R) is a standard open. If f, g ∈ R
are such that D(f) = D(g), then by Lemma 5.1 above there are canonical maps
Mf →Mg and Mg →Mf which are mutually inverse. Hence we may choose any f
such that U = D(f) and define

M̃(U) = Mf .

Note that if D(g) ⊂ D(f), then by Lemma 5.1 above we have a canonical map

M̃(D(f)) = Mf −→Mg = M̃(D(g)).

Clearly, this defines a presheaf of abelian groups on the basis of standard opens. If

M = R, then R̃ is a presheaf of rings on the basis of standard opens.

Let us compute the stalk of M̃ at a point x ∈ Spec(R). Suppose that x corresponds
to the prime p ⊂ R. By definition of the stalk we see that

M̃x = colimf∈R,f 6∈pMf

Here the set {f ∈ R, f 6∈ p} is partially ordered by the rule f ≥ f ′ ⇔ D(f) ⊂ D(f ′).
If f1, f2 ∈ R\p, then we have f1f2 ≥ f1 in this ordering. Hence by Algebra, Lemma
9.9 we conclude that

M̃x = Mp.

Next, we check the sheaf condition for the standard open coverings. If D(f) =⋃n
i=1D(gi), then the sheaf condition for this covering is equivalent with the exact-

ness of the sequence

0→Mf →
⊕

Mgi →
⊕

Mgigj .

Note that D(gi) = D(fgi), and hence we can rewrite this sequence as the sequence

0→Mf →
⊕

Mfgi →
⊕

Mfgigj .

In addition, by Lemma 5.1 above we see that g1, . . . , gn generate the unit ideal in
Rf . Thus we may apply Algebra, Lemma 22.2 to the module Mf over Rf and the
elements g1, . . . , gn. We conclude that the sequence is exact. By the remarks made

above, we see that M̃ is a sheaf on the basis of standard opens.

Thus we conclude from the material in Sheaves, Section 30 that there exists a

unique sheaf of rings OSpec(R) which agrees with R̃ on the standard opens. Note
that by our computation of stalks above, the stalks of this sheaf of rings are all
local rings.

Similarly, for any R-module M there exists a unique sheaf of OSpec(R)-modules F
which agrees with M̃ on the standard opens, see Sheaves, Lemma 30.12.

Definition 5.3. Let R be a ring.

(1) The structure sheaf OSpec(R) of the spectrum of R is the unique sheaf of

rings OSpec(R) which agrees with R̃ on the basis of standard opens.
(2) The locally ringed space (Spec(R),OSpec(R)) is called the spectrum of R

and denoted Spec(R).

(3) The sheaf of OSpec(R)-modules extending M̃ to all opens of Spec(R) is called

the sheaf of OSpec(R)-modules associated to M . This sheaf is denoted M̃
as well.

http://localhost:8080/tag/01HU
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We summarize the results obtained so far.

Lemma 5.4. Let R be a ring. Let M be an R-module. Let M̃ be the sheaf of
OSpec(R)-modules associated to M .

(1) We have Γ(Spec(R),OSpec(R)) = R.

(2) We have Γ(Spec(R), M̃) = M as an R-module.
(3) For every f ∈ R we have Γ(D(f),OSpec(R)) = Rf .

(4) For every f ∈ R we have Γ(D(f), M̃) = Mf as an Rf -module.

(5) Whenever D(g) ⊂ D(f) the restriction mappings on OSpec(R) and M̃ are
the maps Rf → Rg and Mf →Mg from Lemma 5.1.

(6) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point. We
have OSpec(R),x = Rp.

(7) Let p be a prime of R, and let x ∈ Spec(R) be the corresponding point. We
have Fx = Mp as an Rp-module.

Moreover, all these identifications are functorial in the R module M . In particular,

the functor M 7→ M̃ is an exact functor from the category of R-modules to the
category of OSpec(R)-modules.

Proof. Assertions (1) - (7) are clear from the discussion above. The exactness

of the functor M 7→ M̃ follows from the fact that the functor M 7→ Mp is exact
and the fact that exactness of short exact sequences may be checked on stalks, see
Modules, Lemma 3.1. �

Definition 5.5. An affine scheme is a locally ringed space isomorphic as a locally
ringed space to Spec(R) for some ring R. A morphism of affine schemes is a
morphism in the category of locally ringed spaces.

It turns out that affine schemes play a special role among all locally ringed spaces,
which is what the next section is about.

6. The category of affine schemes

Note that if Y is an affine scheme, then its points are in canonical 1 − 1 bijection
with prime ideals in Γ(Y,OY ).

Lemma 6.1. Let X be a locally ringed space. Let Y be an affine scheme. Let
f ∈ Mor(X,Y ) be a morphism of locally ringed spaces. Given a point x ∈ X
consider the ring maps

Γ(Y,OY )
f]

−→ Γ(X,OX)→ OX,x

Let p ⊂ Γ(Y,OY ) denote the inverse image of mx. Let y ∈ Y be the corresponding
point. Then f(x) = y.

Proof. Consider the commutative diagram

Γ(X,OX) // OX,x

Γ(Y,OY ) //

OO

OY,f(x)

OO

http://localhost:8080/tag/01HV
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(see the discussion of f -maps below Sheaves, Definition 21.7). Since the right
vertical arrow is local we see that mf(x) is the inverse image of mx. The result
follows. �

Lemma 6.2. Let X be a locally ringed space. Let f ∈ Γ(X,OX). The set

D(f) = {x ∈ X | image f 6∈ mx}

is open. Moreover f |D(f) has an inverse.

Proof. This is a special case of Modules, Lemma 21.7, but we also give a direct
proof. Suppose that U ⊂ X and V ⊂ X are two open subsets such that f |U has an
inverse g and f |V has an inverse h. Then clearly g|U∩V = h|U∩V . Thus it suffices to
show that f is invertible in an open neighbourhood of any x ∈ D(f). This is clear
because f 6∈ mx implies that f ∈ OX,x has an inverse g ∈ OX,x which means there
is some open neighbourhood x ∈ U ⊂ X so that g ∈ OX(U) and g · f |U = 1. �

Lemma 6.3. In Lemma 6.2 above, if X is an affine scheme, then the open D(f)
agrees with the standard open D(f) defined previously (in Algebra, Definition 16.1).

Proof. Omitted. �

Lemma 6.4. Let X be a locally ringed space. Let Y be an affine scheme. The map

Mor(X,Y ) −→ Hom(Γ(Y,OY ),Γ(X,OX))

which maps f to f ] (on global sections) is bijective.

Proof. Since Y is affine we have (Y,OY ) ∼= (Spec(R),OSpec(R)) for some ring R.
During the proof we will use facts about Y and its structure sheaf which are direct
consequences of things we know about the spectrum of a ring, see e.g. Lemma 5.4.

Motivated by the lemmas above we construct the inverse map. Let ψY : Γ(Y,OY )→
Γ(X,OX) be a ring map. First, we define the corresponding map of spaces

Ψ : X −→ Y

by the rule of Lemma 6.1. In other words, given x ∈ X we define Ψ(x) to be the
point of Y corresponding to the prime in Γ(Y,OY ) which is the inverse image of

mx under the composition Γ(Y,OY )
ψY−−→ Γ(X,OX)→ OX,x.

We claim that the map Ψ : X → Y is continuous. The standard opens D(g), for
g ∈ Γ(Y,OY ) are a basis for the topology of Y . Thus it suffices to prove that
Ψ−1(D(g)) is open. By construction of Ψ the inverse image Ψ−1(D(g)) is exactly
the set D(ψY (g)) ⊂ X which is open by Lemma 6.2. Hence Ψ is continuous.

Next we construct a Ψ-map of sheaves from OY to OX . By Sheaves, Lemma 30.14 it
suffices to define ring maps ψD(g) : Γ(D(g),OY ) → Γ(Ψ−1(D(g)),OX) compatible
with restriction maps. We have a canonical isomorphism Γ(D(g),OY ) = Γ(Y,OY )g,
because Y is an affine scheme. Because ψY (g) is invertible on D(ψY (g)) we see that
there is a canonical map

Γ(Y,OY )g −→ Γ(Ψ−1(D(g)),OX) = Γ(D(ψY (g)),OX)

extending the map ψY by the universal property of localization. Note that there is
no choice but to take the canonical map here! And we take this, combined with the
canonical identification Γ(D(g),OY ) = Γ(Y,OY )g, to be ψD(g). This is compatible

http://localhost:8080/tag/01HZ
http://localhost:8080/tag/01I0
http://localhost:8080/tag/01I1


10 SCHEMES

with localization since the restriction mapping on the affine schemes are defined in
terms of the universal properties of localization also, see Lemmas 5.4 and 5.1.

Thus we have defined a morphism of ringed spaces (Ψ, ψ) : (X,OX) → (Y,OY )
recovering ψY on global sections. To see that it is a morphism of locally ringed
spaces we have to show that the induced maps on local rings

ψx : OY,Ψ(x) −→ OX,x
are local. This follows immediately from the commutative diagram of the proof of
Lemma 6.1 and the definition of Ψ.

Finally, we have to show that the constructions (Ψ, ψ) 7→ ψY and the construction
ψY 7→ (Ψ, ψ) are inverse to each other. Clearly, ψY 7→ (Ψ, ψ) 7→ ψY . Hence the
only thing to prove is that given ψY there is at most one pair (Ψ, ψ) giving rise to
it. The uniqueness of Ψ was shown in Lemma 6.1 and given the uniqueness of Ψ the
uniqueness of the map ψ was pointed out during the course of the proof above. �

Lemma 6.5. The category of affine schemes is equivalent to the opposite of the
category of rings. The equivalence is given by the functor that associates to an
affine scheme the global sections of its structure sheaf.

Proof. This is now clear from Definition 5.5 and Lemma 6.4. �

Lemma 6.6. Let Y be an affine scheme. Let f ∈ Γ(Y,OY ). The open subspace
D(f) is an affine scheme.

Proof. We may assume that Y = Spec(R) and f ∈ R. Consider the morphism
of affine schemes φ : U = Spec(Rf ) → Spec(R) = Y induced by the ring map
R → Rf . By Algebra, Lemma 16.6 we know that it is a homeomorphism onto
D(f). On the other hand, the map φ−1OY → OU is an isomorphism on stalks,
hence an isomorphism. Thus we see that φ is an open immersion. We conclude
that D(f) is isomorphic to U by Lemma 3.4. �

Lemma 6.7. The category of affine schemes has finite products, and fibre products.
In other words, it has finite limits. Moreover, the products and fibre products in the
category of affine schemes are the same as in the category of locally ringed spaces.
In a formula, we have (in the category of locally ringed spaces)

Spec(R)× Spec(S) = Spec(R⊗Z S)

and given ring maps R→ A, R→ B we have

Spec(A)×Spec(R) Spec(B) = Spec(A⊗R B).

Proof. This is just an application of Lemma 6.4. First of all, by that lemma, the
affine scheme Spec(Z) is the final object in the category of locally ringed spaces.
Thus the first displayed formula follows from the second. To prove the second note
that for any locally ringed space X we have

Mor(X,Spec(A⊗R B)) = Hom(A⊗R B,OX(X))

= Hom(A,OX(X))×Hom(R,OX(X)) Hom(B,OX(X))

= Mor(X,Spec(A))×Mor(X,Spec(R)) Mor(X,Spec(B))

which proves the formula. See Categories, Section 6 for the relevant definitions. �
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Lemma 6.8. Let X be a locally ringed space. Assume X = U q V with U and V
open and such that U , V are affine schemes. Then X is an affine scheme.

Proof. Set R = Γ(X,OX). Note that R = OX(U)×OX(V ) by the sheaf property.
By Lemma 6.4 there is a canonical morphism of locally ringed spaces X → Spec(R).
By Algebra, Lemma 20.2 we see that as a topological space Spec(OX(U))qSpec(OX(V )) =
Spec(R) with the maps coming from the ring homomorphisms R → OX(U) and
R→ OX(V ). This of course means that Spec(R) is the coproduct in the category of
locally ringed spaces as well. By assumption the morphism X → Spec(R) induces
an isomorphism of Spec(OX(U)) with U and similarly for V . Hence X → Spec(R)
is an isomorphism. �

7. Quasi-coherent sheaves on affines

Recall that we have defined the abstract notion of a quasi-coherent sheaf in Modules,
Definition 10.1. In this section we show that any quasi-coherent sheaf on an affine

scheme Spec(R) corresponds to the sheaf M̃ associated to an R-module M .

Lemma 7.1. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let M be an

R-module. There exists a canonical isomorphism between the sheaf M̃ associated to
the R-module M (Definition 5.3) and the sheaf FM associated to the R-module M
(Modules, Definition 10.6). This isomorphism is functorial in M . In particular,

the sheaves M̃ are quasi-coherent. Moreover, they are characterized by the following
mapping property

HomOX
(M̃,F) = HomR(M,Γ(X,F))

for any sheaf of OX-modules F . Here a map α : M̃ → F corresponds to its effect
on global sections.

Proof. By Modules, Lemma 10.5 we have a morphism FM → M̃ corresponding

to the map M → Γ(X, M̃) = M . Let x ∈ X correspond to the prime p ⊂ R. The
induced map on stalks are the maps OX,x ⊗R M → Mp which are isomorphisms

because Rp ⊗R M = Mp. Hence the map FM → M̃ is an isomorphism. The
mapping property follows from the mapping property of the sheaves FM . �

Lemma 7.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. There are
canonical isomorphisms

(1) M̃ ⊗R N ∼= M̃ ⊗OX
Ñ , see Modules, Section 15.

(2) T̃n(M) ∼= Tn(M̃), ˜Symn(M) ∼= Symn(M̃), and ∧̃n(M) ∼= ∧n(M̃), see Mod-
ules, Section 18.

(3) if M is a finitely presented R-module, then HomOX
(M̃, Ñ) ∼= ˜HomR(M,N),

see Modules, Section 19.

Proof. To give a map M̃ ⊗R N into M̃ ⊗OX
Ñ we have to give a map on global

sections M⊗RN → Γ(X, M̃⊗OX
Ñ) which exists by definition of the tensor product

of sheaves of modules. To see that this map is an isomorphism it suffices to check
that it is an isomorphism on stalks. And this follows from the description of the

stalks of M̃ (as a functor) and Modules, Lemma 15.1.

The proof of (2) is similar, using Modules, Lemma 18.2.
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For (3) note that if M is finitely presented as an R-module then M̃ has a global
finite presentation as an OX -module. Hence Modules, Lemma 19.3 applies. �

Lemma 7.3. Let (X,OX) = (Spec(S),OSpec(S)), (Y,OY ) = (Spec(R),OSpec(R))
be affine schemes. Let ψ : (X,OX) → (Y,OY ) be a morphism of affine schemes,
corresponding to the ring map ψ] : R→ S (see Lemma 6.5).

(1) We have ψ∗M̃ = ˜S ⊗RM functorially in the R-module M .

(2) We have ψ∗Ñ = ÑR functorially in the S-module N .

Proof. The first assertion follows from the identification in Lemma 7.1 and the
result of Modules, Lemma 10.7. The second assertion follows from the fact that
ψ−1(D(f)) = D(ψ](f)) and hence

ψ∗Ñ(D(f)) = Ñ(D(ψ](f))) = Nψ](f) = (NR)f = ÑR(D(f))

as desired. �

Lemma 7.3 above says in particular that if you restrict the sheaf M̃ to a standard

affine open subspace D(f), then you get M̃f . We will use this from now on without
further mention.

Lemma 7.4. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let F be
a quasi-coherent OX-module. Then F is isomorphic to the sheaf associated to the
R-module Γ(X,F).

Proof. Let F be a quasi-coherent OX -module. Since every standard open D(f)
is quasi-compact we see that X is a locally quasi-compact, i.e., every point has
a fundamental system of quasi-compact neighbourhoods, see Topology, Definition
12.1. Hence by Modules, Lemma 10.8 for every prime p ⊂ R corresponding to
x ∈ X there exists an open neighbourhood x ∈ U ⊂ X such that F|U is isomorphic
to the quasi-coherent sheaf associated to some OX(U)-module M . In other words,
we get an open covering by U ’s with this property. By Lemma 5.1 for example
we can refine this covering to a standard open covering. Thus we get a covering
Spec(R) =

⋃
D(fi) and Rfi-modules Mi and isomorphisms ϕi : F|D(fi) → FMi

for
some Rfi-module Mi. On the overlaps we get isomorphisms

FMi
|D(fifj)

ϕ−1
i |D(fifj) // F|D(fifj)

ϕj |D(fifj) // FMj
|D(fifj).

Let us denote these ψij . It is clear that we have the cocycle condition

ψjk|D(fifjfk) ◦ ψij |D(fifjfk) = ψik|D(fifjfk)

on triple overlaps.

Recall that each of the open subspaces D(fi), D(fifj), D(fifjfk) is an affine

scheme. Hence the sheaves FMi
are isomorphic to the sheaves M̃i by Lemma 7.1

above. In particular we see that FMi(D(fifj)) = (Mi)fj , etc. Also by Lemma 7.1
above we see that ψij corresponds to a unique Rfifj -module isomorphism

ψij : (Mi)fj −→ (Mj)fi

http://localhost:8080/tag/01I9
http://localhost:8080/tag/01IA


SCHEMES 13

namely, the effect of ψij on sections over D(fifj). Moreover these then satisfy the
cocycle condition that

(Mi)fjfk

ψij %%

ψik // (Mk)fifj

(Mj)fifk

ψjk

99

commutes (for any triple i, j, k).

Now Algebra, Lemma 23.4 shows that there exist an R-module M such that Mi =

Mfi compatible with the morphisms ψij . Consider FM = M̃ . At this point it is a

formality to show that M̃ is isomorphic to the quasi-coherent sheaf F we started

out with. Namely, the sheaves F and M̃ give rise to isomorphic sets of glueing data
of sheaves of OX -modules with respect to the covering X =

⋃
D(fi), see Sheaves,

Section 33 and in particular Lemma 33.4. Explicitly, in the current situation, this
boils down to the following argument: Let us construct an R-module map

M −→ Γ(X,F).

Namely, given m ∈ M we get mi = m/1 ∈ Mfi = Mi by construction of M . By

construction of Mi this corresponds to a section si ∈ F(Ui). (Namely, ϕ−1
i (mi).)

We claim that si|D(fifj) = sj |D(fifj). This is true because, by construction of M ,
we have ψij(mi) = mj , and by the construction of the ψij . By the sheaf condition
of F this collection of sections gives rise to a unique section s of F over X. We
leave it to the reader to show that m 7→ s is a R-module map. By Lemma 7.1 we
obtain an associated OX -module map

M̃ −→ F .
By construction this map reduces to the isomorphisms ϕ−1

i on each D(fi) and hence
is an isomorphism. �

Lemma 7.5. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. The functors

M 7→ M̃ and F 7→ Γ(X,F) define quasi-inverse equivalences of categories

QCoh(OX)
//
Mod-Roo

between the category of quasi-coherent OX-modules and the category of R-modules.

Proof. See Lemmas 7.1 and 7.4 above. �

From now on we will not distinguish between quasi-coherent sheaves on affine

schemes and sheaves of the form M̃ .

Lemma 7.6. Let X = Spec(R) be an affine scheme. Kernels and cokernels of
maps of quasi-coherent OX-modules are quasi-coherent.

Proof. This follows from the exactness of the functor ˜ since by Lemma 7.1 we

know that any map ψ : M̃ → Ñ comes from an R-module map ϕ : M → N . (So

we have Ker(ψ) = K̃er(ϕ) and Coker(ψ) = ˜Coker(ϕ).) �

Lemma 7.7. Let X = Spec(R) be an affine scheme. The direct sum of an arbitrary
collection of quasi-coherent sheaves on X is quasi-coherent. The same holds for
colimits.
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Proof. Suppose Fi, i ∈ I is a collection of quasi-coherent sheaves on X. By Lemma

7.5 above we can write Fi = M̃i for some R-module Mi. Set M =
⊕
Mi. Consider

the sheaf M̃ . For each standard open D(f) we have

M̃(D(f)) = Mf =
(⊕

Mi

)
f

=
⊕

Mi,f .

Hence we see that the quasi-coherent OX -module M̃ is the direct sum of the sheaves
Fi. A similar argument works for general colimits. �

Lemma 7.8. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Suppose
that

0→ F1 → F2 → F3 → 0

is a short exact sequence of sheaves OX-modules. If two out of three are quasi-
coherent then so is the third.

Proof. This is clear in case both F1 and F2 are quasi-coherent because the functor

M 7→ M̃ is exact, see Lemma 5.4. Similarly in case both F2 and F3 are quasi-

coherent. Now, suppose that F1 = M̃1 and F3 = M̃3 are quasi-coherent. Set
M2 = Γ(X,F2). We claim it suffices to show that the sequence

0→M1 →M2 →M3 → 0

is exact. Namely, if this is the case, then (by using the mapping property of Lemma
7.1) we get a commutative diagram

0 // M̃1
//

��

M̃2
//

��

M̃3
//

��

0

0 // F1
// F2

// F3
// 0

and we win by the snake lemma.

The “correct” argument here would be to show first that H1(X,F) = 0 for any
quasi-coherent sheaf F . This is actually not all that hard, but it is perhaps better
to postpone this till later. Instead we use a small trick.

Pick m ∈M3 = Γ(X,F3). Consider the following set

I = {f ∈ R | the element fm comes from M2}.
Clearly this is an ideal. It suffices to show 1 ∈ I. Hence it suffices to show that for
any prime p there exists an f ∈ I, f 6∈ p. Let x ∈ X be the point corresponding to p.
Because surjectivity can be checked on stalks there exists an open neighbourhood
U of x such that m|U comes from a local section s ∈ F2(U). In fact we may assume
that U = D(f) is a standard open, i.e., f ∈ R, f 6∈ p. We will show that for some
N � 0 we have fN ∈ I, which will finish the proof.

Take any point z ∈ V (f), say corresponding to the prime q ⊂ R. We can also find a
g ∈ R, g 6∈ q such that m|D(g) lifts to some s′ ∈ F2(D(g)). Consider the difference
s|D(fg)− s′|D(fg). This is an element m′ of F1(D(fg)) = (M1)fg. For some integer
n = n(z) the element fnm′ comes from some m′1 ∈ (M1)g. We see that fns
extends to a section σ of F2 on D(f) ∪D(g) because it agrees with the restriction
of fns′+m′1 on D(f)∩D(g) = D(fg). Moreover, σ maps to the restriction of fnm
to D(f) ∪D(g).
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Since V (f) is quasi-compact, there exists a finite list of elements g1, . . . , gm ∈ R
such that V (f) ⊂

⋃
D(gj), an integer n > 0 and sections σj ∈ F2(D(f) ∪D(gj))

such that σj |D(f) = fns and σj maps to the section fnm|D(f)∪D(gj) of F3. Consider
the differences

σj |D(f)∪D(gjgk) − σk|D(f)∪D(gjgk).

These correspond to sections of F1 over D(f) ∪ D(gjgk) which are zero on D(f).
In particular their images in F1(D(gjgk)) = (M1)gjgk are zero in (M1)gjgkf . Thus
some high power of f kills each and every one of these. In other words, the elements
fNσj , for some N � 0 satisfy the glueing condition of the sheaf property and give
rise to a section σ of F2 over

⋃
(D(f) ∪D(gj)) = X as desired. �

8. Closed subspaces of affine schemes

Example 8.1. Let R be a ring. Let I ⊂ R be an ideal. Consider the morphism of
affine schemes i : Z = Spec(R/I) → Spec(R) = X. By Algebra, Lemma 16.7 this
is a homeomorphism of Z onto a closed subset of X. Moreover, if I ⊂ p ⊂ R is a
prime corresponding to a point x = i(z), x ∈ X, z ∈ Z, then on stalks we get the
map

OX,x = Rp −→ Rp/IRp = OZ,z
Thus we see that i is a closed immersion of locally ringed spaces, see Definition 4.1.
Clearly, this is (isomorphic) to the closed subspace associated to the quasi-coherent

sheaf of ideals Ĩ, as in Example 4.3.

Lemma 8.2. Let (X,OX) = (Spec(R),OSpec(R)) be an affine scheme. Let i : Z →
X be any closed immersion of locally ringed spaces. Then there exists a unique
ideal I ⊂ R such that the morphism i : Z → X can be identified with the closed
immersion Spec(R/I)→ Spec(R) constructed in Example 8.1 above.

Proof. This is kind of silly! Namely, by Lemma 4.5 we can identify Z → X with
the closed subspace associated to a sheaf of ideals I ⊂ OX as in Definition 4.4
and Example 4.3. By our conventions this sheaf of ideals is locally generated by
sections as a sheaf of OX -modules. Hence the quotient sheaf OX/I is locally on X
the cokernel of a map

⊕
j∈J OU → OU . Thus by definition, OX/I is quasi-coherent.

By our results in Section 7 it is of the form S̃ for some R-module S. Moreover,

since OX = R̃→ S̃ is surjective we see by Lemma 7.8 that also I is quasi-coherent,

say I = Ĩ. Of course I ⊂ R and S = R/I and everything is clear. �

9. Schemes

Definition 9.1. A scheme is a locally ringed space with the property that every
point has an open neighbourhood which is an affine scheme. A morphism of schemes
is a morphism of locally ringed spaces. The category of schemes will be denoted
Sch.

Let X be a scheme. We will use the following (very slight) abuse of language. We
will say U ⊂ X is an affine open, or an open affine if the open subspace U is an
affine scheme. We will often write U = Spec(R) to indicate that U is isomorphic
to Spec(R) and moreover that we will identify (temporarily) U and Spec(R).

Lemma 9.2. Let X be a scheme. Let j : U → X be an open immersion of locally
ringed spaces. Then U is a scheme. In particular, any open subspace of X is a
scheme.
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Proof. Let U ⊂ X. Let u ∈ U . Pick an affine open neighbourhood u ∈ V ⊂ X.
Because standard opens of V form a basis of the topology on V we see that there
exists a f ∈ OV (V ) such that u ∈ D(f) ⊂ U . And D(f) is an affine scheme by
Lemma 6.6. This proves that every point of U has an open neighbourhood which
is affine. �

Clearly the lemma (or its proof) shows that any scheme X has a basis (see Topology,
Section 4) for the topology consisting of affine opens.

Example 9.3. Let k be a field. An example of a scheme which is not affine
is given by the open subspace U = Spec(k[x, y]) \ {(x, y)} of the affine scheme
X = Spec(k[x, y]). It is covered by two affines, namely D(x) = Spec(k[x, y, 1/x])
and D(y) = Spec(k[x, y, 1/y]) whose intersection is D(xy) = Spec(k[x, y, 1/xy]).
By the sheaf property for OU there is an exact sequence

0→ Γ(U,OU )→ k[x, y, 1/x]× k[x, y, 1/y]→ k[x, y, 1/xy]

We conclude that the map k[x, y]→ Γ(U,OU ) (coming from the morphism U → X)
is an isomorphism. Therefore U cannot be affine since if it was then by Lemma 6.5
we would have U ∼= X.

10. Immersions of schemes

In Lemma 9.2 we saw that any open subspace of a scheme is a scheme. Below we
will prove that the same holds for a closed subspace of a scheme.

Note that the notion of a quasi-coherent sheaf of OX -modules is defined for any
ringed space X in particular when X is a scheme. By our efforts in Section 7

we know that such a sheaf is on any affine open U ⊂ X of the form M̃ for some
OX(U)-module M .

Lemma 10.1. Let X be a scheme. Let i : Z → X be a closed immersion of locally
ringed spaces.

(1) The locally ringed space Z is a scheme,
(2) the kernel I of the map OX → i∗OZ is a quasi-coherent sheaf of ideals,
(3) for any affine open U = Spec(R) of X the morphism i−1(U) → U can be

identified with Spec(R/I)→ Spec(R) for some ideal I ⊂ R, and

(4) we have I|U = Ĩ.

In particular, any sheaf of ideals locally generated by sections is a quasi-coherent
sheaf of ideals (and vice versa), and any closed subspace of X is a scheme.

Proof. Let i : Z → X be a closed immersion. Let z ∈ Z be a point. Choose
any affine open neighbourhood i(z) ∈ U ⊂ X. Say U = Spec(R). By Lemma 8.2
we know that i−1(U) → U can be identified with the morphism of affine schemes
Spec(R/I) → Spec(R). First of all this implies that z ∈ i−1(U) ⊂ Z is an affine

neighbourhood of z. Thus Z is a scheme. Second this implies that I|U is Ĩ. In
other words for every point x ∈ i(Z) there exists an open neighbourhood such that
I is quasi-coherent in that neighbourhood. Note that I|X\i(Z)

∼= OX\i(Z). Thus
the restriction of the sheaf of ideals is quasi-coherent on X \ i(Z) also. We conclude
that I is quasi-coherent. �

Definition 10.2. Let X be a scheme.
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(1) A morphism of schemes is called an open immersion if it is an open immer-
sion of locally ringed spaces (see Definition 3.1).

(2) An open subscheme of X is an open subspace of X which is a scheme by
Lemma 9.2 above.

(3) A morphism of schemes is called a closed immersion if it is a closed immer-
sion of locally ringed spaces (see Definition 4.1).

(4) A closed subscheme of X is a closed subspace of X which is a scheme by
Lemma 10.1 above.

(5) A morphism of schemes f : X → Y is called an immersion, or a locally
closed immersion if it can be factored as j ◦ i where i is a closed immersion
and j is an open immersion.

It follows from the lemmas in Sections 3 and 4 that any open (resp. closed) immer-
sion of schemes is isomorphic to the inclusion of an open (resp. closed) subscheme
of the target. We will define locally closed subschemes below.

Remark 10.3. If f : X → Y is an immersion of schemes, then it is in general
not possible to factor f as an open immersion followed by a closed immersion. See
Morphisms, Example 3.4.

Lemma 10.4. Let f : Y → X be an immersion of schemes. Then f is a closed
immersion if and only if f(Y ) ⊂ X is a closed subset.

Proof. If f is a closed immersion then f(Y ) is closed by definition. Conversely,
suppose that f(Y ) is closed. By definition there exists an open subscheme U ⊂ X
such that f is the composition of a closed immersion i : Y → U and the open
immersion j : U → X. Let I ⊂ OU be the quasi-coherent sheaf of ideals associated
to the closed immersion i. Note that I|U\i(Y ) = OU\i(Y ) = OX\i(Y )|U\i(Y ). Thus
we may glue (see Sheaves, Section 33) I and OX\i(Y ) to a sheaf of ideals J ⊂ OX .
Since every point of X has a neighbourhood where J is quasi-coherent, we see that
J is quasi-coherent (in particular locally generated by sections). By construction
OX/J is supported on U and equal to OU/I. Thus we see that the closed subspaces
associated to I and J are canonically isomorphic, see Example 4.3. In particular
the closed subspace of U associated to I is isomorphic to a closed subspace of X.
Since Y → U is identified with the closed subspace associated to I, see Lemma 4.5,
we conclude that Y → U → X is a closed immersion. �

Let f : Y → X be an immersion. Let Z = f(Y ) \ f(Y ) which is a closed subset
of X. Let U = X \ Z. The lemma implies that U is the biggest open subspace of
X such that f : Y → X factors through a closed immersion into U . If we define a
locally closed subscheme of X as a pair (Z,U) consisting of a closed subscheme Z
of an open subscheme U of X such that in addition Z ∪ U = X. We usually just
say “let Z be a locally closed subscheme of X” since we may recover U from the
morphism Z → X. The above then shows that any immersion f : Y → X factors
uniquely as Y → Z → X where Z is a locally closed subspace of X and Y → Z is
an isomorphism.

The interest of this is that the collection of locally closed subschemes of X forms a
set. We may define a partial ordering on this set, which we call inclusion for obvious
reasons. To be explicit, if Z → X and Z ′ → X are two locally closed subschemes
of X, then we say that Z is contained in Z ′ simply if the morphism Z → X factors
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through Z ′. If it does, then of course Z is identified with a unique locally closed
subscheme of Z ′, and so on.

11. Zariski topology of schemes

See Topology, Section 1 for some basic material in topology adapted to the Zariski
topology of schemes.

Lemma 11.1. Let X be a scheme. Any irreducible closed subset of X has a unique
generic point. In other words, X is a sober topological space, see Topology, Defini-
tion 7.4.

Proof. Let Z ⊂ X be an irreducible closed subset. For every affine open U ⊂ X,
U = Spec(R) we know that Z ∩ U = V (I) for a unique radical ideal I ⊂ R. Note
that Z ∩ U is either empty or irreducible. In the second case (which occurs for at
least one U) we see that I = p is a prime ideal, which is a generic point ξ of Z ∩U .

It follows that Z = {ξ}, in other words ξ is a generic point of Z. If ξ′ was a second
generic point, then ξ′ ∈ Z ∩ U and it follows immediately that ξ′ = ξ. �

Lemma 11.2. Let X be a scheme. The collection of affine opens of X forms a
basis for the topology on X.

Proof. This follows from the discussion on open subschemes in Section 9. �

Remark 11.3. In general the intersection of two affine opens in X is not affine
open. See Example 14.3.

Lemma 11.4. The underlying topological space of any scheme is locally quasi-
compact, see Topology, Definition 12.1.

Proof. This follows from Lemma 11.2 above and the fact that the spectrum of ring
is quasi-compact, see Algebra, Lemma 16.10. �

Lemma 11.5. Let X be a scheme. Let U, V be affine opens of X, and let x ∈ U∩V .
There exists an affine open neighbourhood W of x such that W is a standard open
of both U and V .

Proof. Write U = Spec(A) and V = Spec(B). Say x corresponds to the prime
p ⊂ A and the prime q ⊂ B. We may choose a f ∈ A, f 6∈ p such that D(f) ⊂ U∩V .
Note that any standard open of D(f) is a standard open of Spec(A) = U . Hence
we may assume that U ⊂ V . In other words, now we may think of U as an affine
open of V . Next we choose a g ∈ B, g 6∈ q such that D(g) ⊂ U . In this case we see
that D(g) = D(gA) where gA ∈ A denotes the image of g ∈ A. Thus the lemma is
proved. �

Lemma 11.6. Let X be a scheme. Let X =
⋃
i Ui be an affine open covering. Let

V ⊂ X be an affine open. There exists a standard open covering V =
⋃
j=1,...,m Vj

(see Definition 5.2) such that each Vj is a standard open in one of the Ui.

Proof. Pick v ∈ V . Then v ∈ Ui for some i. By Lemma 11.5 above there exists an
open v ∈ Wv ⊂ V ∩ Ui such that Wv is a standard open in both V and Ui. Since
V is quasi-compact the lemma follows. �

Lemma 11.7. Let X be a scheme whose underlying topological space is a finite
discrete set. Then X is affine.
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Proof. Say X = {x1, . . . , xn}. Then Ui = {xi} is an open neighbourhood of xi.
By Lemma 11.2 it is affine. Hence X is a finite disjoint union of affine schemes,
and hence is affine by Lemma 6.8. �

Example 11.8. There exists a scheme without closed points. Namely, let R be
a local domain whose spectrum looks like (0) = p0 ⊂ p1 ⊂ p2 ⊂ . . . ⊂ m. Then
the open subscheme Spec(R) \ {m} does not have a closed point. To see that such
a ring R exists, we use that given any totally ordered group (Γ,≥) there exists a
valuation ring A with valuation group (Γ,≥), see [Kru32]. See Algebra, Section 48
for notation. We take Γ = Zx1⊕Zx2⊕Zx3⊕ . . . and we define

∑
i aixi ≥ 0 if and

only if the first nonzero ai is > 0, or all ai = 0. So x1 ≥ x2 ≥ x3 ≥ . . . ≥ 0. The
subsets xi + Γ≥0 are prime ideals of (Γ,≥), see Algebra, notation above Lemma
48.17. These together with ∅ and Γ≥0 are the only prime ideals. Hence A is an
example of a ring with the given structure of its spectrum, by Algebra, Lemma
48.17.

12. Reduced schemes

Definition 12.1. Let X be a scheme. We say X is reduced if every local ring OX,x
is reduced.

Lemma 12.2. A scheme X is reduced if and only if OX(U) is a reduced ring for
all U ⊂ X open.

Proof. Assume that X is reduced. Let f ∈ OX(U) be a section such that fn = 0.
Then the image of f in OU,u is zero for all u ∈ U . Hence f is zero, see Sheaves,
Lemma 11.1. Conversely, assume that OX(U) is reduced for all opens U . Pick any
nonzero element f ∈ OX,x. Any representative (U, f ∈ O(U)) of f is nonzero and
hence not nilpotent. Hence f is not nilpotent in OX,x. �

Lemma 12.3. An affine scheme Spec(R) is reduced if and only if R is reduced.

Proof. The direct implication follows immediately from Lemma 12.2 above. In the
other direction it follows since any localization of a reduced ring is reduced, and in
particular the local rings of a reduced ring are reduced. �

Lemma 12.4. Let X be a scheme. Let T ⊂ X be a closed subset. There exists a
unique closed subscheme Z ⊂ X with the following properties: (a) the underlying
topological space of Z is equal to T , and (b) Z is reduced.

Proof. Let I ⊂ OX be the sub presheaf defined by the rule

I(U) = {f ∈ OX(U) | f(t) = 0 for all t ∈ T ∩ U}
Here we use f(t) to indicate the image of f in the residue field κ(t) of X at t.
Because of the local nature of the condition it is clear that I is a sheaf of ideals.
Moreover, let U = Spec(R) be an affine open. We may write T ∩ U = V (I) for a
unique radical ideal I ⊂ R. Given a prime p ∈ V (I) corresponding to t ∈ T ∩ U
and an element f ∈ R we have f(t) = 0 ⇔ f ∈ p. Hence I(U) = ∩p∈V (I)p = I by
Algebra, Lemma 16.2. Moreover, for any standard open D(g) ⊂ Spec(R) = U we

have I(D(g)) = Ig by the same reasoning. Thus Ĩ and I|U agree (as ideals) on a
basis of opens and hence are equal. Therefore I is a quasi-coherent sheaf of ideals.

At this point we may define Z as the closed subspace associated to the sheaf of
ideals I. For every affine open U = Spec(R) of X we see that Z ∩ U = Spec(R/I)
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where I is a radical ideal and hence Z is reduced (by Lemma 12.3 above). By
construction the underlying closed subset of Z is T . Hence we have found a closed
subscheme with properties (a) and (b).

Let Z ′ ⊂ X be a second closed subscheme with properties (a) and (b). For every
affine open U = Spec(R) of X we see that Z ′ ∩ U = Spec(R/I ′) for some ideal
I ′ ⊂ R. By Lemma 12.3 the ring R/I ′ is reduced and hence I ′ is radical. Since
V (I ′) = T ∩U = V (I) we deduced that I = I ′ by Algebra, Lemma 16.2. Hence Z ′

and Z are defined by the same sheaf of ideals and hence are equal. �

Definition 12.5. Let X be a scheme. Let i : Z → X be the inclusion of a
closed subset. A scheme structure on Z is given by a closed subscheme Z ′ of X
whose underlying closed is equal to Z. We often say “let (Z,OZ) be a scheme
structure on Z” to indicate this. The reduced induced scheme structure on Z is the
one constructed in Lemma 12.4. The reduction Xred of X is the reduced induced
scheme structure on X itself.

Often when we say “let Z ⊂ X be an irreducible component of X” we think of Z
as a reduced closed subscheme of X using the reduced induced scheme structure.

Lemma 12.6. Let X be a scheme. Let Z ⊂ X be a closed subscheme. Let Y be a
reduced scheme. A morphism f : Y → X factors through Z if and only if f(Y ) ⊂ Z
(set theoretically). In particular, any morphism Y → X factors as Y → Xred → X.

Proof. Assume f(Y ) ⊂ Z (set theoretically). Let I ⊂ OX be the ideal sheaf of Z.
For any affine opens U ⊂ X, Spec(B) = V ⊂ Y with f(V ) ⊂ U and any g ∈ I(U)
the pullback b = f ](g) ∈ Γ(V,OY ) = B maps to zero in the residue field of any
y ∈ V . In other words b ∈

⋂
p⊂B p. This implies b = 0 as B is reduced (Lemma

12.2, and Algebra, Lemma 16.2). Hence f factors through Z by Lemma 4.6. �

13. Points of schemes

Given a scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

See Categories, Example 3.4. This is called the functor of points of X. A fun part
of scheme theory is to find descriptions of the internal geometry of X in terms of
this functor hX . In this section we find a simple way to describe points of X.

Let X be a scheme. Let R be a local ring with maximal ideal m ⊂ R. Suppose that
f : Spec(R)→ X is a morphism of schemes. Let x ∈ X be the image of the closed
point m ∈ Spec(R). Then we obtain a local homomorphism of local rings

f ] : OX,x −→ OSpec(R),m = R.

Lemma 13.1. Let X be a scheme. Let R be a local ring. The construction above
gives a bijective correspondence between morphisms Spec(R)→ X and pairs (x, ϕ)
consisting of a point x ∈ X and a local homomorphism of local rings ϕ : OX,x → R.

Proof. Let A be a ring. For any ring homomorphism ψ : A → R there exists a
unique prime ideal p ⊂ A and a factorization A → Ap → R where the last map is
a local homomorphism of local rings. Namely, p = ψ−1(m). Via Lemma 6.4 this
proves that the lemma holds if X is an affine scheme.
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Let X be a general scheme. Any x ∈ X is contained in an open affine U ⊂ X. By
the affine case we conclude that every pair (x, ϕ) occurs as the end product of the
construction above the lemma.

To finish the proof it suffices to show that any morphism f : Spec(R) → X has
image contained in any affine open containing the image x of the closed point of
Spec(R). In fact, let x ∈ V ⊂ X be any open neighbourhood containing x. Then
f−1(V ) ⊂ Spec(R) is an open containing the unique closed point and hence equal
to Spec(R). �

As a special case of the lemma above we obtain for every point x of a scheme X a
canonical morphism

(13.1.1) Spec(OX,x) −→ X

corresponding to the identity map on the local ring of X at x. We may reformulate
the lemma above as saying that for any morphism f : Spec(R)→ X there exists a
unique point x ∈ X such that f factors as Spec(R)→ Spec(OX,x)→ X where the
first map comes from a local homomorphism OX,x → R.

In case we have a morphism of schemes f : X → S, and a point x mapping to a
point s ∈ S we obtain a commutative diagram

Spec(OX,x) //

��

X

��
Spec(OS,s) // S

where the left vertical map corresponds to the local ring map f ]x : OX,x → OS,s.

Lemma 13.2. Let X be a scheme. Let x, x′ ∈ X be points of X. Then x′ ∈ X
is a generalization of x if and only if x′ is in the image of the canonical morphism
Spec(OX,x)→ X.

Proof. A continuous map preserves the relation of specialization/generalization.
Since every point of Spec(OX,x) is a generalization of the closed point we see every
point in the image of Spec(OX,x)→ X is a generalization of x. Conversely, suppose
that x′ is a generalization of x. Choose an affine open neighbourhood U = Spec(R)
of x. Then x′ ∈ U . Say p ⊂ R and p′ ⊂ R are the primes corresponding to x
and x′. Since x′ is a generalization of x we see that p′ ⊂ p. This means that p′

is in the image of the morphism Spec(OX,x) = Spec(Rp) → Spec(R) = U ⊂ X as
desired. �

Now, let us discuss morphisms from spectra of fields. Let (R,m, κ) be a local ring
with maximal ideal m and residue field κ. Let K be a field. A local homomorphism
R→ K by definition factors as R→ κ→ K, i.e., is the same thing as a morphism
κ→ K. Thus we see that morphisms

Spec(K) −→ X

correspond to pairs (x, κ(x)→ K). We may define a partial ordering on morphisms
of spectra of fields to X by saying that Spec(K) → X dominates Spec(L) → X if
Spec(K) → X factors through Spec(L) → X. This suggests the following notion:
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Let us temporarily say that two morphisms p : Spec(K)→ X and q : Spec(L)→ X
are equivalent if there exists a third field Ω and a commutative diagram

Spec(Ω) //

��

Spec(L)

q

��
Spec(K)

p // X

Of course this immediately implies that the unique points of all three of the schemes
Spec(K), Spec(L), and Spec(Ω) map to the same x ∈ X. Thus a diagram (by the
remarks above) corresponds to a point x ∈ X and a commutative diagram

Ω Loo

K

OO

κ(x)oo

OO

of fields. This defines an equivalence relation, because given any set of extensions
κ ⊂ Ki there exists some field extension κ ⊂ Ω such that all the field extensions
Ki are contained in the extension Ω.

Lemma 13.3. Let X be a scheme. Points of X correspond bijectively to equivalence
classes of morphisms from spectra of fields into X. Moreover, each equivalence class
contains a (unique up to unique isomorphism) smallest element Spec(κ(x))→ X.

Proof. Follows from the discussion above. �

Of course the morphisms Spec(κ(x))→ X factor through the canonical morphisms
Spec(OX,x) → X. And the content of Lemma 13.2 is in this setting that the
morphism Spec(κ(x′)) → X factors as Spec(κ(x′)) → Spec(OX,x) → X whenever
x′ is a generalization of x. In case we have a morphism of schemes f : X → S, and
a point x mapping to a point s ∈ S we obtain a commutative diagram

Spec(κ(x)) //

��

Spec(OX,x) //

��

X

��
Spec(κ(s)) // Spec(OS,s) // S.

14. Glueing schemes

Let I be a set. For each i ∈ I let (Xi,Oi) be a locally ringed space. (Actually
the construction that follows works equally well for ringed spaces.) For each pair
i, j ∈ I let Uij ⊂ Xi be an open subspace. For each pair i, j ∈ I, let

ϕij : Uij → Uji

be an isomorphism of locally ringed spaces. For convenience we assume that Uii =
Xi and ϕii = idXi

. For each triple i, j, k ∈ I assume that

(1) we have ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik, and
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(2) the diagram

Uij ∩ Uik ϕik

//

ϕij
&&

Uki ∩ Ukj

Uji ∩ Ujk

ϕjk

88

is commutative.

Let us call a collection (I, (Xi)i∈I , (Uij)i,j∈I , (ϕij)i,j∈I) satisfying the conditions
above a glueing data.

Lemma 14.1. Given any glueing data of locally ringed spaces there exists a locally
ringed space X and open subspaces Ui ⊂ X together with isomorphisms ϕi : Xi →
Ui of locally ringed spaces such that

(1) ϕi(Uij) = Ui ∩ Uj, and

(2) ϕij = ϕ−1
j |Ui∩Uj

◦ ϕi|Uij
.

The locally ringed space X is characterized by the following mapping properties:
Given a locally ringed space Y we have

Mor(X,Y ) = {(fi)i∈I | fi : Xi → Y, fj ◦ ϕij = fi|Uij
}

f 7→ (f |Ui
◦ ϕi)i∈I

Mor(Y,X) =

{
open covering Y =

⋃
i∈I Vi and (gi : Vi → Xi)i∈I such that

g−1
i (Uij) = Vi ∩ Vj and gj |Vi∩Vj

= ϕij ◦ gi|Vi∩Vj

}
g 7→ Vi = g−1(Ui), gi = g|Vi

Proof. We construct X in stages. As a set we take

X = (
∐

Xi)/ ∼ .

Here given x ∈ Xi and x′ ∈ Xj we say x ∼ x′ if and only if x ∈ Uij , x′ ∈ Uji and
ϕij(x) = x′. This is an equivalence relation since if x ∈ Xi, x

′ ∈ Xj , x
′′ ∈ Xk, and

x ∼ x′ and x′ ∼ x′′, then x′ ∈ Uji ∩ Ujk, hence by condition (1) of a glueing data
also x ∈ Uij ∩Uik and x′′ ∈ Uki∩Ukj and by condition (2) we see that ϕik(x) = x′′.
(Reflexivity and symmetry follows from our assumptions that Uii = Xi and ϕii =
idXi .) Denote ϕi : Xi → X the natural maps. Denote Ui = ϕi(Xi) ⊂ X. Note that
ϕi : Xi → Ui is a bijection.

The topology on X is defined by the rule that U ⊂ X is open if and only if ϕ−1
i (U)

is open for all i. We leave it to the reader to verify that this does indeed define a
topology. Note that in particular Ui is open since ϕ−1

j (Ui) = Uji which is open in

Xj for all j. Moreover, for any open set W ⊂ Xi the image ϕi(W ) ⊂ Ui is open

because ϕ−1
j (ϕi(W )) = ϕ−1

ji (W∩Uij). Therefore ϕi : Xi → Ui is a homeomorphism.

To obtain a locally ringed space we have to construct the sheaf of rings OX . We do
this by glueing the sheaves of rings OUi

:= ϕi,∗OXi
. Namely, in the commutative

diagram

Uij ϕij

//

ϕi|Uij ##

Uji

ϕj |Uji{{
Ui ∩ Uj
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the arrow on top is an isomorphism of ringed spaces, and hence we get unique
isomorphisms of sheaves of rings

OUi
|Ui∩Uj

−→ OUj
|Ui∩Uj

.

These satisfy a cocycle condition as in Sheaves, Section 33. By the results of that
section we obtain a sheaf of rings OX on X such that OX |Ui is isomorphic to
OUi compatibly with the glueing maps displayed above. In particular (X,OX) is
a locally ringed space since the stalks of OX are equal to the stalks of OXi

at
corresponding points.

The proof of the mapping properties is omitted. �

Lemma 14.2. In Lemma 14.1 above, assume that all Xi are schemes. Then the
resulting locally ringed space X is a scheme.

Proof. This is clear since each of the Ui is a scheme and hence every x ∈ X has
an affine neighbourhood. �

It is customary to think of Xi as an open subspace of X via the isomorphisms ϕi.
We will do this in the next two examples.

Example 14.3 (Affine space with zero doubled). Let k be a field. Let n ≥ 1.
Let X1 = Spec(k[x1, . . . , xn]), let X2 = Spec(k[y1, . . . , yn]). Let 01 ∈ X1 be the
point corresponding to the maximal ideal (x1, . . . , xn) ⊂ k[x1, . . . , xn]. Let 02 ∈ X2

be the point corresponding to the maximal ideal (y1, . . . , yn) ⊂ k[y1, . . . , yn]. Let
U12 = X1 \ {01} and let U21 = X2 \ {02}. Let ϕ12 : U12 → U21 be the isomorphism
coming from the isomorphism of k-algebras k[y1, . . . , yn] → k[x1, . . . , xn] mapping
yi to xi (which induces X1

∼= X2 mapping 01 to 02). Let X be the scheme obtained
from the glueing data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1

12 ). Via the slight abuse of
notation introduced above the example we think of Xi ⊂ X as open subschemes.
There is a morphism f : X → Spec(k[t1, . . . , tn]) which on Xi corresponds to
k algebra map k[t1, . . . , tn] → k[x1, . . . , xn] (resp. k[t1, . . . , tn] → k[y1, . . . , yn])
mapping ti to xi (resp. ti to yi). It is easy to see that this morphism identifies
k[t1, . . . , tn] with Γ(X,OX). Since f(01) = f(02) we see that X is not affine.

Note that X1 and X2 are affine opens of X. But, if n = 2, then X1∩X2 is the scheme
described in Example 9.3 and hence not affine. Thus in general the intersection of
affine opens of a scheme is not affine. (This fact holds more generally for any n > 1.)

Another curious feature of this example is the following. If n > 1 there are many
irreducible closed subsets T ⊂ X (take the closure of any non closed point in X1

for example). But unless T = {01}, or T = {02} we have 01 ∈ T ⇔ 02 ∈ T . Proof
omitted.

Example 14.4 (Projective line). Let k be a field. Let X1 = Spec(k[x]), let
X2 = Spec(k[y]). Let 0 ∈ X1 be the point corresponding to the maximal ideal
(x) ⊂ k[x]. Let∞ ∈ X2 be the point corresponding to the maximal ideal (y) ⊂ k[y].
Let U12 = X1 \ {0} = D(x) = Spec(k[x, 1/x]) and let U21 = X2 \ {∞} = D(y) =
Spec(k[y, 1/y]). Let ϕ12 : U12 → U21 be the isomorphism coming from the isomor-
phism of k-algebras k[y, 1/y]→ k[x, 1/x] mapping y to 1/x. Let P1

k be the scheme

obtained from the glueing data (X1, X2, U12, U21, ϕ12, ϕ21 = ϕ−1
12 ). Via the slight

abuse of notation introduced above the example we think of Xi ⊂ P1
k as open sub-

schemes. In this case we see that Γ(P1
k,O) = k because the only polynomials g(x)
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in x such that g(1/y) is also a polynomial in y are constant polynomials. Since P1
k

is infinite we see that P1
k is not affine.

We claim that there exists an affine open U ⊂ P1
k which contains both 0 and ∞.

Namely, let U = P1
k \{1}, where 1 is the point of X1 corresponding to the maximal

ideal (x− 1) and also the point of X2 corresponding to the maximal ideal (y − 1).
Then it is easy to see that s = 1/(x− 1) = y/(1− y) ∈ Γ(U,OU ). In fact you can
show that Γ(U,OU ) is equal to the polynomial ring k[s] and that the corresponding
morphism U → Spec(k[s]) is an isomorphism of schemes. Details omitted.

15. A representability criterion

In this section we reformulate the glueing lemma of Section 14 in terms of functors.
We recall some of the material from Categories, Section 3. Recall that given a
scheme X we can define a functor

hX : Schopp −→ Sets, T 7−→ Mor(T,X).

This is called the functor of points of X.

Let F be a contravariant functor from the category of schemes to the category of
sets. In a formula

F : Schopp −→ Sets.

We will use the same terminology as in Sites, Section 2. Namely, given a scheme T ,
an element ξ ∈ F (T ), and a morphism f : T ′ → T we will denote f∗ξ the element
F (f)(ξ), and sometimes we will even use the notation ξ|T ′

Definition 15.1. (See Categories, Definition 3.6.) Let F be a contravariant functor
from the category of schemes to the category of sets (as above). We say that F
is representable by a scheme or representable if there exists a scheme X such that
hX ∼= F .

Suppose that F is representable by the scheme X and that s : hX → F is an
isomorphism. By Categories, Yoneda Lemma 3.5 the pair (X, s : hX → F ) is
unique up to unique isomorphism if it exists. Moreover, the Yoneda lemma says
that given any contravariant functor F as above and any scheme Y , we have a
bijection

MorFun(Schopp,Sets)(hY , F ) −→ F (Y ), s 7−→ s(idY ).

Here is the reverse construction. Given any ξ ∈ F (Y ) the transformation of functors
sξ : hY → F associates to any morphism f : T → Y the element f∗ξ ∈ F (T ).

In particular, in the case that F is representable, there exists a scheme X and an
element ξ ∈ F (X) such that the corresponding morphism hX → F is an isomor-
phism. In this case we also say the pair (X, ξ) represents F . The element ξ ∈ F (X)
is often called the “universal family” for reasons that will become more clear when
we talk about algebraic stacks (insert future reference here). For the moment we
simply observe that the fact that if the pair (X, ξ) represents F , then every element
ξ′ ∈ F (T ) for any T is of the form ξ′ = f∗ξ for a unique morphism f : T → X.

Example 15.2. Consider the rule which associates to every scheme T the set
F (T ) = Γ(T,OT ). We can turn this into a contravariant functor by using for a
morphism f : T ′ → T the pullback map f ] : Γ(T,OT )→ Γ(T ′,OT ′). Given a ring
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R and an element t ∈ R there exists a unique ring homomorphism Z[x]→ R which
maps x to t. Thus, using Lemma 6.4, we see that

Mor(T, Spec(Z[x])) = Hom(Z[x],Γ(T,OT )) = Γ(T,OT ).

This does indeed give an isomorphism hSpec(Z[x]) → F . What is the “universal fam-
ily” ξ? To get it we have to apply the identifications above to idSpec(Z[x]). Clearly
under the identifications above this gives that ξ = x ∈ Γ(Spec(Z[x]),OSpec(Z[x])) =
Z[x] as expected.

Definition 15.3. Let F be a contravariant functor on the category of schemes with
values in sets.

(1) We say that F satisfies the sheaf property for the Zariski topology if for every
scheme T and every open covering T =

⋃
i∈I Ui, and for any collection of

elements ξi ∈ F (Ui) such that ξi|Ui∩Uj
= ξj |Ui∩Uj

there exists a unique
element ξ ∈ F (T ) such that ξi = ξ|Ui in F (Ui).

(2) A subfunctor H ⊂ F is a rule that associates to every scheme T a subset
H(T ) ⊂ F (T ) such that the maps F (f) : F (T ) → F (T ′) maps H(T ) into
H(T ′) for all morphisms of schemes f : T ′ → T .

(3) Let H ⊂ F be a subfunctor. We say that H ⊂ F is representable by open
immersions if for all pairs (T, ξ), where T is a scheme and ξ ∈ F (T ) there
exists an open subscheme Uξ ⊂ T with the following property:
(∗) A morphism f : T ′ → T factors through Uξ if and only if f∗ξ ∈ H(T ′).

(4) Let I be a set. For each i ∈ I let Hi ⊂ F be a subfunctor. We say that the
collection (Hi)i∈I covers F if and only if for every ξ ∈ F (T ) there exists an
open covering T =

⋃
Ui such that ξ|Ui

∈ Hi(Ui).

Lemma 15.4. Let F be a contravariant functor on the category of schemes with
values in the category of sets. Suppose that

(1) F satisfies the sheaf property for the Zariski topology,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable,
(b) each Fi ⊂ F is representable by open immersions, and
(c) the collection (Fi)i∈I covers F .

Then F is representable.

Proof. Let Xi be a scheme representing Fi and let ξi ∈ Fi(Xi) ⊂ F (Xi) be the
“universal family”. Because Fj ⊂ F is representable by open immersions, there
exists an open Uij ⊂ Xi such that T → Xi factors through Uij if and only if
ξi|T ∈ Fj(T ). In particular ξi|Uij ∈ Fj(Uij) and therefore we obtain a canonical
morphism ϕij : Uij → Xj such that ϕ∗ijξj = ξi|Uij

. By definition of Uji this implies
that ϕij factors through Uji. Since (ϕij ◦ ϕji)∗ξj = ϕ∗ji(ϕ

∗
ijξj) = ϕ∗jiξi = ξj we

conclude that ϕij ◦ϕji = idUji
because the pair (Xj , ξj) represents Fj . In particular

the maps ϕij : Uij → Uji are isomorphisms of schemes. Next we have to show that

ϕ−1
ij (Uji ∩ Ujk) = Uij ∩ Uik. This is true because (a) Uji ∩ Ujk is the largest open

of Uji such that ξj restricts to an element of Fk, (b) Uij ∩ Uik is the largest open
of Uij such that ξi restricts to an element of Fk, and (c) ϕ∗ijξj = ξi. Moreover,
the cocycle condition in Section 14 follows because both ϕjk|Uji∩Ujk

◦ ϕij |Uij∩Uik

and ϕik|Uij∩Uik
pullback ξk to the element ξi. Thus we may apply Lemma 14.2 to

obtain a scheme X with an open covering X =
⋃
Ui and isomorphisms ϕi : Xi → Ui

with properties as in Lemma 14.1. Let ξ′i = (ϕ−1
i )∗ξi. The conditions of Lemma
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14.1 imply that ξ′i|Ui∩Uj
= ξ′j |Ui∩Uj

. Therefore, by the condition that F satisfies
the sheaf condition in the Zariski topology we see that there exists an element
ξ′ ∈ F (X) such that ξi = ϕ∗i ξ

′|Ui for all i. Since ϕi is an isomorphism we also get
that (Ui, ξ

′|Ui
) represents the functor Fi.

We claim that the pair (X, ξ′) represents the functor F . To show this, let T be a
scheme and let ξ ∈ F (T ). We will construct a unique morphism g : T → X such
that g∗ξ′ = ξ. Namely, by the condition that the subfunctors Fi cover T there
exists an open covering T =

⋃
Vi such that for each i the restriction ξ|Vi ∈ Fi(Vi).

Moreover, since each of the inclusions Fi ⊂ F are representable by open immersions
we may assume that each Vi ⊂ T is maximal open with this property. Because,
(Ui, ξ

′
Ui

) represents the functor Fi we get a unique morphism gi : Vi → Ui such that
g∗i ξ
′|Ui

= ξ|Vi
. On the overlaps Vi ∩ Vj the morphisms gi and gj agree, for example

because they both pull back ξ′|Ui∩Uj ∈ Fi(Ui ∩ Uj) to the same element. Thus the
morphisms gi glue to a unique morphism from T → X as desired. �

Remark 15.5. Suppose the functor F is defined on all locally ringed spaces, and
if conditions of Lemma 15.4 are replaced by the following:

(1) F satisfies the sheaf property on the category of locally ringed spaces,
(2) there exists a set I and a collection of subfunctors Fi ⊂ F such that

(a) each Fi is representable by a scheme,
(b) each Fi ⊂ F is representable by open immersions on the category of

locally ringed spaces, and
(c) the collection (Fi)i∈I covers F as a functor on the category of locally

ringed spaces.

We leave it to the reader to spell this out further. Then the end result is that
the functor F is representable in the category of locally ringed spaces and that the
representing object is a scheme.

16. Existence of fibre products of schemes

A very basic question is whether or not products and fibre products exist on the
category of schemes. We first prove abstractly that products and fibre products
exist, and in the next section we show how we may think in a reasonable way about
fibre products of schemes.

Lemma 16.1. The category of schemes has a final object, products and fibre prod-
ucts. In other words, the category of schemes has finite limits, see Categories,
Lemma 18.4.

Proof. Please skip this proof. It is more important to learn how to work with the
fibre product which is explained in the next section.

By Lemma 6.4 the scheme Spec(Z) is a final object in the category of locally ringed
spaces. Thus it suffices to prove that fibred products exist.

Let f : X → S and g : Y → S be morphisms of schemes. We have to show that the
functor

F : Schopp −→ Sets

T 7−→ Mor(T,X)×Mor(T,S) Mor(T, Y )
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is representable. We claim that Lemma 15.4 applies to the functor F . If we prove
this then the lemma is proved.

First we show that F satisfies the sheaf property in the Zariski topology. Namely,
suppose that T is a scheme, T =

⋃
i∈I Ui is an open covering, and ξi ∈ F (Ui)

such that ξi|Ui∩Uj
= ξj |Ui∩Uj

for all pairs i, j. By definition ξi corresponds to a
pair (ai, bi) where ai : Ui → X and bi : Ui → Y are morphisms of schemes such
that f ◦ ai = g ◦ bi. The glueing condition says that ai|Ui∩Uj = aj |Ui∩Uj and
bi|Ui∩Uj

= bj |Ui∩Uj
. Thus by glueing the morphisms ai we obtain a morphism

of locally ringed spaces (i.e., a morphism of schemes) a : T → X and similarly
b : T → Y (see for example the mapping property of Lemma 14.1). Moreover, on
the members of an open covering the compositions f ◦ a and g ◦ b agree. Therefore
f ◦ a = g ◦ b and the pair (a, b) defines an element of F (T ) which restricts to the
pairs (ai, bi) on each Ui. The sheaf condition is verified.

Next, we construct the family of subfunctors. Choose an open covering by open
affines S =

⋃
i∈I Ui. For every i ∈ I choose open coverings by open affines

f−1(Ui) =
⋃
j∈Ji Vj and g−1(Ui) =

⋃
k∈Ki

Wk. Note that X =
⋃
i∈I
⋃
j∈Ji Vj

is an open covering and similarly for Y . For any i ∈ I and each pair (j, k) ∈ Ji×Ki

we have a commutative diagram

Wk

��   
Vj

!!

// Ui

  

Y

��
X // S

where all the skew arrows are open immersions. For such a triple we get a functor

Fi,j,k : Schopp −→ Sets

T 7−→ Mor(T, Vj)×Mor(T,Ui) Mor(T,Wj).

There is an obvious transformation of functors Fi,j,k → F (coming from the huge
commutative diagram above) which is injective, so we may think of Fi,j,k as a
subfunctor of F .

We check condition (2)(a) of Lemma 15.4. This follows directly from Lemma 6.7.
(Note that we use here that the fibre products in the category of affine schemes are
also fibre products in the whole category of locally ringed spaces.)

We check condition (2)(b) of Lemma 15.4. Let T be a scheme and let ξ ∈ F (T ). In
other words, ξ = (a, b) where a : T → X and b : T → Y are morphisms of schemes
such that f ◦ a = g ◦ b. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk). For any further morphism
h : T ′ → T we have h∗ξ = (a◦h, b◦h). Hence we see that h∗ξ ∈ Fi,j,k(T ′) if and only
if a(h(T ′)) ⊂ Vj and b(h(T ′)) ⊂ Wk. In other words, if and only if h(T ′) ⊂ Vi,j,k.
This proves condition (2)(b).

We check condition (2)(c) of Lemma 15.4. Let T be a scheme and let ξ = (a, b) ∈
F (T ) as above. Set Vi,j,k = a−1(Vj) ∩ b−1(Wk) as above. Condition (2)(c) just
means that T =

⋃
Vi,j,k which is evident. Thus the lemma is proved and fibre

products exist. �
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Remark 16.2. Using Remark 15.5 you can show that the fibre product of mor-
phisms of schemes exists in the category of locally ringed spaces and is a scheme.

17. Fibre products of schemes

Here is a review of the general definition, even though we have already shown that
fibre products of schemes exist.

Definition 17.1. Given morphisms of schemes f : X → S and g : Y → S the fibre
product is a scheme X ×S Y together with projection morphisms p : X ×S Y → X
and q : X ×S Y → Y sitting into the following commutative diagram

X ×S Y q
//

p

��

Y

g

��
X

f // S

which is universal among all diagrams of this sort, see Categories, Definition 6.1.

In other words, given any solid commutative diagram of morphisms of schemes

T

**((

  

X ×S Y

��

// Y

��
X // S

there exists a unique dotted arrow making the diagram commute. We will prove
some lemmas which will tell us how to think about fibre products.

Lemma 17.2. Let f : X → S and g : Y → S be morphisms of schemes with the
same target. If X,Y, S are all affine then X ×S Y is affine.

Proof. Suppose that X = Spec(A), Y = Spec(B) and S = Spec(R). By Lemma
6.7 the affine scheme Spec(A ⊗R B) is the fibre product X ×S Y in the category
of locally ringed spaces. Hence it is a fortiori the fibre product in the category of
schemes. �

Lemma 17.3. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let X ×S Y , p, q be the fibre product. Suppose that U ⊂ S,
V ⊂ X, W ⊂ Y are open subschemes such that f(V ) ⊂ U and g(W ) ⊂ U . Then
the canonical morphism V ×U W → X ×S Y is an open immersion which identifies
V ×U W with p−1(V ) ∩ q−1(W ).

Proof. Let T be a scheme Suppose a : T → V and b : T →W are morphisms such
that f ◦ a = g ◦ b as morphisms into U . Then they agree as morphisms into S. By
the universal property of the fibre product we get a unique morphism T → X×S Y .
Of course this morphism has image contained in the open p−1(V )∩ q−1(W ). Thus
p−1(V ) ∩ q−1(W ) is a fibre product of V and W over U . The result follows from
the uniqueness of fibre products, see Categories, Section 6. �
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In particular this shows that V ×U W = V ×S W in the situation of the lemma.
Moreover, if U, V,W are all affine, then we know that V ×U W is affine. And of
course we may cover X ×S Y by such affine opens V ×U W . We formulate this as
a lemma.

Lemma 17.4. Let f : X → S and g : Y → S be morphisms of schemes with
the same target. Let S =

⋃
Ui be any affine open covering of S. For each i ∈ I,

let f−1(Ui) =
⋃
j∈Ji Vj be an affine open covering of f−1(Ui) and let g−1(Ui) =⋃

k∈Ki
Wk be an affine open covering of f−1(Ui). Then

X ×S Y =
⋃

i∈I

⋃
j∈Ji, k∈Ki

Vj ×Ui
Wk

is an affine open covering of X ×S Y .

Proof. See discussion above the lemma. �

In other words, we might have used the previous lemma as a way of construction
the fibre product directly by glueing the affine schemes. (Which is of course exactly
what we did in the proof of Lemma 16.1 anyway.) Here is a way to describe the set
of points of a fibre product of schemes.

Lemma 17.5. Let f : X → S and g : Y → S be morphisms of schemes with the
same target. Points z of X ×S Y are in bijective correspondence to quadruples

(x, y, s, p)

where x ∈ X, y ∈ Y , s ∈ S are points with f(x) = s, g(y) = s and p is a prime
ideal of the ring κ(x) ⊗κ(s) κ(y). The residue field of z corresponds to the residue
field of the prime p.

Proof. Let z be a point of X ×S Y and let us construct a triple as above. Recall
that we may think of z as a morphism Spec(κ(z))→ X×SY , see Lemma 13.3. This
morphism corresponds to morphisms a : Spec(κ(z)) → X and b : Spec(κ(z)) → Y
such that f ◦ a = g ◦ b. By the same lemma again we get points x ∈ X, y ∈ Y lying
over the same point s ∈ S as well as field maps κ(x) → κ(z), κ(y) → κ(z) such
that the compositions κ(s)→ κ(x)→ κ(z) and κ(s)→ κ(y)→ κ(z) are the same.
In other words we get a ring map κ(x) ⊗κ(s) κ(y) → κ(z). We let p be the kernel
of this map.

Conversely, given a quadruple (x, y, s, p) we get a commutative solid diagram

X ×S Y

  

++Spec(κ(x)⊗κ(s) κ(y)/p) //

��

ii

Spec(κ(y))

��

// Y

��

Spec(κ(x)) //

��

Spec(κ(s))

$$
X // S

see the discussion in Section 13. Thus we get the dotted arrow. The corresponding
point z of X ×S Y is the image of the generic point of Spec(κ(x)⊗κ(s) κ(y)/p). We
omit the verification that the two constructions are inverse to each other. �
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Lemma 17.6. Let f : X → S and g : Y → S be morphisms of schemes with the
same target.

(1) If f : X → S is a closed immersion, then X ×S Y → Y is a closed
immersion. Moreover, if X → S corresponds to the quasi-coherent sheaf
of ideals I ⊂ OS, then X ×S Y → Y corresponds to the sheaf of ideals
Im(g∗I → OY ).

(2) If f : X → S is an open immersion, then X ×S Y → Y is an open
immersion.

(3) If f : X → S is an immersion, then X ×S Y → Y is an immersion.

Proof. Assume that X → S is a closed immersion corresponding to the quasi-
coherent sheaf of ideals I ⊂ OS . By Lemma 4.7 the closed subspace Z ⊂ Y defined
by the sheaf of ideals Im(g∗I → OY ) is the fibre product in the category of locally
ringed spaces. By Lemma 10.1 Z is a scheme. Hence Z = X ×S Y and the first
statement follows. The second follows from Lemma 17.3 for example. The third is
a combination of the first two. �

Definition 17.7. Let f : X → Y be a morphism of schemes. Let Z ⊂ Y be a
closed subscheme of Y . The inverse image f−1(Z) of the closed subscheme Z is the
closed subscheme Z ×Y X of X. See Lemma 17.6 above.

We may occasionally also use this terminology with locally closed and open sub-
schemes.

18. Base change in algebraic geometry

One motivation for the introduction of the language of schemes is that it gives
a very precise notion of what it means to define a variety over a particular field.
For example a variety X over Q is synonymous (insert future reference here) with
X → Spec(Q) which is of finite type, separated, irreducible and reduced1. In any
case, the idea is more generally to work with schemes over a given base scheme,
often denoted S. We use the language: “let X be a scheme over S” to mean simply
that X comes equipped with a morphism X → S. In diagrams we will try to
picture the structure morphism X → S as a downward arrow from X to S. We are
often more interested in the properties of X relative to S rather than the internal
geometry of X. For example, we would like to know things about the fibres of
X → S, what happens to X after base change, and so on.

We introduce some of the language that is customarily used. Of course this language
is just a special case of thinking about the category of objects over a given object
in a category, see Categories, Example 2.13.

Definition 18.1. Let S be a scheme.

(1) We say X is a scheme over S to mean that X comes equipped with a
morphism of schemes X → S. The morphism X → S is sometimes called
the structure morphism.

(2) If R is a ring we say X is a scheme over R instead of X is a scheme over
Spec(R).

1Of course algebraic geometers still quibble over whether one should require X to be geomet-
rically irreducible over Q.

http://localhost:8080/tag/01JU
http://localhost:8080/tag/01JV
http://localhost:8080/tag/01JX


32 SCHEMES

(3) A morphism f : X → Y of schemes over S is a morphism of schemes such
that the composition X → Y → S of f with the structure morphism of Y
is equal to the structure morphism of X.

(4) We denote MorS(X,Y ) the set of all morphisms from X to Y over S.
(5) Let X be a scheme over S. Let S′ → S be a morphism of schemes. The

base change of X is the scheme XS′ = S′ ×S X over S′.
(6) Let f : X → Y be a morphism of schemes over S. Let S′ → S be a

morphism of schemes. The base change of f is the induced morphism
f ′ : XS′ → YS′ (namely the morphism idS′ ×idS

f).
(7) Let R be a ring. Let X be a scheme over R. Let R → R′ be a ring map.

The base change XR′ is the scheme Spec(R′)×Spec(R) X over R′.

Here is a typical result.

Lemma 18.2. Let S be a scheme. Let f : X → Y be an immersion (resp. closed
immersion, resp. open immersion) of schemes over S. Then any base change of f
is an immersion (resp. closed immersion, resp. open immersion).

Proof. We can think of the base change of f via the morphism S′ → S as the top
left vertical arrow in the following commutative diagram:

XS′
//

��

X

��

��

YS′ //

��

Y

��
S′ // S

The diagram implies XS′
∼= YS′×Y X, and the lemma follows from Lemma 17.6. �

In fact this type of result is so typical that there is a piece of language to express
it. Here it is.

Definition 18.3. Properties and base change.

(1) Let P be a property of schemes over a base. We say that P is preserved
under arbitrary base change, or simply that preserved under base change if
whenever X/S has P, any base change XS′/S

′ has P.
(2) Let P be a property of morphisms of schemes over a base. We say that P is

preserved under arbitrary base change, or simply that preserved under base
change if whenever f : X → Y over S has P, any base change f ′ : XS′ →
YS′ over S′ has P.

At this point we can say that “being a closed immersion” is preserved under arbi-
trary base change.

Definition 18.4. Let f : X → S be a morphism of schemes. Let s ∈ S be a point.
The scheme theoretic fibre Xs of f over s, or simply the fibre of f over s is the
scheme fitting in the following fibre product diagram

Xs = Spec(κ(s))×S X //

��

X

��
Spec(κ(s)) // S
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We think of the fibre Xs always as a scheme over κ(s).

Lemma 18.5. Let f : X → S be a morphism of schemes. Consider the diagrams

Xs
//

��

X

��

Spec(OS,s)×S X //

��

X

��
Spec(κ(s)) // S Spec(OS,s) // S

In both cases the top horizontal arrow is a homeomorphism onto its image.

Proof. Choose an open affine U ⊂ S that contains s. The bottom horizontal
morphisms factor through U , see Lemma 13.1 for example. Thus we may assume
that S is affine. If X is also affine, then the result follows from Algebra, Remark
16.8. In the general case the result follows by covering X by open affines. �

19. Quasi-compact morphisms

A scheme is quasi-compact if its underlying topological space is quasi-compact.
There is a relative notion which is defined as follows.

Definition 19.1. A morphism of schemes is called quasi-compact if the underlying
map of topological spaces is quasi-compact, see Topology, Definition 11.1.

Lemma 19.2. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) f : X → S is quasi-compact,
(2) the inverse image of every affine open is quasi-compact, and
(3) there exists some affine open covering S =

⋃
i∈I Ui such that f−1(Ui) is

quasi-compact for all i.

Proof. Suppose we are given a covering X =
⋃
i∈I Ui as in (3). First, let U ⊂ S be

any affine open. For any u ∈ U we can find an index i(u) ∈ I such that u ∈ Ui(u).
As standard opens form a basis for the topology on Ui(u) we can find Wu ⊂ U∩Ui(u)

which is standard open in Ui(u). By compactness we can find finitely many points

u1, . . . , un ∈ U such that U =
⋃n
j=1Wuj

. For each j write f−1Ui(uj) =
⋃
k∈Kj

Vjk
as a finite union of affine opens. Since Wuj ⊂ Ui(u) is a standard open we see

that f−1(Wuj
) ∩ Vjk is a standard open of Vjk, see Algebra, Lemma 16.4. Hence

f−1(Wuj
) ∩ Vjk is affine, and so f−1(Wuj

) is a finite union of affines. This proves
that the inverse image of any affine open is a finite union of affine opens.

Next, assume that the inverse image of every affine open is a finite union of affine
opens. Let K ⊂ X be any quasi-compact open. Since X has a basis of the topology
consisting of affine opens we see that K is a finite union of affine opens. Hence the
inverse image of K is a finite union of affine opens. Hence f is quasi-compact.

Finally, assume that f is quasi-compact. In this case the argument of the previous
paragraph shows that the inverse image of any affine is a finite union of affine
opens. �

Lemma 19.3. Being quasi-compact is a property of morphisms of schemes over a
base which is preserved under arbitrary base change.

Proof. Omitted. �
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Lemma 19.4. The composition of quasi-compact morphisms is quasi-compact.

Proof. This follows from the definitions and Topology, Lemma 11.2. �

Lemma 19.5. A closed immersion is quasi-compact.

Proof. Follows from the definitions and Topology, Lemma 11.3. �

Example 19.6. An open immersion is in general not quasi-compact. The standard
example of this is the open subspace U ⊂ X, where X = Spec(k[x1, x2, x3, . . .]),
where U is X \ {0}, and where 0 is the point of X corresponding to the maximal
ideal (x1, x2, x3, . . .).

Lemma 19.7. Let f : X → S be a quasi-compact morphism of schemes. The
following are equivalent

(1) f(X) ⊂ S is closed, and
(2) f(X) ⊂ S is stable under specialization.

Proof. We have (1) ⇒ (2) by Topology, Lemma 18.2. Assume (2). Let U ⊂ S
be an affine open. It suffices to prove that f(X) ∩ U is closed. Since U ∩ f(X) is
stable under specializations, we have reduced to the case where S is affine. Because
f is quasi-compact we deduce that X = f−1(S) is quasi-compact as S is affine.
Thus we may write X =

⋃n
i=1 Ui with Ui ⊂ X open affine. Say S = Spec(R) and

Ui = Spec(Ai) for some R-algebra Ai. Then f(X) = Im(Spec(A1 × . . . × An) →
Spec(R)). Thus the lemma follows from Algebra, Lemma 40.5. �

Lemma 19.8. Let f : X → S be a quasi-compact morphism of schemes. Then f
is closed if and only if specializations lift along f , see Topology, Definition 18.3.

Proof. According to Topology, Lemma 18.6 if f is closed then specializations lift
along f . Conversely, suppose that specializations lift along f . Let Z ⊂ X be a
closed subset. We may think of Z as a scheme with the reduced induced scheme
structure, see Definition 12.5. Since Z ⊂ X is closed the restriction of f to Z is still
quasi-compact. Moreover specializations lift along Z → S as well, see Topology,
Lemma 18.4. Hence it suffices to prove f(X) is closed if specializations lift along
f . In particular f(X) is stable under specializations, see Topology, Lemma 18.5.
Thus f(X) is closed by Lemma 19.7. �

20. Valuative criterion for universal closedness

In Topology, Section 16 there is a discussion of proper maps as closed maps of
topological spaces all of whose fibres are quasi-compact, or as maps such that
all base changes are closed maps. Here is the corresponding notion in algebraic
geometry.

Definition 20.1. A morphism of schemes f : X → S is said to be universally
closed if every base change f ′ : XS′ → S′ is closed.

In fact the adjective “universally” is often used in this way. In other words, given
a property P of morphisms the we say that “X → S is universally P” if and only
if every base change XS′ → S′ has P.

Please take a look at Morphisms, Section 42 for a more detailed discussion of the
properties of universally closed morphisms. In this section we restrict the discussion
to the relationship between universal closed morphisms and morphisms satisfying
the existence part of the valuative criterion.
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Lemma 20.2. Let f : X → S be a morphism of schemes.

(1) If f is universally closed then specializations lift along any base change of
f , see Topology, Definition 18.3.

(2) If f is quasi-compact and specializations lift along any base change of f ,
then f is universally closed.

Proof. Part (1) is a direct consequence of Topology, Lemma 18.6. Part (2) follows
from Lemmas 19.8 and 19.3. �

Definition 20.3. Let f : X → S be a morphism of schemes. We say f satisfies
the existence part of the valuative criterion if given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

S

where A is a valuation ring with field of fractions K, the dotted arrow exists. We
say f satisfies the uniqueness part of the valuative criterion if there is at most one
dotted arrow given any diagram as above (without requiring existence of course).

A valuation ring is a local domain maximal among the relation of domination in its
fraction field, see Algebra, Definition 48.1. Hence the spectrum of a valuation ring
has a unique generic point η and a unique closed point 0, and of course we have the
specialization η  0. The significance of valuation rings is that any specialization
of points in any scheme is the image of η  0 under some morphism from the
spectrum of some valuation ring. Here is the precise result.

Lemma 20.4. Let S be a scheme. Let s′  s be a specialization of points of S.
Then

(1) there exists a valuation ring A and a morphism Spec(A)→ S such that the
generic point η of Spec(A) maps to s′ and the special point maps to s, and

(2) given a field extension κ(s′) ⊂ K we may arrange it so that the extension
κ(s′) ⊂ κ(η) induced by f is isomorphic to the given extension.

Proof. Let s′  s be a specialization in S, and let κ(s′) ⊂ K be an extension of
fields. By Lemma 13.2 and the discussion following Lemma 13.3 this leads to ring
maps OS,s → κ(s′)→ K. Let A ⊂ K be any valuation ring whose field of fractions
is K and which dominates the image of OS,s → K, see Algebra, Lemma 48.2. The
ring map OS,s → A induces the morphism f : Spec(A)→ S, see Lemma 13.1. This
morphism has all the desired properties by construction. �

Lemma 20.5. Let f : X → S be a morphism of schemes. The following are
equivalent

(1) Specializations lift along any base change of f
(2) The morphism f satisfies the existence part of the valuative criterion.

Proof. Assume (1) holds. Let a solid diagram as in Definition 20.3 be given. In
order to find the dotted arrow we may replace X → S by XSpec(A) → Spec(A)
since after all the assumption is stable under base change. Thus we may assume
S = Spec(A). Let x′ ∈ X be the image of Spec(K) → X, so that we have
κ(x′) ⊂ K, see Lemma 13.3. By assumption there exists a specialization x′  x
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in X such that x maps to the closed point of S = Spec(A). We get a local ring
map A→ OX,x and a ring map OX,x → κ(x′), see Lemma 13.2 and the discussion
following Lemma 13.3. The composition A → OX,x → κ(x′) → K is the given
injection A → K. Since A → OX,x is local, the image of OX,x → K dominates A
and hence is equal to A, by Algebra, Definition 48.1. Thus we obtain a ring map
OX,x → A and hence a morphism Spec(A) → X (see Lemma 13.1 and discussion
following it). This proves (2).

Conversely, assume (2) holds. It is immediate that the existence part of the valua-
tive criterion holds for any base change XS′ → S′ of f by considering the following
commutative diagram

Spec(K) //

��

XS′
//

��

X

��
Spec(A) //

:: 55

S′ // S

Namely, the more horizontal dotted arrow will lead to the other one by definition
of the fibre product. OK, so it clearly suffices to show that specializations lift along
f . Let s′  s be a specialization in S, and let x′ ∈ X be a point lying over s′.
Apply Lemma 20.4 to s′  s and the extension of fields κ(s′) ⊂ κ(x′) = K. We
get a commutative diagram

Spec(K) //

��

X

��
Spec(A) //

44

Spec(OS,s) // S

and by condition (2) we get the dotted arrow. The image x of the closed point of
Spec(A) in X will be a solution to our problem, i.e., x is a specialization of x′ and
maps to s. �

Proposition 20.6 (Valuative criterion of universal closedness). Let f be a quasi-
compact morphism of schemes. Then f is universally closed if and only if f satisfies
the existence part of the valuative criterion.

Proof. This is a formal consequence of Lemmas 20.2 and 20.5 above. �

Example 20.7. Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 14.4. Let us use the valuative
criterion above to prove that p is universally closed. By construction P1

k is covered
by two affine opens and hence p is quasi-compact. Let a commutative diagram

Spec(K)
ξ

//

��

P1
k

��
Spec(A)

ϕ // Spec(k)

be given, where A is a valuation ring and K is its field of fractions. Recall that P1
k

is gotten by glueing Spec(k[x]) to Spec(k[y]) by glueing D(x) to D(y) via x = y−1

(or more symmetrically xy = 1). To show there is a morphism Spec(A) → P1
k

fitting diagonally into the diagram above we may assume that ξ maps into the
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open Spec(k[x]) (by symmetry). This gives the following commutative diagram of
rings

K k[x]
ξ]

oo

A

OO

k

OO

ϕ]

oo

By Algebra, Lemma 48.3 we see that either ξ](x) ∈ A or ξ](x)−1 ∈ A. In the first
case we get a ring map

k[x]→ A, λ 7→ ϕ](λ), x 7→ ξ](x)

fitting into the diagram of rings above, and we win. In the second case we see that
we get a ring map

k[y]→ A, λ 7→ ϕ](λ), y 7→ ξ](x)−1.

This gives a morphism Spec(A) → Spec(k[y]) → P1
k which fits diagonally into the

initial commutative diagram of this example (check omitted).

21. Separation axioms

A topological space X is Hausdorff if and only if the diagonal ∆ ⊂ X × X is a
closed subset. The analogue in algebraic geometry is, given a scheme X over a base
scheme S, to consider the diagonal morphism

∆X/S : X −→ X ×S X.

This is the unique morphism of schemes such that pr1 ◦ ∆X/S = idX and pr2 ◦
∆X/S = idX (it exists in any category with fibre products).

Lemma 21.1. The diagonal morphism of a morphism between affines is closed.

Proof. The diagonal morphism associated to the morphism Spec(S)→ Spec(R) is
the morphism on spectra corresponding to the ring map S ⊗R S → S, a⊗ b 7→ ab.
This map is clearly surjective, so S ∼= S ⊗R S/J for some ideal J ⊂ S ⊗R S. Hence
∆ is a closed immersion according to Example 8.1 �

Lemma 21.2. Let X be a scheme over S. The diagonal morphism ∆X/S is an
immersion.

Proof. Recall that if V ⊂ X is affine open and maps into U ⊂ S affine open, then
V ×U V is affine open in X ×S X, see Lemmas 17.2 and 17.3. Consider the open
subscheme W of X ×S X which is the union of these affine opens V ×U V . By
Lemma 4.2 it is enough to show that each morphism ∆−1

X/S(V ×U V )→ V ×U V is

a closed immersion. Since V = ∆−1
X/S(V ×U V ) we are just checking that ∆V/U is

a closed immersion, which is Lemma 21.1. �

Definition 21.3. Let f : X → S be a morphism of schemes.

(1) We say f is separated if the diagonal morphism ∆X/S is a closed immersion.
(2) We say f is quasi-separated if the diagonal morphism ∆X/S is a quasi-

compact morphism.
(3) We say a scheme Y is separated if the morphism Y → Spec(Z) is separated.
(4) We say a scheme Y is quasi-separated if the morphism Y → Spec(Z) is

quasi-separated.
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By Lemmas 21.2 and 10.4 we see that ∆X/S is a closed immersion if an only if
∆X/S(X) ⊂ X ×S X is a closed subset. Moreover, by Lemma 19.5 we see that a
separated morphism is quasi-separated. The reason for introducing quasi-separated
morphisms is that nonseparated morphisms come up naturally in studying algebraic
varieties (especially when doing moduli, algebraic stacks, etc). But most often they
are still quasi-separated.

Example 21.4. Here is an example of a non-quasi-separated morphism. Suppose
X = X1 ∪ X2 → S = Spec(k) with X1 = X2 = Spec(k[t1, t2, t3, . . .]) glued along
the complement of {0} = {(t1, t2, t3, . . .)} (glued as in Example 14.3). In this
case the inverse image of the affine scheme X1 ×S X2 under ∆X/S is the scheme
Spec(k[t1, t2, t3, . . .]) \ {0} which is not quasi-compact.

Lemma 21.5. Let X, Y be schemes over S. Let a, b : X → Y be morphisms of
schemes over S. There exists a largest locally closed subscheme Z ⊂ X such that
a|Z = b|Z . In fact Z is the equalizer of (a, b). Moreover, if Y is separated over S,
then Z is a closed subscheme.

Proof. The equalizer of (a, b) is for categorical reasons the fibre product Z in the
following diagram

Z = Y ×(Y×SY ) X //

��

X

(a,b)

��
Y

∆Y/S // Y ×S Y
Thus the lemma follows from Lemmas 18.2, 21.2 and Definition 21.3. �

Lemma 21.6. An affine scheme is separated. A morphism of affine schemes is
separated.

Proof. See Lemma 21.1. �

Lemma 21.7. Let f : X → S be a morphism of schemes. The following are
equivalent:

(1) The morphism f is quasi-separated.
(2) For every pair of affine opens U, V ⊂ X which map into a common affine

open of S the intersection U ∩ V is a finite union of affine opens of X.
(3) There exists an affine open covering S =

⋃
i∈I Ui and for each i an affine

open covering f−1Ui =
⋃
j∈Ii Vj such that for each i and each pair j, j′ ∈ Ii

the intersection Vj ∩ Vj′ is a finite union of affine opens of X.

Proof. Let us prove that (3) implies (1). By Lemma 17.4 the covering X ×S X =⋃
i

⋃
j,j′ Vj ×Ui

Vj′ is an affine open covering of X ×S X. Moreover, ∆−1
X/S(Vj ×Ui

Vj′) = Vj ∩ Vj′ . Hence the implication follows from Lemma 19.2.

The implication (1) ⇒ (2) follows from the fact that under the hypotheses of (2)
the fibre product U ×S V is an affine open of X ×S X. The implication (2) ⇒ (3)
is trivial. �

Lemma 21.8. Let f : X → S be a morphism of schemes.

(1) If f is separated then for every pair of affine opens (U, V ) of X which map
into a common affine open of S we have
(a) the intersection U ∩ V is affine.
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(b) the ring map OX(U)⊗Z OX(V )→ OX(U ∩ V ) is surjective.
(2) If any pair of points x1, x2 ∈ X lying over a common point s ∈ S are

contained in affine opens x1 ∈ U , x2 ∈ V which map into a common affine
open of S such that (a), (b) hold, then f is separated.

Proof. Assume f separated. Suppose (U, V ) is a pair as in (1). Let W = Spec(R)
be an affine open of S containing both f(U) and g(V ). Write U = Spec(A) and
V = Spec(B) for R-algebras A and B. By Lemma 17.3 we see that U ×S V =
U ×W V = Spec(A⊗R B) is an affine open of X ×S X. Hence, by Lemma 10.1 we
see that ∆−1(U ×S V )→ U ×S V can be identified with Spec(A⊗R B/J) for some
ideal J ⊂ A ⊗R B. Thus U ∩ V = ∆−1(U ×S V ) is affine. Assertion (1)(b) holds
because A⊗Z B → (A⊗R B)/J is surjective.

Assume the hypothesis formulated in (2) holds. Clearly the collection of affine
opens U ×S V for pairs (U, V ) as in (2) form an affine open covering of X ×S X
(see e.g. Lemma 17.4). Hence it suffices to show that each morphism U ∩ V =
∆−1
X/S(U ×S V ) → U ×S V is a closed immersion, see Lemma 4.2. By assumption

(a) we have U ∩ V = Spec(C) for some ring C. After choosing an affine open
W = Spec(R) of S into which both U and V map and writing U = Spec(A),
V = Spec(B) we see that the assumption (b) means that the composition

A⊗Z B → A⊗R B → C

is surjective. Hence A ⊗R B → C is surjective and we conclude that Spec(C) →
Spec(A⊗R B) is a closed immersion. �

Example 21.9. Let k be a field. Consider the structure morphism p : P1
k →

Spec(k) of the projective line over k, see Example 14.4. Let us use the lemma above
to prove that p is separated. By construction P1

k is covered by two affine opens
U = Spec(k[x]) and V = Spec(k[y]) with intersection U∩V = Spec(k[x, y]/(xy−1))
(using obvious notation). Thus it suffices to check that conditions (2)(a) and (2)(b)
of Lemma 21.8 hold for the pairs of affine opens (U,U), (U, V ), (V,U) and (V, V ).
For the pairs (U,U) and (V, V ) this is trivial. For the pair (U, V ) this amounts to
proving that U ∩ V is affine, which is true, and that the ring map

k[x]⊗Z k[y] −→ k[x, y]/(xy − 1)

is surjective. This is clear because any element in the right hand side can be written
as a sum of a polynomial in x and a polynomial in y.

Lemma 21.10. Let f : X → T and g : Y → T be morphisms of schemes with the
same target. Let h : T → S be a morphism of schemes. Then the induced morphism
i : X ×T Y → X ×S Y is an immersion. If T → S is separated, then i is a closed
immersion. If T → S is quasi-separated, then i is a quasi-compact morphism.

Proof. By general category theory the following diagram

X ×T Y //

��

X ×S Y

��
T

∆T/S //// T ×S T

is a fibre product diagram. The lemma follows from Lemmas 21.2, 17.6 and 19.3. �
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Lemma 21.11. Let g : X → Y be a morphism of schemes over S. The morphism
i : X → X×S Y is an immersion. If Y is separated over S it is a closed immersion.
If Y is quasi-separated over S it is quasi-compact.

Proof. This is a special case of Lemma 21.10 applied to the morphism X = X ×Y
Y → X ×S Y . �

Lemma 21.12. Let f : X → S be a morphism of schemes. Let s : S → X be a
section of f (in a formula f ◦ s = idS). Then s is an immersion. If f is separated
then s is a closed immersion. If f is quasi-separated, then s is quasi-compact.

Proof. This is a special case of Lemma 21.11 applied to g = s so the morphism
i = s : S → S ×S X. �

Lemma 21.13. Permanence properties.

(1) A composition of separated morphisms is separated.
(2) A composition of quasi-separated morphisms is quasi-separated.
(3) The base change of a separated morphism is separated.
(4) The base change of a quasi-separated morphism is quasi-separated.
(5) A (fibre) product of separated morphisms is separated.
(6) A (fibre) product of quasi-separated morphisms is quasi-separated.

Proof. Let X → Y → Z be morphisms. Assume that X → Y and Y → Z are
separated. The composition

X → X ×Y X → X ×Z X
is closed because the first one is by assumption and the second one by Lemma 21.10.
The same argument works for “quasi-separated” (with the same references).

Let f : X → Y be a morphism of schemes over a base S. Let S′ → S be a
morphism of schemes. Let f ′ : XS′ → YS′ be the base change of f . Then the
diagonal morphism of f ′ is a morphism

∆f ′ : XS′ = S′ ×S X −→ XS′ ×YS′ XS′ = S′ ×S (X ×Y X)

which is easily seen to be the base change of ∆f . Thus (3) and (4) follow from
the fact that closed immersions and quasi-compact morphisms are preserved under
arbitrary base change (Lemmas 17.6 and 19.3).

If f : X → Y and g : U → V are morphisms of schemes over a base S, then f × g is
the composition of X×S U → X×S V (a base change of g) and X×S V → Y ×S V
(a base change of f). Hence (5) and (6) follow from (1) – (4). �

Lemma 21.14. Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦ f
is separated then so is f . If g ◦ f is quasi-separated then so is f .

Proof. Assume that g◦f is separated. Consider the factorization X → X×Y X →
X ×Z X of the diagonal morphism of g ◦ f . By Lemma 21.10 the last morphism
is an immersion. By assumption the image of X in X ×Z X is closed. Hence it is
also closed in X ×Y X. Thus we see that X → X ×Y X is a closed immersion by
Lemma 10.4.

Assume that g ◦ f is quasi-separated. Let V ⊂ Y be an affine open which maps
into an affine open of Z. Let U1, U2 ⊂ X be affine opens which map into V . Then
U1 ∩ U2 is a finite union of affine opens because U1, U2 map into a common affine
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open of Z. Since we may cover Y by affine opens like V we deduce the lemma from
Lemma 21.7. �

Lemma 21.15. Let f : X → Y and g : Y → Z be morphisms of schemes. If g ◦ f
is quasi-compact and g is quasi-separated then f is quasi-compact.

Proof. This is true because f equals the composition (1, f) : X → X ×Z Y → Y .
The first map is quasi-compact by Lemma 21.12 because it is a section of the quasi-
separated morphism X ×Z Y → X (a base change of g, see Lemma 21.13). The
second map is quasi-compact as it is the base change of f , see Lemma 19.3. And
compositions of quasi-compact morphisms are quasi-compact, see Lemma 19.4. �

You may have been wondering whether the condition of only considering pairs of
affine opens whose image is contained in an affine open is really necessary to be
able to conclude that their intersection is affine. Often it isn’t!

Lemma 21.16. Let f : X → S be a morphism. Assume f is separated and S is
a separated scheme. Suppose U ⊂ X and V ⊂ X are affine. Then U ∩ V is affine
(and a closed subscheme of U × V ).

Proof. In this case X is separated by Lemma 21.13. Hence U ∩ V is affine by
applying Lemma 21.8 to the morphism X → Spec(Z). �

On the other hand, the following example shows that we cannot expect the image
of an affine to be contained in an affine.

Example 21.17. Consider the nonaffine scheme U = Spec(k[x, y]) \ {(x, y)} of
Example 9.3. On the other hand, consider the scheme

GL2,k = Spec(k[a, b, c, d, 1/ad− bc]).
There is a morphism GL2,k → U corresponding to the ring map x 7→ a, y 7→ b. It is
easy to see that this is a surjective morphism, and hence the image is not contained
in any affine open of U . In fact, the affine scheme GL2,k also surjects onto P1

k, and
P1
k does not even have an immersion into any affine scheme.

Remark 21.18. The category of quasi-compact and quasi-separated schemes C
has the following properties. If X,Y ∈ Ob(C), then any morphism of schemes
f : X → Y is quasi-compact and quasi-separated by Lemmas 21.15 and 21.14 with
Z = Spec(Z). Moreover, if X → Y and Z → Y are morphisms C, then X ×Y Z
is an object of C too. Namely, the projection X ×Y Z → Z is quasi-compact
and quasi-separated as a base change of the morphism Z → Y , see Lemmas 21.13
and 19.3. Hence the composition X ×Y Z → Z → Spec(Z) is quasi-compact and
quasi-separated, see Lemmas 21.13 and 19.4.

22. Valuative criterion of separatedness

Lemma 22.1. Let f : X → S be a morphism of schemes. If f is separated, then
f satisfies the uniqueness part of the valuative criterion.

Proof. Let a diagram as in Definition 20.3 be given. Suppose there are two mor-
phisms a, b : Spec(A) → X fitting into the diagram. Let Z ⊂ Spec(A) be the
equalizer of a and b. By Lemma 21.5 this is a closed subscheme of Spec(A). By as-
sumption it contains the generic point of Spec(A). Since A is a domain this implies
Z = Spec(A). Hence a = b as desired. �
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Lemma 22.2 (Valuative criterion separatedness). Let f : X → S be a morphism.
Assume

(1) the morphism f is quasi-separated, and
(2) the morphism f satisfies the uniqueness part of the valuative criterion.

Then f is separated.

Proof. By assumption (1) and Proposition 20.6 we see that it suffices to prove
the morphism ∆X/S : X → X ×S X satisfies the existence part of the valuative
criterion. Let a solid commutative diagram

Spec(K) //

��

X

��
Spec(A) //

99

X ×S X

be given. The lower right arrow corresponds to a pair of morphisms a, b : Spec(A)→
X over S. By (2) we see that a = b. Hence using a as the dotted arrow works. �

23. Monomorphisms

Definition 23.1. A morphism of schemes is called a monomorphism if it is a
monomorphism in the category of schemes, see Categories, Definition 13.1.

Lemma 23.2. Let j : X → Y be a morphism of schemes. Then j is a monomor-
phism if and only if the diagonal morphism ∆X/Y : X → X ×Y X is an isomor-
phism.

Proof. This is true in any category with fibre products. �

Lemma 23.3. A monomorphism of schemes is separated.

Proof. This is true because an isomorphism is a closed immersion, and Lemma
23.2 above. �

Lemma 23.4. A composition of monomorphisms is a monomorphism.

Proof. True in any category. �

Lemma 23.5. The base change of a monomorphism is a monomorphism.

Proof. True in any category with fibre products. �

Lemma 23.6. Let j : X → Y be a morphism of schemes. If

(1) j is injective on points, and
(2) for any x ∈ X the ring map j]x : OY,j(x) → OX,x is surjective,

then j is a monomorphism.

Proof. Let a, b : Z → X be two morphisms of schemes such that j ◦ a = j ◦ b.
Then (1) implies a = b as underlying maps of topological spaces. For any z ∈ Z we

have a]z ◦ j
]
a(z) = b]z ◦ j

]
b(z) as maps OY,j(a(z)) → OZ,z. The surjectivity of the maps

j]x forces a]z = b]z, ∀z ∈ Z. This implies that a] = b]. Hence we conclude a = b as
morphisms of schemes as desired. �

Lemma 23.7. An immersion of schemes is a monomorphism. In particular, any
immersion is separated.
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Proof. We can see this by checking that the criterion of Lemma 23.6 applies. More
elegantly perhaps, we can use that Lemmas 3.5 and 4.6 imply that open and closed
immersions are monomorphisms and hence any immersion (which is a composition
of such) is a monomorphism. �

Lemma 23.8. Let f : X → S be a separated morphism. Any locally closed sub-
scheme Z ⊂ X is separated over S.

Proof. Follows from Lemma 23.7 and the fact that a composition of separated
morphisms is separated (Lemma 21.13). �

Example 23.9. The morphism Spec(Q) → Spec(Z) is a monomorphism. This is
true because Q⊗Z Q = Q. More generally, for any scheme S and any point s ∈ S
the canonical morphism

Spec(OS,s) −→ S

is a monomorphism.

Lemma 23.10. Let k1, . . . , kn be fields. For any monomorphism of schemes X →
Spec(k1× . . .×kn) there exists a subset I ⊂ {1, . . . , n} such that X ∼= Spec(

∏
i∈I ki)

as schemes over Spec(k1 × . . . × kn). More generally, if X =
∐
i∈I Spec(ki) is a

disjoint union of spectra of fields and Y → X is a monomorphism, then there exists
a subset J ⊂ I such that Y =

∐
i∈J Spec(ki).

Proof. First reduce to the case n = 1 (or #I = 1) by taking the inverse images of
the open and closed subschemes Spec(ki). In this case X has only one point hence
is affine. The corresponding algebra problem is this: If k → R is an algebra map
with R⊗kR ∼= R, then R ∼= k. This holds for dimension reasons. See also Algebra,
Lemma 103.8 �

24. Functoriality for quasi-coherent modules

Let X be a scheme. We denote QCoh(OX) the category of quasi-coherent OX -
modules as defined in Modules, Definition 10.1. We have seen in Section 7 that
the category QCoh(OX) has a lot of good properties when X is affine. Since the
property of being quasi-coherent is local on X, these properties are inherited by the
category of quasi-coherent sheaves on any scheme X. We enumerate them here.

(1) A sheaf of OX -modules F is quasi-coherent if and only if the restriction of

F to each affine open U = Spec(R) is of the form M̃ for some R-module
M .

(2) A sheaf of OX -modules F is quasi-coherent if and only if the restriction of
F to each of the members of an affine open covering is quasi-coherent.

(3) Any direct sum of quasi-coherent sheaves is quasi-coherent.
(4) Any colimit of quasi-coherent sheaves is quasi-coherent.
(5) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-

coherent.
(6) Given a short exact sequence of OX -modules 0 → F1 → F2 → F3 → 0 if

two out of three are quasi-coherent so is the third.
(7) Given a morphism of schemes f : Y → X the pullback of a quasi-coherent
OX -module is a quasi-coherent OY -module. See Modules, Lemma 10.4.

(8) Given two quasi-coherent OX -modules the tensor product is quasi-coherent,
see Modules, Lemma 15.5.
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(9) Given a quasi-coherent OX -module F the tensor, symmetric and exterior
algebras on F are quasi-coherent, see Modules, Lemma 18.6.

(10) Given two quasi-coherent OX -modules F , G such that F is of finite presen-
tation, then the internal hom HomOX

(F ,G) is quasi-coherent, see Modules,
Lemma 19.4 and (5) above.

On the other hand, it is in general not the case that the pushforward of a quasi-
coherent module is quasi-coherent. Here is a case where it this does hold.

Lemma 24.1. Let f : X → S be a morphism of schemes. If f is quasi-compact and
quasi-separated then f∗ transforms quasi-coherent OX-modules into quasi-coherent
OS-modules.

Proof. The question is local on S and hence we may assume that S is affine.
Because X is quasi-compact we may write X =

⋃n
i=1 Ui with each Ui open affine.

Because f is quasi-separated we may write Ui∩Uj =
⋃nij

k=1 Uijk for some affine open
Uijk, see Lemma 21.7. Denote fi : Ui → S and fijk : Uijk → S the restrictions of
f . For any open V of S and any sheaf F on X we have

f∗F(V ) = F(f−1V )

= Ker
(⊕

i
F(f−1V ∩ Ui)→

⊕
i,j,k
F(f−1V ∩ Uijk)

)
= Ker

(⊕
i
fi,∗(F|Ui)(V )→

⊕
i,j,k

fijk,∗(F|Uijk
)
)

(V )

= Ker
(⊕

i
fi,∗(F|Ui

)→
⊕

i,j,k
fijk,∗(F|Uijk

)
)

(V )

In other words there is a short exact sequence of sheaves

0→ f∗F →
⊕

fi,∗Fi →
⊕

fijk,∗Fijk

where Fi,Fijk denotes the restriction of F to the corresponding open. If F is a
quasi-coherent OX -modules then Fi, Fijk is a quasi-coherent OUi

, OUijk
-module.

Hence by Lemma 7.3 we see that the second and third term of the exact sequence
are quasi-coherent OS-modules. Thus we conclude that f∗F is a quasi-coherent
OS-module. �

Using this we can characterize (closed) immersions of schemes as follows.

Lemma 24.2. Let f : X → Y be a morphism of schemes. Suppose that

(1) f induces a homeomorphism of X with a closed subset of Y , and
(2) f ] : OY → f∗OX is surjective.

Then f is a closed immersion of schemes.

Proof. Assume (1) and (2). By (1) the morphism f is quasi-compact (see Topology,
Lemma 11.3). Conditions (1) and (2) imply conditions (1) and (2) of Lemma
23.6. Hence f : X → Y is a monomorphism. In particular, f is separated, see
Lemma 23.3. Hence Lemma 24.1 above applies and we conclude that f∗OX is a
quasi-coherent OY -module. Therefore the kernel of OY → f∗OX is quasi-coherent
by Lemma 7.8. Since a quasi-coherent sheaf is locally generated by sections (see
Modules, Definition 10.1) this implies that f is a closed immersion, see Definition
4.1. �

We can use this lemma to prove the following lemma.
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Lemma 24.3. A composition of immersions of schemes is an immersion, a com-
position of closed immersions of schemes is a closed immersion, and a composition
of open immersions of schemes is an open immersion.

Proof. This is clear for the case of open immersions since an open subspace of an
open subspace is also an open subspace.

Suppose a : Z → Y and b : Y → X are closed immersions of schemes. We will verify
that c = b ◦ a is also a closed immersion. The assumption implies that a and b are
homeomorphisms onto closed subsets, and hence also c = b◦a is a homeomorphism
onto a closed subset. Moreover, the map OX → c∗OZ is surjective since it factors
as the composition of the surjective maps OX → b∗OY and b∗OY → b∗a∗OZ
(surjective as b∗ is exact, see Modules, Lemma 6.1). Hence by Lemma 24.2 above
c is a closed immersion.

Finally, we come to the case of immersions. Suppose a : Z → Y and b : Y → X
are immersions of schemes. This means there exist open subschemes V ⊂ Y and
U ⊂ X such that a(Z) ⊂ V , b(Y ) ⊂ U and a : Z → V and b : Y → U are closed
immersions. Since the topology on Y is induced from the topology on U we can find
an open U ′ ⊂ U such that V = b−1(U ′). Then we see that Z → V = b−1(U ′)→ U ′

is a composition of closed immersions and hence a closed immersion. This proves
that Z → X is an immersion and we win. �
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