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1. Introduction

In this chapter we use the material from the preceding sections to give criteria
under which a presheaf of sets on the category of schemes is an algebraic space.
Some of this material comes from the work of Artin, see [Art69b], [Art70], [Art73],
[Art71b], [Art71a], [Art69a], [Art69c], and [Art74]. However, our method will be to
use as much as possible arguments similar to those of the paper by Keel and Mori,
see [KM97].

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Morphisms representable by algebraic spaces

Here we define the notion of one presheaf being relatively representable by algebraic
spaces over another, and we prove some properties of this notion.
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2 BOOTSTRAP

Definition 3.1. Let S be a scheme contained in Schfppf . Let F , G be presheaves
on Schfppf/S. We say a morphism a : F → G is representable by algebraic spaces
if for every U ∈ Ob((Sch/S)fppf ) and any ξ : U → G the fiber product U ×ξ,G F is
an algebraic space.

Here is a sanity check.

Lemma 3.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Then f is representable by algebraic spaces.

Proof. This is formal. It relies on the fact that the category of algebraic spaces
over S has fibre products, see Spaces, Lemma 7.3. �

Lemma 3.3. Let S be a scheme. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces so is a′.

Proof. Omitted. Hint: This is formal. �

Lemma 3.4. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is a sheaf, then so
is F .

Proof. (Same as the proof of Spaces, Lemma 3.5.) Let {ϕi : Ti → T} be a covering
of the site (Sch/S)fppf . Let si ∈ F (Ti) which satisfy the sheaf condition. Then
σi = a(si) ∈ G(Ti) satisfy the sheaf condition also. Hence there exists a unique
σ ∈ G(T ) such that σi = σ|Ti

. By assumption F ′ = hT ×σ,G,a F is a sheaf. Note
that (ϕi, si) ∈ F ′(Ti) satisfy the sheaf condition also, and hence come from some
unique (idT , s) ∈ F ′(T ). Clearly s is the section of F we are looking for. �

Lemma 3.5. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. Then ∆F/G : F → F×GF
is representable by algebraic spaces.

Proof. (Same as the proof of Spaces, Lemma 3.6.) Let U be a scheme. Let
ξ = (ξ1, ξ2) ∈ (F ×G F )(U). Set ξ′ = a(ξ1) = a(ξ2) ∈ G(U). By assumption there
exist an algebraic space V and a morphism V → U representing the fibre product
U ×ξ′,GF . In particular, the elements ξ1, ξ2 give morphisms f1, f2 : U → V over U .
Because V represents the fibre product U ×ξ′,G F and because ξ′ = a ◦ ξ1 = a ◦ ξ2
we see that if g : U ′ → U is a morphism then

g∗ξ1 = g∗ξ2 ⇔ f1 ◦ g = f2 ◦ g.
In other words, we see that U×ξ,F×GF F is represented by V ×∆,V×V,(f1,f2)U which
is an algebraic space. �

The proof of Lemma 3.6 below is actually slightly tricky. Namely, we cannot use
the argument of the proof of Spaces, Lemma 11.1 because we do not yet know that
a composition of transformations representable by algebraic spaces is representable
by algebraic spaces. In fact, we will use this lemma to prove that statement.

http://localhost:8080/tag/02YQ
http://localhost:8080/tag/03BN
http://localhost:8080/tag/03Y0
http://localhost:8080/tag/02YR
http://localhost:8080/tag/05LA


BOOTSTRAP 3

Lemma 3.6. Let S be a scheme contained in Schfppf . Let F,G : (Sch/S)oppfppf →
Sets. Let a : F → G be representable by algebraic spaces. If G is an algebraic space,
then so is F .

Proof. We have seen in Lemma 3.4 that F is a sheaf.

Let U be a scheme and let U → G be a surjective étale morphism. In this case
U ×G F is an algebraic space. Let W be a scheme and let W → U ×G F be a
surjective étale morphism.

First we claim that W → F is representable. To see this let X be a scheme and let
X → F be a morphism. Then

W ×F X = W ×U×GF U ×G F ×F X = W ×U×GF (U ×G X)

Since both U ×G F and G are algebraic spaces we see that this is a scheme.

Next, we claim that W → F is surjective and étale (this makes sense now that we
know it is representable). This follows from the formula above since both W →
U ×GF and U → G are étale and surjective, hence W ×U×GF (U ×GX)→ U ×GX
and U ×G X → X are surjective and étale, and the composition of surjective étale
morphisms is surjective and étale.

Set R = W ×F W . By the above R is a scheme and the projections t, s : R → W
are étale. It is clear that R is an equivalence relation, and W → F is a surjection
of sheaves. Hence R is an étale equivalence relation and F = W/R. Hence F is an
algebraic space by Spaces, Theorem 10.5. �

Lemma 3.7. Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf . Suppose a : F → G is representable by algebraic spaces. If X is an
algebraic space over S, and X → G is a map of presheaves then X ×G F is an
algebraic space.

Proof. By Lemma 3.3 the transformation X ×G F → X is representable by alge-
braic spaces. Hence it is an algebraic space by Lemma 3.6. �

Lemma 3.8. Let S be a scheme. Let

F
a // G

b // H

be maps of presheaves on (Sch/S)fppf . If a and b are representable by algebraic
spaces, so is b ◦ a.

Proof. Let T be a scheme over S, and let T → H be a morphism. By assumption
T ×H G is an algebraic space. Hence by Lemma 3.7 we see that T ×H F = (T ×H
G)×G F is an algebraic space as well. �

Lemma 3.9. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Then

a1 × a2 : F1 × F2 −→ G1 ×G2

is a representable by algebraic spaces.

Proof. Write a1× a2 as the composition F1×F2 → G1×F2 → G1×G2. The first
arrow is the base change of a1 by the map G1 × F2 → G1, and the second arrow is
the base change of a2 by the map G1 × G2 → G2. Hence this lemma is a formal
consequence of Lemmas 3.8 and 3.3. �
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4 BOOTSTRAP

Lemma 3.10. Let S be a scheme. Let a : F → G and b : G→ H be transformations
of functors (Sch/S)oppfppf → Sets. Assume

(1) ∆ : G→ G×H G is representable by algebraic spaces, and
(2) b ◦ a : F → H is representable by algebraic spaces.

Then a is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ G(U). Then

U ×ξ,G,a F = (U ×b(ξ),H,b◦a F )×(ξ,a),(G×HG),∆ G

Hence the result using Lemma 3.7. �

Lemma 3.11. Let S ∈ Ob(Schfppf ). Let F be a presheaf of sets on (Sch/S)fppf .
Assume

(1) F is a sheaf for the Zariski topology on (Sch/S)fppf ,
(2) there exists an index set I and subfunctors Fi ⊂ F such that

(a) each Fi is an fppf sheaf,
(b) each Fi → F is representable by algebraic spaces,
(c)

∐
Fi → F becomes surjective after fppf sheafification.

Then F is an fppf sheaf.

Proof. Let T ∈ Ob((Sch/S)fppf ) and let s ∈ F (T ). By (2)(c) there exists an fppf
covering {Tj → T} such that s|Tj

is a section of Fα(j) for some α(j) ∈ I. Let
Wj ⊂ T be the image of Tj → T which is an open subscheme Morphisms, Lemma
26.9. By (2)(b) we see Fα(j) ×F,s|Wj

Wj → Wj is a monomorphism of algebraic

spaces through which Tj factors. Since {Tj →Wj} is an fppf covering, we conclude
that Fα(j) ×F,s|Wj

Wj = Wj , in other words s|Wj
∈ Fα(j)(Wj). Hence we conclude

that
∐
Fi → F is surjective for the Zariski topology.

Let {Tj → T} be an fppf covering in (Sch/S)fppf . Let s, s′ ∈ F (T ) with s|Tj = s′|Tj

for all j. We want to show that s, s′ are equal. As F is a Zariski sheaf by (1) we
may work Zariski locally on T . By the result of the previous paragraph we may
assume there exist i such that s ∈ Fi(T ). Then we see that s′|Tj

is a section of Fi.
By (2)(b) we see Fi ×F,s′ T → T is a monomorphism of algebraic spaces through
which all of the Tj factor. Hence we conclude that s′ ∈ Fi(T ). Since Fi is a sheaf
for the fppf topology we conclude that s = s′.

Let {Tj → T} be an fppf covering in (Sch/S)fppf and let sj ∈ F (Tj) such that
sj |Tj×TTj′ = sj′ |Tj×TTj′ . By assumption (2)(b) we may refine the covering and

assume that sj ∈ Fα(j)(Tj) for some α(j) ∈ I. Let Wj ⊂ T be the image of Tj → T
which is an open subscheme Morphisms, Lemma 26.9. Then {Tj →Wj} is an fppf
covering. Since Fα(j) is a sub presheaf of F we see that the two restrictions of sj
to Tj ×Wj

Tj agree as elements of Fα(j)(Tj ×Wj
Tj). Hence, the sheaf condition for

Fα(j) implies there exists a s′j ∈ Fα(j)(Wj) whose restriction to Tj is sj . For a pair
of indices j and j′ the sections s′j |Wj∩Wj′ and s′j′ |Wj∩Wj′ of F agree by the result
of the previous paragraph. This finishes the proof by the fact that F is a Zariski
sheaf. �

4. Properties of maps of presheaves representable by algebraic spaces

Here is the definition that makes this work.

http://localhost:8080/tag/0AMN
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Definition 4.1. Let S be a scheme. Let a : F → G be a map of presheaves on
(Sch/S)fppf which is representable by algebraic spaces. Let P be a property of
morphisms of algebraic spaces which

(1) is preserved under any base change, and
(2) is fppf local on the base, see Descent on Spaces, Definition 9.1.

In this case we say that a has property P if for every scheme U and ξ : U → G the
resulting morphism of algebraic spaces U ×G F → U has property P.

It is important to note that we will only use this definition for properties of mor-
phisms that are stable under base change, and local in the fppf topology on the
base. This is not because the definition doesn’t make sense otherwise; rather it is
because we may want to give a different definition which is better suited to the
property we have in mind.

The definition above applies1 for example to the properties of being “surjective”,
“quasi-compact”, “étale”, “flat”, “separated”, “(locally) of finite type”, “(locally)
quasi-finite”, “(locally) of finite presentation”, “proper”, and “a closed immersion”.
In other words, a is surjective (resp. quasi-compact, étale, flat, separated, (locally)
of finite type, (locally) quasi-finite, (locally) of finite presentation, proper, a closed
immersion) if for every scheme T and map ξ : T → G the morphism of algebraic
spaces T ×ξ,G F → T is surjective (resp. quasi-compact, étale, flat, separated,
(locally) of finite type, (locally) quasi-finite, (locally) of finite presentation, proper,
a closed immersion).

Next, we check consistency with the already existing notions. By Lemma 3.2 any
morphism between algebraic spaces over S is representable by algebraic spaces. And
by Morphisms of Spaces, Lemma 5.3 (resp. 8.7, 36.2, 28.5, 4.12, 23.4, 26.6, 27.4,
37.2, 12.1) the definition of surjective (resp. quasi-compact, étale, flat, separated,
(locally) of finite type, (locally) quasi-finite, (locally) of finite presentation, proper,
closed immersion) above agrees with the already existing definition of morphisms
of algebraic spaces.

Some formal lemmas follow.

Lemma 4.2. Let S be a scheme. Let P be a property as in Definition 4.1. Let

G′ ×G F //

a′

��

F

a

��
G′ // G

be a fibre square of presheaves on (Sch/S)fppf . If a is representable by algebraic
spaces and has P so does a′.

Proof. Omitted. Hint: This is formal. �

Lemma 4.3. Let S be a scheme. Let P be a property as in Definition 4.1, and
assume P is stable under composition. Let

F
a // G

b // H

1Being preserved under base change holds by Morphisms of Spaces, Lemmas 5.5, 8.3, 36.4,
28.4, 4.4, 23.3, 26.4, 27.3, 37.3, and Spaces, Lemma 12.3. Being fppf local on the base holds by

Descent on Spaces, Lemmas 10.5, 10.1, 10.26, 10.11, 10.16, 10.9, 10.22, 10.8, 10.17, and 10.15.
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6 BOOTSTRAP

be maps of presheaves on (Sch/S)fppf . If a, b are representable by algebraic spaces
and has P so does b ◦ a.

Proof. Omitted. Hint: See Lemma 3.8 and use stability under composition. �

Lemma 4.4. Let S be a scheme. Let Fi, Gi : (Sch/S)oppfppf → Sets, i = 1, 2. Let
ai : Fi → Gi, i = 1, 2 be representable by algebraic spaces. Let P be a property as
in Definition 4.1 which is stable under composition. If a1 and a2 have property P
so does a1 × a2 : F1 × F2 −→ G1 ×G2.

Proof. Note that the lemma makes sense by Lemma 3.9. Proof omitted. �

Lemma 4.5. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets. Let a : F → G

be a transformation of functors representable by algebraic spaces. Let P, P ′ be
properties as in Definition 4.1. Suppose that for any morphism f : X → Y of
algebraic spaces over S we have P(f) ⇒ P ′(f). If a has property P, then a has
property P ′.

Proof. Formal. �

Lemma 4.6. Let S be a scheme. Let F,G : (Sch/S)oppfppf → Sets be sheaves. Let
a : F → G be representable by algebraic spaces, flat, locally of finite presentation,
and surjective. Then a : F → G is surjective as a map of sheaves.

Proof. Let T be a scheme over S and let g : T → G be a T -valued point of G.
By assumption T ′ = F ×G T is an algebraic space and the morphism T ′ → T is
a flat, locally of finite presentation, and surjective morphism of algebraic spaces.
Let U → T ′ be a surjective étale morphism, where U is a scheme. Then by the
definition of flat morphisms of algebraic spaces the morphism of schemes U → T
is flat. Similarly for “locally of finite presentation”. The morphism U → T is
surjective also, see Morphisms of Spaces, Lemma 5.3. Hence we see that {U → T}
is an fppf covering such that g|U ∈ G(U) comes from an element of F (U), namely
the map U → T ′ → F . This proves the map is surjective as a map of sheaves, see
Sites, Definition 12.1. �

5. Bootstrapping the diagonal

Lemma 5.1. Let S be a scheme. If F is a presheaf on (Sch/S)fppf . The following
are equivalent:

(1) ∆F : F → F × F is representable by algebraic spaces,
(2) for every scheme T any map T → F is representable by algebraic spaces,

and
(3) for every algebraic space X any map X → F is representable by algebraic

spaces.

Proof. Assume (1). Let X → F be as in (3). Let T be a scheme, and let T → F
be a morphism. Then we have

T ×F X = (T ×S X)×F×F,∆ F

which is an algebraic space by Lemma 3.7 and (1). Hence X → F is representable,
i.e., (3) holds. The implication (3)⇒ (2) is trivial. Assume (2). Let T be a scheme,
and let (a, b) : T → F × F be a morphism. Then

F ×∆F ,F×F T = T ×a,F,b T

http://localhost:8080/tag/046H
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which is an algebraic space by assumption. Hence ∆F is representable by algebraic
spaces, i.e., (1) holds. �

In particular if F is a presheaf satisfying the equivalent conditions of the lemma,
then for any morphism X → F where X is an algebraic space it makes sense to say
that X → F is surjective (resp. étale, flat, locally of finite presentation) by using
Definition 4.1.

Before we actually do the bootstrap we prove a fun lemma.

Lemma 5.2. Let S be a scheme. Let

E
a
//

f

��

F

g

��
H

b // G

be a cartesian diagram of sheaves on (Sch/S)fppf , so E = H ×G F . If

(1) g is representable by algebraic spaces, surjective, flat, and locally of finite
presentation, and

(2) a is representable by algebraic spaces, separated, and locally quasi-finite

then b is representable (by schemes) as well as separated and locally quasi-finite.

Proof. Let T be a scheme, and let T → G be a morphism. We have to show that
T ×GH is an algebraic space, and that the morphism T ×GH → T is separated and
locally quasi-finite. Thus we may base change the whole diagram to T and assume
that G is a scheme. In this case F is an algebraic space. Let U be a scheme, and let
U → F be a surjective étale morphism. Then U → F is representable, surjective,
flat and locally of finite presentation by Morphisms of Spaces, Lemmas 36.7 and
36.8. By Lemma 3.8 U → G is surjective, flat and locally of finite presentation
also. Note that the base change E ×F U → U of a is still separated and locally
quasi-finite (by Lemma 4.2). Hence we may replace the upper part of the diagram
of the lemma by E ×F U → U . In other words, we may assume that F → G is
a surjective, flat morphism of schemes which is locally of finite presentation. In
particular, {F → G} is an fppf covering of schemes. By Morphisms of Spaces,
Proposition 44.2 we conclude that E is a scheme also. By Descent, Lemma 35.1
the fact that E = H ×G F means that we get a descent datum on E relative to
the fppf covering {F → G}. By More on Morphisms, Lemma 37.1 this descent
datum is effective. By Descent, Lemma 35.1 again this implies that H is a scheme.
By Descent, Lemmas 19.5 and 19.22 it now follows that b is separated and locally
quasi-finite. �

Here is the result that the section title refers to.

Lemma 5.3. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Assume
that

(1) the presheaf F is a sheaf,
(2) there exists an algebraic space X and a map X → F which is representable

by algebraic spaces, surjective, flat and locally of finite presentation.

Then ∆F is representable (by schemes).

http://localhost:8080/tag/046J
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Proof. Let U → X be a surjective étale morphism from a scheme towards X.
Then U → X is representable, surjective, flat and locally of finite presentation
by Morphisms of Spaces, Lemmas 36.7 and 36.8. By Lemma 4.3 the composition
U → F is representable by algebraic spaces, surjective, flat and locally of finite
presentation also. Thus we see that R = U ×F U is an algebraic space, see Lemma
3.7. The morphism of algebraic spaces R → U ×S U is a monomorphism, hence
separated (as the diagonal of a monomorphism is an isomorphism, see Morphisms of
Spaces, Lemma 10.2). Since U → F is locally of finite presentation, both morphisms
R → U are locally of finite presentation, see Lemma 4.2. Hence R → U ×S U is
locally of finite type (use Morphisms of Spaces, Lemmas 27.5 and 23.6). Altogether
this means that R → U ×S U is a monomorphism which is locally of finite type,
hence a separated and locally quasi-finite morphism, see Morphisms of Spaces,
Lemma 26.10.

Now we are ready to prove that ∆F is representable. Let T be a scheme, and let
(a, b) : T → F × F be a morphism. Set

T ′ = (U ×S U)×F×F T.

Note that U ×S U → F ×F is representable by algebraic spaces, surjective, flat and
locally of finite presentation by Lemma 4.4. Hence T ′ is an algebraic space, and the
projection morphism T ′ → T is surjective, flat, and locally of finite presentation.
Consider Z = T ×F×F F (this is a sheaf) and

Z ′ = T ′ ×U×SU R = T ′ ×T Z.

We see that Z ′ is an algebraic space, and Z ′ → T ′ is separated and locally quasi-
finite by the discussion in the first paragraph of the proof which showed that R
is an algebraic space and that the morphism R → U ×S U has those properties.
Hence we may apply Lemma 5.2 to the diagram

Z ′ //

��

T ′

��
Z // T

and we conclude. �

Here is a variant of the result above.

Lemma 5.4. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let
X be a scheme and let X → F be representable by algebraic spaces and locally
quasi-finite. Then X → F is representable (by schemes).

Proof. Let T be a scheme and let T → F be a morphism. We have to show that
the algebraic space X ×F T is representable by a scheme. Consider the morphism

X ×F T −→ X ×Spec(Z) Spec(A)

Since X ×F T → T is locally quasi-finite, so is the displayed arrow (Morphisms of
Spaces, Lemma 26.8). On the other hand, the displayed arrow is a monomorphism
and hence separated (Morphisms of Spaces, Lemma 10.3). Thus X×F T is a scheme
by Morphisms of Spaces, Proposition 44.2. �

http://localhost:8080/tag/0AHV
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6. Bootstrap

We warn the reader right away that the result of this section will be superseded by
the stronger Theorem 10.1. On the other hand, the theorem in this section is quite
a bit easier to prove and still provides quite a bit of insight into how things work,
especially for those readers mainly interested in Deligne-Mumford stacks.

In Spaces, Section 6 we defined an algebraic space as a sheaf in the fppf topology
whose diagonal is representable, and such that there exist a surjective étale mor-
phism from a scheme towards it. In this section we show that a sheaf in the fppf
topology whose diagonal is representable by algebraic spaces and which has an étale
surjective covering by an algebraic space is also an algebraic space. In other words,
the category of algebraic spaces is an enlargement of the category of schemes by
those fppf sheaves F which have a representable diagonal and an étale covering by
a scheme. The result of this section says that doing the same process again starting
with the category of algebraic spaces, does not lead to yet another category.

Another motivation for the material in this section is that it will guarantee later
that a Deligne-Mumford stack whose inertia stack is trivial is equivalent to an
algebraic space, see Algebraic Stacks, Lemma 13.2.

Here is the main result of this section (as we mentioned above this will be superseded
by the stronger Theorem 10.1).

Theorem 6.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor.
Assume that

(1) the presheaf F is a sheaf,
(2) the diagonal morphism F → F ×F is representable by algebraic spaces, and
(3) there exists an algebraic space X and a map X → F which is surjective,

and étale.

Then F is an algebraic space.

Proof. We will use the remarks directly below Definition 4.1 without further men-
tion. In the situation of the theorem, let U → X be a surjective étale morphism
from a scheme towards X. By Lemma 3.8 U → F is surjective and étale also.
Hence the theorem boils down to proving that ∆F is representable. This follows
immediately from Lemma 5.3. On the other hand we can circumvent this lemma
and show directly F is an algebraic space as in the next paragraph.

Let U be a scheme, and let U → F be surjective and étale. Set R = U×FU , which is
an algebraic space (see Lemma 5.1). The morphism of algebraic spaces R→ U×SU
is a monomorphism, hence separated (as the diagonal of a monomorphism is an
isomorphism). Moreover, since U → F is étale, we see that R → U is étale, by
Lemma 4.2. In particular, we see that R→ U is locally quasi-finite, see Morphisms
of Spaces, Lemma 36.5. We conclude that also R → U ×S U is locally quasi-finite
by Morphisms of Spaces, Lemma 26.8. Hence Morphisms of Spaces, Proposition
44.2 applies and R is a scheme. Hence F = U/R is an algebraic space according to
Spaces, Theorem 10.5. �

7. Finding opens

First we prove a lemma which is a slight improvement and generalization of Spaces,
Lemma 10.2 to quotient sheaves associated to groupoids.

http://localhost:8080/tag/03Y3
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Lemma 7.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let g : U ′ → U be a morphism. Assume

(1) the composition

U ′ ×g,U,t R pr1
//

h

((
R

s
// U

has an open image W ⊂ U , and
(2) the resulting map h : U ′ ×g,U,t R → W defines a surjection of sheaves in

the fppf topology.

Let R′ = R|U ′ be the restriction of R to U . Then the map of quotient sheaves

U ′/R′ → U/R

in the fppf topology is representable, and is an open immersion.

Proof. Note that W is an R-invariant open subscheme of U . This is true because
the set of points of W is the set of points of U which are equivalent in the sense
of Groupoids, Lemma 3.4 to a point of g(U ′) ⊂ U (the lemma applies as j : R →
U ×S U is a pre-equivalence relation by Groupoids, Lemma 11.2). Also g : U ′ → U
factors through W . Let R|W be the restriction of R to W . Then it follows that R′

is also the restriction of R|W to U ′. Hence we can factor the map of sheaves of the
lemma as

U ′/R′ −→W/R|W −→ U/R

By Groupoids, Lemma 18.6 we see that the first arrow is an isomorphism of sheaves.
Hence it suffices to show the lemma in case g is the immersion of an R-invariant
open into U .

Assume U ′ ⊂ U is an R-invariant open and g is the inclusion morphism. Set
F = U/R and F ′ = U ′/R′. By Groupoids, Lemma 18.5 or 18.6 the map F ′ → F
is injective. Let ξ ∈ F (T ). We have to show that T ×ξ,F F ′ is representable by an
open subscheme of T . There exists an fppf covering {fi : Ti → T} such that ξ|Ti is
the image via U → U/R of a morphism ai : Ti → U . Set Vi = s−1

i (U ′). We claim
that Vi ×T Tj = Ti ×T Vj as open subschemes of Ti ×T Tj .
As ai ◦pr0 and aj ◦pr1 are morphisms Ti×T Tj → U which both map to the section
ξ|Ti×TTj ∈ F (Ti ×T Tj) we can find an fppf covering {fijk : Tijk → Ti ×T Tj} and
morphisms rijk : Tijk → R such that

ai ◦ pr0 ◦ fijk = s ◦ rijk, aj ◦ pr1 ◦ fijk = t ◦ rijk,
see Groupoids, Lemma 18.4. Since U ′ is R-invariant we have s−1(U ′) = t−1(U ′)
and hence f−1

ijk(Vi ×T Tj) = f−1
ijk(Ti ×T Vj). As {fijk} is surjective this implies the

claim above. Hence by Descent, Lemma 9.2 there exists an open subscheme V ⊂ T
such that f−1

i (V ) = Vi. We claim that V represents T ×ξ,F F ′.
As a first step, we will show that ξ|V lies in F ′(V ) ⊂ F (V ). Namely, the family of
morphisms {Vi → V } is an fppf covering, and by construction we have ξ|Vi

∈ F ′(Vi).
Hence by the sheaf property of F ′ we get ξ|V ∈ F ′(V ). Finally, let T ′ → T be a
morphism of schemes and that ξ|T ′ ∈ F ′(T ′). To finish the proof we have to show
that T ′ → T factors through V . We can find a fppf covering {T ′j → T ′}j∈J and
morphisms bj : T ′j → U ′ such that ξ|T ′

j
is the image via U ′ → U/R of bj . Clearly,

it is enough to show that the compositions T ′j → T factor through V . Hence we
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may assume that ξ|T ′ is the image of a morphism b : T ′ → U ′. Now, it is enough
to show that T ′ ×T Ti → Ti factors through Vi. Over the scheme T ′ ×T Ti the
restriction of ξ is the image of two elements of (U/R)(T ′ ×T Ti), namely ai ◦ pr1,
and b ◦ pr0, the second of which factors through the R-invariant open U ′. Hence
by Groupoids, Lemma 18.4 there exists a covering {hk : Zk → T ′ ×T Ti} and
morphisms rk : Zk → R such that ai ◦ pr1 ◦ hk = s ◦ rk and b ◦ pr0 ◦ hk = t ◦ rk. As
U ′ is an R-invariant open the fact that b has image in U ′ then implies that each
ai ◦ pr1 ◦ hk has image in U ′. It follows from this that T ′ ×T Ti → Ti has image in
Vi by definition of Vi which concludes the proof. �

8. Slicing equivalence relations

In this section we explain how to “improve” a given equivalence relation by slicing.
This is not a kind of “étale slicing” that you may be used to but a much coarser
kind of slicing.

Lemma 8.1. Let S be a scheme. Let j : R → U ×S U be an equivalence relation
on schemes over S. Assume s, t : R→ U are flat and locally of finite presentation.
Then there exists an equivalence relation j′ : R′ → U ′ ×S U ′ on schemes over S,
and an isomorphism

U ′/R′ −→ U/R

induced by a morphism U ′ → U which maps R′ into R such that s′, t′ : R→ U are
flat, locally of finite presentation and locally quasi-finite.

Proof. We will prove this lemma in several steps. We will use without further
mention that an equivalence relation gives rise to a groupoid scheme and that
the restriction of an equivalence relation is an equivalence relation, see Groupoids,
Lemmas 3.2, 11.3, and 16.3.

Step 1: We may assume that s, t : R → U are locally of finite presentation and
Cohen-Macaulay morphisms. Namely, as in More on Groupoids, Lemma 7.1 let
g : U ′ → U be the open subscheme such that t−1(U ′) ⊂ R is the maximal open
over which s : R→ U is Cohen-Macaulay, and denote R′ the restriction of R to U ′.
By the lemma cited above we see that

t−1(U ′) U ′ ×g,U,t R pr1
//

h

((
R

s
// U

is surjective. Since h is flat and locally of finite presentation, we see that {h} is a
fppf covering. Hence by Groupoids, Lemma 18.6 we see that U ′/R′ → U/R is an
isomorphism. By the construction of U ′ we see that s′, t′ are Cohen-Macaulay and
locally of finite presentation.

Step 2. Assume s, t are Cohen-Macaulay and locally of finite presentation. Let
u ∈ U be a point of finite type. By More on Groupoids, Lemma 11.4 there exists
an affine scheme U ′ and a morphism g : U ′ → U such that

(1) g is an immersion,
(2) u ∈ U ′,
(3) g is locally of finite presentation,
(4) h is flat, locally of finite presentation and locally quasi-finite, and
(5) the morphisms s′, t′ : R′ → U ′ are flat, locally of finite presentation and

locally quasi-finite.

http://localhost:8080/tag/0489
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Here we have used the notation introduced in More on Groupoids, Situation 11.1.

Step 3. For each point u ∈ U which is of finite type choose a gu : U ′u → U as in Step
2 and denote R′u the restriction of R to U ′u. Denote hu = s◦pr1 : U ′u×gu,U,tR→ U .
Set U ′ =

∐
u∈U U

′
u, and g =

∐
gu. Let R′ be the restriction of R to U as above.

We claim that the pair (U ′, g) works2. Note that

R′ =
∐

u1,u2∈U
(U ′u1

×gu1
,U,t R)×R (R×s,U,gu2

U ′u2
)

=
∐

u1,u2∈U
(U ′u1

×gu1 ,U,t
R)×hu1 ,U,gu2

U ′u2

Hence the projection s′ : R′ → U ′ =
∐
U ′u2

is flat, locally of finite presentation
and locally quasi-finite as a base change of

∐
hu1

. Finally, by construction the
morphism h : U ′ ×g,U,t R→ U is equal to

∐
hu hence its image contains all points

of finite type of U . Since each hu is flat and locally of finite presentation we conclude
that h is flat and locally of finite presentation. In particular, the image of h is open
(see Morphisms, Lemma 26.9) and since the set of points of finite type is dense (see
Morphisms, Lemma 17.7) we conclude that the image of h is U . This implies that
{h} is an fppf covering. By Groupoids, Lemma 18.6 this means that U ′/R′ → U/R
is an isomorphism. This finishes the proof of the lemma. �

9. Quotient by a subgroupoid

We need one more lemma before we can do our final bootstrap. Let us discuss what
is going on in terms of “plain” groupoids before embarking on the scheme theoretic
version.

Let C be a groupoid, see Categories, Definition 2.5. As discussed in Groupoids,
Section 11 this corresponds to a quintuple (Ob,Arrows, s, t, c). Suppose we are
given a subset P ⊂ Arrows such that (Ob, P, s|P , t|P , c|P ) is also a groupoid and
such that there are no nontrivial automorphisms in P . Then we can construct the
quotient groupoid (Ob,Arrows, s, t, c) as follows:

(1) Ob = Ob/P is the set of P -isomorphism classes,
(2) Arrows = P\Arrows/P is the set of arrows in C up to pre-composing and

post-composing by arrows of P ,
(3) the source and target maps s, t : P\Arrows/P → Ob/P are induced by s, t,

(4) composition is defined by the rule c(a, b) = c(a, b) which is well defined.

In fact, it turns out that the original groupoid (Ob,Arrows, s, t, c) is canonically iso-
morphic to the restriction (see discussion in Groupoids, Section 16) of the groupoid
(Ob,Arrows, s, t, c) via the quotient map g : Ob→ Ob. Recall that this means that

Arrows = Ob×g,Ob,t Arrows×s,Ob,g Ob

which holds as P has no nontrivial automorphisms. We omit the details.

The following lemma holds in much greater generality, but this is the version we
use in the proof of the final bootstrap (after which we can more easily prove the
more general versions of this lemma).

2Here we should check that U ′ is not too large, i.e., that it is isomorphic to an object of the

category Schfppf , see Section 2. This is a purely set theoretical matter; let us use the notion of

size of a scheme introduced in Sets, Section 9. Note that each U ′
u has size at most the size of U

and that the cardinality of the index set is at most the cardinality of |U | which is bounded by the

size of U . Hence U ′ is isomorphic to an object of Schfppf by Sets, Lemma 9.9 part (6).
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Lemma 9.1. Let S be a scheme. Let (U,R, s, t, c) be a groupoid scheme over S.
Let P → R be monomorphism of schemes. Assume that

(1) (U,P, s|P , t|P , c|P×s,U,tP ) is a groupoid scheme,
(2) s|P , t|P : P → U are finite locally free,
(3) j|P : P → U ×S U is a monomorphism.
(4) U is affine, and
(5) j : R→ U ×S U is separated and locally quasi-finite,

Then U/P is representable by an affine scheme U , the quotient morphism U → U
is finite locally free, and P = U ×U U . Moreover, R is the restriction of a groupoid

scheme (U,R, s, t, c) on U via the quotient morphism U → U .

Proof. Conditions (1), (2), (3), and (4) and Groupoids, Proposition 21.8 imply
the affine scheme U representing U/P exists, the morphism U → U is finite locally
free, and P = U ×U U . The identification P = U ×U U is such that t|P = pr0 and
s|P = pr1, and such that composition is equal to pr02 : U ×U U ×U U → U ×U U .
A product of finite locally free morphisms is finite locally free (see Spaces, Lemma
5.7 and Morphisms, Lemmas 46.4 and 46.3). To get R we are going to descend the
scheme R via the finite locally free morphism U ×S U → U ×S U . Namely, note
that

(U ×S U)×(U×SU) (U ×S U) = P ×S P
by the above. Thus giving a descent datum (see Descent, Definition 30.1) for
R/U ×S U/U ×S U consists of an isomorphism

ϕ : R×(U×SU),t×t (P ×S P ) −→ (P ×S P )×s×s,(U×SU) R

over P ×S P satisfying a cocycle condition. We define ϕ on T -valued points by the
rule

ϕ : (r, (p, p′)) 7−→ ((p, p′), p−1 ◦ r ◦ p′)
where the composition is taken in the groupoid category (U(T ), R(T ), s, t, c). This
makes sense because for (r, (p, p′)) to be a T -valued point of the source of ϕ it
needs to be the case that t(r) = t(p) and s(r) = t(p′). Note that this map is an
isomorphism with inverse given by ((p, p′), r′) 7→ (p ◦ r′ ◦ (p′)−1, (p, p′)). To check
the cocycle condition we have to verify that ϕ02 = ϕ12 ◦ ϕ01 as maps over

(U×SU)×(U×SU) (U×SU)×(U×SU) (U×SU) = (P ×SP )×s×s,(U×SU),t×t (P ×SP )

By explicit calculation we see that

ϕ02 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), (p1 ◦ p2)−1 ◦ r ◦ (p′1 ◦ p′2))

ϕ01 (r, (p1, p
′
1), (p2, p

′
2)) 7→ ((p1, p

′
1), p−1

1 ◦ r ◦ p′1, (p2, p
′
2))

ϕ12 ((p1, p
′
1), r, (p2, p

′
2)) 7→ ((p1, p

′
1), (p2, p

′
2), p−1

2 ◦ r ◦ p′2)

(with obvious notation) which implies what we want. As j is separated and locally
quasi-finite by (5) we may apply More on Morphisms, Lemma 37.1 to get a scheme
R→ U ×S U and an isomorphism

R→ R×(U×SU) (U ×S U)

which identifies the descent datum ϕ with the canonical descent datum onR×(U×SU)

(U ×S U), see Descent, Definition 30.10.

Since U ×S U → U ×S U is finite locally free we conclude that R → R is finite
locally free as a base change. Hence R → R is surjective as a map of sheaves on

http://localhost:8080/tag/04S4
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(Sch/S)fppf . Our choice of ϕ implies that given T -valued points r, r′ ∈ R(T ) these

have the same image in R if and only if p−1 ◦ r ◦ p′ for some p, p′ ∈ P (T ). Thus R
represents the sheaf

T 7−→ R(T ) = P (T )\R(T )/P (T )

with notation as in the discussion preceding the lemma. Hence we can define the
groupoid structure on (U = U/P,R = P\R/P ) exactly as in the discussion of the
“plain” groupoid case. It follows from this that (U,R, s, t, c) is the pullback of this
groupoid structure via the morphism U → U . This concludes the proof. �

10. Final bootstrap

The following result goes quite a bit beyond the earlier results.

Theorem 10.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Any
one of the following conditions implies that F is an algebraic space:

(1) F = U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such
that s, t are flat and locally of finite presentation, and j = (t, s) : R →
U ×S U is an equivalence relation,

(2) F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t are
flat and locally of finite presentation, and j = (t, s) : R → U ×S U is an
equivalence relation,

(3) F is a sheaf and there exists an algebraic space U and a morphism U →
F which is which is representable by algebraic spaces, surjective, flat and
locally of finite presentation,

(4) F is a sheaf and there exists a scheme U and a morphism U → F which is
which is representable (by algebraic spaces or schemes), surjective, flat and
locally of finite presentation,

(5) F is a sheaf, ∆F is representable by algebraic spaces, and there exists an
algebraic space U and a morphism U → F which is surjective, flat, and
locally of finite presentation, or

(6) F is a sheaf, ∆F is representable, and there exists a scheme U and a mor-
phism U → F which is surjective, flat, and locally of finite presentation.

Proof. Trivial observations: (6) is a special case of (5) and (4) is a special case
of (3). We first prove that cases (5) and (3) reduce to case (1). Namely, by
bootstrapping the diagonal Lemma 5.3 we see that (3) implies (5). In case (5)
we set R = U ×F U which is an algebraic space by assumption. Moreover, by
assumption both projections s, t : R → U are surjective, flat and locally of finite
presentation. The map j : R → U ×S U is clearly an equivalence relation. By
Lemma 4.6 the map U → F is a surjection of sheaves. Thus F = U/R which
reduces us to case (1).

Next, we show that (1) reduces to (2). Namely, let (U,R, s, t, c) be a groupoid in
algebraic spaces over S such that s, t are flat and locally of finite presentation, and
j = (t, s) : R → U ×S U is an equivalence relation. Choose a scheme U ′ and a
surjective étale morphism U ′ → U . Let R′ = R|U ′ be the restriction of R to U ′. By
Groupoids in Spaces, Lemma 18.6 we see that U/R = U ′/R′. Since s′, t′ : R′ → U ′

are also flat and locally of finite presentation (see More on Groupoids in Spaces,
Lemma 6.1) this reduces us to the case where U is a scheme. As j is an equivalence
relation we see that j is a monomorphism. As s : R → U is locally of finite

http://localhost:8080/tag/04S6
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presentation we see that j : R → U ×S U is locally of finite type, see Morphisms
of Spaces, Lemma 23.6. By Morphisms of Spaces, Lemma 26.10 we see that j is
locally quasi-finite and separated. Hence if U is a scheme, then R is a scheme by
Morphisms of Spaces, Proposition 44.2. Thus we reduce to proving the theorem in
case (2).

Assume F = U/R where (U,R, s, t, c) is a groupoid scheme over S such that s, t
are flat and locally of finite presentation, and j = (t, s) : R → U ×S U is an
equivalence relation. By Lemma 8.1 we reduce to that case where s, t are flat,
locally of finite presentation, and locally quasi-finite. Let U =

⋃
i∈I Ui be an

affine open covering (with index set I of cardinality ≤ than the size of U to avoid
set theoretic problems later – most readers can safely ignore this remark). Let
(Ui, Ri, si, ti, ci) be the restriction of R to Ui. It is clear that si, ti are still flat,
locally of finite presentation, and locally quasi-finite as Ri is the open subscheme
s−1(Ui)∩ t−1(Ui) of R and si, ti are the restrictions of s, t to this open. By Lemma
7.1 (or the simpler Spaces, Lemma 10.2) the map Ui/Ri → U/R is representable
by open immersions. Hence if we can show that Fi = Ui/Ri is an algebraic space,
then

∐
i∈I Fi is an algebraic space by Spaces, Lemma 8.3. As U =

⋃
Ui is an open

covering it is clear that
∐
Fi → F is surjective. Thus it follows that U/R is an

algebraic space, by Spaces, Lemma 8.4. In this way we reduce to the case where U
is affine and s, t are flat, locally of finite presentation, and locally quasi-finite and
j is an equivalence.

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, such that s, t are
flat, locally of finite presentation, and locally quasi-finite, and j is an equivalence
relation. Choose u ∈ U . We apply More on Groupoids in Spaces, Lemma 12.9 to
u ∈ U,R, s, t, c. We obtain an affine scheme U ′, an étale morphism g : U ′ → U ,
a point u′ ∈ U ′ with κ(u) = κ(u′) such that the restriction R′ = R|U ′ is quasi-
split over u′. Note that the image g(U ′) is open as g is étale and contains u′.
Hence, repeatedly applying the lemma, we can find finitely many points ui ∈ U ,
i = 1, . . . , n, affine schemes U ′i , étale morphisms gi : U ′i → U , points u′i ∈ U ′i with
g(u′i) = ui such that (a) each restriction R′i is quasi-split over some point in U ′i
and (b) U =

⋃
i=1,...,n gi(U

′
i). Now we rerun the last part of the argument in the

preceding paragraph: Using Lemma 7.1 (or the simpler Spaces, Lemma 10.2) the
map U ′i/R

′
i → U/R is representable by open immersions. If we can show that

Fi = U ′i/R
′
i is an algebraic space, then

∐
i∈I Fi is an algebraic space by Spaces,

Lemma 8.3. As {gi : U ′i → U} is an étale covering it is clear that
∐
Fi → F is

surjective. Thus it follows that U/R is an algebraic space, by Spaces, Lemma 8.4.
In this way we reduce to the case where U is affine and s, t are flat, locally of finite
presentation, and locally quasi-finite, j is an equivalence, and R is quasi-split over
u for some u ∈ U .

Assume (U,R, s, t, c) is a groupoid scheme over S, with U affine, u ∈ U such that
s, t are flat, locally of finite presentation, and locally quasi-finite and j = (t, s) :
R→ U ×S U is an equivalence relation and R is quasi-split over u. Let P ⊂ R be a
quasi-splitting of R over u. By Lemma 9.1 we see that (U,R, s, t, c) is the restriction
of a groupoid (U,R, s, t, c) by a surjective finite locally free morphism U → U such
that P = U ×U U . Note that s, t are the base changes of the morphisms s, t by

U → U . As {U → U} is an fppf covering we conclude s, t are flat, locally of finite
presentation, and locally quasi-finite, see Descent, Lemmas 19.13, 19.9, and 19.22.
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Consider the commutative diagram

U ×U U

##

P //

��

R

��
U

e // R

It is a general fact about restrictions that the outer four corners form a cartesian
diagram. By the equality we see the inner square is cartesian. Since P is open
in R (by definition of a quasi-splitting) we conclude that e is an open immersion
by Descent, Lemma 19.14. An application of Groupoids, Lemma 18.5 shows that
U/R = U/R. Hence we have reduced to the case where (U,R, s, t, c) is a groupoid
scheme over S, with U affine, u ∈ U such that s, t are flat, locally of finite presenta-
tion, and locally quasi-finite and j = (t, s) : R→ U ×S U is an equivalence relation
and e : U → R is an open immersion!

But of course, if e is an open immersion and s, t are flat and locally of finite
presentation then the morphisms t, s are étale. For example you can see this by
applying More on Groupoids, Lemma 4.1 which shows that ΩR/U = 0 which in turn
implies that s, t : R → U is G-unramified (see Morphisms, Lemma 36.2), which in
turn implies that s, t are étale (see Morphisms, Lemma 37.16). And if s, t are étale
then finally U/R is an algebraic space by Spaces, Theorem 10.5. �

11. Applications

As a first application we obtain the following fundamental fact:

A sheaf which is fppf locally an algebraic space is an algebraic space.

This is the content of the following lemma. Note that assumption (2) is equivalent
to the condition that F |(Sch/Si)fppf

is an algebraic space, see Spaces, Lemma 16.4.
Assumption (3) is a set theoretic condition which may be ignored by those not
worried about set theoretic questions.

Lemma 11.1. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let

{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi

× F is an algebraic space, and
(3)

∐
i∈I Fi is an algebraic space (see Spaces, Lemma 8.3).

Then F is an algebraic space.

Proof. Consider the morphism
∐
Fi → F . This is the base change of

∐
Si → S via

F → S. Hence it is representable, locally of finite presentation, flat and surjective
by our definition of an fppf covering and Lemma 4.2. Thus Theorem 10.1 applies
to show that F is an algebraic space. �

As a second application we obtain

Any fppf descent datum for algebraic spaces is effective.

This is the content of the following lemma.

http://localhost:8080/tag/04SK
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Lemma 11.2. Let S be a scheme. Let {Xi → X}i∈I be an fppf covering of algebraic
spaces over S. Assume I is countable3. Then any descent datum for algebraic spaces
relative to {Xi → X} is effective.

Proof. By Descent on Spaces, Lemma 20.1 this translates into the statement that
an fppf sheaf F endowed with a map F → X is an algebraic space provided that
each F ×X Xi is an algebraic space. The restriction on the cardinality of I implies
that coproducts of algebraic spaces indexed by I are algebraic spaces, see Spaces,
Lemma 8.3 and Sets, Lemma 9.9. The morphism∐

F ×X Xi −→ F

is representable by algebraic spaces (as the base change of
∐
Xi → X, see Lemma

3.3), and surjective, flat, and locally of finite presentation (as the base change of∐
Xi → X, see Lemma 4.2). Hence the lemma follows from Theorem 10.1. �

Here is a different type of application.

Lemma 11.3. Let S be a scheme. Let a : F → G and b : G→ H be transformations
of functors (Sch/S)oppfppf → Sets. Assume

(1) F,G,H are sheaves,
(2) a : F → G is representable by algebraic spaces, flat, locally of finite presen-

tation, and surjective, and
(3) b ◦ a : F → H is representable by algebraic spaces.

Then b is representable by algebraic spaces.

Proof. Let U be a scheme over S and let ξ ∈ H(U). We have to show that U×ξ,HG
is an algebraic space. On the other hand, we know that U ×ξ,H F is an algebraic
space and that U ×ξ,H F → U ×ξ,H G is representable by algebraic spaces, flat,
locally of finite presentation, and surjective as a base change of the morphism a
(see Lemma 4.2). Thus the result follows from Theorem 10.1. �

Here is a special case of Lemma 11.1 where we do not need to worry about set
theoretical issues.

Lemma 11.4. Let S be a scheme. Let F : (Sch/S)oppfppf → Sets be a functor. Let

{Si → S}i∈I be a covering of (Sch/S)fppf . Assume that

(1) F is a sheaf,
(2) each Fi = hSi

× F is an algebraic space, and
(3) the morphisms Fi → Si are of finite type.

Then F is an algebraic space.

Proof. We will use Lemma 11.1 above. To do this we will show that the assumption
that Fi is of finite type over Si to prove that the set theoretic condition in the lemma
is satisfied (after perhaps refining the given covering of S a bit). We suggest the
reader skip the rest of the proof.

If S′i → Si is a morphism of schemes then

hS′
i
× F = hS′

i
×hSi

hSi × F = hS′
i
×hSi

Fi

3We can allow larger index sets here if we can bound the size of the algebraic spaces which we
are descending. If we ever need this we will add a more precise statement here.
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is an algebraic space of finite type over S′i, see Spaces, Lemma 7.3 and Morphisms
of Spaces, Lemma 23.3. Thus we may refine the given covering. After doing this
we may assume: (a) each Si is affine, and (b) the cardinality of I is at most the
cardinality of the set of points of S. (Since to cover all of S it is enough that each
point is in the image of Si → S for some i.)

Since each Si is affine and each Fi of finite type over Si we conclude that Fi is
quasi-compact. Hence by Properties of Spaces, Lemma 6.3 we can find an affine
Ui ∈ Ob((Sch/S)fppf ) and a surjective étale morphism Ui → Fi. The fact that
Fi → Si is locally of finite type then implies that Ui → Si is locally of finite
type, and in particular Ui → S is locally of finite type. By Sets, Lemma 9.7 we
conclude that size(Ui) ≤ size(S). Since also |I| ≤ size(S) we conclude that

∐
i∈I Ui

is isomorphic to an object of (Sch/S)fppf by Sets, Lemma 9.5 and the construction
of Sch. This implies that

∐
Fi is an algebraic space by Spaces, Lemma 8.3 and we

win. �

Lemma 11.5. Assume B → S and (U,R, s, t, c) are as in Groupoids in Spaces,
Definition 19.1 (1). For any scheme T over S and objects x, y of [U/R] over T the
sheaf Isom(x, y) on (Sch/T )fppf is an algebraic space.

Proof. By Groupoids in Spaces, Lemma 21.3 there exists an fppf covering {Ti →
T}i∈I such that Isom(x, y)|(Sch/Ti)fppf

is an algebraic space for each i. By Spaces,
Lemma 16.4 this means that each Fi = hSi

× Isom(x, y) is an algebraic space.
Thus to prove the lemma we only have to verify the set theoretic condition that∐
Fi is an algebraic space of Lemma 11.1 above to conclude. To do this we use

Spaces, Lemma 8.3 which requires showing that I and the Fi are not “too large”.
We suggest the reader skip the rest of the proof.

Choose U ′ ∈ Ob(Sch/S)fppf and a surjective étale morphism U ′ → U . Let R′ be
the restriction of R to U ′. Since [U/R] = [U ′/R′] we may, after replacing U by U ′,
assume that U is a scheme. (This step is here so that the fibre products below are
over a scheme.)

Note that if we refine the covering {Ti → T} then it remains true that each Fi is an
algebraic space. Hence we may assume that each Ti is affine. Since Ti → T is locally
of finite presentation, this then implies that size(Ti) ≤ size(T ), see Sets, Lemma
9.7. We may also assume that the cardinality of the index set I is at most the
cardinality of the set of points of T since to get a covering it suffices to check that
each point of T is in the image. Hence |I| ≤ size(T ). Choose W ∈ Ob((Sch/S)fppf )
and a surjective étale morphism W → R. Note that in the proof of Groupoids in
Spaces, Lemma 21.3 we showed that Fi is representable by Ti ×(yi,xi),U×BU R for
some xi, yi : Ti → U . Hence now we see that Vi = Ti ×(yi,xi),U×BU W is a scheme
which comes with an étale surjection Vi → Fi. By Sets, Lemma 9.6 we see that

size(Vi) ≤ max{size(Ti), size(W )} ≤ max{size(T ), size(W )}

Hence, by Sets, Lemma 9.5 we conclude that

size(
∐

i∈I
Vi) ≤ max{|I|, size(T ), size(W )}.

Hence we conclude by our construction of Sch that
∐
i∈I Vi is isomorphic to an

object V of (Sch/S)fppf . This verifies the hypothesis of Spaces, Lemma 8.3 and we
win. �
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Lemma 11.6. Let S be a scheme. Consider an algebraic space F of the form F =
U/R where (U,R, s, t, c) is a groupoid in algebraic spaces over S such that s, t are
flat and locally of finite presentation, and j = (t, s) : R→ U ×S U is an equivalence
relation. Then U → F is surjective, flat, and locally of finite presentation.

Proof. This is almost but not quite a triviality. Namely, by Groupoids in Spaces,
Lemma 18.5 and the fact that j is a monomorphism we see that R = U ×F U .
Choose a scheme W and a surjective étale morphism W → F . As U → F is a
surjection of sheaves we can find an fppf covering {Wi → W} and maps Wi → U
lifting the morphisms Wi → F . Then we see that

Wi ×F U = Wi ×U U ×F U = Wi ×U,t R

and the projection Wi ×F U → Wi is the base change of t : R → U hence flat
and locally of finite presentation, see Morphisms of Spaces, Lemmas 28.4 and 27.3.
Hence by Descent on Spaces, Lemmas 10.11 and 10.8 we see that U → F is flat
and locally of finite presentation. It is surjective by Spaces, Remark 5.2. �

Lemma 11.7. Let S be a scheme. Let X → B be a morphism of algebraic spaces
over S. Let G be a group algebraic space over B and let a : G ×B X → X be an
action of G on X/B. If

(1) a is a free action, and
(2) G→ B is flat and locally of finite presentation,

then X/G (see Groupoids in Spaces, Definition 18.1) is an algebraic space and
X → X/G is surjective, flat, and locally of finite presentation.

Proof. The fact that X/G is an algebraic space is immediate from Theorem 10.1
and the definitions. Namely, X/G = X/R where R = G ×B X. The morphisms
s, t : G ×B X → X are flat and locally of finite presentation (clear for s as a base
change of G → B and by symmetry using the inverse it follows for t) and the
morphism j : G ×B X → X ×B X is a monomorphism by Groupoids in Spaces,
Lemma 8.3 as the action is free. The assertions about the morphism X → X/G
follow from Lemma 11.6. �

Lemma 11.8. Let {Si → S}i∈I be a covering of (Sch/S)fppf . Let G be a group
algebraic space over S, and denote Gi = GSi

the base changes. Suppose given

(1) for each i ∈ I an fppf Gi-torsor Xi over Si, and
(2) for each i, j ∈ I a GSi×SSj -equivariant isomorphism ϕij : Xi ×S Sj →

Si ×S Xj satisfying the cocycle condition over every Si ×S Sj ×S Sj.
Then there exists an fppf G-torsor X over S whose base change to Si is isomorphic
to Xi such that we recover the descent datum ϕij.

Proof. We may think of Xi as a sheaf on (Sch/Si)fppf , see Spaces, Section 16.
By Sites, Section 25 the descent datum (Xi, ϕij) is effective in the sense that there
exists a unique sheaf X on (Sch/S)fppf which recovers the algebraic spaces Xi after
restricting back to (Sch/Si)fppf . Hence we see that Xi = hSi

×X. By Lemma 11.1
we see that X is an algebraic space, modulo verifying that

∐
Xi is an algebraic

space which we do at the end of the proof. By the equivalence of categories in Sites,
Lemma 25.3 the action maps Gi×Si

Xi → Xi glue to give a map a : G×S X → X.
Now we have to show that a is an action and that X is a pseudo-torsor, and fppf
locally trivial (see Groupoids in Spaces, Definition 9.3). These may be checked
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fppf locally, and hence follow from the corresponding properties of the actions
Gi ×Si Xi → Xi. Hence the lemma is true.

We suggest the reader skip the rest of the proof, which is purely set theoretical. Pick
coverings {Sij → Sj}j∈Ji of (Sch/S)fppf which trivialize the Gi torsors Xi (possible
by assumption, and Topologies, Lemma 7.7 part (1)). Then {Sij → S}i∈I,j∈Ji is a
covering of (Sch/S)fppf and hence we may assume that each Xi is the trivial torsor!
Of course we may also refine the covering further, hence we may assume that each Si
is affine and that the index set I has cardinality bounded by the cardinality of the set
of points of S. Choose U ∈ Ob((Sch/S)fppf ) and a surjective étale morphism U →
G. Then we see that Ui = U×SSi comes with an étale surjective morphism to Xi

∼=
Gi. By Sets, Lemma 9.6 we see size(Ui) ≤ max{size(U), size(Si)}. By Sets, Lemma
9.7 we have size(Si) ≤ size(S). Hence we see that size(Ui) ≤ max{size(U), size(S)}
for all i ∈ I. Together with the bound on |I| we found above we conclude from Sets,
Lemma 9.5 that size(

∐
Ui) ≤ max{size(U), size(S)}. Hence Spaces, Lemma 8.3

applies to show that
∐
Xi is an algebraic space which is what we had to prove. �

12. Algebraic spaces in the étale topology

Let S be a scheme. Instead of working with sheaves over the big fppf site (Sch/S)fppf
we could work with sheaves over the big étale site (Sch/S)étale. All of the material
in Algebraic Spaces, Sections 3 and 5 makes sense for sheaves over (Sch/S)étale.
Thus we get a second notion of algebraic spaces by working in the étale topology.
This notion is (a priori) weaker then the notion introduced in Algebraic Spaces,
Definition 6.1 since a sheaf in the fppf topology is certainly a sheaf in the étale
topology. However, the notions are equivalent as is shown by the following lemma.

Lemma 12.1. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 9.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and étale.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. Note that properties (2) and (3) of the lemma and the corresponding prop-
erties (2) and (3) of Algebraic Spaces, Definition 6.1 are independent of the topol-
ogy. This is true because these properties involve only the notion of a fibre product
of presheaves, maps of presheaves, the notion of a representable transformation of
functors, and what it means for such a transformation to be surjective and étale.
Thus all we have to prove is that an étale sheaf F with properties (2) and (3) is
also an fppf sheaf.

To do this, let R = U ×F U . By (2) the presheaf R is representable by a scheme
and by (3) the projections R → U are étale. Thus j : R → U ×S U is an étale
equivalence relation. Moreover U → F identifies F as the quotient of U by R
for the étale topology: (a) if T → F is a morphism, then {T ×F U → T} is an
étale covering, hence U → F is a surjection of sheaves for the étale topology, (b)
if a, b : T → U map to the same section of F , then (a, b) : T → R hence a and b
have the same image in the quotient of U by R for the étale topology. Next, let
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U/R denote the quotient sheaf in the fppf topology which is an algebraic space by
Spaces, Theorem 10.5. Thus we have morphisms (transformations of functors)

U → F → U/R.

By the aforementioned Spaces, Theorem 10.5 the composition is representable,
surjective, and étale. Hence for any scheme T and morphism T → U/R the fibre
product V = T ×U/R U is a scheme surjective and étale over T . In other words,
{V → U} is an étale covering. This proves that U → U/R is surjective as a map
of sheaves in the étale topology. It follows that F → U/R is surjective as a map of
sheaves in the étale topology. On the other hand, the map F → U/R is injective
(as a map of presheaves) since R = U ×U/R U again by Spaces, Theorem 10.5. It
follows that F → U/R is an isomorphism of étale sheaves, see Sites, Lemma 12.2
which concludes the proof. �

In fact, it suffices to have a smooth cover by a scheme and it suffices to assume the
diagonal is representable by algebraic spaces.

Lemma 12.2. Denote the common underlying category of Schfppf and Schétale by
Schα (see Topologies, Remark 9.1). Let S be an object of Schα.

F : (Schα/S)opp −→ Sets

be a presheaf with the following properties:

(1) F is a sheaf for the étale topology,
(2) the diagonal ∆ : F → F × F is representable by algebraic spaces, and
(3) there exists U ∈ Ob(Schα/S) and U → F which is surjective and smooth.

Then F is an algebraic space in the sense of Algebraic Spaces, Definition 6.1.

Proof. The proof mirrors the proof of Lemma 12.1. Let R = U ×F U . By (2) the
presheaf R is an algebraic space and by (3) the projections R→ U are smooth and
surjective. Denote (U,R, s, t, c) the groupoid associated to the equivalence relation
j : R → U ×S U (see Groupoids in Spaces, Lemma 11.3). By Theorem 10.1 we
see that X = U/R (quotient in the fppf-topology) is an algebraic space. Using
that the smooth topology and the étale topology have the same sheaves (by More
on Morphisms, Lemma 28.7) we see the map U → F identifies F as the quotient
of U by R for the smooth topology (details omitted). Thus we have morphisms
(transformations of functors)

U → F → X.

By Lemma 11.6 we see that U → X is surjective, flat and locally of finite presenta-
tion. By Groupoids in Spaces, Lemma 18.5 (and the fact that j is a monomorphism)
we have R = U×XU . By Descent on Spaces, Lemma 10.24 we conclude that U → X
is smooth and surjective (as the projections R→ U are smooth and surjective and
{U → X} is an fppf covering). Hence for any scheme T and morphism T → X the
fibre product T ×X U is an algebraic space surjective and smooth over T . Choose
a scheme V and a surjective étale morphism V → T ×X U . Then {V → T} is a
smooth covering such that V → T → X lifts to a morphism V → U . This proves
that U → X is surjective as a map of sheaves in the smooth topology. It follows
that F → X is surjective as a map of sheaves in the smooth topology. On the other
hand, the map F → X is injective (as a map of presheaves) since R = U ×X U .
It follows that F → X is an isomorphism of smooth (= étale) sheaves, see Sites,
Lemma 12.2 which concludes the proof. �

http://localhost:8080/tag/07WF


22 BOOTSTRAP

13. Other chapters

Preliminaries

(1) Introduction
(2) Conventions
(3) Set Theory
(4) Categories
(5) Topology
(6) Sheaves on Spaces
(7) Sites and Sheaves
(8) Stacks
(9) Fields

(10) Commutative Algebra
(11) Brauer Groups
(12) Homological Algebra
(13) Derived Categories
(14) Simplicial Methods
(15) More on Algebra
(16) Smoothing Ring Maps
(17) Sheaves of Modules
(18) Modules on Sites
(19) Injectives
(20) Cohomology of Sheaves
(21) Cohomology on Sites
(22) Differential Graded Algebra
(23) Divided Power Algebra
(24) Hypercoverings

Schemes

(25) Schemes
(26) Constructions of Schemes
(27) Properties of Schemes
(28) Morphisms of Schemes
(29) Cohomology of Schemes
(30) Divisors
(31) Limits of Schemes
(32) Varieties
(33) Topologies on Schemes
(34) Descent
(35) Derived Categories of Schemes
(36) More on Morphisms
(37) More on Flatness
(38) Groupoid Schemes
(39) More on Groupoid Schemes

(40) Étale Morphisms of Schemes

Topics in Scheme Theory

(41) Chow Homology
(42) Adequate Modules

(43) Dualizing Complexes

(44) Étale Cohomology
(45) Crystalline Cohomology
(46) Pro-étale Cohomology

Algebraic Spaces

(47) Algebraic Spaces
(48) Properties of Algebraic Spaces
(49) Morphisms of Algebraic Spaces
(50) Decent Algebraic Spaces
(51) Cohomology of Algebraic Spaces
(52) Limits of Algebraic Spaces
(53) Divisors on Algebraic Spaces
(54) Algebraic Spaces over Fields
(55) Topologies on Algebraic Spaces
(56) Descent and Algebraic Spaces
(57) Derived Categories of Spaces
(58) More on Morphisms of Spaces
(59) Pushouts of Algebraic Spaces
(60) Groupoids in Algebraic Spaces
(61) More on Groupoids in Spaces
(62) Bootstrap

Topics in Geometry

(63) Quotients of Groupoids
(64) Simplicial Spaces
(65) Formal Algebraic Spaces
(66) Restricted Power Series
(67) Resolution of Surfaces

Deformation Theory

(68) Formal Deformation Theory
(69) Deformation Theory
(70) The Cotangent Complex

Algebraic Stacks

(71) Algebraic Stacks
(72) Examples of Stacks
(73) Sheaves on Algebraic Stacks
(74) Criteria for Representability
(75) Artin’s Axioms
(76) Quot and Hilbert Spaces
(77) Properties of Algebraic Stacks
(78) Morphisms of Algebraic Stacks
(79) Cohomology of Algebraic Stacks
(80) Derived Categories of Stacks
(81) Introducing Algebraic Stacks

Miscellany

(82) Examples



BOOTSTRAP 23

(83) Exercises
(84) Guide to Literature
(85) Desirables
(86) Coding Style

(87) Obsolete
(88) GNU Free Documentation Li-

cense
(89) Auto Generated Index

References

[Art69a] Michael Artin, Algebraic approximation of structures over complete local rings, Inst.

Hautes Études Sci. Publ. Math. (1969), no. 36, 23–58.
[Art69b] , Algebraization of formal moduli: I, Global Analysis (Papers in Honor of K.

Kodaira), Univ. Tokyo Press, Tokyo, 1969, pp. 21–71.

[Art69c] , The implicit function theorem in algebraic geometry, Algebraic Geometry (In-
ternat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London,

1969, pp. 13–34.

[Art70] , Algebraization of formal moduli: II – existence of modifications, Annals of
Mathematics 91 (1970), 88–135.

[Art71a] , Algebraic spaces, Yale University Press, New Haven, Conn., 1971, A James K.

Whittemore Lecture in Mathematics given at Yale University, 1969, Yale Mathematical
Monographs, 3.

[Art71b] , Construction techniques for algebraic spaces, Actes du Congrès International
des Mathématiciens (Nice, 1970), Tome 1, Gauthier-Villars, Paris, 1971, pp. 419–423.
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