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1. Introduction

In this chapter we write about derived categories associated to algebraic stacks.
This mean in particular derived categories of quasi-coherent sheaves, i.e., we prove
analogues of the results in the chapters entitled “Derived Categories of Schemes”
and “Derived Categories of Spaces”. The results in this chapter are different from
those in [LMB00] mainly because we consistently use the “big sites”. Before read-
ing this chapter please take a quick look at the chapters “Sheaves on Algebraic
Stacks” and “Cohomology of Algebraic Stacks” where the terminology we use here
is introduced.

2. Conventions, notation, and abuse of language

We continue to use the conventions and the abuse of language introduced in Prop-
erties of Stacks, Section 2. We use notation as explained in Cohomology of Stacks,
Section 3.

3. The lisse-étale and the flat-fppf sites

The section is the analogue of Cohomology of Stacks, Section 11 for derived cate-
gories.

Lemma 3.1. Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemmas 11.2 and 11.3.

(1) The functor g! : Ab(Xlisse,étale)→ Ab(Xétale) has a left derived functor

Lg! : D(Xlisse,étale) −→ D(Xétale)

which is left adjoint to g−1 and such that g−1Lg! = id.
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2 DERIVED CATEGORIES OF STACKS

(2) The functor g! : Mod(Xlisse,étale,OXlisse,étale
)→ Mod(Xétale,OX ) has a left

derived functor

Lg! : D(OXlisse,étale
) −→ D(Xétale,OX )

which is left adjoint to g∗ and such that g∗Lg! = id.
(3) The functor g! : Ab(Xflat,fppf )→ Ab(Xfppf ) has a left derived functor

Lg! : D(Xflat,fppf ) −→ D(Xfppf )

which is left adjoint to g−1 and such that g−1Lg! = id.
(4) The functor g! : Mod(Xflat,fppf ,OXflat,fppf

) → Mod(Xfppf ,OX ) has a left
derived functor

Lg! : D(OXflat,fppf
) −→ D(OX )

which is left adjoint to g∗ and such that g∗Lg! = id.

Warning: It is not clear (a priori) that Lg! on modules agrees with Lg! on abelian
sheaves, see Cohomology on Sites, Remark 27.2.

Proof. The existence of the functor Lg! and adjointness to g∗ is Cohomology on
Sites, Lemma 27.1. (For the case of abelian sheaves use the constant sheaf Z as the
structure sheaves.) Moreover, it is computed on a complex H• by taking a suitable
left resolution K• → H• and applying the functor g! to K•. Since g−1g!K• = K• by
Cohomology of Stacks, Lemmas 11.3 and 11.2 we see that the final assertion holds
in each case. �

Lemma 3.2. With assumptions and notation as in Cohomology of Stacks, Lemma
11.6. We have

g−1 ◦Rf∗ = Rf ′∗ ◦ (g′)−1 and L(g′)! ◦ (f ′)−1 = f−1 ◦ Lg!

on unbounded derived categories (both for the case of modules and for the case of
abelian sheaves).

Proof. Let F be an abelian sheaf on Xétale (resp. Xfppf ). We first show that the
canonical (base change) map

g−1Rf∗F −→ Rf ′∗(g
′)−1F

is an isomorphism. To do this let y be an object of Ylisse,étale (resp. Yflat,fppf ).
Say y lies over the scheme V such that y : V → Y is smooth (resp. flat). Since g−1

is the restriction we find that(
g−1Rpf∗F

)
(y) = Hp

τ (V ×y,Y X , pr−1F)

where τ = étale (resp. τ = fppf), see Sheaves on Stacks, Lemma 20.2. By Coho-
mology of Stacks, Equation (11.6.1) for any sheaf H on Xlisse,étale (resp. Xflat,fppf )

f ′∗H(y) = Γ((V ×y,Y X )′, (pr′)−1H)

An object of (V ×y,Y X )′ can be seen as a pair (x, ϕ) where x is an object of
Xlisse,étale (resp. Xflat,fppf ) and ϕ : f(x) → y is a morphism in Y. We can also
think of ϕ as a section of (f ′)−1hy over x. Thus (V ×Y X )′ is the localization of the
site Xlisse,étale (resp. Xflat,fppf ) at the sheaf of sets (f ′)−1hy, see Sites, Lemma
29.3. The morphism

pr′ : (V ×y,Y X )′ → Xlisse,étale (resp. pr′ : (V ×y,Y X )′ → Xflat,fppf )
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is the localization morphism. In particular, the pullback (pr′)−1 preserves injective
abelian sheaves, see Cohomology on Sites, Lemma 13.3. At this point exactly the
same argument as in Sheaves on Stacks, Lemma 20.2 shows that

(3.2.1) Rpf ′∗H(y) = Hp
τ ((V ×y,Y X )′, (pr′)−1H)

where τ = étale (resp. τ = fppf). Since (g′)−1 is given by restriction we conclude
that

(Rpf ′∗(g
′)∗F) (y) = Hp

τ ((V ×y,Y X )′, pr−1F|(V×y,YX )′)

Finally, we can apply Sheaves on Stacks, Lemma 22.3 to see that

Hp
τ ((V ×y,Y X )′, pr−1F|(V×y,YX )′) = Hp

τ (V ×y,Y X , pr−1F)

are equal as desired; although we omit the verification of the assumptions of the
lemma we note that the fact that V → Y is smooth (resp. flat) is used to verify the
second condition.

The rest of the proof is formal. Since cohomology of abelian groups and sheaves of
modules agree we also conclude that g−1Rf∗F = Rf ′∗(g

′)−1F when F is a sheaf of
modules on Xétale (resp. Xfppf ).

Next we show that for G (either sheaf of modules or abelian groups) on Ylisse,étale
(resp. Yflat,fppf ) the canonical map

L(g′)!(f
′)−1G → f−1Lg!G

is an isomorphism. To see this it is enough to prove for any injective sheaf I on
Xétale (resp. Xfppf ) that the induced map

Hom(L(g′)!(f
′)−1G, I[n])← Hom(f−1Lg!G, I[n])

is an isomorphism for all n ∈ Z. (Hom’s taken in suitable derived categories.) By
the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and their “primed”
versions this follows from the isomorphism g−1Rf∗I → Rf ′∗(g

′)−1I proved above.

In the case of a bounded complex G• (of modules or abelian groups) on Ylisse,étale
(resp. Yfppf ) the canonical map

(3.2.2) L(g′)!(f
′)−1G• → f−1Lg!G•

is an isomorphism as follows from the case of a sheaf by the usual arguments
involving truncations and the fact that the functors L(g′)!(f

′)−1 and f−1Lg! are
exact functors of triangulated categories.

Suppose that G• is a bounded above complex (of modules or abelian groups) on
Ylisse,étale (resp. Yfppf ). The canonical map (3.2.2) is an isomorphism because we
can use the stupid truncations σ≥−n (see Homology, Section 13) to write G• as a
colimit G• = colimG•n of bounded complexes. This gives a distinguished triangle⊕

n≥1
G•n →

⊕
n≥1
G•n → G• → . . .

and each of the functors L(g′)!, (f ′)−1, f−1, Lg! commutes with direct sums (of
complexes).

If G• is an arbitrary complex (of modules or abelian groups) on Ylisse,étale (resp.
Yfppf ) then we use the canonical truncations τ≤n (see Homology, Section 13) to
write G• as a colimit of bounded above complexes and we repeat the argument of
the paragraph above.
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Finally, by the adjointness of f−1 and Rf∗, the adjointness of Lg! and g−1, and
their “primed” versions we conclude that the first identity of the lemma follows
from the second in full generality. �

Lemma 3.3. Let X be an algebraic stack. Notation as in Cohomology of Stacks,
Lemma 11.2.

(1) Let H be a quasi-coherent OXlisse,étale
-module on the lisse-étale site of X .

For all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with
the flat base change property on X .

(2) Let H be a quasi-coherent OXflat,fppf
-module on the flat-fppf site of X . For

all p ∈ Z the sheaf Hp(Lg!H) is a locally quasi-coherent module with the
flat base change property on X .

Proof. Pick a scheme U and a surjective smooth morphism x : U → X . By
Modules on Sites, Definition 23.1 there exists an étale (resp. fppf) covering {Ui →
U}i∈I such that each pullback f−1

i H has a global presentation (see Modules on
Sites, Definition 17.1). Here fi : Ui → X is the composition Ui → U → X which
is a morphism of algebraic stacks. (Recall that the pullback “is” the restriction to
X/fi, see Sheaves on Stacks, Definition 9.2 and the discussion following.) After
refining the covering we may assume each Ui is an affine scheme. Since each fi
is smooth (resp. flat) by Lemma 3.2 we see that f−1

i Lg!H = Lgi,!(f
′
i)
−1H. Using

Cohomology of Stacks, Lemma 7.5 we reduce the statement of the lemma to the
case where H has a global presentation and where X = (Sch/X)fppf for some affine
scheme X = Spec(A).

Say our presentation looks like⊕
j∈J
O −→

⊕
i∈I
O −→ H −→ 0

where O = OXlisse,étale
(resp. O = OXflat,fppf

). Note that the site Xlisse,étale (resp.
Xflat,fppf ) has a final object, namely X/X which is quasi-compact (see Cohomology
on Sites, Section 16). Hence we have

Γ(
⊕

i∈I
O) =

⊕
i∈I

A

by Sites, Lemma 11.2. Hence the map in the presentation corresponds to a similar
presentation ⊕

j∈J
A −→

⊕
i∈I

A −→M −→ 0

of an A-module M . Moreover, H is equal to the restriction to the lisse-étale (resp.
flat-fppf) site of the quasi-coherent sheaf Ma associated to M . Choose a resolution

. . .→ F2 → F1 → F0 →M → 0

by free A-modules. The complex

. . .O ⊗A F2 → O⊗A F1 → O⊗A F0 → H→ 0

is a resolution of H by free O-modules because for each object U/X of Xlisse,étale
(resp. Xflat,fppf ) the structure morphism U → X is flat. Hence by construction
the value of Lg!H is

. . .→ OX ⊗A F2 → OX ⊗A F1 → OX ⊗A F0 → 0→ . . .

Since this is a complex of quasi-coherent modules on Xétale (resp. Xfppf ) it follows
from Cohomology of Stacks, Proposition 7.4 that Hp(Lg!H) is quasi-coherent. �
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4. Derived categories of quasi-coherent modules

Let X be an algebraic stack. As the inclusion functor QCoh(OX )→ Mod(OX ) isn’t
exact, we cannot define DQCoh(OX ) as the full subcategory of D(OX ) consisting of
complexes with quasi-coherent cohomology sheaves. In stead we define the category
as follows.

Definition 4.1. Let X be an algebraic stack. Let MX ⊂ Mod(OX ) denote the
category of locally quasi-coherent OX -modules with the flat base change property.
Let PX ⊂ MX be the full subcategory consisting of parasitic objects. We define
the derived category of OX -modules with quasi-coherent cohomology sheaves as the
Verdier quotient1

DQCoh(OX ) = DMX (OX )/DPX (OX )

This definition makes sense: By Cohomology of Stacks, Proposition 7.4 we see that
MX is a weak Serre subcategory of Mod(OX ) hence DMX (OX ) is a strictly full,
saturated triangulated subcategory of D(OX ), see Derived Categories, Lemma 13.1.
Since parasitic modules form a Serre subcategory of Mod(OX ) (by Cohomology of
Stacks, Lemma 8.2) we see that PX = Parasitic∩MX is a weak Serre subcategory of
Mod(OX ) and hence DPX (OX ) is a strictly full, saturated triangulated subcategory
of D(OX ). Since clearly

DPX (OX ) ⊂ DMX (OX )

we conclude that the first is a strictly full, saturated triangulated subcategory of the
second. Hence the Verdier quotient exists. A morphism a : E → E′ of DMX (OX )
becomes an isomorphism in DQCoh(OX ) if and only if the cone C(a) has parasitic
cohomology sheaves, see Derived Categories, Section 6 and especially Lemma 6.10.

Consider the functors

DMX (OX )
Hi

−−→MX
Q−→ QCoh(OX )

Note that Q annihilates the subcategory PX , see Cohomology of Stacks, Lemma
9.2. By Derived Categories, Lemma 6.8 we obtain a cohomological functor

(4.1.1) Hi : DQCoh(OX ) −→ QCoh(OX )

Moreover, note that E ∈ DQCoh(OX ) is zero if and only if Hi(E) = 0 for all i ∈ Z.

Note that the categories PX and MX are also weak Serre subcategories of the
abelian category Mod(Xétale,OX ) of modules in the étale topology, see Cohomology
of Stacks, Proposition 7.4 and Lemma 8.2. Hence the statement of the following
lemma makes sense.

Lemma 4.2. Let X be an algebraic stack. The comparison morphism ε : Xfppf →
Xétale induces a commutative diagram

DPX (OX ) // DMX (OX ) // D(OX )

DPX (Xétale,OX ) //

ε∗

OO

DMX (Xétale,OX ) //

ε∗

OO

D(Xétale,OX )

ε∗

OO

1This definition is different from the one in the literature, see [Ols07, 6.3], but it agrees with
that definition by Lemma 4.3.
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Moreover, the left two vertical arrows are equivalences of triangulated categories,
hence we also obtain an equivalence

DMX (Xétale,OX )/DPX (Xétale,OX ) −→ DQCoh(OX )

Proof. Since ε∗ is exact it is clear that we obtain a diagram as in the statement of
the lemma. We will show the middle vertical arrow is an equivalence by applying
Cohomology on Sites, Lemma 22.6 to the following situation: C = X , τ = fppf ,
τ ′ = étale, O = OX , A = MX , and B is the set of objects of X lying over affine
schemes. To see the lemma applies we have to check conditions (1), (2), (3), (4).
Conditions (1) and (2) are clear from the discussion above (explicitly this follows
from Cohomology of Stacks, Proposition 7.4). Condition (3) holds because every
scheme has a Zariski open covering by affines. Condition (4) follows from Descent,
Lemma 8.4.

We omit the verification that the equivalence of categories ε∗ : DMX (Xétale,OX )→
DMX (OX ) induces an equivalence of the subcategories of complexes with parasitic
cohomology sheaves. �

It turns out that DQCoh(OX ) is the same as the derived category of complexes of
modules with quasi-coherent cohomology sheaves on the lisse-étale or flat-fppf site.

Lemma 4.3. Let X be an algebraic stack. Let F• be an object of DMX (OX ).

(1) With g as in Cohomology of Stacks, Lemma 11.2 for the lisse-étale site we
have
(a) g−1F• is in DQCoh(OXlisse,étale

),

(b) g−1F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DMX (Xétale,OX ) for H• in DQCoh(OXlisse,étale

), and

(d) the functors g−1 and Lg! define mutually inverse functors

DQCoh(OX )
g−1

//
DQCoh(OXlisse,étale

)
Lg!

oo

(2) With g as in Cohomology of Stacks, Lemma 11.2 for the flat-fppf site we
have
(a) g−1F• is in DQCoh(OXlisse,étale

),

(b) g−1F• = 0 if and only if F• is in DPX (OX ),
(c) Lg!H• is in DMX (OX ) for H• in DQCoh(OXflat,fppf

), and

(d) the functors g−1 and Lg! define mutually inverse functors

DQCoh(OX )
g−1

//
DQCoh(OXflat,fppf

)
Lg!

oo

Proof. The functor g−1 is exact, hence (a) and (b) follow from Cohomology of
Stacks, Lemmas 12.3 and 11.5.

The construction of Lg! in Lemma 3.1 (via Cohomology on Sites, Lemma 27.1 which
in turn uses Derived Categories, Proposition 28.2) shows that Lg! on any object
H• of D(OXlisse,étale

) is computed as

Lg!H• = colim g!K•n = g! colimK•n
(termwise colimits) where the quasi-isomorphism colimK•n → H• induces quasi-
isomorphismsK•n → τ≤nH•. SinceMX ⊂ Mod(Xétale,OX ) (resp.MX ⊂ Mod(OX ))
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is preserved under colimits we see that it suffices to prove (c) on bounded above
complexes H• in DQCoh(OXlisse,étale

) (resp. DQCoh(OXflat,fppf
)). In this case to

show that Hn(Lg!H•) is in MX we can argue by induction on the integer m such
that Hi = 0 for i > m. If m < n, then Hn(Lg!H•) = 0 and the result holds. In
general consider the distinguished triangle

τ≤m−1H• → H• → Hm(H•)[−m]→ . . .

(Derived Categories, Remark 12.4) and apply the functor Lg!. SinceMX is a weak
Serre subcategory of the module category it suffices to prove (c) for two out of
three. We have the result for Lg!τ≤m−1H• by induction and we have the result for
Lg!H

m(H•)[−m] by Lemma 3.3. Whence (c) holds.

Let us prove (2)(d). By (a) and (b) the functor g−1 = g∗ induces a functor

c : DQCoh(OX ) −→ DQCoh(OXflat,fppf
)

see Derived Categories, Lemma 6.8. Thus we have the following diagram of trian-
gulated categories

DMX (OX )

g−1

((

q
// DQCoh(OX )

c
vv

DQCoh(OXflat,fppf
)

Lg!

hh

where q is the quotient functor, the inner triangle is commutative, and g−1Lg! = id.
For any object of E of DMX (OX ) the map a : Lg!g

−1E → E maps to a quasi-
isomorphism in D(OXflat,fppf

). Hence the cone on a maps to zero under g−1 and
by (b) we see that q(a) is an isomorphism. Thus q ◦ Lg! is a quasi-inverse to c.

In the case of the lisse-étale site exactly the same argument as above proves that

DMX (Xétale,OX )/DPX (Xétale,OX )

is equivalent to DQCoh(OXlisse,étale
). Applying the last equivalence of Lemma 4.2

finishes the proof. �

The following lemma tells us that the quotient functor DMX (OX ) → DQCoh(OX )
is a Bousfield colocalization (insert future reference here).

Lemma 4.4. Let X be an algebraic stack. Let E be an object of DMX (OX ). There
exists a canonical distinguished triangle

E′ → E → P → E′[1]

in DMX (OX ) such that P is in DPX (OX ) and

HomD(OX )(E
′, P ′) = 0

for all P ′ in DPX (OX ).

Proof. Consider the morphism of ringed topoi g : Sh(Xflat,fppf ) −→ Sh(Xfppf ).
Set E′ = Lg!g

−1E and let P be the cone on the adjunction map E′ → E. Since
g−1E′ → g−1E is an isomorphism we see that P is an object ofDPX (OX ) by Lemma
4.3 (2)(b). Finally, Hom(E′, P ′) = Hom(Lg!g

−1E,P ′) = Hom(g−1E, g−1P ′) = 0
as g−1P ′ = 0.

Uniqueness. Suppose that E′′ → E → P ′ is a second distinguished triangle as in
the statement of the lemma. Since Hom(E′, P ′) = 0 the morphism E′ → E factors
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as E′ → E′′ → E, see Derived Categories, Lemma 4.2. Similarly, the morphism
E′′ → E factors as E′′ → E′ → E. Consider the composition ϕ : E′ → E′ of the
maps E′ → E′′ and E′′ → E′. Note that ϕ− 1 : E′ → E′ fits into the commutative
diagram

E′

ϕ−1

��

// E

0

��
E′ // E

hence factors through P [−1] → E. Since Hom(E′, P [−1]) = 0 we see that ϕ = 1.
Whence the maps E′ → E′′ and E′′ → E′ are inverse to each other. �

5. Derived pushforward of quasi-coherent modules

As a first application of the material above we construct the derived pushforward.
In Examples, Section 51 the reader can find an example of a quasi-compact and
quasi-separated morphism f : X → Y of algebraic stacks such that the direct image
functor Rf∗ does not induce a functor DQCoh(OX )→ DQCoh(OY). Thus restricting
to bounded below complexes is necessary.

Proposition 5.1. Let f : X → Y be a quasi-compact and quasi-separated morphism
of algebraic stacks. The functor Rf∗ induces a commutative diagram

D+
PX (OX ) //

Rf∗

��

D+
MX (OX ) //

Rf∗

��

D(OX )

Rf∗

��
D+
PY (OY) // D+

MY (OY) // D(OY)

and hence induces a functor

RfQCoh,∗ : D+
QCoh(OX ) −→ D+

QCoh(OY)

on quotient categories. Moreover, the functor RifQCoh of Cohomology of Stacks,
Proposition 10.1 are equal to Hi ◦RfQCoh,∗ with Hi as in (4.1.1).

Proof. We have to show that Rf∗E is an object of D+
MY (OY) for E in D+

MX (OX ).
This follows from Cohomology of Stacks, Proposition 7.4 and the spectral sequence
Rif∗H

j(E) ⇒ Ri+jf∗E. The case of parasitic modules works the same way using
Cohomology of Stacks, Lemma 8.3. The final statement is clear from the definition
of Hi in (4.1.1). �

6. Derived pullback of quasi-coherent modules

Derived pullback of complexes with quasi-coherent cohomology sheaves exists in
general.

Proposition 6.1. Let f : X → Y be a morphism of algebraic stacks. The exact
functor f∗ induces a commutative diagram

DMX (OX ) // D(OX )

DMY (OY) //

f∗

OO

D(OY)

f∗

OO
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The composition

DMY (OY)
f∗−→ DMX (OX )

qX−−→ DQCoh(OX )

is left deriveable with respect to the localization DMY (OY) → DQCoh(OY) and we
may define Lf∗QCoh as its left derived functor

Lf∗QCoh : DQCoh(OY) −→ DQCoh(OX )

(see Derived Categories, Definitions 15.2 and 15.9). If f is quasi-compact and
quasi-separated, then Lf∗QCoh and RfQCoh,∗ satisfy the following adjointness:

HomDQCoh(OX )(Lf
∗
QCohA,B) = HomDQCoh(OY)(A,RfQCoh,∗B)

for A ∈ DQCoh(OY) and B ∈ D+
QCoh(OX ).

Proof. To prove the first statement, we have to show that f∗E is an object of
DMX (OX ) for E in DMY (OY). Since f∗ = f−1 is exact this follows immediately
from the fact that f∗ maps MY into MX .

Set D = DMY (OY). Let S be the collection of morphisms in D whose cone is an
object of DPY (OY). Set D′ = DQCoh(OX ). Set F = qX ◦ f∗ : D → D′. Then
D, S,D′, F are as in Derived Categories, Situation 15.1 and Definition 15.2. Let us
prove that LF (E) is defined for any object E of D. Namely, consider the triangle

E′ → E → P → E′[1]

constructed in Lemma 4.4. Note that s : E′ → E is an element of S. We claim
that E′ computes LF . Namely, suppose that s′ : E′′ → E is another element of S,
i.e., fits into a triangle E′′ → E → P ′ → E′′[1] with P ′ in DPY (OY). By Lemma
4.4 (and its proof) we see that E′ → E factors through E′′ → E. Thus we see that
E′ → E is cofinal in the system S/E. Hence it is clear that E′ computes LF .

To see the final statement, write B = qX (H) and A = qY(E). Choose E′ → E as
above. We will use on the one hand that RfQCoh,∗(B) = qY(Rf∗H) and on the
other that Lf∗QCoh(A) = qX (f∗E′).

HomDQCoh(OX )(Lf
∗
QCohA,B) = HomDQCoh(OX )(qX (f∗E′), qX (H))

= colimH→H′ HomD(OX )(f
∗E′, H ′)

= colimH→H′ HomD(OY)(E
′, Rf∗H

′)

= HomD(OY)(E
′, Rf∗H)

= HomDQCoh(OY)(A,RfQCoh,∗B)

Here the colimit is over morphisms s : H → H ′ in D+
MX (OX ) whose cone P (s) is an

object of D+
PX (OX ). The first equality we’ve seen above. The second equality holds

by construction of the Verdier quotient. The third equality holds by Cohomology
on Sites, Lemma 19.1. Since Rf∗P (s) is an object of D+

PY (OY) by Proposition 5.1

we see that HomD(OY)(E
′, Rf∗P (s)) = 0. Thus the fourth equality holds. The final

equality holds by construction of E′. �
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