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12. Čech cohomology and cohomology 13
13. Flasque sheaves 17
14. The Leray spectral sequence 19
15. Functoriality of cohomology 21
16. Refinements and Čech cohomology 22
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1. Introduction

In this document we work out some topics on cohomology of sheaves on topological
spaces. We mostly work in the generality of modules over a sheaf of rings and we
work with morphisms of ringed spaces. To see what happens for sheaves on sites
take a look at the chapter Cohomology on Sites, Section 1. Basic references are
[God73] and [Ive86].

2. Topics

Here are some topics that should be discussed in this chapter, and have not yet
been written.

(1) Ext-groups.
(2) Ext sheaves.
(3) Tor functors.
(4) Derived pullback for morphisms between ringed spaces.
(5) Cup-product.
(6) Etc, etc, etc.

3. Cohomology of sheaves

Let X be a topological space. Let F be a abelian sheaf. We know that the category
of abelian sheaves on X has enough injectives, see Injectives, Lemma 4.1. Hence
we can choose an injective resolution F [0]→ I•. As is customary we define

(3.0.1) Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group of the abelian sheaf F . The family of functors
Hi((X,−) forms a universal δ-functor from Ab(X)→ Ab.

Let f : X → Y be a continuous map of topological spaces. With F [0] → I• as
above we define

(3.0.2) Rif∗F = Hi(f∗I•)

to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Ab(X)→ Ab(Y ).

Let (X,OX) be a ringed space. Let F be an OX -module. We know that the
category of OX -modules on X has enough injectives, see Injectives, Lemma 5.1.
Hence we can choose an injective resolution F [0]→ I•. As is customary we define

(3.0.3) Hi(X,F) = Hi(Γ(X, I•))

to be the ith cohomology group of F . The family of functors Hi((X,−) forms a
universal δ-functor from Mod(OX)→ ModOX(X).

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. With F [0] → I• as
above we define

(3.0.4) Rif∗F = Hi(f∗I•)
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to be the ith higher direct image of F . The family of functors Rif∗ forms a universal
δ-functor from Mod(OX)→ Mod(OY ).

4. Derived functors

We briefly explain an approach to right derived functors using resolution functors.
Let (X,OX) be a ringed space. The category Mod(OX) is abelian, see Modules,
Lemma 3.1. In this chapter we will write

K(X) = K(OX) = K(Mod(OX)) and D(X) = D(OX) = D(Mod(OX)).

and similarly for the bounded versions for the triangulated categories introduced
in Derived Categories, Definition 8.1 and Definition 11.3. By Derived Categories,
Remark 24.3 there exists a resolution functor

j = jX : K+(Mod(OX)) −→ K+(I)

where I is the strictly full additive subcategory of Mod(OX) consisting of injective
sheaves. For any left exact functor F : Mod(OX) → B into any abelian category
B we will denote RF the right derived functor described in Derived Categories,
Section 20 and constructed using the resolution functor jX just described:

(4.0.5) RF = F ◦ j′X : D+(X) −→ D+(B)

see Derived Categories, Lemma 25.1 for notation. Note that we may think of RF
as defined on Mod(OX), Comp+(Mod(OX)), K+(X), or D+(X) depending on the
situation. According to Derived Categories, Definition 17.2 we obtain the ith right
derived functor

(4.0.6) RiF = Hi ◦RF : Mod(OX) −→ B

so that R0F = F and {RiF, δ}i≥0 is universal δ-functor, see Derived Categories,
Lemma 20.4.

Here are two special cases of this construction. Given a ring R we write K(R) =
K(ModR) and D(R) = D(ModR) and similarly for bounded versions. For any open
U ⊂ X we have a left exact functor Γ(U,−) : Mod(OX) −→ ModOX(U) which gives
rise to

(4.0.7) RΓ(U,−) : D+(X) −→ D+(OX(U))

by the discussion above. We set Hi(U,−) = RiΓ(U,−). If U = X we recover
(3.0.3). If f : X → Y is a morphism of ringed spaces, then we have the left exact
functor f∗ : Mod(OX) −→ Mod(OY ) which gives rise to the derived pushforward

(4.0.8) Rf∗ : D+(X) −→ D+(Y )

The ith cohomology sheaf of Rf∗F• is denoted Rif∗F• and called the ith higher
direct image in accordance with (3.0.4). The two displayed functors above are exact
functor of derived categories.

Abuse of notation: When the functor Rf∗, or any other derived functor, is
applied to a sheaf F on X or a complex of sheaves it is understood that F has been
replaced by a suitable resolution of F . To facilitate this kind of operation we will
say, given an object F• ∈ D(X), that a bounded below complex I• of injectives of
Mod(OX) represents F• in the derived category if there exists a quasi-isomorphism
F• → I•. In the same vein the phrase “let α : F• → G• be a morphism of D(X)”
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does not mean that α is represented by a morphism of complexes. If we have an
actual morphism of complexes we will say so.

5. First cohomology and torsors

Definition 5.1. Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X. A torsor, or more precisely a G-torsor, is a sheaf of
sets F on X endowed with an action G × F → F such that

(1) whenever F(U) is nonempty the action G(U) × F(U) → F(U) is simply
transitive, and

(2) for every x ∈ X the stalk Fx is nonempty.

A morphism of G-torsors F → F ′ is simply a morphism of sheaves of sets compatible
with the G-actions. The trivial G-torsor is the sheaf G endowed with the obvious
left G-action.

It is clear that a morphism of torsors is automatically an isomorphism.

Lemma 5.2. Let X be a topological space. Let G be a sheaf of (possibly non-
commutative) groups on X. A G-torsor F is trivial if and only if F(X) 6= ∅.

Proof. Omitted. �

Lemma 5.3. Let X be a topological space. Let H be an abelian sheaf on X. There
is a canonical bijection between the set of isomorphism classes of H-torsors and
H1(X,H).

Proof. Let F be a H-torsor. Consider the free abelian sheaf Z[F ] on F . It is the
sheafification of the rule which associates to U ⊂ X open the collection of finite
formal sums

∑
ni[si] with ni ∈ Z and si ∈ F(U). There is a natural map

σ : Z[F ] −→ Z

which to a local section
∑
ni[si] associates

∑
ni. The kernel of σ is generated by

the local section of the form [s] − [s′]. There is a canonical map a : Ker(σ) → H
which maps [s] − [s′] 7→ h where h is the local section of H such that h · s = s′.
Consider the pushout diagram

0 // Ker(σ) //

a

��

Z[F ] //

��

Z //

��

0

0 // H // E // Z // 0

Here E is the extension obtained by pushout. From the long exact cohomology
sequence associated to the lower short exact sequence we obtain an element ξ =
ξF ∈ H1(X,H) by applying the boundary operator to 1 ∈ H0(X,Z).

Conversely, given ξ ∈ H1(X,H) we can associate to ξ a torsor as follows. Choose
an embedding H → I of H into an injective abelian sheaf I. We set Q = I/H so
that we have a short exact sequence

0 // H // I // Q // 0

The element ξ is the image of a global section q ∈ H0(X,Q) because H1(X, I) = 0
(see Derived Categories, Lemma 20.4). Let F ⊂ I be the subsheaf (of sets) of
sections that map to q in the sheaf Q. It is easy to verify that F is a torsor.

http://localhost:8080/tag/02FO
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We omit the verification that the two constructions given above are mutually in-
verse. �

6. First cohomology and invertible sheaves

The Picard group of a ringed space is defined in Modules, Section 21.

Lemma 6.1. Let (X,OX) be a ringed space. There is a canonical isomorphism

H1(X,O∗X) = Pic(X).

of abelian groups.

Proof. Let L be an invertible OX -module. Consider the presheaf L∗ defined by
the rule

U 7−→ {s ∈ L(U) such that OU
s·−−−→ LU is an isomorphism}

This presheaf satisfies the sheaf condition. Moreover, if f ∈ O∗X(U) and s ∈ L∗(U),
then clearly fs ∈ L∗(U). By the same token, if s, s′ ∈ L∗(U) then there exists a
unique f ∈ O∗X(U) such that fs = s′. Moreover, the sheaf L∗ has sections locally
by the very definition of an invertible sheaf. In other words we see that L∗ is a
O∗X -torsor. Thus we get a map

invertible sheaves on (X,OX)
up to isomorphism

−→ O∗X -torsors
up to isomorphism

We omit the verification that this is a homomorphism of abelian groups. By Lemma
5.3 the right hand side is canonically bijective to H1(X,O∗X). Thus we have to show
this map is injective and surjective.

Injective. If the torsor L∗ is trivial, this means by Lemma 5.2 that L∗ has a global
section. Hence this means exactly that L ∼= OX is the neutral element in Pic(X).

Surjective. Let F be an O∗X -torsor. Consider the presheaf of sets

L1 : U 7−→ (F(U)×OX(U))/O∗X(U)

where the action of f ∈ O∗X(U) on (s, g) is (fs, f−1g). Then L1 is a presheaf of
OX -modules by setting (s, g) + (s′, g′) = (s, g + (s′/s)g′) where s′/s is the local
section f of O∗X such that fs = s′, and h(s, g) = (s, hg) for h a local section of OX .

We omit the verification that the sheafification L = L#
1 is an invertible OX -module

whose associated O∗X -torsor L∗ is isomorphic to F . �

7. Locality of cohomology

The following lemma says there is no ambiguity in defining the cohomology of a
sheaf F over an open.

Lemma 7.1. Let X be a ringed space. Let U ⊂ X be an open subspace.

(1) If I is an injective OX-module then I|U is an injective OU -module.
(2) For any sheaf of OX-modules F we have Hp(U,F) = Hp(U,F|U ).

Proof. Denote j : U → X the open immersion. Recall that the functor j−1 of
restriction to U is a right adjoint to the functor j! of extension by 0, see Sheaves,
Lemma 31.8. Moreover, j! is exact. Hence (1) follows from Homology, Lemma 25.1.

By definition Hp(U,F) = Hp(Γ(U, I•)) where F → I• is an injective resolution
in Mod(OX). By the above we see that F|U → I•|U is an injective resolution in

http://localhost:8080/tag/09NU
http://localhost:8080/tag/01E1
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Mod(OU ). Hence Hp(U,F|U ) is equal to Hp(Γ(U, I•|U )). Of course Γ(U,F) =
Γ(U,F|U ) for any sheaf F on X. Hence the equality in (2). �

Let X be a ringed space. Let F be a sheaf of OX -modules. Let U ⊂ V ⊂ X be
open subsets. Then there is a canonical restriction mapping

(7.1.1) Hn(V,F) −→ Hn(U,F), ξ 7−→ ξ|U
functorial in F . Namely, choose any injective resolution F → I•. The restriction
mappings of the sheaves Ip give a morphism of complexes

Γ(V, I•) −→ Γ(U, I•)
The LHS is a complex representing RΓ(V,F) and the RHS is a complex representing
RΓ(U,F). We get the map on cohomology groups by applying the functor Hn. As
indicated we will use the notation ξ 7→ ξ|U to denote this map. Thus the rule
U 7→ Hn(U,F) is a presheaf of OX -modules. This presheaf is customarily denoted
Hn(F). We will give another interpretation of this presheaf in Lemma 12.3.

Lemma 7.2. Let X be a ringed space. Let F be a sheaf of OX-modules. Let U ⊂ X
be an open subspace. Let n > 0 and let ξ ∈ Hn(U,F). Then there exists an open
covering U =

⋃
i∈I Ui such that ξ|Ui = 0 for all i ∈ I.

Proof. Let F → I• be an injective resolution. Then

Hn(U,F) =
Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

Pick an element ξ̃ ∈ In(U) representing the cohomology class in the presentation
above. Since I• is an injective resolution of F and n > 0 we see that the complex I•
is exact in degree n. Hence Im(In−1 → In) = Ker(In → In+1) as sheaves. Since

ξ̃ is a section of the kernel sheaf over U we conclude there exists an open covering
U =

⋃
i∈I Ui such that ξ̃|Ui is the image under d of a section ξi ∈ In−1(Ui).

By our definition of the restriction ξ|Ui as corresponding to the class of ξ̃|Ui we
conclude. �

Lemma 7.3. Let f : X → Y be a morphism of ringed spaces. Let F be a OX-
module. The sheaves Rif∗F are the sheaves associated to the presheaves

V 7−→ Hi(f−1(V ),F)

with restriction mappings as in Equation (7.1.1). There is a similar statement for
Rif∗ applied to a bounded below complex F•.

Proof. Let F → I• be an injective resolution. Then Rif∗F is by definition the
ith cohomology sheaf of the complex

f∗I0 → f∗I1 → f∗I2 → . . .

By definition of the abelian category structure on OY -modules this cohomology
sheaf is the sheaf associated to the presheaf

V 7−→ Ker(f∗Ii(V )→ f∗Ii+1(V ))

Im(f∗Ii−1(V )→ f∗Ii(V ))

and this is obviously equal to

Ker(Ii(f−1(V ))→ Ii+1(f−1(V )))

Im(Ii−1(f−1(V ))→ Ii(f−1(V )))

http://localhost:8080/tag/01E3
http://localhost:8080/tag/01E4
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which is equal to Hi(f−1(V ),F) and we win. �

Lemma 7.4. Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module. Let V ⊂ Y be an open subspace. Denote g : f−1(V ) → V the restriction
of f . Then we have

Rpg∗(F|f−1(V )) = (Rpf∗F)|V
There is a similar statement for the derived image Rf∗F• where F• is a bounded
below complex of OX-modules.

Proof. First proof. Apply Lemmas 7.3 and 7.1 to see the displayed equality.
Second proof. Choose an injective resolution F → I• and use that F|f−1(V ) →
I•|f−1(V ) is an injective resolution also. �

Remark 7.5. Here is a different approach to the proofs of Lemmas 7.2 and 7.3
above. Let (X,OX) be a ringed space. Let iX : Mod(OX) → Mod(OX) be the
inclusion functor and let # be the sheafification functor. Recall that iX is left
exact and # is exact.

(1) First prove Lemma 12.3 below which says that the right derived functors
of iX are given by RpiXF = Hp(F). Here is another proof: The equality is
clear for p = 0. Both (RpiX)p≥0 and (Hp)p≥0 are delta functors vanishing
on injectives, hence both are universal, hence they are isomorphic. See
Homology, Section 11.

(2) A restatement of Lemma 7.2 is that (Hp(F))# = 0, p > 0 for any sheaf of
OX -modules F . To see this is true, use that # is exact so

(Hp(F))# = (RpiXF)# = Rp(# ◦ iX)(F) = 0

because # ◦ iX is the identity functor.
(3) Let f : X → Y be a morphism of ringed spaces. Let F be an OX -module.

The presheaf V 7→ Hp(f−1V,F) is equal to Rp(iY ◦ f∗)F . You can prove
this by noticing that both give universal delta functors as in the argument
of (1) above. Hence Lemma 7.3 says that Rpf∗F = (Rp(iY ◦f∗)F)#. Again
using that # is exact a that # ◦ iY is the identity functor we see that

Rpf∗F = Rp(# ◦ iY ◦ f∗)F = (Rp(iY ◦ f∗)F)#

as desired.

8. Projection formula

In this section we collect variants of the projection formula. The most basic version
is Lemma 8.2.

Lemma 8.1. Let X be a ringed space. Let I be an injective OX-module. Let E be
an OX-module. Assume E is finite locally free on X, see Modules, Definition 14.1.
Then E ⊗OX I is an injective OX-module.

Proof. This is true because under the assumptions of the lemma we have

HomOX (F , E ⊗OX I) = HomOX (F ⊗OX E∧, I)

where E∧ = HomOX (E ,OX) is the dual of E which is finite locally free also. Since
tensoring with a finite locally free sheaf is an exact functor we win by Homology,
Lemma 23.2. �

http://localhost:8080/tag/01E5
http://localhost:8080/tag/03BA
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Lemma 8.2. Let f : X → Y be a morphism of ringed spaces. Let F be an OX-
module. Let E be an OY -module. Assume E is finite locally free on Y , see Modules,
Definition 14.1. Then there exist isomorphisms

E ⊗OY Rqf∗F −→ Rqf∗(f
∗E ⊗OX F)

for all q ≥ 0. In fact there exists an isomorphism

E ⊗OY Rf∗F −→ Rf∗(f
∗E ⊗OX F)

in D+(Y ) functorial in F .

Proof. Choose an injective resolution F → I• on X. Note that f∗E is finite locally
free also, hence we get a resolution

f∗E ⊗OX F −→ f∗E ⊗OX I•

which is an injective resolution by Lemma 8.1. Apply f∗ to see that

Rf∗(f
∗E ⊗OX F) = f∗(f

∗E ⊗OX I•).
Hence the lemma follows if we can show that f∗(f

∗E ⊗OX F) = E ⊗OY f∗(F)
functorially in the OX -module F . This is clear when E = O⊕nY , and follows in
general by working locally on Y . Details omitted. �

9. Mayer-Vietoris

Below will construct the Čech-to-cohomology spectral sequence, see Lemma 12.4.
A special case of that spectral sequence is the Mayer-Vietoris long exact sequence.
Since it is such a basic, useful and easy to understand variant of the spectral
sequence we treat it here separately.

Lemma 9.1. Let X be a ringed space. Let U ′ ⊂ U ⊂ X be open subspaces. For
any injective OX-module I the restriction mapping I(U)→ I(U ′) is surjective.

Proof. Let j : U → X and j′ : U ′ → X be the open immersions. Recall that j!OU
is the extension by zero of OU = OX |U , see Sheaves, Section 31. Since j! is a left
adjoint to restriction we see that for any sheaf F of OX -modules

HomOX (j!OU ,F) = HomOU (OU ,F|U ) = F(U)

see Sheaves, Lemma 31.8. Similarly, the sheaf j′!OU ′ represents the functor F 7→
F(U ′). Moreover there is an obvious canonical map of OX -modules

j′!OU ′ −→ j!OU
which corresponds to the restriction mapping F(U)→ F(U ′) via Yoneda’s lemma
(Categories, Lemma 3.5). By the description of the stalks of the sheaves j′!OU ′ ,
j!OU we see that the displayed map above is injective (see lemma cited above).
Hence if I is an injective OX -module, then the map

HomOX (j!OU , I) −→ HomOX (j′!OU ′ , I)

is surjective, see Homology, Lemma 23.2. Putting everything together we obtain
the lemma. �

Lemma 9.2 (Mayer-Vietoris). Let X be a ringed space. Suppose that X = U ∪ V
is a union of two open subsets. For every OX-module F there exists a long exact
cohomology sequence

0→ H0(X,F)→ H0(U,F)⊕H0(V,F)→ H0(U ∩ V,F)→ H1(X,F)→ . . .

http://localhost:8080/tag/01E8
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This long exact sequence is functorial in F .

Proof. The sheaf condition says that the kernel of (1,−1) : F(U) ⊕ F(V ) →
F(U ∩ V ) is equal to the image of F(X) by the first map for any abelian sheaf
F . Lemma 9.1 above implies that the map (1,−1) : I(U) ⊕ I(V ) → I(U ∩ V ) is
surjective whenever I is an injective OX -module. Hence if F → I• is an injective
resolution of F , then we get a short exact sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

Taking cohomology gives the result (use Homology, Lemma 12.12). We omit the
proof of the functoriality of the sequence. �

Lemma 9.3 (Relative Mayer-Vietoris). Let f : X → Y be a morphism of ringed
spaces. Suppose that X = U ∪ V is a union of two open subsets. Denote a = f |U :
U → Y , b = f |V : V → Y , and c = f |U∩V : U ∩ V → Y . For every OX-module F
there exists a long exact sequence

0→ f∗F → a∗(F|U )⊕ b∗(F|V )→ c∗(F|U∩V )→ R1f∗F → . . .

This long exact sequence is functorial in F .

Proof. Let F → I• be an injective resolution of F . We claim that we get a short
exact sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

Namely, for any open W ⊂ Y , and for any n ≥ 0 the corresponding sequence of
groups of sections over W

0→ In(f−1(W ))→ In(U∩f−1(W ))⊕In(V ∩f−1(W ))→ In(U∩V ∩f−1(W ))→ 0

was shown to be short exact in the proof of Lemma 9.2. The lemma follows by
taking cohomology sheaves and using the fact that I•|U is an injective resolution
of F|U and similarly for I•|V , I•|U∩V see Lemma 7.1. �

10. The Čech complex and Čech cohomology

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering, see

Topology, Basic notion (10). As is customary we denote Ui0...ip = Ui0 ∩ . . . ∩ Uip
for the (p+ 1)-fold intersection of members of U . Let F be an abelian presheaf on
X. Set

Čp(U ,F) =
∏

(i0,...,ip)∈Ip+1
F(Ui0...ip).

This is an abelian group. For s ∈ Čp(U ,F) we denote si0...ip its value in F(Ui0...ip).

Note that if s ∈ Č1(U ,F) and i, j ∈ I then sij and sji are both elements of F(Ui∩Uj)
but there is no imposed relation between sij and sji. In other words, we are not
working with alternating cochains (these will be defined in Section 24). We define

d : Čp(U ,F) −→ Čp+1(U ,F)

by the formula

(10.0.1) d(s)i0...ip+1 =
∑p+1

j=0
(−1)jsi0...̂ij ...ip+1

|Ui0...ip+1

It is straightforward to see that d ◦ d = 0. In other words Č•(U ,F) is a complex.

http://localhost:8080/tag/01EC
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Definition 10.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•(U ,F) is the
Čech complex associated to F and the open covering U . Its cohomology groups
Hi(Č•(U ,F)) are called the Čech cohomology groups associated to F and the cov-
ering U . They are denoted Ȟi(U ,F).

Lemma 10.2. Let X be a topological space. Let F be an abelian presheaf on X.
The following are equivalent

(1) F is an abelian sheaf and
(2) for every open covering U : U =

⋃
i∈I Ui the natural map

F(U)→ Ȟ0(U ,F)

is bijective.

Proof. This is true since the sheaf condition is exactly that F(U) → Ȟ0(U ,F) is
bijective for every open covering. �

11. Čech cohomology as a functor on presheaves

Warning: In this section we work almost exclusively with presheaves and categories
of presheaves and the results are completely wrong in the setting of sheaves and
categories of sheaves!

Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering. Let F be a

presheaf of OX -modules. We have the Čech complex Č•(U ,F) of F just by thinking
of F as a presheaf of abelian groups. However, each term Čp(U ,F) has a natural
structure of a OX(U)-module and the differential is given by OX(U)-module maps.
Moreover, it is clear that the construction

F 7−→ Č•(U ,F)

is functorial in F . In fact, it is a functor

(11.0.1) Č•(U ,−) : PMod(OX) −→ Comp+(ModOX(U))

see Derived Categories, Definition 8.1 for notation. Recall that the category of
bounded below complexes in an abelian category is an abelian category, see Homol-
ogy, Lemma 12.9.

Lemma 11.1. The functor given by Equation (11.0.1) is an exact functor (see
Homology, Lemma 7.1).

Proof. For any open W ⊂ U the functor F 7→ F(W ) is an additive exact functor
from PMod(OX) to ModOX(U). The terms Čp(U ,F) of the complex are products of
these exact functors and hence exact. Moreover a sequence of complexes is exact
if and only if the sequence of terms in a given degree is exact. Hence the lemma
follows. �

Lemma 11.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open cov-

ering. The functors F 7→ Ȟn(U ,F) form a δ-functor from the abelian category
of presheaves of OX-modules to the category of OX(U)-modules (see Homology,
Definition 11.1).
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Proof. By Lemma 11.1 a short exact sequence of presheaves of OX -modules 0→
F1 → F2 → F3 → 0 is turned into a short exact sequence of complexes of OX(U)-
modules. Hence we can use Homology, Lemma 12.12 to get the boundary maps
δF1→F2→F3

: Ȟn(U ,F3)→ Ȟn+1(U ,F1) and a corresponding long exact sequence.
We omit the verification that these maps are compatible with maps between short
exact sequences of presheaves. �

In the formulation of the following lemma we use the functor jp! of extension by 0
for presheaves of modules relative to an open immersion j : U → X. See Sheaves,
Section 31. For any open W ⊂ X and any presheaf G of OX |U -modules we have

(jp!G)(W ) =

{
G(W ) if W ⊂ U

0 else.

Moreover, the functor jp! is a left adjoint to the restriction functor see Sheaves,
Lemma 31.8. In particular we have the following formula

HomOX (jp!OU ,F) = HomOU (OU ,F|U ) = F(U).

Since the functor F 7→ F(U) is an exact functor on the category of presheaves we
conclude that the presheaf jp!OU is a projective object in the category PMod(OX),
see Homology, Lemma 24.2.

Note that if we are given open subsets U ⊂ V ⊂ X with associated open im-
mersions jU , jV , then we have a canonical map (jU )p!OU → (jV )p!OV . It is the
identity on sections over any open W ⊂ U and 0 else. In terms of the identifica-
tion HomOX ((jU )p!OU , (jV )p!OV ) = (jV )p!OV (U) = OV (U) it corresponds to the
element 1 ∈ OV (U).

Lemma 11.3. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Denote

ji0...ip : Ui0...ip → X the open immersion. Consider the chain complex K(U)• of
presheaves of OX-modules

. . .→
⊕
i0i1i2

(ji0i1i2)p!OUi0i1i2 →
⊕
i0i1

(ji0i1)p!OUi0i1 →
⊕
i0

(ji0)p!OUi0 → 0→ . . .

where the last nonzero term is placed in degree 0 and where the map

(ji0...ip+1
)p!OUi0...ip+1

−→ (ji0...̂ij ...ip+1
)p!OUi0...̂ij ...ip+1

is given by (−1)j times the canonical map. Then there is an isomorphism

HomOX (K(U)•,F) = Č•(U ,F)

functorial in F ∈ Ob(PMod(OX)).

Proof. We saw in the discussion just above the lemma that

HomOX ((ji0...ip)p!OUi0...ip ,F) = F(Ui0...ip).

Hence we see that it is indeed the case that the direct sum⊕
i0...ip

(ji0...ip)p!OUi0...ip
represents the functor

F 7−→
∏

i0...ip
F(Ui0...ip).

Hence by Categories, Yoneda Lemma 3.5 we see that there is a complex K(U)•
with terms as given. It is a simple matter to see that the maps are as given in the
lemma. �
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12 COHOMOLOGY OF SHEAVES

Lemma 11.4. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let

OU ⊂ OX be the image presheaf of the map
⊕
jp!OUi → OX . The chain complex

K(U)• of presheaves of Lemma 11.3 above has homology presheaves

Hi(K(U)•) =

{
0 if i 6= 0
OU if i = 0

Proof. Consider the extended complex Kext
• one gets by putting OU in degree

−1 with the obvious map K(U)0 =
⊕

i0
(ji0)p!OUi0 → OU . It suffices to show

that taking sections of this extended complex over any open W ⊂ X leads to an
acyclic complex. In fact, we claim that for every W ⊂ X the complex Kext

• (W ) is
homotopy equivalent to the zero complex. Write I = I1 q I2 where W ⊂ Ui if and
only if i ∈ I1.

If I1 = ∅, then the complex Kext
• (W ) = 0 so there is nothing to prove.

If I1 6= ∅, then OU (W ) = OX(W ) and

Kext
p (W ) =

⊕
i0...ip∈I1

OX(W ).

This is true because of the simple description of the presheaves (ji0...ip)p!OUi0...ip .

Moreover, the differential of the complex Kext
• (W ) is given by

d(s)i0...ip =
∑

j=0,...,p+1

∑
i∈I1

(−1)jsi0...ij−1iij ...ip .

The sum is finite as the element s has finite support. Fix an element ifix ∈ I1.
Define a map

h : Kext
p (W ) −→ Kext

p+1(W )

by the rule

h(s)i0...ip+1
=

{
0 if i0 6= i

si1...ip+1
if i0 = ifix

We will use the shorthand h(s)i0...ip+1
= (i0 = ifix)si1...ip for this. Then we compute

(dh+ hd)(s)i0...ip

=
∑
j

∑
i∈I1

(−1)jh(s)i0...ij−1iij ...ip + (i = i0)d(s)i1...ip

= si0...ip +
∑
j≥1

∑
i∈I1

(−1)j(i0 = ifix)si1...ij−1iij ...ip + (i0 = ifix)d(s)i1...ip

which is equal to si0...ip as desired. �

Lemma 11.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be an open covering

of U ⊂ X. The Čech cohomology functors Ȟp(U ,−) are canonically isomorphic as
a δ-functor to the right derived functors of the functor

Ȟ0(U ,−) : PMod(OX) −→ ModOX(U).

Moreover, there is a functorial quasi-isomorphism

Č•(U ,F) −→ RȞ0(U ,F)

where the right hand side indicates the right derived functor

RȞ0(U ,−) : D+(PMod(OX)) −→ D+(OX(U))

of the left exact functor Ȟ0(U ,−).
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Proof. Note that the category of presheaves of OX -modules has enough injectives,
see Injectives, Proposition 8.5. Note that Ȟ0(U ,−) is a left exact functor from the
category of presheaves of OX -modules to the category of OX(U)-modules. Hence
the derived functor and the right derived functor exist, see Derived Categories,
Section 20.

Let I be a injective presheaf of OX -modules. In this case the functor HomOX (−, I)
is exact on PMod(OX). By Lemma 11.3 we have

HomOX (K(U)•, I) = Č•(U , I).

By Lemma 11.4 we have that K(U)• is quasi-isomorphic to OU [0]. Hence by the
exactness of Hom into I mentioned above we see that Ȟi(U , I) = 0 for all i > 0.
Thus the δ-functor (Ȟn, δ) (see Lemma 11.2) satisfies the assumptions of Homology,
Lemma 11.4, and hence is a universal δ-functor.

By Derived Categories, Lemma 20.4 also the sequence RiȞ0(U ,−) forms a universal
δ-functor. By the uniqueness of universal δ-functors, see Homology, Lemma 11.5
we conclude that RiȞ0(U ,−) = Ȟi(U ,−). This is enough for most applications
and the reader is suggested to skip the rest of the proof.

Let F be any presheaf of OX -modules. Choose an injective resolution F → I• in
the category PMod(OX). Consider the double complex A•,• with terms

Ap,q = Čp(U , Iq).

Consider the simple complex sA• associated to this double complex. There is a
map of complexes

Č•(U ,F) −→ sA•

coming from the maps Čp(U ,F)→ Ap,0 = Č•(U , I0) and there is a map of complexes

Ȟ0(U , I•) −→ sA•

coming from the maps Ȟ0(U , Iq) → A0,q = Č0(U , Iq). Both of these maps are
quasi-isomorphisms by an application of Homology, Lemma 22.7. Namely, the
columns of the double complex are exact in positive degrees because the Čech
complex as a functor is exact (Lemma 11.1) and the rows of the double complex
are exact in positive degrees since as we just saw the higher Čech cohomology
groups of the injective presheaves Iq are zero. Since quasi-isomorphisms become
invertible in D+(OX(U)) this gives the last displayed morphism of the lemma. We
omit the verification that this morphism is functorial. �

12. Čech cohomology and cohomology

Lemma 12.1. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let I

be an injective OX-module. Then

Ȟp(U , I) =

{
I(U) if p = 0

0 if p > 0

Proof. An injective OX -module is also injective as an object in the category
PMod(OX) (for example since sheafification is an exact left adjoint to the inclusion
functor, using Homology, Lemma 25.1). Hence we can apply Lemma 11.5 (or its
proof) to see the result. �
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14 COHOMOLOGY OF SHEAVES

Lemma 12.2. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. There

is a transformation

Č•(U ,−) −→ RΓ(U,−)

of functors Mod(OX) → D+(OX(U)). In particular this provides canonical maps
Ȟp(U ,F)→ Hp(U,F) for F ranging over Mod(OX).

Proof. Let F be an OX -module. Choose an injective resolution F → I•. Consider
the double complex Č•(U , I•) with terms Čp(U , Iq). There is a map of complexes

α : Γ(U, I•) −→ Tot(Č•(U , I•))

coming from the maps Iq(U)→ Ȟ0(U , Iq) and a map of complexes

β : Č•(U ,F) −→ Tot(Č•(U , I•))

coming from the map F → I0. We can apply Homology, Lemma 22.7 to see that
α is a quasi-isomorphism. Namely, Lemma 12.1 implies that the qth row of the
double complex Č•(U , I•) is a resolution of Γ(U, Iq). Hence α becomes invertible in
D+(OX(U)) and the transformation of the lemma is the composition of β followed
by the inverse of α. We omit the verification that this is functorial. �

Lemma 12.3. Let X be a ringed space. Consider the functor i : Mod(OX) →
PMod(OX). It is a left exact functor with right derived functors given by

Rpi(F) = Hp(F) : U 7−→ Hp(U,F)

see discussion in Section 7.

Proof. It is clear that i is left exact. Choose an injective resolution F → I•. By
definition Rpi is the pth cohomology presheaf of the complex I•. In other words,
the sections of Rpi(F) over an open U are given by

Ker(In(U)→ In+1(U))

Im(In−1(U)→ In(U))
.

which is the definition of Hp(U,F). �

Lemma 12.4. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. For

any sheaf of OX-modules F there is a spectral sequence (Er, dr)r≥0 with

Ep,q2 = Ȟp(U , Hq(F))

converging to Hp+q(U,F). This spectral sequence is functorial in F .

Proof. This is a Grothendieck spectral sequence (see Derived Categories, Lemma
22.2) for the functors

i : Mod(OX)→ PMod(OX) and Ȟ0(U ,−) : PMod(OX)→ ModOX(U).

Namely, we have Ȟ0(U , i(F)) = F(U) by Lemma 10.2. We have that i(I) is Čech
acyclic by Lemma 12.1. And we have that Ȟp(U ,−) = RpȞ0(U ,−) as functors on
PMod(OX) by Lemma 11.5. Putting everything together gives the lemma. �

Lemma 12.5. Let X be a ringed space. Let U : U =
⋃
i∈I Ui be a covering. Let F

be an OX-module. Assume that Hi(Ui0...ip ,F) = 0 for all i > 0, all p ≥ 0 and all

i0, . . . , ip ∈ I. Then Ȟp(U ,F) = Hp(U,F) as OX(U)-modules.
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Proof. We will use the spectral sequence of Lemma 12.4. The assumptions mean
that Ep,q2 = 0 for all (p, q) with q 6= 0. Hence the spectral sequence degenerates at
E2 and the result follows. �

Lemma 12.6. Let X be a ringed space. Let

0→ F → G → H → 0

be a short exact sequence of OX-modules. Let U ⊂ X be an open subset. If there
exists a cofinal system of open coverings U of U such that Ȟ1(U ,F) = 0, then the
map G(U)→ H(U) is surjective.

Proof. Take an element s ∈ H(U). Choose an open covering U : U =
⋃
i∈I Ui such

that (a) Ȟ1(U ,F) = 0 and (b) s|Ui is the image of a section si ∈ G(Ui). Since we
can certainly find a covering such that (b) holds it follows from the assumptions of
the lemma that we can find a covering such that (a) and (b) both hold. Consider
the sections

si0i1 = si1 |Ui0i1 − si0 |Ui0i1 .
Since si lifts s we see that si0i1 ∈ F(Ui0i1). By the vanishing of Ȟ1(U ,F) we can
find sections ti ∈ F(Ui) such that

si0i1 = ti1 |Ui0i1 − ti0 |Ui0i1 .

Then clearly the sections si − ti satisfy the sheaf condition and glue to a section of
G over U which maps to s. Hence we win. �

Lemma 12.7. Let X be a ringed space. Let F be an OX-module such that

Ȟp(U ,F) = 0

for all p > 0 and any open covering U : U =
⋃
i∈I Ui of an open of X. Then

Hp(U,F) = 0 for all p > 0 and any open U ⊂ X.

Proof. Let F be a sheaf satisfying the assumption of the lemma. We will indicate
this by saying “F has vanishing higher Čech cohomology for any open covering”.
Choose an embedding F → I into an injective OX -module. By Lemma 12.1 I has
vanishing higher Čech cohomology for any open covering. Let Q = I/F so that we
have a short exact sequence

0→ F → I → Q → 0.

By Lemma 12.6 and our assumptions this sequence is actually exact as a sequence of
presheaves! In particular we have a long exact sequence of Čech cohomology groups
for any open covering U , see Lemma 11.2 for example. This implies that Q is also
an OX -module with vanishing higher Čech cohomology for all open coverings.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .
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for any open U ⊂ X. Since I is injective we have Hn(U, I) = 0 for n > 0 (see
Derived Categories, Lemma 20.4). By the above we see that H0(U, I)→ H0(U,Q)
is surjective and hence H1(U,F) = 0. Since F was an arbitrary OX -module with
vanishing higher Čech cohomology we conclude that also H1(U,Q) = 0 since Q
is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. �

Lemma 12.8. (Variant of Lemma 12.7.) Let X be a ringed space. Let B be a basis
for the topology on X. Let F be an OX-module. Assume there exists a set of open
coverings Cov with the following properties:

(1) For every U ∈ Cov with U : U =
⋃
i∈I Ui we have U,Ui ∈ B and every

Ui0...ip ∈ B.
(2) For every U ∈ B the open coverings of U occurring in Cov is a cofinal

system of open coverings of U .
(3) For every U ∈ Cov we have Ȟp(U ,F) = 0 for all p > 0.

Then Hp(U,F) = 0 for all p > 0 and any U ∈ B.

Proof. Let F and Cov be as in the lemma. We will indicate this by saying “F
has vanishing higher Čech cohomology for any U ∈ Cov”. Choose an embedding
F → I into an injective OX -module. By Lemma 12.1 I has vanishing higher Čech
cohomology for any U ∈ Cov. Let Q = I/F so that we have a short exact sequence

0→ F → I → Q → 0.

By Lemma 12.6 and our assumption (2) this sequence gives rise to an exact sequence

0→ F(U)→ I(U)→ Q(U)→ 0.

for every U ∈ B. Hence for any U ∈ Cov we get a short exact sequence of Čech
complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,Q)→ 0

since each term in the Čech complex is made up out of a product of values over
elements of B by assumption (1). In particular we have a long exact sequence of
Čech cohomology groups for any open covering U ∈ Cov. This implies that Q is
also an OX -module with vanishing higher Čech cohomology for all U ∈ Cov.

Next, we look at the long exact cohomology sequence

0 // H0(U,F) // H0(U, I) // H0(U,Q)

tt
H1(U,F) // H1(U, I) // H1(U,Q)

ss. . . . . . . . .

for any U ∈ B. Since I is injective we have Hn(U, I) = 0 for n > 0 (see Derived
Categories, Lemma 20.4). By the above we see that H0(U, I)→ H0(U,Q) is surjec-
tive and hence H1(U,F) = 0. Since F was an arbitrary OX -module with vanishing
higher Čech cohomology for all U ∈ Cov we conclude that also H1(U,Q) = 0 since
Q is another of these sheaves (see above). By the long exact sequence this in turn
implies that H2(U,F) = 0. And so on and so forth. �
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Lemma 12.9. Let f : X → Y be a morphism of ringed spaces. Let I be an injective
OX-module. Then

(1) Ȟp(V, f∗I) = 0 for all p > 0 and any open covering V : V =
⋃
j∈J Vj of Y .

(2) Hp(V, f∗I) = 0 for all p > 0 and every open V ⊂ Y .

In other words, f∗I is right acyclic for Γ(U,−) (see Derived Categories, Definition
16.3) for any U ⊂ X open.

Proof. Set U : f−1(V ) =
⋃
j∈J f

−1(Vj). It is an open covering of X and

Č•(V, f∗I) = Č•(U , I).

This is true because

f∗I(Vj0...jp) = I(f−1(Vj0...jp)) = I(f−1(Vj0) ∩ . . . ∩ f−1(Vjp)) = I(Uj0...jp).

Thus the first statement of the lemma follows from Lemma 12.1. The second
statement follows from the first and Lemma 12.7. �

The following lemma implies in particular that f∗ : Ab(X) → Ab(Y ) transforms
injective abelian sheaves into injective abelian sheaves.

Lemma 12.10. Let f : X → Y be a morphism of ringed spaces. Assume f is flat.
Then f∗I is an injective OY -module for any injective OX-module I.

Proof. In this case the functor f∗ transforms injections into injections (Modules,
Lemma 17.2). Hence the result follows from Homology, Lemma 25.1. �

13. Flasque sheaves

Here is the definition.

Definition 13.1. Let X be a topological space. We say a presheaf of sets F is
flasque or flabby if for every U ⊂ V open in X the restriction map F(V ) → F(U)
is surjective.

We will use this terminology also for abelian sheaves and sheaves of modules if X
is a ringed space. Clearly it suffices to assume the restriction maps F(X)→ F(U)
is surjective for every open U ⊂ X.

Lemma 13.2. Let (X,OX) be a ringed space. Then any injective OX-module is
flasque.

Proof. This is a reformulation of Lemma 9.1. �

Lemma 13.3. Let (X,OX) be a ringed space. Any flasque OX-module is acyclic
for RΓ(X,−) as well as RΓ(U,−) for any open U of X.

Proof. We will prove this using Derived Categories, Lemma 16.6. Since every
injective module is flasque we see that we can embed every OX -module into a
flasque module, see Injectives, Lemma 4.1. Thus it suffices to show that given a
short exact sequence

0→ F → G → H → 0

with F , G flasque, then H is flasque and the sequence remains short exact after
taking sections on any open of X. In fact, the second statement implies the first.
Thus, let U ⊂ X be an open subspace. Let s ∈ H(U). We will show that we can
lift s to a sequence of G over U . To do this consider the set T of pairs (V, t) where
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18 COHOMOLOGY OF SHEAVES

V ⊂ U is open and t ∈ G(V ) is a section mapping to s|V in H. We put a partial
ordering on T by setting (V, t) ≤ (V ′, t′) if and only if V ⊂ V ′ and t′|V = t. If
(Vα, tα), α ∈ A is a totally ordered subset of T , then V =

⋃
Vα is open and there

is a unique section t ∈ G(V ) restricting to tα over Vα by the sheaf condition on G.
Thus by Zorn’s lemma there exists a maximal element (V, t) in T . We will show
that V = U thereby finishing the proof. Namely, pick any x ∈ U . We can find a
small open neighbourhood W ⊂ U of x and t′ ∈ H(W ) mapping to s|W in H. Then
t′|W∩V − t|W∩V maps to zero in H, hence comes from some section r′ ∈ F(W ∩V ).
Using that F is flasque we find a section r ∈ F(W ) restricting to r′ over W ′ ∩ V .
Modifying t′ by the image of r we may assume that t and t′ restrict to the same
section over W ∩ V . By the sheaf condition of G we can find a section t̃ of G over
W ∪ V restricting to t and t′. By maximality of (V, t) we see that V ∩W = V .
Thus x ∈ V and we are done. �

The following lemma does not hold for flasque presheaves.

Lemma 13.4. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.
Let U : U =

⋃
Ui be an open covering. If F is flasque, then Ȟp(U ,F) = 0 for

p > 0.

Proof. The presheaves Hq(F) used in the statement of Lemma 12.4 are zero by
Lemma 13.3. Hence Ȟp(U,F) = Hp(U,F) = 0 by Lemma 13.3 again. �

Lemma 13.5. Let (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let F be
a sheaf of OX-modules. If F is flasque, then Rpf∗F = 0 for p > 0.

Proof. Immediate from Lemma 7.3 and Lemma 13.3. �

The following lemma can be proved by an elementary induction argument for finite
coverings, compare with the discussion of Čech cohomology in [Vak].

Lemma 13.6. Let X be a topological space. Let F be an abelian sheaf on X. Let
U : U =

⋃
i∈I Ui be an open covering. Assume the restriction mappings F(U) →

F(U ′) are surjective for U ′ an arbirtrary union of opens of the form Ui0...ip . Then

Ȟp(U ,F) vanishes for p > 0.

Proof. Let Y be the set of nonempty subsets of I. We will use the lettersA,B,C, . . .
to denote elements of Y , i.e., nonempty subsets of I. For a finite nonempty subset
J ⊂ I let

VJ = {A ∈ Y | J ⊂ A}
This means that V{i} = {A ∈ Y | i ∈ A} and VJ =

⋂
j∈J V{j}. Then VJ ⊂ VK if

and only if J ⊃ K. There is a unique topology on Y such that the collection of
subsets VJ is a basis for the topology on Y . Any open is of the form

V =
⋃

t∈T
VJt

for some family of finite subsets Jt. If Jt ⊂ Jt′ then we may remove Jt′ from the
family without changing V . Thus we may assume there are no inclusions among
the Jt. In this case the minimal elements of V are the sets A = Jt. Hence we can
read off the family (Jt)t∈T from the open V .

We can completely understand open coverings in Y . First, because the elements
A ∈ Y are nonempty subsets of I we have

Y =
⋃

i∈I
V{i}
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To understand other coverings, let V be as above and let Vs ⊂ Y be an open
corresponding to the family (Js,t)t∈Ts . Then

V =
⋃

s∈S
Vs

if and only if for each t ∈ T there exists an s ∈ S and ts ∈ Ts such that Jt = Js,ts .
Namely, as the family (Jt)t∈T is minimal, the minimal element A = Jt has to be in
Vs for some s, hence A ∈ VJts for some ts ∈ Ts. But since A is also minimal in Vs
we conclude that Jts = Jt.

Next we map the set of opens of Y to opens of X. Namely, we send Y to U , we
use the rule

VJ 7→ UJ =
⋂

i∈J
Ui

on the opens VJ , and we extend it to arbitrary opens V by the rule

V =
⋃

t∈T
VJt 7→

⋃
t∈T

UJt

The classification of open coverings of Y given above shows that this rule transforms
open coverings into open coverings. Thus we obtain an abelian sheaf G on Y by
setting G(Y ) = F(U) and for V =

⋃
t∈T VJt setting

G(V ) = F
(⋃

t∈T
UJt

)
and using the restriction maps of F .

With these preliminaries out of the way we can prove our lemma as follows. We
have an open covering V : Y =

⋃
i∈I V{i} of Y . By construction we have an equality

Č•(V,G) = Č•(U ,F)

of Čech complexes. Since the sheaf G is flasque on Y (by our assumption on F in
the statement of the lemma) the vanishing follows from Lemma 13.4. �

14. The Leray spectral sequence

Lemma 14.1. Let f : X → Y be a morphism of ringed spaces. There is a com-
mutative diagram

D+(X)
RΓ(X,−)

//

Rf∗

��

D+(OX(X))

restriction

��
D+(Y )

RΓ(Y,−) // D+(OY (Y ))

More generally for any V ⊂ Y open and U = f−1(V ) there is a commutative
diagram

D+(X)
RΓ(U,−)

//

Rf∗

��

D+(OX(U))

restriction

��
D+(Y )

RΓ(V,−) // D+(OY (V ))

See also Remark 14.2 for more explanation.
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Proof. Let Γres : Mod(OX) → ModOY (Y ) be the functor which associates to an

OX -module F the global sections of F viewed as a OY (Y )-module via the map f ] :
OY (Y ) → OX(X). Let restriction : ModOX(X) → ModOY (Y ) be the restriction

functor induced by f ] : OY (Y ) → OX(X). Note that restriction is exact so that
its right derived functor is computed by simply applying the restriction functor, see
Derived Categories, Lemma 17.8. It is clear that

Γres = restriction ◦ Γ(X,−) = Γ(Y,−) ◦ f∗

We claim that Derived Categories, Lemma 22.1 applies to both compositions. For
the first this is clear by our remarks above. For the second, it follows from Lemma
12.9 which implies that injectiveOX -modules are mapped to Γ(Y,−)-acyclic sheaves
on Y . �

Remark 14.2. Here is a down-to-earth explanation of the meaning of Lemma 14.1.
It says that given f : X → Y and F ∈ Mod(OX) and given an injective resolution
F → I• we have

RΓ(X,F) is represented by Γ(X, I•)
Rf∗F is represented by f∗I•

RΓ(Y,Rf∗F) is represented by Γ(Y, f∗I•)

the last fact coming from Leray’s acyclicity lemma (Derived Categories, Lemma
17.7) and Lemma 12.9. Finally, it combines this with the trivial observation that

Γ(X, I•) = Γ(Y, f∗I•).

to arrive at the commutativity of the diagram of the lemma.

Lemma 14.3. Let X be a ringed space. Let F be an OX-module.

(1) The cohomology groups Hi(U,F) for U ⊂ X open of F computed as an
OX-module, or computed as an abelian sheaf are identical.

(2) Let f : X → Y be a morphism of ringed spaces. The higher direct images
Rif∗F of F computed as an OX-module, or computed as an abelian sheaf
are identical.

There are similar statements in the case of bounded below complexes of OX-modules.

Proof. Consider the morphism of ringed spaces (X,OX)→ (X,ZX) given by the
identity on the underlying topological space and by the unique map of sheaves of
rings ZX → OX . Let F be an OX -module. Denote Fab the same sheaf seen as
an ZX -module, i.e., seen as a sheaf of abelian groups. Let F → I• be an injective
resolution. By Remark 14.2 we see that Γ(X, I•) computes both RΓ(X,F) and
RΓ(X,Fab). This proves (1).

To prove (2) we use (1) and Lemma 7.3. The result follows immediately. �

Lemma 14.4 (Leray spectral sequence). Let f : X → Y be a morphism of ringed
spaces. Let F• be a bounded below complex of OX-modules. There is a spectral
sequence

Ep,q2 = Hp(Y,Rqf∗(F•))

converging to Hp+q(X,F•).

http://localhost:8080/tag/01F0
http://localhost:8080/tag/01F1
http://localhost:8080/tag/01F2


COHOMOLOGY OF SHEAVES 21

Proof. This is just the Grothendieck spectral sequence Derived Categories, Lemma
22.2 coming from the composition of functors Γres = Γ(Y,−) ◦ f∗ where Γres is as
in the proof of Lemma 14.1. To see that the assumptions of Derived Categories,
Lemma 22.2 are satisfied, see the proof of Lemma 14.1 or Remark 14.2. �

Remark 14.5. The Leray spectral sequence, the way we proved it in Lemma 14.4
is a spectral sequence of Γ(Y,OY )-modules. However, it is quite easy to see that it
is in fact a spectral sequence of Γ(X,OX)-modules. For example f gives rise to a
morphism of ringed spaces f ′ : (X,OX) → (Y, f∗OX). By Lemma 14.3 the terms
Ep,qr of the Leray spectral sequence for an OX -module F and f are identical with
those for F and f ′ at least for r ≥ 2. Namely, they both agree with the terms of the
Leray spectral sequence for F as an abelian sheaf. And since (f∗OX)(Y ) = OX(X)
we see the result. It is often the case that the Leray spectral sequence carries
additional structure.

Lemma 14.6. Let f : X → Y be a morphism of ringed spaces. Let F be an
OX-module.

(1) If Rqf∗F = 0 for q > 0, then Hp(X,F) = Hp(Y, f∗F) for all p.
(2) If Hp(Y,Rqf∗F) = 0 for all q and p > 0, then Hq(X,F) = H0(Y,Rqf∗F)

for all q.

Proof. These are two simple conditions that force the Leray spectral sequence
to converge. You can also prove these facts directly (without using the spectral
sequence) which is a good exercise in cohomology of sheaves. �

Lemma 14.7. Let f : X → Y and g : Y → Z be morphisms of ringed spaces. In
this case Rg∗ ◦Rf∗ = R(g ◦ f)∗ as functors from D+(X)→ D+(Z).

Proof. We are going to apply Derived Categories, Lemma 22.1. It is clear that
g∗ ◦ f∗ = (g ◦ f)∗, see Sheaves, Lemma 21.2. It remains to show that f∗I is g∗-
acyclic. This follows from Lemma 12.9 and the description of the higher direct
images Rig∗ in Lemma 7.3. �

Lemma 14.8 (Relative Leray spectral sequence). Let f : X → Y and g : Y → Z be
morphisms of ringed spaces. Let F be an OX-module. There is a spectral sequence
with

Ep,q2 = Rpg∗(R
qf∗F)

converging to Rp+q(g ◦ f)∗F . This spectral sequence is functorial in F , and there
is a version for bounded below complexes of OX-modules.

Proof. This is a Grothendieck spectral sequence for composition of functors and
follows from Lemma 14.7 and Derived Categories, Lemma 22.2. �

15. Functoriality of cohomology

Lemma 15.1. Let f : X → Y be a morphism of ringed spaces. Let G•, resp. F•
be a bounded below complex of OY -modules, resp. OX-modules. Let ϕ : G• → f∗F•
be a morphism of complexes. There is a canonical morphism

G• −→ Rf∗(F•)

in D+(Y ). Moreover this construction is functorial in the triple (G•,F•, ϕ).

http://localhost:8080/tag/01F3
http://localhost:8080/tag/01F4
http://localhost:8080/tag/01F5
http://localhost:8080/tag/01F6
http://localhost:8080/tag/01F8


22 COHOMOLOGY OF SHEAVES

Proof. Choose an injective resolution F• → I•. By definition Rf∗(F•) is repre-
sented by f∗I• in K+(OY ). The composition

G• → f∗F• → f∗I•

is a morphism inK+(Y ) which turns into the morphism of the lemma upon applying
the localization functor jY : K+(Y )→ D+(Y ). �

Let f : X → Y be a morphism of ringed spaces. Let G be an OY -module and let
F be an OX -module. Recall that an f -map ϕ from G to F is a map ϕ : G → f∗F ,
or what is the same thing, a map ϕ : f∗G → F . See Sheaves, Definition 21.7. Such
an f -map gives rise to a morphism of complexes

(15.1.1) ϕ : RΓ(Y,G) −→ RΓ(X,F)

inD+(OY (Y )). Namely, we use the morphism G → Rf∗F inD+(Y ) of Lemma 15.1,
and we apply RΓ(Y,−). By Lemma 14.1 we see that RΓ(X,F) = RΓ(Y,Rf∗F) and
we get the displayed arrow. We spell this out completely in Remark 15.2 below. In
particular it gives rise to maps on cohomology

(15.1.2) ϕ : Hi(Y,G) −→ Hi(X,F).

Remark 15.2. Let f : X → Y be a morphism of ringed spaces. Let G be an
OY -module. Let F be an OX -module. Let ϕ be an f -map from G to F . Choose
a resolution F → I• by a complex of injective OX -modules. Choose resolutions
G → J• and f∗I → (J ′)• by complexes of injective OY -modules. By Derived
Categories, Lemma 18.6 there exists a map of complexes β such that the diagram

(15.2.1) G

��

// f∗F // f∗I•

��
J •

β // (J ′)•

commutes. Applying global section functors we see that we get a diagram

Γ(Y, f∗I•)

qis

��

Γ(X, I•)

Γ(Y,J •)
β // Γ(Y, (J ′)•)

The complex on the bottom left represents RΓ(Y,G) and the complex on the top
right represents RΓ(X,F). The vertical arrow is a quasi-isomorphism by Lemma
14.1 which becomes invertible after applying the localization functorK+(OY (Y ))→
D+(OY (Y )). The arrow (15.1.1) is given by the composition of the horizontal map
by the inverse of the vertical map.

16. Refinements and Čech cohomology

Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui and V : X =

⋃
j∈J Vj be open

coverings. Assume that U is a refinement of V. Choose a map c : I → J such that
Ui ⊂ Vc(i) for all i ∈ I. This induces a map of Čech complexes

γ : Č•(V,F) −→ Č•(U ,F), (ξj0...jp) 7−→ (ξc(i0)...c(ip)|Ui0...ip )

functorial in the sheaf of OX -modules F . Suppose that c′ : I → J is a second
map such that Ui ⊂ Vc′(i) for all i ∈ I. Then the corresponding maps γ and γ′ are

http://localhost:8080/tag/01FB


COHOMOLOGY OF SHEAVES 23

homotopic. Namely, γ − γ′ = d ◦ h + h ◦ d with h : Čp+1(V,F) → Čp(U ,F) given
by the rule

h(ξ)i0...ip =
∑p

a=0
(−1)aαc(i0)...c(ia)c′(ia)...c′(ip)

We omit the computation showing this works; please see the discussion following
(26.0.2) for the proof in a more general case. In particular, the map on Čech
cohomology groups is independent of the choice of c. Moreover, it is clear that if
W : X =

⋃
k∈KWk is a third open covering and V is a refinement of W, then the

composition of the maps

Č•(W,F) −→ Č•(V,F) −→ Č•(U ,F)

associated to maps I → J and J → K is the map associated to the composition
I → K. In particular, we can define the Čech cohomology groups

Ȟp(X,F) = colimU Ȟ
p(U ,F)

where the colimit is over all open coverings of X partially ordered by refinement.

It turns out that the maps γ defined above are compatible with the map to coho-
mology, in other words, the composition

Ȟp(V,F)→ Ȟp(U ,F)
Lemma 12.2−−−−−−−−→ Hp(X,F)

is the canonical map from the first group to cohomology of Lemma 12.2. In the
lemma below we will prove this in a slightly more general setting. A consequence
is that we obtain a well defined map

(16.0.2) Ȟp(X,F) = colimU Ȟ
p(U ,F) −→ Hp(X,F)

from Čech cohomology to cohomology.

Lemma 16.1. Let f : X → Y be a morphism of ringed spaces. Let ϕ : f∗G → F
be an f -map from an OY -module G to an OX-module F . Let U : X =

⋃
i∈I Ui and

V : Y =
⋃
j∈J Vj be open coverings. Assume that U is a refinement of f−1V : X =⋃

j∈J f
−1(Vj). In this case there exists a commutative diagram

Č•(U ,F) // RΓ(X,F)

Č•(V,G) //

γ

OO

RΓ(Y,G)

OO

in D+(OX(X)) with horizontal arrows given by Lemma 12.2 and right vertical arrow
by (15.1.1). In particular we get commutative diagrams of cohomology groups

Ȟp(U ,F) // Hp(X,F)

Ȟp(V,G) //

γ

OO

Hp(Y,G)

OO

where the right vertical arrow is (15.1.2)

Proof. We first define the left vertical arrow. Namely, choose a map c : I → J
such that Ui ⊂ f−1(Vc(i)) for all i ∈ I. In degree p we define the map by the rule

γ(s)i0...ip = ϕ(s)c(i0)...c(ip)
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This makes sense because ϕ does indeed induce maps G(Vc(i0)...c(ip))→ F(Ui0...ip)
by assumption. It is also clear that this defines a morphism of complexes. Choose
injective resolutions F → I• on X and G → J• on Y . According to the proof of
Lemma 12.2 we introduce the double complexes A•,• and B•,• with terms

Bp,q = Čp(V,J q) and Ap,q = Čp(U , Iq).
As in Remark 15.2 above we also choose an injective resolution f∗I → (J ′)• on
Y and a morphism of complexes β : J → (J ′)• making (15.2.1) commutes. We
introduce some more double complexes, namely (B′)•,• and (B′′)•, • with

(B′)p,q = Čp(V, (J ′)q) and (B′′)p,q = Čp(V, f∗Iq).
Note that there is an f -map of complexes from f∗I• to I•. Hence it is clear that
the same rule as above defines a morphism of double complexes

γ : (B′′)•,• −→ A•,•.

Consider the diagram of complexes

Č•(U ,F) // sA• Γ(X, I•)
qis

oo

Č•(V,G) //

γ

OO

sB•
β // s(B′)• s(B′′)•oo

sγ

kk

Γ(Y,J •)

qis

OO

β // Γ(Y, (J ′)•)

OO

Γ(Y, f∗I•)

OO

qisoo

The two horizontal arrows with targets sA• and sB• are the ones explained in
Lemma 12.2. The left upper shape (a pentagon) is commutative simply because
(15.2.1) is commutative. The two lower squares are trivially commutative. It
is also immediate from the definitions that the right upper shape (a square) is
commutative. The result of the lemma now follows from the definitions and the fact
that going around the diagram on the outer sides from Č•(V,G) to Γ(X, I•) either
on top or on bottom is the same (where you have to invert any quasi-isomorphisms
along the way). �

17. Cohomology on Hausdorff quasi-compact spaces

For such a space Čech cohomology agrees with cohomology.

Lemma 17.1. Let X be a topological space. Let F be an abelian sheaf. Then the
map Ȟ1(X,F)→ H1(X,F) defined in (16.0.2) is an isomorphism.

Proof. Let U be an open covering of X. By Lemma 12.4 there is an exact sequence

0→ Ȟ1(U ,F)→ H1(X,F)→ Ȟ0(U , H1(F))

Thus the map is injective. To show surjectivity it suffices to show that any element
of Ȟ0(U , H1(F)) maps to zero after replacing U by a refinement. This is immediate
from the definitions and the fact that H1(F) is a presheaf of abelian groups whose
sheafification is zero by locality of cohomology, see Lemma 7.2. �

Lemma 17.2. Let X be a Hausdorff and quasi-compact topological space. Let F be
an abelian sheaf on X. Then the map Ȟp(X,F) → Hp(X,F) defined in (16.0.2)
is an isomorphism for all p.
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Proof. We argue by induction on p that the map cpF : Ȟp(X,F) → Hp(X,F) is
an isomorphism. For p = 0 the result is clear and for p = 1 the result holds by
Lemma 17.1. Thus we may assume p > 1.

Choose an injective map a : F → I, where I is an injective abelian sheaf. Let
b : I → G be the quotient by F . Let ξ = (ξi0...ip) be a cocycle of the Čech complex,

giving rise to an element ξ of Ȟp(U ,F). Then a(ξ) = d(η) for some cochain η for
I by Lemma 12.1. The image θ = b(η) of η in the Čech complex for G is a cocyle,
hence gives rise to an element θ in Ȟp−1(U ,G). A straightforward argument (using
p ≥ 2 and hence the Čech complex of I is acyclic in degree p−1) shows that the rule
which assigns the element θ ∈ Ȟp−1(U ,G) of θ to the class is well defined. It follows

from the construction that cpF (ξ) = ∂(cp−1
G (θ)) where ∂ : Hp−1(X,G)→ Hp(X,F)

is the boundary coming from the short exact sequence 0 → F → I → G → 0
(details omitted).

Conversely, let θ = (θi0...ip−1
) a cocycle of the Čech complex of G for some open

covering U . We would like to lift θ to a cochain for I. The problem is that the
sequence of complexes

0→ Č•(U ,F)→ Č•(U , I)→ Č•(U ,G)→ 0

may not be exact on the right. Howeover, we know that for all p-tuples i0 . . . ip−1

of I there exists an open covering

Ui0 ∩ . . . ∩ Uip−1
=
⋃
Wi0...ip−1,k

such that θi0...ip−1
|Wi0...ip−1,k

does lift to a section of I over Wi0...ip−1,k. Thus, by

Topology, Lemma 12.4 after refining U , we can lift θ to a (p − 1)-cochain η in the
Čech complex of I. Then d(η) = a(ξ) for some p-cocycle ξ for F . In other words,
every element of colim Ȟp−1(U ,G) comes about by the construction of the previous
paragraph from an element of colim Ȟp(U ,F).

By the compatibility of the construction with the boundary map ∂ : Hp−1(X,G)→
Hp(X,F), the surjectivity of the map, the induction hypothesis saying γp−1

G is an

isomorphism, and the fact that Hp−1(X, I) = Hp(X, I) = 0, it follows formally
that cpF is surjective. To show injectivity one has to show that, given ξ, η, θ linked
as above, if θ is a boundary, then ξ becomes a boundary after replacing U by a
refinement. To do this argue as above, once more appealing to Topology, Lemma
12.4. Some details omitted. �

Lemma 17.3. Let X be a Hausdorff and locally quasi-compact space. Let Z ⊂ X
be a quasi-compact (hence closed) subset. For every abelian sheaf F on X we have

colimHp(U,F) −→ Hp(Z,F|Z)

where the colimit is over open neighbourhoods U of Z in X.

Proof. We first prove this for p = 0. Injectivity follows from the definition of F|Z
and holds in general (for any subset of any topological space X). Next, suppose
that s ∈ H0(Z,F|Z). Then we can find opens Ui ⊂ X such that Z ⊂

⋃
Ui and such

that s|Z∩Ui comes from si ∈ F(Ui). It follows that there exist opens Wij ⊂ Ui ∩Uj
with Wij ∩Z = Ui ∩Uj ∩Z such that si|Wij = sj |Wij . Applying Topology, Lemma
12.5 we find opens Vi of X such that Vi ⊂ Ui and such that Vi ∩ Vj ⊂ Wij . Hence
we see that si|Vi glue to a section of F over the open neighbourhood

⋃
Vi of Z.
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To finish the proof, it suffices to show that if I is an injective abelian sheaf on
X, then Hp(Z, I|Z) = 0 for p > 0. This follows using short exact sequences and
dimension shifting; details omitted. Thus, suppose ξ is an element of Hp(Z, I|Z)
for some p > 0. By Lemma 17.2 the element ξ comes from Ȟp(V, I|Z) for some
open covering V : Z =

⋃
Vi of Z. Say ξ is the image of the class of a cocycle

ξ = (ξi0...ip) in Čp(V, I|Z).

Let I ′ ⊂ I|Z be the subpresheaf defined by the rule

I ′(V ) = {s ∈ I|Z(V ) | ∃(U, t), U ⊂ X open, t ∈ I(U), V = Z ∩ U, s = t|Z∩U}

Then I|Z is the sheafification of I ′. Thus for every (p+1)-tuple i0 . . . ip we can find
an open covering Vi0...ip =

⋃
Wi0...ip,k such that ξi0...ip |Wi0...ip,k

is a section of I ′.
Applying Topology, Lemma 12.4 we may after refining V assume that each ξi0...ip
is a section of the presheaf I ′.

Write Vi = Z ∩ Ui for some opens Ui ⊂ X. Since I is flasque (Lemma 13.2)
and since ξi0...ip is a section of I ′ for every (p + 1)-tuple i0 . . . ip we can choose a
section si0...ip ∈ I(Ui0...ip) which restricts to ξi0...ip on Vi0...ip = Z ∩ Ui0...ip . (This
appeal to injectives being flasque can be avoided by an additional application of
Topology, Lemma 12.5.) Let s = (si0...ip) be the corresponding cochain for the
open covering U =

⋃
Ui. Since d(ξ) = 0 we see that the sections d(s)i0...ip+1

restrict to zero on Z ∩ Ui0...ip+1
. Hence, by the initial remarks of the proof, there

exists open subsets Wi0...ip+1 ⊂ Ui0...ip+1 with Z ∩Wi0...ip+1 = Z ∩ Ui0...ip+1 such
that d(s)i0...ip+1 |Wi0...ip+1

= 0. By Topology, Lemma 12.5 we can find U ′i ⊂ Ui
such that Z ⊂

⋃
U ′i and such that U ′i0...ip+1

⊂ Wi0...ip+1
. Then s′ = (s′i0...ip) with

s′i0...ip = si0...ip |U ′i0...ip is a cocycle for I for the open covering U ′ =
⋃
U ′i of an open

neighbourhood of Z. Since I has trivial higher Čech cohomology groups (Lemma
12.1) we conclude that s′ is a coboundary. It follows that the image of ξ in the Čech
complex for the open covering Z =

⋃
Z ∩U ′i is a coboundary and we are done. �

18. The base change map

We will need to know how to construct the base change map in some cases. Since
we have not yet discussed derived pullback we only discuss this in the case of a
base change by a flat morphism of ringed spaces. Before we state the result, let
us discuss flat pullback on the derived category. Namely, suppose that g : X → Y
is a flat morphism of ringed spaces. By Modules, Lemma 17.2 the functor g∗ :
Mod(OY )→ Mod(OX) is exact. Hence it has a derived functor

g∗ : D+(Y )→ D+(X)

which is computed by simply pulling back an representative of a given object in
D+(Y ), see Derived Categories, Lemma 17.8. Hence as indicated we indicate this
functor by g∗ rather than Lg∗.

Lemma 18.1. Let

X ′
g′
//

f ′

��

X

f

��
S′

g // S
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be a commutative diagram of ringed spaces. Let F• be a bounded below complex of
OX-modules. Assume both g and g′ are flat. Then there exists a canonical base
change map

g∗Rf∗F• −→ R(f ′)∗(g
′)∗F•

in D+(S′).

Proof. Choose injective resolutions F• → I• and (g′)∗F• → J •. By Lemma 12.10
we see that (g′)∗J • is a complex of injectives representing R(g′)∗(g

′)∗F•. Hence
by Derived Categories, Lemmas 18.6 and 18.7 the arrow β in the diagram

(g′)∗(g
′)∗F• // (g′)∗J •

F•
adjunction

OO

// I•
β

OO

exists and is unique up to homotopy. Pushing down to S we get

f∗β : f∗I• −→ f∗(g
′)∗J • = g∗(f

′)∗J •

By adjunction of g∗ and g∗ we get a map of complexes g∗f∗I• → (f ′)∗J •. Note
that this map is unique up to homotopy since the only choice in the whole process
was the choice of the map β and everything was done on the level of complexes. �

Remark 18.2. The “correct” version of the base change map is map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•.
The construction of this map involves unbounded complexes, see Remark 29.2.

19. Proper base change in topology

In this section we prove a very general version of the proper base change theorem
in topology. It tells us that the stalks of the higher direct images Rpf∗ can be
computed on the fibre.

Lemma 19.1. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
y ∈ Y . Assume that

(1) X is Hausdorff and locally quasi-compact,
(2) f−1(y) is quasi-compact, and
(3) f is closed.

Then for E in D+(OX) we have (Rf∗E)y = RΓ(f−1(y), E|f−1(y)) in D+(OY,y).

Proof. The base change map of Lemma 18.1 gives a canonical map (Rf∗E)y →
RΓ(f−1(y), E|f−1(y)). To prove this map is an isomorphism, we represent E by a
bounded below complex of injectives I•. By Lemma 17.3 the restrictions In|f−1(y)

are acyclic for Γ(f−1(y),−). Thus RΓ(f−1(y), E|f−1(y)) is represented by the com-

plex Γ(f−1(y), I•|f−1(y)), see Derived Categories, Lemma 17.7. In other words, we
have to show the map

colimV I•(f−1(V )) −→ Γ(f−1(y), I•|f−1(y))

is an isomorphism. Using Lemma 17.3 we see that it suffices to show that the
collection of open neighbourhoods f−1(V ) of f−1(y) is cofinal in the system of all
open neighbourhoods. If f−1(y) ⊂ U is an open neighbourhood, then as f is closed
the set V = Y \ f(X \ U) is an open neighbourhood of y with f−1(V ) ⊂ U . This
proves the lemma. �
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Theorem 19.2 (Proper base change). Consider a cartesian square of Hausdorff,
locally quasi-compact topological spaces

X ′ = Y ′ ×Y X

f ′

��

g′
// X

f

��
Y ′

g // Y

and assume that f is proper. Let E be an object of D+(X). Then the base change
map

g−1Rf∗E −→ Rf ′∗(g
′)−1E

of Lemma 18.1 is an isomorphism in D+(Y ′).

Proof. Let y′ ∈ Y ′ be a point with image y ∈ Y . It suffices to show that the base
change map induces an isomorphism on stalks at y′. As f is proper it follows that
f ′ is proper, the fibres of f and f ′ are quasi-compact and f and f ′ are closed, see
Topology, Theorem 16.5. Thus we can apply Lemma 19.1 twice to see that

(Rf ′∗(g
′)−1E)y′ = RΓ((f ′)−1(y′), (g′)−1E|(f ′)−1(y′))

and

(Rf∗E)y = RΓ(f−1(y), E|f−1(y))

The induced map of fibres (f ′)−1(y′)→ f−1(y) is a homeomorphism of topological
spaces and the pull back of E|f−1(y) is (g′)−1E|(f ′)−1(y′). The desired result follows.

�

20. Cohomology and colimits

Let X be a ringed space. Let (Fi, ϕii′) be a directed system of sheaves of OX -
modules over the partially ordered set I, see Categories, Section 21. Since for each
i there is a canonical map Fi → colimi Fi we get a canonical map

colimiH
p(X,Fi) −→ Hp(X, colimi Fi)

for every p ≥ 0. Of course there is a similar map for every open U ⊂ X. These
maps are in general not isomorphisms, even for p = 0. In this section we generalize
the results of Sheaves, Lemma 29.1. See also Modules, Lemma 11.6 (in the special
case G = OX).

Lemma 20.1. Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) there exists a basis of quasi-compact open subsets, and
(2) the intersection of any two quasi-compact opens is quasi-compact.

Then for any directed system (Fi, ϕii′) of sheaves of OX-modules and for any quasi-
compact open U ⊂ X the canonical map

colimiH
q(U,Fi) −→ Hq(U, colimi Fi)

is an isomorphism for every q ≥ 0.

Proof. It is important in this proof to argue for all quasi-compact opens U ⊂ X
at the same time. The result is true for i = 0 and any quasi-compact open U ⊂ X
by Sheaves, Lemma 29.1 (combined with Topology, Lemma 26.1). Assume that we
have proved the result for all q ≤ q0 and let us prove the result for q = q0 + 1.
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By our conventions on directed systems the index set I is directed, and any system
of OX -modules (Fi, ϕii′) over I is directed. By Injectives, Lemma 5.1 the category
of OX -modules has functorial injective embeddings. Thus for any system (Fi, ϕii′)
there exists a system (Ii, ϕii′) with each Ii an injective OX -module and a morphism
of systems given by injective OX -module maps Fi → Ii. Denote Qi the cokernel
so that we have short exact sequences

0→ Fi → Ii → Qi → 0.

We claim that the sequence

0→ colimi Fi → colimi Ii → colimiQi → 0.

is also a short exact sequence of OX -modules. We may check this on stalks. By
Sheaves, Sections 28 and 29 taking stalks commutes with colimits. Since a di-
rected colimit of short exact sequences of abelian groups is short exact (see Alge-
bra, Lemma 8.9) we deduce the result. We claim that Hq(U, colimi Ii) = 0 for all
quasi-compact open U ⊂ X and all q ≥ 1. Accepting this claim for the moment
consider the diagram

colimiH
q0(U, Ii)

��

// colimiH
q0(U,Qi)

��

// colimiH
q0+1(U,Fi)

��

// 0

��
Hq0(U, colimi Ii) // Hq0(U, colimiQi) // Hq0+1(U, colimi Fi) // 0

The zero at the lower right corner comes from the claim and the zero at the upper
right corner comes from the fact that the sheaves Ii are injective. The top row
is exact by an application of Algebra, Lemma 8.9. Hence by the snake lemma we
deduce the result for q = q0 + 1.

It remains to show that the claim is true. We will use Lemma 12.8. Let B be
the collection of all quasi-compact open subsets of X. This is a basis for the
topology on X by assumption. Let Cov be the collection of finite open coverings
U : U =

⋃
j=1,...,m Uj with each of U , Uj quasi-compact open in X. By the result

for q = 0 we see that for U ∈ Cov we have

Č•(U , colimi Ii) = colimi Č•(U , Ii)

because all the multiple intersections Uj0...jp are quasi-compact. By Lemma 12.1

each of the complexes in the colimit of Čech complexes is acyclic in degree ≥ 1.
Hence by Algebra, Lemma 8.9 we see that also the Čech complex Č•(U , colimi Ii)
is acyclic in degrees ≥ 1. In other words we see that Ȟp(U , colimi Ii) = 0 for all
p ≥ 1. Thus the assumptions of Lemma 12.8 are satisfied and the claim follows. �

Next we formulate the analogy of Sheaves, Lemma 29.4 for cohomology. Let X be
a spectral space which is written as a cofiltered limit of spectral spaces Xi for a
diagram with spectral transition morphisms as in Topology, Lemma 23.5. Assume
given

(1) an abelian sheaf Fi on Xi for all i ∈ Ob(I),
(2) for a : j → i an fa-map ϕa : Fi → Fj of abelian sheaves (see Sheaves,

Definition 21.7)

such that ϕc = ϕb ◦ ϕa whenever c = a ◦ b. Set F = colim p−1
i Fi on X.
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Lemma 20.2. In the situation discussed above. Let i ∈ Ob(I) and let Ui ⊂ Xi be
quasi-compact open. Then

colima:j→iH
p(f−1

a (Ui),Fj) = Hp(p−1
i (Ui),F)

for all p ≥ 0. In particular we have Hp(X,F) = colimHp(Xi,Fi).

Proof. The case p = 0 is Sheaves, Lemma 29.4.

In this paragraph we show that we can find a map of systems (γi) : (Fi, ϕa) →
(Gi, ψa) with Gi an injective abelian sheaf and γi injective. For each i we pick an
injection Fi → Ii where Ii is an injective abelian sheaf on Xi. Then we can consider
the family of maps

γi : Fi −→
∏

b:k→i
fb,∗Ik = Gi

where the component maps are the maps adjoint to the maps f−1
b Fi → Fk → Ik.

For a : j → i in I there is a canonical map

ψa : f−1
a Gi → Gj

whose components are the canonical maps f−1
b fa◦b,∗Ik → fb,∗Ik for b : k → j.

Thus we find an injection {γi} : {Fi, ϕa)→ (Gi, ψa) of systems of abelian sheaves.
Note that Gi is an injective sheaf of abelian groups on Ci, see Lemma 12.10 and
Homology, Lemma 23.3. This finishes the construction.

Arguing exactly as in the proof of Lemma 20.1 we see that it suffices to prove that
Hp(X, colim f−1

i Gi) = 0 for p > 0.

Set G = colim f−1
i Gi. To show vanishing of cohomology of G on every quasi-compact

open of X, it suffices to show that the Čech cohomology of G for any covering U
of a quasi-compact open of X by finitely many quasi-compact opens is zero, see
Lemma 12.8. Such a covering is the inverse by pi of such a covering Ui on the space
Xi for some i by Topology, Lemma 23.6. We have

Č•(U ,G) = colima:j→i Č•(f−1
a (Ui),Gj)

by the case p = 0. The right hand side is a filtered colimit of complexes each of
which is acyclic in positive degrees by Lemma 12.1. Thus we conclude by Algebra,
Lemma 8.9. �

21. Vanishing on Noetherian topological spaces

The aim is to prove a theorem of Grothendieck namely Proposition 21.6. See
[Gro57].

Lemma 21.1. Let i : Z → X be a closed immersion of topological spaces. For any
abelian sheaf F on Z we have Hp(Z,F) = Hp(X, i∗F).

Proof. This is true because i∗ is exact (see Modules, Lemma 6.1), and hence
Rpi∗ = 0 as a functor (Derived Categories, Lemma 17.8). Thus we may apply
Lemma 14.6. �

Lemma 21.2. Let X be an irreducible topological space. Then Hp(X,A) = 0 for
all p > 0 and any abelian group A.
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Proof. Recall that A is the constant sheaf as defined in Sheaves, Definition 7.4. It
is clear that for any nonempty open U ⊂ X we have A(U) = A as X is irreducible
(and hence U is connected). We will show that the higher Čech cohomology groups
Ȟp(U , A) are zero for any open covering U : U =

⋃
i∈I Ui of an open U ⊂ X. Then

the lemma will follow from Lemma 12.7.

Recall that the value of an abelian sheaf on the empty open set is 0. Hence we may
clearly assume Ui 6= ∅ for all i ∈ I. In this case we see that Ui ∩ Ui′ 6= ∅ for all
i, i′ ∈ I. Hence we see that the Čech complex is simply the complex∏

i0∈I
A→

∏
(i0,i1)∈I2

A→
∏

(i0,i1,i2)∈I3
A→ . . .

We have to see this has trivial higher cohomology groups. We can see this for
example because this is the cech complex for the covering of a 1-point space and
Čech cohomology agrees with cohomology on such a space. (You can also directly
verify it by writing an explicit homotopy.) �

Lemma 21.3. Let X be a topological space such that the intersection of any two
quasi-compact opens is quasi-compact. Let F ⊂ Z be a subsheaf generated by finitely
many sections over quasi-compact opens. Then there exists a finite filtration

(0) = F0 ⊂ F1 ⊂ . . . ⊂ Fn = F

by abelian subsheaves such that for each 0 < i ≤ n there exists a short exact sequence

0→ j′!ZV → j!ZU → Fi/Fi−1 → 0

with j : U → X and j′ : V → X the inclusion of quasi-compact opens into X.

Proof. Say F is generated by the sections s1, . . . , st over the quasi-compact opens
U1, . . . , Ut. Since Ui is quasi-compact and si a locally constant function to Z we may
assume, after possibly replacing Ui by the parts of a finite decomposition into open
and closed subsets, that si is a constant section. Say si = ni with ni ∈ Z. Of course
we can remove (Ui, ni) from the list if ni = 0. Flipping signs if necessary we may
also assume ni > 0. Next, for any subset I ⊂ {1, . . . , t} we may add

⋃
i∈I Ui and

gcd(ni, i ∈ I) to the list. After doing this we see that our list (U1, n1), . . . , (Ut, nt)
satisfies the following property: For x ∈ X set Ix = {i ∈ {1, . . . , t} | x ∈ Ui}. Then
gcd(ni, i ∈ Ix) is attained by ni for some i ∈ Ix.

As our filtration we take F0 = (0) and Fn generated by the sections ni over Ui for
those i such that ni ≤ n. It is clear that Fn = F for n� 0. Moreover, the quotient
Fn/Fn−1 is generated by the section n over U =

⋃
ni≤n Ui and the kernel of the

map j!ZU → Fn/Fn−1 is generated by the section n over V =
⋃
ni≤n−1 Ui. Thus a

short exact sequence as in the statment of the lemma. �

Lemma 21.4. Let X be a topological space. Let d ≥ 0 be an integer. Assume

(1) X is quasi-compact,
(2) the quasi-compact opens form a basis for X, and
(3) the intersection of two quasi-compact opens is quasi-compact.
(4) Hp(X, j!ZU ) = 0 for all p > d and any quasi-compact open j : U → X.

Then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.
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Proof. Let S =
∐
U⊂X F(U) where U runs over the quasi-compact opens of X.

For any finite subset A = {s1, . . . , sn} ⊂ S, let FA be the subsheaf of F generated
by all si (see Modules, Definition 4.5). Note that if A ⊂ A′, then FA ⊂ FA′ . Hence
{FA} forms a system over the directed partially ordered set of finite subsets of S.
By Modules, Lemma 4.6 it is clear that

colimA FA = F
by looking at stalks. By Lemma 20.1 we have

Hp(X,F) = colimAH
p(X,FA)

Hence it suffices to prove the vanishing for the abelian sheaves FA. In other words,
it suffices to prove the result when F is generated by finitely many local sections
over quasi-compact opens of X.

Suppose that F is generated by the local sections s1, . . . , sn. Let F ′ ⊂ F be the
subsheaf generated by s1, . . . , sn−1. Then we have a short exact sequence

0→ F ′ → F → F/F ′ → 0

From the long exact sequence of cohomology we see that it suffices to prove the
vanishing for the abelian sheaves F ′ and F/F ′ which are generated by fewer than
n local sections. Hence it suffices to prove the vanishing for sheaves generated by
at most one local section. These sheaves are exactly the quotients of the sheaves
j!ZU where U is a quasi-compact open of X.

Assume now that we have a short exact sequence

0→ K → j!ZU → F → 0

with U quasi-compact open in X. It suffices to show that Hq(X,K) is zero for
q ≥ d+1. As above we can write K as the filtered colimit of subsheaves K′ generated
by finitely many sections over quasi-compact opens. Then F is the filtered colimit
of the sheaves j!ZU/K′. In this way we reduce to the case that K is generated by
finitely many sections over quasi-compact opens. Note that K is a subsheaf of ZX .
Thus by Lemma 21.3 there exists a finite filtration of K whose successive quotients
Q fit into a short exact sequence

0→ j′′! ZW → j′!ZV → Q→ 0

with j′′ : W → X and j′ : V → X the inclusions of quasi-compact opens. Hence
the vanishing of Hp(X,Q) for p > d follows from our assumption (in the lemma)
on the vanishing of the cohomology groups of j′′! ZW and j′!ZV . Returning to K
this, via an induction argument using the long exact cohomology sequence, implies
the desired vanishing for it as well. �

Lemma 21.5. Let X be an irreducible topological space. Let H ⊂ Z be an abelian
subsheaf of the constant sheaf. Then there exists a nonempty open U ⊂ X such
that H|U = dZU for some d ∈ Z.

Proof. Recall that Z(V ) = Z for any nonempty open V of X (see proof of Lemma
21.2). If H = 0, then the lemma holds with d = 0. If H 6= 0, then there exists
a nonempty open U ⊂ X such that H(U) 6= 0. Say H(U) = nZ for some n ≥ 1.
Hence we see that nZU ⊂ H|U ⊂ ZU . If the first inclusion is strict we can find a
nonempty U ′ ⊂ U and an integer 1 ≤ n′ < n such that n′ZU ′ ⊂ H|U ′ ⊂ ZU ′ . This
process has to stop after a finite number of steps, and hence we get the lemma. �
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Proposition 21.6 (Grothendieck). Let X be a Noetherian topological space. If
dim(X) ≤ d, then Hp(X,F) = 0 for all p > d and any abelian sheaf F on X.

Proof. We prove this lemma by induction on d. So fix d and assume the lemma
holds for all Noetherian topological spaces of dimension < d.

Let F be an abelian sheaf on X. Suppose U ⊂ X is an open. Let Z ⊂ X denote
the closed complement. Denote j : U → X and i : Z → X the inclusion maps.
Then there is a short exact sequence

0→ j!j
∗F → F → i∗i

∗F → 0

see Modules, Lemma 7.1. Note that j!j
∗F is supported on the topological closure Z ′

of U , i.e., it is of the form i′∗F ′ for some abelian sheaf F ′ on Z ′, where i′ : Z ′ → X
is the inclusion.

We can use this to reduce to the case where X is irreducible. Namely, according to
Topology, Lemma 8.2 X has finitely many irreducible components. If X has more
than one irreducible component, then let Z ⊂ X be an irreducible component of
X and set U = X \ Z. By the above, and the long exact sequence of cohomology,
it suffices to prove the vanishing of Hp(X, i∗i

∗F) and Hp(X, i′∗F ′) for p > d. By
Lemma 21.1 it suffices to prove Hp(Z, i∗F) and Hp(Z ′,F ′) vanish for p > d. Since
Z ′ and Z have fewer irreducible components we indeed reduce to the case of an
irreducible X.

If d = 0 and X = {∗}, then every sheaf is constant and higher cohomology groups
vanish (for example by Lemma 21.2).

Suppose X is irreducible of dimension d. By Lemma 21.4 we reduce to the case
where F = j!ZU for some open U ⊂ X. In this case we look at the short exact
sequence

0→ j!(ZU )→ ZX → i∗ZZ → 0

where Z = X \ U . By Lemma 21.2 we have the vanishing of Hp(X,ZX) for all
p ≥ 1. By induction we have Hp(X, i∗ZZ) = Hp(Z,ZZ) = 0 for p ≥ d. Hence we
win by the long exact cohomology sequence. �

22. Cohomology with support in a closed

Let X be a topological space and let Z ⊂ X be a closed subset. Let F be an abelian
sheaf on X. We let

ΓZ(X,F) = {s ∈ F(X) | Supp(s) ⊂ Z}
be the sections with support in Z (Modules, Definition 5.1). This is a left exact
functor which is not exact in general. Hence we obtain a derived functor

RΓZ(X,−) : D(X) −→ D(Ab)

and cohomology groups with support in Z defined by Hq
Z(X,F) = RqΓZ(X,F).

Let I be an injective abelian sheaf on X. Let U = X \ Z. Then the restriction
map I(X)→ I(U) is surjective (Lemma 9.1) with kernel ΓZ(X, I). It immediately
follows that for K ∈ D(X) there is a distinguished triangle

RΓZ(X,K)→ RΓ(X,K)→ RΓ(U,K)→ RΓZ(X,K)[1]

in D(Ab). As a consequence we obtain a long exact cohomology sequence

. . .→ Hi
Z(X,K)→ Hi(X,K)→ Hi(U,K)→ Hi+1

Z (X,K)→ . . .
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for any K in D(X).

For an abelian sheaf F on X we can consider the subsheaf of sections with support
in Z, denoted HZ(F), defined by the rule

HZ(F)(U) = {s ∈ F(U) | Supp(s) ⊂ U ∩ Z}
Using the equivalence of Modules, Lemma 6.1 we may view HZ(F) as an abelian
sheaf on Z (see also Modules, Lemmas 6.2 and 6.3). Thus we obtain a functor

Ab(X) −→ Ab(Z), F 7−→ HZ(F) viewed as a sheaf on Z

which is left exact, but in general not exact.

Lemma 22.1. Let i : Z → X be the inclusion of a closed subset. Let I be an
injective abelian sheaf on X. Then HZ(I) is an injective abelian sheaf on Z.

Proof. Observe that for any abelian sheaf G on Z we have

HomZ(G,HZ(F)) = HomX(i∗G,F)

because after all any section of i∗G has support in Z. Since i∗ is exact (Modules,
Lemma 6.1) and I injective on X we conclude that HZ(I) is injective on Z. �

Denote
RHZ : D(X) −→ D(Z)

the derived functor. We set HqZ(F) = RqHZ(F) so that H0
Z(F) = HZ(F). By the

lemma above we have a Grothendieck spectral sequence

Ep,q2 = Hp(Z,HqZ(F))⇒ Hp+q
Z (X,F)

Lemma 22.2. Let i : Z → X be the inclusion of a closed subset. Let G be an
injective abelian sheaf on Z. Then HpZ(i∗G) = 0 for p > 0.

Proof. This is true because the functor i∗ is exact and transforms injective abelian
sheaves into injective abelian sheaves by Lemma 12.10. �

Let X be a topological space and let Z ⊂ X be a closed subset. We denote DZ(X)
the strictly full saturated triangulated subcategory of D(X) consisting of complexes
whose cohomology sheaves are supported on Z.

Lemma 22.3. Let i : Z → X be the inclusion of a closed subset of a topological
space X. The map Ri∗ = i∗ : D(Z) → D(X) induces an equivalence D(Z) →
DZ(X) with quasi-inverse

i−1|DZ(X) = RHZ |DZ(X)

Proof. Recall that i−1 and i∗ is an adjoint pair of exact functors such that i−1i∗ is
isomorphic to the identify functor on abelian sheaves. See Modules, Lemmas 3.3 and
6.1. Thus i∗ : D(Z)→ DZ(X) is fully faithfull and i−1 determines a left inverse. On
the other hand, suppose that K is an object of DZ(X) and consider the adjunction
map K → i∗i

−1K. Using exactness of i∗ and i−1 this induces the adjunction maps
Hn(K) → i∗i

−1Hn(K) on cohomology sheaves. Since these cohomology sheaves
are supported on Z we see these adjunction maps are isomorphisms and we conclude
that D(Z)→ DZ(X) is an equivalence.

To finish the proof we have to show that RHZ(K) = i−1K if K is an object of
DZ(X). To do this we can use that K = i∗i

−1K as we’ve just proved this is the
case. Then we can choose a K-injective representative I• for i−1K. Since i∗ is
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the right adjoint to the exact functor i−1, the complex i∗I• is K-injective (Derived
Categories, Lemma 29.10). We see that RHZ(K) is computed by HZ(i∗I•) = I•
as desired. �

23. Cohomology on spectral spaces

A key result on the cohomology of spectral spaces is Lemma 20.2 which loosely
speaking says that cohomology commutes with cofiltered limits in the category of
spectral spaces as defined in Topology, Definition 22.1. This can be applied to give
analogues of Lemmas 17.3 and 19.1 as follows.

Lemma 23.1. Let X be a spectral space. Let F be an abelian sheaf on X. Let
E ⊂ X be a quasi-compact subset. Let W ⊂ X be the set of points of X which
specialize to a point of E.

(1) Hp(W,F|W ) = colimHp(U,F) where the colimit is over quasi-compact
open neighbourhoods of E,

(2) Hp(W \E,F|W\E) = colimHp(U \E,F|U\E) if E is a constructible subset.

Proof. From Topology, Lemma 23.7 we see that W = limU where the limit is over
the quasi-compact opens containing E. Each U is a spectral space by Topology,
Lemma 22.4. Thus we may apply Lemma 20.2 to conclude that (1) holds. The
same proof works for part (2) except we use Topology, Lemma 23.8. �

Lemma 23.2. Let f : X → Y be a spectral map of spectral spaces. Let y ∈ Y . Let
E ⊂ Y be the set of points specializing to y. Let F be an abelian sheaf on X. Then
(Rpf∗F)y = Hp(f−1(E),F|f−1(E)).

Proof. Observe that E =
⋂
V where V runs over the quasi-compact open neigh-

brouhoods of y in Y . Hence f−1(E) =
⋂
f−1(V ). This implies that f−1(E) =

lim f−1(V ) as topological spaces. Since f is spectral, each f−1(V ) is a spectral
space too (Topology, Lemma 22.4). We conclude that f−1(E) is a spectral space
and that

Hp(f−1(E),F|f−1(E)) = colimHp(f−1(V ),F)

by Lemma 20.2. On the other hand, the stalk of Rpf∗F at y is given by the colimit
on the right. �

Lemma 23.3. Let X be a profinite topological space. Then Hq(X,F) = 0 for all
q > 0 and all abelian sheaves F .

Proof. Any open covering of X can be refined by a finite disjoint union decompo-
sition with open parts, see Topology, Lemma 21.3. Hence if F → G is a surjection
of abelian sheaves on X, then F(X) → G(X) is surjective. In other words, the
global sections functor is an exact functor. Therefore its higher derived functors
are zero, see Derived Categories, Lemma 17.8. �

The following result on cohomological vanishing improves Grothendieck’s result
(Proposition 21.6) and can be found in [Sch92].

Proposition 23.4. Let X be a spectral space of Krull dimension d. Let F be an
abelian sheaf on X.

(1) Hq(X,F) = 0 for q > d,
(2) Hd(X,F)→ Hd(U,F) is surjective for every quasi-compact open U ⊂ X,
(3) Hq

Z(X,F) = 0 for q > d and any constructible closed subset Z ⊂ X.
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Proof. We prove this result by induction on d.

If d = 0, then X is a profinite space, see Topology, Lemma 22.7. Thus (1) holds
by Lemma 23.3. If U ⊂ X is quasi-compact open, then U is also closed as a quasi-
compact subset of a Hausdorff space. Hence X = U

∐
(X \U) as a topological space

and we see that (2) holds. Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are profinite (namely U is quasi-compact because Z is
constructible) and since we have (2) and (1) we obtain the desired vanishing of the
cohomology groups with support in Z.

Induction step. Assume d ≥ 1 and assume the proposition is valid for all spectral
spaces of dimension < d. We first prove part (2) for X. Let U be a quasi-compact
open. Let ξ ∈ Hd(U,F). Set Z = X \ U . Let W ⊂ X be the set of points
specializing to Z. By Lemma 23.1 we have

Hd(W \ Z,F|W\Z) = colimZ⊂V H
d(V \ Z,F)

where the colimit is over the quasi-compact open neighbourhoods V of Z in X. By
Topology, Lemma 23.7 we see that W \Z is a spectral space. Since every point of W
specializes to a point of Z, we see that W \Z is a spectral space of Krull dimension
< d. By induction hypothesis we see that the image of ξ in Hd(W \ Z,F|W\Z) is
zero. By the displayed formula, there exists a Z ⊂ V ⊂ X quasi-compact open such
that ξ|V \Z = 0. Since V \ Z = V ∩ U we conclude by the Mayer-Vietoris (Lemma

9.2) for the covering X = U ∩ V that there exists a ξ̃ ∈ Hd(X,F) which restricts
to ξ on U and to zero on V . In other words, part (2) is true.

Proof of part (1) assuming (2). Choose an injective resolution F → I•. Set

G = Im(Id−1 → Id) = Ker(Id → Id+1)

For U ⊂ X quasi-compact open we have a map of exact sequences as follows

Id−1(X) //

��

G(X) //

��

Hd(X,F)

��

// 0

Id−1(U) // G(U) // Hd(U,F) // 0

The sheaf Id−1 is flasque by Lemma 13.2 and the fact that d ≥ 1. By part (2) we see
that the right vertical arrow is surjective. We conclude by a diagram chase that the
map G(X) → G(U) is surjective. By Lemma 13.6 we conclude that Ȟq(U ,G) = 0
for q > 0 and any finite covering U : U = U1 ∪ . . . ∪ Un of a quasi-compact open
by quasi-compact opens. Applying Lemma 12.8 we find that Hq(U,G) = 0 for all
q > 0 and all quasi-compact opens U of X. By Leray’s acyclicity lemma (Derived
Categories, Lemma 17.7) we conclude that

Hq(X,F) = Hq
(
Γ(X, I0)→ . . .→ Γ(X, Id−1)→ Γ(X,G)

)
In particular the cohomology group vanishes if q > d.

Proof of (3). Given Z as in (3) we consider the long exact sequence

Hq−1(X,F)→ Hq−1(X \ Z,F)→ Hq
Z(X,F)→ Hq(X,F)

Since X and U = X \ Z are spectral spaces (Topology, Lemma 22.4) of dimension
≤ d and since we have (2) and (1) we obtain the desired vanishing. �
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24. The alternating Čech complex

This section compares the Čech complex with the alternating Čech complex and
some related complexes.

Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open covering. For p ≥ 0

set

Čpalt(U ,F) =

{
s ∈ Čp(U ,F) such that si0...ip = 0 if in = im for some n 6= m

and si0...in...im...ip = −si0...im...in...ip in any case.

}
We omit the verification that the differential d of Equation (10.0.1) maps Čpalt(U ,F)

into Čp+1
alt (U ,F).

Definition 24.1. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an

open covering. Let F be an abelian presheaf on X. The complex Č•alt(U ,F) is the

alternating Čech complex associated to F and the open covering U .

Hence there is a canonical morphism of complexes

Č•alt(U ,F) −→ Č•(U ,F)

namely the inclusion of the alternating Čech complex into the usual Čech complex.

Suppose our covering U : U =
⋃
i∈I Ui comes equipped with a total ordering < on

I. In this case, set

Čpord(U ,F) =
∏

(i0,...,ip)∈Ip+1,i0<...<ip
F(Ui0...ip).

This is an abelian group. For s ∈ Čpord(U ,F) we denote si0...ip its value in F(Ui0...ip).
We define

d : Čpord(U ,F) −→ Čp+1
ord (U ,F)

by the formula

d(s)i0...ip+1
=
∑p+1

j=0
(−1)jsi0...̂ij ...ip |Ui0...ip+1

for any i0 < . . . < ip+1. Note that this formula is identical to Equation (10.0.1). It

is straightforward to see that d ◦ d = 0. In other words Č•ord(U ,F) is a complex.

Definition 24.2. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume given a total ordering on I. Let F be an abelian presheaf on
X. The complex Č•ord(U ,F) is the ordered Čech complex associated to F , the open
covering U and the given total ordering on I.

This complex is sometimes called the alternating Čech complex. The reason is that
there is an obvious comparison map between the ordered Čech complex and the
alternating Čech complex. Namely, consider the map

c : Č•ord(U ,F) −→ Č•(U ,F)

given by the rule

c(s)i0...ip =

{
0 if in = im for some n 6= m

sgn(σ)siσ(0)...iσ(p) if iσ(0) < iσ(1) < . . . < iσ(p)

Here σ denotes a permutation of {0, . . . , p} and sgn(σ) denotes its sign. The al-
ternating and ordered Čech complexes are often identified in the literature via the
map c. Namely we have the following easy lemma.
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Lemma 24.3. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map c is a morphism
of complexes. In fact it induces an isomorphism

c : Č•ord(U ,F)→ Č•alt(U ,F)

of complexes.

Proof. Omitted. �

There is also a map

π : Č•(U ,F) −→ Č•ord(U ,F)

which is described by the rule

π(s)i0...ip = si0...ip

whenever i0 < i1 < . . . < ip.

Lemma 24.4. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open

covering. Assume I comes equipped with a total ordering. The map π : Č•(U ,F)→
Č•ord(U ,F) is a morphism of complexes. It induces an isomorphism

π : Č•alt(U ,F)→ Č•ord(U ,F)

of complexes which is a left inverse to the morphism c.

Proof. Omitted. �

Remark 24.5. This means that if we have two total orderings <1 and <2 on the
index set I, then we get an isomorphism of complexes τ = π2 ◦ c1 : Čord-1(U ,F)→
Čord-2(U ,F). It is clear that

τ(s)i0...ip = sign(σ)siσ(0)...iσ(p)

where i0 <1 i1 <1 . . . <1 ip and iσ(0) <2 iσ(1) <2 . . . <2 iσ(p). This is the sense in

which the ordered Čech complex is independent of the chosen total ordering.

Lemma 24.6. Let X be a topological space. Let U : U =
⋃
i∈I Ui be an open cov-

ering. Assume I comes equipped with a total ordering. The map c ◦ π is homotopic
to the identity on Č•(U ,F). In particular the inclusion map Č•alt(U ,F)→ Č•(U ,F)
is a homotopy equivalence.

Proof. For any multi-index (i0, . . . , ip) ∈ Ip+1 there exists a unique permutation
σ : {0, . . . , p} → {0, . . . , p} such that

iσ(0) ≤ iσ(1) ≤ . . . ≤ iσ(p) and σ(j) < σ(j + 1) if iσ(j) = iσ(j+1).

We denote this permutation σ = σi0...ip .

For any permutation σ : {0, . . . , p} → {0, . . . , p} and any a, 0 ≤ a ≤ p we denote
σa the permutation of {0, . . . , p} such that

σa(j) =

{
σ(j) if 0 ≤ j < a,

min{j′ | j′ > σa(j − 1), j′ 6= σ(k),∀k < a} if a ≤ j
So if p = 3 and σ, τ are given by

id 0 1 2 3
σ 3 2 1 0

and
id 0 1 2 3
τ 3 0 2 1
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then we have
id 0 1 2 3
σ0 0 1 2 3
σ1 3 0 1 2
σ2 3 2 0 1
σ3 3 2 1 0

and

id 0 1 2 3
τ0 0 1 2 3
τ1 3 0 1 2
τ2 3 0 1 2
τ3 3 0 2 1

It is clear that always σ0 = id and σp = σ.

Having introduced this notation we define for s ∈ Čp+1(U ,F) the element h(s) ∈
Čp(U ,F) to be the element with components

(24.6.1) h(s)i0...ip =
∑

0≤a≤p
(−1)asign(σa)siσ(0)...iσ(a)iσa(a)...iσa(p)

where σ = σi0...ip . The index iσ(a) occurs twice in iσ(0) . . . iσ(a)iσa(a) . . . iσa(p) once
in the first group of a+ 1 indices and once in the second group of p− a+ 1 indices
since σa(j) = σ(a) for some j ≥ a by definition of σa. Hence the sum makes sense
since each of the elements siσ(0)...iσ(a)iσa(a)...iσa(p)

is defined over the open Ui0...ip .

Note also that for a = 0 we get si0...ip and for a = p we get (−1)psign(σ)siσ(0)...iσ(p) .

We claim that

(dh+ hd)(s)i0...ip = si0...ip − sign(σ)siσ(0)...iσ(p)

where σ = σi0...ip . We omit the verification of this claim. (There is a PARI/gp
script called first-homotopy.gp in the stacks-project subdirectory scripts which can
be used to check finitely many instances of this claim. We wrote this script to make
sure the signs are correct.) Write

κ : Č•(U ,F) −→ Č•(U ,F)

for the operator given by the rule

κ(s)i0...ip = sign(σi0...ip)siσ(0)...iσ(p) .

The claim above implies that κ is a morphism of complexes and that κ is homotopic
to the identity map of the Čech complex. This does not immediately imply the
lemma since the image of the operator κ is not the alternating subcomplex. Namely,
the image of κ is the “semi-alternating” complex Čpsemi-alt(U ,F) where s is a p-
cochain of this complex if and only if

si0...ip = sign(σ)siσ(0)...iσ(p)

for any (i0, . . . , ip) ∈ Ip+1 with σ = σi0...ip . We introduce yet another variant Čech

complex, namely the semi-ordered Čech complex defined by

Čpsemi-ord(U ,F) =
∏

i0≤i1≤...≤ip
F(Ui0...ip)

It is easy to see that Equation (10.0.1) also defines a differential and hence that we
get a complex. It is also clear (analogous to Lemma 24.4) that the projection map

Č•semi-alt(U ,F) −→ Č•semi-ord(U ,F)

is an isomorphism of complexes.

Hence the Lemma follows if we can show that the obvious inclusion map

Čpord(U ,F) −→ Čpsemi-ord(U ,F)
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is a homotopy equivalence. To see this we use the homotopy
(24.6.2)

h(s)i0...ip =

{
0 if i0 < i1 < . . . < ip

(−1)asi0...ia−1iaiaia+1...ip if i0 < i1 < . . . < ia−1 < ia = ia+1

We claim that

(dh+ hd)(s)i0...ip =

{
0 if i0 < i1 < . . . < ip

si0...ip else

We omit the verification. (There is a PARI/gp script called second-homotopy.gp
in the stacks-project subdirectory scripts which can be used to check finitely many
instances of this claim. We wrote this script to make sure the signs are correct.)
The claim clearly shows that the composition

Č•semi-ord(U ,F) −→ Č•ord(U ,F) −→ Č•semi-ord(U ,F)

of the projection with the natural inclusion is homotopic to the identity map as
desired. �

25. Alternative view of the Čech complex

In this section we discuss an alternative way to establish the relationship between
the Čech complex and cohomology.

Lemma 25.1. Let X be a ringed space. Let U : X =
⋃
i∈I Ui be an open covering

of X. Let F be an OX-module. Denote Fi0...ip the restriction of F to Ui0...ip . There
exists a complex C•(U ,F) of OX-modules with

Cp(U ,F) =
∏

i0...ip
(ji0...ip)∗Fi0...ip

and differential d : Cp(U ,F) → Cp+1(U ,F) as in Equation (10.0.1). Moreover,
there exists a canonical map

F → C•(U ,F)

which is a quasi-isomorphism, i.e., C•(U ,F) is a resolution of F .

Proof. We check
0→ F → C0(U ,F)→ C1(U ,F)→ . . .

is exact on stalks. Let x ∈ X and choose ifix ∈ I such that x ∈ Uifix . Then define

h : Cp(U ,F)x → Cp−1(U ,F)x

as follows: If s ∈ Cp(U ,F)x, take a representative

s̃ ∈ Cp(U ,F)(V ) =
∏

i0...ip
F(V ∩ Ui0 ∩ . . . ∩ Uip)

defined on some neighborhood V of x, and set

h(s)i0...ip−1 = s̃ifixi0...ip−1,x.

By the same formula (for p = 0) we get a map C0(U ,F)x → Fx. We compute
formally as follows:

(dh+ hd)(s)i0...ip =
∑p

j=0
(−1)jh(s)i0...̂ij ...ip + d(s)ifixi0...ip

=
∑p

j=0
(−1)jsifixi0...̂ij ...ip + si0...ip +

∑p

j=0
(−1)j+1sifixi0...̂ij ...ip

=si0...ip
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This shows h is a homotopy from the identity map of the extended complex

0→ Fx → C0(U ,F)x → C1(U ,F)x → . . .

to zero and we conclude. �

With this lemma it is easy to reprove the Čech to cohomology spectral sequence
of Lemma 12.4. Namely, let X, U , F as in Lemma 25.1 and let F → I• be an
injective resolution. Then we may consider the double complex

A•,• = Γ(X,C•(U , I•)).

By construction we have

Ap,q =
∏

i0...ip
Iq(Ui0...ip)

Consider the two spectral sequences of Homology, Section 22 associated to this
double complex, see especially Homology, Lemma 22.4. For the spectral sequence
(′Er,

′dr)r≥0 we get ′Ep,q2 = Ȟp(U , Hq(F)) because taking products is exact (Ho-
mology, Lemma 28.1). For the spectral sequence (′′Er,

′′dr)r≥0 we get ′′Ep,q2 = 0

if p > 0 and ′′E0,q
2 = Hq(X,F). Namely, for fixed q the complex of sheaves

C•(U , Iq) is a resolution (Lemma 25.1) of the injective sheaf Iq by injective sheaves
(by Lemmas 7.1 and 12.10 and Homology, Lemma 23.3). Hence the cohomology
of Γ(X,C•(U , Iq)) is zero in positive degrees and equal to Γ(X, Iq) in degree 0.
Taking cohomology of the next differential we get our claim about the spectral
sequence (′′Er,

′′dr)r≥0. Whence the result since both spectral sequences converge
to the cohomology of the associated total complex of A•,•.

Definition 25.2. Let X be a topological space. An open covering X =
⋃
i∈I Ui is

said to be locally finite if for every x ∈ X there exists an open neighbourhood W
of x such that {i ∈ I |W ∩ Ui 6= ∅} is finite.

Remark 25.3. Let X =
⋃
i∈I Ui be a locally finite open covering. Denote ji :

Ui → X the inclusion map. Suppose that for each i we are given an abelian sheaf
Fi on Ui. Consider the abelian sheaf G =

⊕
i∈I(ji)∗Fi. Then for V ⊂ X open we

actually have

Γ(V,G) =
∏

i∈I
Fi(V ∩ Ui).

In other words we have ⊕
i∈I

(ji)∗Fi =
∏

i∈I
(ji)∗Fi

This seems strange until you realize that the direct sum of a collection of sheaves is
the sheafification of what you think it should be. See discussion in Modules, Section
3. Thus we conclude that in this case the complex of Lemma 25.1 has terms

Cp(U ,F) =
⊕

i0...ip
(ji0...ip)∗Fi0...ip

which is sometimes useful.
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26. Čech cohomology of complexes

In general for sheaves of abelian groups F and G on X there is a cupproduct map

Hi(X,F)×Hj(X,G) −→ Hi+j(X,F ⊗Z G).

In this section we define it using Čech cocycles by an explicit formula for the cup
product. If you are worried about the fact that cohomology may not equal Čech co-
homology, then you can use hypercoverings and still use the cocycle notation. This
also has the advantage that it works to define the cup product for hypercohomology
on any topos (insert future reference here).

Let F• be a bounded below complex of presheaves of abelian groups on X. We
can often compute Hn(X,F•) using Čech cocycles. Namely, let U : X =

⋃
i∈I Ui

be an open covering of X. Since the Čech complex Č•(U ,F) (Definition 10.1) is
functorial in the presheaf F we obtain a double complex Č•(U ,F•). The associated
total complex to Č•(U ,F•) is the complex with degree n term

Totn(Č•(U ,F•)) =
⊕

p+q=n

∏
i0...ip

Fq(Ui0...ip)

see Homology, Definition 22.3. A typical element in Totn will be denoted α =
{αi0...ip} where αi0...ip ∈ Fq(Ui0...ip). In other words the F-degree of αi0...ip is
q = n − p. This notation requires us to be aware of the degree α lives in at all
times. We indicate this situation by the formula degF (αi0...ip) = q. According to
our conventions in Homology, Definition 22.3 the differential of an element α of
degree n is given by

d(α)i0...ip+1
=
∑p+1

j=0
(−1)jαi0...̂ij ...ip+1

+ (−1)p+1dF (αi0...ip+1
)

where dF denotes the differential on the complex F•. The expression αi0...̂ij ...ip+1

means the restriction of αi0...̂ij ...ip+1
∈ F(Ui0...̂ij ...ip+1

) to Ui0...ip+1
.

The construction of Tot(Č•(U ,F•)) is functorial in F•. As well there is a functorial
transformation

(26.0.1) Γ(X,F•) −→ Tot(Č•(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Refinements. Let V = {Vj}j∈J be a refinement of U . This means there is a map
t : J → I such that Vj ⊂ Ut(j) for all j ∈ J . This gives rise to a functorial
transformation

(26.0.2) Tt : Tot(Č•(U ,F•)) −→ Tot(Č•(V,F•)).

defined by the rule

Tt(α)j0...jp = αt(j0)...t(jp)|Vj0...jp .

Given two maps t, t′ : J → I as above the maps Tt and Tt′ constructed above are
homotopic. The homotopy is given by

h(α)j0...jp =
∑p

a=0
(−1)aαt(j0)...t(ja)t′(ja)...t′(jp)
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for an element α of degree n. This works because of the following computation,
again with α an element of degree n (so d(α) has degree n+ 1 and h(α) has degree
n− 1):

(d(h(α)) + h(d(α)))j0...jp =
∑p

k=0
(−1)kh(α)j0...ĵk...jp+

(−1)pdF (h(α)j0...jp)+∑p

a=0
(−1)ad(α)t(j0)...t(ja)t′(ja)...t′(jp)

=
∑p

k=0

∑k−1

a=0
(−1)k+aα

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)
+∑p

k=0

∑p

a=k+1
(−1)k+a−1α

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)
+∑p

a=0
(−1)p+adF (αt(j0)...t(ja)t′(ja)...t′(jp))+∑p

a=0

∑a

k=0
(−1)a+kα

t(j0)... ˆt(jk)...t(ja)t′(ja)...t′(jp)
+∑p

a=0

∑p

k=a
(−1)a+k+1α

t(j0)...t(ja)t′(ja)... ˆt′(jk)...t′(jp)
+∑p

a=0
(−1)a+p+1dF (αt(j0)...t(ja)t′(ja)...t′(jp))

= αt′(j0)...t′(jp) + (−1)2p+1αt(j0)...t(jp)

= Tt′(α)j0...jp − Tt(α)j0...jp

We leave it to the reader to verify the cancellations. (Note that the terms having
both k and a in the 1st, 2nd and 4th, 5th summands cancel, except the ones where
a = k which only occur in the 4th and 5th and these cancel against each other
except for the two desired terms.) It follows that the induced map

Hn(Tt) : Hn(Tot(Č•(U ,F•)))→ Hn(Tot(Č•(V,F•)))

is independent of the choice of t. We define Čech hypercohomology as the limit of
the Čech cohomology groups over all refinements via the maps H•(Tt).

In the limit (over all open coverings of X) the following lemma provides a map
of Čech hypercohomology into cohomology, which is often an isomorphism and is
always an isomorphism if we use hypercoverings.

Lemma 26.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be an open

covering. For a bounded below complex F• of OX-modules there is a canonical map

Tot(Č•(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (26.0.1) and (26.0.2). There is a spectral
sequence (Er, dr)r≥0 with

Ep,q2 = Hp(Tot(Č•(U , Hq(F•))

converging to Hp+q(X,F•).

Proof. Let I• be a bounded below complex of injectives. The map (26.0.1) for
I• is a map Γ(X, I•)→ Tot(Č•(U , I•)). This is a quasi-isomorphism of complexes
of abelian groups as follows from Homology, Lemma 22.7 applied to the double
complex Č•(U , I•) using Lemma 12.1. Suppose F• → I• is a quasi-isomorphism of
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F• into a bounded below complex of injectives. Since RΓ(X,F•) is represented by
the complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•(U ,F•)) −→ Tot(Č•(U , I•)).
We omit the verification of functoriality and compatibilities. To construct the
spectral sequence of the lemma, choose a Cartan-Eilenberg resolution F• → I•,•,
see Derived Categories, Lemma 21.2. In this case F• → Tot(I•,•) is an injective
resolution and hence

Tot(Č•(U ,Tot(I•,•)))
computes RΓ(X,F•) as we’ve seen above. By Homology, Remark 22.9 we can
view this as the total complex associated to the triple complex Č•(U , I•,•) hence,
using the same remark we can view it as the total complex associate to the double
complex A•,• with terms

An,m =
⊕

p+q=n
Čp(U , Iq,m)

Since Iq,• is an injective resolution of Fq we can apply the first spectral sequence
associated to A•,• (Homology, Lemma 22.4) to get a spectral sequence with

En,m1 =
⊕

p+q=n
Čp(U , Hm(Fq))

which is the nth term of the complex Tot(Č•(U , Hm(F•)). Hence we obtain E2

terms as described in the lemma. Convergence by Homology, Lemma 22.6. �

Let X be a topological space, let U : X =
⋃
i∈I Ui be an open covering, and let F•

be a bounded below complex of presheaves of abelian groups. Consider the map
τ : Tot(Č•(U ,F•))→ Tot(Č•(U ,F•)) defined by

τ(α)i0...ip = (−1)p(p+1)/2αip...i0 .

Then we have for an element α of degree n that

d(τ(α))i0...ip+1

=
∑p+1

j=0
(−1)jτ(α)i0...̂ij ...ip+1

+ (−1)p+1dF (τ(α)i0...ip+1)

=
∑p+1

j=0
(−1)j+

p(p+1)
2 αip+1...̂ij ...i0

+ (−1)p+1+
(p+1)(p+2)

2 dF (αip+1...i0)

On the other hand we have

τ(d(α))i0...ip+1

= (−1)
(p+1)(p+2)

2 d(α)ip+1...i0

= (−1)
(p+1)(p+2)

2

(∑p+1

j=0
(−1)jαip+1...̂ip+1−j ...i0

+ (−1)p+1dF (αip+1...i0)

)
Thus we conclude that d(τ(α)) = τ(d(α)) because p(p+ 1)/2 ≡ (p+ 1)(p+ 2)/2 +
p+ 1 mod 2. In other words τ is an endomorphism of the complex Tot(Č•(U ,F•)).
Note that the diagram

Γ(X,F•) −→ Tot(Č•(U ,F•))
↓ id ↓ τ

Γ(X,F•) −→ Tot(Č•(U ,F•))
commutes. In addition τ is clearly compatible with refinements. This suggests
that τ acts as the identity on Čech cohomology (i.e., in the limit – provided Čech
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hypercohomology agrees with hypercohomology, which is always the case if we use
hypercoverings). We claim that τ actually is homotopic to the identity on the total
Čech complex Tot(Č•(U ,F•)). To prove this, we use as homotopy

h(α)i0...ip =
∑p

a=0
εp(a)αi0...iaip...ia with εp(a) = (−1)

(p−a)(p−a−1)
2 +p

for α of degree n. As usual we omit writing |Ui0...ip . This works because of the
following computation, again with α an element of degree n:

(d(h(α)) + h(d(α)))i0...ip =
∑p

k=0
(−1)kh(α)i0...̂ik...ip+

(−1)pdF (h(α)i0...ip)+∑p

a=0
εp(a)d(α)i0...iaip...ia

=
∑p

k=0

∑k−1

a=0
(−1)kεp−1(a)αi0...iaip...îk...ia+∑p

k=0

∑p

a=k+1
(−1)kεp−1(a− 1)αi0...îk...iaip...ia+∑p

a=0
(−1)pεp(a)dF (αi0...iaip...ia)+∑p

a=0

∑a

k=0
εp(a)(−1)kαi0...îk...iaip...ia+∑p

a=0

∑p

k=a
εp(a)(−1)p+a+1−kαi0...iaip...îk...ia+∑p

a=0
εp(a)(−1)p+1dF (αi0...iaip...ia)

=εp(0)αip...i0 + εp(p)(−1)p+1αi0...ip

=(−1)
p(p+1)

2 αip...i0 − αi0...ip
The cancellations follow because

(−1)kεp−1(a) + εp(a)(−1)p+a+1−k = 0 and (−1)kεp−1(a− 1) + εp(a)(−1)k = 0

We leave it to the reader to verify the cancellations.

Suppose we have two bounded below complexes complexes of abelian sheaves F•
and G•. We define the complex Tot(F• ⊗Z G•) to be to complex with terms⊕

p+q=n Fp ⊗ Gq and differential according to the rule

(26.1.1) d(α⊗ β) = d(α)⊗ β + (−1)deg(α)α⊗ d(β)

when α and β are homogeneous, see Homology, Definition 22.3.

Suppose that M• and N• are two bounded below complexes of abelian groups.
Then if m, resp. n is a cocycle for M•, resp. N•, it is immediate that m ⊗ n is a
cocycle for Tot(M• ⊗N•). Hence a cupproduct

Hi(M•)×Hj(N•) −→ Hi+j(Tot(M• ⊗N•)).

This is discussed also in More on Algebra, Section 49.

So the construction of the cup product in hypercohomology of complexes rests on
a construction of a map of complexes

(26.1.2) Tot
(
Tot(Č•(U ,F•))⊗Z Tot(Č•(U ,G•))

)
−→ Tot(Č•(U ,Tot(F• ⊗ G•)))



46 COHOMOLOGY OF SHEAVES

This map is denoted ∪ and is given by the rule

(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ⊗ βir...ip .

where α has degree n and β has degree m and with

ε(n,m, p, r) = (−1)(p+r)n+rp+r.

Note that ε(n,m, p, n) = 1. Hence if F• = F [0] is the complex consisting in a single
abelian sheaf F placed in degree 0, then there no signs in the formula for ∪ (as
in that case αi0...ir = 0 unless r = n). For an explanation of why there has to be
a sign and how to compute it see [AGV71, Exposee XVII] by Deligne. To check
(26.1.2) is a map of complexes we have to show that

d(α ∪ β) = d(α) ∪ β + (−1)deg(α)α ∪ d(β)

by the definition of the differential on Tot(Tot(Č•(U ,F•)) ⊗Z Tot(Č•(U ,G•))) as
given in Homology, Definition 22.3. We compute first

d(α ∪ β)i0...ip+1
=
∑p+1

j=0
(−1)j(α ∪ β)i0...̂ij ...ip+1

+ (−1)p+1dF⊗G((α ∪ β)i0...ip+1
)

=
∑p+1

j=0

∑j−1

r=0
(−1)jε(n,m, p, r)αi0...ir ⊗ βir...̂ij ...ip+1

+∑p+1

j=0

∑p+1

r=j+1
(−1)jε(n,m, p, r − 1)αi0...̂ij ...ir ⊗ βir...ip+1

+∑p+1

r=0
(−1)p+1ε(n,m, p+ 1, r)dF⊗G(αi0...ir ⊗ βir...ip+1

)

and note that the summands in the last term equal

(−1)p+1ε(n,m, p+ 1, r)
(
dF (αi0...ir )⊗ βir...ip+1 + (−1)n−rαi0...ir ⊗ dG(βir...ip+1)

)
.

because degF (αi0...ir ) = n− r. On the other hand

(d(α) ∪ β)i0...ip+1 =
∑p+1

r=0
ε(n+ 1,m, p+ 1, r)d(α)i0...ir ⊗ βir...ip+1

=
∑p+1

r=0

∑r

j=0
ε(n+ 1,m, p+ 1, r)(−1)jαi0...îj ...ir ⊗ βir...ip+1

+∑p+1

r=0
ε(n+ 1,m, p+ 1, r)(−1)rdF (αi0...ir )⊗ βir...ip+1

and

(α ∪ d(β))i0...ip+1
=
∑p+1

r=0
ε(n,m+ 1, p+ 1, r)αi0...ir ⊗ d(β)ir...ip+1

=
∑p+1

r=0

∑p+1

j=r
ε(n,m+ 1, p+ 1, r)(−1)j−rαi0...ir ⊗ βir...îj ...ip+1

+∑p+1

r=0
ε(n,m+ 1, p+ 1, r)(−1)p+1−rαi0...ir ⊗ dG(βir...ip+1

)

The desired equality holds if we have

(−1)p+1ε(n,m, p+ 1, r) = ε(n+ 1,m, p+ 1, r)(−1)r

(−1)p+1ε(n,m, p+ 1, r)(−1)n−r = (−1)nε(n,m+ 1, p+ 1, r)(−1)p+1−r

ε(n+ 1,m, p+ 1, r)(−1)r = (−1)1+nε(n,m+ 1, p+ 1, r − 1)

(−1)jε(n,m, p, r) = (−1)nε(n,m+ 1, p+ 1, r)(−1)j−r

(−1)jε(n,m, p, r − 1) = ε(n+ 1,m, p+ 1, r)(−1)j
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(The third equality is necessary to get the terms with r = j from d(α) ∪ β and
(−1)nα ∪ d(β) to cancel each other.) We leave the verifications to the reader.
(Alternatively, check the script signs.gp in the scripts subdirectory of the stacks
project.)

Associativity of the cupproduct. Suppose that F•, G• and H• are bounded below
complexes of abelian groups on X. The obvious map (without the intervention of
signs) is an isomorphism of complexes

Tot(Tot(F• ⊗Z G•)⊗Z H•) −→ Tot(F• ⊗Z Tot(G• ⊗Z H•)).

Another way to say this is that the triple complex F• ⊗Z G• ⊗Z H• gives rise to a
well defined total complex with differential satisfying

d(α⊗β⊗γ) = d(α)⊗β⊗γ+(−1)deg(α)α⊗d(β)⊗γ+(−1)deg(α)+deg(β)α⊗β⊗d(γ)

for homogeneous elements. Using this map it is easy to verify that

(α ∪ β) ∪ γ = α ∪ (β ∪ γ)

namely, if α has degree a, β has degree b and γ has degree c, then

((α ∪ β) ∪ γ)i0...ip =
∑p

r=0
ε(a+ b, c, p, r)(α ∪ β)i0...ir ⊗ γir...ip

=
∑p

r=0

∑r

s=0
ε(a+ b, c, p, r)ε(a, b, r, s)αi0...is ⊗ βis...ir ⊗ γir...ip

and

(α ∪ (β ∪ γ)i0...ip =
∑p

s=0
ε(a, b+ c, p, s)αi0...is ⊗ (β ∪ γ)is...ip

=
∑p

s=0

∑p

r=s
ε(a, b+ c, p, s)ε(b, c, p− s, r − s)αi0...is ⊗ βis...ir ⊗ γir...ip

and a trivial mod 2 calculation shows the signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the stacks project.)

Finally, we indicate why the cup product preserves a graded commutative structure,
at least on a cohomological level. For this we use the operator τ introduced above.
Let F• be a bounded below complexes of abelian groups, and assume we are given
a graded commutative multiplication

∧• : Tot(F• ⊗F•) −→ F•.

This means the following: For s a local section of Fa, and t a local section of Fb
we have s ∧ t a local section of Fa+b. Graded commutative means we have s ∧ t =
(−1)abt∧ s. Since ∧ is a map of complexes we have d(s∧ t) = d(s)∧ t+ (−1)as∧ t.
The composition

Tot(Tot(Č•(U ,F•))⊗Tot(Č•(U ,F•)))→ Tot(Č•(U ,Tot(F•⊗ZF•)))→ Tot(Č•(U ,F•))

induces a cup product on cohomology

Hn(Tot(Č•(U ,F•)))×Hm(Tot(Č•(U ,F•))) −→ Hn+m(Tot(Č•(U ,F•)))

and so in the limit also a product on Čech cohomology and therefore (using hy-
percoverings if needed) a product in cohomology of F•. We claim this product
(on cohomology) is graded commutative as well. To prove this we first consider
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an element α of degree n in Tot(Č•(U ,F•)) and an element β of degree m in
Tot(Č•(U ,F•)) and we compute

∧•(α ∪ β)i0...ip =
∑p

r=0
ε(n,m, p, r)αi0...ir ∧ βir...ip

=
∑p

r=0
ε(n,m, p, r)(−1)deg(αi0...ir ) deg(βir...ip )βir...ip ∧ αi0...ir

because ∧ is graded commutative. On the other hand we have

τ(∧•(τ(β) ∪ τ(α)))i0...ip =χ(p)
∑p

r=0
ε(m,n, p, r)τ(β)ip...ip−r ∧ τ(α)ip−r...i0

=χ(p)
∑p

r=0
ε(m,n, p, r)χ(r)χ(p− r)βip−r...ip ∧ αi0...ip−r

=χ(p)
∑p

r=0
ε(m,n, p, p− r)χ(r)χ(p− r)βir...ip ∧ αi0...ir

where χ(t) = (−1)
t(t+1)

2 . Since we proved earlier that τ acts as the identity on
cohomology we have to verify that

ε(n,m, p, r)(−1)(n−r)(m−(p−r)) = (−1)nmχ(p)ε(m,n, p, p− r)χ(r)χ(p− r)

A trivial mod 2 calculation shows these signs match up. (Alternatively, check the
script signs.gp in the scripts subdirectory of the stacks project.)

Finally, we study the compatibility of cup product with boundary maps. Suppose
that

0→ F•1 → F•2 → F•3 → 0 and 0← G•1 ← G•2 ← G•3 ← 0

are short exact sequences of bounded below complexes of abelian sheaves on X. Let
H• be another bounded below complex of abelian sheaves, and suppose we have
maps of complexes

γi : Tot(F•i ⊗Z G•i ) −→ H•

which are compatible with the maps between the complexes, namely such that the
diagrams

Tot(F•1 ⊗Z G•1 )

γ1

��

Tot(F•1 ⊗Z G•2 )oo

��
H• Tot(F•2 ⊗Z G•2 )

γ2oo

and

Tot(F•2 ⊗Z G•2 )

γ2

��

Tot(F•2 ⊗Z G•3 )oo

��
H• Tot(F•3 ⊗Z G•3 )

γ3oo

are commutative.

Lemma 26.2. In the situation above, assume Čech cohomology agrees with coho-
mology for the sheaves Fpi and Gqj . Let a3 ∈ Hn(X,F•3 ) and b1 ∈ Hm(X,G•1 ). Then
we have

γ1(∂a3 ∪ b1) = (−1)n+1γ3(a3 ∪ ∂b1)

in Hn+m(X,H•) where ∂ indicates the boundary map on cohomology associated to
the short exact sequences of complexes above.

http://localhost:8080/tag/07MC
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Proof. We will use the following conventions and notation. We think of Fp1 as a
subsheaf of Fp2 and we think of Gq3 as a subsheaf of Gq2 . Hence if s is a local section
of Fp1 we use s to denote the corresponding section of Fp2 as well. Similarly for
local sections of Gq3 . Furthermore, if s is a local section of Fp2 then we denote s̄ its
image in Fp3 . Similarly for the map Gq2 → G

q
1 . In particular if s is a local section of

Fp2 and s̄ = 0 then s is a local section of Fp1 . The commutativity of the diagrams
above implies, for local sections s of Fp2 and t of Gq3 that γ2(s ⊗ t) = γ3(s̄ ⊗ t) as
sections of Hp+q.
Let U : X =

⋃
i∈I Ui be an open covering of X. Suppose that α3, resp. β1 is a

degree n, resp. m cocycle of Tot(Č•(U ,F•3 )), resp. Tot(Č•(U ,G•1 )) representing a3,
resp. b1. After refining U if necessary, we can find cochains α2, resp. β2 of degree
n, resp. m in Tot(Č•(U ,F•2 )), resp. Tot(Č•(U ,G•2 )) mapping to α3, resp. β1. Then
we see that

d(α2) = d(ᾱ2) = 0 and d(β2) = d(β̄2) = 0.

This means that α1 = d(α2) is a degree n+1 cocycle in Tot(Č•(U ,F•1 )) representing
∂a3. Similarly, β3 = d(β2) is a degree m+ 1 cocycle in Tot(Č•(U ,G•3 )) representing
∂b1. Thus we may compute

d(γ2(α2 ∪ β2)) = γ2(d(α2 ∪ β2))

= γ2(d(α2) ∪ β2 + (−1)nα2 ∪ d(β2))

= γ2(α1 ∪ β2) + (−1)nγ2(α2 ∪ β3)

= γ1(α1 ∪ β1) + (−1)nγ3(α3 ∪ β3)

So this even tells us that the sign is (−1)n+1 as indicated in the lemma1. �

27. Flat resolutions

A reference for the material in this section is [Spa88]. Let (X,OX) be a ringed space.
By Modules, Lemma 16.6 any OX -module is a quotient of a flat OX -module. By
Derived Categories, Lemma 16.5 any bounded above complex of OX -modules has
a left resolution by a bounded above complex of flat OX -modules. However, for
unbounded complexes, it turns out that flat resolutions aren’t good enough.

Lemma 27.1. Let (X,OX) be a ringed space. Let G• be a complex of OX-modules.
The functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX G•)
is an exact functor of triangulated categories.

Proof. Omitted. Hint: See More on Algebra, Lemmas 45.1 and 45.2. �

Definition 27.2. Let (X,OX) be a ringed space. A complex K• of OX -modules
is called K-flat if for every acyclic complex F• of OX -modules the complex

Tot(F• ⊗OX K•)
is acyclic.

1The sign depends on the convention for the signs in the long exact sequence in cohomology

associated to a triangle in D(X). The conventions in the stacks project are (a) distinguished

triangles correspond to termwise split exact sequences and (b) the boundary maps in the long
exact sequence are given by the maps in the snake lemma without the intervention of signs. See

Derived Categories, Section 10.
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Lemma 27.3. Let (X,OX) be a ringed space. Let K• be a K-flat complex. Then
the functor

K(Mod(OX)) −→ K(Mod(OX)), F• 7−→ Tot(F• ⊗OX K•)
transforms quasi-isomorphisms into quasi-isomorphisms.

Proof. Follows from Lemma 27.1 and the fact that quasi-isomorphisms are char-
acterized by having acyclic cones. �

Lemma 27.4. Let (X,OX) be a ringed space. Let K• be a complex of OX-modules.
Then K• is K-flat if and only if for all x ∈ X the complex K•x of OX,x is K-flat
(More on Algebra, Definition 45.3).

Proof. If K•x is K-flat for all x ∈ X then we see that K• is K-flat because ⊗ and
direct sums commute with taking stalks and because we can check exactness at
stalks, see Modules, Lemma 3.1. Conversely, assume K• is K-flat. Pick x ∈ X
M• be an acyclic complex of OX,x-modules. Then ix,∗M

• is an acyclic complex of
OX -modules. Thus Tot(ix,∗M

• ⊗OX K•) is acyclic. Taking stalks at x shows that
Tot(M• ⊗OX,x K•x) is acyclic. �

Lemma 27.5. Let (X,OX) be a ringed space. If K•, L• are K-flat complexes of
OX-modules, then Tot(K• ⊗OX L•) is a K-flat complex of OX-modules.

Proof. Follows from the isomorphism

Tot(M• ⊗OX Tot(K• ⊗OX L•)) = Tot(Tot(M• ⊗OX K•)⊗OX L•)
and the definition. �

Lemma 27.6. Let (X,OX) be a ringed space. Let (K•1,K•2,K•3) be a distinguished
triangle in K(Mod(OX)). If two out of three of K•i are K-flat, so is the third.

Proof. Follows from Lemma 27.1 and the fact that in a distinguished triangle in
K(Mod(OX)) if two out of three are acyclic, so is the third. �

Lemma 27.7. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
pullback of a K-flat complex of OY -modules is a K-flat complex of OX-modules.

Proof. We can check this on stalks, see Lemma 27.4. Hence this follows from
Sheaves, Lemma 26.4 and More on Algebra, Lemma 45.5. �

Lemma 27.8. Let (X,OX) be a ringed space. A bounded above complex of flat
OX-modules is K-flat.

Proof. We can check this on stalks, see Lemma 27.4. Thus this lemma follows
from Modules, Lemma 16.2 and More on Algebra, Lemma 45.8. �

In the following lemma by a colimit of a system of complexes we mean the termwise
colimit.

Lemma 27.9. Let (X,OX) be a ringed space. Let K•1 → K•2 → . . . be a system of
K-flat complexes. Then colimiK•i is K-flat.

Proof. Because we are taking termwise colimits it is clear that

colimi Tot(F• ⊗OX K•i ) = Tot(F• ⊗OX colimiK•i )
Hence the lemma follows from the fact that filtered colimits are exact. �
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Lemma 27.10. Let (X,OX) be a ringed space. For any complex G• of OX-modules
there exists a commutative diagram of complexes of OX-modules

K•1

��

// K•2

��

// . . .

τ≤1G• // τ≤2G• // . . .

with the following properties: (1) the vertical arrows are quasi-isomorphisms, (2)
each K•n is a bounded above complex whose terms are direct sums of OX-modules of
the form jU !OU , and (3) the maps K•n → K•n+1 are termwise split injections whose
cokernels are direct sums of OX-modules of the form jU !OU . Moreover, the map
colimK•n → G• is a quasi-isomorphism.

Proof. The existence of the diagram and properties (1), (2), (3) follows imme-
diately from Modules, Lemma 16.6 and Derived Categories, Lemma 28.1. The
induced map colimK•n → G• is a quasi-isomorphism because filtered colimits are
exact. �

Lemma 27.11. Let (X,OX) be a ringed space. For any complex G• there exists a
K-flat complex K• and a quasi-isomorphism K• → G•.

Proof. Choose a diagram as in Lemma 27.10. Each complex K•n is a bounded above
complex of flat modules, see Modules, Lemma 16.5. Hence K•n is K-flat by Lemma
27.8. The induced map colimK•n → G• is a quasi-isomorphism by construction.
Since colimK•n is K-flat by Lemma 27.9 we win. �

Lemma 27.12. Let (X,OX) be a ringed space. Let α : P• → Q• be a quasi-
isomorphism of K-flat complexes of OX-modules. For every complex F• of OX-
modules the induced map

Tot(idF• ⊗ α) : Tot(F• ⊗OX P•) −→ Tot(F• ⊗OX Q•)
is a quasi-isomorphism.

Proof. Choose a quasi-isomorphism K• → F• with K• a K-flat complex, see
Lemma 27.11. Consider the commutative diagram

Tot(K• ⊗OX P•) //

��

Tot(K• ⊗OX Q•)

��
Tot(F• ⊗OX P•) // Tot(F• ⊗OX Q•)

The result follows as by Lemma 27.3 the vertical arrows and the top horizontal
arrow are quasi-isomorphisms. �

Let (X,OX) be a ringed space. Let F• be an object of D(OX). Choose a K-flat
resolution K• → F•, see Lemma 27.11. By Lemma 27.1 we obtain an exact functor
of triangulated categories

K(OX) −→ K(OX), G• 7−→ Tot(G• ⊗OX K•)
By Lemma 27.3 this functor induces a functor D(OX) → D(OX) simply because
D(OX) is the localization of K(OX) at quasi-isomorphisms. By Lemma 27.12 the
resulting functor (up to isomorphism) does not depend on the choice of the K-flat
resolution.
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Definition 27.13. Let (X,OX) be a ringed space. Let F• be an object of D(OX).
The derived tensor product

−⊗L
OX F

• : D(OX) −→ D(OX)

is the exact functor of triangulated categories described above.

It is clear from our explicit constructions that there is a canonical isomorphism

F• ⊗L
OX G

• ∼= G• ⊗L
OX F

•

for G• and F• in D(OX). Hence when we write F• ⊗L
OX G

• we will usually be
agnostic about which variable we are using to define the derived tensor product
with.

Definition 27.14. Let (X,OX) be a ringed space. Let F , G be OX -modules. The
Tor’s of F and G are define by the formula

TorOXp (F ,G) = H−p(F ⊗L
OX G)

with derived tensor product as defined above.

This definition implies that for every short exact sequence of OX -modules 0 →
F1 → F2 → F3 → 0 we have a long exact cohomology sequence

F1 ⊗OX G // F2 ⊗OX G // F3 ⊗OX G // 0

TorOX1 (F1,G) // TorOX1 (F2,G) // TorOX1 (F3,G)

kk

for everyOX -module G. This will be called the long exact sequence of Tor associated
to the situation.

Lemma 27.15. Let (X,OX) be a ringed space. Let F be an OX-module. The
following are equivalent

(1) F is a flat OX-module, and

(2) TorOX1 (F ,G) = 0 for every OX-module G.

Proof. If F is flat, then F ⊗OX − is an exact functor and the satellites vanish.
Conversely assume (2) holds. Then if G → H is injective with cokernel Q, the long
exact sequence of Tor shows that the kernel of F ⊗OX G → F ⊗OX H is a quotient

of TorOX1 (F ,Q) which is zero by assumption. Hence F is flat. �

28. Derived pullback

Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. We can use K-flat
resolutions to define a derived pullback functor

Lf∗ : D(OY )→ D(OX)

Namely, for every complex of OY -modules G• we can choose a K-flat resolution
K• → G• and set Lf∗G• = f∗K•. You can use Lemmas 27.7, 27.11, and 27.12 to
see that this is well defined. However, to cross all the t’s and dot all the i’s it is
perhaps more convenient to use some general theory.

Lemma 28.1. The construction above is independent of choices and defines an
exact functor of triangulated categories Lf∗ : D(OY )→ D(OX).
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Proof. To see this we use the general theory developed in Derived Categories,
Section 15. Set D = K(OY ) and D′ = D(OX). Let us write F : D → D′ the exact
functor of triangulated categories defined by the rule F (G•) = f∗G•. We let S be
the set of quasi-isomorphisms in D = K(OY ). This gives a situation as in Derived
Categories, Situation 15.1 so that Derived Categories, Definition 15.2 applies. We
claim that LF is everywhere defined. This follows from Derived Categories, Lemma
15.15 with P ⊂ Ob(D) the collection of K-flat complexes: (1) follows from Lemma
27.11 and to see (2) we have to show that for a quasi-isomorphism K•1 → K•2 between
K-flat complexes of OY -modules the map f∗K•1 → f∗K•2 is a quasi-isomorphism.
To see this write this as

f−1K•1 ⊗f−1OY OX −→ f−1K•2 ⊗f−1OY OX

The functor f−1 is exact, hence the map f−1K•1 → f−1K•2 is a quasi-isomorphism.
By Lemma 27.7 applied to the morphism (X, f−1OY ) → (Y,OY ) the complexes
f−1K•1 and f−1K•2 are K-flat complexes of f−1OY -modules. Hence Lemma 27.12
guarantees that the displayed map is a quasi-isomorphism. Thus we obtain a derived
functor

LF : D(OY ) = S−1D −→ D′ = D(OX)

see Derived Categories, Equation (15.9.1). Finally, Derived Categories, Lemma
15.15 also guarantees that LF (K•) = F (K•) = f∗K• when K• is K-flat, i.e., Lf∗ =
LF is indeed computed in the way described above. �

Lemma 28.2. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical bifunctorial isomorphism

Lf∗(F• ⊗L
OY G

•) = Lf∗F• ⊗L
OX Lf

∗G•

for F•,G• ∈ Ob(D(X)).

Proof. We may assume that F• and G• are K-flat complexes. In this case F•⊗L
OY

G• is just the total complex associated to the double complex F• ⊗OY G•. By
Lemma 27.5 Tot(F• ⊗OY G•) is K-flat also. Hence the isomorphism of the lemma
comes from the isomorphism

Tot(f∗F• ⊗OX f∗G•) −→ f∗Tot(F• ⊗OY G•)

whose constituents are the isomorphisms f∗Fp ⊗OX f∗Gq → f∗(Fp ⊗OY Gq) of
Modules, Lemma 15.4. �

Lemma 28.3. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. There
is a canonical bifunctorial isomorphism

F• ⊗L
OX Lf

∗G• = F• ⊗L
f−1OY f

−1G•

for F• in D(X) and G• in D(Y ).

Proof. Let F be an OX -module and let G be an OY -module. Then F ⊗OX f∗G =
F ⊗f−1OY f

−1G because f∗G = OX ⊗f−1OY f
−1G. The lemma follows from this

and the definitions. �
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29. Cohomology of unbounded complexes

Let (X,OX) be a ringed space. The category Mod(OX) is a Grothendieck abelian
category: it has all colimits, filtered colimits are exact, and it has a generator,
namely ⊕

U⊂X open
jU !OU ,

see Modules, Section 3 and Lemmas 16.5 and 16.6. By Injectives, Theorem 12.6
for every complex F• of OX -modules there exists an injective quasi-isomorphism
F• → I• to a K-injective complex of OX -modules. Hence we can define

RΓ(X,F•) = Γ(X, I•)
and similarly for any left exact functor, see Derived Categories, Lemma 29.6. For
any morphism of ringed spaces f : (X,OX)→ (Y,OY ) we obtain

Rf∗ : D(X) −→ D(Y )

on the unbounded derived categories.

Lemma 29.1. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. The
functor Rf∗ defined above and the functor Lf∗ defined in Lemma 28.1 are adjoint:

HomD(X)(Lf
∗G•,F•) = HomD(Y )(G•, Rf∗F•)

bifunctorially in F• ∈ Ob(D(X)) and G• ∈ Ob(D(Y )).

Proof. This follows formally from the fact that Rf∗ and Lf∗ exist, see Derived
Categories, Lemma 28.4. �

Remark 29.2. The construction of unbounded derived functor Lf∗ and Rf∗ allows
one to construct the base change map in full generality. Namely, suppose that

X ′
g′
//

f ′

��

X

f

��
S′

g // S

is a commutative diagram of ringed spaces. Let F• be a complex of OX -modules.
Then there exists a canonical base change map

Lg∗Rf∗F• −→ R(f ′)∗L(g′)∗F•

in D(OS′). Namely, this map is adjoint to a map L(f ′)∗Lg∗Rf∗F• → L(g′)∗F•
Since L(f ′)∗Lg∗ = L(g′)∗Lf∗ we see this is the same as a map L(g′)∗Lf∗Rf∗F• →
L(g′)∗F• which we can take to be L(g′)∗ of the adjunction map Lf∗Rf∗F• → F•.

30. Unbounded Mayer-Vietoris

Let (X,OX) be a ringed space. Let U ⊂ X be an open subset. Denote j : (U,OU )→
(X,OX) the corresponding open immersion. The pullback functor j∗ is exact as it
is just the restriction functor. Thus derived pullback Lj∗ is computed on any com-
plex by simply restricting the complex. We often simply denote the corresponding
functor

D(OX)→ D(OU ), E 7→ j∗E = E|U
Similarly, extension by zero j! : Mod(OU )→ Mod(OX) (see Sheaves, Section 31) is
an exact functor (Modules, Lemma 3.4). Thus it induces a functor

j! : D(OU )→ D(OX), F 7→ j!F
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by simply applying j! to any complex representing the object F .

Lemma 30.1. Let X be a ringed space. Let U ⊂ X be an open subspace. The
restriction of a K-injective complex of OX-modules to U is a K-injective complex
of OU -modules.

Proof. Follows immediately from Derived Categories, Lemma 29.10 and the fact
that the restriction functor has the exact adjoint j!. See discussion above. �

Lemma 30.2. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Given
an open subspace V ⊂ Y , set U = f−1(V ) and denote g : U → V the induced
morphism. Then (Rf∗E)|V = Rg∗(E|U ) for E in D(OX).

Proof. Represent E by a K-injective complex I• of OX -modules. Then Rf∗(E) =
f∗I• and Rg∗(E|U ) = g∗(I•|U ) by Lemma 30.1. Hence the result follows from
Lemma 7.4 (with p = 0). �

Lemma 30.3. Let (X,OX) be a ringed space. Let U ⊂ X be an open subset.
Denote j : (U,OU )→ (X,OX) the corresponding open immersion. The restriction
functor D(OX) → D(OU ) is a right adjoint to extension by zero j! : D(OU ) →
D(OX).

Proof. We have to show that

HomD(OX)(j!E,F ) = HomD(OU )(E,F |U )

Choose a complex E• of OU -modules representing E and choose a K-injective com-
plex I• representing F . By Lemma 30.1 the complex I•|U is K-injective as well.
Hence we see that the formula above becomes

HomD(OX)(j!E•, I•) = HomD(OU )(E•, I•|U )

which holds as |U and j! are adjoint functors (Sheaves, Lemma 31.8) and Derived
Categories, Lemma 29.2. �

Lemma 30.4. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

jU∩V !E|U∩V → jU !E|U ⊕ jV !E|V → E → jU∩V !E|U∩V [1]

in D(OX).

Proof. We have seen above that the restriction functors and the extension by zero
functors are computed by just applying the functors to any complex. Let E• be a
complex of OX -modules representing E. The distinguished triangle of the lemma
is the distinguished triangle associated (by Derived Categories, Section 12 and
especially Lemma 12.1) to the short exact sequence of complexes of OX -modules

0→ jU∩V !E•|U∩V → jU !E•|U ⊕ jV !E•|V → E• → 0

To see this sequence is exact one checks on stalks using Sheaves, Lemma 31.8
(computation omitted). �

Lemma 30.5. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of two
open subspaces. For any object E of D(OX) we have a distinguished triangle

E → RjU,∗E|U ⊕RjV,∗E|V → RjU∩V,∗E|U∩V → E[1]

in D(OX).
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Proof. Choose a K-injective complex I• representing E whose terms In are in-
jective objects of Mod(OX), see Injectives, Theorem 12.6. We have seen that I•|U
is a K-injective complex as well (Lemma 30.1). Hence RjU,∗E|U is represented
by jU,∗I•|U . Similarly for V and U ∩ V . Hence the distinguished triangle of the
lemma is the distinguished triangle associated (by Derived Categories, Section 12
and especially Lemma 12.1) to the short exact sequence of complexes

0→ I• → jU,∗I•|U ⊕ jV,∗I•|V → jU∩V,∗I•|U∩V → 0.

This sequence is exact because for any W ⊂ X open and any n the sequence

0→ In(W )→ In(W ∩ U)⊕ In(W ∩ V )→ In(W ∩ U ∩ V )→ 0

is exact (see proof of Lemma 9.2). �

Lemma 30.6. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. For objects E, F of D(OX) we have a Mayer-Vietoris
sequence

. . . // Ext−1(EU∩V , FU∩V )

qq
Hom(E,F ) // Hom(EU , FU )⊕Hom(EV , FV ) // Hom(EU∩V , FU∩V )

where the subscripts denote restrictions to the relevant opens and the Hom’s are
taken in the relevant derived categories.

Proof. Use the distinguished triangle of Lemma 30.4 to obtain a long exact se-
quence of Hom’s (from Derived Categories, Lemma 4.2) and use that Hom(jU !E|U , F ) =
Hom(E|U , F |U ) by Lemma 30.3. �

Lemma 30.7. Let (X,OX) be a ringed space. Suppose that X = U ∪V is a union
of two open subsets. For an object E of D(OX) we have a distinguished triangle

RΓ(X,E)→ RΓ(U,E)⊕RΓ(V,E)→ RΓ(U ∩ V,E)→ RΓ(X,E)[1]

and in particular a long exact cohomology sequence

. . .→ Hn(X,E)→ Hn(U,E)⊕H0(V,E)→ Hn(U ∩ V,E)→ Hn+1(X,E)→ . . .

The construction of the distinguished triangle and the long exact sequence is func-
torial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then RΓ(X,E)
is computed by Γ(X, I•). Similarly for U , V , and U ∩ V by Lemma 30.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated
(by Derived Categories, Section 12 and especially Lemma 12.1) to the short exact
sequence of complexes

0→ I•(X)→ I•(U)⊕ I•(V )→ I•(U ∩ V )→ 0.

We have seen this is a short exact sequence in the proof of Lemma 9.2. The final
statement follows from the functoriality of the construction in Injectives, Theorem
12.6. �
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Lemma 30.8. Let f : X → Y be a morphism of ringed spaces. Suppose that
X = U ∪ V is a union of two open subsets. Denote a = f |U : U → Y , b = f |V :
V → Y , and c = f |U∩V : U ∩ V → Y . For every object E of D(OX) there exists a
distinguished triangle

Rf∗E → Ra∗(E|U )⊕Rb∗(E|V )→ Rc∗(E|U∩V )→ Rf∗E[1]

This triangle is functorial in E.

Proof. Choose a K-injective complex I• representing E. We may assume In is an
injective object of Mod(OX) for all n, see Injectives, Theorem 12.6. Then Rf∗E
is computed by f∗I•. Similarly for U , V , and U ∩ V by Lemma 30.1. Hence
the distinguished triangle of the lemma is the distinguished triangle associated
(by Derived Categories, Section 12 and especially Lemma 12.1) to the short exact
sequence of complexes

0→ f∗I• → a∗I•|U ⊕ b∗I•|V → c∗I•|U∩V → 0.

This is a short exact sequence of complexes by Lemma 9.3 and the fact that R1f∗I =
0 for an injective object I of Mod(OX). The final statement follows from the
functoriality of the construction in Injectives, Theorem 12.6. �

Lemma 30.9. Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let T ⊂ X be a closed subset contained in U .

(1) If E is an object of D(OX) whose cohomology sheaves are supported on T ,
then E → Rj∗(E|U ) is an isomorphism.

(2) If F is an object of D(OU ) whose cohomology sheaves are supported on T ,
then j!F → Rj∗F is an isomorphism.

Proof. Let V = X \ T and W = U ∩ V . Note that X = U ∪ V is an open
covering of X. Denote jW : W → V the open immersion. Let E be an object
of D(OX) whose cohomology sheaves are supported on T . By Lemma 30.2 we
have (Rj∗E|U )|V = RjW,∗(E|W ) = 0 because E|W = 0 by our assumption. On
the other hand, Rj∗(E|U )|U = E|U . Thus (1) is clear. Let F be an object of
D(OU ) whose cohomology sheaves are supported on T . By Lemma 30.2 we have
(Rj∗F )|V = RjW,∗(F |W ) = 0 because F |W = 0 by our assumption. We also have
(j!F )|V = jW !(F |W ) = 0 (the first equality is immediate from the definition of
extension by zero). Since both (Rj∗F )|U = F and (j!F )|U = F we see that (2)
holds. �

We can glue complexes!

Lemma 30.10. Let (X,OX) be a ringed space. Let X = U ∪ V be the union of
two open subspaces of X. Suppose given

(1) an object E of D(OX),
(2) a morphism a : A→ E|U of D(OU ),
(3) a morphism b : B → E|V of D(OV ),
(4) an isomorphism c : A|U∩V → B|U∩V

such that

a|U∩V = b|U∩V ◦ c.
Then there exists a morphism F → E in D(OX) whose restriction to U is isomor-
phic to a and whose restriction to V is isomorphic to b.
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Proof. Denote jU , jV , jU∩V the corresponding open immersions. Choose a distin-
guished triangle

F → RjU,∗A⊕RjV,∗B → RjU∩V,∗(B|U∩V )→ F [1]

where the map RjV,∗B → RjU∩V,∗(B|U∩V ) is the obvious one and where RjU,∗A→
RjU∩V,∗(B|U∩V ) is the composition of RjU,∗A → RjU∩V,∗(A|U∩V ) with RjU∩V,∗c.
Restricting to U we obtain

F |U → A⊕ (RjV,∗B)|U → (RjU∩V,∗(B|U∩V ))|U → F |U [1]

Denote j : U ∩ V → U . Compatibility of restriction to opens and cohomology
shows that both (RjV,∗B)|U and (RjU∩V,∗(B|U∩V ))|U are canonically isomorphic
to Rj∗(B|U∩V ). Hence the second arrow of the last displayed diagram has a section,
and we conclude that the morphism F |U → A is an isomorphism. Similarly, the
morphism F |V → B is an isomorphism. The existence of the morphism F → E
follows from the Mayer-Vietoris sequence for Hom, see Lemma 30.6. �

31. Producing K-injective resolutions

First a technical lemma about the cohomology sheaves of the inverse limit of a
system of complexes of sheaves. In some sense this lemma is the wrong thing to
try to prove as one should take derived limits and not actual inverse limits. This
will be discussed in Cohomology on Sites, Section 22.

Lemma 31.1. Let (X,OX) be a ringed space. Let (F•n) be an inverse system of
complexes of OX-modules. Let m ∈ Z. Assume there exist a set B of open subsets
of X and an integer n0 such that

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B

(a) the systems of abelian groups Fm−2
n (U) and Fm−1

n (U) have vanishing
R1 lim (for example these have the Mittag-Leffler condition),

(b) the system of abelian groups Hm−1(F•n(U)) has vanishing R1 lim (for
example it has the Mittag-Leffler condition), and

(c) we have Hm(F•n(U)) = Hm(F•n0
(U)) for all n ≥ n0.

Then the maps Hm(F•) → limHm(F•n) → Hm(F•n0
) are isomorphisms of sheaves

where F• = limF•n is the termwise inverse limit.

Proof. Let U ∈ B. Note that Hm(F•(U)) is the cohomology of

limn Fm−2
n (U)→ limn Fm−1

n (U)→ limn Fmn (U)→ limn Fm+1
n (U)

in the third spot from the left. By assumptions (2)(a) and (2)(b) we may apply
More on Algebra, Lemma 61.2 to conclude that

Hm(F•(U)) = limHm(F•n(U))

By assumption (2)(c) we conclude

Hm(F•(U)) = Hm(F•n(U))

for all n ≥ n0. By assumption (1) we conclude that the sheafification of U 7→
Hm(F•(U)) is equal to the sheafification of U 7→ Hm(F•n(U)) for all n ≥ n0. Thus
the inverse system of sheaves Hm(F•n) is constant for n ≥ n0 with value Hm(F•)
which proves the lemma. �
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Let (X,OX) be a ringed space. Let F• be a complex of OX -modules. The category
Mod(OX) has enough injectives, hence we can use Derived Categories, Lemma 28.3
produce a diagram

. . . // τ≥−2F• //

��

τ≥−1F•

��
. . . // I•2 // I•1

in the category of complexes of OX -modules such that

(1) the vertical arrows are quasi-isomorphisms,
(2) I•n is a bounded above complex of injectives,
(3) the arrows I•n+1 → I•n are termwise split surjections.

The category ofOX -modules has limits (they are computed on the level of presheaves),
hence we can form the termwise limit I• = limn I•n. By Derived Categories, Lem-
mas 29.4 and 29.7 this is a K-injective complex. In general the canonical map

(31.1.1) F• → I•

may not be a quasi-isomorphism. In the following lemma we describe some condi-
tions under which it is.

Lemma 31.2. In the situation described above. Denote Hm = Hm(F•) the mth
cohomology sheaf. Let B be a set of open subsets of X. Let d ∈ N. Assume

(1) every open in X has a covering whose members are elements of B,
(2) for every U ∈ B we have Hp(U,Hq) = 0 for p > d2.

Then (31.1.1) is a quasi-isomorphism.

Proof. Let m ∈ Z. We have to show that the map F• → I• induces an isomor-
phism Hm → Hm(I•). Since I•n is quasi-isomorphic to τ≥−nF• it suffices to show
that Hm(I•)→ Hm(I•n) is an isomorphism for n large enough. To do this we will
verify the hypotheses (1), (2)(a), (2)(b), (2)(c) of Lemma 31.1.

Hypothesis (1) is assumption (1) above. Hypothesis (2)(a) follows from the fact
that the maps Ikn+1 → Ikn are split surjections. We will prove hypothesis (2)(b) and
(2)(c) simultaneously by proving that for U ∈ B the system Hm(I•n(U)) becomes
constant for n ≥ −m+d. Namely, recalling that I•n is quasi-isomorphic to τ≥−nF•
we obtain for all n a distinguished triangle

H−n[n]→ I•n → I•n−1 → H−n[n+ 1]

(Derived Categories, Remark 12.4) in D(OX). By assumption (2) we see that if
m > d− n then

Hm(U,H−n[n]) = 0 and Hm(U,H−n[n+ 1]) = 0.

Observe that Hm(I•n(U)) = Hm(U, I•n) as I•n is a bounded below complex of injec-
tives. Unwinding the long exact sequence of cohomology associated to the distin-
guished triangle above this implies that

Hm(I•n(U))→ Hm(I•n−1(U))

is an isomorphism for m > d− n, i.e., n > d−m and we win. �

2In fact, analyzing the proof we see that it suffices if there exists a function d : Z→ Z∪{+∞}
such that Hp(U,Hq) = 0 for p > d(q) where q + d(q)→ −∞ as q → −∞
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Lemma 31.3. With assumptions and notation as in Lemma 31.2. Let K denote the
object of D(OX) represented by the complex F•. Then there exists a distinguished
triangle

K →
∏

n≥0
τ≥−nK →

∏
n≥0

τ≥−nK → K[1]

in D(OX). In other words, K is the derived limit of its canonical truncations.

Proof. The proof of Injectives, Lemma 13.4 shows that
∏
τ≥−nK is represented

by the complex
∏
I•n. Because the transition maps I•n+1 → I•n are termwise split

surjections, we have a short exact sequence of complexes

0→ I• →
∏
I•n →

∏
I•n → 0

Since I• represents K by Lemma 31.2 the distinguished triangle of the lemma is
the distinguished triangle associated to the short exact sequence above (Derived
Categories, Lemma 12.1). �

32. Čech cohomology of unbounded complexes

The construction of Section 26 isn’t the “correct” one for unbounded complexes.
The problem is that in the Stacks project we use direct sums in the totalization of
a double complex and we would have to replace this by a product. Instead of doing
so in this section we assume the covering is finite and we use the alternating Čech
complex.

Let (X,OX) be a ringed space. Let F• be a complex of presheaves of OX -modules.
Let U : X =

⋃
i∈I Ui be a finite open covering of X. Since the alternating Čech

complex Č•alt(U ,F) (Section 24) is functorial in the presheaf F we obtain a double

complex Č•alt(U ,F•). In this section we work with the associated total complex. The

construction of Tot(Č•alt(U ,F•)) is functorial in F•. As well there is a functorial
transformation

(32.0.1) Γ(X,F•) −→ Tot(Č•alt(U ,F•))

of complexes defined by the following rule: The section s ∈ Γ(X,Fn) is mapped to
the element α = {αi0...ip} with αi0 = s|Ui0 and αi0...ip = 0 for p > 0.

Lemma 32.1. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite open

covering. For a complex F• of OX-modules there is a canonical map

Tot(Č•alt(U ,F•)) −→ RΓ(X,F•)

functorial in F• and compatible with (32.0.1).

Proof. Let I• be a K-injective complex whose terms are injective OX -modules.
The map (32.0.1) for I• is a map Γ(X, I•) → Tot(Č•alt(U , I•)). This is a quasi-
isomorphism of complexes of abelian groups as follows from Homology, Lemma 22.7
applied to the double complex Č•alt(U , I•) using Lemmas 12.1 and 24.6. Suppose
F• → I• is a quasi-isomorphism of F• into a K-injective complex whose terms
are injectives (Injectives, Theorem 12.6). Since RΓ(X,F•) is represented by the
complex Γ(X, I•) we obtain the map of the lemma using

Tot(Č•alt(U ,F•)) −→ Tot(Č•alt(U , I•)).

We omit the verification of functoriality and compatibilities. �
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Lemma 32.2. Let (X,OX) be a ringed space. Let U : X =
⋃
i∈I Ui be a finite open

covering. Let F• be a complex of OX-modules. Let B be a set of open subsets of
X. Assume

(1) every open in X has a covering whose members are elements of B,
(2) we have Ui0...ip ∈ B for all i0, . . . , ip ∈ I,
(3) for every U ∈ B and p > 0 we have

(a) Hp(U,Fq) = 0,
(b) Hp(U,Coker(Fq−1 → Fq)) = 0, and
(c) Hp(U,Hq(F)) = 0.

Then the map

Tot(Č•alt(U ,F•)) −→ RΓ(X,F•)
of Lemma 32.1 is an isomorphism in D(Ab).

Proof. If F• is bounded below, this follows from assumption (3)(a) and the spectral
sequence of Lemma 26.1 and the fact that

Tot(Č•alt(U ,F•)) −→ Tot(Č•(U ,F•))

is a quasi-isomorphism by Lemma 24.6 (some details omitted). In general, by
assumption (3)(c) we may choose a resolution F• → I• = lim I•n as in Lemma
31.2. Then the map of the lemma becomes

limn Tot(Č•alt(U , τ≥−nF•)) −→ limn Γ(X, I•n)

Note that (3)(b) shows that τ≥−nF• is a bounded below complex satisfying the
hypothesis of the lemma. Thus the case of bounded below complexes shows each
of the maps

Tot(Č•alt(U , τ≥−nF•)) −→ Γ(X, I•n)

is a quasi-isomorphism. The cohomologies of the complexes on the left hand side
in given degree are eventually constant (as the alternating Čech complex is finite).
Hence the same is true on the right hand side. Thus the cohomology of the limit
on the right hand side is this constant value by Homology, Lemma 27.7 and we
win. �

33. Hom complexes

Let (X,OX) be a ringed space. Let L• and M• be two complexes of OX -modules.
We construct a complex of OX -modules Hom•(L•,M•). Namely, for each n we set

Homn(L•,M•) =
∏

n=p+q
HomOX (L−q,Mp)

It is a good idea to think of Homn as the sheaf of OX -modules of all OX -linear
maps from L• to M• (viewed as graded OX -modules) which are homogenous of
degree n. In this terminology, we define the differential by the rule

d(f) = dM ◦ f − (−1)nf ◦ dL

for f ∈ Homn
OX (L•,M•). We omit the verification that d2 = 0. This construction is

a special case of Differential Graded Algebra, Example 19.6. It follows immediately
from the construction that we have

(33.0.1) Hn(Γ(U,Hom•(L•,M•))) = HomK(OU )(L•,M•[n])

for all n ∈ Z and every open U ⊂ X.

http://localhost:8080/tag/08C2


62 COHOMOLOGY OF SHEAVES

Lemma 33.1. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is an isomorphism

Hom•(K•,Hom•(L•,M•)) = Hom•(Tot(K• ⊗OX L•),M•)
of complexes of OX-modules functorial in K•,L•,M•.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.1. �

Lemma 33.2. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot (Hom•(L•,M•)⊗OX Hom•(K•,L•)) −→ Hom•(K•,M•)
of complexes of OX-modules.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.2. �

Lemma 33.3. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

Tot(Hom•(L•,M•)⊗OX K•) −→ Hom•(Hom•(K•,L•),M•)
of complexes of OX-modules functorial in all three complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.3. �

Lemma 33.4. Let (X,OX) be a ringed space. Given complexes K•,L•,M• of
OX-modules there is a canonical morphism

K• −→ Hom•(L•,Tot(K• ⊗OX L•))
of complexes of OX-modules functorial in both complexes.

Proof. Omitted. Hint: This is proved in exactly the same way as More on Algebra,
Lemma 54.5. �

Lemma 33.5. Let (X,OX) be a ringed space. Let I• be a K-injective complex of
OX-modules. Let L• be a complex of OX-modules. Then

H0(Γ(U,Hom•(L•, I•))) = HomD(OU )(L|U ,M |U )

for all U ⊂ X open.

Proof. We have

H0(Γ(U,Hom•(L•, I•))) = HomK(OU )(L|U ,M |U )

= HomD(OU )(L|U ,M |U )

The first equality is (33.0.1). The second equality is true because I•|U is K-injective
by Lemma 30.1. �

Lemma 33.6. Let (X,OX) be a ringed space. Let (I ′)• → I• be a quasi-isomorphism
of K-injective complexes of OX-modules. Let (L′)• → L• be a quasi-isomorphism
of complexes of OX-modules. Then

Hom•(L•, (I ′)•) −→ Hom•((L′)•, I•)
is a quasi-isomorphism.
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Proof. Let M be the object of D(OX) represented by I• and (I ′)•. Let L be the
object of D(OX) represented by L• and (L′)•. By Lemma 33.5 we see that the
sheaves

H0(Hom•(L•, (I ′)•)) and H0(Hom•((L′)•, I•))
are both equal to the sheaf associated to the presheaf

U 7−→ HomD(OU )(L|U ,M |U )

Thus the map is a quasi-isomorphism. �

Lemma 33.7. Let (X,OX) be a ringed space. Let I• be a K-injective complex of
OX-modules. Let L• be a K-flat complex of OX-modules. Then Hom•(L•, I•) is a
K-injective complex of OX-modules.

Proof. Namely, if K• is an acyclic complex of OX -modules, then

HomK(OX)(K•,Hom•(L•, I•)) = H0(Γ(X,Hom•(K•,Hom•(L•, I•))))
= H0(Γ(X,Hom•(Tot(K• ⊗OX L•), I•)))
= HomK(OX)(Tot(K• ⊗OX L•), I•)
= 0

The first equality by (33.0.1). The second equality by Lemma 33.1. The third
equality by (33.0.1). The final equality because Tot(K• ⊗OX L•) is acyclic because
L• is K-flat (Definition 27.2) and because I• is K-injective. �

34. Internal hom in the derived category

Let (X,OX) be a ringed space. Let L,M be objects of D(OX). We would like to
construct an object RHom(L,M) of D(OX) such that for every third object K of
D(OX) there exists a canonical bijection

(34.0.1) HomD(OX)(K,RHom(L,M)) = HomD(OX)(K ⊗L
OX L,M)

Observe that this formula defines RHom(L,M) up to unique isomorphism by the
Yoneda lemma (Categories, Lemma 3.5).

To construct such an object, choose a K-injective complex I• representing M and
any complex of OX -modules L• representing L. Then we set

RHom(L,M) = Hom•(L•, I•)
where the right hand side is the complex of OX -modules constructed in Section 33.
This is well defined by Lemma 33.6. We get a functor

D(OX)opp ×D(OX) −→ D(OX), (K,L) 7−→ RHom(K,L)

As a prelude to proving (34.0.1) we compute the cohomology groups ofRHom(K,L).

Lemma 34.1. Let (X,OX) be a ringed space. Let L,M be objects of D(OX). For
every open U we have

H0(U,RHom(L,M)) = HomD(OU )(L|U ,M |U )

and in particular H0(X,RHom(L,M)) = HomD(OX)(L,M).

Proof. Choose a K-injective complex I• of OX -modules representing M and a
K-flat complex L• representing L. Then Hom•(L•, I•) is K-injective by Lemma
33.7. Hence we can compute cohomology over U by simply taking sections over U
and the result follows from Lemma 33.5. �
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Lemma 34.2. Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
With the construction as described above there is a canonical isomorphism

RHom(K,RHom(L,M)) = RHom(K ⊗L
OX L,M)

in D(OX) functorial in K,L,M which recovers (34.0.1) by taking H0(X,−).

Proof. Choose a K-injective complex I• representing M and a K-flat complex of
OX -modules L• representing L. Let H• be the complex described above. For any
complex of OX -modules K• we have

Hom•(K•,Hom•(L•, I•)) = Hom•(Tot(K• ⊗OX L•), I•)

by Lemma 33.1. Note that the left hand side represents RHom(K,RHom(L,M))
(use Lemma 33.7) and that the right hand side represents RHom(K ⊗L

OX L,M).
This proves the displayed formula of the lemma. Taking global sections and using
Lemma 34.1 we obtain (34.0.1). �

Lemma 34.3. Let (X,OX) be a ringed space. Let K,L be objects of D(OX). The
construction of RHom(K,L) commutes with restrictions to opens, i.e., for every
open U we have RHom(K|U , L|U ) = RHom(K,L)|U .

Proof. This is clear from the construction and Lemma 30.1. �

Lemma 34.4. Let (X,OX) be a ringed space. The bifunctor RHom(−,−) trans-
forms distinguished triangles into distinguished triangles in both variables.

Proof. This follows from the observation that the assignment

(L•,M•) 7−→ Hom•(L•,M•)

transforms a termwise split short exact sequences of complexes in either variable
into a termwise split short exact sequence. Details omitted. �

Lemma 34.5. Let (X,OX) be a ringed space. Let K,L,M be objects of D(OX).
There is a canonical morphism

RHom(L,M)⊗L
OX K −→ RHom(RHom(K,L),M)

in D(OX) functorial in K,L,M .

Proof. Choose a K-injective complex I• representing M , a K-injective complex
J • representing L, and a K-flat complex K• representing K. The map is defined
using the map

Tot(Hom•(J •, I•)⊗OX K•) −→ Hom•(Hom•(K•,J •), I•)

of Lemma 33.3. By our particular choice of complexes the left hand side represents
RHom(L,M)⊗L

OX K and the right hand side represents RHom(RHom(K,L),M).
We omit the proof that this is functorial in all three objects of D(OX). �

Lemma 34.6. Let (X,OX) be a ringed space. Given K,L,M in D(OX) there is
a canonical morphism

RHom(L,M)⊗L
OX RHom(K,L) −→ RHom(K,M)

in D(OX).
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Proof. In general (without suitable finiteness conditions) we do not see how to get
this map from Lemma 33.2. Instead, we use the maps

RHom(L,M)⊗L
OX RHom(K,L)⊗L

OX K

��
RHom(RHom(K,L),M)⊗L

OX RHom(K,L)

��
M

gotten by applying Lemma 34.5 twice. Finally, we use Lemma 34.2 to translate the
composition

RHom(L,M)⊗L
OX RHom(K,L)⊗L

OX K −→M

into a map as in the statement of the lemma. �

Lemma 34.7. Let (X,OX) be a ringed space. Given K,L in D(OX) there is a
canonical morphism

K −→ RHom(L,K ⊗L
OX L)

in D(OX) functorial in both K and L.

Proof. Choose K-flat complexes K• and L• represeting K and L. Choose a K-
injective complex I• and a quasi-isomorphism Tot(K• ⊗OX L•) → I•. Then we
use

K• → Hom•(L•,Tot(K• ⊗OX L•))→ Hom•(L•, I•)
where the first map comes from Lemma 33.4. �

Lemma 34.8. Let (X,OX) be a ringed space. Let L be an object of D(OX). Set
L∧ = RHom(L,OX). For M in D(OX) there is a canonical map

(34.8.1) L∧ ⊗L
OX M −→ RHom(L,M)

which induces a canonical map

H0(X,L∧ ⊗L
OX M) −→ HomD(OX)(L,M)

functorial in M in D(OX).

Proof. The map (34.8.1) is a special case of Lemma 34.6 using the identification
M = RHom(OX ,M). �

Remark 34.9. Let h : X → Y be a morphism of ringed spaces. Let K,L be
objects of D(OY ). We claim there is a canonical map

Lh∗RHom(K,L) −→ RHom(Lh∗K,Lh∗L)

in D(OX). Namely, by (34.0.1) proved in Lemma 34.2 such a map is the same thing
as a map

Lh∗RHom(K,L)⊗L Lh∗K −→ Lh∗L

The source of this arrow is Lh∗(Hom(K,L)⊗LK) by Lemma 28.2 hence it suffices
to construct a canonical map

RHom(K,L)⊗L K −→ L.
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For this we take the arrow corresponding to

id : RHom(K,L) −→ RHom(K,L)

via (34.0.1).

Remark 34.10. Suppose that

X ′
h
//

f ′

��

X

f

��
S′

g // S

is a commutative diagram of ringed spaces. Let K,L be objects of D(OX). We
claim there exists a canonical base change map

Lg∗Rf∗RHom(K,L) −→ R(f ′)∗RHom(Lh∗K,Lh∗L)

in D(OS′). Namely, we take the map adjoint to the composition

L(f ′)∗Lg∗Rf∗RHom(K,L) = Lh∗Lf∗Rf∗RHom(K,L)

→ Lh∗RHom(K,L)

→ RHom(Lh∗K,Lh∗L)

where the first arrow uses the adjunction mapping Lf∗Rf∗ → id and the second
arrow is the canonical map constructed in Remark 34.9.

35. Strictly perfect complexes

Strictly perfect complexes of modules are used to define the notions of pseudo-
coherent and perfect complexes later on. They are defined as follows.

Definition 35.1. Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is strictly perfect if E i is zero for all but finitely many i and E i
is a direct summand of a finite free OX -module for all i.

Warning: Since we do not assume that X is a locally ringed space, it may not be
true that a direct summand of a finite free OX -module is finite locally free.

Lemma 35.2. The cone on a morphism of strictly perfect complexes is strictly
perfect.

Proof. This is immediate from the definitions. �

Lemma 35.3. The total complex associated to the tensor product of two strictly
perfect complexes is strictly perfect.

Proof. Omitted. �

Lemma 35.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. If F•
is a strictly perfect complex of OY -modules, then f∗F• is a strictly perfect complex
of OX-modules.

Proof. The pullback of a finite free module is finite free. The functor f∗ is additive
functor hence preserves direct summands. The lemma follows. �
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Lemma 35.5. Let (X,OX) be a ringed space. Given a solid diagram of OX-
modules

E

��

// F

G

p

OO

with E a direct summand of a finite free OX-module and p surjective, then a dotted
arrow making the diagram commute exists locally on X.

Proof. We may assume E = O⊕nX for some n. In this case finding the dotted arrow
is equivalent to lifting the images of the basis elements in Γ(X,F). This is locally
possible by the characterization of surjective maps of sheaves (Sheaves, Section
16). �

Lemma 35.6. Let (X,OX) be a ringed space.

(1) Let α : E• → F• be a morphism of complexes of OX-modules with E•
strictly perfect and F• acyclic. Then α is locally on X homotopic to zero.

(2) Let α : E• → F• be a morphism of complexes of OX-modules with E•
strictly perfect, E i = 0 for i < a, and Hi(F•) = 0 for i ≥ a. Then α is
locally on X homotopic to zero.

Proof. The first statement follows from the second, hence we only prove (2). We
will prove this by induction on the length of the complex E•. If E• ∼= E [−n] for
some direct summand E of a finite free OX -module and integer n ≥ a, then the
result follows from Lemma 35.5 and the fact that Fn−1 → Ker(Fn → Fn+1) is
surjective by the assumed vanishing of Hn(F•). If E i is zero except for i ∈ [a, b],
then we have a split exact sequence of complexes

0→ Eb[−b]→ E• → σ≤b−1E• → 0

which determines a distinguished triangle in K(OX). Hence an exact sequence

HomK(OX)(σ≤b−1E•,F•)→ HomK(OX)(E•,F•)→ HomK(OX)(Eb[−b],F•)

by the axioms of triangulated categories. The composition Eb[−b] → F• is locally
homotopic to zero, whence we may assume our map comes from an element in the
left hand side of the displayed exact sequence above. This element is locally zero
by induction hypothesis. �

Lemma 35.7. Let (X,OX) be a ringed space. Given a solid diagram of complexes
of OX-modules

E•

!!

α
// F•

G•
f

OO

with E• strictly perfect, Ej = 0 for j < a and Hj(f) an isomorphism for j > a
and surjective for j = a, then a dotted arrow making the diagram commute up to
homotopy exists locally on X.

Proof. Our assumptions on f imply the cone C(f)• has vanishing cohomology
sheaves in degrees ≥ a. Hence Lemma 35.6 guarantees there is an open covering
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X =
⋃
Ui such that the composition E• → F• → C(f)• is homotopic to zero over

Ui. Since

G• → F• → C(f)• → G•[1]

restricts to a distinguished triangle in K(OUi) we see that we can lift α|Ui up to
homotopy to a map αi : E•|Ui → G•|Ui as desired. �

Lemma 35.8. Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with E• strictly perfect.

(1) For any element α ∈ HomD(OX)(E•,F•) there exists an open covering X =⋃
Ui such that α|Ui is given by a morphism of complexes αi : E•|Ui → F•|Ui .

(2) Given a morphism of complexes α : E• → F• whose image in the group
HomD(OX)(E•,F•) is zero, there exists an open covering X =

⋃
Ui such

that α|Ui is homotopic to zero.

Proof. Proof of (1). By the construction of the derived category we can find a
quasi-isomorphism f : F• → G• and a map of complexes β : E• → G• such that
α = f−1β. Thus the result follows from Lemma 35.7. We omit the proof of (2). �

Lemma 35.9. Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with E• strictly perfect. Then the internal hom RHom(E•,F•) is repre-
sented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX (E−q,Fp)

and differential as described in Section 34.

Proof. Choose a quasi-isomorphism F• → I• into a K-injective complex. Let
(H′)• be the complex with terms

(H′)n =
∏

n=p+q
HomOX (L−q, Ip)

which represents RHom(E•,F•) by the construction in Section 34. It suffices to
show that the map

H• −→ (H′)•

is a quasi-isomorphism. Given an open U ⊂ X we have by inspection

H0(H•(U)) = HomK(OU )(E•|U ,K•|U )→ H0((H′)•(U)) = HomD(OU )(E•|U ,K•|U )

By Lemma 35.8 the sheafification of U 7→ H0(H•(U)) is equal to the sheafification
of U 7→ H0((H′)•(U)). A similar argument can be given for the other cohomology
sheaves. Thus H• is quasi-isomorphic to (H′)• which proves the lemma. �

Lemma 35.10. Let (X,OX) be a ringed space. Let E•, F• be complexes of OX-
modules with

(1) Fn = 0 for n� 0,
(2) En = 0 for n� 0, and
(3) En isomorphic to a direct summand of a finite free OX-module.

Then the internal hom RHom(E•,F•) is represented by the complex H• with terms

Hn =
⊕

n=p+q
HomOX (E−q,Fp)

and differential as described in Section 34.
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Proof. Choose a quasi-isomorphism F• → I• where I• is a bounded below com-
plex of injectives. Note that I• is K-injective (Derived Categories, Lemma 29.4).
Hence the construction in Section 34 shows that RHom(E•,F•) is represented by
the complex (H′)• with terms

(H′)n =
∏

n=p+q
HomOX (E−q, Ip) =

⊕
n=p+q

HomOX (E−q, Ip)

(equality because there are only finitely many nonzero terms). Note that H• is the
total complex associated to the double complex with terms HomOX (E−q,Fp) and
similarly for (H′)•. The natural map (H′)• → H• comes from a map of double
complexes. Thus to show this map is a quasi-isomorphism, we may use the spectral
sequence of a double complex (Homology, Lemma 22.6)

′Ep,q1 = Hp(HomOX (E−q,F•))
converging to Hp+q(H•) and similarly for (H′)•. To finish the proof of the lemma
it suffices to show that F• → I• induces an isomorphism

Hp(HomOX (E ,F•)) −→ Hp(HomOX (E , I•))
on cohomology sheaves whenever E is a direct summand of a finite free OX -module.
Since this is clear when E is finite free the result follows. �

36. Pseudo-coherent modules

In this section we discuss pseudo-coherent complexes.

Definition 36.1. Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. Let m ∈ Z.

(1) We say E• is m-pseudo-coherent if there exists an open covering X =
⋃
Ui

and for each i a morphism of complexes αi : E•i → E•|Ui where Ei is strictly
perfect on Ui and Hj(αi) is an isomorphism for j > m and Hm(αi) is
surjective.

(2) We say E• is pseudo-coherent if it is m-pseudo-coherent for all m.
(3) We say an object E of D(OX) is m-pseudo-coherent (resp. pseudo-coherent)

if and only if it can be represented by a m-pseudo-coherent (resp. pseudo-
coherent) complex of OX -modules.

If X is quasi-compact, then an m-pseudo-coherent object of D(OX) is in D−(OX).
But this need not be the case if X is not quasi-compact.

Lemma 36.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).

(1) If there exists an open covering X =
⋃
Ui, strictly perfect complexes E•i on

Ui, and maps αi : E•i → E|Ui in D(OUi) with Hj(αi) an isomorphism for
j > m and Hm(αi) surjective, then E is m-pseudo-coherent.

(2) If E is m-pseudo-coherent, then any complex representing E is m-pseudo-
coherent.

Proof. Let F• be any complex representing E and let X =
⋃
Ui and αi : Ei → E|Ui

be as in (1). We will show that F• is m-pseudo-coherent as a complex, which will
prove (1) and (2) simultaneously. By Lemma 35.8 we can after refining the open
covering X =

⋃
Ui represent the maps αi by maps of complexes αi : E•i → F•|Ui .

By assumption Hj(αi) are isomorphisms for j > m, and Hm(αi) is surjective
whence F• is m-pseudo-coherent. �
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Lemma 36.3. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E is m-pseudo-coherent, then Lf∗E is m-pseudo-
coherent.

Proof. Represent E by a complex E• of OY -modules and choose an open covering
Y =

⋃
Vi and αi : E•i → E•|Vi as in Definition 36.1. Set Ui = f−1(Vi). By Lemma

36.2 it suffices to show that Lf∗E•|Ui is m-pseudo-coherent. Choose a distinguished
triangle

E•i → E•|Vi → C → E•i [1]

The assumption on αi means exactly that the cohomology sheaves Hj(C) are zero
for all j ≥ m. Denote fi : Ui → Vi the restriction of f . Note that Lf∗E•|Ui =
Lf∗i (E|Vi). Applying Lf∗i we obtain the distinguished triangle

Lf∗i E•i → Lf∗i E|Vi → Lf∗i C → Lf∗i E•i [1]

By the construction of Lf∗i as a left derived functor we see that Hj(Lf∗i C) = 0
for j ≥ m (by the dual of Derived Categories, Lemma 17.1). Hence Hj(Lf∗i αi)
is an isomorphism for j > m and Hm(Lf∗αi) is surjective. On the other hand,
Lf∗i E•i = f∗i E•i . is strictly perfect by Lemma 35.4. Thus we conclude. �

Lemma 36.4. Let (X,OX) be a ringed space and m ∈ Z. Let (K,L,M, f, g, h) be
a distinguished triangle in D(OX).

(1) If K is (m + 1)-pseudo-coherent and L is m-pseudo-coherent then M is
m-pseudo-coherent.

(2) If K anf M are m-pseudo-coherent, then L is m-pseudo-coherent.
(3) If L is (m + 1)-pseudo-coherent and M is m-pseudo-coherent, then K is

(m+ 1)-pseudo-coherent.

Proof. Proof of (1). Choose an open covering X =
⋃
Ui and maps αi : K•i → K|Ui

in D(OUi) with K•i strictly perfect and Hj(αi) isomorphisms for j > m + 1 and
surjective for j = m + 1. We may replace K•i by σ≥m+1K•i and hence we may

assume that Kji = 0 for j < m+ 1. After refining the open covering we may choose
maps βi : L•i → L|Ui in D(OUi) with L•i strictly perfect such that Hj(β) is an
isomorphism for j > m and surjective for j = m. By Lemma 35.7 we can, after
refining the covering, find maps of complexes γi : K• → L• such that the diagrams

K|Ui // L|Ui

K•i

αi

OO

γi // L•i

βi

OO

are commutative in D(OUi) (this requires representing the maps αi, βi and K|Ui →
L|Ui by actual maps of complexes; some details omitted). The cone C(γi)

• is strictly
perfect (Lemma 35.2). The commutativity of the diagram implies that there exists
a morphism of distinguished triangles

(K•i ,L•i , C(γi)
•) −→ (K|Ui , L|Ui ,M |Ui).

It follows from the induced map on long exact cohomology sequences and Homology,
Lemmas 5.19 and 5.20 that C(γi)

• →M |Ui induces an isomorphism on cohomology
in degrees > m and a surjection in degree m. Hence M is m-pseudo-coherent by
Lemma 36.2.

Assertions (2) and (3) follow from (1) by rotating the distinguished triangle. �
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Lemma 36.5. Let (X,OX) be a ringed space. Let K,L be objects of D(OX).

(1) If K is n-pseudo-coherent and Hi(K) = 0 for i > a and L is m-pseudo-
coherent and Hj(L) = 0 for j > b, then K⊗L

OX L is t-pseudo-coherent with
t = max(m+ a, n+ b).

(2) If K and L are pseudo-coherent, then K ⊗L
OX L is pseudo-coherent.

Proof. Proof of (1). By replacing X by the members of an open covering we may
assume there exist strictly perfect complexes K• and L• and maps α : K• → K and
β : L• → L with Hi(α) and isomorphism for i > n and surjective for i = n and
with Hi(β) and isomorphism for i > m and surjective for i = m. Then the map

α⊗L β : Tot(K• ⊗OX L•)→ K ⊗L
OX L

induces isomorphisms on cohomology sheaves in degree i for i > t and a surjection
for i = t. This follows from the spectral sequence of tors (details omitted).

Proof of (2). We may first replace X by the members of an open covering to
reduce to the case that K and L are bounded above. Then the statement follows
immediately from case (1). �

Lemma 36.6. Let (X,OX) be a ringed space. Let m ∈ Z. If K ⊕ L is m-pseudo-
coherent (resp. pseudo-coherent) in D(OX) so are K and L.

Proof. Assume that K ⊕L is m-pseudo-coherent. After replacing X by the mem-
bers of an open covering we may assume K ⊕ L ∈ D−(OX), hence L ∈ D−(OX).
Note that there is a distinguished triangle

(K ⊕ L,K ⊕ L,L⊕ L[1]) = (K,K, 0)⊕ (L,L,L⊕ L[1])

see Derived Categories, Lemma 4.9. By Lemma 36.4 we see that L ⊕ L[1] is m-
pseudo-coherent. Hence also L[1]⊕L[2] is m-pseudo-coherent. By induction L[n]⊕
L[n + 1] is m-pseudo-coherent. Since L is bounded above we see that L[n] is m-
pseudo-coherent for large n. Hence working backwards, using the distinguished
triangles

(L[n], L[n]⊕ L[n− 1], L[n− 1])

we conclude that L[n− 1], L[n− 2], . . . , L are m-pseudo-coherent as desired. �

Lemma 36.7. Let (X,OX) be a ringed space. Let m ∈ Z. Let F• be a (locally)
bounded above complex of OX-modules such that F i is (m− i)-pseudo-coherent for
all i. Then F• is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 36.4 and truncations as in the proof of More
on Algebra, Lemma 50.9. �

Lemma 36.8. Let (X,OX) be a ringed space. Let m ∈ Z. Let E be an object of
D(OX). If E is (locally) bounded above and Hi(E) is (m− i)-pseudo-coherent for
all i, then E is m-pseudo-coherent.

Proof. Omitted. Hint: use Lemma 36.4 and truncations as in the proof of More
on Algebra, Lemma 50.10. �

Lemma 36.9. Let (X,OX) be a ringed space. Let K be an object of D(OX). Let
m ∈ Z.

(1) If K is m-pseudo-coherent and Hi(K) = 0 for i > m, then Hm(K) is a
finite type OX-module.
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(2) If K is m-pseudo-coherent and Hi(K) = 0 for i > m + 1, then Hm+1(K)
is a finitely presented OX-module.

Proof. Proof of (1). We may work locally on X. Hence we may assume there exists
a strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. It suffices to prove
the result for E•. Let n be the largest integer such that En 6= 0. If n = m, then
Hm(E•) is a quotient of En and the result is clear. If n > m, then En−1 → En
is surjective as Hn(E•) = 0. By Lemma 35.5 we can locally find a section of this
surjection and write En−1 = E ′ ⊕ En. Hence it suffices to prove the result for the
complex (E ′)• which is the same as E• except has E ′ in degree n−1 and 0 in degree
n. We win by induction on n.

Proof of (2). We may work locally on X. Hence we may assume there exists a
strictly perfect complex E• and a map α : E• → K which induces an isomorphism
on cohomology in degrees > m and a surjection in degree m. As in the proof
of (1) we can reduce to the case that E i = 0 for i > m + 1. Then we see that
Hm+1(K) ∼= Hm+1(E•) = Coker(Em → Em+1) which is of finite presentation. �

Lemma 36.10. Let (X,OX) be a ringed space. Let F be a sheaf of OX-modules.

(1) F viewed as an object of D(OX) is 0-pseudo-coherent if and only if F is a
finite type OX-module, and

(2) F viewed as an object of D(OX) is (−1)-pseudo-coherent if and only if F
is an OX-module of finite presentation.

Proof. Use Lemma 36.9 to prove the implications in one direction and Lemma
36.8 for the other. �

37. Tor dimension

In this section we take a closer look at resolutions by flat modules.

Definition 37.1. Let (X,OX) be a ringed space. Let E be an object of D(OX).
Let a, b ∈ Z with a ≤ b.

(1) We say E has tor-amplitude in [a, b] if Hi(E⊗L
OXF) = 0 for all OX -modules

F and all i 6∈ [a, b].
(2) We say E has finite tor dimension if it has tor-amplitude in [a, b] for some

a, b.
(3) We say E locally has finite tor dimension if there exists an open covering

X =
⋃
Ui such that E|Ui has finite tor dimension for all i.

Note that if E has finite tor dimension, then E is an object of Db(OX) as can be
seen by taking F = OX in the definition above.

Lemma 37.2. Let (X,OX) be a ringed space. Let E• be a bounded above complex
of flat OX-modules with tor-amplitude in [a, b]. Then Coker(da−1

E• ) is a flat OX-
module.

Proof. As E• is a bounded above complex of flat modules we see that E•⊗OX F =
E• ⊗L

OX F for any OX -module F . Hence for every OX -module F the sequence

Ea−2 ⊗OX F → Ea−1 ⊗OX F → Ea ⊗OX F
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is exact in the middle. Since Ea−2 → Ea−1 → Ea → Coker(da−1) → 0 is a flat

resolution this implies that TorOX1 (Coker(da−1),F) = 0 for all OX -modules F .
This means that Coker(da−1) is flat, see Lemma 27.15. �

Lemma 37.3. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) E is represented by a complex E• of flat OX-modules with E i = 0 for i 6∈

[a, b].

Proof. If (2) holds, then we may compute E ⊗L
OX F = E• ⊗OX F and it is clear

that (1) holds.

Assume that (1) holds. We may represent E by a bounded above complex of flat
OX -modules K•, see Section 27. Let n be the largest integer such that Kn 6= 0. If
n > b, then Kn−1 → Kn is surjective as Hn(K•) = 0. As Kn is flat we see that
Ker(Kn−1 → Kn) is flat (Modules, Lemma 16.8). Hence we may replace K• by
τ≤n−1K•. Thus, by induction on n, we reduce to the case that K• is a complex of
flat OX -modules with Ki = 0 for i > b.

Set E• = τ≥aK•. Everything is clear except that Ea is flat which follows immediately
from Lemma 37.2 and the definitions. �

Lemma 37.4. Let f : (X,OX) → (Y,OY ) be a morphism of ringed spaces. Let
E be an object of D(OY ). If E has tor amplitude in [a, b], then Lf∗E has tor
amplitude in [a, b].

Proof. Assume E has tor amplitude in [a, b]. By Lemma 37.3 we can represent
E by a complex of E• of flat O-modules with E i = 0 for i 6∈ [a, b]. Then Lf∗E is
represented by f∗E•. By Modules, Lemma 17.2 the modules f∗E i are flat. Thus
by Lemma 37.3 we conclude that Lf∗E has tor amplitude in [a, b]. �

Lemma 37.5. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a, b ∈ Z with a ≤ b. The following are equivalent

(1) E has tor-amplitude in [a, b].
(2) for every x ∈ X the object Ex of D(OX,x) has tor-amplitude in [a, b].

Proof. Taking stalks at x is the same thing as pulling back by the morphism
of ringed spaces (x,OX,x) → (X,OX). Hence the implication (1) ⇒ (2) follows
from Lemma 37.4. For the converse, note that taking stalks commutes with tensor
products (Modules, Lemma 15.1). Hence

(E ⊗L
OX F)x = Ex ⊗L

OX,x Fx
On the other hand, taking stalks is exact, so

Hi(E ⊗L
OX F)x = Hi((E ⊗L

OX F)x) = Hi(Ex ⊗L
OX,x Fx)

and we can check whether Hi(E⊗L
OX F) is zero by checking whether all of its stalks

are zero (Modules, Lemma 3.1). Thus (2) implies (1). �

Lemma 37.6. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). Let a, b ∈ Z.

(1) If K has tor-amplitude in [a + 1, b + 1] and L has tor-amplitude in [a, b]
then M has tor-amplitude in [a, b].
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(2) If K and M have tor-amplitude in [a, b], then L has tor-amplitude in [a, b].
(3) If L has tor-amplitude in [a + 1, b + 1] and M has tor-amplitude in [a, b],

then K has tor-amplitude in [a+ 1, b+ 1].

Proof. Omitted. Hint: This just follows from the long exact cohomology sequence
associated to a distinguished triangle and the fact that −⊗L

OX F preserves distin-
guished triangles. The easiest one to prove is (2) and the others follow from it by
translation. �

Lemma 37.7. Let (X,OX) be a ringed space. Let K,L be objects of D(OX). If K
has tor-amplitude in [a, b] and L has tor-amplitude in [c, d] then K ⊗L

OX L has tor
amplitude in [a+ c, b+ d].

Proof. Omitted. Hint: use the spectral sequence for tors. �

Lemma 37.8. Let (X,OX) be a ringed space. Let a, b ∈ Z. For K, L objects of
D(OX) if K ⊕ L has tor amplitude in [a, b] so do K and L.

Proof. Clear from the fact that the Tor functors are additive. �

38. Perfect complexes

In this section we discuss properties of perfect complexes on ringed spaces.

Definition 38.1. Let (X,OX) be a ringed space. Let E• be a complex of OX -
modules. We say E• is perfect if there exists an open covering X =

⋃
Ui such

that for each i there exists a morphism of complexes E•i → E•|Ui which is a quasi-
isomorphism with E•i strictly perfect. An object E of of D(OX) is perfect if it can
be represented by a perfect complex of OX -modules.

Lemma 38.2. Let (X,OX) be a ringed space. Let E be an object of D(OX).

(1) If there exists an open covering X =
⋃
Ui, strictly perfect complexes E•i on

Ui, and isomorphisms αi : E•i → E|Ui in D(OUi), then E is perfect.
(2) If E is perfect, then any complex representing E is perfect.

Proof. Identical to the proof of Lemma 36.2. �

Lemma 38.3. Let (X,OX) be a ringed space. Let E be an object of D(OX). Let
a ≤ b be integers. If E has tor amplitude in [a, b] and is (a − 1)-pseudo-coherent,
then E is perfect.

Proof. After replacing X by the members of an open covering we may assume
there exists a strictly perfect complex E• and a map α : E• → E such that Hi(α)
is an isomorphism for i ≥ a. We may and do replace E• by σ≥a−1E•. Choose a
distinguished triangle

E• → E → C → E•[1]

From the vanishing of cohomology sheaves of E and E• and the assumption on
α we obtain C ∼= K[a − 2] with K = Ker(Ea−1 → Ea). Let F be an OX -module.
Applying −⊗L

OX F the assumption that E has tor amplitude in [a, b] implies K⊗OX
F → Ea−1 ⊗OX F has image Ker(Ea−1 ⊗OX F → Ea ⊗OX F). It follows that

TorOX1 (E ′,F) = 0 where E ′ = Coker(Ea−1 → Ea). Hence E ′ is flat (Lemma 27.15).
Thus E ′ is locally a direct summand of a finite free module by Modules, Lemma
16.11. Thus locally the complex

E ′ → Ea−1 → . . .→ Eb
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is quasi-isomorphic to E and E is perfect. �

Lemma 38.4. Let (X,OX) be a ringed space. Let E be an object of D(OX). The
following are equivalent

(1) E is perfect, and
(2) E is pseudo-coherent and locally has finite tor dimension.

Proof. Assume (1). By definition this means there exists an open covering X =⋃
Ui such that E|Ui is represented by a strictly perfect complex. Thus E is pseudo-

coherent (i.e., m-pseudo-coherent for all m) by Lemma 36.2. Moreover, a direct
summand of a finite free module is flat, hence E|Ui has finite Tor dimension by
Lemma 37.3. Thus (2) holds.

Assume (2). After replacing X by the members of an open covering we may assume
there exist integers a ≤ b such that E has tor amplitude in [a, b]. Since E is m-
pseudo-coherent for all m we conclude using Lemma 38.3. �

Lemma 38.5. Let f : (X,OX)→ (Y,OY ) be a morphism of ringed spaces. Let E
be an object of D(OY ). If E is perfect in D(OY ), then Lf∗E is perfect in D(OX).

Proof. This follows from Lemma 38.4, 37.4, and 36.3. (An alternative proof is to
copy the proof of Lemma 36.3.) �

Lemma 38.6. Let (X,OX) be a ringed space. Let (K,L,M, f, g, h) be a distin-
guished triangle in D(OX). If two out of three of K,L,M are perfect then the third
is also perfect.

Proof. First proof: Combine Lemmas 38.4, 36.4, and 37.6. Second proof (sketch):
Say K and L are perfect. After replacing X by the members of an open covering
we may assume that K and L are represented by strictly perfect complexes K• and
L•. After replacing X by the members of an open covering we may assume the
map K → L is given by a map of complexes α : K• → L•, see Lemma 35.8. Then
M is isomorphic to the cone of α which is strictly perfect by Lemma 35.2. �

Lemma 38.7. Let (X,OX) be a ringed space. If K,L are perfect objects of D(OX),
then so is K ⊗L

OX L.

Proof. Follows from Lemmas 38.4, 36.5, and 37.7. �

Lemma 38.8. Let (X,OX) be a ringed space. If K ⊕ L is a perfect object of
D(OX), then so are K and L.

Proof. Follows from Lemmas 38.4, 36.6, and 37.8. �

Lemma 38.9. Let (X,OX) be a ringed space. Let j : U → X be an open subspace.
Let E be a perfect object of D(OU ) whose cohomology sheaves are supported on
a closed subset T ⊂ U with j(T ) closed in X. Then Rj∗E is a perfect object of
D(OX).

Proof. Being a perfect complex is local on X. Thus it suffices to check that Rj∗E
is perfect when restricted to U and V = X \ j(T ). We have Rj∗E|U = E which is
perfect. We have Rj∗E|V = 0 because E|U\T = 0. �
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Lemma 38.10. Let (X,OX) be a ringed space. Let K be a perfect object of D(OX).
Then K∧ = RHom(K,OX) is a perfect object too and (K∧)∧ = K. There are
functorial isomorphisms

H0(X,K∧ ⊗L
OX M) = HomD(OX)(K,M)

for M in D(OX).

Proof. We will use without further mention that formation of internal hom com-
mutes with restriction to opens (Lemma 34.3). In particular we may check the first
two statements locally on X. By Lemma 34.8 to see the final statement it suffices
to check that the map (34.8.1)

K∧ ⊗L
OX M −→ RHom(K,M)

is an isomorphism. This is local on X as well. Hence it suffices to prove the lemma
when K is represented by a strictly perfect complex.

Assume K is represented by the strictly perfect complex E•. Then it follows from
Lemma 35.9 that K∧ is represented by the complex whose terms are (E−n)∧ =
HomOX (E−n,OX) in degree n. Since E−n is a direct summand of a finite free
OX -module, so is (E−n)∧. Hence K∧ is represented by a strictly perfect complex
too. It is also clear that (K∧)∧ = K as we have ((E−n)∧)∧ = E−n. To see that
(34.8.1) is an isomorphism, represent M by a K-flat complex F•. By Lemma 35.9
the complex RHom(K,M) is represented by the complex with terms⊕

n=p+q
HomOX (E−q,Fp)

On the other hand, then object K∧⊗LM is represented by the complex with terms⊕
n=p+q

Fp ⊗OX (E−q)∧

Thus the assertion that (34.8.1) is an isomorphism reduces to the assertion that
the canonical map

F ⊗OX HomOX (E ,OX) −→ HomOX (E ,F)

is an isomorphism when E is a direct summand of a finite free OX -module and F is
any OX -module. This follows immediately from the corresponding statement when
E is finite free. �

39. Compact objects

n this section we study compact objects in the derived category of modules on a
ringed space. We recall that compact objects are defined in Derived Categories,
Definition 34.1. On suitable ringed spaces the perfect objects are compact.

Lemma 39.1. Let X be a ringed space. Assume that the underlying topological
space of X has the following properties:

(1) X is quasi-compact,
(2) there exists a basis of quasi-compact open subsets, and
(3) the intersection of any two quasi-compact opens is quasi-compact.

Then any perfect object of D(OX) is compact.
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Proof. Let K be a perfect object and let K∧ be its dual, see Lemma 38.10. Then
we have

HomD(OX)(K,M) = H0(X,K∧ ⊗L
OX M)

functorially in M in D(OX). Since K∧ ⊗L
OX − commutes with direct sums (by

construction) and H0 does by Lemma 20.1 and the construction of direct sums in
Injectives, Lemma 13.4 we obtain the result of the lemma. �
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