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1. Why read this?

We give a very informal introduction to algebraic stacks aimed at graduate students
and advanced undergraduates. The goal is to quickly introduce a simple language
which you can use to think about local and global properties of your favorite moduli
problem. Having done this it should be possible to ask yourself well-posed questions
about moduli problems and to start solving them, whilst assuming a general theory
exists. If you end up with an interesting result, you can go back to the general
theory in the other parts of the stacks project and fill in the gaps as needed.

The point of view we take here is very close to the point of view taken in [KM85]
and [Mum65].

2. Preliminary

Let S be a scheme. An elliptic curve over S is a triple (E, f, 0) where E is a scheme
and f : E → S and 0 : S → E are morphisms of schemes such that

(1) f : E → S is proper, smooth of relative dimension 1,
(2) for every s ∈ S the fibre Es is a connected curve of genus 1, i.e., H0(Es,O)

and H1(Es,O) both are 1-dimensional κ(s)-vector spaces, and
(3) 0 is a section of f .

Given elliptic curves (E, f, 0)/S and (E′, f ′, 0′)/S′ a morphism of elliptic curves
over a : S → S′ is a morphism α : E → E′ such that the diagram

E
α

//

f

��

E′

f ′

��
S

0

77

a // S′

0′

ff
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2 INTRODUCING ALGEBRAIC STACKS

is commutative and the inner square is cartesian, in other words the morphism α
induces an isomorphism E → S ×S′ E′. We are going to define the stack of elliptic
curves M1,1. In the rest of the stacks project we work out the method introduced
in Deligne and Mumford’s paper [DM69] which consists in presenting M1,1 as a
category endowed with a functor

p :M1,1 −→ Sch, (E, f, 0)/S 7−→ S

This means you work with fibred categories over the categories of schemes, topolo-
gies, stacks fibred in groupoids, coverings, etc, etc. In this chapter we throw all of
that out of the window and we think about it a bit differently – probably closer to
how the initiators of the theory started thinking about it themselves.

3. The moduli stack of elliptic curves

Here is what we are going to do:

(1) Start with your favorite category of schemes Sch.
(2) Add a new symbol M1,1.
(3) A morphism S →M1,1 is an elliptic curve (E, f, 0) over S.
(4) A diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

is commutative if and only if there exists a morphism α : E → E′ of
elliptic curves over a : S → S′. We say α witnesses the commutativity of
the diagram.

(5) Note that commutative diagrams glue as follows

S
a

//

(E,f,0)
))

S′

(E′,F ′,0′)

��

a′
// S′′

(E′′,F ′′,0′′)uu
M1,1

because α′ ◦ α witnesses the commutativity of the outer triangle if α and
α′ witness the commutativity of the left and right triangles.

(6) The composition

S
a−→ S′

(E′,f ′,0′)−−−−−−→M1,1

is given by (E′ ×S′ S, f ′ ×S′ S, 0′ ×S′ S).

At the end of this procedure we have enlarged the category Sch of schemes with
exactly one object...

Except that we haven’t defined what a morphism fromM1,1 to a scheme T is. The
answer is that it is the weakest possible notion such that compositions make sense.
Thus a morphism F :M1,1 → T is a rule which to every elliptic curve (E, f, 0)/S
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associates a morphism F (E, f, 0) : S → T such that given any commutative diagram

S
a

//

(E,f,0) !!

S′

(E′,F ′,0′)||
M1,1

the diagram

S
a

//

F (E,f,0) ��

S′

F (E′,F ′,0′)��
T

is commutative also. An example is the j-invariant

j :M1,1 −→ A1
Z

which you may have heard of. Aha, so now we’re done...

Except, no we’re not! We still have to define a notion of morphismsM1,1 →M1,1.
This we do in exactly the same way as before, i.e., a morphism F :M1,1 →M1,1

is a rule which to every elliptic curve (E, f, 0)/S associates another elliptic curve
F (E, f, 0) preserving commutativity of diagrams as above. However, since I don’t
know of a nontrivial example of such a functor, I’ll just define the set of morphisms
from M1,1 to itself to consist of the identity for now.

I hope you see how to add other objects to this enlarged category. Somehow it seems
intuitively clear that given any “well-behaved” moduli problem we can perform the
construction above and add an object to our category. In fact, much of modern
day algebraic geometry takes place in such a universe where Sch is enlarged with
countably many (explicitly constructed) moduli stacks.

You may object that the category we obtain isn’t a category because there is a
“vagueness” about when diagrams commute and which combinations of diagrams
continue to commute as we have to produce a witness to the commutativity. How-
ever, it turns out that this, the idea of having witnesses to commutativity, is a valid
approach to 2-categories! Thus we stick with it.

4. Fibre products

The question we pose here is what should be the fibre product

?

""||
S

(E,f,0) !!

S′

(E′,f ′,0′)||
M1,1

The answer: A morphism from a scheme T into ? should be a triple (a, a′, α) where
a : T → S, a′ : T → S′ are morphisms of schemes and where α : E ×S,a T →
E′×S′,a′ T is an isomorphism of elliptic curves over T . This makes sense because of
our definition of composition and commutative diagrams earlier in the discussion.
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Lemma 4.1 (Key fact). The functor Schopp → Sets, T 7→ {(a, a′, α) as above} is
representable by a scheme S ×M1,1 S

′.

Proof. Idea of proof. Relate this functor to

IsomS×S′(E × S′, S × E′)

and use Grothendieck’s theory of Hilbert schemes. �

Remark 4.2. We have the formula S×M1,1
S′ = (S×S′)×M1,1×M1,1

M1,1. Hence
the key fact is a property of the diagonal ∆M1,1 of M1,1.

In any case the key fact allows us to make the following definition.

Definition 4.3. We say a morphism S → M1,1 is smooth if for every morphism
S′ →M1,1 the projection morphism

S ×M1,1 S
′ −→ S′

is smooth.

Note that this is compatible with the notion of a smooth morphism of schemes as
the base change of a smooth morphism is smooth. Moreover, it is clear how to
extend this definition to other properties of morphisms into M1,1 (or your own
favorite moduli stack). In particular we will use it below for surjective morphisms.

5. The definition

We’ll formulate it as a definition and not as a result since we expect the reader to
try out other cases (not just the stack M1,1 and not just Sch the category of all
schemes).

Definition 5.1. We say M1,1 is an algebraic stack if and only if

(1) We have descent for objects for the étale topology on Sch.
(2) The key fact holds.
(3) there exists a surjective and smooth morphism S →M1,1.

The first condition is a “sheaf property”. We’re going to spell it out since there is
a technical point we should make. Suppose given a scheme S and an étale covering
{Si → S} and morphisms ei : Si →M1,1 such that the diagrams

Si ×S Sj

ei◦pr1 $$

id
// Si ×S Sj

ej◦pr2zz
M1,1

commute. The sheaf condition does not guarantee the existence of a morphism
e : S → M1,1 in this situation. Namely, we need to pick witnesses αij for the
diagrams above and require that

pr∗02αik = pr12αjk ◦ pr∗01αij

as witnesses over Si ×S Sj ×S Sk. I think it is clear what this means... If not, then
I’m afraid you’ll have to read some of the material on categories fibred in groupoids,
etc. In any case, the displayed equation is often called the cocycle condition. A
more precise statement of the “sheaf property” is: given {Si → S}, ei : Si →M1,1

http://localhost:8080/tag/072M
http://localhost:8080/tag/072N
http://localhost:8080/tag/072P
http://localhost:8080/tag/072R
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and witnesses αij satisfying the cocycle condition, there exists a unique (up to
unique isomorphism) e : S →M1,1 with ei ∼= e|Si recovering the αij .

As you can see even formulating a precise statement takes a bit of work. The proof
of this “sheaf property” relies on a fundamental technique in algebraic geometry,
namely descent theory. My suggestion is to initially simply accept the “sheaf prop-
erty” holds, and see what it implies in practice. In fact, a certain amount of mental
agility is required to boil the “sheaf property” down to a manageable statement
that you can fit on a napkin. Perhaps the simplest variant which is already a bit
interesting is the following: Suppose we have a Galois extension K ⊂ L of fields
with Galois group G = Gal(L/K). Set T = Spec(L) and S = Spec(K). Then
{T → S} is an étale covering. Let (E, f, 0) be an elliptic curve over L. (Yes, this
just means that E ⊂ P2

L is given by a Weierstrass equation and 0 is the usual point
at infinity.) Denote Eσ = E ×T,Spec(σ) T the base change. (Yes, this corresponds

to applying σ to the coefficients of the Weierstrass equation, or is it σ−1?) Now,
suppose moreover that for every σ ∈ G we are given an isomorphism

ασ : E −→ Eσ

over T . The cocycle condition above means in this situation that

(ατ )σ ◦ ασ = ατσ

for σ, τ ∈ G. If you’ve ever done any group cohomology then this should be familiar.
Anyway, the “glueing” condition on M1,1 says that if you have a solution to this
set of equations, then there exists an elliptic curve E′ over S such that E ∼= E×S T
(it says a little bit more because it also tells you how to recover the ασ).

Challenge: Can you prove this entirely using only elliptic curves defined in terms
of Weierstrass equations?

6. A smooth cover

The last thing we have to do is find a smooth cover ofM1,1. In fact, in some sense
the existence of a smooth cover implies1 the key fact! In the case of elliptic curves
we use the Weierstrass equation to construct one.

Set

W = Spec(Z[a1, a2, a3, a4, a6, 1/∆])

where ∆ ∈ Z[a1, a2, a3, a4, a6] is a certain polynomial (see below). Set

P2
W ⊃ EW : zy2 + a1xyz + a3yz

2 = x3 + a2x
2z + a4xz

3 + a6z
3.

Denote fW : EW → W the projection. Finally, denote 0W : W → EW the section
of fW given by (0 : 1 : 0). It turns out that there is a degree 12 homogeneous
polynomial ∆ in ai where deg(ai) = i such that EW →W is smooth. You can find

1This is a bit of a cheat because in checking the smoothness you have to prove something very

close to the key fact – after all smoothness is defined in terms of fibre products. The advantage is
that you only have to prove the existence of these fibre products in the case that on one side you

have the morphism that you are trying to show provides the smooth cover.
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it explicitly by computing partials of the Weierstrass equation – of course you can
also look it up. You can also use pari/gp to compute it for you. Here it is

∆ = −a6a
6
1 + a4a3a

5
1 + ((−a2

3 − 12a6)a2 + a2
4)a4

1+

(8a4a3a2 + (a3
3 + 36a6a3))a3

1+

((−8a2
3 − 48a6)a2

2 + 8a2
4a2 + (−30a4a

2
3 + 72a6a4))a2

1+

(16a4a3a
2
2 + (36a3

3 + 144a6a3)a2 − 96a2
4a3)a1+

(−16a2
3 − 64a6)a3

2 + 16a2
4a

2
2 + (72a4a

2
3 + 288a6a4)a2+

− 27a4
3 − 216a6a

2
3 − 64a3

4 − 432a2
6

You may recognize the last two terms from the case y2 = x3 + Ax + B having
discriminant −64A3 − 432B2 = −16(4A3 + 27B2).

Lemma 6.1. The morphism W
(EW ,fW ,0W )−−−−−−−−→M1,1 is smooth and surjective.

Proof. Surjectivity follows from the fact that every elliptic curve over a field has a
Weierstrass equation. We give a very rough sketch of one way to prove smoothness.
Consider the sub group scheme

H =


u2 s 0

0 u3 0
r t 1

∣∣∣∣∣∣ u unit
s, r, t arbitrary

 ⊂ GL3,Z

There is an action H ×W → W of H on the Weierstrass scheme W . To find the
equations for this action write out what a coordinate change given by a matrix
in H does to the general Weierstrass equation. Then it turns out the following
statements hold

(1) any elliptic curve (E, f, 0)/S has Zariski locally on S a Weierstrass equation,
(2) any two Weierstrass equations for (E, f, 0) differ (Zariski locally) by an

element of H.

Considering the fibre product S×M1,1
W = IsomS×W (E×W,S×EW ) we conclude

that this means that the morphism W →M1,1 is an H-torsor. Since H → Spec(Z)
is smooth, and since torsors over smooth group schemes are smooth we win. �

Remark 6.2. The argument sketched above actually shows thatM1,1 = [W/H] is
a global quotient stack. It is true about 50% of the time that an argument proving
a moduli stack is algebraic will show that it is a global quotient stack.

7. Properties of algebraic stacks

Ok, so now we know that M1,1 is an algebraic stack. What can we do with this?
Well, it isn’t so much the fact that it is an algebraic stack that helps us here, but
more the point of view that properties ofM1,1 should be encoded in the properties
of morphisms S →M1,1, i.e., in families of elliptic curves. We list some examples

Local properties:

M1,1 → Spec(Z) is smooth⇔W → Spec(Z) is smooth

Idea. Local properties of an algebraic stack are encoded in the local properties of
its smooth cover.

http://localhost:8080/tag/072T
http://localhost:8080/tag/072U
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Global properties:

M1,1 is quasi-compact⇐W is quasi-compact
M1,1 is irreducible⇐W is irreducible

Idea. Some global properties of an algebraic stack can be read off from the corre-
sponding property of a suitable2 smooth cover.

Quasi-coherent sheaves:

QCoh(OM1,1) = H-equivariant quasi-coherent modules on W

Idea. On the one hand a quasi-coherent module on M1,1 should correspond to a
quasi-coherent sheaf FS,e on S for each morphism e : S →M1,1. In particular for
the morphism (EW , fW , 0W ) : W → M1,1. Since this morphism is H-equivariant
we see the quasi-coherent module FW we obtain is H-equivariant. Conversely,
given an H-equivariant module we can recover the sheaves FS,e by descent theory
starting with the observation that S ×e,M1,1

W is an H-torsor.

Picard group:
Pic(M1,1) = PicH(W ) = Z/12Z

Idea. We have seen the first equality above. Note that Pic(W ) = 0 because the
ring Z[a1, a2, a3, a4, a6, 1/∆] has trivial class group. There is an exact sequence

Z∆→ PicH(A5
Z)→ PicH(W )→ 0

The middle group equals Hom(H,Gm) = Z. The image ∆ is 12 because ∆ has
degree 12. This argument is roughly correct, see [FO10].

Étale cohomology: Let Λ be a ring. There is a first quadrant spectral sequence
converging to Hp+q

étale(M1,1,Λ) with E2-page

Ep,q2 = Hq
étale(W ×H × . . .×H,Λ) (p factors H)

Idea. Note that

W ×M1,1 W ×M1,1 . . .×M1,1 W = W ×H × . . .×H

because W →M1,1 is a H-torsor. The spectral sequence is the Čech-to-cohomology
spectral sequence for the smooth cover {W → M1,1}. For example we see that
H0
étale(M1,1,Λ) = Λ because W is connected, and H1

étale(M1,1,Λ) = 0 because
H1
étale(W,Λ) = 0 (of course this requires a proof). Of course, the smooth covering

W →M1,1 may not be “optimal” for the computation of étale cohomology.
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