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2 SIMPLICIAL METHODS

1. Introduction

This is a minimal introduction to simplicial methods. We just add here whenever
something is needed later on. A general reference to this material is perhaps [GJ99].
An example of the things you can do is the paper by Quillen on Homotopical
Algebra, see [Qui67] or the paper on Etale Homotopy by Artin and Mazur, see
[AMG9].

2. The category of finite ordered sets

The category A is the category with

(1) objects [0],[1],]2],... with [n] = {0,1,2,...,n} and
(2) amorphism [n] — [m] is a nondecreasing map {0,1,2,...,n} — {0,1,2,...,m}
between the corresponding sets.

Here nondecreasing for a map ¢ : [n] — [m] means by definition that (i) >
©(j) if © > j. In other words, A is a category equivalent to the “big” category
of finite totally ordered sets and nondecreasing maps. There are exactly n + 1
morphisms [0] — [n] and there is exactly 1 morphism [n] — [0]. There are exactly
(n + 1)(n 4+ 2)/2 morphisms [1] — [n] and there are exactly n + 2 morphisms
[n] = [1]. And so on and so forth.

Definition 2.1. For any integer n > 1, and any 0 < j < n we let 67 : [n — 1] — [n]
denote the injective order preserving map skipping j. For any integer n > 0, and
any 0 < j < n we denote o7 : [n + 1] — [n] the surjective order preserving map

with (o)~ ({7}) = {j.j + 1}.

Lemma 2.2. Any morphism in A can be written as a composition of the morphisms
07 and o}

Proof. Let ¢ : [n] — [m] be a morphism of A. If j & Im(p), then we can write
¢ as 7" o 1p for some morphism ¢ : [n] — [m —1]. If p(j) = ¢(j + 1) then we
can write ¢ as ¢ o a;f_l for some morphism v : [n — 1] — [m]. The result follows
because each replacement as above lowers n+m and hence at some point ¢ is both
injective and surjective, hence an identity morphism. O

Lemma 2.3. The morphisms 0] and o} satisfy the following relations.

(1) Ifo<i<j<n+1, then 5;”'1 oo =o't o 67 1. In other words the

diagram
[n]
2N
i1
[n

—_

] [n+1]

N /T:l

]

n —

commutes.
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(2) If0<i<j<n-—1, then or?_l ol = 5?_1 o crj:f. In other words the

diagram
[n]
N
] n—1]
U]T.L:f 4

[n—2]

[n—1

DN

3

commutes.
(3) If0<j<n—1, then ol " 08" = idy,_y) and o} ~" 061, = idy,_y). In
other words the diagram

commutes.

4) If0<j+1<i<n, then 03771 ool = 5?:11 o 0?72. In other words the
diagram
[n]
[n—1] [n—1]
oy 2 %
[n —2]
commutes.
(5) If0<i<j<n-—1, then o?_l ool = 0'?_1 ool y. In other words the
diagram
[n+ 1] [n— 1]
o3 ot
[n]
commutes.

Proof. Omitted. O

Lemma 2.4. The category A is the universal category with objects [n], n > 0
and morphisms 5;? and o} such that (a) every morphism is a composition of these
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morphisms, (b) the relations listed in Lemma[2.5 are satisfied, and (c) any relation
among the morphisms is a consequence of those relations.

Proof. Omitted. O

3. Simplicial objects
Definition 3.1. Let C be a category.

(1) A simplicial object U of C is a contravariant functor U from A to C, in a
formula:

U:AP —C

(2) If C is the category of sets, then we call U a simplicial set.

(3) If C is the category of abelian groups, then we call U a simplicial abelian
group.

(4) A morphism of simplicial objects U — U’ is a transformation of functors.

(5) The category of simplicial objects of C is denoted Simp(C).

This means there are objects U([0]), U([1]),U([2]), ... and for ¢ any nondecreasing
map ¢ : [m] — [n] a morphism U(y) : U([n]) — U(|m)]), satisfying U(p o ¢) =
U(y) o Ulp)-

In particular there is a unique morphism U ([0]) — U([n]) and there are exactly n+1
morphisms U([n]) — U([0]) corresponding to the n + 1 maps [0] — [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section[2]above.

Lemmal 3.2. Let C be a category.

(1) Given a simplicial object U in C we obtain a sequence of objects U, =
U([n]) endowed with the morphisms dj = U(6}) : Uy — Un—1 and s} =
U(o}) : Uy = Upy1. These morphisms satisfy the opposites of the relations
displayed in Lemma [2.3

(2) Conversely, given a sequence of objects U, and morphisms dj, s satisfying
these relations there exists a unique simplicial object U in C such that U, =
U([n]), d} =U(6}), and s} = U(a?).

(3) A morphism between simplicial objects U and U’ is given by a family of

morphisms U, — U], commuting with the morphisms dj and s7.

Proof. This follows from Lemma 2.4 O

Remark| 3.3. By abuse of notation we sometimes write d; : U,, — U,,_1 instead of
d}, and similarly for s; : U, = Up41. The relations among the morphisms d’ and
57 may be expressed as follows:

(1) Ifi < 7, then d; o dj = dj—l od;.

(2) If i < j, then d; o s; = s;_1 0 d;.

(3) We have id = dj 0 s; = dj41 0 5j.

(4) Ifi>j+1,thend;os; =s;0d;_1.

(5) If i < j, then s;08; = §j41 0 8;.
This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.
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We get a unique morphism s3 = U(0)) : Uy — U; and two morphisms d} = U(&}),
and di = U(6}) which are morphisms U; — Up. There are two morphisms sj =
U(c}), st = U(ol) which are morphisms U; — Us. Three morphisms d3 = U(83),

d? = U(6?), d3 = U(63) which are morphisms Uz — Us. And so on.
Pictorially we think of U as follows:
Up—=U1=—="Uo

Here the d-morphisms are the arrows pointing right and the s-morphisms are the
arrows pointing left.

Example| 3.4. The simplest example is the constant simplicial object with value
X € Ob(C). In other words, U,, = X and all maps are idx.

Example| 3.5. Suppose that Y — X is a morphism of C such that all the fibred
products Y xx Y Xx ... Xx Y exist. Then we set U, equal to the (n + 1)-fold
fibre product, and we let ¢ : [n] — [m] correspond to the map (on “coordinates”)
(Y0, -+ Ym) ¥ (Yp(0)» - - - » Yp(n))- In other words, themap Uy =Y — Uy =Y xxY
is the diagonal map. The two maps Uy =Y xXx Y — Uy =Y are the projection
maps.

Geometrically Example [3.5] above is an important example. It tells us that it is
a good idea to think of the maps dj : U, — U,_1 as projection maps (forgetting
the jth component), and to think of the maps s7 + Up = Upy1 as diagonal maps
(repeating the jth coordinate). We will return to this in the sections below.

Lemma) 3.6. Let C be a category. Let U be a simplicial object of C. Fach of the
morphisms s : U, — U, 41 has a left inverse. In particular s} is a monomorphism.

Proof. This is true because d?“ osl =idy,,. ]

4. Simplicial objects as presheaves

Another observation is that we may think of a simplicial object of C as a presheaf
with values in C over A. See Sites, Definition[2.2] And in fact, if U, U’ are simplicial
objects of C, then we have

(4.0.1) Mor(U,U’) = MOI”pSh(A)(U, U).

Some of the material below could be replaced by the more general constructions in
the chapter on sites. However, it seems a clearer picture arises from the arguments
specific to simplicial objects.

5. Cosimplicial objects

A cosimplicial object of a category C could be defined simply as a simplicial object
of the opposite category C°PP. This is not really how the human brain works, so we
introduce them separately here and point out some simple properties.

Definition 5.1. Let C be a category.

(1) A cosimplicial object U of C is a covariant functor U from A to C, in a
formula:

U:A—C
(2) If C is the category of sets, then we call U a cosimplicial set.
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(3) If C is the category of abelian groups, then we call U a cosimplicial abelian
group.

(4) A morphism of cosimplicial objects U — U’ is a transformation of functors.

(5) The category of cosimplicial objects of C is denoted CoSimp(C).

This means there are objects U([0]),U([1]),U([2]), ... and for ¢ any nondecreasing
map ¢ : [m] — [n] a morphism U(y) : U([m]) — U([n]), satisfying U(p o ¢) =
U(p) o U ().

In particular there is a unique morphism U ([n]) — U([0]) and there are exactly n+1
morphisms U([0]) — U([n]) corresponding to the n + 1 maps [0] — [n]. Obviously
we need some more notation to be able to talk intelligently about these simplicial
objects. We do this by considering the morphisms we singled out in Section[2above.

Lemma 5.2. Let C be a category.

(1) Given a cosimplicial object U in C we obtain a sequence of objects U, =
U([n]) endowed with the morphisms 6} = U(6}) : Up—1 — Uy, and o} =
U(U;?) : Upy1 — U,. These morphisms satisfy the relations displayed in
Lemma[2.3.

(2) Conversely, given a sequence of objects Uy, and morphisms 0%, o} satisfying
these relations there exists a unique cosimplicial object U in C such that
Un =U([n]), 6} =U(d}), and o} = U(o}).

(3) A morphism between cosimplicial objects U and U’ is given by a family of
morphisms U, — U], commuting with the morphisms 67 and o7

Proof. This follows from Lemma 2.4 O

Remark]| 5.3. By abuse of notation we sometimes write d; : U,,_1 — U, instead of
07, and similarly for o; : Up41 — U,. The relations among the morphisms 4} and
o} may be expressed as follows:

(1) Ifi < 7, then 5]‘ 0d; =9;0 6j_1.

(2) Ifi < 7, then j 0d; =0 00j—1.

(3) We have id =0, 00; =0j00,41.

(4) Ifi> ] + ]., then gj 0(51' = (57;,1 ©0j.

(5) If 4 S j, then 0j00; =0;00;541.
This means that whenever the compositions on both the left and the right are
defined then the corresponding equality should hold.

We get a unique morphism o9 = U(a)) : Uy — Uy and two morphisms 6 = U(83),
and 6{ = U(81) which are morphisms Uy — U;. There are two morphisms o} =
U(o}d), of = U(o}) which are morphisms Uy — U;. Three morphisms 62 = U(83),
82 = U(69), 63 = U(63) which are morphisms Uy — Us. And so on.

Pictorially we think of U as follows:

e a—— -
Up=—=U1 —=U>
-

Here the d-morphisms are the arrows pointing right and the o-morphisms are the
arrows pointing left.

Example 5.4. The simplest example is the constant cosimplicial object with value
X € Ob(C). In other words, U,, = X and all maps are idx.
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Example|5.5. Suppose that Y — X is a morphism of C such that all the pushouts
Y[« Y]lx.. .- IIxY exist. Then we set U, equal to the (n+ 1)-fold pushout, and
we let ¢ : [n] = [m] correspond to the map

(y in ith component) — (y in ¢(i)th component)

on “coordinates”. In other words, the map Uy =Y [[ Y — Uy =Y is the identity
on each component. The two maps Uy =Y — U; =Y [[ Y are the two natural
maps.

Lemmal 5.6. Let C be a category. Let U be a cosimplicial object of C. Each of the
morphisms 6} : Up_1 — U, has a left inverse. In particular 67 is a monomorphism.

Proof. This is true because af‘l o6l =idy, for j < n. O

6. Products of simplicial objects

Of course we should define the product of simplicial objects as the product in the
category of simplicial objects. This may lead to the potentially confusing situation
where the product exists but is not described as below. To avoid this we define the
product directly as follows.

Definition 6.1. Let C be a category. Let U and V be simplicial objects of C.
Assume the products U,, x V,, exist in C. The product of U and V is the simplicial
object U x V defined as follows:

(1) (UxV)p=Up x Va,

(2> dif = (d%d?)’ and

(3) s = (i, s7).

In other words, U x V is the product of the presheaves U and V on A.

Lemmal 6.2. If U and V are simplicial objects in the category C, and if U x V.
exists, then we have

Mor(W,U x V) = Mor(W,U) x Mor(W, V)
for any third simplicial object W of C.
Proof. Omitted. U

7. Fibre products of simplicial objects

Of course we should define the fibre product of simplicial objects as the fibre product
in the category of simplicial objects. This may lead to the potentially confusing
situation where the fibre product exists but is not described as below. To avoid
this we define the fibre product directly as follows.

Definition 7.1. Let C be a category. Let U, V, W be simplicial objects of C. Let
a:V = U, b: W — U be morphisms. Assume the fibre products V,, xy, W, exist
in C. The fibre product of V. and W over U is the simplicial object V xy W defined
as follows:

(1) (V Xy W)n =V, XU Wm

(2) di = (d,dy), and

(3) s = (i, s7).
In other words, V' xy W is the fibre product of the presheaves V and W over the
presheaf U on A.
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Lemma 7.2. If U, V,W are simplicial objects in the category C, and ifa:V — U,
b: W — U are morphisms and if V- xy W exists, then we have

Mor(T,V xy W) = Mor(T, V') Xnor(r,ry Mor (T, W)
for any fourth simplicial object T of C.
Proof. Omitted. O

8. Pushouts of simplicial objects

Of course we should define the pushout of simplicial objects as the pushout in the
category of simplicial objects. This may lead to the potentially confusing situation
where the pushouts exist but are not as described below. To avoid this we define
the pushout directly as follows.

Definition 8.1. Let C be a category. Let U, V, W be simplicial objects of C. Let
a:U—V,b:U — W be morphisms. Assume the pushouts V;, LI, W,, exist in
C. The pushout of V. and W over U is the simplicial object V IIyy W defined as
follows:

(1) (Vg W), =V, 1y, W,,

(2) d = (d?,dY), and

(3) it = (si', 7).
In other words, V 11y W is the pushout of the presheaves V' and W over the presheaf
U on A.

Lemma 8.2. IfU,V,W are simplicial objects in the category C, and ifa: U — V,
b:U — W are morphisms and if V Iy W exists, then we have
Mor(V Hy W, T) = Mor(V, T) Xyjer(v,7) Mor(W, T)
for any fourth simplicial object T of C.
Proof. Omitted. O

9. Products of cosimplicial objects

Of course we should define the product of cosimplicial objects as the product in
the category of cosimplicial objects. This may lead to the potentially confusing
situation where the product exists but is not described as below. To avoid this we
define the product directly as follows.

Definition 9.1. Let C be a category. Let U and V be cosimplicial objects of C.
Assume the products U, x V,, exist in C. The product of U and V is the cosimplicial
object U x V defined as follows:
(1) (UxV)p=UpxVy,
(2) for any ¢ : [n] — [m] the map (U x V)(¢) : U, x V,, = Uy, X V,,, is the
product U(p) x V().

Lemma 9.2. If U and V are cosimplicial objects in the category C, and if U x V'
exists, then we have

Mor(W,U x V) = Mor(W,U) x Mor(W, V)
for any third cosimplicial object W of C.
Proof. Omitted. g
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10. Fibre products of cosimplicial objects

Of course we should define the fibre product of cosimplicial objects as the fibre
product in the category of cosimplicial objects. This may lead to the potentially
confusing situation where the product exists but is not described as below. To
avoid this we define the fibre product directly as follows.

Definition 10.1. Let C be a category. Let U, V, W be cosimplicial objects of C. Let
a:V — Uandb: W — U be morphisms. Assume the fibre products V,, xg, W,
exist in C. The fibre product of V- and W over U is the cosimplicial object V xy W
defined as follows:
(1) (V XU W)n = Vn XU, Wn,
(2) for any ¢ : [n] = [m] the map (V xy W) (@) : Vi, xu, Wa = Vi Xu,, Wi
is the product V(@) xy () W(p).

Lemma 10.2. IfU,V,W are cosimplicial objects in the category C, and ifa:V —
U,b: W — U are morphisms and if V xy W exists, then we have
Mor(T,V xy W) = Mor(T, V') Xnor(r,ry Mor(T', W)
for any fourth cosimplicial object T of C.
Proof. Omitted. d

11. Simplicial sets

Let U be a simplicial set. It is a good idea to think of Uy as the 0-simplices, the
set Uy as the 1-simplices, the set Us as the 2-simplices, and so on.

We think of the maps s;} : U, — U,41 as the map that associates to an n-simplex
A the degenerate (n + 1)-simplex B whose (j,j + 1)-edge is collapsed to the vertex
j of A. We think of the map d} : U, — U,—1 as the map that associates to an
n-simplex A one of the faces, namely the face that omits the vertex j. In this way it
become possible to visualize the relations among the maps s and d} geometrically.

Definition 11.1. Let U be a simplicial set. We say x is an n-simplex of U to
signify that x is an element of U,,. We say that y is the jthe face of = to signify
that djz = y. We say that z is the jth degeneracy of x if z = sjx. A simplex is
called degenerate if it is the degeneracy of another simplex.

Here are a few fundamental examples.

Example 11.2. For every n > 0 we denote A[n] the simplicial set
A°PP — Sets
[k] — Mora ([k], [n])
We leave it to the reader to verify the following statements. Every m-simplex of

A[n] with m > n is degenerate. There is a unique nondegenerate n-simplex of A[n],
namely id[,.

Lemma 11.3. Let U be a simplicial set. Let n > 0 be an integer. There is a
canonical bijection
Mor(A[n],U) — U,

which maps a morphism ¢ to the value of ¢ on the unique nondegenerate n-simplex

of Aln).
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Proof. Omitted. O

Example 11.4. Consider the category A/[n] of objects over [n] in A, see Cate-
gories, Example There is a functor p : A/[n] — A. The fibre category of p
over [k], see Categories, Section has as objects the set A[n] of k-simplices in
Al[n], and as morphisms only identities. For every morphism ¢ : [k] — [I] of A, and
every object ¢ : [[] — [n] in the fibre category over [I] there is a unique object over
[k] with a morphism covering ¢, namely 1 o ¢ : [k] = [n]. Thus A/[n] is fibred
in sets over A. In other words, we may think of A/[n] as a presheaf of sets over
A. See also, Categories, Example And this presheaf of sets agrees with the
simplicial set A[n]. In particular, from Equation and Lemma above we
get the formula
Mor pgpay(A/[n],U) = Up

for any simplicial set U.

Lemmal 11.5. Let U, V' be simplicial sets. Let a,b > 0 be integers. Assume every
n-simplex of U is degenerate if n > a. Assume every n-simplex of V is degenerate
if n > b. Then every n-simplex of U x V is degenerate if n > a +b.

Proof. Suppose n > a+b. Let (u,v) € (U xV),, = U, xV,. By assumption, there
exists a o : [n] — [a] and a v’ € U, and a B : [n] — [b] and a v’ € V, such that
u=U(a)(') and v = V(B)(v'). Because n > a + b, there exists an 0 < i < a+b
such that a(i) = a(i+ 1) and (i) = B(i + 1). It follows immediately that (u,v) is
in the image of s?_l. (]

12. Truncated simplicial objects and skeleton functors

Let A<, denote the full subcategory of A with objects [0], [1], [2],. .., [n]. Let C be
a category.

Definition 12.1. An n-truncated simplicial object of C is a contravariant functor
from A<, to C. A morphism of n-truncated simplicial objects is a transformation
of functors. We denote the category of n-truncated simplicial objects of C by the
symbol Simp,, (C).

Given a simplicial object U of C the truncation sk, U is the restriction of U to the
subcategory A<,. This defines a skeleton functor

sk, : Simp(C) — Simp,,(C)

from the category of simplicial objects of C to the category of n-truncated simplicial
objects of C. See Remark to avoid possible confusion with other functors in
the literature.

13. Products with simplicial sets

Let C be a category. Let U be a simplicial set. Let V' be a simplicial object of C.
We can consider the covariant functor which associates to a simplicial object W of
C the set
(13.0.1)

{(fn,u : Voo = Wi)n>0.ueu, such that Ve : [m]

Jm.u(o)w) © V(p)

4

I[’7;](90) ° fn,u}
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If this functor is of the form Morgimp(c) (@, —) then we can think of @ as the
product of U with V. Instead of formalizing this in this way we just directly define
the product as follows.

Definition 13.1. Let C be a category such that the coproduct of any two objects
of C exists. Let U be a simplicial set. Let V' be a simplicial object of C. Assume
that each U, is finite nonempty. In this case we define the product U x V' of U and
V' to be the simplicial object of C whose nth term is the object

(UxV), = Hu Vi

EU'VL
with maps for ¢ : [m] — [n] given by the morphism

HueUn v, — Hu’EUm Vin

which maps the component V,, corresponding to u to the component V,,, correspond-
ing to v’ = U(y)(u) via the morphism V(). More loosely, if all of the coproducts
displayed above exist (without assuming anything about C) we will say that the
product U xX V exists.

Lemmal 13.2. Let C be a category such that the coproduct of any two objects of C
exists. Let U be a simplicial set. Let V be a simplicial object of C. Assume that
each U, is finite nonempty. The functor W = Mor gimp(c) (U x V, W) is canonically
isomorphic to the functor which maps W to the set in FEquation .

Proof. Omitted. O

Lemma) 13.3. Let C be a category such that the coproduct of any two objects of C
exists. Let us temporarily denote FSSets the category of simplicial sets all of whose
components are finite nonempty.

(1) The rule (U, V) — U x V defines a functor FSSets x Simp(C) — Simp(C).
(2) For every U, V as above there is a canonical map of simplicial objects
UxV —V
defined by taking the identity on each component of (U X V), =11, Va-

Proof. Omitted. O

u

We briefly study a special case of the construction above. Let C be a category. Let
X be an object of C. Let k > 0 be an integer. If all coproducts X []...[[ X exist
then according to the definition above the product

X x Alk]
exists, where we think of X as the corresponding constant simplicial object.

Lemma) 13.4. With X and k as above. For any simplicial object V of C we have
the following canonical bijection

Mor gimp(c) (X x Alk], V) — More (X, V4).

wich maps v to the restriction of the morphism 7y to the component corresponding
to idyy. Similarly, for any n > k, if W is an n-truncated simplicial object of C,
then we have

Mor gimp,, () (8kn (X X A[k]), W) = More (X, Wy).
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Proof. A morphism v : X x A[k] — V is given by a family of morphisms -, :
X — V,, where « : [n] — [k]. The morphisms have to satisfy the rules that for all
¢ : [m] = [n] the diagrams

XLVTL

iidx lV(LP)

oo v
commute. Taking o = idp), we see that for any ¢ : [m] — [k] we have v, =
V(SD)O'Yid[k] . Thus the morphism + is determined by the value of v on the component
corresponding to idj,). Conversely, given such a morphism f : X — Vi we easily
construct a morphism « by putting v, = V(a) o f.

The truncated case is similar, and left to the reader. ([l

A particular example of this is the case k = 0. In this case the formula of the
lemma just says that

More (Xa VO) = MorSimp(C) (Xv V)

where on the right hand side X indicates the constant simplicial object with value
X. We will use this formula without further mention in the following.

14. Hom from simplicial sets into cosimplicial objects

Let C be a category. Let U be a simplicial object of C, and let V' be a cosimplicial
object of C. Then we get a cosimplicial set Home (U, V) as follows:

(1) we set Home (U, V), = Mor¢(U,, V,,), and
(2) for ¢ : [m] — [n] we take the map Home (U, V),, = Home (U, V), given by
feVig)ofolUl(p).

This is our motivation for the following definition.

Definition 14.1. Let C be a category with finite products. Let V' be a cosimplicial
object of C. Let U be a simplicial set such that each U, is finite nonempty. We
define Hom(U, V') to be the cosimplicial object of C defined as follows:

(1) we set Hom(U, V), = [[,cp, Vi, in other words the unique object of C such
that its X-valued points satisfy

More (X, Hom(U, V),,) = Map(U,,, Mor¢(X,V,,))

and
(2) for ¢ : [m] — [n] we take the map Hom(U,V),, — Hom(U,V),, given by
f=V(p)o foU(p) on X-valued points as above.

We leave it to the reader to spell out the definition in terms of maps between
products. We also point out that the construction is functorial in both U (con-
travariantly) and V' (covariantly), exactly as in Lemma in the case of products
of simplicial sets with simplicial objects.
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15. Internal Hom

Let C be a category with finite nonempty products. Let U, V be simplicial objects
C. In some cases the functor
Simp(C)P?  —  Sets
W +— MorSimp(C)(W X V, U)

is representable. In this case we denote Hom(V,U) the resulting simplicial object
of C, and we say that the internal hom of V into U exists. Moreover, in this case
we would have

More (X, Hom(V,U),) = Morgimpc)(X x Aln], Hom(V,U))
Morgimp(cy (X x Aln] x V,U)
Morgimp(cy (X, Hom(Aln] x V,U))
Mor¢ (X, Hom(A[n] x V,U)g)

provided that Hom(A[n] x V,U) exists also. Here we have used the material from
Section

The lesson we learn from this is that, given U and V, if we want to construct the
internal hom then we should try to construct the objects

Hom(A[n] x V,U)g

because these should be the nth term of Hom(V,U). In the next section we study
a construction of simplicial objects “Hom(A[n], U)”.

16. Hom from simplicial sets into simplicial objects

Motivated by the discussion on internal hom we define what should be the simplicial
object classifying morphisms from a simplicial set into a given simplicial object of
the category C.

Definition 16.1. Let C be a category such that the coproduct of any two objects
exists. Let U be a simplicial set, with U,, finite nonempty for all n > 0. Let V be
a simplicial object of C. We denote Hom(U, V') any simplicial object of C such that

MorSimp(C)(W Hom(U, V)) = MorSimp(C)(W X U, V)
functorially in the simplicial object W of C.

Of course Hom(U, V) need not exist. Also, by the discussion in Section [I5]we expect
that if it does exist, then Hom(U, V'),, = Hom(U x Aln],V)s. We do not use the
italic notation for these Hom objects since Hom(U, V') is not an internal hom.

Lemmal 16.2. Assume the category C has coproducts of any two objects and count-
able limits. Let U be a simplicial set, with U, finite nonempty for alln > 0. Let V
be a simplicial object of C. Then the functor

coPP —  Sets
X — MorSimp(C) (X X U, V)

is representable.
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Proof. A morphism from X x U into V is given by a collection of morphisms
fu:X — V, withn > 0 and u € U,. And such a collection actually defines a
morphism if and only if for all ¢ : [m] — [n] all the diagrams

X N Vi
idxl \LV(V’)

Tue)(w)
X ==V,

commute. Thus it is natural to introduce a category U and a functor V : U°PP — C
as follows:

(1) The set of objects of U is [[,,5( Un,
(2) a morphism from v € Uy, to u € U, is a ¢ : [m] — [n] such that U(p)(u) =

'U,I

(3) for u € U, we set V(u) =V, and
(4) for ¢ : [m] — [n] such that U(p)(u) = v we set V() =V (p) : Vi, = V.

At this point it is clear that our functor is nothing but the functor defining
limuopp Vv

Thus if C has countable limits then this limit and hence an object representing the
functor of the lemma exist. (I

Lemmal 16.3. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with U, finite nonempty for allm > 0. Assume
that all n-simplices of U are degenerate for all n > 0. Let V be a simplicial object
of C. Then the functor

coPP —  Sets
X +— MorSimp(C) (X X [j7 V)

is representable.

Proof. We have to show that the category U described in the proof of Lemma[16.2
has a finite subcategory U’ such that the limit of V over U’ is the same as the limit
of V over U. We will use Categories, Lemma For m > 0 let U<,, denote the
full subcategory with objects [[,.,,<,, Un. Let mg be an integer such that every
n-simplex of the simplicial set U is degenerate if n > mg. For any m > my large
enough, the subcategory U<, satisfies property (1) of Categories, Definition m

Suppose that v € U,, and «' € U, with n,n’ < mg and suppose that ¢ : [k] —
[n], ¢ : [k] — [n'] are morphisms such that U(p)(u) = U(¢')(u'). A simple
combinatorial argument shows that if £ > 2my, then there exists an index 0 < i <
2my such that ¢(i) = ¢(i + 1) and ¢’(i) = ¢’(i + 1). (The pigeon hole principle
would tell you this works if ¥ > m3 which is good enough for the argument below
anyways.) Hence, if k > 2mg, we may write ¢ = ¢ o oF ' and ¢/ = ¢/ 0 o¥ ! for
some 9 : [k — 1] — [n] and some ¢’ : [k — 1] — [/]. Since s¥' : Uy, — Uy is
injective, see Lemma [3.6] we conclude that U(¢)(u) = U(¢')(u’) also. Continuing
in this fashion we conclude that given morphisms v — z and v’ — z of U with
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U, ¥ € U<y, , there exists a commutative diagram

with a € U<op, -

It is easy to deduce from this that the finite subcategory U<oy,, works. Namely,
suppose given =’ € U, and 2" € U, with n,n’ < 2mg as well as morphisms 2’ — z
and 2/ — xz of U with the same target. By our choice of my we can find objects
u, v’ of U<, and morphisms u — 2/, v’ — 2. By the above we can find a € U<z,
and morphisms u — a, v’ — a such that

a——=z
y /
is commutative. Turning this diagram 90 degrees clockwise we get the desired

diagram as in (2) of Categories, Definition [17.3] O

Lemmal 16.4. Assume the category C has coproducts of any two objects and finite
limits. Let U be a simplicial set, with U, finite nonempty for all m > 0. Assume
that all n-simplices of U are degenerate for all n > 0. Let V' be a simplicial object
of C. Then Hom(U, V') exists, moreover we have the expected equalities

Hom(U,V),, = Hom(U x A[n],V)o.
Proof. We construct this simplicial object as follows. For n > 0 let Hom(U, V),

denote the object of C representing the functor
X +— MorSimp(C)(X x U x A[n], V)

This exists by Lemma because U x A[n] is a simplicial set with finite sets of
simplices and no nondegenerate simplices in high enough degree, see Lemma [T1.5]
For ¢ : [m] — [n] we obtain an induced map of simplicial sets ¢ : A[m] — Aln].
Hence we obtain a morphism X x U x A[m] — X x U x Aln| functorial in X, and
hence a transformation of functors, which in turn gives
Hom(U, V) (y) : Hom(U,V),, — Hom(U, V).

Clearly this defines a contravariant functor Hom(U, V') from A into the category C.
In other words, we have a simplicial object of C.
We have to show that Hom (U, V') satisfies the desired universal property

Morgimp(c) (W, Hom(U, V)) = Morgimpcy(W x U, V)

To see this, let f : W — Hom(U, V') be given. We want to construct the element f :
W x U — V of the right hand side. By construction, each f,, : W,, - Hom(U, V),
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corresponds to a morphism f, : W,, X U x A[n] — V. Further, for every morphism
@ : [m] — [n] the diagram

Wy, x U x Alm] ——— W,,, x U x A[m)]
W (p)xidxid

idxidxapl lfm

W, x U x Aln] In Vv

is commutative. For ¢ : [n] — [k] in (A[n])x we denote (fy,)k, ¢ : Wi x Uy — Vi, the
component of (f,)r corresponding to the element v. We define f}, : W,, x U,, = V,
as f} = (fn)n,d, in other words, as the restriction of (fy,), : Wy, x U, x (A[n])n, = V,,
to Wy, x Up X idp,). To see that the collection (f,,) defines a morphism of simplicial
objects, we have to show for any ¢ : [m] — [n] that V(@) o f], = fI oW (p) x U(y).
The commutative diagram above says that (fn)m’w : Wy x Uy, — Vyy, is equal to
(fm)m,ia © W(p) : W,, x Uy, — V;,,. But then the fact that f,, is a morphism of
simplicial objects implies that the diagram

x Un x (Aln])p ——— 0o
ide(w)le lv(w
W x U X (Afn])m 2221,
is commutative. And this implies that (fy,)m,, o U(yp) is equal to V() o (fn)n,id-
Altogether we obtain V() o (fn)nid = (fa)m,e o U(@) = (fm)miao W (p)oU(p) =

(fm)m.ia o W(p) x U(yp) as desired.

On the other hand, given a morphism f/ : W x U — V we define a morphism
f W — Hom(U,V) as follows. By Lemma the morphisms id : W,, — W,
corresponds to a unique morphism ¢, : W, x A[n] — W. Hence we can consider
the composition

W x Aln] x U <5 W x U L5 V.
By construction this corresponds to a unique morphism f, : W,, = Hom(U, V),

We leave it to the reader to see that these define a morphism of simplicial sets as
desired.

We also leave it to the reader to see that f +— f’ and f’ — f are mutually inverse
operations. (Il

We spell out the construction above in a special case. Let X be an object of a
category C. Assume that self products X X ... x X exist. Let k& be an integer.
Consider the simplicial object U with terms

Un = HaeMor([kL[n]) X

and maps given ¢ : [m] — [n]

Ulp) : HaeMor([k],[n]) X — Ha/eMor([k],[m]) X
(fa)a — (f‘POO")O"

In terms of “coordinates”, the element (z4)o is mapped to the element (zyo00)a’
We claim this object is equal to

Hom(Alk], X)
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where we think of X as the constant simplicial object X.

Lemma 16.5. With X, k and U as above.
(1) For any simplicial object V' of C we have the following canonical bijection
MorSimp(C)(V, U) — MOI“C (Vk, X)

wich maps v to the morphism ~; composed with the projection onto the
factor corresponding to idy.
(2) Similarly, if W is an k-truncated simplicial object of C, then we have

Mor gimp, (¢) (W, skxU) = Morc (W, X).
(3) The object U constructed above is an incarnation of Hom(A[k], X).

Proof. We first prove (1). Suppose that v : V — U is a morphism. This is given
by a family of morphisms 7, : V,, = X for v : [k] — [n]. The morphisms have to
satisfy the rules that for all ¢ : [m] — [n] the diagrams

X<~—V,

Ypoa!
lidx lV(W)

X<y,

commute for all o’ : [k] — [m]. Taking o’ = id}, we see that for any ¢ : [k] — [n]
we have 7, = %iay,, © V(). Thus the morphism v is determined by the component
of vy corresponding to idp;. Conversely, given such a morphism f : Vy — X we
easily construct a morphism ~ by putting v, = f o V(a).

The truncated case is similar, and left to the reader.
To see (3) we argue as follows:
Mor(V, Hom(A[k], X)) = Mor(V x A[k], X)
= {(fn:Vu x Alk], = X) | fn compatible}
= {(fn:Va— HA[k]n X) | fn compatible}
= Mor(V,U)

Thus U and Hom(A[k], X) define the same functor on the category of simplicial
objects and hence are canonically isomorphic. O

Lemmal 16.6. Assume the category C has coproducts of any two objects and finite
limits. Leta : U — V, b : U — W be morphisms of simplicial sets. Assume
Un, Vi, Wy, finite nonempty for all n > 0. Assume that all n-simplices of U, V, W
are degenerate for allm > 0. Let T be a simplicial object of C. Then

Hom(V,T') Xpom(,ry Hom(W,T) = Hom(V Iy W, T')

In other words, the fibre product on the left hand side is represented by the Hom
object on the right hand side.

Proof. By Lemma [I6.4] all the required Hom objects exist and satisfy the correct
functorial properties. Now we can identify the nth term on the left hand side as the
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object representing the functor that associates to X the first set of the following
sequence of functorial equalities

Mor(X x Aln], Hom(V,T) Xpom,r) Hom(W,T))

= Mor(X x A[n],Hom(V,T)) Xmor(x x A[n],Hom(v,T)) Mor(X x A[n], Hom(W,T))
= Mor(X x A[n] x V,T) Xnor(x x Afn]xv,7) Mor(X x Aln] x W, T)

= Mor(X x Aln] x (V Iy W), T))

Here we have used the fact that
(X x A[n] x V) xXxxamxv (X x Aln] x W) = X x Aln] x (V 1y W)

which is easy to verify term by term. The result of the lemma follows as the last
term in the displayed sequence of equalities corresponds to Hom(V Iy W, T),,. O

17. Splitting simplicial objects

A subobject NV of an object X of the category C is an object N of C together with
a monomorphism N — X. Of course we say (by abouse of notation) that the
subobjects N, N’ are equal if there exists an isomorphism N — N’ compatible
with the morphisms to X. The collection of subobjects forms a partially ordered
set. (Because of our conventions on categories; not true for category of spaces up
to homotopy for example.)

Definition 17.1. Let C be a category which admits finite nonempty coproducts.
We say a simplicial object U of C is split if there exist subobjects N(U,,) of Uy,
m > 0 with the property that

(17.1.1) N(Up) — Uy

Hcp: [n]—[m] surjective

is an isomorphism for all n > 0.

If this is the case, then N(Up) = Up. Next, we have Uy = Uy [[ N(U;). Second we
have

Uy =Uo [[N(U) [ N@) [ N (W)

It turns out that in many categories C every simplicial object is split.

Lemma 17.2. Let U be a simplicial set. Then U has a splitting with N (U,) equal
to the set of nondegenerate m-simplices.

Proof. Let x € U,. Suppose that there are surjections ¢ : [n] — [k] and ) :
[n] — []] and nondegenerate simplices y € Uy, z € U; such that x = U(p)(y) and
x = U(y)(z). Choose a right inverse £ : [I] — [n] of ¢, i.e., ¥ 0§ = idy. Then
z = U(&)(x). Hence z = U(§)(z) = U(po&)(y). Since z is nondegenerate we
conclude that po¢& : [[] — [k] is surjective, and hence [ > k. Similarly k& > I. Hence
we see that wo& : [I] — [k] has to be the identity map for any choice of right inverse
& of ¢. This easily implies that ¢ = ¢. ([

Of course it can happen that a map of simplicial sets maps a nondegenerate n-
simplex to a degenerate n-simplex. Thus the splitting of Lemma [I7.2]is not func-
torial. Here is a case where it is functorial.
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Lemma 17.3. Let f : U — V be a morphism of simplicial sets. Suppose that (a)
the image of every nondegenerate simplex of U is a nondegenerate simplex of V
and (b) no two nondegenerate simplices of U are mapped to the same simplex of V.
Then f, is injective for all n. Same holds with “injective” replaced by “surjective”
or “bijective”.

Proof. Under hypothesis (a) we see that the map f preserves the disjoint union
decompositions of the splitting of Lemma [I7.2] in other words that we get commu-
tative diagrams

NU,) —U,

Hga: [n]—[m] surjective

|

]_Lp: [n]—[m] surjective

N(Vy) ——=V,.

And then (b) clearly shows that the left vertical arrow is injective (resp. surjective,
resp. bijective). O

Lemma 17.4. Let U be a simplicial set. Let n > 0 be an integer. The Tule
U = Im(U
= Ui, o U@

defines a sub simplicial set U' C U with U] = U; for i < n. Moreover, all m-
simplices of U’ are degenerate for all m > n.

Proof. If x € Uy, and z = U(p)(y) for some y € U;, i < n and some ¢ : [m] — [i]
then any image U(¢)(z) for any ¢ : [m/] — [m] is equal to U(p o ¢)(y) and
wo : [m'] = [i]. Hence U’ is a simplicial set. By construction all simplices in
dimension n + 1 and higher are degenerate. (|

Lemma 17.5. Let U be a simplicial abelian group. Then U has a splitting obtained
by taking N(Uy) = Uy and for m > 1 taking

N(Un) =

=0

1
Ker(d™).
Moreover, this splitting is functorial on the category of simplicial abelian groups.

Proof. By induction on n we will show that the choice of N(U,,) in the lemma
guarantees that is an isomorphism for m < n. This is clear for n = 0. In
the rest of this proof we are going to drop the superscripts from the maps d; and
s; in order to improve readability. We will also repeatedly use the relations from

Remark 3.3

First we make a general remark. For 0 < i < m and z € U, we have d;(s;(2)) = z.
Hence we can write any x € U,,4+1 uniquely as x = 2’ + 2’/ with d;(2’) = 0 and
z" € Im(s;) by taking 2’ = (z — s;(d;(x))) and z” = s;(d;(z)). Moreover, the
element z € U, such that 2/ = s;(2) is unique because s; is injective.

Here is a procedure for decomposing any = € U, 1. First, write x = 2o + s¢(20)
with do(z9) = 0. Next, write g = x1 + $1(21) with d,(x1) = 0. Continue like this
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to get
x =z S0(20),
ro = x1+s1(z1),
Ty = X2+ s2(22),
Tpo1 = Tn+ Sn(zn)
where d;(x;) = 0 for all i = n,...,0. By our general remark above all of the z; and

z; are determined uniquely by . We claim that z; € Ker(do)NKer(d;)N...NKer(d;)
and z; € Ker(dg) N...NKer(d;—1) for i = n,...,0. Here and in the following an
empty intersection of kernels indicates the whole space; i.e., the notation zy €
Ker(dog) N...NKer(d;—1) when ¢ = 0 means 2o € U,, with no restriction.

We prove this by ascending induction on i. It is clear for ¢ = 0 by construction of
xo and zg. Let us prove it for 0 < ¢ < n assuming the result for ¢ — 1. First of all we
have d;(z;) = 0 by construction. So pick a j with 0 < j < i. We have d;(z;—1) =0
by induction. Hence

0=dj(zi1) = dj(i) + dj(si(2:)) = dj () + si-1(d; (21))-

The last equality by the relations of Remark These relations also imply
that d;_1(d;(z;)) = d;(d;(x;)) = 0 because d;(z;) = 0 by construction. Then
the uniqueness in the general remark above shows the equality 0 = 2/ + 2" =
d;(x;) + si—1(dj(#)) can only hold if both terms are zero. We conclude that
d;j(z;) = 0 and by injectivity of s;_; we also conclude that d;(z;) = 0. This
proves the claim.

The claim implies we can uniquely write
xTr = 50(20) —+ 51(21) + ...+ Sn(Zn) —+ o
with g € N(Up+1) and z; € Ker(dg) N...NKer(d;—1). We can reformulate this as

saying that we have found a direct sum decomposition

Unt1 = NUpt1) ® @ 8 (Ker do)N...N Ker(di_l))

with the property that
Ker(do) N ... N Ker(d) = N(Ups1) & @ (Ker d)N...N Ker(di_l))

for 5 =0,...,n. The result follows from thls statement as follows. Each of the z;
in the expression for x can be written uniquely as
zi =52 ;) * o sn1(2 1) + 2i0

with 2,0 € N(Uy) and z] ; € Ker(dg) N ... N Ker(dj—1). The first few steps in the
decomposition of z; are zero because z; already is in the kernel of dy,...,d;. This
in turn uniquely gives

x =g+ S0(20,0) + 51(21.0) + - - - + Sn(2n0) + ZO<i<j<n71 si(s5(21 ;))-

Continuing in this fashion we see that we in the end obtain a decomposition of x
as a sum of terms of the form

Siy Siy - - Sip (2)
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with 0 < i <ip <...<ip<n—k+1and z € N(U,+1-x). This is exactly the
required decomposition, because any surjective map [n + 1] — [n+ 1 — k] can be
uniquely expressed in the form

Jz:k...af;lax
With 0 < iy <ipg <...<ipg<n—k+1. 0

Lemmal 17.6. Let A be an abelian category. Let U be a simplicial object in A.
Then U has a splitting obtained by taking N(Uy) = Uy and for m > 1 taking

m—1 m
N(Uw)=(_, Kerld):
Moreover, this splitting is functorial on the category of simplicial objects of A.

Proof. For any object A of A we obtain a simplicial abelian group Mor 4(A4, U).
Each of these are canonically split by Lemma Moreover,

N(Mora(A, Uy)) = ﬂ;’: Ker(d") = Mor4(A, N(Uy)).

Hence we see that the morphism (|17.1.1)) becomes an isomorphism after applying
the functor Mor 4(A, —) for any object of A. Hence it is an isomorphism by the
Yoneda lemma. g

Lemmal 17.7. Let A be an abelian category. Let f : U — V be a morphism of
simplicial objects of A. If the induced morphisms N(f); : N(U); — N(V); are
injective for all i, then f; is injective for all i. Same holds with “injective” replaced
with “surjective”, or “isomorphism?”.

Proof. This is clear from Lemma[I7.6] and the definition of a splitting. O

Lemmal 17.8. Let A be an abelian category. Let U be a simplicial object in A. Let
N(Up,) as in Lemma[I7.6] above. Then d7(N(Up,)) C N(Upp—1).

Proof. For j =0,...,m—2 we have d}”_ldﬁ = dmjd}" by the relations in Remark

3.3l The result follows. ]

Lemmal 17.9. Let A be an abelian category. Let U be a simplicial object of A. Let
n > 0 be an integer. The rule

[
UT)’L - th[m]%[l], i<n Im(U(gp))

defines a sub simplicial object U' C U with U} = U; fori < n. Moreover, N(U},) =
0 for allm > n.

Proof. Pick m, i <n and some ¢ : [m] — [i]. The image under U () of Im(U(y))
for any v : [m'] — [m] is equal to the image of U(po)) and o) : [m'] — [i]. Hence
U’ is a simplicial object. Pick m > n. We have to show N(U/ ) = 0. By definition
of N(U,,) and N(U},) we have N(U},) = U} NN (U,,) (intersection of subobjects).

Since U is split by Lemma it suffices to show that U}, is contained in the sum

Zap:[m]—ﬂm’] surjective, m/<m Im(U(sﬂ)lN(Um,))'

By the splitting each Uy, is the sum of images of N(U,,~) via U(v) for surjective
maps ¢ : [m’] — [m”]. Hence the displayed sum above is the same as

Im(U .
Zcp:[m]—>[m’] surjective, m/<m m( (@))
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Clearly U;, is contained in this by the simple fact that any ¢ : [m] — [i], i < n
occurring in the definition of U, may be factored as [m] — [m'] — [i] with [m] —
[m/] surjective and m’ < m as in the last displayed sum above. O

18. Coskeleton functors
Let C be a category. The coskeleton functor (if it exists) is a functor
cosk,, : Simp,, (C) — Simp(C)
which is right adjoint to the skeleton functor. In a formula
(18.0.1) Morgimp(cy (U, cosk, V') = Morsimp (c)(sknU, V')

Given a n-truncated simplicial object V' we say that cosk,V exists if there exists a
cosk, V' € Ob(Simp(C)) and a morphism sk,cosk,V — V such that the displayed
formula holds, in other words if the functor U + Morgimp, (c)(sknU, V') is repre-
sentable. If it exists it is unique up to unique isomorphism by the Yoneda lemma.
See Categories, Section

Example| 18.1. Suppose the category C has finite nonempty self products. A 0-
truncated simplicial object of C is the same as an object X of C. In this case we
claim that cosko(X) is the simplicial object U with U,, = X"*! the (n + 1)-fold
self product of X, and structure of simplicial object as in Example Namely, a
morphism V' — U where V is a simplicial object is given by morphisms V;, — X"+,
such that all the diagrams

Vn . Xn+1
V([O}—>[n],0»—>i)i lpri
Vo

commute. Clearly this means that the map determines and is determined by a
unique morphism Vj — X. This proves that formula (18.0.1)) holds.

Recall the category A/[n], see Example We let (A/[n])<m denote the full
subcategory of A/[n] consisting of objects [k] — [n] of A/[n] with k¥ < m. In other
words we have the following commutative diagram of categories and functors

(A/[n])<m —A/[n]
Acyy —A
Given a m-truncated simplicial object U of C we define a functor
U(n): (A/[n))Zy, —C
by the rules
(k] = [n])) — U
V(K] = [n]) = (k] = [n]) — U@): Uk = Up
For a given morphism ¢ : [n] — [n'] of A we have an associated functor

?: (A [n))<m — (A/ [0 D <m
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which maps « : [k] = [n] to p o« : [k] — [n']. The composition U(n') o @ is equal
to the functor U(n).

Lemma 18.2. If the category C has finite limits, then cosk,, functors exist for all
m. Moreover, for any m-truncated simplicial object U the simplicial object cosk,,U
is described by the formula

(COSkmU)n = lim(A/[n])%P:L U(TL)

and for ¢ : [n] — [n'] the map cosk, U(p) comes from the identification U(n')op =
U(n) above via Categories, Lemma .

Proof. During the proof of this lemma we denote cosk,,U the simplicial object
with (cosky,U)y equal to lima /p,)yorr U(n). We will conclude at the end of the

proof that it does satisfy the required mapping property.

Suppose that V' is a simplicial object. A morphism ~ : V' — cosk,,U is given by a
sequence of morphisms 7, : V,, = (cosk,,U),,. By definition of a limit, this is given
by a collection of morphisms y(«) : V,, — Uy where « ranges over all «: [k] — [n]
with k& < m. These morphisms then also satisfy the rules that

V, ——= Uy
()
V(V’)T TU(w)

v 2L,
are commutative, given any 0 < k, k' < m, 0 < n,n’ and any ¢ : [k] — [K],
w:[n] = 0], a:[k] = [n] and & : [K'] — [n/] in A such that poa = o/ 0.
Taking n = k, ¢ = o/, and a = ¢ = idp we deduce that y(a') = y(idp)) o V().
In other words, the morphisms (id)), & < m determine the morphism ~. And it
is easy to see that these morphisms form a morphism sk,,V — U.

Conversely, given a morphism 7 : sk,,, V' — U, we obtain a family of morphisms v(«)
where o ranges over all « : [k] — [n] with & < m by setting v(a) = v(id[) o V().
These morphisms satisfy all the displayed commutativity restraints pictured above,
and hence give rise to a morphism V' — cosk,,,U. (I

Lemma 18.3. Let C be a category. Let U be an m-truncated simplicial object of C.
For n < m the limit hm(A/[n])‘;”p U(n) exists and is canonically isomorphic to U,.

Proof. This is true because the category (A/[n])<,, has an final object in this
case, namely the identity map [n] — [n]. O

Lemmal 18.4. Let C be a category with finite limits. Let U be an n-truncated
simplicial object of C. The morphism sk, cosk,U — U is an isomorphism.

Proof. Combine Lemmas [[8.2] and [[8.3 O

Let us describe a particular instance of the coskeleton functor in more detail. By
abuse of notation we will denote sk,, also the restriction functor Simp,,(C) —
Simp,,(C) for any n’ > n. We are going to describe a right adjoint of the functor sk, :
Simp,, ;1 (C) = Simp,,(C). Forn > 1,0 <i < j < n+1 define 5?;1 i [n—1] = [n+1]
to be the increasing map omitting ¢ and j. Note that (5?;1 = (5?“05? = 5?“05?_1,
see Lemma [2.3] This motivates the following lemma.
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Lemma 18.5. Letn be an integer > 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(fo,-- - fag1) € More(T,Up) | df 1o fi=di o f; VO<i<j<n+1}
If this functor is representable by some object U1 of C, then
Uny1 = lima fpapyeze U(n)

Proof. The limit, if it exists, represents the functor that associates to an object T
the set

{(f)ami=mt1)k<n | faop =U@W) o foa Y 1 [K'] = [k], a2 [k] = [n+ 1]}

In fact we will show this functor is isomorphic to the one displayed in the lemma.
The map in one direction is given by the rule

(foz)a — (f(;ngl,. ey fé:i})

This satisfies the conditions of the lemma because

d;-Ll o f5;1+1 = f5?+1 = f5n+1 = d e] f5n+1
by the relations we recalled above the lemma. To construct a map in the other
direction we have to associate to a system (fo, ..., fnt1) as in the displayed formula

of the lemma a system of maps f,. Let « : [k] = [n + 1] be given. Since k < n the
map « is not surjective. Hence we can write o = 5;”1 o1 forsome 0 <i<n+1
and some ¢ : [k] — [n]. We have no choice but to define

fa = U(w) ofi-

Of course we have to check that this is independent of the choice of the pair (i,)).
First, observe that given 4 there is a unique ¥ which works. Second, suppose that
(j, @) is another pair. Then i # j and we may assume 7 < j. Since both i,j are
not in the image of o we may actually write a = 6"“ o ¢ and then we see that
=07 0&and ¢ =9;" o&. Thus

UW)ofi = U

as desired. We still have to verify that the maps f, so defined satisfy the rules of
a system of maps (fo)a- To see this suppose that ¢ : [k'] — [k], o : [k] = [n+ 1]
with k, k" < n. Set o/ = a o). Choose 7 not in the image of a. Then clearly 7 is
not in the image of o’ also. Write a = (5?“ o ¢ (we cannot use the letter ¢ here
because we’ve already used it). Then obviously o/ = 6;’“ o ¢ o). By construction
above we then have

U)o fa=U@)oU(d)o fi=U(pot)o fi = faoy = far

as desired. We leave to the reader the pleasant task of verifying that our construc-
tions are mutually inverse bijections, and are functorial in 7. (I
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Lemma 18.6. Let n be an integer > 1. Let U be a n-truncated simplicial object of
C. Consider the contravariant functor from C to Sets which associates to an object
T the set

{(for- -+ fasr) € More(T,Uy) [ di_y o fi=dl o f; V0<i<j<n+1}

If this functor is representable by some object Up 11 ofC then there exists an (n+1)-
truncated simplicial object U with sk, U=U and Un+1 = Up41 such that the
following adjointness holds

Mot simp, ,(¢)(V: U) = Motsimy, (¢ (skn V. U)
Proof. By Lemma there are identifications
Ui = limagy2e U(0)
for 0 <4 < n. By Lemma [18.5| we have .
Upt1 = lim(A/[nJrl])ogpf U(n).

Thus we may define for any ¢ : [i] — [J] with 7,7 < n + 1 the corresponding map
Ulp) : U; — U; _exactly as in Lemma This defines an (n + 1)-truncated
simplicial object U with sk, U = U.

To see the adjointness we argue as follows. Given any element ~ : sk,V — U
of the right hand side of the formula consider the morphisms f; = v, o d;”'l :
Vot1 — Vi = U,. These clearly satisfy the relations dj_ ;o fi = d o f; and hence
define a unique morphism V11 — U,41 by our choice of U, ;1. Conversely, given
a morphism 7/ : V — U of the left hand side we can simply restrict to A<, to
get an element of the right hand side. We leave it to the reader to show these are
mutually inverse constructions. O

Remark| 18.7. Let U, and U,41 be as in Lemma [18.6, On T-valued points we
can easily describe the face and degeneracy maps of U. Explicitly, the maps d?“ :
Un+1 — U, are given by

(.f07 e afn—i—l) — f1
And the maps s7 : U, — Up41 are given by
f — (SJ 1 dn ! Of7

n— n—1
sjf1 ody " of,

n—1 n—1
s;podiZyof,

[
I
?1 d+1°f7
s;todiy o f,
“lod' o f)

where we leave it to the reader to verify that the RHS is an element of the displayed
set of Lemma m For n = 0 there is one map, namely f — (f,f). Forn =1
there are two maps, namely f — (f, f,sod1f) and f — (sodof, f,f). For n = 2
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there are three maps, na’mely f = (f’ fa SOdlfa SOde)’ f = (80d0f7 f7 fa Slde)a
and f +— (s1dof, s1drf, f, f). And so on and so forth.

Remark| 18.8. The construction of Lemma [18.6] above in the case of simplicial
sets is the following. Given an n-truncated simplicial set U, we make a canonical
(n + 1)-truncated simplicial set U as follows. We add a set of (n 4 1)-simplices
Un+1 by the formula of the lemma. Namely, an element of U, ; is a numbered
collection of (fo, ..., fnt1) of n-simplices, with the property that they glue as they
would in a (n + 1)-simplex. In other words, the ith face of f; is the (j — 1)st face
of f; for i < j. Geometrically it is obvious how to define the face and degeneracy
maps for U. If V is an (n + 1)-truncated simplicial set, then its (n + 1)-simplices
give rise to compatible collections of n-simplices (fo, ..., fnt1) with f; € V;,. Hence
there is a natural map Mor(sk,, V, U) — Mor(V, U) which is inverse to the canonical
restriction mapping the other way.

Also, it is enough to do the combinatorics of the construction in the case of trun-
cated simplicial sets. Namely, for any object T of the category C, and any n-
truncated simplicial object U of C we can consider the n-truncated simplicial set
Mor(T,U). We may apply the construction to this, and take its set of (n + 1)-
simplices, and require this to be representable. This is a good way to think about
the result of Lemma

Remark| 18.9. Inductive construction of coskeleta. Suppose that C is a category
with finite limits. Suppose that U is an m-truncated simplicial object in C. Then
we can inductively construct n-truncated objects U™ as follows:
(1) To start, set U™ =1U.
(2) Given U™ for n > m set U™*! = U™, where U" is constructed from U™ as
in Lemma

Since the construction of Lemma has the property that it leaves the n-skeleton
of U™ unchanged, we can then define cosk,,U to be the simplicial object with
(cosk,U), = U = UM = ... And it follows formally from Lemma that U™
satisfies the formula

Morgimp, (¢)(V;U™) = Morgimp, () (skm V, U)
for all n > m. It also then follows formally from this that
Morgimp(c) (V, cosk,U) = Morgimp, (¢)(skmV,U)
with cosk,,U chosen as above.

Lemma) 18.10. Let C be a category which has finite limits.

(1) For every n the functor sk, : Simp(C) — Simp, (C) has a right adjoint
cosk,, .

(2) For every m’ > n the functor sk, : Simp,,(C) — Simp,(C) has a right
adjoint, namely skys cosk,.

(3) For every m > n > 0 and every n-truncated simplicial object U of C we
have cosky, sk, cosk, U = cosk,U.

(4) If U is a simplicial object of C such that the canonical map U — cosky, sk, U
is an isomorphism for some n > 0, then the canonical map U — cosky, sk, U
s an isomorphism for all m > n.
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Proof. The existence in (1) follows from Lemma above. Parts (2) and (3)
follow from the discussion in Remark After this (4) is obvious. O

Remark| 18.11. We do not need all finite limits in order to be able to define the
coskeleton functors. Here are some remarks

(1) We have seen in Examples that if C has products of pairs of objects
then cosk( exists.
(2) For k > 0 the functor cosky, exists if C has finite connected limits.

This is clear from the inductive procedure of constructing coskeleta (Remarks m
and but it also follows from the fact that the categories (A/[n])<y for k > 1
and n > k + 1 used in Lemma [18.2] are connected. Observe that we do not need
the categories for n < k by Lemma or Lemma (As k gets higher the
categories (A/[n])<y for k > 1 and n > k + 1 are more and more connected in a
topological sense.)

Lemma) 18.12. Let U, V be n-truncated simplicial objects of a category C. Then
coskn, (U x V') = cosk, U x cosk,V
whenever the left and right hand sides exist.
Proof. Let W be a simplicial object. We have
Mor(W, cosk, (U x V)) = Mor(sk,W,U x V)

= Mor(sk,W,U) x Mor(sk, W, V)
= Mor(W, cosk,U) x Mor(W, cosk,, V)
= Mor (W, cosk,U x cosk, V)

The lemma follows. O

Lemma 18.13. Assume C has fibre products. Let U, V,W be n-truncated simplicial
objects of the category C. Then

coskn,(V xy W) = cosk,U X cosk, v coskn,V
whenever the left and right hand side exist.

Proof. Omitted, but very similar to the proof of Lemma above. O

Lemma 18.14. Let C be a category with finite limits. Let X € Ob(C). The functor
C/X — C commutes with the coskeleton functors cosky, for k > 1.

Proof. The statement means that if U is a simplicial object of C/X which we can
think of as a simplicial object of C with a morphism towards the constant simplicial
object X, then coskiU computed in C/X is the same as computed in C. This
follows for example from Categories, Lemma [16.2] because the categories (A/[n]) <
for k> 1and n > k + 1 used in Lemma [18.2] are connected. Observe that we do
not need the categories for n < k by Lemma [I8.3] or Lemma [I8:4] a

Lemma 18.15. The canonical map Aln] — cosky skiA[n] is an isomorphism.

Proof. Consider a simplicial set U and a morphism f : U — A[n]. This is a rule
that associates to each v € U; a map f, : [i] = [n] in A. Furthermore, these
maps should have the property that f, o ¢ = fy(x)w) for any ¢ : [j] — [i]. Denote
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¢’ : [0] — [i] the map which maps 0 to j. Denote F : Uy — [n] the map u — f,(0).

Then we see that
fu(§) = F(€(u))

for all 0 < j < i and u € U;. In particular, if we know the function F' then we know
the maps f, for all u € U; all i. Conversely, given a map F : Uy — [n], we can set
for any 4, and any v € U; and any 0 < j <14

fu(§) = F(€(u))

This does not in general define a morphism f of simplicial sets as above. Namely,
the condition is that all the maps f, are nondecreasing. This clearly is equivalent
to the condition that F(e}(u)) < F(} (u)) whenever 0 < j < j’ < i and u € U;.
But in this case the morphisms

i
6]‘,

e 1 [0] = [i]

both factor through the map eé-’j, : [1] — [i] defined by the rules 0 — j, 1 +— j'. In
other words, it is enough to check the inequalities for i = 1 and u € X;. In other
words, we have

Mor(U, Aln]) = Mor(sky U, sky A[n])
as desired. O

19. Augmentations

Definition 19.1. Let C be a category. Let U be a simplicial object of C. An
augmentation € : U — X of U towards an object X of C is a morphism from U into
the constant simplicial object X.

Lemma 19.2. Let C be a category. Let X € Ob(C). Let U be a simplicial object
of C. To give an augmentation of U towards X is the same as giving a morphism
€0 : Up — X such that eg o df = €g o d}.

Proof. Given a morphism € : U — X we certainly obtain an ¢; as in the lemma.
Conversely, given € as in the lemma, define €, : U,, — X by choosing any morphism
« : [0] — [n] and taking €, = ¢y o U(a). Namely, if 8 : [0] — [n] is another choice,
then there exists a morphism « : [1] — [n] such that o and S both factor as
[0] = [1] = [n]. Hence the condition on €, shows that €, is well defined. Then it is
easy to show that (e,,) : U — X is a morphism of simplicial objects. O

Lemma 19.3. Let C be a category with fibred products. Let f :' Y — X be a
morphism of C. Let U be the simplicial object of C whose nth term is the (n+1)fold
fibred product Y xx Y Xx ... xx Y. See Example|3.5. For any simplicial object V
of C we have

MorSimp(C) (‘/7 U) = 1v[0r5’i'rnp1 ©) (Skl‘/, SklU)

= {g0:Vo—=Y | fogoody=fogoodi}

In particular we have U = cosky sk1U.
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Proof. Suppose that g : skjV — skyU is a morphism of 1-truncated simplicial
objects. Then the diagram

dg

Wi W

dy
g1 go
pri

YxxY Y —-X
pTo
is commutative, which proves that the relation shown in the lemma holds. We have
to show that, conversely, given a morphism go satisfying the relation f o ggod} =
fogood} we get a unique morphism of simplicial objects g : V' — U. This is done
as follows. For any n > 1let g5, ; = goo V([0] — [n],0 — ©) : V,, = Y. The equality
above implies that f o g, ; = f o gn,i+1 because of the commutative diagram

O, 13i+1

O—1
O—241

Hence we get (gn,0,-- -3 9nmn) : Vo = Y Xx...xxY = U,. We leave it to the reader
to see that this is a morphism of simplicial objects. The last assertion of the lemma
is equivalent to the first equality in the displayed formula of the lemma. (I

Remark| 19.4. Let C be a category with fibre products. Let V be a simplicial
object. Let € : V. — X be an augmentation. Let U be the simplicial object whose
nth term is the (n 4 1)st fibred product of Vj over X. By a simple combination of
Lemmas and we obtain a canonical morphism V' — U.

20. Left adjoints to the skeleton functors

In this section we construct a left adjoint 4., of the skeleton functor sk,, in certain
cases. The adjointness formula is

MorSimpm(C)(Uu Ska) = MorSimp(C) (im!Uy V)
It turns out that this left adjoint exists when the category C has finite colimits.

We use a similar construction as in Section Recall the category [n]/A of objects
under [n], see Categories, Example Its objects are morphisms « : [n] — [k]
and its morphisms are commutative triangles. We let ([n]/A)<,, denote the full
subcategory of [n|/A consisting of objects [n] — [k] with & < m. Given a m-
truncated simplicial object U of C we define a functor

U(n) : ([nl/A)Z5, — C
by the rules


http://localhost:8080/tag/018J

30 SIMPLICIAL METHODS

For a given morphism ¢ : [n] — [n'] of A we have an associated functor
P ([”/]/A)Sm — ([n]/A)Sm

which maps «a : [n'] — [k] to p o« : [n] — [k]. The composition U(n) o ¢ is equal
to the functor U(n').

Lemma 20.1. Let C be a category which has finite colimits. The functors i,, exist
for all m. Let U be an m-truncated simplicial object of C. The simplicial object
imU is described by the formula

(im1U)n = colim gy a)2rr U (n)

and for ¢ : [n] — [n'] the map i,mU(p) comes from the identification U(n) o ¢ =
U(n') above via Categories, Lemma[14.7]

Proof. In this proof we denote i,,)U the simplicial object whose nth term is given
by the displayed formula of the lemma. We will show it satisfies the adjointness

property.
Let V' be a simplicial object of C. Let v : U — sk,,,V be given. A morphism
COlim([n]/A)‘;ﬁ U(TL) - T

is given by a compatible system of morphisms f,, : Uy — T where « : [n] — [k] with
k < m. Certainly, we have such a system of morphisms by taking the compositions

Up 25 Vi 29 v,

Hence we get an induced morphism (i,,1U), — V;,. We leave it to the reader to see
that these form a morphism of simplicial objects v’ : i,y U — V.

Conversely, given a morphism v : 4,,,U — V we obtain a morphism v : U — sk,,,V
by setting v; : U; — V; equal to the composition
idp;) . NV
Ui — COhm([i]/A)‘;W U(Z) — ‘/1

for 0 < i < n. We leave it to the reader to see that this is the inverse of the
construction above. O

Lemma 20.2. Let C be a category. Let U be an m-truncated simplicial object of
C. For any n < m the colimit

COhm([n]/A)‘gfL U(?’L)
exists and is equal to U,.

Proof. This is so because the category ([n]/A)<,, has an initial object, namely
id : [n] = [n]. O

Lemmal 20.3. Let C be a category which has finite colimits. Let U be an m-
truncated simplicial object of C. The map U — skyimU is an isomorphism.

Proof. Combine Lemmas 20.1] and 20.21 O

Lemma 20.4. IfU is an m-truncated simplicial set and n > m then all n-simplices
of i;mU are degenerate.
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Proof. This can be seen from the construction of 4,,/U in Lemma[20.1] but we can
also argue directly as follows. Write V' = i,,yU. Let V' C V be the simplicial subset
with V/ =V for ¢ < m and all ¢ simplices degenerate for i > m, see Lemma m
By the adjunction formula, since sk,,V’ = U, there is an inverse to the injection
V' = V. Hence V' =V. O

Lemma 20.5. Let U be a simplicial set. Let n > 0 be an integer. The morphism
in18k, U — U identifies in sk, U with the simplicial set U' C U defined in Lemma
[L7.4}

Proof. By Lemma[20.4] the only nondegenerate simplices of i, sk, U are in degrees
< n. The map i,sk,U — U is an isomorphism in degrees < n. Combined we
conclude that the map 4,15k, U — U maps nondegenerate simplices to nondegen-
erate simplices and no two nondegenerate simplices have the same image. Hence
Lemma [I7.3] applies. Thus i,sk,U — U is injective. The result follows easily from
this. 0

Remark| 20.6. In some texts the composite functor
Simp(C) ELUN Simp,,, (C) Imt Simp(C)

is denoted sk,,. This makes sense for simplicial sets, because then Lemma [20.5
says that i,,sk,,V is just the sub simplicial set of V' consisting of all i-simplices of
V', i < m and their degeneracies. In those texts it is also customary to denote the
composition
. sk, . coskyy, .
Simp(C) — Simp,,, (C) —= Simp(C)

by cosk,,.
Lemmal 20.7. Let U C V be simplicial sets. Suppose n >0 and x € V,,, © € U,
are such that

(1) Vi =U; fori<mn,

(2) Vi, =U, U{z},

(3) any z € V;, 2 € U; for j > n is degenerate.
Let Aln] — V be the unique morphism mapping the nondegenerate n-simplex of
Aln] to x. In this case the diagram

Aln] v
]
U

i(n—l)! SknflA[n} E——

is a pushout diagram.

Proof. Let us denote 0A[n] = i(,,—1y15k,—1A[n] for convenience. There is a natural
map U Ilyap,) Aln] — V. We have to show that it is bijective in degree j for all
J- This is clear for j < n. Let j > n. The third condition means that any
z € V;, z ¢ Uj is a degenerate simplex, say z = sg_l(z’). Of course 2" & U;_;.
By induction it follows that 2z’ is a degeneracy of . Thus we conclude that all
j-simplices of V' are either in U or degeneracies of x. This implies that the map
Ullpam)Aln] — V is surjective. Note that a nondegenerate simplex of Ullga,)Aln]
is either the image of a nondegenerate simplex of U, or the image of the (unique)

nondegenerate n-simplex of A[n]. Since clearly x is nondegenerate we deduce that
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U Upa[n) Aln] — V maps nondegenerate simplices to nondegenerate simplices and
is injective on nondegenerate simplices. Hence it is injective, by Lemma ([

Lemmal 20.8. Let U C V be simplicial sets, with U,,V,, finite nonempty for all
n. Assume that U and V have finitely many nondegenerate simplices. Then there
exists a sequence of sub simplicial sets

U=WcW!'cW?c.. W=V
such that Lemmam applies to each of the inclusions W' C Wi+l

Proof. Let n be the smallest integer such that V' has a nondegenerate simplex that
does not belong to U. Let © € V,,, € U, be such a nondegenerate simplex. Let
W C V be the set of elements which are either in U, or are a (repeated) degeneracy
of z (in other words, are of the form V' (p)(z) with ¢ : [m] — [n] surjective). It is
easy to see that W is a simplicial set. The inclusion U C W satisfies the conditions
of Lemma Moreover the number of nondegenerate simplices of V' which are
not contained in W is exactly one less than the number of nondegenerate simplices
of V which are not contained in U. Hence we win by induction on this number. [

Lemmal 20.9. Let A be an abelian category Let U be an m-truncated simplicial
object of A. For n > m we have N (i;yU), = 0.

Proof. Write V = i,,,U. Let V' C V be the simplicial subobject of V with V/ =V}
for i <m and N(V/) = 0 for ¢ > m, see Lemma m By the adjunction formula,
since sk, V' = U, there is an inverse to the injection V' — V. Hence V' =V. O

Lemma) 20.10. Let A be an abelian category. Let U be a simplicial object of A.
Let n > 0 be an integer. The morphism i, sk,U — U identifies insk,U with the
simplicial subobject U' C U defined in Lemma[17.9

Proof. By Lemmawe have N (iy8k,U); = 0 for i > n. The map i,1sk, U — U
is an isomorphism in degrees < n, see Lemma[20.3] Combined we conclude that the
map 4,8k, U — U induces injective maps N (i,18k,U); — N(U); for all i. Hence
Lemma [I7.7) applies. Thus i,sk,U — U is injective. The result follows easily from
this. a

Here is another way to think about the coskeleton functor using the material above.

Lemma 20.11. Let C be a category with finite coproducts and finite limits. Let V'
be a simplicial object of C. In this case

(cosky sk V )1 = Hom(ip1 sk, Aln + 1], V)o.

Proof. By Lemma the object on the left represents the functor which assigns
to X the first set of the following equalities
Mor(X x Aln + 1], cosk,sk,V) = Mor(X x sk,Aln + 1],sk,V)
= Mor(X X insk,An+ 1, V).
The object on the right in the formula of the lemma is represented by the functor
which assigns to X the last set in the sequence of equalities. This proves the result.
In the sequence of equalities we have used that sk, (X x A[n+1]) = X xsk,A[n+1]
and that i, (X xsk, A[n+1]) = X Xisk, Aln+1]. The first equality is obvious. For
any (possibly truncated) simplicial object W of C and any object X of C denote tem-
porarily Mor¢ (X, W) the (possibly truncated) simplicial set [n] — More (X, W,,).
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From the definitions it follows that Mor(U x X, W) = Mor(U, Mor¢(X, W)) for any
(possibly truncated) simplicial set U. Hence
Mor(X x imskpAln +1],W) = Mor(insk,Aln + 1], More (X, W))
= Mor(sk,Aln + 1], sk, More (X, W))
Mor(X x sk,A[n + 1], sk, W)
= Mor (i (X x sk,Aln+1]), W).
This proves the second equality used, and ends the proof of the lemma. ([l

Lemmal 20.12. Let C be a category with finite coproducts and finite limits. Let X
be an object of C. Let k > 0. The canonical map

Hom(Alk], X) — cosky sky Hom(A[k], X)
is an isomorphism.

Proof. For any simplicial object V we have
Mor(V, coskisk; Hom(A[k], X)) = Mor(sk,V,sky Hom(Ak], X))

= Mor(iyisk; V, Hom(A[k], X))

= Mor(ipsk; V' x Ak], X)
The first equality by the adjointness of sk and cosk, the second equality by the
adjointness of 41 and sk, and the first equality by Definition [16.1] where the last
X denotes the constant simplicial object with value X. By Lemma[19.2|an element
in this set depends only on the terms of degree 0 and 1 of i11skq V' x A[k]. These

agree with the degree 0 and 1 terms of V' x A[k], see Lemma Thus the set
above is equal to Mor(V x A[k], X) = Mor(V, Hom(A[k], X)). O

Lemmal 20.13. Let C be a category with finite coproducts and finite limits. Let X
be an object of C. Let k > 0. The canonical map

Hom(A[k], X)1 — (coskysko Hom(Al[k], X))1
is identified with the map

H X —5XxX
a:[k]—[1]

which is the projection onto the factors where a is a constant map.

Proof. It is shown in Example[I8.I]that coskoZ equals Z x Z in degree 1. Moreover,
it is true in general that the morphism V; — (coskgskoV'); is the morphism (dj, d}) :
V1 — Vo x V (left to the reader). Thus we simply have to compute the Oth and
1st term of Hom(A[k], X). According to Lemma we have Hom(A[k], X)o =
[To gm0y X = X, and Hom(A[k], X)o = [],.(5j— 1) X The lemma follows from the

description of the morphisms of the simplicial object just above Lemma [16.5] [

21. Simplicial objects in abelian categories
Recall that an abelian category is defined in Homology, Section

Lemmal 21.1. Let A be an abelian category.
(1) The categories Simp(A) and CoSimp(A) are abelian.
(2) A morphism of (co)simplicial objects f : A — B is injective if and only if
each f, : A, — B, is injective.
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(3) A morphism of (co)simplicial objects f : A — B is surjective if and only if
each f, : A, — B, is surjective.
(4) A sequence of (co)simplicial objects

ALBSc
s exact at B if and only if each sequence
A L B 2 o
1s exact at B;.

Proof. Pre-additivity is easy. A final object is given by U, = 0 in all degrees.
Existence of direct products we saw in Lemmas [6.2] and Kernels and cokernels
are obtained by taking termwise kernels and cokernels. [

For an object A of A and an integer k consider the k-truncated simplicial object U
with
(1) U; =0 for i<k,
(2) Uy = A,

(3) all morphisms U(y) equal to zero, except U (id)) = ida.
Since A has both finite limits and finite colimits we see that both cosk,U and i3, U
exist. We will describe both of these and the canonical map iU — coskiU.

Lemma 21.2. With A, k and U as above, so U; =0, i < k and Uy = A.

(1) Given a k-truncated simplicial object V we have
Mor(U, V) ={f:A—=Vi|diof=0,i=0,...,k}
and
Mor(V,U)={f: Ve = A| fosi ' =0, i=0,...,k—1}.

(2) The object iU has nth term equal to @, A where o runs over all surjective
morphisms o : [n] — [k].

(3) Forany ¢ : [m] — [n] the map i1 U(p) is described as the mapping @, A —
@D, A which maps to component corresponding to o : [n] — [k] to zero if
« o @ is not surjective and by the identity to the component corresponding
to avo @ if it is surjective.

(4) The object coskyU has nth term equal to gz A, where B runs over all
injective morphisms S : [k] — [n].

(5) For any ¢ : [m] — [n] the map coskpU(p) is described as the mapping
Ds A — Dy A which maps to component corresponding to 8 : [k] — [n]
to zero if B does not factor through ¢ and by the identity to each of the
components corresponding to 3 such that 8 = @ o B’ if it does.

(6) The canonical map ¢ : iU — cosk U in degree n has («, ) coefficient
A — A equal to zero if ao B is not the identity and equal to id4 if it is.

(7) The canonical map ¢ : iU — coski U is injective.

Proof. The proof of (1) is left to the reader.

Let us take the rules of (2) and (3) as the definition of a simplicial object, call it
U. We will show that it is an incarnation of i U. This will prove (2), (3) at the
same time. We have to show that given a morphism f : U — skiV there exists a
unique morphism f : U — V which recovers f upon taking the k-skeleton. From
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(1) we see that f corresponds with a morphism fj : A — V. which maps into the
kernel of d¥ for all 4. For any surjective a : [n] — [k] we set fo : A = Vj, equal to
the composition fa =V(a)o fr: A—V,. We define fn : U, — V,, as the sum of
the f, over a : [n] — [k] surjective. Such a collection of f, defines a morphism of
simplicial objects if and only if for any ¢ : [m] — [n] the diagram

@a:[n]ﬁ[k:] surjective A 7 Vi

f'IL
(3)l lV(vJ)

Jm
@a’:[m]%[k] surjective A——Vy

is commutative. Choosing ¢ = « shows our choice of fa is uniquely determined by
fr- The commutativity in general may be checked for each summand of the left
upper corner separately. It is clear for the summands corresponding to a where aop
is surjective, because those get mapped by id4 to the summand with o/ = a o ¢,
and we have fo = V(o) o fr = V(o @) o fr = V(@) o fo. For those where oo ¢
is not surjective, we have to show that V(p) o fa = 0. By definition this is equal
to V(g)oV(a)o fr, = V(o) o fi. Since ao ¢ is not surjective we can write it as
8% 09), and we deduce that V(¢) o V(a)o fr = V(¥) o d¥ o fr = 0 see above.

Let us take the rules of (4) and (5) as the definition of a simplicial object, call it
U. We will show that it is an incarnation of coskU. This will prove (4), (5) at the
same time. The argument is completely dual to the proof of (2), (3) above, but we
give it anyway. We have to show that given a morphism f : skyV — U there exists
a unique morphism f : V' — U which recovers f upon taking the k-skeleton. From
(1) we see that f corresponds with a morphism fj : Vj — A which is zero on the
image of s¥~! for all i. For any injective 5 : [k] — [n] we set fz : V,, — A equal to
the composition fg = froV(B):V, - A We define fn 2 Viy = U, as the sum of
the fg over B : [k] — [n] injective. Such a collection of fg defines a morphism of
simplicial objects if and only if for any ¢ : [m] — [n] the diagram

Vi T> @ﬁ[k]%[n] injective A

V(s@)i l(S)

Vin % @B’:[k]—ﬂm] injective A
is commutative. Choosing ¢ = 8 shows our choice of fg is uniquely determined by
fr. The commutativity in general may be checked for each summand of the right
lower corner separately. It is clear for the summands corresponding to 8’ where o3’
is injective, because these summands get mapped into by exactly the summand with
B = @o B’ and we have in that case fz oV (p) = froV(B)oV(p) = froV(B) = fs.
For those where ¢ o 8’ is not injective, we have to show that fg/ oV(p) =0. By
definition this is equal to f,oV (8" )oV (p) = froV (pof’). Since pof’ is not injective
we can write it as 900!, and we deduce that foV (8')oV () = frost oV (y) =0
see above.

The composition iU — coskiU is the unique map of simplicial objects which is
the identity on A = Uy = (i1aU)r = (coskiU)x. Hence it suffices to check that the
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proposed rule defines a morphism of simplicial objects. To see this we have to show
that for any ¢ : [m] — [n] the diagram

@a:[n]%[k] surjective A (6) @B[k]—)[n] injective A

(S)l l(S)
(6)

@a’[m]%[k] surjective A—> @B’:[k]—ﬂm] injective A

is commutative. Now we can think of this in terms of matrices filled with only
0’s and 1’s as follows: The matrix of (3) has a nonzero (¢/,«) entry if and only
if o = aop. Likewise the matrix of (5) has a nonzero (5, 3) entry if and only
if 8 = ¢ opB’. The upper matrix of (6) has a nonzero («, 3) entry if and only if
aof = idy). Similarly for the lower matrix of (6). The commutativity of the
diagram then comes down to computing the («,3") entry for both compositions
and seeing they are equal. This comes down to the following equality

#{B|B=vof Naof=idy} =#{d | =aocpna opf =idy}
whose proof may safely be left to the reader.

Finally, we prove (7). This follows directly from Lemmas and
20.9 (]

Definition 21.3. Let A be an abelian category. Let A be an object of A and let
k be an integer > 0. The Filenberg-Maclane object K(A, k) is given by the object
K (A, k) = iU which is described in Lemma above.

Lemmal 21.4. Let A be an abelian category. Let A be an object of A and let k be
an integer > 0. Consider the simplicial object E defined by the following rules

(1) B, =&, A, where the sum is over o : [n| — [k + 1] whose image is either
[k] or [k +1].

(2) Given ¢ : [m] — [n] the map E,, — E,, maps the summand corresponding
to « via idy to the summand corresponding to a o @, provided Im(c o p) is
equal to [k] or [k + 1].

Then there exists a short exact sequence
0> KA k) FE—>KAk+1)—0
which is term by term split exact.

Proof. The maps K(A,k), — E, resp. E, — K(A,k + 1), are given by the
inclusion of direct sums, resp. projection of direct sums which is obvious from the
inclusions of index sets. It is clear that these are maps of simplicial objects. O

Lemmal 21.5. Let A be an abelian category. For any simplicial object V' of A we
have

V' = colim,, 7,1 8k, V'

where all the transition maps are injections.

Proof. This is true simply because each V,, is equal to (i,sk,V),, as soon as
n > m. See also Lemma [20.10| for the transition maps. O
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22. Simplicial objects and chain complexes

Let A be an abelian category. See Homology, Section [12] for conventions and nota-
tion regarding chain complexes. Let U be a simplicial object of A. The associated
chain complex s(U) of U, sometimes called the Moore complex, is the chain complex

.= Uy —>U —-Uy—-0—->0—...

with boundary maps d,, : U, — U,_1 given by the formula

dy = ZLO(—nidy.

This is a complex because, by the relations listed in Remark we have
n . n+1 .
— 2 Jn mn+1
dpodnir = (O o (FDd) e O o (—1)7d;*)

= —1)"*dy et _1)itign o gntt
B Zogi<jgn+1( D)7y o d; +Zn2i2j20( D™ di o d;
= 0.

The signs cancell We denote the associated chain complex s(U). Clearly, the
construction is functorial and hence defines a functor

s : Simp(A) — Chxo(A).
Thus we have the confusing but correct formula s(U),, = U,.
Lemmal 22.1. The functor s is exact.

Proof. Clear from Lemma R21.1] O

Lemmal 22.2. Let A be an abelian category. Let A be an object of A and let k be
an integer. Let E be the object described in Lemma|21.4l Then the complex s(E)
is acyclic.

Proof. For a morphism «a : [n] — [k 4 1] we define o’ : [n 4+ 1] — [k + 1] to be the
map such that o'|j,,) = @ and o/ (n+1) = k+1. Note that if the image of o is [k] or
[k+ 1], then the image of o' is [k+1]. Consider the family of maps h,, : E,, = Ep4+1
which maps the summand corresponding to a to the summand corresponding to o
via the identity on A. Let us compute dy41 0 hyy — hp—1 0 dy,. We will first do this
in case the category A is the category of abelian groups. Let us use the notation
Z4 to indicate the element € A in the summand of E,, corresponding to the map
« occurring in the index set. Let us also adopt the convention that x, designates
the zero element of F,, whenever Im(«) is not [k] or [k+ 1]. With these conventions

we see that
n+1

i1 (hn(Ta)) = Zi:O

(_]‘)ixa’oé»"‘*'l
and N
hnfl(dn(xa)) = Zizo(_l)zw(aoéf’)’
It is easy to see that o’ 067" = (a0 d?) for i = 0,...,n. It is also easy to see that
o/ 087! = a. Thus we see that
(dnJrl o hn - hnfl o dn)(xa) = (_1)n+1x04

These identities continue to hold if A is any abelian category because they hold
in the simplicial abelian group [n] — Hom(A, E,); details left to the reader. We
conclude that the identity map on F is homotopic to zero, with homotopy given by
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the system of maps h!, = (=1)""th,, : E,, — E, 1. Hence we see that E is acyclic,
for example by Homology, Lemma [12.5 O

Lemmal 22.3. Let A be an abelian category. Let A be an object of A and let k be
an integer. We have H;(s(K (A, k))) = A ifi =k and O else.

Proof. First, let us prove this if & = 0. In this case we have K(A,0), = A for
all n. Furthermore, all the maps in this simplicial abelian group are id 4, in other
words K (A,0) is the constant simplicial object with value A. The boundary maps
dn = Y 1_o(—1)'ida = 0 if n odd and = id4 if n is even. Thus s(K(A4,0)) looks
like this

oA abab a0

and the result is clear.

Next, we prove the result for all £ by induction. Given the result for k consider the
short exact sequence

0—-K(Ak)-FE—->KAk+1)—0

from Lemma By Lemma the associated sequence of chain complexes is
exact. By Lemma we see that s(F) is acyclic. Hence the result for k+1 follows
from the long exact sequence of homology, see Homology, Lemma [12.6 O

There is a second chain complex we can associate to a simplicial object of A.
Recall that by Lemma [I7.6] any simplicial object U of A is canonically split with
NUn) = ﬂ;igl Ker(d™). We define the normalized chain complex N(U) to be the
chain complex

..o NU3) = NU;)) > NUpy) - 0—=0— ...

with boundary map d,, : N(U,) — N(U,—1) given by the restriction of (—1)"d} to
the direct summand N (U,) of U,. Note that Lemma[17.8implies that d7*(N(U,,)) C
N(Up-1). It is a complex because dod' 1] = d?odi ! and d7' ! is zero on N (Up41)
by definition. Thus we obtain a second functor

N : Simp(A) — Chxo(A).
Here is the reason for the sign in the differential.

Lemmal 22.4. Let A be an abelian category. Let U be a simplicial object of A. The
canonical map N(U,) — U, gives rise to a morphism of complezes N(U) — s(U).

Proof. This is clear because the differential on s(U),, = U, is > (—1)*d? and
the maps d7, i < n are zero on N(U,), whereas the restriction of (—1)"d} is the
boundary map of N(U) by definition. O

Lemmal 22.5. Let A be an abelian category. Let A be an object of A and let k be
an integer. We have N(K(A,k)); = Aifi=Fk and 0 else.

Proof. It is clear that N(K (A, k)); = 0 when ¢ < k because K (A, k); = 0 in that
case. It is clear that N(K (A, k))x = A since K(A,k)g—1 = 0 and K(A,k)r = A.
For i > k we have N(K (A, k)); = 0 by Lemma [20.9 and the definition of K (A, k),
see Definition RT3l O
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Lemmal 22.6. Let A be an abelian category. Let U be a simplicial object of A.
The canonical morphism of chain complexes N(U) — s(U) is split. In fact,

s(U)y=NU) & AU)
for some complex A(U). The construction U — A(U) is functorial.

Proof. Define A(U),, to be the image of

) D U(p)

N(Un, U,

@¢[n]~>[m] surjective, m<n
which is a subobject of U,, complementary to N(U,) according to Lemma m
and Definition We show that A(U) is a subcomplex. Pick a surjective map
¢ : [n] = [m] with m < n and consider the composition

NO,) 29 g, sy,

This composition is the sum of the maps

U(po0d7")
E——

N(U) Un—1

with sign (—1)%, i =0,...,n.

First we will prove by ascending induction on m, 0 < m < n — 1 that all the maps
U(p o) map N(Up,) into A(U),—1. (The case m = n — 1 is treated below.)
Whenever the map ¢ o 6} : [n — 1] — [m] is surjective then the image of N(Upy,)
under U(yp o 07") is contained in A(U),—1 by definition. If ¢ 0 67 : [n — 1] — [m]
is not surjective, set j = ¢(i) and observe that ¢ is the unique index whose image
under ¢ is j. We may write ¢ o 6" = 07" 0 ¢p o 67 for some ¢ : [n — 1] — [m — 1].
Hence U(podj') = U(yp0d}') od]* which is zero on N(Uy,) unless j = m. If j =m,
then d'(N(U,,)) C N(Upm—1) and hence U(pod?)(N(Up,)) C U (3067 )(N(Un-1))
and we win by induction hypothesis.

To finish proving that A(U) is a subcomplex we still have to deal with the compo-
sition
NO) 29, g,
n—1

. _ . _ n—1 . _
in case m = n — 1. In this case p =0} for some 0 < j <n—1and U(p) =5

Thus the composition is given by the sum

Z(—l)id? o 8?71

Recall from Remarkﬁ that d;?os?_l =dj, os?_1 = id and these drop out because

the corresponding terms have opposite signs. The map dgos;‘_l, if 7 < n—1,is equal
to 5?_2 od!'”}. Since d'~1 maps N(U,_1) into N(U,_2), we see that the image
dy (3?71 (N(Up—1)) is contained in s?fQ(N(Un,g)) which is contained in A(U,_1) by
definition. For all other combinations of (¢, j) we have either d?os;“l = s?:f odrt
(ifi < j),ordlo s;“l = s}“z od! ! (ifn>i>j+1)and in these cases the map
is zero because of the definition of N(U,,_1). O

Lemmal 22.7. The functor N is exact.
Proof. By Lemma and the functorial decomposition of Lemma [22.6 ]
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Lemmal 22.8. Let A be an abelian category. Let V be a simplicial object of A.
The canonical morphism of chain complezes N(V) — s(V') is a quasi-isomorphism.
In other words, the complex A(V') of Lemma is acyclic.

Proof. Note that the result holds for K (A, k) for any object A and any k > 0,
by Lemmas and Consider the hypothesis IH,, ,,: for all V such that
V; =0 for j < m and all i < n the map N(V) — s(V) induces an isomorphism
Hi(N(V)) = Hi(s(V)).

To start of the induction, note that IH, , is trivially true, because in that case
N(V), =0and s(V), =0.

Assume I H,, ,,,, with m < n. Pick a simplicial object V" such that V; = 0 for j < m.
By Lemma and Definition we have K(V,,,m) = imsk,V. By Lemma
[20.10] the natural morphism

K(Vip,m) = ipsk,V =V
is injective. Thus we get a short exact sequence
0= K(Vy,m)—=V —->W =0

for some W with W; = 0 for 4 = 0,...,m. This short exact sequence induces a
morphism of short exact sequence of associated complexes

0——> N(K(Vyp,m)) —= N(V) —= N(W) —=0

l L

0 —— s(K(Vin,m)) s(V) s(W)——0
see Lemmas P2.1] and 22.71 Hence we deduce the result for V from the result on
the ends. O

23. Dold-Kan

Lemmal 23.1. Let A be an abelian category. The functor N is faithful, and reflects
isomorphisms, injections and surjections.

Proof. The faithfulness is immediate from the canonical splitting of Lemma [I7.6]

The statement on reflecting injections, surjections, and isomorphisms follows from
Lemma 7.7 O

Lemmal 23.2. Let A and B be abelian categories. Let N : A — B, and S : B — A
be functors. Suppose that

(1) the functors S and N are exact,
(2) there is an isomorphism g : N o S — idg to the identity functor of B,
(3) N is faithful, and
(4) S is essentially surjective.
Then S and N are quasi-inverse equivalences of categories.

Proof. It suffices to construct a functorial isomorphism S(N(A)) = A. To do this
choose B and an isomorphism f: A — S(B). Consider the map

flogsm) 0 S(N(f)): S(N(A)) = S(N(S(B))) = S(B) —+ A.
It is easy to show this does not depend on the choice of f, B and gives the desired
isomorphism S o N — id 4. (]
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Theorem| 23.3. Let A be an abelian category. The functor N induces an equiva-
lence of categories

N : Szmp(.A) — Chzo(.A)

Proof. We will describe a functor in the reverse direction inspired by the construc-
tion of Lemma (except that we throw in a sign to get the boundaries right).
Let A4 be a chain complex with boundary maps da,, : A, — A,_1. Foreachn >0
denote

L, = {a: [ > {0,1,2,.. } | Tm(a) = [K] for some k }.

For o € I, we denote k(«) the unique integer such that Im(a) = [k]. We define a
simplicial object S(As) as follows:
(1) S(Ae)n = Daer, Ak(a), which we will write as P, c; Ap(a) - @ to suggest
thinking of “a” as a basis vector for the summand corresponding to it,
(2) given ¢ : [m] — [n] we define S(Aq)(p) by its restriction to the direct
summand Aj(q) - @ of S(A,), as follows
(a) aoy & I, then we set it equal to zero,
(b) a@oy € I, but k(a0 ¢) not equal to either k(a) or k(a) — 1 then we
set it equal to zero as well,
(c¢) if oo € I, and k(ao ) = k(a) then we use the identity map to the
summand Aj(qop) - (0 ) of S(Ae)m, and
(d) if a0y € I, and k(a0 ) = k() — 1 then we use (—1)¥®d, 1) to
the summand Aj(qop) - (@0 @) of S(Ae)m.
It is an exercise (FIXME) to show that this is a simplicial complex; one has to use
in particular that the compositions da 1 o da,x—1 are all zero.

Having verified this, the correct way to proceed with the proof would be to prove
directly that N and S are quasi-inverse functors (FIXME). Instead we prove this
by an indirect method using Eilenberg-Maclane objects and truncations. It is clear
that Ae — S(A,) is an exact functor from chain complexes to simplicial objects. If
A; =0fori=0,...,n then S(A4,); =0 for i =0,...,n. The objects K(A, k), see
Definition are equal to S(A[—k]) where A[—k] is the chain complex with A in
degree k and zero elsewhere.

Moreover, for each integer k we get a sub simplicial object S<j(A.) by considering
only those a with k(a) < k. In fact this is nothing but S(o<pA.), where o< A,
is the “stupid” truncation of A, at k (which simply replaces A; by 0 for i > k).
Also, by Lemma we see that it is equal to ixskgS(As). Clearly, the quotient
Sgk(A.)/SSkfl(A.) = K(Ak, k) and the quotient S(A.)/Sgk(A.) = S(A/JSkA.)
is a simplicial object whose ith term is zero for ¢ = 0,...,k. Since S<i_1(A4s)
is filtered with subquotients K(A;, i), i < k we see that N(S<x_1(A4s))x = 0 by
exactness of the functor N, see Lemma [22.7] All in all we conclude that the maps

N(S(Ae))k = N(S<i(Ae))k = N(S(A[K])) = N(K(Ag, k))r = Ak
are functorial isomorphisms.

It is actually easy to identify the map Ay — N(S(A.))r. Note that there is a
unique map Ay — S(A,)x corresponding to the summand a = idy). Note that
Im(idp o 6%) has cardinality k¥ — 1 but does not have image [k — 1] unless i = k.
Hence d¥ kills the summand Ay, - idjy) for i = 0,...,k — 1. From the abstract


http://localhost:8080/tag/019G

42 SIMPLICIAL METHODS

computation of N(S(As))r above we conclude that the summand Ay, - idp) is equal
to N(S(As))k-

In order to show that N o S is the identity functor on Chx((A), the last thing we
have to verify is that we recover the map da k41 : Ax+1 — Ay as the differential on
the complex N(S(A,)) as follows

A1 = N(S(Ad)irt — N(S(A))i = Ay

By definition the map N(S(As))r+1 — N(S(As))r corresponds to the restriction

of (—1)k+1dy ] to N(S(A,)) which is the summand Ay - idgy1. And by the
definition of S(A,) above the map diﬁ maps Agy1 - idp4q) into Ay - idp) by
(=1)**1d 4 1 41. The signs cancel and hence the desired equality.

We know that N is faithful, see Lemma [23.1] If we can show that S is es-
sentially surjective, then it will follow that N is an equivalence, see Homology,
Lemma Note that if A, is a chain complex then S(As) = colim,, S<,,(A4.) =
colim,, S(0<,As) = colim,, insk,S(As) by construction of S. By Lemma it
suffices to show that ¢,V is in the essential image for any n-truncated simplicial
object V. By induction on n it suffices to show that any extension

0— S(As) >V > K(A,n) =0
where A; = 0 for 4 > n is in the essential image of S. By Homology, Lemma we
have abelian group homomorphisms

N
Extgimp(a) (K (A, 1), S(As)) _— Exton () (A[—nl, Ad)
S

between ext groups (see Homology, Definition . We want to show that S is
surjective. We know that N o .S = id. Hence it suffices to show that Ker(N) = 0.
Clearly an extension

OHOHAnfl An,Q AO 0
E: OHAHAnfl An72 AO 0
0 A 0 0 0 0

of Aq by A[—n] in Ch(A) is zero if and only if the map A — A,,_; is zero. Thus
we have to show that any extension

00— S(As) >V = K(A,n)—0
such that A = N(V),, = N(V),_1 is zero is split. By Lemma we have
Mor(K (A, n),V) = {f PA () Ker(d)': Vi = Vn_l)}

and if A = N(V), — N(V),_1 is zero, then the intersection occurring in the
formula above is equal to A. Let i : K(A,n) — V be the morphism corresponding
to id 4 on the right hand side of the displayed formula. Clearly this is a section to
the map V — K(A,n) and the extension is split as desired. ]
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24. Dold-Kan for cosimplicial objects

Let A be an abelian category. According to Homology, Lemma [5.2] also A°PP is
abelian. It follows formally from the definitions that

CoSimp(.A) = Simp(A°PP)°PP,
Thus Dold-Kan (Theorem implies that CoSimp(.A) is equivalent to the cate-
gory Chx((A°PP)°PP. And it follows formally from the definitions that

CoCh>o(A) = Chxq(APP)PP,
Putting these arrows together we obtain an equivalence

Q : CoSimp(A) — CoChx((A).

In this section we describe Q.

First we define the cochain complexr s(U) associated to a cosimplicial object U.
It is the cochain complex with terms zero in negative degrees, and s(U)" = U,
for n > 0. As differentials we use the maps d" : s(U)" — s(U)""! defined by

d" =" (=1)167 L. Tn other words the complex s(U) looks like

5t —ot 82524452
0 UO 0 1 Ul 0 1 2 U2

This is sometimes also called the Moore complex associated to U.

On the other hand, given a cosimplicial object U of A set Q(U)° = Uy and

- R
Q(U)" = Coker( @} Un—1 ——= Uy ).
The differential d" : Q(U)" — Q(U)™** is induced by (—1)"*15T}, i.e., by fitting

the morphism (—1)""’1(521} into a commutative diagram

n bl Un+1

J{ (*1)n+15n+1 \L

dn n
QU)" —————= Q)"
We leave it to the reader to show that this diagram makes sense, i.e., that the image
of 67 maps into the kernel of the right vertical arrow for ¢ = 0,...,n — 1. (This is
dual to Lemma [17.8]) Thus our cochain complex Q(U) looks like this

0— QU —= QU - QU)?*—...

This is called the normalized cochain complex associated to U. The dual to the
Dold-Kan Theorem is the following.

Lemmal 24.1. Let A be an abelian category.

(1) The functor s : CoSimp(A) — CoCh>o(A) is exact.

(2) The maps s(U)" — Q(U)™ define a morphism of cochain complezes.

(3) There exists a functorial direct sum decomposition s(U) = A(U)® Q(U) in
OOChZ()(.A).

(4) The functor Q is exact.

(5) The morphism of complezes s(U) = Q(U) is a quasi-isomorphism.

(6) The functor U — Q(U)* defines an equivalence of categories CoSimp(A) —
COChZ()(.A).
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Proof. Omitted. But the results are the exact dual statements to Lemmas [22.1]

22.4] [22.6] [22.7] 22.8] and Theorem [23.3] O

25. Homotopies

Consider the simplicial sets A[0] and A[1]. Recall that there are two morphisms
€p, €1 A[O] — A[].],

coming from the morphisms [0] — [1] mapping 0 to an element of [1] = {0, 1}. Recall
also that each set A[l]y is finite. Hence, if the category C has finite coproducts,
then we can form the product

U x A[l]
for any simplicial object U of C, see Deﬁnition Note that A[0] has the property
that A[0], = {} is a singleton for all £ > 0. Hence U x A[0] = U. Thus eq, e1
above gives rise to morphisms

eo,e1: U — U x All].
Definition 25.1. Let C be a category having finite coproducts. Suppose that U
and V are two simplicial objects of C. Let a,b: U — V be two morphisms.
(1) We say a morphism
h:UxA[l] —V
is a homotopy connecting a to b if a =hoegand b =hoe;.

(2) We say morphisms a and b are homotopic if there exists a homotopy con-
necting a to b or a homotopy connecting b to a.

Warning: Being homotopic is not an equivalence relation on the set of all mor-
phisms from U to V! The relation “there exists a homotopy from a to b” is not
symmetric.

It turns out we can define homotopies between pairs of maps of simplicial objects
in any category. To do this you just work out what it means to have the morphisms
hy : (U x A[1])p, = V,, in terms of the mapping property of coproducts.

Let C be a category with finite coproducts. Let U, V be simplicial objects of C. Let
a,b: U — V be morphisms. Further, suppose that h : U x A[1] — V is a homotopy
connecting a to b. For every n > 0 let us write

All], ={ag,-.., a1}
where of : [n] — [1] is the map such that
) 0 if j<1
n —
Thus
hot (Ux A = [[Un-af — Vi
has a component h,; : U, — V,, which is the restriction to the summand corre-
sponding to a for all ¢ =0,...,n+ 1.

Lemmal 25.2. In the situation above, we have the following relations:
(1) We have hy,0 = by, and hy ni1 = G-
(2) We have dj ohni=hp_1,-10d} fori>j.
(3) We have dj ohp;=hp_1,0d} fori<j.
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(4) We have 8% 0 hpi = hni1,i41 08} fori>j.

(5) We have 8% 0l = hyir,08]) fori<j.
Conversely, given a system of maps hy,; satisfying the properties listed above, then
these define a morphisms h which is a homotopy between a and b.

Proof. Omitted. You can prove the last statement using the fact, see Lemma [2:4]
that to give a morphism of simplicial objects is the same as giving a sequence of
morphisms h,, commuting with all d7 and s7. (I

Example| 25.3. Suppose in the situation above a = b. Then there is a trivial
homotopy between a and b, namely the one with A, ; = a, = by,.

Remark 25.4. Let C be any category (no assumptions whatsoever). We say that
a pair of morphisms a,b : U — V of simplicial objects are homotopic if there exist
morphisms'| hy, ; : Uy — V,,, for n > 0,4 =0,...,n + 1 satisfying the relations of
Lemma (potentially with the roles of a and b switched). This is a “better”
definition, because it applies to any category. Also it has the following property:
if F:C — (’ is any functor then a homotopic to b implies trivially that F'(a) is
homotopic to F(b). Since the lemma says that the newer notion is the same as the
old one in case finite coproduct exist, we deduce in particular that functors preserve
the old notion whenever both categories have finite coproducts.

Remark| 25.5. Let C be any category. Suppose two morphisms a,a’ : U — V of
simplicial objects are homotopic. Then for any morphism b : V' — W the two maps
boa,boa’ : U — W are homotopic. Similarly, for any morphism ¢ : X — U the two
maps aoc,a’ oc: X — V are homotopic. In fact the maps boaoc,boa’oc: X — W
are homotopic. Namely, if the maps h,,; : U — U define a homotopy between a
and o’ then the maps bo hy,; o ¢ define a homotopy between boaoc and boa’ oc.

Definition 25.6. Let U and V be two simplicial objects of a category C. We
say a morphism a : U — V is a homotopy equivalence if there exists a morphism
b:V — U such that aob is homotopic to idy and boa is homotopic to idy. If there
exists such a morphism between U and V', then we say that U and V' are homotopy
equivalenf)}

Example 25.7. The simplicial set A[m] is homotopy equivalent to A[0]. Namely,
there is a unique morphism f : A[m] — A[0] and we take g : A[0] = A[m] to be
given by the inclusion of the last 0-simplex of A[m]. We have f o g = id and we
will give a homotopy A : A[m] x A[l] — A[m] between idap,,) and go f. Namely h
given by the maps

Mora ([n], [m]) x Mora([n], [1]) — Mora([n], [m])
which send (¢, @) to

m if alk)=1
Note that this only works because we took g to be the inclusion of the last 0-simplex.
If we took g to be the inclusion of the first 0-simplex we could find a homotopy from
go f to idapy)- This is an illustration of the asymmetry inherent in homotopies in
the category of simplicial sets.

kH{<p(k) if a(k)=0

n the literature, often the maps hy,41,058; : Un — Viy1 are used instead of the maps hy, ;.
Of course the relations these maps satisfy are different from the ones in Lemmam
2VVarning: This notion is not an equivalence relation on objects in general.
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The following lemma says that U x A[1] is homotopy equivalent to U.

Lemma 25.8. Let C be a category with finite coproducts. Let U be a simplicial
object of C. Consider the maps e1,eq : U — U x A[l], and 7w : U x A[l] = U, see
Lemma 133

(1) We have moey =moeg = idy, and
(2) The morphisms idyx a1}, and eg o ® are homotopic.
(3) The morphisms idyx a1}, and ey o7 are homotopic.

Proof. The first assertion is trivial. For the second, consider the map of simplicial
sets A[1] x A[1] — A[1] which in degree n assigns to a pair (51, 82), B; : [n] = [1]
the morphism 8 : [n] — [1] defined by the rule

B(i) = max{B: (i), B2(i) }-

It is a morphism of simplicial sets, because the action A[1](¢) : A[1],, — A[1] of
@ : [m] — [n] is by precomposing. Clearly, using notation from Section we have
B=p1if o =af and 8 = aj. ., if B2 = o], ;. This implies easily that the induced
morphism

U x A[l] x A[l] — U x A[1]

of Lemma, is a homotopy between idyx a[1) and eg o . Similarly for ey o7 (use
minimum instead of maximum). |

Lemmal 25.9. Let f: Y — X be a morphism of a category C with fibre products.
Assume f has a section s. Consider the simplicial object U constructed in Example
starting with f. The morphism U — U which in each degree is the self map
(so )" of Y xx...xxY given by so f on each factor is homotopic to the identity
on U. In particular, U is homotopy equivalent to the constant simplicial object X .

Proof. Set ¢° =idy and g' = so f. We use the morphisms
Y xx...xxY xMor([n],[1]) — Y xx...xxY
(yOa"'ay'fL) Xa = (ga(O)(yO)y"'aga(n)(yn))
where we use the functor of points point of view to define the maps. Another way to
say this is to say that h, o = id, hynp1 = (so f)"H! and hy,; = ideH! x (so f)n 17
We leave it to the reader to show that these satisfy the relations of Lemma [25.2

Hence they define the desired homotopy. See also Remark which shows that
we do not need to assume anything else on the category C. (]

Lemmal 25.10. Let C be a category.

(1) If as,by : Xy — Yi, t € T are homotopic morphisms between simplicial
objects of C, then [Ja+, [[b: : [[X: — [[Y: are homotopic morphisms
between simplicial objects of C, provided [ X; and [[Y: exist in Simp(C).

(2) If (X4,Y:), t € T are homotopy equivalent pairs of simplicial objects of C,
then [[ X: and [[Y: are homotopy equivalent pairs of simplicial objects of
C, provided [| Xy and [1Y; exist in Simp(C).

Proof. If hy = (h:,,:) are homotopies connecting a; and b; (see Remark ,
then h = (], htn,s) is a homotopy connecting [[a; and [[b;. This proves (1).
Part (2) follows from part (1) and the definitions. O
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26. Homotopies in abelian categories

Let A be an abelian category. Let U, V' be simplicial objects of A. Let a,b: U — V
be morphisms. Further, suppose that h : U x A[1] = V is a homotopy connecting a
and b. Consider the two morphisms of chain complexes s(a), s(b) : s(U) — s(V).
Using the notation introduced above Lemma we define

s(h)n : Up — Vit
by the formula

(26.0.1) s(h)n = Zf_o(—l)i“hnﬂ,m o8,
Let us compute dp41 0 s(h)n, + s(h)p—1 0 dy. We first compute
n+1
dpi1os(h), = Z] . ZZ . j+z+1dn+1 © hpt1,i+1 © 8}

- Z1§i+1§j§n+1(71)j+i+1hn,i+1 oditos}
* anizjzo(_l)Hth"J odjttos?

— Z19‘+1<g§n+1(_1)j+i+1hn,i+l oslod,
* ZlSi+1:j§n+1(_1)j+i+1hnai+1
+ Zn>i—j>0(71)z+j+1hn7z
+ Zn>l>J>0 1+J+1h ? 11 o d;-’

We leave it to the reader to see that the first and the last of the four sums cancel
exactly against all the terms of

n—1 n
s(h)n—10dy Z Z DR, 0 3?71 odj.
i=0 j=0
Hence we obtain
n+1 ) n .
dny108(h)n+5(R)p_10d, = Z(_l)%hn,j + Z(_1)21+1hn,i
j=1 i=

hn,n+1 - hn70
= Qap — bn

Thus we’ve proved part of the following lemma.

Lemmal 26.1. Let A be an abelian category. Let a,b : U — V be morphisms of

simplicial objects of A. If a, b are homotopic, then s(a),s(b) : s(U) — s(V), and

N(a),N(b) : N({U) = N(V) are homotopic maps of chain complexes.

Proof. The part about s(a) and s(b) is clear from the calculation above the lemma.

On the other hand, if follows from Lemma that N(a), N(b) are compositions
NU) = s(U) — s(V) = N(V)

where we use s(a), s(b) in the middle. Hence the assertion follows from Homology,
Lemma [12.7] O
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Lemmal 26.2. Let A be an abelian category. Let a : U — V be a morphism of
sitmplicial objects of A. If a is a homotopy equivalence, then s(a) : s(U) — s(V),
and N(a) : N(U) — N(V) are homotopy equivalences of chain complexes.

Proof. Omitted. See Lemma 26.1] above. O

27. Homotopies and cosimplicial objects

Let C be a category with finite products. Let V' be a cosimplicial object and consider
Hom(A[1],V), see Section The morphisms eg,e; : A[0] — A[l] produce two
morphisms eg, e; : Hom(A[1],V) = V.

Definition 27.1. Let C be a category having finite products. Suppose that U and
V' are two cosimplicial objects of C. We say morphisms a,b: U — V are homotopic
if there exists a morphism

h:U — Hom(A[l],V)

such that a = eg o h and b = ey o h. In this case h is called a homotopy connecting
a and b.

This is really exactly the same as the notion we introduced for simplicial objects
earlier. In particular, recall that A[l],, is a finite set, and that

B = (hna) : U — Haemn Vn

is given by a collection of maps h, o : U, — V,, parametrized by elements of
A[l], = Mora([n],[1]). As in Lemma these morphisms satisfy some relations.
Namely, for every f : [n] — [m] in A we should have

(27.1.1) hinga 0 U(f) =V (f) © hn,aor

The condition that a = ey o h means that a, = hy g.[nj—p] Where 0 : [n] — [1] is
the constant map with value zero. Similarly, we should have b, = hy, 1.(n)—[). In
particular we deduce once more that the notion of homotopy can be formulated
between cosimplicial objects of any category, i.e., existence of products is not nec-
essary. Here is a precise formulation of why this is dual to the notion of a homotopy
between morphisms of simplicial objects.

Lemma 27.2. Let C be a category having finite products. Suppose that U and V'
are two cosimplicial objects of C. Let a,b : U — V be morphisms of cosimplicial
objects. Recall that U, V' correspond to simplicial objects U', V' of C°PP. Moreover
a,b correspond to morphisms a’',b' : V' — U’. The following are equivalent

(1) The morphisms a,b: U — V of cosimplicial objects are homotopic.

(2) The morphisms o', b : V! — U’ of simplicial objects of C°PP are homotopic.

Proof. If C has finite products, then C°PP has finite coproducts. And the con-
travariant functor (—)’ : C — C°PP transforms products into coproducts. Then it is
immediate from the definitions that (Hom(A[1],V)) =V’ x A[1]. And so on and
so forth. d

Lemma 27.3. Let C,C', D, D’ be categories such that C,C’" have finite products, and
D, D' have finite coproducts.
(1) Let a,b: U — V be morphisms of simplicial objects of D. Let F : D — D’
be a covariant functor. If a and b are homotopic, then F(a), F(b) are
homotopic morphisms F(U) — F(V) of simplicial objects.


http://localhost:8080/tag/019T
http://localhost:8080/tag/019W
http://localhost:8080/tag/019X
http://localhost:8080/tag/019Y

SIMPLICIAL METHODS 49

(2) Let a,b:U — V be morphisms of cosimplicial objects of C. Let F: C — C’
be a covariant functor. If a and b are homotopic, then F(a), F(b) are
homotopic morphisms F(U) — F(V) of cosimplicial objects.

(3) Let a,b: U — V be morphisms of simplicial objects of D. Let F : D — C
be a contravariant functor. If a and b are homotopic, then F(a), F(b) are
homotopic morphisms F(V) — F(U) of cosimplicial objects.

(4) Let a,b:U — V be morphisms of cosimplicial objects of C. Let F : C — D
be a contravariant functor. If a and b are homotopic, then F(a), F(b) are
homotopic morphisms F(V) — F(U) of simplicial objects.

Proof. By Lemma above, we can turn F' into a covariant functor between
a pair of categories which have finite coproducts, and we have to show that the
functor preserves homotopic pairs of maps. It is explained in Remark [25.4 how this
is the case. Even if the functor does not commute with coproducts! O

Lemma 27.4. Let f:Y — X be a morphism of a category C with pushouts. As-
sume [ has a section s. Consider the cosimplicial object U constructed in Fxample
[5-3] starting with f. The morphism U — U which in each degree is the self map of
Yy ...lIxY given by so f on each factor is homotopic to the identity on U. In
particular, U is homotopy equivalent to the constant cosimplicial object X .

Proof. The dual statement which is Lemma 5.9 Hence this lemma follows on
applying Lemma [27.2} (]

Lemmal 27.5. Let A be an abelian category. Let a,b : U — V' be morphisms of
costmplicial objects of A. If a, b are homotopic, then s(a),s(b) : s(U) — s(V), and
Q(a),Q(b) : Q(U) — Q(V) are homotopic maps of cochain complezes.

Proof. Let (—)' : A — A°PP be the contravariant functor A — A. By Lemma
the maps o’ and V' are homotopic. By Lemma we see that s(a’) and
s(b’) are homotopic maps of chain complexes. Since s(a’) = (s(a))’ and s(b') =
(s(b))’ we conclude that also s(a) and s(b) are homotopic by applying the additive
contravariant functor (—)” : AP — A. The result for the Q-complexes follows
from the direct sum decomposition of Lemma for example. O

28. More homotopies in abelian categories

Let A be an abelian category. In this section we show that a homotopy between
morphisms in Chso(A) always comes from a morphism U x A[l] — V in the
category of simplicial objects. In some sense this will provide a converse to Lemma
[26.1] We first develop some material on homotopies between morphisms of chain
complexes.

Lemma 28.1. Let A be an abelian category. Let A be a chain complex. Consider
the covariant functor

B+—{(a,b,h) | a,b: A— B and h a homotopy between a,b}

There exists a chain compler oA such that Mor cpa)(0A, —) is isomorphic to the
displayed functor. The construction A — ©A is functorial.

Proof. We set 0A,, = A, & A, @ A,,_1, and we define dy 4 ,, by the matrix
dan 0 ida, _,

d<>A,n = 0 dA,n _idAn,l : An S An 7] An—l — An—l S An—l S¥ An—2
0 0 _dA,nfl
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If A is the category of abelian groups, and (z,y,2) € A, ® A, ® A,_1 then
doan(2,y,2) = (dn(z) + 2,dn(y) — 2, —dy—1(2)). It is easy to verify that d* = 0.
Clearly, there are two maps ¢a,ob: A — ¢A (first summand and second summand),
and a map ©A — A[—1] which give a short exact sequence

0—>APA—0A— A-1] -0

which is termwise split. Moreover, there is a sequence of maps oh,, : A,, — ¢4, 41,
namely the identity from A, to the summand A, of ¢A,11, such that oh is a
homotopy between ¢a and ©b.

We conclude that any morphism f : ©A — B gives rise to a triple (a, b, h) by setting
a= fooa, b= fooband h, = fr41 0 oh,. Conversely, given a triple (a,b,h) we
get a morphism f : ©A — B by taking

fn = (anv bn> hn71)~
To see that this is a morphism of chain complexes you have to do a calculation.
We only do this in case A is the category of abelian groups: Say (z,y, 2z) € ©A, =
A, ®A,D®A,_1. Then
fnfl(dn(xayvz)) = fnfl(dn(m) +Zvdn(y) - % _dnfl(z))
= an(dn(2)) + an(2) + bu(dn(y)) — bn(2) — hp-2(dn-1(2))

and
dn(fn(mvya Z) = dn(an(x) + bn(y) + hnfl(z))
= dn(an(2)) + dn(bn(y)) + dn(hn-1(2))
which are the same by definition of a homotopy. O

Note that the extension
0> ADA—0A— Al-1] =0

comes with sections of the morphisms ¢A4,, — A[—1],, with the property that the
associated morphism ¢ : A[—1] — (A @ A)[—1], see Homology, Lemma equals
the morphism (1, —1) : A[-1] — A[-1] & A[-1].

Lemmal 28.2. Let A be an abelian category. Let
0>A®dA—-B—-C—0

be a short exact sequence of chain complexes of A. Suppose given in addition
morphisms s, : C, — B, splitting the associated short exact sequence in degree
n. Let §(s) : C — (A® A)[-1] = A[-1] & A[—1] be the associated morphism
of complexes, see Homology, Lemma . If 6(s) factors through the morphism
(1,-1) : A[-1] — A[-1] & A[—1], then there is a unique morphism B — oA fitting
into a commutative diagram

0——=Ap A B c 0

|

0—ADA——>0A——> A[-1] —=0

where the vertical maps are compatible with the splittings s,, and the splittings of
0A, = A[-1], as well.
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Proof. Denote (p,,qn) : Bn — A, @ A, the morphism 7, of Homology, Lemma
Also write (a,b) : A® A — B, and r : B — C for the maps in the short
exact sequence. Write the factorization of §(s) as d(s) = (1,—1) o f. This means
that pp—1 0dpn © Sy = fn, and ¢u—1 0dpn 0 Sy, = —fn, and Set B, — ¢4, =
An S2) An S3) An—l equal to (pna dn; fn © rn)-

Now we have to check that this actually defines a morphism of complexes. We will
only do this in the case of abelian groups. Pick z € B,,. Then x = a,, (1) +b,(x2)+
$n(z3) and it suffices to show that our definition commutes with differential for each
term separately. For the term a,(x1) we have (pn, qn, fn © Tn)(an(x1)) = (21,0,0)
and the result is obvious. Similarly for the term b, (x2). For the term s,(x3) we
have

(pru(InafnOrn)(dn(sn(xfi))) = (PQOanT"n)(
an(fn(®3)) = bn(fn(x3)) + sn(dn(zs)))
= (fa(®3), —fu(x3), fu(dn(z3)))

by definition of f,. And

dn(pnaQ'mfn Orn)(31b(x3)) = dn(oao’fn(x?)))
= (fn(m3)7 _fn('r?))v dA[fl],n(fn(ajS)))
The result follows as f is a morphism of complexes. (I

Lemmal 28.3. Let A be an abelian category. Let U, V be simplicial objects of
A. Let a,b: U — V be a pair of morphisms. Assume the corresponding maps of
chain complexes N(a), N(b) : N(U) — N(V) are homotopic by a homotopy {N,, :
N(U)n = N(V)n41}. Then a,b are homotopic in the sense of Definition [25.1]
Moreover, one can choose the homotopy h : U x A[l] = V such that N,, = N(h),
where N (h) is the homotopy coming from h as in Section .

Proof. Let (0N(U),oa,ob,oh) be as in Lemma and its proof. By that lemma
there exists a morphism oN(U) — N (V') representing the triple (N (a), N (b), {Nyn}).
We will show there exists a morphism ¢ : N(U x A[l]) = oN(U) such that oa =
1o N(eg), and b = 1o N(ey). Moreover, we will show that the homotopy between
N(eg),N(e1) : N({U) — N(U x A[1]) coming from and Lemma with
h =idyx A is mapped via 9 to the canonical homotopy ©h between the two maps
oa,ob: N(U) = oN(U). Certainly this will imply the lemma.

Note that N : Simp(A) — Ch>o(A) as a functor is a direct summand of the
functor N : Simp(A) — Ch>(A). Also, the functor ¢ is compatible with direct
sums. Thus it suffices instead to construct a morphism ¥ : s(U x A[1]) — os(U)
with the corresponding properties. This is what we do below.

By Definition [25.1] the morphisms ep : U — U x A[1] and e; : U = U x A[l] are
homotopic with homotopy idyxapi- By Lemma we get an explicit homotopy
{hn : 8(U)n, = s(U x A[1])p+1} between the morphisms of chain complexes s(eg) :
s(U) — s(U x A[1]) and s(e1) : s(U) — s(U x A[1]). By Lemma 28.2] above we get

a corresponding morphism

O os(U) — s(U x A[1])
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According to the construction, ®,, restricted to the summand s(U)[—1],, = s(U)n-1
of ¢s(U),, is equal to h,_;. And

n—1 +1_n n n
hp—1 = E (= D)"Ts ey U — @_Un aj.
1=0 J
with obvious notation.

On the other hand, the morphisms e; : U — U x A[1] induce a morphism (eg, e1) :
U®&U — U x A[l]. Denote W the cokernel. Note that, if we write (U x A[l]),, =
D.:n) 1) Un - @, then we may identify W, = @;_; U, - af with o} as in Section
We have a commutative diagram

0—>UaU—>UxAl] —=W —>0

PNy

U

This implies we have a similar commutative diagram after applying the functor s.
Next, we choose the splittings o, : $(W),, = s(U x A[1]),, by mapping the summand
Uy -aff C W, via (—=1,1) to the summands U,,-af @ U, -af C (U xA[1]),. Note that
$(m)p 0 0,y = 0. It follows that (1,1) o 6(¢), = 0. Hence §(o) factors as in Lemma
By that lemma we obtain a canonical morphism ¥ : s(U x A[l]) — os(U).

To compute ¥ we first compute the morphism (o) : (W) — s(U)[—1] @ s(U)[—1].
According to Homology, Lemma, and its proof, to do this we have compute
ds(Ux5[1))n © Tn — On—1°dgWw)n

and write it as a morphism into U,,_1 ~ozg_1 ®U, -1 -ozﬁ_l. We only do this in case
A is the category of abelian groups. We use the short hand notation z,, for z € U,
to denote the element z in the summand U, - a of (U x A[1]),,. Recall that

n .
dsUxs[])n = Zizo(—l)ld?

where d' maps the summand U, -« to the summand U,,_; - («0d}") via the morphism
d? of the simplicial object U. In terms of the notation above this means

n .
dsxs1)),n(Ta) = Zi:O(_l)l(d?(x))aoéy
Starting with z, € W, in other words o = o for some j € {1,...,n}, we see that
0n(Ta) = To — Tap and hence
(eweafpn © 00 (@) = 3 (D (@)oot — 3 (~DH () ages;
To compute dyw)n(Ta), we have to omit all terms where a o §7" = agtant,
Hence we get
(Un—l o ds(W),n)(-Ta) =
S i and aosrad " or ait (1A @)aosy — (1) (d2(2)) 51 )

Clearly the difference of the two terms is the sum
) DY (CEIRCAC IR CEIRCATI Y

Of course, if a0 67 = af ™! then the term drops out. Recall that o = af for some
j €1{1,...,n}. The only way aj od} = a’lisif j = n and i = n. Thus we actually
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get 0 unless j = n and in that case we get (—1)"(dy,(z)),n—1 — (—1)"(d::(x))agf1.
In other words, we conclude the morphism

5(0)n = Wiy — (s(U)[=1] @ s(U)[~1])n = Up—1 & Up_1

is zero on all summands except U, - ;. and on that summand it is equal to

((=1)"dy,—(=1)™d?). (Namely, the first summand of the two corresponds to the
factor with o~ because that is the map [n — 1] — [1] which maps everybody to
0, and hence corresponds to ¢eg.)

We obtain a canonical diagram

00— s(U) @ s(U) os(U) S(U)[-1] —=0
i <I> |

0 — s(U) @ s(U) — s(U x A[1]) s(W) 0
l w l

00— s(U) @ s(U) os(U) SU)[~1] —0

We claim that ® o U is the identity. To see this it is enough to prove that the
composition of ® and §(c) as a map s(U)[—1] = s(W) — s(U)[-1]®s(U)[—1] is the
identity in the first factor and minus identity in the second. By the computations
above it is ((—1)"dj, —(—=1)"dj) o (—1)"sI* = (1, —1) as desired. O

29. Trivial Kan fibrations

Recall that for n > 0 the simplicial set A[n] is given by the rule [k] — Mora ([k], [1]),
see Example Recall that A[n] has a unique nondegenerate n-simplex and all
nondegenerate simplices are faces of this n-simplex. In fact, the nondegenerate
simplices of Aln] correspond exactly to injective morphisms [k] — [n], which we
may identify with subsets of [n]. Moreover, recall that Mor(A[n], X) = X,, for any
simplicial set X (Lemma [I1.3)). We set

8A[Tl] = i(n,l)!skn_lA[n]

and we call it the boundary of A[n]. From Lemma we see that OA[n] C A[n]
is the simplicial subset having the same nondegenerate simplices in degrees < n—1
but not containing the nondegenerate n-simplex.

Definition 29.1. A map X — Y of simplicial sets is called a trivial Kan fibration
if Xo — Y is surjective and for all n > 1 and any commutative solid diagram

-7
Ve
| ]
Aln] ——Y
a dotted arrow exists making the diagram commute.

A trivial Kan fibration satisfies a very general lifting property.
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Lemma 29.2. Let f: X — Y be a trivial Kan fibration of simplicial sets. For any
solid commutative diagram

—_—

A X
b 7
/7
/
/(1
W ——Y

of simplicial sets with Z — W (termwise) injective a dotted arrow exists making
the diagram commute.

Proof. Suppose that Z £ W. Let n be the smallest integer such that Z, # W,,.
Let z € W, x € Z,. Denote Z' C W the simplicial subset containing Z, x, and all
degeneracies of z. Let ¢ : A[n] — Z’ be the morphism corresponding to = (Lemma
11.3). Then ¢|ya[,) maps into Z as all the nondegenerate simplices of OA[n] end
up in Z. By assumption we can extend b o ¢[ga[,) to f: Aln] — X. By Lemma
the simplicial set Z’ is the pushout of A[n] and Z along 0A[n]. Hence b and
B3 define a morphism o’ : Z’ — X. In other words, we have extended the morphism
b to a bigger simplicial subset of Z.

The proof is finished by an application of Zorn’s lemma (omitted). O

Lemma 29.3. Let f: X — Y be a trivial Kan fibration of simplicial sets. Let
Y’ — Y be a morphism of simplicial sets. Then X Xy Y’ — Y’ is a trivial Kan
fibration.

Proof. This follows immediately from the functorial properties of the fibre product

(Lemma and the definitions. O
Lemma 29.4. The composition of two trivial Kan fibrations is a trivial Kan fibra-
tion.

Proof. Omitted. 0

Lemma) 29.5. Let ... = U? = U' — U° be a sequence of trivial Kan fibrations.
Let U = imU? defined by taking U, = UimUL. Then U — U° is a trivial Kan
fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. (I

Lemma 29.6. Let X; — Y; be a set of trivial Kan fibrations. Then [[ X; — [1Y:
is a trivial Kan fibration.

Proof. Omitted. O

Lemmal 29.7. A filtered colimit of trivial Kan fibrations is a trivial Kan fibration.

Proof. Omitted. Hint: See description of filtered colimits of sets in Categories,
Section O

Lemma 29.8. Let f: X = Y be a trivial Kan fibration of simplicial sets. Then f
is a homotopy equivalence.
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Proof. By Lemma [29.2] we can choose an right inverse g : Y — X to f. Consider
the diagram

8A[1] XX ——X

7

|

7
e
Ve

A[l] XX ——Y
Here the top horizontal arrow is given by idx and go f where we use that (9A[1] x
X)n = X, 1 X, for all n > 0. The bottom horizontal arrow is given by the map

A[l] = AJ0] and f: X — Y. The diagram commutes as f ogo f = f. By Lemma
we can fill in the dotted arrow and we win. O

30. Kan fibrations

Let n, k be integers with 0 < k < mn and 1 < n. Let o0g,...,0, be the n + 1 faces
of the unique nondegenerate n-simplex o of Aln], i.e., o; = d;o. We let

Ag[n] C Aln]

be the kth horn of the n-simplex A[n]. It is the simplicial subset of A[n] generated
by co,...,0k,...,0,. In other words, the image of the displayed inclusion contains
all the nondegenerate simplices of A[n] except for o and oy.

Definition 30.1. A map X — Y of simplicial sets is called a Kan fibration if for
all k,n with 1 <n, 0 <k <n and any commutative solid diagram

Ak [n] — X
1
Ve
|
/s
Aln] —Y
a dotted arrow exists making the diagram commute. A Kan complex is a simplicial

set X such that X — x is a Kan fibration, where * is the constant simplicial set on
a singleton.

Note that Ag[n] is always nonempty. This a morphism from the empty simplicial
set to any simplicial set is always a Kan fibration. It follows from Lemma that
a trivial Kan fibration is a Kan fibration.

Lemmal 30.2. Let f: X — Y be a Kan fibration of simplicial sets. Let Y —'Y
be a morphism of simplicial sets. Then X Xy Y’ — Y’ is a Kan fibration.

Proof. This follows immediately from the functorial properties of the fibre product
(Lemma and the definitions. O

Lemma 30.3. The composition of two Kan fibrations is a Kan fibration.
Proof. Omitted. O

Lemma 30.4. Let ... = U? — U' — UY be a sequence of Kan fibrations. Let
U =1limU" defined by taking U,, = im U.. Then U — U° is a Kan fibration.

Proof. Omitted. Hint: use that for a countable sequence of surjections of sets the
inverse limit is nonempty. (I
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Lemma 30.5. Let X; — Y; be a set of Kan fibrations. Then [[ X; — []Y; is a
Kan fibration.

Proof. Omitted. (]
The following lemma is due to J.C. Moore, see [Moo55].
Lemma 30.6. Let X be a simplicial group. Then X is a Kan complex.

Proof. The following proof is basically just a translation into English of the proof
in the reference mentioned above. Using the terminology as explained in the intro-
duction to this section, suppose f : Agx[n] — X is a morphism from a horn. Set
a; = f(o;) € Xp_y for i = 0,...,k,...,n. This means that for i < j we have
diz; = dj_1x; whenever 4, j # k. We have to find an « € X,, such that z; = d;x
fori:O,...,I::,...,n.

We first prove there exists a u € X, such that d;u = x; for i < k. This is trivial for
k=0. If £ > 0, one defines by induction an element u" € X,, such that d;u” = x;
for 0 <4 < r. Start with u® = soxo. If r < k — 1, we set

yr = ST+1((dr+1’u,r)_1ajr+1), UT+1 = uryr.
An easy calculation shows that d;y” = 1 (unit element of the group X,,_1) fori <r
and d,41y" = (dry1u”) " tx,4q. It follows that dyu™! = z; for i < r + 1. Finally,

take u = u*~! to get u as promised.

Next we prove, by induction on the integer r, 0 < r < n—k, there exists a 2" € X,
such that

dix' =x; fori<kandi>n-—r.
Start with 20 = u for » = 0. Having defined z” for r < n — k — 1 we set

2" = Snfrfl((dnfrxT.)_lxnfr% (ET+1

— x’r'zr
A simple calculation, using the given relations, shows that d;z" = 1 for i < k and
i >n —r and that d,,_.(2") = (dp_r2")t2,_,. It follows that d;a" 1 = x; for

i < kandi>n—r— 1. Finally, we take = 2" * which finishes the proof. O

Lemma 30.7. Let f: X — Y be a homomorphism of simplicial abelian groups
which is termwise surjective. Then f is a Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

Ak[n] T>X

|

Aln] —2—~Y
as in Definition [30.1} The map a corresponds to zg,...,Zg,...,T, € X,—1 sat-
isfying d;x; = dj_12; for i < j, 4,5 # k. The map b corresponds to an element
y € Y, such that d;y = f(x;) for ¢ # k. Our task is to produce an z € X,, such
that d;x = x; for i # k and f(z) = y.

Since f is termwise surjective we can find x € X,, with f(x) = y. Replace y by
0=y — f(x) and z; by x; — d;x for i # k. Then we see that we may assume y = 0.
In particular f(z;) = 0. In other words, we can replace X by Ker(f) C X and Y
by 0. In this case the statement become Lemma [30.6 (]
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Lemma 30.8. Let f: X — Y be a homomorphism of simplicial abelian groups
which is termwise surjective and induces a quasi-isomorphism on associated chain
complexes. Then f is a trivial Kan fibration of simplicial sets.

Proof. Consider a commutative solid diagram

8A[n] T> X

|

Aln] —2—>Y

as in Definition 29.1] The map a corresponds to xg,...,z, € X,_1 satisfying
diz; = dj_1x; for ¢ < j. The map b corresponds to an element y € Y,, such that
diy = f(z;). Our task is to produce an z € X,, such that d;z = x; and f(z) = y.

Since f is termwise surjective we can find x € X, with f(x) = y. Replace y by
0 =y — f(z) and z; by x; — d;z. Then we see that we may assume y = 0. In
particular f(z;) = 0. In other words, we can replace X by Ker(f) C X and Y by 0.
This works, because by Homology, Lemma [12.6] the homology of the chain complex
associated to Ker(f) is zero and hence Ker(f) — 0 induces a quasi-isomorphism on
associated chain complexes.

Since X is a Kan complex (Lemma we can find z € X,, with d;x = z;
for ¢ = 0,...,n — 1. After replacing z; by x; — d;x for i = 0,...,n we may
assume that o = 1 = ... = x,_1 = 0. In this case we see that d;x,, = 0 for
i=20,...,n—1. Thus z, € N(X),—1 and lies in the kernel of the differential
N(X)p-1 = N(X)pn—2. Here N(X) is the normalized chain complex associated to
X, see Section 22} Since N(X) is quasi-isomorphic to s(X) (Lemma[22.8) and thus
acyclic we find z € N(X,,) whose differential is x,. This x answers the question
posed by the lemma and we are done. O

Lemma 30.9. Let f : X — Y be a map of simplicial abelian groups. If f is
termuwise surjectivcﬁ and a homotopy equivalence of simplicial sets, then f induces
a quasi-isomorphism of associated chain complezes.

Proof. By assumption there exists a map g : Y — X of simplicial sets, a homotopy
h: X xA[l] — X between go f and idx, and a homotopy A’ : Y X A[1] — Y between
fogand idy. During this proof we will write H,(X) = H,(s(X)) = H,(N (X)),
see Section

Note that Hy(X) is the cokernel of the difference map dy —dp : X1 — Xy. Observe
that © € X corresponds to a morphism A[0] — X. Composing h with the induced
map A[0] x A[l] = X x A[l] we see that x and g(f(z)) are equal to dpa’ and dyz’
for some z/ € X;. Similarly for y € Yy. We conclude that f defines a bijection

3This assumption is not necessary. Also the proof as currently given is not the right one. A
better proof is to define the homotopy groups of Kan complex and show that these are equal to
the homology groups of the associated complex for a simplicial abelian group.
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Let n > 1. Consider the simplicial set S which is the pushout of
OA[n] —— %
|
Aln] ——= S
Concretely, we take
Sk ={¢: [k] = [n] | ¢ is surjective} IT {x}.

Denote E = Z[S] the free abelian group on S. The inclusion A[0] — S coming from
* € Sp determines an injection K(Z,0) — E whose cokernel is the object K(Z,n),
i.e., we have a short exact sequence

0— K(Z,0)» E— K(Z,n) =0

See Definition [21.3|and the description of the Eilenberg-Maclane objects in Lemma
Note that the extension above is split, for example because the element
§ = [idy,] — [#] € B, satisfies d;§ = 0 and maps to the “generator” of K(Z,n). We
have

MorSimp(Sets) (Sa X) = MorSimp(Ab) (Eu X) = Xp X mi:o n Ker(di : Xp — anl)

This uses the choice of our splitting above and the description of morphisms out
of Eilenberg-Maclane objects given in Lemma Note that we can think of
Nizo....n Ker(d; : X,y — X;,_1) as the cycles in degree n in the normalized chain
complex associated to X, see Section If two maps a, b : S — X are homotopic (as
maps of simplicial sets), then the corresponding maps a’,b’ : E — X are homotopic
as maps of simplicial abelian groups (because taking the free abelian group on is
a functor). Thus if a, resp. b correspond to (ag, a,), resp. (bg,b,) in the formula
above, then ag and by define the same element of Hy(X) and a,, and b,, define the
same class in H,(X). See Lemma

We come the final arguments of the proof. An element y of H,(Y) can be rep-
resented by an element y, in (),_, , Ker(d; : Y, — ¥,,—1). Let a : S — Y be
the map of simplicial sets corresponding to (0,yn). Then b = g o a corresponds
to some (b, b,) as above for X. Using the homotopy h’ we see (f(bo), f(bn)) and
(0,y,) come from homotopic maps S — Y and hence y,, and f(b,) define the same
element of H,(Y). Clearly this shows that H,(f) is surjective. Conversely, sup-
pose z, in (), ., Ker(d; : X;, = Xy—1) and f(z,) = d(y') with y" € N(Y41).
Since f is termwise surjective so is the induced map f : N(X,41) = N(Yn41) (see
Lemma . Thus we can pick ' € N(X,,4+1) mapping to y’. After replacing
by x, — d(z’) we reach the point where f(x,) = 0. This means that the morphism
a : S — X corresponding to (0,z,) has the property that f o a is the constant
morphism with value 0 in Y. Hence g o f o a is also a constant morphism, i.e.,
corresponds to a pair (bg,0). Since as before z,, and 0 represent the same element
of H,(X) we conclude. O
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31. A homotopy equivalence

Suppose that A, B are sets, and that f: A — B is a map. Consider the associated
map of simplicial sets

coskO(A):(...AXAXA%HAXA%HA)

[ —

cosko(B):(...BxBxB—><;B><B<—4>B)
a—

See Example [I8.1] The case n = 0 of the following lemma says that this map of
simplicial sets is a trivial Kan fibration if f is surjective.

Lemma 31.1. Let f : V — U be a morphism of simplicial sets. Let n > 0 be an
integer. Assume

(1) The map f; : V; — U; is a bijection for i < n.

(2) The map f : Vo, = U, is a surjection.

(3) The canonical morphism U — coskysk,U is an isomorphism.

(4) The canonical morphism V. — coskysk,V is an isomorphism.

Then f is a trivial Kan fibration.
Proof. Consider a solid diagram

OA[K] —=V

|

Alk] ——=U

as in Definition Let z € Uy be the k-simplex corresponding to the lower
horizontal arrow. If £ < n then the dotted arrow is the one corresponding to a
lift y € Vi, of x; the diagram will commute as the other nondegenerate simplices of
A[k] are in degrees < k where f is an isomorphism. If k& > n, then by conditions
(3) and (4) we have (using adjointness of skeleton and coskeleton functors)

Mor(A[k], U) = Mor(sk, Alk], sk,U) = Mor(sk,0A[k], sk, U) = Mor(9Ak], U)
and similarly for V' because sk,A[k] = sk,0Alk] for k& > n. Thus we obtain a

unique dotted arrow fitting into the diagram in this case also. O

Let A, B be sets. Let f° f! : A — B be maps of sets. Consider the induced
maps fO, f! : coskg(A) — cosko(B) abusively denoted by the same symbols. The
following lemma for n = 0 says that f° is homotopic to f!. In fact, the homotopy
is given by the map h : coskg(A) x A[1] — cosko(A) with components
hm t Ax...x AxMora(m],[1]) — Ax...xA,
(a0 s am, @) — (f*Pag), ..., f*™ (am))

To check that this works, note that for a map ¢ : [k] — [m] the induced maps are
(a0, .- am) = (ap(0), -+ apk)) and a = a o . Thus h = (hm)m>o is clearly a
map of simplicial sets as desired.

Lemmal 31.2. Let fO, f1 : V — U be maps of a simplicial sets. Let n > 0 be an
integer. Assume
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(1) The maps ff Vi = U;, j =0,1 are equal for i < n.
(2) The canonical morphism U — cosky, sk, U is an isomorphism.
(3) The canonical morphism V. — coskysk,V is an isomorphism.

Then f° is homotopic to f'.

First proof. Let W be the n-truncated simplicial set with W; = U; for ¢ < n and
W,, = U,/ ~ where ~ is the equivalence relation generated by f°(y) ~ f'(y) for
y € V,,. This makes sense as the morphisms U(p) : U, — U, corresponding to
¢ : [i] = [n] for i < n factor through the quotient map U,, — W,, because f° and
f' are morphisms of simplicial sets and equal in degrees < n. Next, we upgrade W
to a simplicial set by taking cosk,W. By Lemma the morphism g : U — W
is a trivial Kan fibration. Observe that go f° = go f! by construction and denote
this morphism f : V — W. Consider the diagram

aA[l] XV—=U

J/ S 7J/

Al xV —1 W

By Lemma the dotted arrow exists and the proof is done. (I

Second proof. We have to construct a morphism of simplicial sets h : V x A[1] —
U which recovers f* on composing with e;. The case n = 0 was dealt with above
the lemma. Thus we may assume that n > 1. The map A[l] — coskysk; A[l] is
an isomorphism, see Lemma Thus we see that A[l] — cosk,sk,A[l] is an
isomorphism as n > 1, see Lemma And hence V x A[1] — coskysk, (V x A[l])
is an isomorphism too, see Lemma [I8.12] In other words, in order to construct the
homotopy it suffices to construct a suitable morphism of n-truncated simplicial sets
h:sk,V x sk,A[l] — sk,U.
For k = 0,...,n—1 we define hy, by the formula hy,(v, ) = f°(v) = f1(v). The map
by, : Vi, x Mora ([k], [1]) — U, is defined as follows. Pick v € V;, and « : [n] — [1]:

(1) If Im(a) = {0}, then we set h, (v, a) = fO(v).

(2) If Im(a) = {0, 1}, then we set h,(v,a) = fO(v).

(3) If Im(a) = {1}, then we set h,(v,a) = f1(v).
Let ¢ : [k] — [I] be a morphism of A<,,. We will show that the diagram

Vi x Mor([l], [1]) ——=U;

| |

Vi x Mor([k], [1]) — U
commutes. Pick v € Vj and « : [I] — [1]. The commutativity means that

he(V(@)(v), a0 @) = U(p)(hu(v, @)).

In almost every case this holds because hi(V(9)(v),a 0 ¢) = fO(V(p)(v)) and
U(e)(hi(v,a)) = U(e)(f°(v)), combined with the fact that f° is a morphism of
simplicial sets. The only cases where this does not hold is when either (A) Im(a) =
{1} and I = n or (B) Im(cvoy) = {1} and k = n. Observe moreover that necessarily
f°(v) = fl(v) for any degenerate n-simplex of V. Thus we can narrow the cases
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above down even further to the cases (A) Im(a) = {1}, I = n and v nondegenerate,
and (B) Im(ao @) = {1}, k = n and V(¢)(v) nondegenerate.

In case (A), we see that also Im(aop) = {1}. Hence we see that not only (v, ) =
f(v) but also hip(V(p)(v),a0 @) = fL(V(e)(v)). Thus we see that the relation
holds because f! is a morphism of simplicial sets.

In case (B) we conclude that [ = k = n and ¢ is bijective, since otherwise V (¢)(v)
is degenerate. Thus ¢ = id|,), which is a trivial case. O

Lemma 31.3. Let A, B be sets, and that f : A — B is a map. Consider the
simplicial set U with n-simplices

AxpAxp...xg A (n+1 factors).

see Example (3.8, If f is surjective, the morphism U — B where B indicates the
constant simplicial set with value B is a trivial Kan fibration.

Proof. Observe that U fits into a cartesian square

U —— cosky(B)

|

B —— cosko(A)

Since the right vertical arrow is a trivial Kan fibration by Lemma [31.1} so is the
left by Lemma [29.3 (]

32. Standard resolutions

Some of the material in this section can be found in [God73l Appendix 1] and [TII72]
11.5).

Situation| 32.1. Let A, S be categories and let i : A — S be a functor with a left
adjoint F': S — A.

In this very general situation we will construct a simplicial object X in the category
of functors from A to A. Please keep the following example in mind while we do
this.

Example| 32.2. As an example of the above we can take i : Rings — Sets to be the
forgetful functor and F : Sets — Rings to be the functor that associates to a set F
the polynomial algebra Z[E] on E over Z. The simplicial object X when evaluated
on an ring A will give the simplicial ring

—

Z[Z[Z]A]]] —= Z[Z[A]] == Z[4]

—_—
which comes with an augmentation towards A. We will also show this augmentation
is a homotopy equivalence.

For the general construction we will use the horizontal composition as defined in
Categories, Section The definition of the adjunction morphisms k : Foi — id4
and ¢ : ids — 7 o F' in Categories, Section [24] shows that the compositions

(32.2.1) i 2 ioFoi B and FEYS FoijoF 2 p
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are the identity morphisms. Here to define the morphism ¢ x 1 we silently identify
1 with ids o ¢ and 1 stands for id; : ¢ — 4. We will use this notation and these
relations repeatedly in what follows. For n > 0 we set

X, =(Foi)’™V =FocioFo...0ioF

In other words, X,, is the (n + 1)-fold composition of F' o i with itself. We also
set X_1 =idy4. We have X, 4pm41 = X 0 Xy, for all n,m > —1. We will endow
this sequence of functors with the structure of a simplicial object of Fun(A,.A) by
constructing the morphisms of functors

d;l : Xn — Xn—b S? : Xn — Xn+1

satisfying the relations displayed in Lemma Namely, we set

m n
dj = 1X]‘71 *k*1X7L7j71 and Sj = 1Xj,1oF*t* 11‘0)("7).71

Finally, write ¢g =k : Xo — X _1.

Example 32.3. In Example we have X,,(A) = Z[Z]...[A]..]] with n 4+ 1
brackets. We describe the maps constructed above using a typical element & =
Y- n;i[nijlai;]] of X1(A). The maps do,d; : Z[Z[A]] — Z[A] are given by

do(€) =) mingjlag] and  di(€) =) milnijai)-
The maps so, s1 : Z[Z[A]] — Z[Z[Z[A]]] are given by

s0(&) =Y _nillnijlai ]l and  s1(§) = nifnij{la;]]).

Lemmal 32.4. In Situation the system X = (Xp,d},s?) is a simplicial object
of Fun(A, A) and €y defines an augmentation € from X to the constant simplicial

object with value X _1 = id4.

Proof. Suppose that we have shown that X is a simplicial object. Then to prove
that e¢g = k defines an augmentation we have to check that ey o dj = €y o d} as
morphisms X; — X_1, see Lemma [I9.2] In other words, we have to check that the
diagram

FoioFoi— = Foj

1poixk
k*lFoi\L \Lk

Foi k id g

is commutative. More precisely we should write this as the equality
(k‘* 1id_A) o (1Foi *k) = (1idA *k) o (ki* 1Foi)

as morphisms (F o) o (F oi) — idg oidg. Applying the general property of
Categories, Lemma both sides expand to k x k£ when equality holds.

To prove that X is a simplicial object we have to check (see Remark :

) If’t<j, then diOSj:Sj,]_ od;.

) We have id:djOSjZ j+1 © Sj.

) Ifi>j+1, thend;os; =s;0d;_1.
) If ¢ < j, then s, 05; = sj4108;.
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Relation (1) is proved in exactly the same manner as the proof of the equality
€0 o d} = € o d} above.

The simplest case of equality (5) is the commutativity of the diagram

Foi FoioFoqg
1pxtxl;
lp*t*lil ilF*t*lioFoi
. . 1roior*txl; . . .
FojoFoj o ‘ >~ FojoFojoFojg

which holds because both compositions expand to the morphism 1z xt ¢ * 1; from
Foidgoidgoito Fo(ioF)o(ioF)oi. All other cases of (5) are proved in the
same manner.

The simplest case of equalities (2) and (4) is the commutativity of the diagram

FoioFo1 Foi
1pxkxl;
1FoioFoi*tl 1Foi*tl
. 3 . 1pxkxl; i . )
FoioFojoF o~ tofeel FoioFoi

which again holds because both compositions expand to give 1p xkx 1; xt as maps
from Fo(ioF)oioidg to Foidgoio (F o). All other cases of (2) and (4) are

proved in the same manner.

The relations (3) are the only nontrivial ones and these are consequences of the fact
that the compositions in (32.2.1)) are the identity. For example, the simplest case
of (3) states that the compositions

Foi— > FoioFoq
1poixt
t*lFOi\L ilp‘*k*li
. . 1pxkx1; .
FoioFoi ‘ Foi

go around the diagram either way evaluate out to the identity. Going around the
top the composition evaluates to 1p * ((k % 1;) o (1; x t)) which is the identity by
what was said above. The other cases of (3) are proved in the same manner. [

Before reading the proof of the following lemma, we strongly urge the reader to
look at the example discussed in Example [32.6|in order to understand the purpose
of the lemma.

Lemma 32.5. In Situation the maps
lixe:ioX =i, and exlp:XoF — F
are homotopy equivalences.

Proof. Denote €, : X,, - X_; the components of the augmentation morphism.
We observe that e, = k*(™*1) the (n + 1)-fold x-composition of k. Recall that
t:ids — i o F' is the adjunction map. We have the morphisms

) 41— o (Foi)* Y =0 X,
which are right inverse to 1; * €, and the morphisms

lpxt* ") F 5 (Foi)’" ™V oF=X,0F
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which are right inverse to €, * 1p. These morphisms determine morphisms of
simplicial objects b : ¢ — i0 X and ¢ : F — X o F' (proof omitted). To finish it
suffices to construct a homotopy between the morphisms 1,00 (1;x€) : i0 X — i0X
and between the two morphisms 1,co(ex1p): X oF — X o F.

To show the morphisms bo (1; x€),1 : i0 X — 70 X are homotopic we have to
construct morphisms

hpjiioXy, —ioX,
for n > 0 and 0 < j < n + 1 satisfying the relations described in Lemma See
also Remark We are forced to set hy o =1 and

hn7n+1 = bn o (11 * Gn) = (t*(n+1) * 11) (o] (11 * k*(n+1))
Thus a logical choice is
B = ("D % 1) 0 (1; % E*0) % 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing
10X, =1toFojo0...0F o1

we can think of the morphism h,, ; as collapsing the first j pairs (F o) to ids using
k*() | then adding a ids in front and expanding this to j pairs (i o F') using t+(),
‘We have to prove

(1) We have d}, o hy, j = hy—1,j—1 0 d}, for j > m.

(2) We have d7}, o hy, j = hp_1 jod], for j <m.

(3) We have s} o hy, j = hyy1,j4+1 0 sl for j > m.

(4) We have s, 0 hy, j = hyy1,5 0 s, for j <m.
Recall that d?, is given by applying k to the (m + 1)st pair (F o) in the functor
X, = (Foi)°(*tD, Thus it is clear that (2) holds (because k does x-commute with
k, but not with ¢). Similarly, s?, is given by applying 1z xtxi; to the (m+ 1)st pair
(Foi)in X, = (F04)°"*Y), Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in are the identity causes the
drop in the index j. Some details omitted.

To show the morphisms 1,co (ex1p): X o F — X o F are homotopic we have to
construct morphisms

hpj:XpoF — X, oF

for n > 0 and 0 < j < n + 1 satisfying the relations described in Lemma See
also Remark We are forced to set hy o =1 and

hn,n-{-l = Cp O (€n * 1F) = (1F *t*(n+1)) o (k*(n+1) * 1F)
Thus a logical choice is
hnj = (1p x ") 1) o (k*9) % 1)

Here and in the rest of the proof we drop the subscript from 1 if it is clear by
knowing the source and the target of the morphism what this subscript should be.
Writing

X,oF =FojoFo...0t0oF
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we can think of the morphism h,, ; as collapsing the first j pairs (F o¢) to ids using
k*U) | then inserting a ids just after the first F' and expanding this to j pairs (ioF)
using t*(9). We have to prove

(1) We have d}}, o hy, j = hp—1,j-1 0d}, for j > m.

(2) We have d}}, o hy, j = hp—1,j o d], for j < m.

(3) We have s} o hy, j = hyy1,j41 0 s), for j > m.

(4) We have sI', o hy, j = hyy1,5 0 si, for j < m.
Recall that d7, is given by applying k to the (m + 1)st pair (F o) in the functor
X, = (Foi)°*t1), Thus it is clear that (2) holds (because k does x-commute with
k, but not with ¢). Similarly, s7, is given by applying 1p xt*i; to the (m+ 1)st pair
(Foi)in X,, = (Foi)°™1), Thus it is clear that (4) holds. In the two remaining
cases one uses the fact that the compositions in are the identity causes the
drop in the index j. Some details omitted. O

Example| 32.6. Going back to the example discussed in Example [32.2] our Lemma
signifies that for any ring A the map of simplicial rings
—_—
Z[Z[Z[A]]] —= Z[Z[A]] == Z[4]

—_

]

A A A

-
is a homotopy equivalence on underlying simplicial sets. Moreover, the inverse map
constructed in Lemma is in degree n given by

ar—[...[a]..]

with obvious notation. In the other direction the lemma tells us that for every set
E there is a homotopy equivalence

2(2(2(2(E)])| = Z[Z[2]E])| = Z[2[E]

L |

Z[E) Z[E] Z[E]

(with obvious notation).

33. Other chapters

Preliminaries (8) |Stacks
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(3) |Set Theory| (12) [Homological Algebral
(4) [Categories (13) [Derived Categories|
(5) [Topology (14) [Simplicial Methods]
(6) [Sheaves on Spaces| (15) [More on Algebral
(7) [Sites and Sheaves|
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