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1. Introduction

This chapter discusses resolution of singularities of surfaces following Lipman [Lip78]
and following the exposition in [Art86].

2. A trace map in positive characteristic

In this section p will be a prime number. Let R be an Fp-algebra. Let M be an R-
module and let D : R→M be a derivation. Given an a ∈ R set A = R[x]/(xp−a).
Define an R-linear map

Trx,D : ΩA/R −→M

by the rule

xidx 7−→
{

0 if 0 ≤ i ≤ p− 2,
D(a) if i = p− 1

This makes sense as ΩA/R is a free R-module with basis xidx, 0 ≤ i ≤ p− 1. The
following lemma implies that the trace map is well defined, i.e., independent of the
choice of the coordinate x.

Lemma 2.1. Let ϕ : R[x]/(xp−a)→ R[y]/(yp−b) be an R-algebra homomorphism.
Then Trx,D = Try,D ◦ ϕ.

Proof. Say ϕ(x) = λ0 + λ1y + . . . + λp−1y
p−1 with λi ∈ R. The condition that

mapping x to λ0 + λ1y + . . . + λp−1y
p−1 induces an R-algebra homomorphism

R[x]/(xp − a)→ R[y]/(yp − b) is equivalent to the condition that

a = λp0 + λp1b+ . . .+ λpp−1b
p−1

in the ring R. Consider the polynomial ring

Runiv = Fp[b, λ0, . . . , λp−1]
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2 RESOLUTION OF SURFACES

with the element a = λp0 + λp1b + . . . + λpp−1b
p−1 and with its universal derivation

given by

Duniv = d : Runiv −→Muniv = ΩRuniv/Fp
Consider the universal algebra map ϕuniv : Runiv[x]/(xp − a) → Runiv[y]/(yp − b)
given by mapping x to λ0 + λ1y + . . .+ λp−1y

p−1. We obtain a canonical maps

Runiv −→ R, Muniv −→M

compatible with derivations by sending b, λi to b, λi and sending db,dλi toD(b), D(λi).
By construction the maps

Runiv[x]/(xp − a)→ R[x]/(xp − a), Runiv[y]/(yp − b)→ R[y]/(yp − b)
are compatible with the trace maps. Hence it suffices to prove the lemma for the
map ϕuniv. We will do this by evaluating Try,D(ϕ(x)idϕ(x)) for i = 0, . . . , p− 1.

The case 0 ≤ i ≤ p− 2. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)i(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). We have to show that the coefficient of yp−1 is zero. For
this it suffices to show that the expression above as a polynomial in y has vanishing
coefficients in front of the powers ypk−1. Then we write our polynomial as

d

(i+ 1)dy
(λ0 + λ1y + . . .+ λp−1y

p−1)i+1

and indeed the coefficients of ykp−1 are all zero.

The case i = p− 1. Expand

(λ0 + λ1y + . . .+ λp−1y
p−1)p−1(λ1 + 2λ2y + . . .+ (p− 1)λp−1y

p−2)

in the ring R[y]/(yp − b). To finish the proof we have to show that the coef-
ficient of yp−1 times D(b) is D(a). Here we use that R is S/pS where S =
Z[b, ξj , λ0, . . . , λp−1, ξij ]. Then the above, as a polynomial in y, is equal to

d

pdy
(λ0 + λ1y + . . .+ λp−1y

p−1)p

Since d
dy (ypk) = pkypk−1 it suffices to understand the coefficients of ypk in the

polynomial (λ0 + λ1y + . . .+ λp−1y
p−1)p modulo p. The sum of these terms gives

λp0 + λp1y
p + . . .+ λpp−1y

p(p−1) mod p

Whence we see that we obtain after applying the operator d
pdy and after reducing

modulo yp − b the value

λp1 + 2λp2b+ . . .+ (p− 1)λp−1b
p−2

for the coefficient of yp−1 we wanted to compute. Now because a = λp0 +λp1b+ . . .+
λpp−1b

p−1 in R we obtain that

D(a) = (λp1 + 2λp2b+ . . .+ (p− 1)λpp−1b
p−2)D(b)

in R. This proves that the coefficient of yp−1 is as desired. �

Lemma 2.2. Let R be a Noetherian normal domain with fraction field K. Let
a ∈ K be an element such that there exists a derivation D : R→ R with D(a) 6= 0.
Then the integral closure of R in L = K[x]/(xp − a) is finite over R.
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Proof. After replacing x by fx and a by fpa for some f ∈ R we may assume
a ∈ R. Hence also D(a) ∈ R. We will show by induction on i ≤ p− 1 that if

y = a0 + a1x+ . . .+ aix
i, aj ∈ K

is integral over R, then D(a)iaj ∈ R. Thus the integral closure is contained in the
finite R-module with basis D(a)−p+1xj , j = 0, . . . , p − 1. Since R is Noetherian
this proves the lemma.

If i = 0, then y = a0 is integral over R if and only if a0 ∈ R and the statement is
true. Suppose the statement holds for some i < p− 1 and suppose that

y = a0 + a1x+ . . .+ ai+1x
i+1, aj ∈ K

is integral over R. Then

yp = ap0 + ap1a+ . . .+ api+1a
i+1

is an element of R (as it is in K and integral over R). Applying D we obtain

(ap1 + 2ap2a+ . . .+ (i+ 1)api+1a
i)D(a)

is in R. Hence it follows that

D(a)a1 + 2D(a)a2x+ . . .+ (i+ 1)D(a)ai+1x
i

is integral over R. By induction we find D(a)i+1aj ∈ R for j = 1, . . . , i+ 1. (Here
we use that 1, . . . , i + 1 are invertible.) Hence D(a)i+1a0 is also in R because it
is the difference of y and

∑
j>0D(a)i+1ajx

j which are integral over R (since x is

integral over R as a ∈ R). �

3. Modifications

Let (A,m, κ) be a Noetherian local ring. We set S = Spec(A) and U = S \ {m}. In
this section we will consider the category

(3.0.1)

f : X −→ S

∣∣∣∣∣∣
X is an algebraic space
f is a proper morphism

f−1(U)→ U is an isomorphism


A morphism from X/S to X ′/S will be a morphism of algebraic spaces X →
X ′ compatible with the structure morphisms over S. In Restricted Power Series,
Section 13 we have seen that this category only depends on the completion of A
and we have proven some elementary properties of objects in this category. In this
section we specifically study cases where dim(A) ≤ 2 or where the dimension of the
closed fibre is at most 1.

Lemma 3.1. Let (A,m, κ) be a 2-dimensional Noetherian local domain such that
U = Spec(A) \ {m} is a normal scheme. Then any modification f : X → S (as in
Spaces over Fields, Definition 6.1) is a morphism as in (3.0.1).

Proof. Let f : X → S be a modification. We have to show that f−1(U) → U is
an isomorphism. By Spaces over Fields, Lemma 6.2 there exists a nonempty open
V ⊂ S such that f−1(V ) → V is an isomorphism. Since X is integral we see that
f−1(V ) is dense in X. Note that every closed point u of U has codimension 1, i.e.,
that dim(OU,u) = 1. Thus we may apply Spaces over Fields, Lemma 4.4 to see that
f−1(U) → U is finite. In particular f−1(U) is a scheme. Then f−1(U) → U is an
isomorphism, see Morphisms, Lemma 48.16. �
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4 RESOLUTION OF SURFACES

Lemma 3.2. Let (A,m, κ) be a Noetherian local ring. Let g : X → Y be a mor-
phism in the category (3.0.1). If the induced morphism Xκ → Yκ of special fibres
is a closed immersion, then g is a closed immersion.

Proof. This is a special case of More on Morphisms of Spaces, Lemma 37.3. �

Lemma 3.3. Let (A,m, κ) be a complete Noetherian local ring. Let X be an alge-
braic space over Spec(A). If X → Spec(A) is proper and dim(Xκ) ≤ 1, then X is
a scheme projective over A.

Proof. By Spaces over Fields, Lemma 7.5 the algebraic space Xκ is a scheme.
Hence Xκ is a proper scheme of dimension ≤ 1 over κ. By Varieties, Lemma 23.4
we see that Xκ is H-projective over κ. Let L be an ample invertible sheaf on Xκ.

We are going to show that L lifts to a compatible system {Ln} of invertible sheaves
on the nth infinitesimal neighbourhoods

Xn = X ×Spec(A) Spec(A/mn)

of Xκ = X1. Recall that the étale sites of Xκ and all Xn are canonically equivalent,
see More on Morphisms of Spaces, Lemma 8.6. In the rest of the proof we do not
distinguish between sheaves on Xn and sheaves on Xm or Xκ. Suppose, given a lift
Ln to Xn. We consider the exact sequence

1→ (1 + mnOX/mn+1OX)∗ → O∗Xn+1
→ O∗Xn → 1

of sheaves on Xn+1. We have (1+mnOX/mn+1OX)∗ ∼= mnOX/mn+1OX as abelian
sheaves on Xn+1. The class of Ln in H1(Xn,O∗Xn) (see Cohomology on Sites,

Lemma 7.1) can be lifted to an element of H1(Xn+1,O∗Xn+1
) if and only if the

obstruction in H2(Xn+1,m
nOX/mn+1OX) is zero. Note that mnOX/mn+1OX is

a quasi-coherent OXκ-module on Xκ. Hence its étale cohomology agrees with its
cohomology on the scheme Xκ, see Descent, Proposition 7.10. However, as Xκ is a
Noetherian scheme of dimension ≤ 1 this cohomology group vanishes (Cohomology,
Proposition 21.6).

By Grothendieck’s algebraization theorem (Cohomology of Schemes, Theorem 23.4)
we find a projective morphism of schemes Y → Spec(A) and a compatible system
of isomorphisms Xn → Yn. (Here we use the assumption that A is complete.) By
More on Morphisms of Spaces, Lemma 32.3 we see that X ∼= Y and the proof is
complete. �

Lemma 3.4. If (A,m, κ) is a complete Noetherian local domain of dimension 2,
then every modification of Spec(A) is projective over A.

Proof. By Lemma 3.3 it suffices to show that the special fibre of any modification
X of Spec(A) has dimension ≤ 1. Let U → X be an étale morphism with U
affine. Since X → Spec(A) is a modification (Spaces over Fields, Definition 6.1)
we see that a dense open of U is étale over A. In particular, every generic point
η of an irreducible component U ′ of U maps to the generic point of Spec(A) and
f.f.(A) ⊂ κ(η) is finite separable. If u ∈ U ′ is a closed point lying over m ∈ Spec(A),
then by the dimension formula we see that

dim(OU ′,u) ≤ dim(A) = 2,

see Morphisms, Lemma 31.1. Since η 6∈ U ′κ, the dimension of U ′κ can be at most 1
as desired. �
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4. Quadratic transformations

In this section we study what happens when we blow up a nonsingular point on a
surface. We hesitate the formally define such a morphism as a quadratic transfor-
mation as on the one hand often other names are used and on the other hand the
phrase “quadratic transformation” is sometimes used with a different meaning.

Lemma 4.1. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. There is a closed immersion

r : X −→ P1
S

over S such that OX(1) = r∗OP1
S
(1) and such that r|E : E → P1

κ is an isomor-
phism.

Proof. As A is regular of dimension 2 we can write m = (x, y). Then x and
y placed in degree 1 generate the Rees algebra

⊕
n≥0 m

n over A. Recall that

X = Proj(
⊕

n≥0 m
n), see Divisors, Lemma 18.2. Thus the surjection

A[T0, T1] −→
⊕

n≥0
mn, T0 7→ x, T1 7→ y

of graded A-algebras induces a closed immersion r : X → P1
S = Proj(A[T0, T1])

such that OX(1) = r∗OP1
S
(1), see Constructions, Lemma 11.5. To prove the final

statement note that(⊕
n≥0

mn
)
⊗A κ =

⊕
n≥0

mn/mn+1 ∼= κ[x, y]

a polynomial algebra, see Algebra, Lemma 102.1. This proves that the fibre of
X → S over Spec(κ) is equal to Proj(κ[x, y]) = P1

κ, see Constructions, Lemma
11.6. Recall that E is the closed subscheme of X defined by mOX , i.e., E = Xκ.
By our choice of the morphism r we see that r|E in fact produces the identification
of E = Xκ with the special fibre of P1

S → S. �

Lemma 4.2. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Then X is an irreducible regular scheme.

Proof. Observe that X is integral by Divisors, Lemma 18.7 and Algebra, Lemma
102.2. To see X is regular it suffices to check that OX,x is regular for closed points
x ∈ X, see Properties, Lemma 9.2. Let x ∈ X be a closed point. Since f is proper
x maps to m, i.e., x is a point of the exceptional divisor E. Then E is an effective
Cartier divisor and E ∼= P1

κ. Thus if f ∈ mx ⊂ OX,x is a local equation for E, then
OX,x/(f) ∼= OP1

κ,x
. Since P1

κ is covered by two affine opens which are the spectrum
of a polynomial ring over κ, we see that OP1

κ,x
is regular by Algebra, Lemma 110.1.

We conclude by Algebra, Lemma 102.7. �

Lemma 4.3. Let (A,m, κ) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Let F be a quasi-coherent OX-module.

(1) Hp(X,F) = 0 for p 6∈ {0, 1},
(2) H1(X,OX(n)) = 0 for n ≥ −1,
(3) H1(X,F) = 0 if F or F(1) is globally generated,
(4) H0(X,OX(n)) = mmax(0,n),
(5) lengthAH

1(X,OX(n)) = −n(−n− 1)/2 if n < 0.
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Proof. If m = (x, y), then X is covered by the spectra of the affine blowup algebras
A[mx ] and A[my ] because x and y placed in degree 1 generate the Rees algebra

⊕
mn

over A. See Divisors, Lemma 18.2 and Constructions, Lemma 8.9. Since X is
separated by Constructions, Lemma 8.8 we see that cohomology of quasi-coherent
sheaves vanishes in degrees ≥ 2 by Cohomology of Schemes, Lemma 4.2.

Let i : E → X be the exceptional divisor, see Divisors, Definition 18.1. Recall that
OX(−E) = OX(1) is f -relatively ample, see Divisors, Lemma 18.4. Hence we know
that H1(X,OX(−nE)) = 0 for some n > 0, see Cohomology of Schemes, Lemma
15.4. Consider the filtration

OX(−nE) ⊂ OX(−(n− 1)E) ⊂ . . . ⊂ OX(−E) ⊂ OX ⊂ OX(E)

The succesive quotients are the sheaves

OX(−tE)/OX(−(t+ 1)E) = OX(t)/I(t) = i∗OE(t)

where I = OX(−E) is the ideal sheaf of E. By Lemma 4.1 we have E = P1
κ and

OE(1) indeed corresponds to the usual Serre twist of the structure sheaf on P1.
Hence the cohomology of OE(t) vanishes in degree 1 for t ≥ −1, see Cohomology
of Schemes, Lemma 8.1. Since this is equal to H1(X, i∗OE(t)) (by Cohomology of
Schemes, Lemma 2.4) we find that H1(X,OX(−(t+ 1)E))→ H1(X,OX(−tE)) is
surjective for t ≥ −1. Hence

0 = H1(X,OX(−nE)) −→ H1(X,OX(−tE)) = H1(X,OX(t))

is surjective for t ≥ −1 which proves (2).

Let F be globally generated. This means there exists a short exact sequence

0→ G →
⊕

i∈I
OX → F → 0

Note that H1(X,
⊕

i∈I OX) =
⊕

i∈I H
1(X,OX) by Cohomology, Lemma 20.1. By

part (2) we have H1(X,OX) = 0. If F(1) is globally generated, then we can find a
surjection

⊕
i∈I OX(−1)→ F and argue in a similar fashion. In other words, part

(3) follows from part (2).

For part (4) we note that for all n large enough we have Γ(X,OX(n)) = mn, see
Cohomology of Schemes, Lemma 15.3. If n ≥ 0, then we can use the short exact
sequence

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0

and the vanishing of H1 for the sheaf on the left to get a commutative diagram

0 // mmax(0,n) //

��

mmax(0,n−1) //

��

mmax(0,n)/mmax(0,n−1) //

��

0

0 // Γ(X,OX(n)) // Γ(X,OX(n− 1)) // Γ(E,OE(n− 1)) // 0

with exact rows. In fact, the rows are exact also for n < 0 because in this case
the groups on the right are zero. In the proof of Lemma 4.1 we have seen that the
right vertical arrow is an isomorphism (details omitted). Hence if the left vertical
arrow is an isomorphism, so is the middle one. In this way we see that (4) holds
by descending induction on n.

Finally, we prove (5) by descending induction on n and the sequences

0→ OX(n)→ OX(n− 1)→ i∗OE(n− 1)→ 0
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Namely, for n ≥ −1 we already know H1(X,OX(n)) = 0. Since

H1(X, i∗OE(−2)) = H1(E,OE(−2)) = H1(P1
κ,O(−2)) ∼= κ

by Cohomology of Schemes, Lemma 8.1 which has length 1 as an A-module, we
conclude from the long exact cohomology sequence that (5) holds for n = −2. And
so on and so forth. �

Lemma 4.4. Let (A,m) be a regular local ring of dimension 2. Let f : X → S =
Spec(A) be the blowing up of A in m. Let mn ⊂ I ⊂ m be an ideal. Let d ≥ 0 be
the largest integer such that

IOX ⊂ OX(−dE)

where E is the exceptional divisor. Set I ′ = IOX(dE) ⊂ OX . Then d > 0, the
sheaf OX/I ′ is supported in finitely many closed points x1, . . . , xr of X, and

lengthA(A/I) > lengthAΓ(X,OX/I ′)

≥
∑

i=1,...,r
lengthOX,xi

(OX,xi/I ′xi)

Proof. Since I ⊂ m we see that every element of I vanishes on E. Thus we see
that d ≥ 1. On the other hand, since mn ⊂ I we see that d ≤ n. Consider the short
exact sequence

0→ IOX → OX → OX/IOX → 0

Since IOX is globally generated, we see that H1(X, IOX) = 0 by Lemma 4.3.
Hence we obtain a surjection A/I → Γ(X,OX/IOX). Consider the short exact
sequence

0→ OX(−dE)/IOX → OX/IOX → OX/OX(−dE)→ 0

By Divisors, Lemma 9.24 we see that OX(−dE)/IOX is supported in finitely many
closed points of X. In particular, this coherent sheaf has vanishing higher coho-
mology groups (detail omitted). Thus in the following diagram

A/I

��
0 // Γ(X,OX(−dE)/IOX) // Γ(X,OX/IOX) // Γ(X,OX/OX(−dE)) // 0

the bottom row is exact and the vertical arrow surjective. We have

lengthAΓ(X,OX(−dE)/IOX) < lengthA(A/I)

since Γ(X,OX/OX(−dE)) is nonzero. Namely, the image of 1 ∈ Γ(X,OX) is
nonzero as d > 0.

To finish the proof we translate the results above into the statements of the lemma.
Since OX(dE) is invertible we have

OX/I ′ = OX(−dE)/IOX ⊗OX OX(dE).

Thus OX/I ′ and OX(−dE)/IOX are supported in the same set of finitely many
closed points, say x1, . . . , xr ∈ E ⊂ X. Moreover we obtain

Γ(X,OX(−dE)/IOX) =
⊕
OX(−dE)xi/IOX,xi ∼=

⊕
OX,xi/I ′xi = Γ(X,OX/I ′)
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because an invertible module over a local ring is trivial. Thus we obtain the strict
inequality. We also get the second because

lengthA(OX,xi/I ′xi) ≥ lengthOX,xi
(OX,xi/I ′xi)

as is immediate from the definition of length. �

5. Quadratic transformations of spaces

Using the result above we can prove that blowups in points dominate any modifi-
cation of a regular 2 dimensional algebraic space.

Let X be a decent algebraic space over some base scheme S. Let x ∈ |X| be a closed
point. By Decent Spaces, Lemma 12.5 we can represent x by a closed immersion
i : Spec(k)→ X. Then the blowing up of X at x means the blowing up of X in the
closed subspace Z = i(Spec(k)) ⊂ X.

Lemma 5.1. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let I ⊂ OX be a quasi-coherent sheaf
of ideals such that OX/I is supported on T . Then there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T such that IOXn is an invertible ideal sheaf.

Proof. Say T = {x1, . . . , xr}. Pick an étale morphism U → X where U is a scheme
with points ui ∈ U lying over xi. By Decent Spaces, Lemma 10.3 the points ui
are closed points. After shrinking U we may assume these are the only points of U
mapping to T . The local rings OU,ui are regular local of dimension 2, see Properties
of Spaces, Definitions 23.2 and 20.2. Let Ii ⊂ OU,ui be the stalk of I|U at ui. Set

ni = lengthOU,ui
(OU,ui/Ii)

This is finite as OX/I is supported on T and hence OU,ui/Ii has support equal
to {mui} (see Algebra, Lemma 61.3). We are going to use induction on

∑
ni. If

ni = 0 for all i, then I = OX and we are done.

Suppose ni > 0. Let X ′ → X be the blowing up of X in xi (see discussion above
the lemma). Since U → X is étale and ui is the unique point of U lying over x we
see that U ′ = U×XX ′ is the blowup of U in ui, see Divisors on Spaces, Lemma 6.3.
Since Spec(OU,ui)→ U is flat we see that U ′ ×U Spec(OU,ui) is the blowup of the
ring OU,ui in the maximal ideal. Hence both squares in the commutative diagram

Proj(
⊕

d≥0 m
d
ui)

//

��

U ′

��

// X ′

��
Spec(OU,ui) // U // X

are cartesian. Let E ⊂ X ′, E′ ⊂ U ′, E′′ ⊂ Proj(
⊕

d≥0 m
d
ui) be the exceptional

divisors. Let d ≥ 1 be the integer found in Lemma 4.4 for the ideal Ii ⊂ OU,ui .
Since the horizontal arrows in the diagram are flat, since E′′ → E is surjective, and
since E′′ is the pullback of E, we see that

IOX′ ⊂ OX′(−dE)

http://localhost:8080/tag/0AHH
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(some details omitted). Set I ′ = IOX′(dE) ⊂ OX′ . Then we see that OX′/I ′ is
supported in finitely many closed points T ′ ⊂ |X ′| because this holds over X \ {xi}
and for the pullback to Proj(

⊕
d≥0 m

d
ui). The final assertion of Lemma 4.4 tells

us that the sum of the lengths of the stalks OU ′,u′/I ′OU ′,u′ for u′ lying over ui is
< ni. Hence the sum of the lengths has decreased.

By induction hypothesis, there exists a sequence

X ′n → . . .→ X ′1 → X ′

of blowups at closed points lying over T ′ such that I ′OX′
n

is invertible. Since

I ′OX′(−dE) = IOX′ , we see that IOX′
n

= I ′OX′
n
(−d(f ′)−1E) where f ′ : X ′n →

X ′ is the composition. Note that (f ′)−1E is an effective Cartier divisor by Divisors
on Spaces, Lemma 6.8. Thus we are done by Divisors on Spaces, Lemma 2.7. �

Lemma 5.2. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T ⊂ |X| be a finite set of closed points x such that (1) X is regular at x and
(2) the local ring of X at x has dimension 2. Let f : Y → X be a proper morphism
of algebraic spaces which is an isomorphism over U = X \ T . Then there exists a
sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point
of T and a factorization Xn → Y → X of the composition.

Proof. By More on Morphisms of Spaces, Lemma 28.3 there exists a U -admissible
blowup X ′ → X which dominates Y → X. Hence we may assume there exists an
ideal sheaf I ⊂ OX such that OX/I is supported on T and such that Y is the
blowing up of X in I. By Lemma 5.1 there exists a sequence

Xn → Xn−1 → . . .→ X1 → X0 = X

where Xi+1 → Xi is the blowing up of Xi at a closed point xi lying above a point of
T such that IOXn is an invertible ideal sheaf. By the universal property of blowing
up (Divisors on Spaces, Lemma 6.5) we find the desired factorization. �

6. Examples

Some examples related to the results earlier in this chapter.

Example 6.1. Let k be a field. The ring A = k[x, y, z]/(xr + ys + zt) is a UFD
for r, s, t pairwise coprime integers. Namely, since xr + ys + zt is irreducible A is a
domain. The element z is a prime element, i.e., generates a prime ideal in A. On
the other hand, if r = 1 + ers for some e, then

A[1/z] ∼= k[x′, y′, 1/z]

where x′ = x/zes, y′ = y/zet and z = (x′)r + (y′)s. Thus A[1/z] is a localization of
a polynomial ring and hence a UFD. It follows from an argument of Nagata that
A is a UFD. See Algebra, Lemma 116.7. A similar argument can be given if r is
not congruent to 1 modulo rs.

Example 6.2. The ring A = C[[x, y, z]]/(xr+ys+zt) is not a UFD when r < s < t
are pairwise coprime integers and not equal to 2, 3, 5. For example consider the
special case A = C[[x, y, z]]/(x2 + y5 + z7). Consider the maps

ψζ : C[[x, y, z]]/(x2 + y5 + z7)→ C[[t]]

http://localhost:8080/tag/0AHI
http://localhost:8080/tag/0AE9
http://localhost:8080/tag/0AEA
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given by

x 7→ t7, y 7→ t3, z 7→ −ζt2(1 + t)1/7

where ζ is a 7th root of unity. The kernel pζ of ψζ is a height one prime, hence if
A is a UFD, then it is principal, say given by fζ ∈ C[[x, y, z]]. Note that V (x3 −
y7) =

⋃
V (pζ) and A/(x3 − y7) is reduced away from the closed point. Hence, still

assuming A is a UFD, we would obtain∏
ζ
fζ = u(x3 − y7) + a(x2 + y5 + z7) in C[[x, y, z]]

for some unit u ∈ C[[x, y, z]] and some element a ∈ C[[x, y, z]]. After scaling by a
constant we may assume u(0, 0, 0) = 1. Note that the left hand side vanishes to
order 7. Hence a = −x mod m2. But then we get a term xy5 on the right hand
side which does not occur on the left hand side. A contradiction.

Example 6.3. There exists an excellent 2-dimensional Noetherian local ring and
a modification X → S = Spec(A) which is not a scheme. We sketch a construction.
Let X be a normal surface over C with a unique singular point x ∈ X. Assume that
there exists a resolution π : X ′ → X such that the exceptional fibre C = π−1(x)red
is a smooth projective curve. Furthermore, assume there exists a point c ∈ C such
that if OC(nc) is in the image of Pic(X ′) → Pic(C), then n = 0. Then we let
X ′′ → X ′ be the blowing up in the nonsingular point c. Let C ′ ⊂ X ′′ be the
strict transform of C and let E ⊂ X ′′ be the exceptional fibre. By Artin’s results
([Art70]; use for example [Mum61] to see that the normal bundle of C ′ is negative)
we can blow down the curve C ′ in X ′′ to obtain an algebraic space X ′′′. Picture

X ′′

}} ""
X ′

!!

X ′′′

||
X

We claim that X ′′′ is not a scheme. This provides us with our example because
X ′′′ is a scheme if and only if the base change of X ′′′ to A = OX,x is a scheme
(details omitted). If X ′′′ where a scheme, then the image of C ′ in X ′′′ would
have an affine neighbourhood. The complement of this neighbourhood would be an
effective Cartier divisor on X ′′′ (because X ′′′ is nonsingular apart from 1 point).
This effective Cartier divisor would correspond to an effective Cartier divisor on
X ′′ meeting E and avoiding C ′. Taking the image in X ′ we obtain an effective
Cartier divisor meeting C (set theoretically) in c. This is impossible as no multiple
of c is the restriction of a Cartier divisor by assumption.

To finish we have to find such a singular surface X. We can just take X to be the
affine surface given by

x3 + y3 + z3 + x4 + y4 + z4 = 0

in A3
C = Spec(C[x, y, z]) and singular point (0, 0, 0). Then (0, 0, 0) is the only

singular point. Blowing up X in the maximal ideal corresponding to (0, 0, 0) we
find three charts each isomorphic to the smooth affine surface

1 + s3 + t3 + x(1 + s4 + t4) = 0

http://localhost:8080/tag/0AEB
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which is nonsingular with exceptional divisor C given by x = 0. The reader will
recognize C as an elliptic curve. Finally, the surface X is rational as projection
from (0, 0, 0) shows, or because in the equation for the blow up we can solve for x.
Finally, the Picard group of a nonsingular rational surface is countable, whereas the
Picard group of an elliptic curve over the complex numbers is uncountable. Hence
we can find a closed point c as indicated.
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