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1. Introduction

Categories were first introduced in [EM45]. The category of categories (which is a
proper class) is a 2-category. Similarly, the category of stacks forms a 2-category.
If you already know about categories, but not about 2-categories you should read
Section [26] as an introduction to the formal definitions later on.

2. Definitions
We recall the definitions, partly to fix notation.

Definition 2.1. A category C consists of the following data:

(1) A set of objects Ob(C).
(2) For each pair x,y € Ob(C) a set of morphisms Mor¢(z,y).
(3) For each triple x,y, z € Ob(C) a composition map More(y, z) xMore (x,y) —
Morc(x, z), denoted (¢, ) — ¢ o).
These data are to satisfy the following rules:

(1) For every element x € Ob(C) there exists a morphism id, € Mor¢(z, z)
such that id; o ¢ = ¢ and ¥ oid, = 1 whenever these compositions make
sense.

(2) Composition is associative, i.e., (¢ o) o x = ¢ o (1 o x) whenever these
compositions make sense.

It is customary to require all the morphism sets Morc(x,y) to be disjoint. In this
way a morphism ¢ : x — y has a unique source x and a unique target y. This is
not strictly necessary, although care has to be taken in formulating condition (2)
above if it is not the case. It is convenient and we will often assume this is the case.
In this case we say that ¢ and v are composable if the source of ¢ is equal to the
target of v, in which case ¢ o v is defined. An equivalent definition would be to
define a category as a quintuple (Ob, Arrows, s,t,0) consisting of a set of objects,
a set of morphisms (arrows), source, target and composition subject to a long list
of axioms. We will occasionally use this point of view.

Remark| 2.2. Big categories. In some texts a category is allowed to have a proper
class of objects. We will allow this as well in these notes but only in the following
list of cases (to be updated as we go along). In particular, when we say: “Let C be
a category” then it is understood that Ob(C) is a set.

(1) The category Sets of sets.

) The category Ab of abelian groups.

) The category Groups of groups.

) Given a group G the category G-Sets of sets with a left G-action.
) Given a ring R the category Modg of R-modules.

) Given a field k the category of vector spaces over k.

) The category of rings.
) The category of schemes.


http://localhost:8080/tag/0014
http://localhost:8080/tag/0015

CATEGORIES 3

(9) The category Top of topological spaces.

(10) Given a topological space X the category PSh(X) of presheaves of sets over
X.

(11) Given a topological space X the category Sh(X) of sheaves of sets over X.

(12) Given a topological space X the category PAb(X) of presheaves of abelian
groups over X.

(13) Given a topological space X the category Ab(X) of sheaves of abelian
groups over X.

(14) Given a small category C the category of functors from C to Sets.

(15) Given a category C the category of presheaves of sets over C.

(16) Given a site C the category of sheaves of sets over C.

One of the reason to enumerate these here is to try and avoid working with some-
thing like the “collection” of “big” categories which would be like working with the
collection of all classes which I think definitively is a meta-mathematical object.

Remark| 2.3. It follows directly from the definition that any two identity mor-
phisms of an object x of A are the same. Thus we may and will speak of the
identity morphism id, of z.

Definition 2.4. A morphism ¢ : x — y is an isomorphism of the category C if
there exists a morphism % : y — x such that ¢ oy =id, and ¥ o ¢ = id,.

An isomorphism ¢ is also sometimes called an invertible morphism, and the mor-
phism 1) of the definition is called the inverse and denoted ¢~'. It is unique if it
exists. Note that given an object x of a category A the set of invertible elements
Aut 4(z) of Mor 4(z,z) forms a group under composition. This group is called the
automorphism group of x in A.

Definition 2.5. A groupoid is a category where every morphism is an isomorphism.

Example| 2.6. A group G gives rise to a groupoid with a single object x and
morphisms Mor(z, x) = G, with the composition rule given by the group law in G.
Every groupoid with a single object is of this form.

Example| 2.7. A set C gives rise to a groupoid C defined as follows: As objects we
take Ob(C) := C and for morphisms we take Mor(z,y) empty if = # y and equal
to {id,}if z =y.

Definition 2.8. A functor F : A — B between two categories A, B is given by the
following data:

(1) A map F: Ob(A) — Ob(B).

(2) For every x,y € Ob(A) a map F' : Mor4(z,y) — Morg(F(x), F(y)), de-

noted ¢ — F(¢).

These data should be compatible with composition and identity morphisms in the
following manner: F'(¢po)) = F(¢)oF () for a composable pair (¢, ¥) of morphisms
of A and F(id) = idp(y)-

Note that every category A has an identity functor id 4. In addition, given a functor
G : B — C and a functor F': A — B there is a composition functor Go F : A — C
defined in an obvious manner.

Definition! 2.9. Let F : A — B be a functor.
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(1) We say F is faithful if for any objects x,y of Ob(A) the map
F': Moru(z,y) — Morg(F(z), F(y))

is injective.

(2) If these maps are all bijective then F is called fully faithful.

(3) The functor F is called essentially surjective if for any object y € Ob(B)
there exists an object x € Ob(.A) such that F(x) is isomorphic to y in B.

Definition 2.10. A subcategory of a category B is a category A whose objects and
arrows form subsets of the objects and arrows of B and such that source, target
and composition in A agree with those of B. We say A is a full subcategory of
B if Mora(z,y) = Morg(z,y) for all z,y € Ob(A). We say A is a strictly full
subcategory of B if it is a full subcategory and given & € Ob(A) any object of B
which is isomorphic to x is also in A.

If A C B is a subcategory then the identity map is a functor from A to B. Fur-
thermore a subcategory A C B is full if and only if the inclusion functor is fully
faithful. Note that given a category B the set of full subcategories of B is the same
as the set of subsets of Ob(B).

Remark| 2.11. Suppose that A is a category. A functor F' from A to Sets is a
mathematical object (i.e., it is a set not a class or a formula of set theory, see Sets,
Section [2)) even though the category of sets is “big”. Namely, the range of F' on
objects will be a set F(Ob(A)) and then we may think of F' as a functor between
A and the full subcategory of the category of sets whose objects are elements of

F(Ob(A)).

Example| 2.12. A homomorphism p : G — H of groups gives rise to a functor
between the associated groupoids in Example It is faithful (resp. fully faithful)
if and only if p is injective (resp. an isomorphism).

Example 2.13. Given a category C and an object X € Ob(C) we define the category
of objects over X, denoted C/X as follows. The objects of C/X are morphisms
Y — X for some Y € Ob(C). Morphisms between objects Y — X and Y’ — X are
morphisms Y — Y’ in C that make the obvious diagram commute. Note that there
is a functor px : C/X — C which simply forgets the morphism. Moreover given a
morphism f: X’ — X in C there is an induced functor F : C/X’ — C/X obtained
by composition with f, and px o F = px.

Example 2.14. Given a category C and an object X € Ob(C) we define the category
of objects under X, denoted X/C as follows. The objects of X/C are morphisms
X — Y for some Y € Ob(C). Morphisms between objects X — Y and X — Y’ are
morphisms Y — Y in C that make the obvious diagram commute. Note that there
is a functor px : X/C — C which simply forgets the morphism. Moreover given a
morphism f: X’ — X in C there is an induced functor F' : X/C — X'/C obtained
by composition with f, and px: o F = px.

Definition 2.15. Let F,G : A — B be functors. A natural transformation, or a
morphism of functorst: F — G, is a collection {t;},con(4) such that

(1) tgy : F(z) — G(z) is a morphism in the category B, and
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(2) for every morphism ¢ : x — y of A the following diagram is commutative

F(z) —=> G(x)

F(¢)l lG(aﬁ)

Sometimes we use the diagram

to indicate that ¢ is a morphism from F to G.

Note that every functor F' comes with the identity transformation idg : FF — F.
In addition, given a morphism of functors ¢ : FF — G and a morphism of functors
s : B — F then the composition t o s is defined by the rule

(tos)y =ty 08, : E(x) = G(x)

for € Ob(A). It is easy to verify that this is indeed a morphism of functors from
E to G. In this way, given categories A4 and B we obtain a new category, namely
the category of functors between A and B.

Remark| 2.16. This is one instance where the same thing does not hold if A is a
“big” category. For example consider functors Sets — Sets. As we have currently
defined it such a functor is a class and not a set. In other words, it is given by a
formula in set theory (with some variables equal to specified sets)! It is not a good
idea to try to consider all possible formulae of set theory as part of the definition of
a mathematical object. The same problem presents itself when considering sheaves
on the category of schemes for example. We will come back to this point later.

Definition 2.17. An equivalence of categories F : A — B is a functor such that
there exists a functor G : B — A such that the compositions F' o G and G o F' are
isomorphic to the identity functors idg, respectively id 4. In this case we say that
G is a quasi-inverse to F.

Lemmal 2.18. Let F' : A — B be a fully faithful functor. Suppose for every
X € Ob(B) given an object j(X) of A and an isomorphism ix : X — F(j(X)).
Then there is a unique functor j : B — A such that j extends the rule on objects,
and the isomorphisms ix define an isomorphism of functors idg — Foj. Moreover,
j and F are quasi-inverse equivalences of categories.

Proof. This lemma proves itself. O

Lemmal 2.19. A functor is an equivalence of categories if and only if it is both
fully faithful and essentially surjective.

Proof. Let F': A — B be essentially surjective and fully faithful. As by convention
all categories are small and as F' is essentially surjective we can, using the axiom
of choice, choose for every X € Ob(B) an object j(X) of A and an isomorphism
ix : X = F(j(X)). Then we apply Lemma using that F' is fully faithful. O
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Definition| 2.20. Let A, B be categories. We define the product category A x B to
be the category with objects Ob(A x B) = Ob(.A) x Ob(B) and

Mor ax5((z,y), (2", y")) := Mor 4(z,2") x Morg(y,y').

Composition is defined componentwise.

3. Opposite Categories and the Yoneda Lemma

Definition 3.1. Given a category C the opposite category C°PP is the category with
the same objects as C but all morphisms reversed.

In other words Morcerr (x,y) = More(y, ). Composition in C°P? is the same as in
C except backwards: if ¢ : y — z and ¢ : @ — y in C°PP then ¢ o°PP o) := 1) o ¢.

Definition 3.2. Let C, S be categories. A contravariant functor F from C to S is
a functor C°PP — S.

Concretely, a contravariant functor F' is given by a map F' : Ob(C) — Ob(S) and
for every morphism v¢ : £ — y in C a morphism F(¢) : F(y) — F(x). These
should satisfy the property that, given another morphism ¢ : y — z, we have
F(¢ov) = F(1)) o F(¢) as morphisms F(z) — F(z). (Note the reverse of order.)

Definition 3.3. Let C be a category.

(1) A presheaf of sets on C or simply a presheaf is a contravariant functor F
from C to Sets.
(2) The category of presheaves is denoted PSh(C).

Of course the category of presheaves is a proper class.

Example 3.4. Functor of points. For any U € Ob(C) there is a contravariant

functor
hy : C — Sets

X +— More(X,U)
which takes an object X to the set More(X,U). In other words hy is a presheaf.
Given a morphism f : X — Y the corresponding map hy(f) : More(Y,U) —
Mor¢(X,U) takes ¢ to ¢po f. We will always denote this presheaf hy : CoPP — Sets.
It is called the representable presheaf associated to U. If C is the category of schemes
this functor is sometimes referred to as the functor of points of U.

Note that given a morphism ¢ : U — V in C we get a corresponding natural
transformation of functors h(¢) : hy — hy defined simply by composing with the
morphism U — V. It is trivial to see that this turns composition of morphisms in
C into composition of transformations of functors. In other words we get a functor

h:C — Fun(C°PP, Sets) = PSh(C)
Note that the target is a “big” category, see Remark On the other hand, h is
an actual mathematical object (i.e. a set), compare Remark

Lemma 3.5 (Yoneda lemma). Let U,V € Ob(C). Given any morphism of functors
s hy — hy there is a unique morphism ¢ : U — V such that h(¢) = s. In other
words the functor h is fully faithful. More generally, given any contravariant functor
F and any object U of C we have a natural bijection

Mor psp(c) (hu, F) — F(U), s+ sy(idy).
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Proof. Just take ¢ = sy (idy) € More (U, V). O

Definition 3.6. A contravariant functor F': C — Sets is said to be representable
if it is isomorphic to the functor of points hy for some object U of C.

Choose an object U of C and an isomorphism s : hy — F. The Yoneda lemma
guarantees that the pair (U, s) is unique up to unique isomorphism. The object U
is called an object representing F'.

4. Products of pairs

Definition 4.1. Let 2,y € Ob(C). A product of z and y is an object x X y €
Ob(C) together with morphisms p € More(z X y,x) and ¢ € More(x X y,y) such
that the following universal property holds: for any w € Ob(C) and morphisms
a € More(w, z) and 8 € More(w,y) there is a unique v € More(w, x X y) making
the diagram

commute.

If a product exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma as the definition requires = X y to be an object of C such that

haxy(w) = hg(w) X hy (w)

functorially in w. In other words the product z X y is an object representing the
functor w — hy(w) x hy(w).

Definition 4.2. We say the category C has products of pairs of objects if a product
x X y exists for any x,y € Ob(C).

We use this terminology to distinguish this notion from the notion of “having prod-
ucts” or “having finite products” which usually means something else (in particular
it always implies there exists a final object).

5. Coproducts of pairs

Definition 5.1. Let z,y € Ob(C). A coproduct, or amalgamated sum of x and
y is an object x Il y € Ob(C) together with morphisms ¢ € More(z,z I y) and
j € More(y,z I y) such that the following universal property holds: for any w €
Ob(C) and morphisms o € More(z,w) and S € More(y, w) there is a unique v €
Mor¢(x IT y, w) making the diagram
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commute.

If a coproduct exists it is unique up to unique isomorphism. This follows from the
Yoneda lemma (applied to the opposite category) as the definition requires = ITy
to be an object of C such that

More (z Iy, w) = More(x, w) x More(y, w)
functorially in w.

Definition 5.2. We say the category C has coproducts of pairs of objects if a
coproduct z IT y exists for any z,y € Ob(C).

We use this terminology to distinguish this notion from the notion of “having
coproducts” or “having finite coproducts” which usually means something else (in
particular it always implies there exists an initial object in C).

6. Fibre products

Definition 6.1. Let z,y,z € Ob(C), f € Morc(x,y) and g € More(z,y). A
fibre product of f and g is an object = x, z € Ob(C) together with morphisms
p € Mor¢(x X, z,z) and ¢ € More(z X, 2, z) making the diagram

T Xy 2 ——>2
q

pl lg
/

rT——>Y

commute, and such that the following universal property holds: for any w € Ob(C)
and morphisms « € Mor¢(w,z) and 8 € More(w, z) with foa = go § there is a
unique v € Mor¢(w, x X, z) making the diagram

commute.

If a fibre product exists it is unique up to unique isomorphism. This follows from
the Yoneda lemma as the definition requires & x, z to be an object of C such that

has 2 (W) = ha (W) Xp, (1) hz(w)

functorially in w. In other words the fibre product X, z is an object representing
the functor w = he(w) Xp, (w) hz(w).

Definition 6.2. We say a commutative diagram

||

r——sy
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in a category is cartesian if w and the morphisms w — = and w — z form a fibre
product of the morphisms z — y and z — y.

Definition 6.3. We say the category C has fibre products if the fibre product exists
for any f € More(x,y) and g € More(z,y).

Definition 6.4. A morphism f : x — y of a category C is said to be representable,
if and only if for every morphism z — y in C the fibre product = X, z exists.

Lemma 6.5. Let C be a category. Let f:x — vy, and g : y — z be representable.
Then go f : x — z is representable.

Proof. Omitted. O

Lemmal 6.6. Let C be a category. Let f : x — y be representable. Let y' — y be a
morphism of C. Then the morphism &’ := x X,y — y' is representable also.

Proof. Let z — y’ be a morphism. The fibre product &’ x,, z is supposed to
represent the functor

w = e (W) X (w) Iz (w)
(

ha (W) Xy (w) hy (W) Xp, (w) e (w)
= hg(w) Xp, (w) he(w)

which is representable by assumption. (Il

7. Examples of fibre products

In this section we list examples of fibre products and we describe them.

As a really trivial first example we observe that the category of sets has fibred
products and hence every morphism is representable. Namely, if f : X — Y and
g : Z — Y are maps of sets then we define X Xy Z as the subset of X x Z
consisting of pairs (z, z) such that f(x) = g(z). The morphisms p : X xy Z = X
and q : X Xy Z — Z are the projection maps (z, z) — z, and (z, z) — 2. Finally,
ifa:W — X and f: W — Z are morphisms such that foa = go 3 then the map
W—=XxY, w (a(w),(w)) obviously ends up in X xy Z as desired.

In many categories whose objects are sets endowed with certain types of algebraic
structures the fibre product of the underlying sets also provides the fibre product
in the category. For example, suppose that X, Y and Z above are groups and that
f, g are homomorphisms of groups. Then the set-theoretic fibre product X xy Z
inherits the structure of a group, simply by defining the product of two pairs by
the formula (z,z) - (2/,2") = (z2’,22"). Here we list those categories for which a
similar reasoning works.

(1) The category Groups of groups.

(2) The category G-Sets of sets endowed with a left G-action for some fixed
group G.

(3) The category of rings.

(4) The category of R-modules given a ring R.
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8. Fibre products and representability

In this section we work out fibre products in the category of contravariant func-
tors from a category to the category of sets. This will later be superseded during
the discussion of sites, presheaves, sheaves. Of some interest is the notion of a
“representable morphism” between such functors.

Lemma 8.1. Let C be a category. Let F,G,H : C°P? — Sets be functors. Let
a:F — G andb: H— G be transformations of functors. Then the fibre product
F Xq.cp H in the category Fun(C°PP, Sets) exists and is given by the formula

(F' Xa,c6 H)(X) = F(X) Xax,c0x0)0x H(X)
for any object X of C.
Proof. Omitted. U

As a special case suppose we have a morphism a : F' — G, an object U € Ob(C)
and an element £ € G(U). According to the Yoneda Lemma this gives a
transformation € : hy — G. The fibre product in this case is described by the rule

(hu xeca F)X)={(£,§) | f: X = U, e F(X), G(f)(§) = ax(£)}

If F', G are also representable, then this is the functor representing the fibre product,
if it exists, see Section [f] The analogy with Definition [6.4] prompts us to define a
notion of representable transformations.

Definition 8.2. Let C be a category. Let F,G : C°PP — Sets be functors. We say
a morphism a : F' — G is representable, or that F is relatively representable over
G, if for every U € Ob(C) and any £ € G(U) the functor hy x¢ F is representable.

Lemmal 8.3. Let C be a category. Let a : F' — G be a morphism of contravariant
functors from C to Sets. If a is representable, and G is a representable functor,
then F is representable.

Proof. Omitted. O

Lemma 8.4. Let C be a category. Let F' : C°PP — Sets be a functor. Assume C has
products of pairs of objects and fibre products. The following are equivalent:

(1) The diagonal F — F X F is representable.
(2) For every U in C, and any £ € F(U) the map £ : hy — F is representable.

Proof. Suppose the diagonal is representable, and let U, ¢ be given. Consider any
V € Ob(C) and any ¢ € F(V). Note that hy x hy = hyxy is representable.
Hence the fibre product of the maps (£,¢') : hy x hy > F X Fand F - F x F
is representable by assumption. This means there exists W € Ob(C), morphisms
W —U, W — V and hyy — F such that

hyw F

|

hy x hy —=F x F

is cartesian. We leave it to the reader to see that this implies that hyy = hy Xg hy
as desired.
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Assume (2) holds. Consider any V' € Ob(C) and any (§,¢') € (F x F)(V). We have
to show that hy X pxr F' is representable. What we know is that hy x¢ pe hy is
representable, say by W in C with corresponding morphisms a,a’ : W — V (such
that {oa =& oa’). Consider W' = W X (4 1), vxv V. It is formal to show that W’
represents hy X pxr F because

hw' = hw Xnyxhy bv = (Av Xe per Av) Xnyxhy hv = F Xpxp hy.

9. Pushouts
The dual notion to fibre products is that of pushouts.

Definition 9.1. Let z,y,z € Ob(C), f € Morc(y,x) and g € More(y, z). A pushout
of f and g is an object 211, z € Ob(C) together with morphisms p € Mor¢(z, z11, 2)
and ¢ € Mor¢(z, z IT,, z) making the diagram
z
g i
P

Yy
fl
x——=x1, 2
commute, and such that the following universal property holds: For any w € Ob(C)

and morphisms « € More(z,w) and 8 € More(z, w) with awo f = o g there is a
unique v € More(z I, z,w) making the diagram

Y g z
p
T

—xllyz

-

q

-

f

commute.

It is possible and straightforward to prove the uniqueness of the triple (11, z,p, q)
up to unique isomorphism (if it exists) by direct arguments. Another possibility is
to think of the coproduct as the product in the opposite category, thereby getting
this uniqueness for free from the discussion in Section [f]

Definition 9.2. We say a commutative diagram

z
w
in a category is cocartesian if w and the morphisms z — w and z — w form a
pushout of the morphisms y — = and y — z.

_

B<—«x

—_—
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10. Equalizers

Definition 10.1. Suppose that X, Y are objects of a category C and that a,b :
X — Y are morphisms. We say a morphism e : Z — X is an equalizer for the pair
(a,b) if aoe = boe and if (Z, e) satisfies the following universal property: For every
morphism ¢ : W — X in C such that a ot = b ot there exists a unique morphism
s: W — Z such that t = eos.

As in the case of the fibre product above, equalizers when they exist are unique up
to unique isomorphism. There is a straightforward generalization of this definition
to the case where we have more than 2 morphisms.

11. Coequalizers

Definition 11.1. Suppose that X, Y are objects of a category C and that a,b :
X — Y are morphisms. We say a morphism c: Y — Z is a coequalizer for the pair
(a,b) if coa = cob and if (Z, ¢) satisfies the following universal property: For every
morphism ¢ : Y — W in C such that t o a = ¢ o b there exists a unique morphism
s:Z — W such that t = soc.

As in the case of the pushouts above, coequalizers when they exist are unique up
to unique isomorphism, and this follows from the uniqueness of equalizers upon
considering the opposite category. There is a straightforward generalization of this
definition to the case where we have more than 2 morphisms.

12. Initial and final objects

Definition 12.1. Let C be a category.

(1) An object x of the category C is called an initial object if for every object
y of C there is exactly one morphism z — y.

(2) An object z of the category C is called a final object if for every object y
of C there is exactly one morphism y — .

In the category of sets the empty set (} is an initial object, and in fact the only
initial object. Also, any singleton, i.e., a set with one element, is a final object (so
it is not unique).

13. Monomorphisms and Epimorphisms

Definition 13.1. Let C be a category and let f: X — Y be a morphism of C.

(1) We say that f is a monomorphism if for every object W and every pair of
morphisms a,b: W — X such that foa = f ob we have a = 0.

(2) We say that f is an epimorphism if for every object W and every pair of
morphisms a,b: Y — W such that ao f = bo f we have a = b.

Example 13.2. In the category of sets the monomorphisms correspond to injective
maps and the epimorphisms correspond to surjective maps.

Lemma) 13.3. Let C be a category, and let f: X — Y be a morphism of C. Then

(1) f is a monomorphism if and only if X is the fibre product X xy X, and
(2) f is an epimorphism if and only if Y is the pushout Y IIx Y.

Proof. Omitted. O
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14. Limits and colimits

Let C be a category. A diagram in C is simply a functor M : Z — C. We say that
T is the index category or that M is an Z-diagram. We will use the notation M;
to denote the image of the object ¢ of Z. Hence for ¢ : ¢ — ¢/ a morphism in Z we
have M(¢) : Mz — Mi’-

Definition 14.1. A [limit of the Z-diagram M in the category C is given by an
object limy M in C together with morphisms p; : lim; M — M; such that
(1) for ¢ : 4 — ' a morphism in Z we have p; = M(¢) o p;, and
(2) for any object W in C and any family of morphisms ¢; : W — M, such
that for all ¢ : ¢ — ¢/ in Z we have ¢ = M(¢) o g; there exists a unique
morphism ¢ : W — lim; M such that g; = p; o q for every object i of Z.

Limits (lim; M, (p;)icob(z)) are (if they exist) unique up to unique isomorphism by
the uniqueness requirement in the definition. Products of pairs, fibred products,
and equalizers are examples of limits. The limit over the empty diagram is a final
object of C. In the category of sets all limits exist. The dual notion is that of
colimits.

Definition 14.2. A colimit of the Z-diagram M in the category C is given by an
object colimy M in C together with morphisms s; : M; — colim; M such that
(1) for ¢ : i — ¢’ a morphism in Z we have s; = s, o M(¢), and
(2) for any object W in C and any family of morphisms ¢; : M; — W such
that for all ¢ : i — ¢’ in Z we have t; = t; o M(¢) there exists a unique
morphism ¢ : colim; M — W such that ¢; =t o s; for every object ¢ of Z.

Colimits (colim; M, (s;);con(z)) are (if they exist) unique up to unique isomorphism
by the uniqueness requirement in the definition. Coproducts of pairs, pushouts,
and coequalizers are examples of colimits. The colimit over an empty diagram is
an initial object of C. In the category of sets all colimits exist.

Remark 14.3. The index category of a (co)limit will never be allowed to have
a proper class of objects. In this project it means that it cannot be one of the
categories listed in Remark

Remark| 14.4. We often write lim; M;, colim; M;, lim;cz M;, or colim;cz M; in-
stead of the versions indexed by Z. Using this notation, and using the description
of limits and colimits of sets in Section [I5] below, we can say the following. Let
M : 7T — C be a diagram.

(1) The object lim; M; if it exists satisfies the following property
Mor¢ (W, lim; M;) = lim; More (W, M;)
where the limit on the right takes place in the category of sets.
(2) The object colim; M; if it exists satisfies the following property
More (colim; M;, W) = lim;czorr More (M;, W)
where on the right we have the limit over the opposite category with value
in the category of sets.

By the Yoneda lemma (and its dual) this formula completely determines the limit,
respectively the colimit.
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As an application of the notions of limits and colimits we define products and
coproducts.

Definition 14.5. Suppose that I is a set, and suppose given for every i € I an
object M; of the category C. A product [],.; M; is by definition limz M (if it
exists) where 7 is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = () in which case the product is a final
object of the category. The morphisms p; : [[ M; — M; are called the projection
morphisms.

Definition 14.6. Suppose that I is a set, and suppose given for every i € I an
object M; of the category C. A coproduct [],.; M; is by definition colimz M (if it
exists) where 7 is the category having only identities as morphisms and having the
elements of I as objects.

An important special case is where I = () in which case the product is an initial
object of the category. Note that the coproduct comes equipped with morphisms
M; — [] M;. These are sometimes called the coprojections.

Lemmal 14.7. Suppose that M : T — C, and N : J — C are diagrams whose
colimits exist. Suppose H : T — J 1is a functor, and supposet : M — N o H is a
transformation of functors. Then there is a unique morphism

0 : colimz M — colim gy N
such that all the diagrams

M; ——— colimy M

Ny ;) — colimy N
commute.
Proof. Omitted. (]
Lemma 14.8. Suppose that M : T — C, and N : J — C are diagrams whose

limits exist. Suppose H : T — J is a functor, and supposet : No H — M is a
transformation of functors. Then there is a unique morphism

0:limy N — limg M
such that all the diagrams
limj N —— NH(i)

o

limy M —— M;

commute.

Proof. Omitted. O
Lemma 14.9. Let Z, J be index categories. Let M : T x J — C be a functor. We
have

colim; colim; M; ; = colim; ; M; ; = colim; colim; M; ;

provided all the indicated colimits exist. Similar for limits.
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Proof. Omitted. 0
Lemma 14.10. Let M : T — C be a diagram. Write I = Ob(Z) and A = Arrow(Z).
Denote s,t : A — I the source and target maps. Suppose that [],.; M; and

[loca Moy exist. Suppose that the equalizer of

[
Hie] M; 7 HaeA Mt(a)

exists, where the morphisms are determined by their components as follows: pgov) =
M(a) o py(a) and pa © ¢ = pyay- Then this equalizer is the limit of the diagram.

Proof. Omitted. (]

Lemma 14.11. Let M : T — C be a diagram. Write I = Ob(Z) and A = Arrow(Z).
Denote s,t : A — 1 the source and target maps. Suppose that []..; M; and
[oca My exist. Suppose that the coequalizer of

i€l

¢
_—
HaeA MS(G) T> Hie] M;

exists, where the morphisms are determined by their components as follows: The
component Mg,y maps via v to the component M) via the morphism a. The
component M,y maps via ¢ to the component M) by the identity morphism.
Then this coequalizer is the colimit of the diagram.

Proof. Omitted. |

15. Limits and colimits in the category of sets

Not only do limits and colimits exist in Sets but they are also easy to describe.
Namely, let M : T — Sets, i — M, be a diagram of sets. Denote I = Ob(Z). The
limit is described as

limz M = {(m;)icr € Hie[ M; |V :i— i in T, M(¢)(m;) =my}.

So we think of an element of the limit as a compatible system of elements of all the
sets M;.

On the other hand, the colimit is

colimyz M = ( M)/ ~

iel
where the equivalence relation ~ is the equivalence relation generated by setting
m; ~ my if m; € M;, my € My and M(¢)(m;) = my for some ¢ : i — ¢’. In other
words, m; € M; and m; € M; are equivalent if there is a chain of morphisms in 7

/ i1 i3 12n—1
i =1 io lon =14/
and elements m;;, € M;, mapping to each other under the maps M;,, , — M;,, ,

and M; — M;

This is not a very pleasant type of object to work with. But if the diagram is
filtered then it is much easier to describe. We will explain this in Section

induced from the maps in Z above.

2k—1 2k


http://localhost:8080/tag/002N
http://localhost:8080/tag/002P

16 CATEGORIES

16. Connected limits
A (co)limit is called connected if its index category is connected.

Definition 16.1. We say that a category Z is connected if the equivalence relation
generated by = ~ y < Morz(z,y) # (0 has exactly one equivalence class.

Here we follow the convention of Topology, Definition [6.1] that connected spaces are
nonempty. The following in some vague sense characterizes connected limits.

Lemma 16.2. Let C be a category. Let X be an object of C. Let M : T — C/X be
a diagram in the category of objects over X. If the index category I is connected
and the limit of M exists in C/X, then the limit of the composition T — C/X — C
exists and is the same.

Proof. Let M — X be an object representing the limit in C/X. Consider the
functor
W +— lim; Morc (W, M;).

Let (¢;) be an element of the set on the right. Since each M; comes equipped with
a morphism s; : M; — X we get morphisms f; = s; 0¢; : W — X. But as Z is
connected we see that all f; are equal. Since Z is nonempty there is at least one f;.
Hence this common value W — X defines the structure of an object of W in C/X
and (p;) defines is an element of lim; Mor¢, x (W, M;). Thus we obtain a unique
morphism ¢ : W — M such that ¢; is the composition of ¢ with M — M; as
desired. O

Lemma 16.3. Let C be a category. Let X be an object of C. Let M : T — X/C be a
diagram in the category of objects under X. If the index category T is connected and
the colimit of M exists in X/C, then the colimit of the composition T — X/C — C
exists and is the same.

Proof. Omitted. Hint: This lemma is dual to Lemma [16.2) O

17. Cofinal and initial categories

In the literature sometimes the word “final” is used instead of cofinal in the following
definition.

Definition 17.1. Let H : Z — J be a functor between categories. We say T is
cofinal in J or that H is cofinal if

(1) for all y € Ob(J) there exists a € Ob(Z) and a morphism y — H(z), and
(2) given y € Ob(J), z, 2’ € Ob(Z) and morphisms y — H(z) and y — H(z')
there exists a sequence of morphisms

T=T04 T1 — Tog T3 —> ... = To, =2
in Z and morphisms y — H(z;) in J such that the diagrams
/ | \
H(zor,) <—— H(2op11) — H(22x12)

commute for k =0,...,n— 1.
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Lemmal 17.2. Let H : T — J be a functor of categories. Assume I is cofinal in
J. Then for every diagram M : J — C we have a canonical isomorphism
colimz M o H = colimy M
if either side exists.
Proof. Omitted. U

Definition 17.3. Let H : Z — J be a functor between categories. We say T is
initial in J or that H is initial if
(1) for all y € Ob(J) there exists a € Ob(Z) and a morphism H(z) — y,
(2) for any y € Ob(J), z,2’ € Ob(Z) and morphisms H(zx) — y, H(z') — y in
J there exists n > 0 and a commutative diagram

H(x) H(xy) H(xy)<—...—— H(xop—2) <— H(x9p—1) —=H(x

BN

where all the horizontal morphisms come from morphisms in Z, and the
vertical arrows in J.

This is just the dual notion to “cofinal” functors.

Lemma 17.4. Let H : T — J be a functor of categories. Assume I is initial in J .
Then for every diagram M : J — C the limit lim gy M exists if and only if limg M
exists and if so these limits agree.

Proof. Omitted. O

Lemmal 17.5. Let F': 7 — I’ be a functor. Assume

(1) the fibre categories (see Definition[30.3) of T over I' are all connected, and
(2) for every morphism o' : &' — y' in I’ there exist a morphism « :x — y in
T such that F(a) = .
Then for every diagram M : T' — C the colimit colimz M o F exists if and only if
colimz: M exists and if so these colimits agree.

Proof. One can prove this by showing that Z is cofinal in Z’ and applying Lemma
But we can also prove it directly as follows. It suffices to show that for any
object T of C we have

limz MOI‘C (MF(i), T) = limI/ MOI‘C (MZ-/, T)

If (gir)ircob(zry is an element of the right hand side, then setting f; = gp@) we
obtain an element (f;);con(z) of the left hand side. Conversely, let (f;);con(z) be
an element of the left hand side. Note that on each (connected) fibre category
T the functor M o F is constant with value M;/. Hence the morphisms f; for
i € Ob(Z) with F(i) =4’ are all the same and determine a well defined morphism
gy : My — T. By assumption (2) the collection (gi’)ycon(z/) defines an element of
the right hand side. O

Lemma 17.6. LetZ and J be a categories and denotep : IxJ — J the projection.
If T is connected, then for a diagram M : J — C the colimit colim s M ezists if
and only if colimzx 7 M o p exists and if so these colimits are equal.

Proof. This is a special case of Lemma [17.5 (]
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18. Finite limits and colimits

A finite (co)limit is a (co)limit whose diagram category is finite, i.e., the diagram
category has finitely many objects and finitely many morphisms. A (co)limit is
called nonempty if the index category is nonempty. A (co)limit is called connected
if the index category is connected, see Definition It turns out that there are
“enough” finite diagram categories.

Lemma 18.1. Let Z be a category with
(1) Ob(Z) is finite, and
(2) there exist finitely many morphisms f1,..., fm € Arrows(Z) such that every
morphism of L is a composition fj o fj, o...0 fj, .
Then there exists a functor F : J — I such that
(a) J is a finite category, and
(b) for any diagram M : T — C the (co)limit of M over I exists if and only
if the (co)limit of M o F over J exists and in this case the (co)limits are
canonically isomorphic.

Moreover, J is connected (resp. nonempty) if and only if T is so.

Proof. Say Ob(Z) = {x1,...,z,}. Denote s,t : {1,...,m} — {1,...,n} the
functions such that f; : @y — @4;). We set Ob(T) = {y1,.- -, Yn, 21, -+ 2n}
Besides the identity morphisms we introduce morphisms g; : ys(;) — 2y, J =
1,...,m and morphisms h; : y; — z;, ¢ = 1,...,n. Since all of the nonidentity
morphisms in J go from a y to a z there are no compositions to define and no
associativity to check. Set F(y;) = F(z;) = x;. Set F(g;) = f; and F(h;) = id,.
It is clear that F' is a functor. It is clear that J is finite. It is clear that J is
connected, resp. nonempty if and only if Z is so.

Let M : 7T — C be a diagram. Consider an object W of C and morphisms ¢; : W —
M ((z;) as in Definition [14.1] Then by taking ¢; : W — M(F(y;)) = M(F(z)) =
M (x;) we obtain a family of maps as in Definition for the diagram M o F.
Conversely, suppose we are given maps qy; : W — M(F(y;)) and gz; : W —
M(F(z;)) as in Definition for the diagram M o F'. Since

M(F(h;)) =id : M(F(y;)) = M(z;) — M(z;) = M(F(2))
we conclude that qy; = qz; for all i. Set g; equal to this common value. The
compatibility of gsjy = qus;) and i) = qz;) with the morphism M(f;) guar-
antees that the family ¢; is compatible with all morphisms in Z as by assumption

every such morphism is a composition of the morphisms f;. Thus we have found a
canonical bijection

limpeon(7) More(W, M(F(B))) = limacon(z) More(W, M(A))
which implies the statement on limits in the lemma. The statement on colimits is
proved in the same way (proof omitted). O

Lemma) 18.2. Let C be a category. The following are equivalent:

(1) Connected finite limits exist in C.
(2) Equalizers and fibre products exist in C.

Proof. Since equalizers and fibre products are finite connected limits we see that
(1) implies (2). For the converse, let Z be a finite connected diagram category. Let
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F : J — T be the functor of diagram categories constructed in the proof of Lemma
18.1} Then we see that we may replace Z by J. The result is that we may assume
that Ob(Z) = {z1,...,2n} U {y1,...,ym} with n,m > 1 such that all nonidentity
morphisms in 7 are morphisms f : x; — y; for some ¢ and j.

Suppose that n > 1. Since Z is connected there exist indices 1,i2 and jy and
morphisms a : z;;, — y;, and b: x;, — y;,. Consider the category
T ={a}U{x1, ..., Tiyye s Bigy T} L{y1, . s Ym}
with
Morz (z, y;) = Morz(z;, , y;) I Morz(x,, y;)
and all other morphism sets the same as in Z. For any functor M : Z — C we can
construct a functor M’ : 7/ — C by setting

M'(x) = M(xi,) X nr(a),M(y,), M) M (i)

and for a morphism f’ : x — y; corresponding to, say, f : x;; — y; we set
M'(f) = M(f)opry. Then the functor M has a limit if and only if the functor M’
has a limit (proof omitted). Hence by induction we reduce to the case n = 1.

If n = 1, then the limit of any M : Z — C is the successive equalizer of pairs of
maps x1 — y; hence exists by assumption. (Il

Lemmal 18.3. Let C be a category. The following are equivalent:
(1) Nonempty finite limits exist in C.
(2) Products of pairs and equalizers exist in C.
(3) Products of pairs and fibre products exist in C.

Proof. Since products of pairs, fibre products, and equalizers are limits with
nonempty index categories we see that (1) implies both (2) and (3). Assume (2).
Then finite nonempty products and equalizers exist. Hence by Lemma [I4.10] we see
that finite nonempty limits exist, i.e., (1) holds. Assume (3). If a,b: A — B are
morphisms of C, then the equalizer of a,b is

(A ><a,B,b A) X(prl ,pr2),AXAA A.

Thus (3) implies (2), and the lemma is proved. O

Lemmal 18.4. Let C be a category. The following are equivalent:
(1) Finite limits exist in C.
(2) Finite products and equalizers exist.
(3) The category has a final object and fibred products exist.

Proof. Since products of pairs, fibre products, equalizers, and final objects are
limits over finite index categories we see that (1) implies both (2) and (3). By
Lemma [14.10]above we see that (2) implies (1). Assume (3). Note that the product
A x A is the fibre product over the final object. If a,b: A — B are morphisms of
C, then the equalizer of a, b is

(A ><uL,B,b A) X(prl,prg),AXA,A A.
Thus (3) implies (2) and the lemma is proved. d

Lemma 18.5. Let C be a category. The following are equivalent:

(1) Connected finite colimits exist in C.
(2) Coequalizers and pushouts exist in C.
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Proof. Omitted. Hint: This is dual to Lemma [18.2) O

Lemma 18.6. Let C be a category. The following are equivalent:

(1) Nonempty finite colimits exist in C.
(2) Coproducts of pairs and coequalizers exist in C.
(3) Coproducts of pairs and pushouts exist in C.

Proof. Omitted. Hint: This is the dual of Lemma [18.3] O

Lemma 18.7. Let C be a category. The following are equivalent:

(1) finite colimits exist in C,
(2) finite coproducts and coequalizers exist in C, and
(3) C has an initial object and pushouts exist.

Proof. Omitted. Hint: This is dual to Lemma [I8.4] O

19. Filtered colimits

Colimits are easier to compute or describe when they are over a filtered diagram.
Here is the definition.

Definition 19.1. We say that a diagram M : Z — C is directed, or filtered if the
following conditions hold:

(1) the category Z has at least one object,

(2) for every pair of objects z,y of Z there exists an object z and morphisms
T — 2z, Yy — z, and

(3) for every pair of objects x,y of Z and every pair of morphisms a,b: x — y
of Z there exists a morphism ¢ : y — z of Z such that M(coa) = M(cob)
as morphisms in C.

We say that an index category Z is directed, or filtered if id : T — Z is filtered (in
other words you erase the M in part (3) above.)

We observe that any diagram with filtered index category is filtered, and this is how
filtered colimits usually come about. In fact, if M : Z — C is a filtered diagram,
then we can factor M as T — 7' — C where 7' is a filtered index category[l] such
that colimz M exists if and only if colimz: M’ exists in which case the colimits are
canonically isomorphic.

Suppose that M : T — Sets is a filtered diagram. In this case we may describe the
equivalence relation in the formula

colimyz M = ( et M;)/ ~

simply as follows
i~y 3¢ i i M(S) () = M(9!)(mar).

In other words, two elements are equal in the colimit if and only if they “eventually
become equal”.

INamely, let T’ have the same objects as Z but where Morz/ (z, y) is the quotient of Morz (z, y)
by the equivalence relation which identifies a,b: z — y if M(a) = M (b).
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Lemmal 19.2. Let 7T and J be index categories. Assume that L is filtered and J
is finite. Let M : I x J — Sets, (i,7) — M, ; be a diagram of diagrams of sets. In
this case

colim; lim; M; ; = lim; colim; M; ;.

In particular, colimits over I commute with finite products, fibre products, and
equalizers of sets.

Proof. Omitted. In fact, it is a fun exercise to prove that a category is filtered if
and only if colimits over the category commute with finite limits (into the category
of sets). O

We give a counter example to the lemma in the case where 7 is infinite. Namely, let
T consist of N = {1,2,3,...} with a unique morphism i — ¢’ whenever i < i'. Let
J consist of the discrete category N = {1,2,3,...} (only morphisms are identities).
Let M; ; = {1,2,...,i} with obvious inclusion maps M; ; — M ; when i <i'. In
this case colim; M; ; = N and hence

lim, colim; M; ; = N =NN
im; colim; M, ; Hj
On the other hand lim; M; j = []; M; ; and hence

colim; lim; M; ; = | ] {1,2,...,i}™
which is smaller than the other limit.

It turns out we sometimes need a more finegrained control over the possible con-
ditions one can impose on index categories. Thus we add some lemmas on the
possible things one can require.

Lemmal 19.3. Let Z be an index category, i.e., a category. Assume that for every
pair of objects x,y of I there exists an object z and morphisms v — z and y — z.
Then colimits of diagrams of sets over T commute with finite nonempty products.

Proof. Let M and N be diagrams of sets over Z. To prove the lemma we have to
show that the canonical map

colim(M; x N;) — colim M; x colim N;

is an isomorphism. If 7 is empty, then this is true because the colimit of sets
over the empty category is the empty set. If 7 is nonempty, then we construct a
map colim M; X colim N; — colim(M; x N;) as follows. Suppose that m € M; and
n € N; give rise to elements s and ¢ of the respective colimits. By assumption we
can find @ : ¢ = kand b: j — k in Z. Then (M (a)(m), N(b)(n)) is an element
of My, x Ny and we map (s,t) to the corresponding element of colim M; x N;. We
omit the verification that this map is well defined and that it is an inverse of the
map displayed above. ([

Lemma) 19.4. Let Z be an index category, i.e., a category. Assume that for every
pair of objects x,y of I there exists an object z and morphisms v — z and y — z.
Let M : T — Ab be a diagram of abelian groups over Z. Then the set underlying
colim; M; is the colimit of M wviewed as a diagram of sets over I.
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Proof. In this proof all colimits are taken in the category of sets. By Lemma
we have colim M; x colim M; = colim(M; x M;) hence we can use the maps
+ : M; x M; — M; to define an addition map on colim M;. A straightforward
argument, which we omit, shows that the set colim M, with this addition is the
colimit in the category of abelian groups. O

Lemma 19.5. Let Z be an index category, i.e., a category. Assume that for every
solid diagram

—y

T
l \
z

> w

in T there exists an object w and dotted arrows making the diagram commute. Then
T is a (possibly empty) disjoint union of categories satisfying the condition above
and the condition of Lemma|19.5.

Proof. If 7 is the empty category, then the lemma is true. Otherwise, we define a
relation on objects of Z by saying that x ~ y if there exists a z and morphisms z — z
and y — z. This is an equivalence relation by the assumption of the lemma. Hence
Ob(Z) is a disjoint union of equivalence classes. Let Z; be the full subcategories
corresponding to these equivalence classes. Then Z = [[Z; as desired. ([

Lemma 19.6. Let Z be an index category, i.e., a category. Assume that for every
solid diagram

—y

T
l \
z

> w

in L there exists an object w and dotted arrows making the diagram commute. Then
an injective morphism M — N of diagrams of sets (resp. abelian groups) over T
gives rise to an injective map colim M; — colim N; of sets (resp. abelian groups).

Proof. We first show that it suffices to prove the lemma for the case of a diagram
of sets. Namely, by Lemma we can write Z = [[Z; where each Z; satisfies the
condition of the lemma as well as the condition of Lemma [19.3l Thus, if M is a
diagram of abelian groups over Z, then

colimz M = @ _colimz; M|z,
j

It follows that it suffices to prove the result for the categories Z;. Howeover, col-
imits of abelian groups over these categories are computed by the colimits of the
underlying sets (Lemma hence we reduce to the case of an injective map of
diagrams of sets.

Here we say that M — N is injective if all the maps M; — N; are injective. In
fact, we will identify M; with the image of M; — N;, i.e., we will think of M; as a
subset of N;. We will use the description of the colimits given in Section [I5] without
further mention. Let s,s’ € colim M; map to the same element of colim NV;. Say s
comes from an element m of M; and s’ comes from an element m’ of M;,. Then we
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can find a sequence i = ig, 41, ...,i, = ¢ of objects of Z and morphisms
i1 i3 1on—1
. . S,
1T =10 12 e 12n — 1

and elements n;; € N;; mapping to each other under the maps N;,, _, — Ny, _,
li

and N,,, , — N,,, induced from the maps in Z above with n;, = m and n,;,, =m’.
We will prove by induction on n that this implies s = s’. The base case n = 0 is
trivial. Assume n > 1. Using the assumption on Z we find a commutative diagram

10 /il \lé
L

We conclude that m and n;, map to the same element of N,, because both are the
image of the element n;,. In particular, this element is an element m” € M, which
gives rise to the same element as s in colim M;. Then we find the chain

i3 i5 19n—1

SN ~

w ’i4 ign:Z

and the elements n;; for j > 3 which has a smaller length than the chain we started
with. This proves the induction step and the proof of the lemma is complete. [

Lemma 19.7. Let T be an index category, i.e., a category. Assume

(1) for every pair of morphisms a : w — x and b: w — y in T there exists an
object z and morphisms ¢: x — z and d : y — z such that coa =dob, and

(2) for every pair of morphisms a,b: x — y there exists a morphism c¢:y — z
such that coa =cob.

Then T is a (possibly empty) union of disjoint filtered index categories T;.

Proof. If 7 is the empty category, then the lemma is true. Otherwise, we define
a relation on objects of Z by saying that x ~ y if there exists a z and morphisms
x — z and y — z. This is an equivalence relation by the first assumption of the
lemma. Hence Ob(Z) is a disjoint union of equivalence classes. Let Z; be the full
subcategories corresponding to these equivalence classes. The rest is clear from the
definitions. O

Lemma 19.8. Let Z be an index category satisfying the hypotheses of Lemma|19.
above. Then colimits over T commute with fibre products and equalizers in sets (and
more generally with finite connected limits).

Proof. By Lemma we may write Z = [[Z; with each Z; filtered. By Lemma
we see that colimits of Z; commute with equalizers and fibred products. Thus
it suffices to show that equalizers and fibre products commute with coproducts in
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the category of sets (including empty coproducts). In other words, given a set J
and sets A;, B;,C; and set maps A; — B;, C; — B; for j € J we have to show

that
(HjeJ A7) X1, B) (HjEJCj) = Hjej Aj xB, Cj
and given a;,a}; : Aj — Bj that

. A . o
Equahzer(HjeJ a;, HjeJ ajy) = HjeJ Equalizer(a;, a})
This is true even if J = (. Details omitted. O

20. Cofiltered limits

Limits are easier to compute or describe when they are over a cofiltered diagram.
Here is the definition.

Definition 20.1. We say that a diagram M : Z — C is codirected or cofiltered if
the following conditions hold:

(1) the category Z has at least one object,

(2) for every pair of objects z,y of Z there exists an object z and morphisms
z—x, z—y, and

(3) for every pair of objects x,y of Z and every pair of morphisms a,b:x — y
of 7 there exists a morphism ¢ : w — x of Z such that M(aoc) = M(boc)
as morphisms in C.

We say that an index category Z is codirected, or cofiltered if id : T — 7 is cofiltered
(in other words you erase the M in part (3) above.)

We observe that any diagram with cofiltered index category is cofiltered, and this
is how this situation usually occurs.

As an example of why cofiltered limits of sets are “easier” than general ones, we
mention the fact that a cofiltered diagram of finite nonempty sets has nonempty
limit (Lemma [21.5)). This result does not hold for a general limit of finite nonempty
sets.

21. Limits and colimits over partially ordered sets
A special case of diagrams is given by systems over partially ordered sets.

Definition 21.1. Let (I, >) be a partially ordered set. Let C be a category.

(1) A system over I in C, sometimes called a inductive system over I in C is
given by objects M; of C and for every ¢ < i’ a morphism f;;» : M; — My
such that f;; = id and such that f;;» = fir;n o f;; whenever 1 <’ <.

(2) An inverse system over I in C, sometimes called a projective system over I
in C is given by objects M; of C and for every 7 > i’ a morphism f;; : M; —
M, such that f;; = id and such that fi;» = firj o fi; whenever ¢ >4’ > ",
(Note reversal of inequalities.)

We will say (M;, fiiv) is a (inverse) system over I to denote this. The maps f;;s are
sometimes called the transition maps.

In other words a system over [ is just a diagram M : Z — C where 7 is the category
with objects I and a unique arrow ¢ — 1’ if and only 7 < ¢’. And an inverse system
is a diagram M : Z°PP — C. From this point of view we could take (co)limits of any
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(inverse) system over I. However, it is customary to take only colimits of systems
over I and only limits of inverse systems over I. More precisely: Given a system
(M;, fiir) over I the colimit of the system (M;, fiv) is defined as

colim;c 1 M; = colimz M,

i.e., as the colimit of the corresponding diagram. Given a inverse system (M;, fi;r)
over I the limit of the inverse system (M;, f;;/) is defined as

1imi€1 Mi = limzopp ]\47
i.e., as the limit of the corresponding diagram.

Definition 21.2. With notation as above. We say the system (resp. inverse system)
(M, fiir) is a directed system (resp. directed inverse system) if the partially ordered
set [ is directed: I is nonempty and for all 41,75 € I there exists ¢ € I such that
ilgiandiggi.

In this case the colimit is sometimes (unfortunately) called the “direct limit”. We
will not use this last terminology. It turns out that diagrams over a filtered category
are no more general than directed systems in the following sense.

Lemma 21.3. Let T be a filtered index category. There exists a directed partially
ordered set (I,>) and a system (x;, iir) over I in T with the following properties:

(1) For every category C and every diagram M : T — C with values in C, denote
(M (z;), M(pii7)) the corresponding system over I. If colim;c; M (z;) exists
then so does colimz M and the transformation

0 : colim;er M (x;) — colimgz M

of Lemma[I].7 is an isomorphism.

(2) For every category C and every diagram M : I°P? — C in C, denote
(M (z;), M(pii7)) the corresponding inverse system over I. If lim;e; M(x;)
exists then so does limz M and the transformation

0 : limzopp M — limie[ M(l‘l)
of Lemma is an isomorphism.

Proof. Asmentioned in the beginning of the section, we may view partially ordered
sets as categories and systems as functors. Throughout the proof, we will freely
shift between these two points of view. We prove the first statement by constructing
a category Zy, corresponding to a directed set, and a cofinal functor My : Zo — Z.
Then, by Lemma the colimit of a diagram M : T — C coincides with the
colimit of the diagram M o My|Zy — C, from which the statement follows. The
second statement is dual to the first and may be proved by interpreting a limit in
C as a colimit in C°PP. We omit the details.

A category F is called finitely generated if there exists a finite set F' of arrows
in F, such that each arrow in F may be obtained by composing arrows from F.
In particular, this implies that F has finitely many objects. We start the proof
by reducing to the case when Z has the property that every finitely generated
subcategory of Z may be extended to a finitely generated subcategory with a unique
final object.


http://localhost:8080/tag/0031
http://localhost:8080/tag/0032

26 CATEGORIES

Let w denote the directed set of finite ordinals, which we view as a filtered category.
It is easy to verify that the product category Z x w is also filtered, and the projection
II:Z x w— T is cofinal.

Now let F be any finitely generated subcategory of Z x w. By using the axioms of
a filtered category and a simple induction argument on a finite set of generators of
F, we may construct a cocone ({f;},i00) in Z for the diagram F — Z. That is, a
morphism f; : i — i, for every object 7 in F such that for each arrow f :i — ¢ in
F we have f; = f o fi. We also choose i, such that it is not contained in F. This
is possible since we may always post-compose the arrows f; with an arrow which is
the identity on the Z-component and strictly increasing on the w-component. Now
let 7+ denote the category consisting of all objects and arrows in F together with
the object i, the identity arrow id;  and the arrows f;. Since there are no arrows
from is in FT to any object of F, the arrow set in F is closed under composition,
so FT is indeed a category. By construction, it is a finitely generated subcategory
of Z which has i, as unique final object. Since, by Lemma the colimit of any
diagram M : Z — C coincides with the colimit of M o II , this gives the desired
reduction.

The set of all finitely generated subcategories of Z with a unique final object is
naturally ordered by inclusion. We take Zy to be the category corresponding to
this set. We also have a functor My : Zy — Z, which takes an arrow F C F’ in
7y to the unique map from the final object of F to the final object of F’. Given
any two finitely generated subcategories of Z, the category generated by these two
categories is also finitely generated. By our assumption on Z, it is also contained
in a finitely generated subcategory of Z with a unique final object. This shows that
T is directed.

Finally, we verify that M, is cofinal. Since any object of Z is the final object in the
subcategory consisting of only that object and its identity arrow, the functor M,
is surjective on objects. In particular, Condition (1) of Definition is satisfied.
Given an object ¢ of Z, Fy, Fo in Ty and maps 1 : i — Mo(F1) and @9 : ¢ = My(F2)
in Z, we can take Fi5 to be a finitely generated category with a unique final object
containg Fi, Fo and the morphisms @1, ¢s. The resulting diagram commutes

Mo(F12)

N

Moy(Fr) My(Fs)

~

2

since it lives in the category Fi2 and My(Fi2) is final in this category. Hence also
Condition (2) is satisfied, which concludes the proof. O

Remark 21.4. Note that a finite directed set (I,>) always has a greatest object
ico. Hence any colimit of a system (M;, f;7) over such a set is trivial in the sense
that the colimit equals M;_ . In contrast, a colimit indexed by a finite filtered
category need not be trival. For instance, let Z be the category with a single object
1 and a single non-trivial morphism e satisfying e = eoe. The colimit of a diagram
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M : T — Sets is the image of the idempotent M (e). This illustrates that something
like the trick of passing to Z X w in the proof of Lemma is essential.

Lemmal 21.5. If S : T — Sets is a cofiltered diagram of sets and all the S; are
finite nonempty, then lim; S; is nonempty. In other words, the limit of a directed
inverse system of finite nonempty sets is nonempty.

Proof. The two statements are equivalent by Lemma Let I be a directed
partially ordered set and let (S;);cr be an inverse system of finite nonempty sets
over I. Let us say that a subsystem T is a family T = (T;);cr of nonempty subsets
T; C S; such that T;/ is mapped into T; by the transition map Sy — S; for all
i/ > i. Denote T the set of subsystems. We order T by inclusion. Suppose T,
a € A is a totally ordered family of elements of 7. Say T, = (Tw,i)icr- Then we
can find a lower bound T = (T;);cs by setting T; = () c4 Ta,i Which is manifestly
a finite nonempty subset of S; as all the T, ; are nonempty and as the T;, form a
totally ordered family. Thus we may apply Zorn’s lemma to see that 7 has minimal
elements.

Let’s analyze what a minimal element 7' € T looks like. First observe that the maps
T, — T, are all surjective. Namely, as I is a directed partially ordered set and T;
is finite, the intersection 7} = (), ~; Im(T3 — T;) is nonempty. Thus 7" = (T7) is a
subsystem contained in 7" and by minimality 7" = T'. Finally, we claim that T} is a
singleton for each i. Namely, if € T}, then we can define T}, = (T — T3) ' ({z})
for i/ > ¢ and T]{ = Tj if 7 2 4. This is another subsystem as we’ve seen above
that the transition maps of the subsystem 7' are surjective. By minimality we see
that T'= T" which indeed implies that T; is a singleton. This holds for every i € I,
hence we see that T; = {z;} for some z; € S; with z;; — x; under the map S; — S;
for every ¢’ > i. In other words, (z;) € lim S; and the lemma is proved. O

22. Essentially constant systems

Let M : T — C be a diagram in a category C. Assume the index category Z is
filtered. In this case there are three successively stronger notions which pick out
an object X of C. The first is just

X = colim;e7 M;.

Then X comes equipped with the coprojections M; — X. A stronger condition
would be to require that X is the colimit and that there exists an ¢ € 7 and a
morphism X — M; such that the composition X — M; — X is idx. A stronger
condition is the following.

Definition 22.1. Let M : 7 — C be a diagram in a category C.

(1) Assume the index category Z is filtered. We say M is essentially constant
with value X if X = colim; M; and there exists an i € 7 and a morphism
X — M; such that
(a) X > M; —» X isidy, and
(b) for all j there exist k£ and morphisms ¢ — k and j — k such that the
morphism M; — M}, equals the composition M; — X — M; — M.
(2) Assume the index category Z is cofiltered. We say M is essentially constant
with value X if X = lim; M; and there exists an ¢ € 7 and a morphism
M; — X such that
(a) X > M; —» X isidy, and
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(b) for all j there exist k and morphisms k¥ — i and k — j such that the
morphism My — M; equals the composition M;, — M; — X — M;.

Which of the two versions is meant will be clear from context. If there is any
confusion we will distinguish between these by saying that the first version means
M is essentially constant as an ind-object, and in the second case we will say it
is essentially constant as a pro-object. This terminology is further explained in
Remarks and In fact we will often use the terminology “essentially
constant system” which formally speaking is only defined for systems over directed
partially ordered sets.

Definition 22.2. Let C be a category. A directed system (M;, fiiv) is an essentially
constant system if M viewed as a functor I — C defines an essentially constant
diagram. A directed inverse system (M, fi;) is an essentially constant inverse
system if M viewed as a functor I°PP — C defines an essentially constant inverse
diagram.

If (M;, fiir) is an essentially constant system and the morphisms f;;» are monomor-
phisms, then for all ¢ < ¢’ sufficiently large the morphisms f;;; are isomorphisms.
In general this need not be the case however. An example is the system

7P -7 77— ..
with maps given by (a,b) — (a + b,0). This system is essentially constant with
value Z. A non-example is to let M =P, 5, Z and to let S: M — M be the shift
operator (ag,as,...) — (a1, az,...). In this case the system M — M — M — ...

with transition maps S has colimit 0, and a map 0 — M but the system is not
essentially constant.

Remark|22.3. Let C be a category. There exists a big category Ind-C of ind-objects
of C. Namely, if F: Z — C and G : J — C are filtered diagrams in C, then we can
define
Morpg-c(F, G) = lim; colim; Mor¢ (F(i), G(5)).

There is a canonical functor C — Ind-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F
is essentially constant if and only F' is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.

Remark| 22.4. Let C be a category. There exists a big category Pro-C of pro-
objects of C. Namely, if FF: Z — C and G : J — C are cofiltered diagrams in C,
then we can define

Morproc(F, G) = lim; colim; Mor¢ (F'(4), G(4)).
There is a canonical functor C — Pro-C which maps X to the constant system on
X. This is a fully faithful embedding. In this language one sees that a diagram F

is essentially constant if and only F' is isomorphic to a constant system. If we ever
need this material, then we will formulate this into a lemma and prove it here.

Lemmal 22.5. Let C be a category. Let M : T — C be a diagram with filtered
(resp. cofiltered) index category Z. Let F': C — D be a functor. If M is essentially
constant as an ind-object (resp. pro-object), then so is FoM : T — D.

Proof. If X is a value for M, then it follows immediately from the definition that
F(X) is a value for F o M. O
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Lemma 22.6. Let C be a category. Let M : T — C be a diagram with filtered index
category L. The following are equivalent

(1) M is an essentially constant ind-object, and
(2) X = colim; M; exists and for any W in C the map
colim; Mor¢ (W, M;) — More (W, X)
18 bijective.
Proof. Assume (2) holds. Then idx € Mor¢(X, X) comes from a morphism X —
M; for some i, i.e., X — M; — X is the identity. Then both maps
Mor¢(W, X)) — colim; More (W, M;) — More (W, X)
are bijective for all W where the first one is induced by the morphism X — M; we
found above, and the composition is the identity. This means that the composition
colim; Mor¢ (W, M;) — More (W, X) — colim; More (W, M;)

is the identity too. Setting W = M; and starting with idy; in the colimit, we see
that M; — X — M; — M}, is equal to M; — M, for some k large enough. This
proves (1) holds. The proof of (1) = (2) is omitted. O

Lemma 22.7. Let C be a category. Let M : T — C be a diagram with cofiltered
index category L. The following are equivalent

(1) M is an essentially constant pro-object, and

(2) X =lim; M; exists and for any W in C the map

colim;ezorr More (M;, W) — More (X, W)
is bijective.

Proof. Assume (2) holds. Then idx € Mor¢ (X, X) comes from a morphism M; —
X for some i, i.e., X — M; — X is the identity. Then both maps

Mor¢ (X, W) — colim; More(M;, W) — Morc(X, W)

are bijective for all W where the first one is induced by the morphism M; — X we
found above, and the composition is the identity. This means that the composition

colim; Mor¢ (M;, W) — More (X, W) — colim; More (M;, W)

is the identity too. Setting W = M; and starting with idy; in the colimit, we see
that My — M; — X — M; is equal to M;, — M, for some k large enough. This
proves (1) holds. The proof of (1) = (2) is omitted. O

Lemma 22.8. Let C be a category. Let H : T — J be a functor of filtered index
categories. If H is cofinal, then any diagram M : J — C is essentially constant if
and only if M o H is essentially constant.

Proof. This follows formally from Lemmas and O

Lemmal 22.9. Let 7 and J be filtered categories and denote p : T x J — J the
projection. Then T x J is filtered and a diagram M : J — C is essentially constant
if and only if M op:Z x J — C is essentially constant.

Proof. We omit the verification that Z x J is filtered. The equivalence follows
from Lemma because p is cofinal (verification omitted). O
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Lemma 22.10. Let C be a category. Let H : T — J be a functor of cofiltered index
categories. If H is initial, then any diagram M : J — C s essentially constant if
and only if M o H is essentially constant.

Proof. This follows formally from Lemmas [22.7] and the fact that if 7
is initial in J, then Z°PP is cofinal in [J°PP. O

23. Exact functors

Definitionl 23.1. Let F : A — B be a functor.

(1) Suppose all finite limits exist in .A. We say F is left exact if it commutes
with all finite limits.

(2) Suppose all finite colimits exist in 4. We say F' is right ezact if it commutes
with all finite colimits.

(3) We say F is ezact if it is both left and right exact.

Lemmal 23.2. Let F : A — B be a functor. Suppose all finite limits exist in A,
see Lemmal(18.4. The following are equivalent:
(1) F is left exact,
(2) F commutes with finite products and equalizers, and
(3) F transforms a final object of A into a final object of B, and commutes with
fibre products.

Proof. Lemma [14.10| shows that (2) implies (1). Suppose (3) holds. The fibre
product over the final object is the product. If a,b: A — B are morphisms of A,
then the equalizer of a,b is

(A Xa,Bb A) X(pry pra),Axan A.

Thus (3) implies (2). Finally (1) implies (3) because the empty limit is a final
object, and fibre products are limits. O

24. Adjoint functors

Definition 24.1. Let C, D be categories. Let v : C — D and v : D — C be
functors. We say that w is a left adjoint of v, or that v is a right adjoint to u if
there are bijections

Morp (u(X),Y) — More (X, v(Y))
functorial in X € Ob(C), and Y € Ob(D).

In other words, this means that there is a given isomorphism of functors C°P? x D —
Sets from Morp(u(—),—) to More(—,v(—)). For any object X of C we obtain a
morphism X — v(u(X)) corresponding to id,(x). Similarly, for any object Y of
D we obtain a morphism u(v(Y)) — Y corresponding to id,y). These maps are
called the adjunction maps. The adjunction maps are functorial in X and Y, hence
we obtain morphisms of functors id¢ — v owu and u o v — idp. Moreover, if
a:u(X)—Y and 8: X — v(Y) are morphisms, then the following are equivalent

(1) « and 8 correspond to each other via the bijection of the definition,

(2) B is the composition X — v(u(X)) LGN v(Y), and
u(B)

(3)

3) « is the composition u(X) —> u(v(Y)) = Y.
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In this way one can reformulate the notion of adjoint functors in terms of adjunction
maps.

Lemma 24.2. Letu : C — D be a functor between categories. If for eachy € Ob(D)
the functor x — Morp(u(z),y) is representable, then u has a right adjoint.

Proof. For each y choose an object v(y) and an isomorphism More(—,v(y)) —
Morp(u(—),y) of functors. By Yoneda’s lemma (Lemma for any morphism
g :y — vy the transformation of functors

More(—, v(y)) = Morp(u(—),y) — Morp(u(—),y") = More(—,v(y'))

corresponds to a unique morphism v(g) : v(y) — v(y’). We omit the verification
that v is a functor and that it is right adjoint to w. ([l

Lemma 24.3. Let u be a left adjoint to v as in Definition[24.1. Then

(1) w is fully faithful < id = vou.
(2) v is fully faithful < uwov = id.

Proof. Assume w is fully faithful. We have to show the adjunction map X —
v(u(X)) is an isomorphism. Let X’ — v(u(X)) be any morphism. By adjointness
this corresponds to a morphism u(X’) — u(X). By fully faithfulness of u this
corresponds to a morphism X’ — X. Thus we see that X — v(u(X)) defines a bi-
jection Mor(X’, X) — Mor(X’, v(u(X))). Hence it is an isomorphism. Conversely,
if id 2 v o w then u has to be fully faithful, as v defines an inverse on morphism
sets.

Part (2) is dual to part (1). O

Lemma 24.4. Let u be a left adjoint to v as in Definition [24.1]

(1) Suppose that M : T — C is a diagram, and suppose that colimz M exists in
C. Then u(colimz M) = colimzu o M. In other words, u commutes with
(representable) colimits.

(2) Suppose that M : T — D is a diagram, and suppose that limz M exists
in D. Then v(limgz M) = limzv o M. In other words v commutes with
representable limits.

Proof. A morphism from a colimit into an object is the same as a compatible
system of morphisms from the constituents of the limit into the object, see Remark

44 So

Morp (u(colim;er M;),Y) Morc (colim;ez M;, v(Y))
= limieznpp MOI‘C(MZ‘, U(Y))

= lim;ezorr Morp (u(M;),Y)

proves that u(colim;ez M;) is the colimit we are looking for. A similar argument
works for the other statement. O

Lemma 24.5. Let u be a left adjoint of v as in Definition [24.1}

(1) If C has finite colimits, then u is right exact.
(2) If D has finite limits, then v is left exact.

Proof. Obvious from the definitions and Lemma R24.4 O
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25. Localization in categories

The basic idea of this section is given a category C and a set of arrows .S to construct
a functor F : C — S~1C such that all elements of S become invertible in S~!C and
such that F' is universal among all functors with this property. References for this
section are [GZ67, Chapter I, Section 2] and [Ver96, Chapter II, Section 2].

Definition 25.1. Let C be a category. A set of arrows S of C is called a left
multiplicative system if it has the following properties:

LMS1 The identity of every object of C is in S and the composition of two com-
posable elements of S is in S.
LMS2 Every solid diagram

N
Z f>W

with £ € S can be completed to a commutative dotted square with s € S.
LMS3 For every pair of morphisms f,g : X — Y and t € S with target X such
that fot = got there exists a s € S with source Y such that so f =sog.

A set of arrows S of C is called a right multiplicative system if it has the following
properties:

RMS1 The identity of every object of C is in S and the composition of two com-
posable elements of S is in S.
RMS2 Every solid diagram

X >Y
g
t ls
Yot
Z ——W

with s € S can be completed to a commutative dotted square with t € S.

RMS3 For every pair of morphisms f,g : X — Y and s € S with source Y such

that so f = so g there exists a t € S with target X such that fot=got.

A set of arrows S of C is called a multiplicative system if it is both a left multiplicative
system and a right multiplicative system. In other words, this means that MS1,
MS2, MS3 hold, where MS1 = LMS1 + RMS1, MS2 = LMS2 + RMS2, and MS3
= LMS3 + RMS3.

These conditions are useful to construct the categories S~!C as follows.

Left calculus of fractions. Let C be a category and let S be a left multiplicative
system. We define a new category S~!C as follows (we verify this works in the

proof of Lemma :
(1) We set Ob(S~1C) = Ob(C).
(2) Morphisms X — Y of S7IC are given by pairs (f : X - Y’ s:Y — Y’)
with s € S up to equivalence. (Think of this as s71f : X — Y.)
(3) Two pairs (f1 : X = Yi,81: Y > Y))and (fa: X = Ys,80: Y = Y5) are
said to be equivalent if there exists a third pair (fs : X — Y3,s3: Y —
Y3) and morphisms u : Y7 — Y3 and v : Yo — Y3 of C fitting into the


http://localhost:8080/tag/04VC

CATEGORIES 33

commutative diagram

Y,

s

X Loy, <® vy

N4

Yo

(4) The composition of the equivalence classes of the pairs (f : X — Y/ s:
Y—>Y)and (¢:Y = Z',t: Z — Z') is defined as the equivalence class of
apair (hof:X — Z" uot:Z — Z") where h and u € S are chosen to
fit into a commutative diagram

yv_ Y g

vy’ h A
which exists by assumption.

Lemma 25.2. Let C be a category and let S be a left multiplicative system.

€ retation on pairrs aejyinea above s an equilvatence Trelation.
1) The relati irs d d above 1 wal lati
€ composiiion rute grven above is we EfINEea oN equivatence classes.
2) Th iti le gi bove is well d d fval l
ompostiiion 18 associative an ence - 1S a category.
3) C ition i jati dh S=1C i t

Proof. Proof of (1). Let us say two pairs p1 = (f1 : X — Y1, : Y — V)
and po = (fo : X — Ya,82 : Y — Y5) are elementary equivalent if there exists a
morphism a : Y7 — Y5 of C such that ao f; = fo and a o s = so. Diagram:

X—Y =—Y
f1 S1
ia
f2 s2
X—Y,<~—Y
Let us denote this property by saying p; Ep,. Note that pEp and aEb,bEc = aFEc.
Part (1) claims that the relation p ~ p’ < 3q : pEgAp’' Eq is an equivalence relation.
A simple formal argument, using the properties of E above shows that it suffices

to prove p3Ep1, p3Eps = p1 ~ p2. Thus suppose that we are given a commutative
diagram

Y

oI
asi

X Loy, 2y

\ l’asz
f2 52

Ys
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with s; € S. First we apply LMS2 to get a commutative diagram

Sli S34
N

a

Y, u_ Y,

with s34 € S. Then we have s34 0 s3 = a14 0 a3y o s3. Hence by LMS3 there exists
a morphism s4q : Yy — Y/, s44 € S such that s4q 0 s34 = S44 0 a14 © az;. Hence
after replacing Yy by Y}, a4 by S44 0 a14, and s34 by S44 0 s34 we may assume that
$34 = a14 0 az1. Next, we apply LMS2 to get a commutative diagram

—_—
Ys /=Y,

asz2 \L S45
\

Y,

with s45 € S. Thus we obtain a pair ps = (s45 0 834 0 f3 : X — V5,845 0 834 053 :
Y — Y5) and the morphisms s45 0 a4 : Y1 — Y5 and ag5 : Yo — Y5 show that
indeed p; Eps and ps Eps as desired.

Proof of (2). Let p=(f: X = Y',s: Y =Y )andq=(9: Y = Z't: Z = 7Z')
be pairs as in the definition of composition above. To compose we have to choose
a diagram

y 2.7

y' 27,
We first show that the equivalence class of the pair ro = (hoof : X — Zy, ugot : Z —
Z5) is independent of the choice of (Zs, ha,us2). Namely, suppose that (Zs, hs, us)
is another choice with corresponding composition r3 = (hzo f : X — Z3,ugot:
Z — Z3). Then by LMS2 we can choose a diagram

ZI?SZ‘g

u2 l \LUSA
h

Zy —2> 7,

with usq € S. Hence we obtain a pair rq4 = (hggohgo f : X — Zy,uggougot: Z —
Z4) and the morphisms hoy : Z5 — Z4 and usgy : Z3 — Z4 show that we have roFEry
and r3Ery as desired. Thus it now makes sense to define p o ¢ as the equivalence
class of all possible pairs r obtained as above.

To finish the proof of (2) we have to show that given pairs p1, p2, ¢ such that p; Ep,
then py og = poog and gop; = qopy whenever the compositions make sense. To do
this, write p1 = (f1 : X = Y1,81: Y =2 Y)and po = (fo : X — Ya,82: Y = Y5)
and let a : Y1 — Y5 be a morphism of C such that fo = ao f; and sy = a o s3.
First assume that g = (¢: Y — Z',¢t: Z — Z'). In this case choose a commutative
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diagram as the one on the left

g9 g9

Y —= 7' Y —= 7'
szl lu = sll lu
h 7" hoa 7

Y, e 7 y, e 7

which implies the diagram on the right is commutative as well. Using these diagrams
we see that both compositions are the equivalence class of (hoao f; : X — Z" uot :
Z — Z"). Thus p1 o g = ps 0 q. The proof of the other case, in which we have to
show q o p; = q o po, is omitted.

Proof of (3). We have to prove associativity of composition. Consider a solid
diagram

XHY/ >Z/l

T

W XI - Y/I - Z/I/

which gives rise to three composable pairs. Using LMS2 we can choose the dotted
arrows making the squares commutative and such that the vertical arrows are in
S. Then it is clear that the composition of the three pairs is the equivalence class
of the pair (W — Z"',Z — Z'") gotten by composing the horizontal arrows on the
bottom row and the vertical arrows on the right column. (]

We can “write any finite collection of morphisms with the same target as fractions
with common denominator”.

Lemma 25.3. Let C be a category and let S be a left multiplicative system of
morphisms of C. Given any finite collection g; : X; — Y of morphisms of S~'C
we can find an element s :' Y — Y' of S and f; : X; — Y’ such that g; is the
equivalence class of the pair (f; : X; = Y',s: Y = Y').

Proof. For each i choose a representative (X; — Y;,s; : Y — Y;). The lemma
follows if we can find a morphism s : Y — Y’ in S such that for each ¢ there is a
morphism a; : Y; — Y’ with a; o s; = 5. If we have two indices ¢ = 1,2, then we
can do this by completing the square

SI\L \Ltz
Vi sy’

with to € S as is possible by Definition Then s = t5 0 59 € S works. If we
have n > 2 morphisms, then we use the above trick to reduce to the case of n — 1
morphisms, and we win by induction. [
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There is an easy characterization of equality of morphisms if they have the same
denominator.

Lemma 25.4. Let C be a category and let S be a left multiplicative system of
morphisms of C. Let A, B : X — Y be morphisms of S™1C which are the equivalence
classes of (f : X =Y s: Y =>Y)Yand (g: X - Y',s:Y = Y’'). Then A= B
if and only if there exists a morphism a : Y' — Y" with aos € S and such that
aof=aog.

Proof. The equality of A and B means that there exists a commutative diagram

YI

JU X

Y/
with ¢ € S. In particular uos = vos. Hence by LMS3 there existsa s’ : Z — Y in
S such that s’ ou = s’ ov. Setting a equal to this common value does the job. O

Remark| 25.5. Let C be a category. Let S be a left multiplicative system. Given
an object Y of C we denote Y/S the category whose objects are s : Y — Y’ with
s € S and whose morphisms are commutative diagrams

Y
SN
Y/ a Y//

where a : Y/ — Y is arbitrary. We claim that the category Y/S is filtered (see
Definition [19.1)). Namely, LMS1 implies that idy : ¥ — Y is in Y/S hence Y/S is
nonempty. LMS2 implies that given s; : Y — Y7 and s3 : Y — Y5 we can find a
diagram

Y T> Y2

Vi —>Y;
with ¢t € S. Hence 51 : Y — Y] and s3 : Y — Y; both map totosy : Y — Y3 in
Y/S. Finally, given two morphisms a,b from s1 : Y - Y3 to so: Y — Yo in Y/S
we see that a o s1 = bo sy hence by LMS3 there exists a ¢t : Y2 — Y3 such that
toa =tob. Now the combined results of Lemmas 25.3] and 25.4] tell us that

(25.5.1) Morg-1¢(X,Y) = colim(s.y_y)ey,s More(X,Y”)
This formula expressing morphism sets in S~'C as a filtered colimit of morphism

sets in C is occasionally useful.

Lemma 25.6. Let C be a category and let S be a left multiplicative system of
morphisms of C.
(1) Therules X —w X and (f : X =2 Y)= (f: X = Y,idy : Y = Y) define a
functor Q : C — S~1C.
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(2) For any s € S the morphism Q(s) is an isomorphism in S™'C.
(3) If G : C — D is any functor such that G(s) is invertible for every s € S,
then there exists a unique functor H : S~'C — D such that H o Q = G.

Proof. Parts (1) and (2) are clear. To see (3) just set H(X) = G(X) and set
H(f: X =Y s:Y =5Y’')=G(s)"' o G(f). Details omitted. O

Lemmal 25.7. Let C be a category and let S be a left multiplicative system of
morphisms of C. The localization functor Q : C — S™'C commutes with finite
colimits.

Proof. This is clear from (25.5.1]), Remark and Lemma [14.9] O

Lemmal 25.8. Let C be a category. Let S be a left multiplicative system. If f :
X =Y, f: X' =Y’ are two morphisms of C and if

QX) —=Q(X")

Q(f)l \LQ(JH)
b
QYY) ——= Q")
is a commutative diagram in ST1C, then there exists a morphism f" : X" —Y" in
C and a commutative diagram

XHXN%X/

g s
fl J{f” if’
t

YHYN%Y,
in C with s,t € S and a = s g, b=1t"1h.

Proof. We choose maps and objects in the following way: First write a = s~ g for
some s: X' — X" inSand g: X - X”. By LMS2 we can find ¢t : Y’ - Y” in §
and f”: X" — Y" such that

XH'XN%X/

g S
fl J{f” if/
Yy Y//(tiyl

commutes. Now in this diagram we are going to repeatedly change our choice of
x" Iy Ly

by postcomposing both ¢ and f” by a morphism d : Y — Y'” with the property
that dot € S. According to Remark we may after such a replacement assume
that there exists a morphism h : Y — Y such that b = ¢t ~'h. At this point we have
everything as in the lemma except that we don’t know that the left square of the
diagram commutes. However, we do know that Q(f"g) = Q(hf) in S~'D because
the right square commutes, the outer square commutes in S~'D by assumption,
and because Q(s),Q(t) are isomorphisms. Hence using Lemma we can find a
morphism d : Y” — Y in S (!) such that df”g = dhf. Hence we make one more
replacement of the kind described above and we win. ([
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Right calculus of fractions. Let C be a category and let S be a right multiplica-
tive system. We define a new category S™1C as follows (we verify this works in the

proof of Lemma :

(1) We set Ob(S~1C) = Ob(C).

(2) Morphisms X — Y of S7!C are given by pairs (f : X' — V,s: X' — X)
with s € S up to equivalence. (Think of this as fs~!: X — Y.)

(3) Two pairs (f1 : X1 = Y,s1: X7 = X) and (fa: Xo = Y, 82 : Xo = X) are
said to be equivalent if there exists a third pair (f3 : X3 — Y, s3 : X3 — X)
and morphisms v : X3 — X; and v : X3 — X, of C fitting into the
commutative diagram

X

(4) The composition of the equivalence classes of the pairs (f : X' — Y,s :
X' - X)and (¢9: Y — Z,t : Y = Y) is defined as the equivalence class
of a pair (goh: X" — Z,sou: X" — X) where h and u € S are chosen
to fit into a commutative diagram

X h y!

ui lt
, f
X ——Y

which exists by assumption.

Lemmal 25.9. Let C be a category and let S be a right multiplicative system.

e relation on pairs defined above is an equivalence relation.
1) The relati s d d ab ' jval lati
e composition rule given above is well defined on equivalence classes.
2) Th it le gi b ] ld d iwal l
(3) Composition is associative and hence S™1C is a category.

Proof. This lemma is dual to Lemma It follows formally from that lemma by
replacing C by its opposite category in which S is a left multiplicative system. [

We can “write any finite collection of morphisms with the same source as fractions
with common denominator”.

Lemmal 25.10. Let C be a category and let S be a right multiplicative system of
morphisms of C. Given any finite collection g; : X — Y; of morphisms of S~'C
we can find an element s : X' — X of S and f; : X' — Y; such that g; is the
equivalence class of the pair (f; : X' = Y;,s: X' — X).

Proof. This lemma is the dual of Lemma [25.3] and follows formally from that
lemma by replacing all categories in sight by their opposites. O

There is an easy characterization of equality of morphisms if they have the same
denominator.
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Lemma 25.11. Let C be a category and let S be a right multiplicative system of
morphisms of C. Let A, B : X — Y be morphisms of S™1C which are the equivalence
classes of (f : X' = YV,s: X' =5 X)and (9: X' = Y,s: X' =5 X). Then A= B
if and only if there exists a morphism a : X" — X' with soa € S and such that
foa=goa.

Proof. This is dual to Lemma 25.4] O

Remark|25.12. Let C be a category. Let S be a right multiplicative system. Given
an object X of C we denote S/X the category whose objects are s : X’ — X with
s € S and whose morphisms are commutative diagrams

X//
DN
X

where a : X' — X" is arbitrary. The category S/X is cofiltered (see Definition
20.1)). (This is dual to the corresponding statement in Remark [25.5]) Now the
combined results of Lemmas 25.10 and R5.11] tell us that

X/

(25121) Mors—lc(X, Y) = COlim(S:X/ﬁX)e(S/X)opp 1\/1011'0()(/7 Y)

This formula expressing morphisms in S~!C as a filtered colimit of morphisms in C
is occasionally useful.

Lemma 25.13. Let C be a category and let S be a right multiplicative system of
morphisms of C.

(1) Therules X = X and (f : X =>Y)— (f: X = Y,idx : X — X) define a
functor Q : C — S~1C.

(2) For any s € S the morphism Q(s) is an isomorphism in S™1C.

(3) If G : C — D is any functor such that G(s) is invertible for every s € S,
then there exists a unique functor H : ST'C — D such that Ho Q = G.

Proof. This lemma is the dual of Lemma [25.6] and follows formally from that
lemma by replacing all categories in sight by their opposites. O

Lemma 25.14. Let C be a category and let S be a right multiplicative system of
morphisms of C. The localization functor Q : C — S™'C commutes with finite
limits.

Proof. This is clear from (25.12.1]), Remark and Lemma [14.9] O

Lemma 25.15. Let C be a category. Let S be a right multiplicative system. If
f: X =Y, f: X' =Y are two morphisms of C and if

QLX) —= Q(X")

Q(f)l J{Q(f/)

b

QYY) —=Q(Y")
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is a commutative diagram in ST'C, then there exists a morphism f" : X" —Y" in
C and a commutative diagram

X%SX//HX/

g
fl lf” if/
YéYI/L>Y/

in C with s,t € S and a = gs~*, b= ht™'.

Proof. This lemma is dual to Lemma but we can also prove it directly as
follows. We choose maps and objects in the following way: First write b = ht ! for
somet:Y"” Y inSand h:Y” —Y'. By RMS2 we can find s : X’/ — X in §
and f” : X" — Y" such that

X ﬁ X// X/

)

Yéyl/*h>yl

commutes. Now in this diagram we are going to repeatedly change our choice of
x & xr Ly

by precomposing both s and f” by a morphism d : X" — X" with the property
that s od € S. According to Remark we may after such a replacement
assume that there exists a morphism g : X" — X’ such that a = gs~!. At this
point we have everything as in the lemma except that we don’t know that the right
square of the diagram commutes. However, we do know that Q(f'g) = Q(hf") in
S~1D because the left square commutes, the outer square commutes in S~'D by
assumption, and because Q(s), Q(t) are isomorphisms. Hence using Lemma [25.11

we can find a morphism d : X" — X" in S (!) such that f'gd = hf”d. Hence we
make one more replacement of the kind described above and we win. O

Multiplicative systems and two sided calculus of fractions. If S is a multi-
plicative system then left and right calculus of fractions given canonically isomor-
phic categories.

Lemma 25.16. Let C be a category and let S be a multiplicative system. The
category of left fractions and the category of right fractions S™'C are canonically
isomorphic.

Proof. Denote Cjcs¢, Crign: the two categories of fractions. By the universal proper-
ties of Lemmas [25.6) and [25.13] we obtain functors Ciefs — Cright and Cright — Cie -
By the uniqueness of these functors they are each others inverse. O

Definition 25.17. Let C be a category and let S be a multiplicative system. We
say S is saturated if, in addition to MS1, MS2, MS3 we also have

MS4 Given three composable morphisms f, g, h, if fg,gh € S, then g € S.

Note that a saturated multiplicative system contains all isomorphisms. Moreover, if
f, g, h are composable morphisms in a category and fg, gh are isomorphisms, then
¢ is an isomorphism (because then g has both a left and a right inverse, hence is
invertible).


http://localhost:8080/tag/04VL
http://localhost:8080/tag/05Q8

CATEGORIES 41

Lemmal 25.18. Let C be a category and let S be a multiplicative system. Denote
Q : C — S~IC the localization functor. The set

S = {f € Arrows(C) | Q(f) is an isomorphism}
is equal to
S" = {f € Arrows(C) | there exist g, h such that gf, fh € S}

and is the smallest saturated multiplicative system containing S. In particular, if
S is saturated, then S = S.

Proof. It is clear that S C S’ C S because elements of S’ map to morphisms in
S~1C which have both left and right inverses. Note that S’ satisfies MS4, and that
S satisfies MS1. Next, we prove that S’ = S.

Let f € S. Let s71g = ht~! be the inverse morphism in S~1C. (We may use both
left fractions and right fractions to describe morphisms in S~!C, see Lemma[25.16})
The relation idx = s~ !gf in S~1C means there exists a commutative diagram

X/
gf J{u\
x_ Ioxr s oy
idX TU idX
X

for some morphisms f’,u,v and s’ € S. Hence ugf = s’ € S. Similarly, using that
idy = fht~! one proves that fhw € S for some w. We conclude that f € S’. Thus
S’ = §. Provided we prove that S’ = Sis a multiplicative system it is now clear
that this implies that S’ = S is the smallest saturated system containing S.

Our remarks above take care of MS1 and MS4, so to finish the proof of the lemma
we have to showAthat LMS2, RMS2, LMS3, RMS3 hold for S. Let us check that
LMS2 holds for S. Suppose we have a solid diagram

t\L s
Y
Z f>W

with ¢ € S. Pick a morphism a : Z — Z’ such that at € S. Then we can use LMS2
for S to find a commutative diagram

X ——Y

7 ——W
and setting f = f’ oa we win. The proof of RMS2 is dual to this. Finally, suppose

given a pair of morphisms f,g: X — Y and t € S with target X such that ft = gt.
Then we pick a morphism b such that tb € S. Then ftb = gtb which implies by
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LMS3 for S that there exists an s € .S with source Y such that sf = sg as desired.
The proof of RMS3 is dual to this. ([

26. Formal properties

In this section we discuss some formal properties of the 2-category of categories.
This will lead us to the definition of a (strict) 2-category later.

Let us denote Ob(Cat) the class of all categories. For every pair of categories
A, B € Ob(Cat) we have the “small” category of functors Fun(A, B). Composition
of transformation of functors such as

F
— |
A————= B composes to A {tot’ — B
~__ Y 7
F

is called wvertical composition. We will use the usual symbol o for this. Next, we
will define horizontal composition. In order to do this we explain a bit more of the
structure at hand.

Namely for every triple of categories A, B, and C there is a composition law
o: Ob(Fun(B,C)) x Ob(Fun(A, B)) — Ob(Fun(A,C))

coming from composition of functors. This composition law is associative, and
identity functors act as units. In other words — forgetting about transformations of
functors — we see that Cat forms a category. How does this structure interact with
the morphisms between functors?

Well, given t : F' — I’ a transformation of functors ), F’ : A — B and a functor
G : B — C we can define a transformation of functors Go FF — G o F'. We
will denote this transformation gt. It is given by the formula (gt), = G(t) :
G(F(z)) — G(F'(x)) for all x € A. In this way composition with G becomes a
functor

Fun(A, B) — Fun(A4,C).

To see this you just have to check that ¢(idr) = idgor and that g (t10t2) = gtioats.
Of course we also have that iq ,t = .

Similarly, given s : G — G’ a transformation of functors G,G’ : B — C and
F : A — B afunctor we can define sr to be the transformation of functors Go F' —
G' o F given by (sp)e = sp(z) : G(F(x)) = G'(F(x)) for all z € A. In this way
composition with F' becomes a functor

Fun(B,C) — Fun(A,C).

To see this you just have to check that (idg)r = idgor and that (sq o so)p =
s1,F 0 S, . Of course we also have that siq, = s.

These constructions satisfy the additional properties

G1(Gat) = GroGoty (8P )R, = SFory, and g(srp) = (us)F
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whenever these make sense. Finally, given functors F, F' : A — B, and G,G :
B — C and transformations ¢ : F' — F’, and s : G — G’ the following diagram is
commutative

GoF—S'~GoF

G’OF*?G’OF’

G
in other words g/t o sp = spr o gt. To prove this we just consider what happens on
any object © € Ob(A):

G(F(z) 221 G(F/(2)

SF(z)l iSF’m)

GI(F(2)) 5 6 (F (@)

which is commutative because s is a transformation of functors. This compatibility
relation allows us to define horizontal composition.

Definition 26.1. Given a diagram as in the left hand side of:

F G GoF

T . T
ATd B Yo € ives AT e
F’ el G'oF’

we define the horizontal composition s x t to be the transformation of functors
g'tosp = sprogt.

Now we see that we may recover our previously constructed transformations gt and
sp as gt =idg *t and sp = s xidp. Furthermore, all of the rules we found above
are consequences of the properties stated in the lemma that follows.

Lemma 26.2. The horizontal and vertical compositions have the following proper-
ties
(1) o and % are associative,
(2) the identity transformations idp are units for o,
(3) the identity transformations of the identity functors id,q, are units for x
and o, and
(4) given a diagram

F G

AmBm

yald ledd

C

we have (s' 0 8)x (t' ot) = (s’ xt') o (sxt).

Proof. The last statement turns using our previous notation into the following
equation

s ogt osprogt= (s os)pnog(t ot).
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According to our result above applied to the middle composition we may rewrite
the left hand side as s, o sp» o ¢t’ o ¢t which is easily shown to be equal to the
right hand side. O

Another way of formulating condition (4) of the lemma is that composition of
functors and horizontal composition of transformation of functors gives rise to a
functor

(0, %) : Fun(B,C) x Fun(A, B) — Fun(A4,C)

whose source is the product category, see Definition [2.20

27. 2-categories

We will give a definition of (strict) 2-categories as they appear in the setting of
stacks. Before you read this take a look at Section [26] and Example Basically,
you take this example and you write out all the rules satisfied by the objects,
1-morphisms and 2-morphisms in that example.

Definition 27.1. A (strict) 2-category C consists of the following data

(1) A set of objects Ob(C).

(2) For each pair z,y € Ob(C) a category Morc(z,y). The objects of More(z, y)
will be called 1-morphisms and denoted F' : x — y. The morphisms between
these 1-morphisms will be called 2-morphisms and denoted t : F/ — F. The
composition of 2-morphisms in Mor¢(x,y) will be called vertical composi-
tion and will be denoted tot' for t: F’ — F and t' : I — F".

(3) For each triple x,y,z € Ob(C) a functor

(o, %) : More(y, 2) X More(x,y) — More(z, 2).

The image of the pair of 1-morphisms (F,G) on the left hand side will
be called the composition of F' and G, and denoted F' o G. The image of
the pair of 2-morphisms (¢, s) will be called the horizontal composition and
denoted t * s.

These data are to satisfy the following rules:

(1) The set of objects together with the set of 1-morphisms endowed with
composition of 1-morphisms forms a category.

(2) Horizontal composition of 2-morphisms is associative.

(3) The identity 2-morphism id;q, of the identity 1-morphism id, is a unit for
horizontal composition.

This is obviously not a very pleasant type of object to work with. On the other
hand, there are lots of examples where it is quite clear how you work with it. The
only example we have so far is that of the 2-category whose objects are a given
collection of categories, 1-morphisms are functors between these categories, and
2-morphisms are natural transformations of functors, see Section [26] As far as this
text is concerned all 2-categories will be sub 2-categories of this example. Here is
what it means to be a sub 2-category.

Definition 27.2. Let C be a 2-category. A sub 2-category C' of C, is given by a
subset Ob(C’) of Ob(C) and sub categories More: (z,y) of the categories More (z, y)
for all z,y € Ob(C’) such that these, together with the operations o (composition 1-
morphisms), o (vertical composition 2-morphisms), and x (horizontal composition)
form a 2-category.
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Remark| 27.3. Big 2-categories. In many texts a 2-category is allowed to have a
class of objects (but hopefully a “class of classes” is not allowed). We will allow
these “big” 2-categories as well, but only in the following list of cases (to be updated
as we go along):

(1) The 2-category of categories Cat.

) The (2, 1)-category of categories Cat.

) The 2-category of groupoids Groupoids.

) The (2, 1)-category of groupoids Groupoids.

) The 2-category of fibred categories over a fixed category.

(6) The (2,1)-category of fibred categories over a fixed category.

See Definition Note that in each case the class of objects of the 2-category C is
a proper class, but for all objects z,y € Ob(C) the category Morc(x,y) is “small”
(according to our conventions).

The notion of equivalence of categories that we defined in Section [2| extends to the
more general setting of 2-categories as follows.

Definition 27.4. Two objects x,y of a 2-category are equivalent if there exist 1-
morphisms F' : £ — y and G : y — x such that F' o G is 2-isomorphic to id, and
G o F is 2-isomorphic to id,.

Sometimes we need to say what it means to have a functor from a category into a
2-category.

Definition 27.5. Let A be a category and let C be a 2-category.

(1) A functor from an ordinary category into a 2-category will ignore the 2-
morphisms unless mentioned otherwise. In other words, it will be a “usual”
functor into the category formed out of 2-category by forgetting all the 2-
morphisms.

(2) A weak functor, or a pseudo functor ¢ from A into the 2-category C is given
by the following data

(a) a map ¢ : Ob(A) — Ob(C),

(b) for every pair z,y € Ob(A), and every morphism f : z — y a 1-
morphism ¢(f) : ¢(z) = ¢(y),

(c) for every x € Ob(A) a 2-morphism a : idg ;) — ¢(ids), and

(d) for every pair of composable morphisms f: a2 —y, g:y — zof A a
2-morphism oy : ¢(g o f) — ¢ (g) © P():

These data are subject to the following conditions:

(a) the 2-morphisms o, and ay s are all isomorphisms,

(b) for any morphism f:z — y in A we have aiq, ; = ay xidg(s):

e (f) id o (f)

Y
— — X —
pla) e _wly) v _ely) = elz) s ely)
() #(id) 2 (id,)o0(f)

(c) for any morphism f: 2 — y in A we have oy ;q, = idy(s) * g,
(d) for any triple of composable morphisms f : w — z, g : * — y, and
h:y — z of A we have

(idy(n) * ag,£) © A gof = (g *idy(y)) © Qhog, s
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in other words the following diagram with objects 1-morphisms and
arrows 2-morphisms commutes

@(hogof) p(hog)op(f)

O‘h,,gofi lah’g*idwu)

@(h)op(go f) @(h) o w(g) o p(f)

Again this is not a very workable notion, but it does sometimes come up. There
is a theorem that says that any pseudo-functor is isomorphic to a functor. Finally,
there are the notions of functor between 2-categories, and pseudo functor between
2-categories. This last notion leads us into 3-category territory. We would like to
avoid having to define this at almost any cost!

Qhog, f

idy(nyxag, f

28. (2, 1)-categories

Some 2-categories have the property that all 2-morphisms are isomorphisms. These
will play an important role in the following, and they are easier to work with.

Definition 28.1. A (strict) (2, 1)-category is a 2-category in which all 2-morphisms
are isomorphisms.

Example| 28.2. The 2-category Cat, see Remark can be turned into a (2, 1)-
category by only allowing isomorphisms of functors as 2-morphisms.

In fact, more generally any 2-category C produces a (2,1)-category by consider-
ing the sub 2-category C’ with the same objects and 1-morphisms but whose 2-
morphisms are the invertible 2-morphisms of C. In this situation we will say “let C’
be the (2,1)-category associated to C” or similar. For example, the (2, 1)-category of
groupoids means the 2-category whose objects are groupoids, whose 1-morphisms
are functors and whose 2-morphisms are isomorphisms of functors. Except that
this is a bad example as a transformation between functors between groupoids is
automatically an isomorphism!

Remark| 28.3. Thus there are variants of the construction of Example 28.2 above
where we look at the 2-category of groupoids, or categories fibred in groupoids over
a fixed category, or stacks. And so on.

29. 2-fibre products

In this section we introduce 2-fibre products. Suppose that C is a 2-category. We
say that a diagram

w—>Y

|

r—>=2=z

2-commutes if the two 1-morphisms w — y — z and w — x — z are 2-isomorphic.
In a 2-category it is more natural to ask for 2-commutativity of diagrams than for
actually commuting diagrams. (Indeed, some may say that we should not work with
strict 2-categories at all, and in a “weak” 2-category the notion of a commutative
diagram of 1-morphisms does not even make sense.) Correspondingly the notion of
a fibre product has to be adjusted.
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Let C be a 2-category. Let x,y,2 € Ob(C) and f € Mor¢(x, z) and g € More(y, 2).
In order to define the 2-fibre product of f and g we are going to look at 2-
commutative diagrams

w——>x

a
bl ;
g
y— 2.

Now in the case of categories, the fibre product is a final object in the category of
such diagrams. Correspondingly a 2-fibre product is a final object in a 2-category
(see definition below). The 2-category of 2-commutative diagrams is the 2-category
defined as follows:

(1) Objects are quadruples (w,a,b,®) as above where ¢ is an invertible 2-
morphism ¢ : foa — gob,
(2) 1-morphisms from (w’,a’,V', ¢’) to (w,a,b, p) are given by (k: w' — w,«:
a —aok,B:b — bok) such that
fod ———— foaok

idpxa

dl \Lqﬁ*idk
id

folb [ds*h fobok

is commutative,
(3) given a second 1-morphism (k', o/, ') : (w”,ad”,b",¢") = (W', o/, ', ¢’) the
composition of 1-morphisms is given by the rule

(k,a,B) o (K',a/, ") = (ko k', (axidy) od, (Bxidg) o '),

(4) a 2-morphism between 1-morphisms (k;, a;, 3;), i = 1,2 with the same is
given by a 2-morphism ¢ : k; — ko such that

o —=aok bok, =<——V¥
1 B
\ \Lidaa& idh*él
@2 B2
aoky boks

commute,

(5) vertical composition of 2-morphisms is given by vertical composition of the
morphisms ¢ in C, and

(6) horizontal composition of the diagram

(kg,y,85) (k2,02,82)

is given by the diagram

(k1oky,(a1xid,, Joa) ,(Bl*idk/l YoB))

(w”,a”,b",¢") Jone (w,a,b,9)
(kgoké,(ag*idké)oaz,(ﬂg*idké)oﬁé)
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Note that if C is actually a (2, 1)-category, the morphisms « and S in (2) above
are automatically also isomorphismg In addition the 2-category of 2-commutative
diagrams is also a (2, 1)-category if C is a (2, 1)-category.

Definition 29.1. A final object of a (2,1)-category C is an object = such that

(1) for every y € Ob(C) there is a morphism y — z, and
(2) every two morphisms y — x are isomorphic by a unique 2-morphism.

Likely, in the more general case of 2-categories there are different flavours of final
objects. We do not want to get into this and hence we only define 2-fibre products
in the (2, 1)-case.

Definition 29.2. Let C be a (2, 1)-category. Let x,y,z € Ob(C) and f € Morc(z, 2)
and g € Mor¢(y, z). A 2-fibre product of f and g is a final object in the category of
2-commutative diagrams described above. If a 2-fibre product exists we will denote
it x X, y € Ob(C), and denote the required morphisms p € More(x X, y,x) and
q € Mor¢(x X, y,y) making the diagram

P
TX, Yy —>=2x

iif

Yy—m>=
2-commute and we will denote the given invertible 2-morphism exhibiting this by
Y:fop—goq.
Thus the following universal property holds: for any w € Ob(C) and morphisms

a € More(w,x) and b € More(w,y) with a given 2-isomorphism ¢ : foa — gob
there is a v € More(w, z X, y) making the diagram

2-commute such that for suitable choices of a — poy and b — g o v the diagram

foa—>fopoy

qbi lw*i(l,y

gob——gogqoy
commutes. Moreover -y is unique up to isomorphism. Of course the exact properties

are finer than this. All of the cases of 2-fibre products that we will need later on
come from the following example of 2-fibre products in the 2-category of categories.

Example| 29.3. Let A, B, and C be categories. Let F: A — C and G : B — C be
functors. We define a category A x¢ B as follows:

2In fact it seems in the 2-category case that one could define another 2-category of 2-
commutative diagrams where the direction of the arrows «, [ is reversed, or even where the
direction of only one of them is reversed. This is why we restrict to (2, 1)-categories later on.
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(1) an object of A x¢ B is a triple (4, B, f), where A € Ob(A), B € Ob(B),
and f: F(A) — G(B) is an isomorphism in C,

(2) a morphism (A, B, f) — (A’, B', f') is given by a pair (a,b), where a : A —
A’ is a morphism in A, and b : B — B’ is a morphism in B such that the
diagram

F(A) ——=G(B)

lF(a) iG(b)

(A/ G I
is commutative.

Moreover, we define functors p: A x¢ B — A and ¢ : A x¢ B — B by setting
p(A,B,f)=A4, q(A, B, f)=B

in other words, these are the forgetful functors. We define a transformation of
functors ¢ : F op — G ogq. On the object £ = (A, B, f) it is given by ¢ = f :
F(p(§)) = F(4) = G(B) = G(q(¢))-

Lemma 29.4. In the (2,1)-category of categories 2-fibre products exist and are
given by the construction of Example|29.5,

Proof. Let us check the universal property: let W be a category, let a : W — A
and b : W — B be functors, and let ¢ : F'oa — G ob be an isomorphism of functors.

Consider the functor v : W — A x¢ B given by W — (a(W),b(W),tw ). (Check
this is a functor omitted.) Moreover, consider a : @ — po~y and §:b — qo~y
obtained from the identities p oy = a and g oy = b. Then it is clear that (v, a, )
is a morphism from (W, a,b,t) to (A x¢ B, p,q,v).

Let (k, o/, ") : (W,a,b,t) = (A X¢ B,p,q,%) be a second such morphism. For an
object W of W let us write k(W) = (ax (W), bpy(W), tr, w). Hence p(k(W)) = ar(W)
and so on. The map o' corresponds to functorial maps o : a(W) — ax(W).
Since we are working in the (2, 1)-category of categories, in fact each of the maps
a(W) — ar(W) is an isomorphism. We can use these (and their counterparts
b(W) — bi(W)) to get isomorphisms

ow = y(W) = (a(W),b(W),tw) — (ax(W), bk (W), trew) = k(W).

It is straightforward to show that ¢ defines a 2-isomorphism between v and k in
the 2-category of 2-commutative diagrams as desired. [

Remark| 29.5. Let A, B, and C be categories. Let FF: A - C and G : B — C
be functors. Another, slightly more symmetrical, construction of a 2-fibre product
A x¢ B is as follows. An object is a quintuple (A, B, C,a,b) where A, B,C are
objects of A, B,C and where a : F(A) — C and b : G(B) — C are isomorphisms.
A morphism (A4, B,C,a,b) — (A',B’,C’,d’,V') is given by a triple of morphisms
A— A',B— B',C — C' compatible with the morphisms a, b,a’,b’. We can prove
directly that this leads to a 2-fibre product. However, it is easier to observe that
the functor (4, B,C,a,b) — (A, B,b~! o a) gives an equivalence from the category
of quintuples to the category constructed in Example
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Lemma 29.6. Let

be a 2-commutative diagram of categories. A choice of isomorphisms a: G o K —
Mol and B: Mo H — F oL determines a morphism

X Xz y — A Xc B
of 2-fibre products associated to this situation.

Proof. Just use the functor
(X,Y,0) — (L(X), K(Y),a5" o M($) o Bx")
on objects and
(a,b) — (L(a), K (b))

on morphisms. O

Lemma 29.7. Assumptions as in Lemma[29.6,

(1) If K and L are faithful then the morphism X xz Y — A X¢ B is faithful.

(2) If K and L are fully faithful and M is faithful then the morphism X xz) —
A x¢ B is fully faithful.

(3) If K and L are equivalences and M s fully faithful then the morphism
X xzY — A xc B is an equivalence.

Proof. Let (X,Y,¢) and (X', Y’, @) be objects of X xz Y. Set Z = H(X) and
identify it with I(Y") via ¢. Also, identify M (Z) with F(L(X)) via ax and identify
M(Z) with G(K(Y)) via By. Similarly for Z’ = H(X') and M(Z’). The map on
morphisms is the map

MOI‘X(X, XI) XMorZ(Z,Z’) MOI'y(Y, YI)

|

Mor 4 (L(X), L(X")) XMore (M (2),Mm(27)) Mors(K(Y), K(Y"))

Hence parts (1) and (2) follow. Moreover, if K and L are equivalences and M is
fully faithful, then any object (A, B, @) is in the essential image for the following
reasons: Pick X, Y such that L(X) = A and K(Y) 2 B. Then the fully faithfulness
of M guarantees that we can find an isomorphism H(X) = I(Y). Some details
omitted. g

N\

Lemma 29.8. Let
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be a diagram of categories and functors. Then there is a canonical isomorphism
(AxpC)xpE 2 Axp(Cxpf)
of categories.
Proof. Just use the functor
((A,C,6), B, ) — (A, (C, E, 1), 6)
if you know what I mean. O

Henceforth we do not write the parentheses when dealing with fibred products of
more than 2 categories.

N\
N A

be a commutative diagram of categories and functors. Then there is a canonical
functor

Lemma 29.9. Let

Prog :AXgC xpE — AXr€&
of categories.
Proof. If we write AXxpC xp & as (A xpC) xp & then we can just use the functor
((A,C,0),E,¢) — (A, E,G(¢) o F(¢))
if you know what I mean. ]
Lemmal 29.10. Let
A= B+ C+D
be a diagram of categories and functors. Then there is a canonical isomorphism
AxgCxeD=2AxgD
of categories.

Proof. Omitted. O

We claim that this means you can work with these 2-fibre products just like with
ordinary fibre products. Here are some further lemmas that actually come up later.

Lemma 29.11. Let

Cg———S§

A

61XC2%SXS

be a 2-fibre product of categories. Then there is a canonical isomorphism C3 =2
C1 XG,,5,G, Ca.
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Proof. We may assume that Cs is the category (C; X C2) Xsxs S constructed in
Example m Hence an object is a triple ((X1,X3),S,¢) where ¢ = (¢1,¢2) :
(G1(X1),G2(X2)) — (S,9) is an isomorphism. Thus we can associate to this the
triple (X1, X2, d2 0 ¢7'). Conversely, if (X7, X2,1) is an object of C; x@,.s.¢, Ca,
then we can associate to this the triple ((X1, X2), G1(X1), (ide, (x,),¥)). We claim
these constructions given mutually inverse functors. We omit describing how to
deal with morphisms and show they are mutually inverse. ]

Lemma 29.12. Let

C'——S§

|
G1><G2

C——=5xS8
be a 2-fibre product of categories. Then there is a canonical isomorphism
C' = (C X61.5,6: C) X (pg).cxc,a C-

Proof. An object of the right hand side is given by ((C4,Cs, ¢),Cs, 1) where ¢ :
G1(C1) = G3(C9) is an isomorphism and 9 = (¢1,12) : (C1,C2) — (C3,C3) is an
isomorphism. Hence we can associate to this the triple (C5, G1(C1), (G4 (wfl), v lo
Go(y 1)) which is an object of C’. Details omitted. O

Lemmal 29.13. Let A — C, B — C and C — D be functors between categories.
Then the diagram
A Xc B——A XD B

e

C—2.cxpC

s a 2-fibre product diagram.

Proof. Omitted. O
Lemma 29.14. Let

u

X

be a 2-fibre product. Then the diagram
U——s-Uxyl

.

XHXX)}X

R

L—x

R

is 2-cartesian.

Proof. This is a purely 2-category theoretic statement, valid in any (2, 1)-category
with 2-fibre products. Explicitly, it follows from the following chain of equivalences:
X X(Xx);./'\f‘) (L{ Xy U) =X X(XxyX) ((X Xy V) Xy (X Xy V))
=X X (X xyX) (X Xy X Xy V)

=X Xy v=Uu
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see Lemmas [29.8] and [29.10 O

30. Categories over categories

In this section we have a functor p: & — C. We think of S as being on top and of
C as being at the bottom. To make sure that everybody knows what we are talking
about we define the 2-category of categories over C.

Definition 30.1. Let C be a category. The 2-category of categories over C is the
sub 2-category of Cat defined as follows:
(1) Its objects will be functors p: & — C.
(2) Tts l-morphisms (S,p) — (§’,p’) will be functors G : § — &’ such that
p oG =np.
(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p’(t,) = id,) for all z € Ob(S).
In this situation we will denote
Morcm/c (S, S/)
the category of 1-morphisms between (S, p) and (S',p’)
Since we have defined this as a sub 2-category of Cat we do not have to check any

of the axioms. Rather we just have to check things such as “vertical composition
of 2-morphisms over C gives another 2-morphism over C”. This is clear.

Analogously to the fibre of a map of spaces, we have the notion of a fibre category,
and some notions of lifting associated to this situation.

Definition 30.2. Let C be a category. Let p: § — C be a category over C.
(1) The fibre category over an object U € Ob(C) is the category Sy with objects

Ob(Sy) = {z € Ob(S) : p(x) = U}
and morphisms

Mors, (z,y) = {¢ € Mors(z,y) : p(¢) = idy}.
(2) A lift of an object U € Ob(C) is an object z € Ob(S) such that p(x) = U,
ie., x € Ob(Sy). We will also sometime say that x lies over U.
(3) Similarly, a lift of a morphism f:V — U in C is a morphism ¢ : y — x in
S such that p(¢) = f. We sometimes say that ¢ lies over f.

There are some observations we could make here. For example if F' : (S,p) —
(8',p) is a 1I-morphism of categories over C, then F' induces functors of fibre cate-
gories F': Sy — S(;. Similarly for 2-morphisms.

Here is the obligatory lemma describing the 2-fibre product in the (2, 1)-category
of categories over C.

Lemma 30.3. Let C be a category. The (2,1)-category of categories over C has 2-
fibre products. Suppose that F': X — S and G : Y — S are morphisms of categories
over C. An explicit 2-fibre product X xg Y is given by the following description
(1) an object of X xs Y is a quadruple (U,z,y, f), where U € Ob(C), x €
Ob(Xy), y € Ob(Vy), and f : F(x) = G(y) is an isomorphism in Sy,
(2) a morphism (U,x,y, f) — (U, 2',y', f") is given by a pair (a,b), where
a:x — ' is a morphism in X, and b : y — vy is a morphism in Y such
that
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(a) a and b induce the same morphism U — U’, and
(b) the diagram

F(z) —— G(y)

lF(a) G(b)
F(') —G(y)
18 commutative.
The functorsp: X xgY — X and q: X xgY — Y are the forgetful functors in this
case. The transformation ¥ : F op — G o q is given on the object & = (U, x,y, f)

by e = f: F(p(§)) = F(z) — G(y) = G(q(§))-

Proof. Let us check the universal property: let pyy : W — C be a category over
C,let X : W —> X and Y : W — )Y be functors over C, and let t : Fo X — GoY
be an isomorphism of functors over C. The desired functor v : W — X xg Y is
given by W — (pyy (W), X (W), Y (W), tw ). Details omitted; compare with Lemma
29.4! ([l

Lemmal 30.4. Let C be a category. Let f: X — S and g : Y — S be morphisms
of categories over C. For any object U of C we have the following identity of fibre
categories

(X xs )y = Xu xsy Vu
Proof. Omitted. (]

31. Fibred categories
A very brief discussion of fibred categories is warranted.

Let p : S — C be a category over C. Given an object x € S with p(z) = U, and
given a morphism f : V — U, we can try to take some kind of “fibre product
V xy ” (or a base change of x via V' — U). Namely, a morphism from an object
z € S into “V xya” should be given by a pair (p,g), where p : z = z, g : p(z) = V
such that p(¢) = f o g. Pictorially:

z ?——>=

SRR

p(z) —=V —U

If such a morphism V Xy © — z exists then it is called a strongly cartesian mor-
phism.

Definition 31.1. Let C be a category. Let p : S — C be a category over C. A
strongly cartesian morphism, or more precisely a strongly C-cartesian morphism is
a morphism ¢ : y — x of S such that for every z € Ob(S) the map

MOI‘S(Za y) — MOI‘S (Z7 q,‘) X More (p(2),p(z)) MOI‘C (p(z)ap(y))v
given by ¥ — (p o, p(v))) is bijective.

Note that by the Yoneda Lemma given z € Ob(S) lying over U € Ob(C) and
the morphism f: V — U of C, if there is a strongly cartesian morphism ¢ : y — x
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with p(¢) = f, then (y, ) is unique up to unique isomorphism. This is clear from
the definition above, as the functor

z — Mors (2, ) XMore (p(2),v) More(p(2), V')

only depends on the data (z,U, f : V — U). Hence we will sometimes use V xyz —
x or f*r — x to denote a strongly cartesian morphism which is a lift of f.

Lemma 31.2. Let C be a category. Let p: S — C be a category over C.

(1) The composition of two strongly cartesian morphisms is strongly cartesian.

(2) Any isomorphism of S is strongly cartesian.

(3) Any strongly cartesian morphism ¢ such that p(p) is an isomorphism, is
an isomorphism.

Proof. Proof of (1). Let ¢ : y — x and ¢ : z — y be strongly cartesian. Let t be
an arbitrary object of S. Then we have

Mors(t, 2)

= Mors (, ) XMorc (p(t).p(y)) More (p(t), p(2))

= Mors(t, ) XMore (p(t).p()) MOTe (P(£), D(Y)) XMore (p(0),p(y)) More(p(1), p(2))
= Mors(t, ) XMore (p(t),p(z)) More(p(t), p(2))

hence z — x is strongly cartesian.

Proof of (2). Let y — = be an isomorphism. Then p(y) — p(z) is an isomor-
phism too. Hence More(p(2),p(y)) — More(p(z),p(x)) is a bijection. Hence
Mors(z, %) XMore (p(2),p(z)) More(p(2), p(y)) is bijective to Mors(z,x). Hence the
displayed map of Definition [31.1]is a bijection as y — « is an isomorphism, and we
conclude that y — x is strongly cartesian.

Proof of (3). Assume ¢ : y — x is strongly cartesian with p(¢) : p(y) — p(z) an
isomorphism. Applying the definition with z = z shows that (id., p(¢)~!) comes
from a unique morphism y : z — y. We omit the verification that y is the inverse
of . O

Lemmal 31.3. Let F : A — B and G : B — C be composable functors between
categories. Let x — y be a morphism of A. If x — y is strongly B-cartesian and
F(x) — F(y) is strongly C-cartesian, then x — y is strongly C-cartesian.

Proof. This follows directly from the definition. ([l

Lemma 31.4. Let C be a category. Let p: S — C be a category over C. Let x — y
and z — y be morphisms of S. Assume

(1) x — y s strongly cartesian,

(2) p(x) Xp(y) p(2) exists, and
(3) there emists a strongly cartesian morphism a : w — z in S with p(w) =

p(x) Xpy) P(2) and p(a) = pry : p(x) Xpy) P(2) = p(2).

Then the fibre product x X, z exists and is isomorphic to w.
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Proof. Since z — y is strongly cartesian there exists a unique morphism b: w — z
such that p(b) = pr;. To see that w is the fibre product we compute
Mors (¢, w)
w))

= Mors(t, 2) X More (p(t),p(2)) More (p(t), (
) XMore (p(t).p(2)) (More(p(t), P(2)) XMore (p(t).p(v)) More (p(t), p(2)))
) XMore (p(t).p(v)) More (p(t), p(z))
%) XMors (t,) MOTS (£ Y) XMore (p(1),p(y)) More (p(t), p(2))
t,2) XMorg (t,y) Mors(t, x)

= Mors(t, 2

t
= Morgs(t, z
= Morg(t

~~ ~ —~

= Morg

as desired. The first equality holds because a : w — z is strongly cartesian and the
last equality holds because x — y is strongly cartesian. O

Definition 31.5. Let C be a category. Let p: & — C be a category over C. We
say S is a fibred category over C if given any x € Ob(S) lying over U € Ob(C) and
any morphism f : V — U of C, there exists a strongly cartesian morphism f*z — z
lying over f.

Assume p : § — C is a fibred category. For every f : V — U and z € Ob(Sy)
as in the definition we may choose a strongly cartesian morphism f*z — z lying
over f. By the axiom of choice we may choose f*x — z for all f:V — U = p(x)
simultaneously. We claim that for every morphism ¢ : x — 2’ in Sy and f: V — U
there is a unique morphism f*¢ : f*x — f*z’ in Sy such that

f*:L, f*x/

l e l
T ——sq

commutes. Namely, the arrow exists and is unique because f*z’ — 2’ is strongly
cartesian. The uniqueness of this arrow guarantees that f* (now also defined on
morphisms) is a functor f*: Sy — Sy.

Definition 31.6. Assume p: S — C is a fibred category.

(1) A choice of pullbackaﬂ for p : & — C is given by a choice of a strongly
cartesian morphism f*x — z lying over f for any morphism f : V — U of
C and any = € Ob(Sy).

(2) Given a choice of pullbacks, for any morphism f: V — U of C the functor
f*: Sy = Sy described above is called a pullback functor (associated to
the choices f*zr — x made above).

Of course we may always assume our choice of pullbacks has the property that
idj;z = x, although in practice this is a useless property without imposing further
assumptions on the pullbacks.

Lemmal 31.7. Assume p: S — C is a fibred category. Assume given a choice of
pullbacks forp: S — C.

3This is probably nonstandard terminology. In some texts this is called a “cleavage” but it
conjures up the wrong image. Maybe a “cleaving” would be a better word. A related notion
is that of a “splitting”, but in many texts a “splitting” means a choice of pullbacks such that
g* f* = (f og)* for any composable pair of morphisms. Compare also with Definition


http://localhost:8080/tag/02XM
http://localhost:8080/tag/02XN
http://localhost:8080/tag/02XO

CATEGORIES 57

(1) For any pair of composable morphisms f:V — U, g : W — V there is a
unique isomorphism

ags:(fog) — g of”

as functors Sy — Sw such that for every y € Ob(Sy) the following diagram
commutes

gy ——f"y

(a9>f)yT \L

(fog)'y——>y

(2) If f = idy, then there is a canonical isomorphism ay : id — (idy)* as
functors Sy — Sy .

(3) The quadruple (U — Su, f — f*, aq,5,au) defines a pseudo functor from
COPP o the (2,1)-category of categories, see Definition ,

Proof. In fact, it is clear that the commutative diagram of part (1) uniquely de-
termines the morphism (oy, ), in the fibre category Sw. It is an isomorphism
since both the morphism (f o g)*y — vy and the composition ¢*f*y — f*y — y
are strongly cartesian morphisms lifting f o g (see discussion following Definition
and Lemma . In the same way, since id, : * — x is clearly strongly
cartesian over idy (with U = p(z)) we see that there exists an isomorphism
(av)s : @ = (idy)*z. (Of course we could have assumed beforehand that f*x =«
whenever f is an identity morphism, but it is better for the sake of generality
not to assume this.) We omit the verification that a4y and ay so obtained are
transformations of functors. We also omit the verification of (3). O

Lemma) 31.8. Let C be a category. Let Sy, Sa be categories over C. Suppose that
S1 and Sy are equivalent as categories over C. Then Sy is fibred over C if and only
if So is fibred over C.

Proof. Denote p; : S; — C the given functors. Let F': S — So, G : So — 81 be
functors over C, and let ¢ : F oG — ids,, j : Go F — ids, be isomorphisms of
functors over C. We claim that in this case F' maps strongly cartesian morphisms to
strongly cartesian morphisms. Namely, suppose that ¢ : y — z is strongly cartesian
in 8;. Set f:V — U equal to p1(¢). Suppose that 2’ € Ob(Sy), with W = pa(2),
and we are given g : W — V and ¢’ : 2/ — F(x) such that p2(¢') = f o g. Then

Y=750G0): G — G(F(z)) =«

is a morphism in & with p1(¢)) = f og. Hence by assumption there exists a unique
morphism ¢ : G(2') — y lying over g such that ¢ = ¢ o £. This in turn gives a
morphism

§=Foit:2 = F(G(E)) — F(y)

lying over g with ¢’ = F(p) o ¢’. We omit the verification that £’ is unique. O

The conclusion from Lemma [31.8]is that equivalences map strongly cartesian mor-
phisms to strongly cartesian morphisms. But this may not be the case for an
arbitrary functor between fibred categories over C. Hence we define the 2-category
of fibred categories as follows.
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Definition 31.9. Let C be a category. The 2-category of fibred categories over C
is the sub 2-category of the 2-category of categories over C (see Definition [30.1))
defined as follows:

(1) Its objects will be fibred categories p: S — C.
(2) Its l-morphisms (S,p) — (&’,p’) will be functors G : S — S’ such that
p' o G = p and such that G maps strongly cartesian morphisms to strongly
cartesian morphisms.
(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p’(t,) = id,) for all z € Ob(S).
In this situation we will denote

MOIFib/c(S,S,)
the category of 1-morphisms between (S, p) and (S',p’)

Note the condition on 1-morphisms. Note also that this is a true 2-category and not
a (2, 1)-category. Hence when taking 2-fibre products we first pass to the associated
(2, 1)-category.

Lemma 31.10. Let C be a category. The (2,1)-category of fibred categories over C
has 2-fibre products, and they are described as in Lemma|30.5.

Proof. Basically what one has to show here is that given F : ¥ - Sand G:)Y — S
morphisms of fibred categories over C, then the category X xs ) described in
Lemma is fibred. Let us show that X xg ) has plenty of strongly cartesian
morphisms. Namely, suppose we have (U, x,y, ¢) an object of X Xs). And suppose
f:V = U is a morphism in C. Choose strongly cartesian morphisms a : f*x — =
in X lying over f and b : f*y — y in Y lying over f. By assumption F'(a) and
G(b) are strongly cartesian. Since ¢ : F(x) — G(y) is an isomorphism, by the
uniqueness of strongly cartesian morphisms we find a unique isomorphism f*¢ :
F(f*x) = G(f*y) such that G(b) o f*¢ = ¢ o F(a). In other words (G(a),G(b)) :
(V, f*x, f*y, f*¢) — (U, x,y, $) is a morphism in X xgs ). We omit the verification
that this is a strongly cartesian morphism (and that these are in fact the only
strongly cartesian morphisms). [l

Lemma 31.11. Let C be a category. Let U € Ob(C). Ifp: S — C is a fibred
category and p factors throughp' : S — C/U thenp' : S — C/U is a fibred category.

Proof. Suppose that ¢ : 2’ — z is strongly cartesian with respect to p. We
claim that ¢ is strongly cartesian with respect to p’ also. Set g = p’(¢p), so that
g:V'/U — V/U for some morphisms f:V — U and f': V' — U. Let z € Ob(S).
Set p'(z) = (W — U). To show that ¢ is strongly cartesian for p’ we have to show

MOI‘S(Z7x/) — MOrs(Z,J)) ><Morc/U(W/UJ//U) MorC/U(W/Ua V//U)7

given by ¢ — (v o ¢/, p'(¢")) is bijective. Suppose given an element (¢, h) of
the right hand side, then in particular g o h = p(¢), and by the condition that ¢
is strongly cartesian we get a unique morphism ¢’ : z — 2’ with ¢ = p o4’ and
p(¥') = h. OK, and now p'(¢’) : W/U — V/U is a morphism whose corresponding
map W — V is h, hence equal to h as a morphism in C/U. Thus ¢’ is a unique
morphism z — 2’ which maps to the given pair (¢, h). This proves the claim.

Finally, suppose given g : V' /U — V/U and x with p'(z) = V/U. Sincep: S — C is
a fibred category we see there exists a strongly cartesian morphism ¢ : 2’ — z with
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p(p) = g. By the same argument as above it follows that p'(p) =g : V'/U — V/U.
And as seen above the morphism ¢ is strongly cartesian. Thus the conditions of
Definition B1.5] are satisfied and we win. O

Lemmal 31.12. Let A — B — C be functors between categories. If A is fibred over
B and B is fibred over C, then A is fibred over C.

Proof. This follows from the definitions and Lemma B1.3l O

Lemma 31.13. Let p : S — C be a fibred category. Let x — y and z — y be
morphisms of S with x — y strongly cartesian. If p(x) X, p(2) exists, then x X, 2
exists, p(x Xy z) = p(x) Xpy) P(2), and x X, 2 — 2 is strongly cartesian.

Proof. Pick a strongly cartesian morphism prjz — z lying over pry : p(x) Xp(y)
p(2) — p(z). Then prjz =z x, z by Lemma O]

Lemmal 31.14. Let C be a category. Let ' : X — Y be a 1-morphism of fibred
categories over C. There exist 1-morphisms of fibred categories over C
X_ Xy
w

such that F = v ou and such that
(1) u: X = X is fully faithful,
(2) w s left adjoint to u, and
(3) v: X' = Y is a fibred category.

Proof. Denote p: X — C and ¢ : Y — C the structure functors. We construct
X’ explicitly as follows. An object of X’ is a quadruple (U,z,y, f) where x €
Ob(Xy), y € Ob(Yy) and f : y — F(x) is a morphism in Yy. A morphism
(a,b) : (U,z,y, f) — (U, 2"y, f') is given by a : @ — 2’ and b : y — y with
p(a) = q(b) : U — U’ and such that f'ob= F(a)o f.

Let us make a choice of pullbacks for both p and ¢ and let us use the same notation
to indicate them. Let (U,x,y, f) be an object and let A : V' — U be a morphism.
Consider the morphism ¢ : (V, h*z, h*y,h*f) — (U, z,y, f) coming from the given
strongly cartesian maps h*x — x and h*y — y. We claim c is strongly cartesian in
X’ over C. Namely, suppose we are given an object (W, z’, 4/, f') of X', a morphism
(a,b) : W, 2",y f") = (U,z,y, f) lying over W — U, and a factorization W —
V — U of W — U through h. As h*x — x and h*y — y are strongly cartesian we
obtain morphisms a’ : ' — h*x and V' : ¥/ — h*y lying over the given morphism
W — V. Consider the diagram

y' h*y Yy

f/l h*fl fl
F(z') — F(h*z) — F(z)

The outer rectangle and the right square commute. Since F' is a l-morphism of
fibred categories the morphism F(h*z) — F(z) is strongly cartesian. Hence the
left square commutes by the universal property of strongly cartesian morphisms.
This proves that X’ is fibred over C.

The functor v : X — X’ is given by = — (p(z),x, F(x),id). This is fully faithful.
The functor X’ — Y is given by (U, z,y, f) — y. The functor w : X’ — X is given
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by (U,x,y, f) — x. Each of these functors is a 1-morphism of fibred categories over
C by our description of strongly cartesian morphisms of X’ over C. Adjointness of
w and v means that

Mory (z,2") = Morx/ (U, z,y, f), (p(z'), ', F(2'),id)),
which follows immediately from the definitions.
Finally, we have to show that X’ — ) is a fibred category. Let ¢ : 3y — y be a
morphism in Y and let (U, z,y, f) be an object of X’ lying over y. Set V = ¢(y’) and
let h=yq(c) : V = U. Let a: h*x — z and b : h*y — y be the strongly cartesian
morphisms covering h. Since F' is a 1-morphism of fibred categories we may identify
h*F(z) = F(h*z) with strongly cartesian morphism F'(a) : F(h*z) — F(z). By
the universal property of b : h*y — y there is a morphism ¢’ : y' — h*y in )y such
that ¢ = bo . We claim that

(a” C) : (‘/a h*.’b, y/a h*f ° b/) — (Ua z,Y, f)

is strongly cartesian in X’ over ). To see this let (W, z1,y1, f1) be an object of X",
let (a1,b1) : (W, 21,91, f1) = (U, z,y, f) be a morphism and let by = co ¢y for some
morphism ¢ : y; — 4. Then

(alla Cl) : (W7 Z1,Y1, fl) — (‘/7 h*.’E, y/’ h*f o b/)
(where o} : 1 — h*z is the unique morphism lying over the given morphism
p(a1) = q(b1) : W — V such that a; = a o a}) is the desired morphism. O

32. Inertia
Given fibred categories p : & — C and p’ : &’ — C over a category C and a
1-morphism F : § — &’ we have the diagonal morphism
A=As/s1:S—8Ex%xs' S
in the (2, 1)-category of fibred categories over C.
Lemma 32.1. Let C be a category. Letp : S — C and p' : 8 — C be fibred

categories. Let F: S — &' be a 1-morphism of fibred categories over C. Consider
the category Is,s: over C whose

(1) objects are pairs (x, ) where x € Ob(S) and o : * — x is an automorphism
with F(«) = id,
(2) morphisms (x,a) — (y, 8) are given by morphisms ¢ : © — y such that

xr ——
s Y
¢
T—1y
commutes, and

(3) the functor Is;s — C is given by (z,c) — p(x).
Then

(1) there is an equivalence
Isisr — S XA (Sxg8),0 S

in the (2,1)-category of categories over C, and
(2) Zs/s is a fibred category over C.
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Proof. Note that (2) follows from (1) by Lemma[31.10} Thus it suffices to prove (1).
We will use without further mention the construction of the 2-fibre product from
Lemma In particular an object of S XA (sxg s),a S is a triple (z,y, (¢,x))
where = and y are objects of S, and (¢, k) : (2,2,idpwm)) — (y,¥,idpy,)) is an
isomorphism in § xg/ §. This just means that ¢+, x : © — y are isomorphisms and
that F'(1) = F'(k). Consider the functor

Isjsr — 8 XA (Sx58),08
which to an object (z, ) of the left hand side assigns the object (z,z, (a,id;)) of
the right hand side and to a morphism ¢ of the left hand side assigns the morphism
(¢, ®) of the right hand side. We claim that a quasi-inverse to that morphism is
given by the functor

S XA, (Sxg8),aS —> Isys
which to an object (z,y, (¢, k)) of the left hand side assigns the object (z,x o) of
the right hand side and to a morphism (¢, ¢') : (x,y, (¢, k)) = (2, w, (A, u)) of the
left hand side assigns the morphism ¢. Indeed, the endo-functor of Is s/ induced
by composing the two functors above is the identity on the nose, and the endo-
functor induced on S XA (sx4.5),a S is isomorphic to the identity via the natural
isomorphism

1 —1

ok): (x,x, (k™" ou,idy)) — (x,y, (¢, K)).

Some details omitted. O

(rokr, kol

Definition 32.2. Let C be a category.
(1) Let F: S — &' be a 1-morphism of fibred categories over C. The relative
inertia of S over S’ is the fibred category Zs/s: — C of Lemma m
(2) By the inertia fibred category s of S we mean Zs = Zgc.
Note that there are canonical 1-morphisms
(3221) Is/sr — S and Is — S

of fibred categories over C. In terms of the description of Lemma these simply
map the object (z,«) to the object x and the morphism ¢ : (z,a) — (y, 8) to the
morphism ¢ : x — y. There is also a neutral section

(32.2.2) e:S—TIs/sr and e:8 —1Is

defined by the rules z — (z,id;) and (¢ : * — y) — ¢. This is a right inverse to
(132.2.1). Given a 2-commutative square

S T>52

o | |r

G
S ——=5;

there is a functoriality map
(32.2.3) 151/31 — ISz/Sé and Igl — ISZ
defined by the rules (z,a) — (G(z),G(«)) and ¢ — G(¢). In particular there is

always a comparison map
(32.2.4) Is)sr — ILs

and all the maps above are compatible with this.
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Lemma 32.3. Let F : S — 8’ be a 1-morphism of categories fibred over a category
C. Then the diagram

IS/S/ —)Ig

Fol l32.2.3
S —= Ts
s a 2-fibre product.
Proof. Omitted. O

33. Categories fibred in groupoids

In this section we explain how to think about categories in groupoids and we see
how they are basically the same as functors with values in the (2, 1)-category of
groupoids.

Definition 33.1. We say that S is fibred in groupoids over C if the following two
conditions hold:

(1) For every morphism f : V — U in C and every lift z of U there is a lift
¢y — x of f with target x.

(2) For every pair of morphisms ¢ : y — = and ¢ : z — x and any morphism
f:p(2) — p(y) such that p(¢)o f = p(¢)) there exists a unique lift x : z = y
of f such that ¢ o x = 1.

Condition (2) phrased differently says that applying the functor p gives a bijection
between the sets of dotted arrows in the following commutative diagram below:

31—> x p(Ay) —p(x)
| / 1 /
z p(z)

Another way to think about the second condition is the following. Suppose that
g: W = Voand f:V — U are morphisms in C. Let z € Ob(Sy). By the first
condition we can lift f to ¢ : y — = and then we can lift g to ¢ : z — y. Instead of
doing this two step process we can directly lift g o f to v : 2’ — x. This gives the

9:11 :1 arrows 1n tlle dlf l‘gI am
\
111

—_—y —

x
P p ép
g f U

W—7V-—s

!/

W

(33.1.1)

D NN < — >

where the squiggly arrows represent not morphisms but the functor p. Applying
the second condition to the arrows ¢ o), v and idy we conclude that there is a
unique morphism x : z — 2’ in Sy such that v oy = ¢ o 4. Similarly there is a
unique morphism z’ — 2. The uniqueness implies that the morphisms 2z’ — 2z and
z — 7' are mutually inverse, in other words isomorphisms.
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It should be clear from this discussion that a category fibred in groupoids is very
closely related to a fibred category. Here is the result.

Lemma 33.2. Let p: S — C be a functor. The following are equivalent

(1) p: S = C is a category fibred in groupoids, and

(2) all fibre categories are groupoids and S is a fibred category over C.
Moreover, in this case every morphism of S is strongly cartesian. In addition, given
f*x — x lying over f for all f : V — U = p(x) the data (U — Sy, f — f*, a4, 00)
constructed in Lemma defines a pseudo functor from C°PP in to the (2,1)-
category of groupoids.

Proof. Assume p: § — C is fibred in groupoids. To show all fibre categories Sy
for U € Ob(C) are groupoids, we must exhibit for every f : y — z in Sy an inverse
morphism. The diagram on the left (in Sy) is mapped by p to the diagram on the
right:

f

idy

y——>x U——U
A A

: id, A
T U

Since only idy makes the diagram on the right commute, there is a unique g : © — y
making the diagram on the left commute, so fg = id,. By a similar argument there
is a unique h : y — x so that gh = id,. Then fgh = f :y — x. We have fg = id,,
so h = f. Condition (2) of Definition says exactly that every morphism of S is
strongly cartesian. Hence condition (1) of Definition implies that S is a fibred
category over C.

Conversely, assume all fibre categories are groupoids and S is a fibred category
over C. We have to check conditions (1) and (2) of Definition The first
condition follows trivially. Let ¢ : y — x, ¥ : z — x and f : p(z) — p(y) such
that p(¢) o f = p(v)) be as in condition (2) of Definition Write U = p(z),
V=pl), W=np),pl¢) =9g:V —=U, plt) =h: W — U. Choose a strongly
cartesian g*xr — x lying over g. Then we get a morphism i : y — g*x in Sy, which
is therefore an isomorphism. We also get a morphism j : z — ¢g*x corresponding to
the pair (v, f) as g*x — x is strongly cartesian. Then one checks that x =i~ ! o j
is a solution.

We have seen in the proof of (1) = (2) that every morphism of S is strongly
cartesian. The final statement follows directly from Lemma [31.7] (]

Lemmal 33.3. Let C be a category. Let p: S — C be a fibred category. Let S’ be
the subcategory of S defined as follows
(1) Ob(S") = Ob(S), and
(2) for x,y € Ob(S’) the set of morphisms between x and y in S’ is the set of
of strongly cartesian morphisms between x and y in S.

Let p’ : 8" — C be the restriction of p to S’. Then p’' : 8" — C is fibred in groupoids.

Proof. Note that the construction makes sense since by Lemma the identity
morphism of any object of § is strongly cartesian, and the composition of strongly
cartesian morphisms is strongly cartesian. The first lifting property of Definition
follows from the condition that in a fibred category given any morphism f :


http://localhost:8080/tag/003V
http://localhost:8080/tag/03WQ

64 CATEGORIES

V — U and x lying over U there exists a strongly cartesian morphism ¢ : y — =
lying over f. Let us check the second lifting property of Definition for the
category p’ : 8’ — C over C. To do this we argue as in the discussion following
Definition [33.1] Thus in Diagram the morphisms ¢, 1 and ~ are strongly
cartesian morphisms of §. Hence v and ¢ o are strongly cartesian morphisms of S
lying over the same arrow of C and having the same target in S. By the discussion
following Definition [31.1] this means these two arrows are isomorphic as desired
(here we use also that any isomorphism in § is strongly cartesian, by Lemma
again). O

Example| 33.4. A homomorphism of groups p : G — H gives rise to a functor
p:S — C as in Example This functor p: § — C is fibred in groupoids if and
only if p is surjective. The fibre category Sy over the (unique) object U € Ob(C)
is the category associated to the kernel of p as in Example

Given p : § — C, we can ask: if the fibre category Sy is a groupoid for all U €
Ob(C), must S be fibred in groupoids over C? We can see the answer is no as follows.
Start with a category fibred in groupoids p : & — C. Altering the morphisms in
S which do not map to the identity morphism on some object does not alter the
categories Sy. Hence we can violate the existence and uniqueness conditions on
lifts. One example is the functor from Example|33.4)when G — H is not surjective.
Here is another example.

Example 33.5. Let Ob(C) = {4, B,T} and Morc(A4, B) = {f}, Mor¢(B,T) =
{g}, Morc(A,T) = {h} = {gf}, plus the identity morphism for each object. See
the diagram below for a picture of this category. Now let Ob(S) = {A’, B/, T'}
and Morg(4’, B') =0, Mors(B',T") = {¢'}, Mors(A’,T") = {h’}, plus the identity
morphisms. The functor p : S — C is obvious. Then for every U € Ob(C), Sy
is the category with one object and the identity morphism on that object, so a
groupoid, but the morphism f : A — B cannot be lifted. Similarly, if we declare
Mors(A’, B") = {f1, f5} and Mors (A, T") = {h'} = {¢'fi} = {¢' f5}, then the fibre
categories are the same and f : A — B in the diagram below has two lifts.

/

B L. B .1
A

..‘ aobove

?7‘ % b fT 4—}7‘
A’ A

Later we would like to make assertions such as “any category fibred in groupoids
over C is equivalent to a split one”, or “any category fibred in groupoids whose
fibre categories are setlike is equivalent to a category fibred in sets”. The notion of
equivalence depends on the 2-category we are working with.

Definition 33.6. Let C be a category. The 2-category of categories fibred in
groupoids over C is the sub 2-category of the 2-category of fibred categories over C
(see Definition defined as follows:
(1) Tts objects will be categories p : S — C fibred in groupoids.
(2) Tts l-morphisms (S,p) — (S’,p’) will be functors G : § — &’ such that
p' o G = p (since every morphism is strongly cartesian G automatically
preserves them).
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(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S§',p) will be morphisms
of functors such that p'(t,) = idy(,) for all z € Ob(S).

Note that every 2-morphism is automatically an isomorphism! Hence this is actually
a (2,1)-category and not just a 2-category. Here is the obligatory lemma on 2-fibre
products.

Lemma 33.7. Let C be a category. The 2-category of categories fibred in groupoids
over C has 2-fibre products, and they are described as in Lemma|30.5

Proof. By Lemma the fibre product as described in Lemma |30.3|is a fibred
category. Hence it suffices to prove that the fibre categories are groupoids, see
Lemma [33.2 By Lemma it is enough to show that the 2-fibre product of
groupoids is a groupoid, which is clear (from the construction in Lemma for
example). O

Lemmal 33.8. Let p: S — C and p' : 8’ — C be categories fibred in groupoids, and
suppose that G : S — 8’ is a functor over C.

(1) Then G is faithful (resp. fully faithful, resp. an equivalence) if and only if
for each U € Ob(C) the induced functor Gy : Sy — Sy, is faithful (resp.
fully faithful, resp. an equivalence).

(2) If G is an equivalence, then G is an equivalence in the 2-category of cate-
gories fibred in groupoids over C.

Proof. Let x,y be objects of S lying over the same object U. Consider the com-
mutative diagram

Mors(z,y) Mors/ (G(z),G(y))

Mor¢ (U, U)

From this diagram it is clear that if G is faithful (resp. fully faithful) then so is
each Gyp.

Suppose G is an equivalence. For every object x’ of 8’ there exists an object x
of § such that G(z) is isomorphic to z’. Suppose that 2’ lies over U’ and x lies
over U. Then there is an isomorphism f : U’ — U in C, namely, p’ applied to the
isomorphism 2z’ — G(z). By the axioms of a category fibred in groupoids there
exists an arrow f*xr — x of S lying over f. Hence there exists an isomorphism
a:x’ — G(f*x) such that p'(«) = idy- (this time by the axioms for §’). All in all
we conclude that for every object 2’ of 8’ we can choose a pair (04, ary/) consisting
of an object 0,/ of S and an isomorphism oy : 2" = G(0,/) With p(ag) = idy (4.
From this point on we proceed as usual (see proof of Lemma to produce an
inverse functor F' : 8" — S, by taking 2’ — 0, and ¢’ : @’ — 3’ to the unique arrow
Qpr 1 0pr — 0y with o) 0 G(pyr) 0 ay = ¢'. With these choices F' is a functor
over C. We omit the verification that G o F' and F o G are 2-isomorphic (in the
2-category of categories fibred in groupoids over C).

Suppose that Gy is faithful (resp. fully faithful) for all U € Ob(C). To show that G
is faithful (resp. fully faithful) we have to show for any objects x,y € Ob(S) that G
induces an injection (resp. bijection) between Mors(z,y) and Mors/ (G(z), G(y)).
Set U = p(z) and V = p(y). It suffices to prove that G induces an injection (resp.
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bijection) between morphism & — y lying over f to morphisms G(z) — G(y) lying
over f for any morphism f : U — V. Now fix f : U — V. Denote f'y — y a
pullback. Then also G(f*y) — G(y) is a pullback. The set of morphisms from x
to y lying over f is bijective to the set of morphisms between xz and f*y lying over
idy. (By the second axiom of a category fibred in groupoids.) Similarly the set
of morphisms from G(x) to G(y) lying over f is bijective to the set of morphisms
between G(x) and G(f*y) lying over idy. Hence the fact that Gy is faithful (resp.
fully faithful) gives the desired result.

Finally suppose for all Gy is an equivalence for all U, so it is fully faithful and
essentially surjective. We have seen this implies G is fully faithful, and thus to
prove it is an equivalence we have to prove that it is essentially surjective. This is
clear, for if 2’ € Ob(S’) then 2’ € Ob(S};) where U = p/(2). Since Gy is essentially
surjective we know that 2’ is isomorphic, in Sf;, to an object of the form Gy (z)
for some z € Ob(Sy). But morphisms in S;; are morphisms in " and hence 2’ is
isomorphic to G(z) in S’ O

Lemma 33.9. Let C be a category. Letp: S — C and p' : 8’ — C be categories
fibred in groupoids. Let G : S — S’ be a functor over C. Then G is fully faithful if
and only if the diagonal

AG :S§— S XG,S’,GS

is an equivalence.

Proof. By Lemma [33.8) it suffices to look at fibre categories over an object U of
C. An object of the right hand side is a triple (z,z’, @) where a : G(z) — G(2')
is a morphism in Sj;. The functor Ag maps the object z of Sy to the triple
(z,2,idg(z)). Note that (z,2’,a) is in the essential image of Ag if and only if
a = G(B) for some morphism 8 : z — 2’ in Sy (details omitted). Hence in
order for Ag to be an equivalence, every « has to be the image of a morphism
B :x — x’, and also every two distinct morphisms 3,3 : x — x’ have to given
distinct morphisms G(3), G(8’). This proves one direction of the lemma. We omit
the proof of the other direction. ([l

Lemma 33.10. Let C be a category. Let S;, i = 1,2,3,4 be categories fibred in
groupoids over C. Suppose that p : S — Sz and ¢ : S — S4 are equivalences over
C. Then

Mor cat/c(S2,S3) — Morcai/c(S1,81), ar—vYoaocy
s an equivalence of categories.

Proof. This is a generality and holds in any 2-category. O

Lemmal 33.11. Let C be a category. If p: S — C is fibred in groupoids, then so is
the inertia fibred category Is — C.

Proof. Clear from the construction in Lemma or by using (from the same
lemma) that Is — S XA sxes,a S is an equivalence and appealing to Lemma
33.7 ([

Lemma 33.12. Let C be a category. Let U € Ob(C). If p: S — C is a category
fibred in groupoids and p factors through p' : S — C/U thenp' : S — C/U is fibred
in groupoids.
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Proof. We have already seen in Lemma|31.11|that p’ is a fibred category. Hence it
suffices to prove the fibre categories are groupoids, see Lemma, For V € Ob(C)
we have

Sy = Hf:v_w S(vou)
where the left hand side is the fibre category of p and the right hand side is the
disjoint union of the fibre categories of p’. Hence the result. (Il

Lemmal 33.13. Let A — B — C be functors between categories. If A is fibred in
groupoids over B and B is fibred in groupoids over C, then A is fibred in groupoids
over C.

Proof. One can prove this directly from the definition. However, we will argue
using the criterion of Lemma [33:2] By Lemma [31.12] we see that A is fibred over
C. To finish the proof we show that the fibre category Ay is a groupoid for U in
C. Namely, if z — y is a morphism of Ay, then its image in B is an isomorphism
as By is a groupoid. But then x — y is an isomorphism, for example by Lemma
31.2) and the fact that every morphism of A is strongly B-cartesian (see Lemma
33.2]). O

Lemma 33.14. Let p : S — C be a category fibred in groupoids. Let x — y
and z — y be morphisms of S. If p(x) X, p(2) ewists, then x X, z exists and

p(x Xy 2) = p(x) Xpy) P(2)-
Proof. Follows from Lemma BT.13 O

Lemma 33.15. Let C be a category. Let F' : X — Y be a 1-morphism of cat-
egories fibred in groupoids over C. There exists a factorization X — X' — Y
by 1-morphisms of categories fibred in groupoids over C such that X — X' is an
equivalence over C and such that X' is a category fibred in groupoids over ).

Proof. Denote p : X — C and ¢q : Y — C the structure functors. We construct
X’ explicitly as follows. An object of X’ is a quadruple (U,z,y, f) where x €
Ob(Xy), y € Ob(Yy) and f : F(x) — y is an isomorphism in Yy. A morphism
(a,b) : (U,x,y, f) = (U,2,y,f") is given by a : © — 2’ and b : y — ¢y’ with
p(a) = q(b) and such that f’ o F(a) = bo f. In other words X’ = X X gy ;4 Y with
the construction of the 2-fibre product from Lemma [30.3] By Lemma we see
that X’ is a category fibred in groupoids over C and that X’ — ) is a morphism
of categories over C. As functor X — A’ we take x — (p(x),z, F(x),idp(,)) on
objects and (a :  — ') — (a, F(a)) on morphisms. It is clear that the composition
X — X' — Y equals F. We omit the verification that X — X’ is an equivalence of
fibred categories over C.

Finally, we have to show that X/ — ) is a category fibred in groupoids. Let
b:y — y be a morphism in Y and let (U, z,y, f) be an object of X’ lying over
y. Because X is fibred in groupoids over C we can find a morphism a : 2’ — x
lying over U’ = ¢(y') — ¢(y) = U. Since Y is fibred in groupoids over C and since
both F(z') — F(x) and ¥’ — y lie over the same morphism U’ — U we can find
e F(:E’) — 3/ lying over idy+ such that fo F(a) = bo f’. Hence we obtain (a,b) :
(U',2",y, ') = (U,x,y, f). This verifies the first condition (1) of Definition [33.1]
To see (2) let (a,b) : (U, 2"y, f") — (U, x, y ia) and (a',0) : (U, 2", 4", f") —
(U,z,y, f) be morphlsms of X’ and let b : 4/ — y” be a morphism of Y such that
b o b" = b. We have to show that there exists a unique morphism a” : 2’ — x”
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such that f” o F(a”) = b" o f and such that (a’,b') o (a”,b") = (a,b). Because X
is fibred in groupoids we know there exists a unique morphism a” : ' — z” such
that @’ o a” = a and p(a”) = q(b”). Because Y is fibred in groupoids we see that
F(a”) is the unique morphism F(z') — F(z”) such that F(a’) o F(a"”) = F(a) and
q(F(a")) = q(t). The relation f” o F(a") = b" o f’ follows from this and the given
relations fo F(a) =bo f and fo F(a') =¥ o f". O

Lemma 33.16. Let C be a category. Let F : X — Y be a 1-morphism of categories
fibred in groupoids over C. Assume we have a 2-commutative diagram

X/%XHXH

where a and b are equivalences of categories over C and f and g are categories
fibred in groupoids. Then there exists an equivalence h : X" — X' of categories
over Y such that h ob is 2-isomorphic to a as 1-morphisms of categories over C.
If the diagram above actually commutes, then we can arrange it so that hob is
2-isomorphic to a as 1-morphisms of categories over ).

Proof. We will show that both X’ and X" over ) are equivalent to the category
fibred in groupoids X x gy iq Y over Y, see proof of Lemma [33.15] Choose a quasi-
inverse b~1 : X" — X in the 2-category of categories over C. Since the right triangle
of the diagram is 2-commutative we see that

X % X//

1

b
|l
Yy<—-Y

is 2-commutative. Hence we obtain a l-morphism ¢ : X" — X Xpyiq Y by the
universal property of the 2-fibre product. Moreover ¢ is a morphism of categories
over ) () and an equivalence (by the assumption that b is an equivalence, see
Lemma . Hence c is an equivalence in the 2-category of categories fibred in
groupoids over Y by Lemma [33.8

We still have to construct a 2-isomorphism between c o b and the functor d : X —
X xXpyia Y, v = (p(x),z, F(x),idp)) constructed in the proof of Lemma
Let o : F — goband B:b7 ' ob— id be 2-isomorphisms between 1-morphisms of
categories over C. Note that co b is given by the rule

= (p(2), b7 (b(2)), g(b(2)), @ © F(B))

on objects. Then we see that

(Be, 00) + (p(), 2, F(2),idp(m) — (p(2), b7 (b(2)), 9(b(x)), 0 © F(Bs))

is a functorial isomorphism which gives our 2-morphism d — b o ¢. Finally, if the
diagram commutes then «, is the identity for all x and we see that this 2-morphism
is a 2-morphism in the 2-category of categories over ). (I
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34. Presheaves of categories

In this section we compare the notion of fibred categories with the closely related
notion of a “presheaf of categories”. The basic construction is explained in the
following example.

Example| 34.1. Let C be a category. Suppose that F' : C°P? — (at is a functor
to the 2-category of categories, see Definition For f:V — U in C we will
suggestively write F'(f) = f* for the functor from F(U) to F(V). From this we
can construct a fibred category Sg over C as follows. Define

Ob(Sp) ={(U,z) | U € Ob(C),z € Ob(F(U))}.
For (U, x),(V,y) € Ob(SF) we define
Mors, (V,y), (U, z)) = {(f,¢) | f € Morc(V,U), ¢ € Morpv)(y, f*2)}

- erMorc(V,U) Mor vy (y, f* )

In order to define composition we use that g*o f* = (fog)* for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ¢ : z — g*y and ¢ : y — f*x to be g*(¢) o ¢p. The functor
pr : Sp — C is given by the rule (U,z) — U. Let us check that this is indeed
a fibred category. Given f : V — U in C and (U, z) a lift of U, then we claim
(f,idf+g) : (V, f*x) — (U, x) is a strongly cartesian lift of f. We have to show a h
in the diagram on the left determines (h,v) on the right:

fiid g,
v—I.u (Vf*( e (v

A

hl hv)\

/ (9,%)
w

Just take v = 1 which works because foh = g and hence g*x = h* f*x. Moreover,
this is the only lift making the diagram (on the right) commute.

Definition 34.2. Let C be a category. Suppose that ' : C°PP — (lat is a functor
to the 2-category of categories. We will write pp : Sp — C for the fibred category
constructed in Example A split fibred category is a fibred category isomorphic
(1) over C to one of these categories Sp.

Lemma 34.3. Let C be a category. Let S be a fibred category over C. Then S is
split if and only if for some choice of pullbacks (see Definition the pullback
functors (f o g)* and g* o f* are equal.

Proof. This is immediate from the definitions. U

Lemma 34.4. Let p: S — C be a fibred category. There exists a functor F : C —
Cat such that S is equivalent to Sp in the 2-category of fibred categories over C. In
other words, every fibred category is equivalent to a split one.

Proof. Let us make a choice of pullbacks (see Definition [31.6). By Lemma
we get pullback functors f* for every morphism f of C.

We construct a new category S’ as follows. The objects of &’ are pairs (z, f)
consisting of a morphism f : V. — U of C and an object = of S over U, i.e.,
x € Ob(Sy). The functor p’ : &’ — C will map the pair (x, f) to the source of
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the morphism f, in other words p'(z,f : V — U) = V. A morphism ¢ : (21, f1 :
Vi = Uy) = (22, fa : Vo — Us) is given by a pair (¢, g) consisting of a morphism
g: Vi — V5 and a morphism ¢ : fix; — fyze with p(p) = g. It is no problem to
define the composition law: (¢, g)o (¢, h) = (o, goh) for any pair of composable
morphisms. There is a natural functor § — &’ which simply maps x over U to the
pair (z,id,).

At this point we need to check that p’ makes S’ into a fibred category over C,
and we need to check that S — &’ is an equivalence of categories over C which
maps strongly cartesian morphisms to strongly cartesian morphisms. We omit the
verifications.

Finally, we can define pullback functors on S’ by setting ¢*(z, f) = (x, f o g) on
objects if g : V! — V and f : V — U. On morphisms (¢,idy) : (21, f1) — (z2, f2)
between morphisms in S, we set ¢*(¢,idyv) = (g*¢,idy) where we use the unique
identifications ¢g* fz; = (fiog)*z; from Lemmato think of g*¢ as a morphism
from (f10g9)*x1 to (faog)*xa. Clearly, these pullback functors g* have the property
that g7 o g3 = (g2 0 ¢91)*, in other words &’ is split as desired. O

35. Presheaves of groupoids

In this section we compare the notion of categories fibred in groupoids with the
closely related notion of a “presheaf of groupoids”. The basic construction is ex-
plained in the following example.

Example 35.1. This example is the analogue of Example 34.1] for “presheaves
of groupoids” instead of “presheaves of categories”. The output will be a category
fibred in groupoids instead of a fibred category. Suppose that F' : C°PP — Groupoids
is a functor to the category of groupoids, see Definition 27.5| For f : V — U in
C we will suggestively write F'(f) = f* for the functor from F(U) to F(V). We
construct a category Sg fibred in groupoids over C as follows. Define

Ob(Sp) ={(U,z) | U € Ob(C),z € Ob(F(U))}.
For (U,x),(V,y) € Ob(SF) we define

Mors, ((V,y), (U, z)) ={(f,¢) | f € Morc(V,U), $ € Morp(v)(y, f*x)}

- HfEMorc(V,U) MOTF(V) (y7 f*l')

In order to define composition we use that g*o f* = (fog)* for a pair of composable
morphisms of C (by definition of a functor into a 2-category). Namely, we define
the composition of ¢ : z — g*y and ¢ : y — f*x to be g*(¢) o ¢p. The functor
pr : Sp — C is given by the rule (U,z) — U. The condition that F(U) is a
groupoid for every U guarantees that Sp is fibred in groupoids over C, as we have
already seen in Example that Sg is a fibred category, see Lemma [33.2] But
we can also prove conditions (1), (2) of Definition [33.1] directly as follows: (1) Lifts
of morphisms exist since given f: V — U in C and (U, x) an object of Sg over U,
then (f,idf«g) : (V, f*z) — (U, ) is a lift of f. (2) Suppose given solid diagrams
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as follows

v—Lou vy )
A A
Rl h,v) |
\ / " \ A:)
W (W.2)
Then for the dotted arrows we have v = (h*¢)~! o4 so given h there exists a v
which is unique by uniqueness of inverses.

Definition 35.2. Let C be a category. Suppose that F' : C°PP — Groupoids is a
functor to the 2-category of groupoids. We will write pr : Sp — C for the category
fibred in groupoids constructed in Example[35.1} A split category fibred in groupoids
is a category fibred in groupoids isomorphic (!) over C to one of these categories

Sr.

Lemma 35.3. Let p : S — C be a category fibred in groupoids. There exists a
functor F : C — Groupoids such that S is equivalent to Sgp over C. In other words,
every category fibred in groupoids is equivalent to a split one.

Proof. Make a choice of pullbacks (see Definition [31.6). By Lemmas and
we get pullback functors f* for every morphism f of C.

We construct a new category S’ as follows. The objects of &’ are pairs (z, f)
consisting of a morphism f : V. — U of C and an object = of S over U, i.e.,
x € Ob(Sy). The functor p’ : & — C will map the pair (x, f) to the source of
the morphism f, in other words p/(z, f : V — U) = V. A morphism ¢ : (z1, f1 :
Vi = Ur) = (29, fa : Vo — Us) is given by a pair (¢, g) consisting of a morphism
g : Vi — V5 and a morphism ¢ : fiz; — fyze with p(¢) = g. It is no problem to
define the composition law: (p, g)o (¥, h) = (o1, goh) for any pair of composable
morphisms. There is a natural functor & — &’ which simply maps x over U to the
pair (x,id).

At this point we need to check that p’ makes S’ into a category fibred in groupoids
over C, and we need to check that § — &’ is an equivalence of categories over C.
We omit the verifications.

Finally, we can define pullback functors on &’ by setting ¢g*(z, f) = (z, f o g) on
objects if g : V! = V and f: V — U. On morphisms (¢,idy) : (21, f1) = (22, f2)
between morphisms in S{, we set ¢*(¢,idyv) = (¢*¢,idy) where we use the unique
identifications g* ffz; = (f;0g)*x; from Lemmato think of g*¢ as a morphism
from (f10g9)*r1 to (fa0g)*za. Clearly, these pullback functors g* have the property
that g7 o g5 = (g2 0 g1)*, in other words &’ is split as desired. O

We will see an alternative proof of this lemma in Section

36. Categories fibred in sets

Definition 36.1. A category is called discrete if the only morphisms are the iden-
tity morphisms.

A discrete category has only one interesting piece of information: its set of objects.
Thus we sometime confuse discrete categories with sets.
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Definition 36.2. Let C be a category. A category fibred in sets, or a category fibred
in discrete categories is a category fibred in groupoids all of whose fibre categories
are discrete.

We want to clarify the relationship between categories fibred in sets and presheaves
(see Definition [3.3). To do this it makes sense to first make the following definition.

Definition 36.3. Let C be a category. The 2-category of categories fibred in sets
over C is the sub 2-category of the category of categories fibred in groupoids over
C (see Definition [33.6]) defined as follows:

(1) Tts objects will be categories p : S — C fibred in sets.

(2) Tts 1-morphisms (S,p) — (§’,p’) will be functors G : § — &’ such that
p' o G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms t : G — H for G, H : (S,p) — (§’,p’) will be morphisms
of functors such that p’(t,) = id,) for all z € Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category. Here is the obligatory lemma on the existence of 2-fibre
products.

Lemma 36.4. Let C be a category. The 2-category of categories fibred in sets over
C has 2-fibre products. More precisely, the 2-fibre product described in Lemma[30.3
returns a category fibred in sets if one starts out with such.

Proof. Omitted. O

Example 36.5. This example is the analogue of Examples [34.1] and [35.]] for
presheaves instead of “presheaves of categories”. The output will be a category fi-
bred in sets instead of a fibred category. Suppose that I’ : C°PP — Sets is a presheaf.
For f : V — U in C we will suggestively write F(f) = f* : F(U) — F(V). We
construct a category Sg fibred in sets over C as follows. Define

Ob(Sp) ={(U,z) | U € Ob(C),z € Ob(F(U))}.
For (U,x),(V,y) € Ob(SF) we define
Mors,. ((V,y), (U, x)) = {f € Morc(V,U) | f*z =y}

Composition is inherited from composition in C which works as g* o f* = (f o g)*
for a pair of composable morphisms of C. The functor pr : Sp — C is given by the
rule (U, z) — U. As every fibre category Spy is discrete with underlying set F/(U)
and we have already see in Example that Sp is a category fibred in groupoids,
we conclude that Sg is fibred in sets.

Lemmal 36.6. Let C be a category. The only 2-morphisms between categories fibred
in sets are identities. In other words, the 2-category of categories fibred in sets is a
category. Moreover, there is an equivalence of categories

the category of presheaves the category of categories
of sets over C fibred in sets over C

The functor from left to right is the construction ' — Sg discussed in Example
156.5. The functor from right to left assigns to p : S — C the presheaf of objects
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Proof. The first assertion is clear, as the only morphisms in the fibre categories
are identities.

Suppose that p : & — C is fibred in sets. Let f : V — U be a morphism in C and
let x € Ob(Sy). Then there is exactly one choice for the object f*z. Thus we see
that (f o g)*x = g*(f*x) for f,g as in Lemma It follows that we may think
of the assignments U +— Ob(Sy) and f — f* as a presheaf on C. O

Here is an important example of a category fibred in sets.

Example 36.7. Let C be a category. Let X € Ob(C). Consider the representable
presheaf hx = Morc(—, X) (see Example [3.4). On the other hand, consider the
category p : C/X — C from Example The fibre category (C/X)y has as
objects morphisms h : U — X, and only identities as morphisms. Hence we see
that under the correspondence of Lemma we have

hx «— C/X.

In other words, the category C/X is canonically equivalent to the category S,
associated to hx in Example [36.5

For this reason it is tempting to define a “representable” object in the 2-category
of categories fibred in groupoids to be a category fibred in sets whose associated
presheaf is representable. However, this is would not be a good definition for use
since we prefer to have a notion which is invariant under equivalences. To make
this precise we study exactly which categories fibred in groupoids are equivalent to
categories fibred in sets.

37. Categories fibred in setoids

Definition| 37.1. Let us call a category a setoicﬁ if it is a groupoid where every
object has exactly one automorphism: the identity.

If C'is a set with an equivalence relation ~, then we can make a setoid C as follows:
Ob(C) = C and Mor¢(z,y) = 0 unless z ~ y in which case we set Mor¢(z,y) = {1}.
Transitivity of ~ means that we can compose morphisms. Conversely any setoid
category defines an equivalence relation on its objects (isomorphism) such that
you recover the category (up to unique isomorphism — not equivalence) from the
procedure just described.

Discrete categories are setoids. For any setoid C there is a canonical procedure to
make a discrete category equivalent to it, namely one replaces Ob(C) by the set of
isomorphism classes (and adds identity morphisms). In terms of sets endowed with
an equivalence relation this corresponds to taking the quotient by the equivalence
relation.

Definition 37.2. Let C be a category. A category fibred in setoids is a category
fibred in groupoids all of whose fibre categories are setoids.

Below we will clarify the relationship between categories fibred in setoids and cat-
egories fibred in sets.

4A set on steroids!?
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Definition 37.3. Let C be a category. The 2-category of categories fibred in setoids
over C is the sub 2-category of the category of categories fibred in groupoids over
C (see Definition [33.6]) defined as follows:

(1) Its objects will be categories p : S — C fibred in setoids.

(2) Its l-morphisms (S,p) — (&’,p') will be functors G : S — S’ such that
p' o G = p (since every morphism is strongly cartesian G automatically
preserves them).

(3) Its 2-morphisms ¢t : G — H for G, H : (S,p) — (S',p’) will be morphisms
of functors such that p'(t,) = id,) for all z € Ob(S).

Note that every 2-morphism is automatically an isomorphism. Hence this 2-category
is actually a (2, 1)-category.
Here is the obligatory lemma on the existence of 2-fibre products.

Lemmal 37.4. Let C be a category. The 2-category of categories fibred in setoids
over C has 2-fibre products. More precisely, the 2-fibre product described in Lemma
returns a category fibred in setoids if one starts out with such.

Proof. Omitted. O

Lemma 37.5. Let C be a category. Let S be a category over C.

(1) If § = &' is an equivalence over C with S’ fibred in sets over C, then
(a) S is fibred in setoids over C, and
(b) for each U € Ob(C) the map Ob(Sy) — Ob(S],) identifies the target
as the set of isomorphism classes of the source.
(2) If p : S — C is a category fibred in setoids, then there exists a category
fibred in sets p’ : 8’ — C and an equivalence can: S — S’ over C.

Proof. Let us prove (2). An object of the category &’ will be a pair (U, £), where
U € Ob(C) and ¢ is an isomorphism class of objects of Syy. A morphism (U, ¢) —
(V,4) is given by a morphism 2 — y, where z € £ and y € 1. Here we identify two
morphisms z — y and o’ — ¢’ if they induce the same morphism U — V, and if
for some choices of isomorphisms x — z’ in Sy and y — ¢’ in Sy the compositions
z — 1’ — 1y and v — y — vy’ agree. By construction there are surjective maps on
objects and morphisms from & — &’. We define composition of morphisms in &’
to be the unique law that turns S — S’ into a functor. Some details omitted. [

Thus categories fibred in setoids are exactly the categories fibred in groupoids which
are equivalent to categories fibred in sets. Moreover, an equivalence of categories
fibred in sets is an isomorphism by Lemma [36.6

Lemma 37.6. Let C be a category. The construction of Lemma part (2) gives
a functor

re the 2-category of categories the category of categories
fibred in setoids over C fibred in sets over C
(see Definition . This functor is an equivalence in the following sense:

(1) for any two 1-morphisms f,g : S1 — S with F(f) = F(g) there exists a
unique 2-isomorphism f — g,

(2) for any morphism h : F(S1) — F(S2) there exists a 1-morphism f :S1 —
So with F(f) =h, and

(3) any category fibred in sets S is equal to F(S).
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In particular, defining F; € PSh(C) by the rule F;(U) = Ob(S; )/ =, we have
Mor ¢q/c (81782)/2-i50m07“phi5m = Mor pgp(c) (F1, F2)

More precisely, given any map ¢ : F1 — Fy there exists a 1-morphism f: Sy — Sa
which induces ¢ on isomorphism classes of objects and which is unique up to unique
2-isomorphism.

Proof. By Lemma [36.0] the target of F is a category hence the assertion makes
sense. The construction of Lemma m part (2) assigns to S the category fibred in
sets whose value over U is the set of isomorphism classes in Sy. Hence it is clear
that it defines a functor as indicated. Let f,g : & — Sy with F(f) = F(g) be
as in (1). For each object U of C and each object = of 81y we see that f(z) =
g(z) by assumption. As S, is fibred in setoids there exists a unique isomorphism
ty @ f(x) = g(x) in So . Clearly the rule z — t, gives the desired 2-isomorphism
f — g. We omit the proofs of (2) and (3). To see the final assertion use Lemma
to see that the right hand side is equal to Mor cqyc) (F'(S1), F(S2)) and apply
(1) and (2) above. O

Here is another characterization of categories fibred in setoids among all categories
fibred in groupoids.

Lemma 37.7. Let C be a category. Letp: S — C be a category fibred in groupoids.
The following are equivalent:

(1) p: S = C be a category fibred in setoids, and
(2) the canonical 1-morphism Is — S, see (32.2.1), is an equivalence (of cat-
egories over C).

Proof. Assume (2). The category Zs has objects (z,«) where x € S, say with
p(z) =U, and o : © — x is a morphism in Sy. Hence if Zg — S is an equivalence
over C then every pair of objects (z,a), (x,a’) are isomorphic in the fibre category
of Zs over U. Looking at the definition of morphisms in Zg we conclude that «,
o' are conjugate in the group of automorphisms of x. Hence taking o = id, we
conclude that every automorphism of x is equal to the identity. Since S — C is
fibred in groupoids this implies that S — C is fibred in setoids. We omit the proof
of (1) = (2). O

Lemma 37.8. Let C be a category. The construction of Lemma [37.6 which asso-
ciates to a category fibred in setoids a presheaf is compatible with products, in the
sense that the presheaf associated to a 2-fibre product X xy Z is the fibre product
of the presheaves associated to X,), Z.

Proof. Let U € Ob(C). The lemma just says that
Ob((X xy Z)y)/=  equals Ob(Xy)/= Xopy)= Ob(Zy)/=
the proof of which we omit. (But note that this would not be true in general if the
category Yy is not a setoid.) ([
38. Representable categories fibred in groupoids

Here is our definition of a representable category fibred in groupoids. As promised
this is invariant under equivalences.
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Definition 38.1. Let C be a category. A category fibred in groupoids p: S — C is
called representable if there exists an object X of C and an equivalence j : S — C/X
(in the 2-category of groupoids over C).

The usual abuse of notation is to say that X represents S and not mention the
equivalence j. We spell out what this entails.

Lemmal 38.2. Let C be a category. Letp: S — C be a category fibred in groupoids.

(1) S is representable if and only if the following conditions are satisfied:
(a) S is fibred in setoids, and
(b) the presheaf U — Ob(Sy)/ = is representable.

(2) If S is representable the pair (X, j), where j is the equivalence j : S — C/X
18 uniquely determined up to isomorphism.

Proof. The first assertion follows immediately from Lemma [37.5] For the second,
suppose that j° : § — C/X’ is a second such pair. Choose a 1-morphism ¢ :
C/X’" — & such that j' ot' = id¢/x, and t' 0 j' =2 ids. Then jot' : C/X' — C/X
is an equivalence. Hence it is an isomorphism, see Lemma [36.6] Hence by the
Yoneda Lemma (via Example for example) it is given by an isomorphism
X — X. O

Lemmal 38.3. Let C be a category. Let X, Y be categories fibred in groupoids over
C. Assume that X, Y are representable by objects X, Y of C. Then

Mor ct/c (X, y)/Z—isomorphism = Mor¢(X,Y)

More precisely, given ¢ : X — Y there exists a 1-morphism f : X — Y which
induces ¢ on isomorphism classes of objects and which is unique up to unique 2-
isomorphism.

Proof. By Example we have C/X = Sp,, and C/Y = Sp,.. By Lemma
we have

Mor ¢qs/c (X, y)/2—isomorphism = Morpgpc)(hx, hy)
By the Yoneda Lemma we have Mor pgp(cy(hx, hy) = More(X,Y). O

39. Representable 1-morphisms

Let C be a category. In this section we explain what it means for a 1-morphism
between categories fibred in groupoids over C to be representable. Note that the
2-category of categories fibred in groupoids over C is a “full” sub 2-category of the
2-category of categories over C (see Definition [33.6). Hence if S, S’ are fibred in
groupoids over C then

MorCat/C (87 'Sl)

denotes the category of 1-morphisms in this 2-category (see Definition |30.1)). These
are all groupoids, see remarks following Definition [33.6, Here is the 2-category
analogue of the Yoneda lemma.

Lemma 39.1 (2-Yoneda lemma). Let S — C be fibred in groupoids. Let U € Ob(C).
The functor
Mor catsc(C/U,S) — Su

given by G — G(idy) is an equivalence.
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Proof. Make a choice of pullbacks for S (see Definition [31.6). We define a functor
SU — Morcat/c(C/U, S)

as follows. Given z € Ob(Sy) the associated functor is

(1) on objects: (f:V — U) — f*z, and
(2) on morphisms: the arrow (g : V//U — V/U) maps to the composition

(fog)*x (ag,f)z g*f*x*)f*$

where oy 5 is as in Lemma m

We omit the verification that this is an inverse to the functor of the lemma. O

Remark| 39.2. We can use the 2-Yoneda lemma to give an alternative proof of
Lemma Let p : & — C be a category fibred in groupoids. We define a
contravariant functor F' from C to the category of groupoids as follows: for U €
Ob(C) let
F(U) = Morcac(C/U,S).

If f: U — V the induced functor C/U — C/V induces the morphism F(f) :
F(V)— F(U). Clearly F is a functor. Let S8’ be the associated category fibred in
groupoids from Example There is an obvious functor G : 8" — S over C given
by taking the pair (U,z), where U € Ob(C) and = € F(U), to xz(idy) € S. Now
Lemma [39.1] implies that for each U,

Gy : S[/J = F(U) = MOI‘Cat/c(C/U,S) — Su
is an equivalence, and thus G equivalence between S and S’ by Lemma [33.8

Let C be a category. Let X, ) be categories fibred in groupoids over C. Let
UeOb(C). Let F: X - Y and G:C/U — Y be 1l-morphisms of categories fibred
in groupoids over C. We want to describe the 2-fibre product

(C/U) xy X —= X

b

C/U ¢ Yy

Let y = G(idy) € Yy. Make a choice of pullbacks for ) (see Definition [31.6)). Then
G is isomorphic to the functor (f : V — U) — f*y, see Lemma and its proof.
We may think of an object of (C/U) xy X as a quadruple (V, f: V = U, x, ¢), see
Lemma Using the description of G above we may think of ¢ as an isomorphism
¢ f*y — F(x) in Yy.

Lemma 39.3. In the situation above the fibre category of (C/U) xy X over an
object f:V — U of C/U is the category described as follows:

(1) objects are pairs (x,¢), where x € Ob(Xy), and ¢ : f*y — F(x) is a
morphism in Yy,

(2) the set of morphisms between (x,¢) and (z',¢’) is the set of morphisms
vix— 2 in Xy such that F(¢) = ¢/ o ¢~ 1.

Proof. See discussion above. O
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Lemma 39.4. Let C be a category. Let X, Y be categories fibred in groupoids over

C. Let F: X = Y be a 1-morphism. Let G : C/U — Y be a 1-morphism. Then
(C/U)xy X —C/U

is a category fibred in groupoids.

Proof. We have already seen in Lemma that the composition
C/U)xy X —C/U —C
is a category fibred in groupoids. Then the lemma follows from Lemma [33.12] O

Definition 39.5. Let C be a category. Let X', ) be categories fibred in groupoids
over C. Let F : X — Y be a 1-morphism. We say F' is representable, or that X is
relatively representable over Y, if for every U € Ob(C) and any G : C/U — ) the
category fibred in groupoids

(C/U)xy X —CJU
is representable over C/U.

Lemma 39.6. Let C be a category. Let X, Y be categories fibred in groupoids over
C. Let F : X — Y be a 1-morphism. If F is representable then every one of the
functors

Fo: X — Vv

between fibre categories is faithful.

Proof. Clear from the description of fibre categories in Lemma[39.3] and the char-
acterization of representable fibred categories in Lemma [38:2 O

Lemmal 39.7. Let C be a category. Let X, Y be categories fibred in groupoids over
C. Let F': X — Y be a 1-morphism. Make a choice of pullbacks for Y. Assume
(1) each functor Fy : Xy — Yy between fibre categories is faithful, and
(2) for each U and each y € Yy the presheaf

(fV=o2U) —A{=9)|zedy,é: ffy— Fa)}/ =
is a representable presheaf on C/U.
Then F is representable.

Proof. Clear from the description of fibre categories in Lemma[39.3] and the char-
acterization of representable fibred categories in Lemma [38.2} O

Before we state the next lemma we point out that the 2-category of categories fibred
in groupoids is a (2,1)-category, and hence we know what it means to say that it
has a final object (see Deﬁnition. And it has a final object namely id : C — C.
Thus we define 2-products of categories fibred in groupoids over C as the 2-fibred
products

X xY:=X Xe .

With this definition in place the following lemma makes sense.

Lemma 39.8. Let C be a category. Let S — C be a category fibred in groupoids.
Assume C has products of pairs of objects and fibre products. The following are
equivalent:

(1) The diagonal S — S x S is representable.
(2) For everyU inC, any G : C/U — S is representable.
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Proof. Suppose the diagonal is representable, and let U,G be given. Consider
any V € Ob(C) and any G’ : C/V — S. Note that C/U x C/V = C/U x V is
representable. Hence the fibre product

(C/U X V) X(8xS8) S——=S8

i (G,G/) J{

C/UxV SxS8

is representable by assumption. This means there exists W — U x V in C, such
that
C/W—=S8

|

C/UXC]V—=8xS
is cartesian. This implies that C/W = C/U x5 C/V (see Lemma [29.11)) as desired.
Assume (2) holds. Counsider any V € Ob(C) and any (G,G') : C/V — S xS. We
have to show that C/V xsxsS is representable. What we know is that C/V x¢. s ¢
C/V is representable, say by a : W — V in C/V. The equivalence

C/W — C/V Xa,8,G67 C/V
followed by the second projection to C/V gives a second morphism o' : W — V.
Consider W' = W X(4,4/),vxv V. There exists an equivalence

C/W/ 2C/V XsxsS

namely
C/W' = C/W xXc/vxeyvyClV
= (C/V x,s,6)CIV) X(c/vxev) CIV
= C/V xsxs)S
(for the last isomorphism see Lemma which proves the lemma. O

Biographical notes: Parts of this have been taken from Vistoli’s notes [Vis04].

40. A criterion for representability

The following lemma is often useful to prove the existence of universal objects in
big categories, please see the discussion in Remark

Lemmal 40.1. Let C be a biﬂ category which has limits. Let F : C — Sets be a
functor. Assume that

(1) F commutes with limits,
(2) there exists a family {x;}ic1 of objects of C and for each i € I an element
fi € F(x;) such that for y € Ob(C) and g € F(y) there exists an i and a
morphism ¢ : x; — y with F(o(f;)) = g.
Then F' 1is representable, i.e., there exists an object x of C such that

F(y) = Morc(z,y)

functorially in y.

5See Remark
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Proof. Let Z be the category whose objects are the pairs (z;, f;) and whose mor-
phisms (x;, fi) — (x4, fir) are maps ¢ : x; — x4 in C such that F(p)(fi) = fi.
Set

X = hm(x“fq)ez xX;
(this will not be the x we are looking for, see below). The limit exists by assumption.
As F commutes with limits we have

F(x) = lim, ¢yez F(23).
Hence there is a universal element f € F(z) which maps to f; € F(x;) under F'
applied to the projection map =z — x;. Using f we obtain a transformation of
functors

& : Mor¢(z,—) — F(-)
see Section [3] Let y be an arbitrary object of C and let g € F'(y). Choose x; — y
such that f; maps to g which is possible by assumption. Then F' applied to the
maps

T— X — Y

(the first being the projection map of the limit defining z) sends f to g. Hence the
transformation £ is surjective.

In order to find the object representing I’ we let e : 2’ — x be the equalizer of all
self maps ¢ : © — z with F(¢)(f) = f. Since F' commutes with limits, it commutes
with equalizers, and we see there exists an f’ € F(2) mapping to f in F(z). Since
¢ is surjective and since f’ maps to z we see that also &’ : Mor¢(z/, —) — F(—) is
surjective. Finally, suppose that a,b : ' — y are two maps such that F(a)(f) =
F(b)(f). We have to show a = b. Consider the equalizer ¢ : " — /. Again we
find f” € F(2") mapping to f’. Choose a map v : x — x” such that F(¢)(f) = f".
Then we see that eoe’ ot : & — x is a morphism with F(eoe’ o9)(f) = f. Hence
eoe’ o oe =e. This means that e : ' — x factors through ¢’ oe : " — x and
since e and €’ are monomorphisms this implies " = 2/, i.e., a = b as desired. [

Remark| 40.2. The lemma above is often used to construct the free something on
something. For example the free abelian group on a set, the free group on a set,
etc. The idea, say in the case of the free group on a set E is to consider the functor

F : Groups — Sets, G +—— Map(F,Q)

This functor commutes with limits. As our family of objects we can take a family
E — @G, consisting of groups G; of cardinality at most max(Rg, |E|) and set maps
E — G, such that every isomorphism class of such a structure occurs at least once.
Namely, if £ — G is a map from E to a group G, then the subgroup G’ generated
by the image has cardinality at most max(Xg, |G|). The lemma tells us the functor
is representable, hence there exists a group Fg such that Morgroups(Fr, G) =
Map(E,G). In particular, the identity morphism of Fg corresponds to a map
FE — Fg and one can show that Fg is generated by the image without imposing
any relations.

Another typical application is that we can use the lemma to construct colimits once
it is know that limits exist. We illustrate it using the category of topological spaces
which has limits by Topology, Lemmal[13.1] Namely, suppose that Z — Top, i — X;
is a functor. Then we can consider

F: Top — Sets, Y —— limz Morq,,(X;,Y)
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This functor commutes with limits. Moreover, given any topological space Y and
an element (y; : X; = Y) of F(Y), there is a subspace Y’ C Y of cardinality at
most |[] X;| such that the morphisms ¢; map into Y’. Namely, we can take the
induced topology on the union of the images of the ¢;. Thus it is clear that the
hypotheses of the lemma are satisfied and we find a topological space X representing
the functor F', which precisely means that X is the colimit of the diagram i — X;.

Theorem 40.3 (Adjoint functor theorem). Let G : C — D be a functor of big
categories. Assume C has limits, G commutes with them, and for every object y of
D there exists a set of pairs (x;, fi)ier with x; € Ob(C), f; € More(y, G(x;)) such
that for any pair (z, f) with x € Ob(C), f € Morc(y, G(z)) there is an i and a
morphism h : x; — x such that f = G(h) o f;. Then G has a left adjoint F.

Proof. The assumptions imply that for every object y of D the functor x +—
Morp(y, G(x)) satisfies the assumptions of Lemma [40.1} Thus it is representable
by an object, let’s call it F(y). An application of Yoneda’s lemma (Lemma
turns the rule y — F(y) into a functor which by construction is an adjoint to G.
We omit the details. O
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