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1. Introduction

In this Chapter, we discuss étale morphisms of schemes. We illustrate some of the
more important concepts by working with the Noetherian case. Our principal goal
is to collect for the reader with enough commutative algebra results to start reading
a treatise on étale cohomology. An auxiliary goal is to provide enough evidence to
ensure that the reader stops calling the phrase “the étale topology of schemes” an
exercise in general nonsense, if (s)he does indulge in such blasphemy.

We will refer to the other chapters of the stacks project for standard results in
algebraic geometry (on schemes and commutative algebra). We will provide detailed
proofs of the new results that we state here.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 ÉTALE MORPHISMS OF SCHEMES

2. Conventions

In this chapter, frequently schemes will be assumed locally Noetherian and fre-
quently rings will be assumed Noetherian. But in all the statements we will reit-
erate this when necessary, and make sure we list all the hypotheses! On the other
hand, here are some general facts that we will use often and are useful to keep in
mind:

(1) A ring homomorphism A→ B of finite type with A Noetherian is of finite
presentation. See Algebra, Lemma 30.4.

(2) A morphism (locally) of finite type between locally Noetherian schemes is
automatically (locally) of finite presentation. See Morphisms, Lemma 22.9.

(3) Add more like this here.

3. Unramified morphisms

We first define the notion of unramified morphisms for local rings, and then globalize
it to get one for arbitrary schemes.

Definition 3.1. Let A, B be Noetherian local rings. A local homomorphism
A→ B is said to be unramified homomorphism of local rings if

(1) mAB = mB ,
(2) κ(mB) is a finite separable extension of κ(mA), and
(3) B is essentially of finite type over A (this means that B is the localization

of a finite type A-algebra at a prime).

This is the local version of the definition in Algebra, Section 144. In that section a
ring map R → S is defined to be unramified if and only if it is of finite type, and
ΩS/R = 0. It is shown in Algebra, Lemmas 144.5 and 144.7 that given a ring map
R→ S of finite type, and a prime q of S lying over p ⊂ R, then we have

R→ S is unramified at q⇔ pSq = qSq and κ(p) ⊂ κ(q) finite separable

Thus we see that for a local homomorphism of local rings the properties of our
definition above are closely related to the question of being unramified. In fact, we
have proved the following lemma.

Lemma 3.2. Let A → B be of finite type with A a Noetherian ring. Let q be
a prime of B lying over p ⊂ A. Then A → B is unramified at q if and only if
Ap → Bq is an unramified homomorphism of local rings.

Proof. See discussion above. �

We will characterize the property of being unramified in terms of completions. For
a Noetherian local ring A we denote A∧ the completion of A with respect to the
maximal ideal. It is also a Noetherian local ring, see Algebra, Lemma 93.10.

Lemma 3.3. Let A, B be Noetherian local rings. Let A→ B be a local homomor-
phism.

(1) if A→ B is an unramified homomorphism of local rings, then B∧ is a finite
A∧ module,

(2) if A → B is an unramified homomorphism of local rings and κ(mA) =
κ(mB), then A∧ → B∧ is surjective,

(3) if A → B is an unramified homomorphism of local rings and κ(mA) is
separably closed, then A∧ → B∧ is surjective,
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(4) if A and B are complete discrete valuation rings, then A→ B is an unram-
ified homomorphism of local rings if and only the uniformizer for A maps
to a uniformizer for B, and the residue field extension is finite separable
(and B is essentially of finite type over A).

Proof. Part (1) is a special case of Algebra, Lemma 93.18. For part (2), note
that the κ(mA)-vector space B∧/mA∧B

∧ is generated by 1. Hence by Nakayama’s
lemma (Algebra, Lemma 19.1) the map A∧ → B∧ is surjective. Part (3) is a special
case of part (2). Part (4) is immediate from the definitions. �

Lemma 3.4. Let A, B be Noetherian local rings. Let A→ B be a local homomor-
phism such that B is essentially of finite type over A. The following are equivalent

(1) A→ B is an unramified homomorphism of local rings
(2) A∧ → B∧ is an unramified homomorphism of local rings, and
(3) A∧ → B∧ is unramified.

Proof. The equivalence of (1) and (2) follows from the fact that mAA
∧ is the

maximal ideal of A∧ (and similarly for B) and faithful flatness of B → B∧. For
example if A∧ → B∧ is unramified, then mAB

∧ = (mAB)B∧ = mBB
∧ and hence

mAB = mB .

Assume the equivalent conditions (1) and (2). By Lemma 3.3 we see that A∧ → B∧

is finite. Hence A∧ → B∧ is of finite presentation, and by Algebra, Lemma 144.7
we conclude that A∧ → B∧ is unramified at mB∧ . Since B∧ is local we conclude
that A∧ → B∧ is unramified.

Assume (3). By Algebra, Lemma 144.5 we conclude that A∧ → B∧ is an unramified
homomorphism of local rings, i.e., (2) holds. �

Definition 3.5. (See Morphisms, Definition 36.1 for the definition in the general
case.) Let Y be a locally Noetherian scheme. Let f : X → Y be locally of finite
type. Let x ∈ X.

(1) We say f is unramified at x if OY,f(x) → OX,x is an unramified homomor-
phism of local rings.

(2) The morphism f : X → Y is said to be unramified if it is unramified at all
points of X.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is unramified is open.

Lemma 3.6. Let Y be a locally Noetherian scheme. Let f : X → Y be locally
of finite type. Let x ∈ X. The morphism f is unramified at x in the sense of
Definition 3.5 if and only if it is unramified in the sense of Morphisms, Definition
36.1.

Proof. This follows from Lemma 3.2 and the definitions. �

Here are some results on unramified morphisms. The formulations as given in
this list apply only to morphisms locally of finite type between locally Noetherian
schemes. In each case we give a reference to the general result as proved earlier in
the project, but in some cases one can prove the result more easily in the Noetherian
case. Here is the list:
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(1) Unramifiedness is local on the source and the target in the Zariski topology.
(2) Unramified morphisms are stable under base change and composition. See

Morphisms, Lemmas 36.5 and 36.4.
(3) Unramified morphisms of schemes are locally quasi-finite and quasi-compact

unramified morphisms are quasi-finite. See Morphisms, Lemma 36.10
(4) Unramified morphisms have relative dimension 0. See Morphisms, Defini-

tion 30.1 and Morphisms, Lemma 30.5.
(5) A morphism is unramified if and only if all its fibres are unramified. That

is, unramifiedness can be checked on the scheme theoretic fibres. See Mor-
phisms, Lemma 36.12.

(6) Let X and Y be unramified over a base scheme S. Any S-morphism from
X to Y is unramified. See Morphisms, Lemma 36.16.

4. Three other characterizations of unramified morphisms

The following theorem gives three equivalent notions of being unramified at a point.
See Morphisms, Lemma 36.14 for (part of) the statement for general schemes.

Theorem 4.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a mor-
phism of schemes which is locally of finite type. Let x be a point of X. The following
are equivalent

(1) f is unramified at x,
(2) the stalk ΩX/Y,x of the module of relative differentials at x is trivial,
(3) there exist open neighbourhoods U of x and V of f(x), and a commutative

diagram

U
i

//

��

An
V

~~
V

where i is a closed immersion defined by a quasi-coherent sheaf of ideals I
such that the differentials dg for g ∈ Ii(x) generate ΩAn

V /V,i(x), and

(4) the diagonal ∆X/Y : X → X ×Y X is a local isomorphism at x.

Proof. The equivalence of (1) and (2) is proved in Morphisms, Lemma 36.14.

If f is unramified at x, then f is unramified in an open neighbourhood of x; this
does not follow immediately from Definition 3.5 of this chapter but it does follow
from Morphisms, Definition 36.1 which we proved to be equivalent in Lemma 3.6.
Choose affine opens V ⊂ Y , U ⊂ X with f(U) ⊂ V and x ∈ U , such that f is
unramified on U , i.e., f |U : U → V is unramified. By Morphisms, Lemma 36.13
the morphism U → U ×V U is an open immersion. This proves that (1) implies (4).

If ∆X/Y is a local isomorphism at x, then ΩX/Y,x = 0 by Morphisms, Lemma 34.7.
Hence we see that (4) implies (2). At this point we know that (1), (2) and (4) are
all equivalent.

Assume (3). The assumption on the diagram combined with Morphisms, Lemma
34.15 show that ΩU/V,x = 0. Since ΩU/V,x = ΩX/Y,x we conclude (2) holds.

Finally, assume that (2) holds. To prove (3) we may localize onX and Y and assume
that X and Y are affine. Say X = Spec(B) and Y = Spec(A). The point x ∈ X
corresponds to a prime q ⊂ B. Our assumption is that ΩB/A,q = 0 (see Morphisms,

http://localhost:8080/tag/024P
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Lemma 34.5 for the relationship between differentials on schemes and modules of
differentials in commutative algebra). Since Y is locally Noetherian and f locally
of finite type we see that A is Noetherian and B ∼= A[x1, . . . , xn]/(f1, . . . , fm),
see Properties, Lemma 5.2 and Morphisms, Lemma 16.2. In particular, ΩB/A
is a finite B-module. Hence we can find a single g ∈ B, g 6∈ q such that the
principal localization (ΩB/A)g is zero. Hence after replacing B by Bg we see that
ΩB/A = 0 (formation of modules of differentials commutes with localization, see
Algebra, Lemma 127.8). This means that d(fj) generate the kernel of the canonical
map ΩA[x1,...,xn]/A ⊗A B → ΩB/A. Thus the surjection A[x1, . . . , xn] → B of A-
algebras gives the commutative diagram of (3), and the theorem is proved. �

How can we use this theorem? Well, here are a few remarks:

(1) Suppose that f : X → Y and g : Y → Z are two morphisms locally of finite
type between locally Noetherian schemes. There is a canonical short exact
sequence

f∗(ΩY/Z)→ ΩX/Z → ΩX/Y → 0

see Morphisms, Lemma 34.9. The theorem therefore implies that if g ◦ f is
unramified, then so is f . This is Morphisms, Lemma 36.16.

(2) Since ΩX/Y is isomorphic to the conormal sheaf of the diagonal morphism
(Morphisms, Lemma 34.7) we see that if X → Y is a monomorphism of
locally Noetherian schemes and locally of finite type, then X → Y is un-
ramified. In particular, open and closed immersions of locally Noetherian
schemes are unramified. See Morphisms, Lemmas 36.7 and 36.8.

(3) The theorem also implies that the set of points where a morphism f : X →
Y (locally of finite type of locally Noetherian schemes) is not unramified is
the support of the coherent sheaf ΩX/Y . This allows one to give a scheme
theoretic definition to the “ramification locus”.

5. The functorial characterization of unramified morphisms

In basic algebraic geometry we learn that some classes of morphisms can be char-
acterized functorially, and that such descriptions are quite useful. Unramified mor-
phisms too have such a characterization.

Theorem 5.1. Let f : X → S be a morphism of schemes. Assume S is a locally
Noetherian scheme, and f is locally of finite type. Then the following are equivalent:

(1) f is unramified,
(2) the morphism f is formally unramified: for any affine S-scheme T and

subscheme T0 of T defined by a square-zero ideal, the natural map

HomS(T,X) −→ HomS(T0, X)

is injective.

Proof. See More on Morphisms, Lemma 4.8 for a more general statement and
proof. What follows is a sketch of the proof in the current case.

Firstly, one checks both properties are local on the source and the target. This we
may assume that S and X are affine. Say X = Spec(B) and S = Spec(R). Say

http://localhost:8080/tag/024R
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T = Spec(C). Let J be the square-zero ideal of C with T0 = Spec(C/J). Assume
that we are given the diagram

B

φ

��

φ̄

!!
R //

??

C // C/J

Secondly, one checks that the association φ′ 7→ φ′−φ gives a bijection between the
set of liftings of φ̄ and the module DerR(B, J). Thus, we obtain the implication
(1) ⇒ (2) via the description of unramified morphisms having trivial module of
differentials, see Theorem 4.1.

To obtain the reverse implication, consider the surjection q : C = (B ⊗R B)/I2 →
B = C/J defined by the square zero ideal J = I/I2 where I is the kernel of
the multiplication map B ⊗R B → B. We already have a lifting B → C defined
by, say, b 7→ b ⊗ 1. Thus, by the same reasoning as above, we obtain a bijective
correspondence between liftings of id : B → C/J and DerR(B, J). The hypothesis
therefore implies that the latter module is trivial. But we know that J ∼= ΩB/R.
Thus, B/R is unramified. �

6. Topological properties of unramified morphisms

The first topological result that will be of utility to us is one which says that
unramified and separated morphisms have “nice” sections. The material in this
section does not require any Noetherian hypotheses.

Proposition 6.1. Sections of unramified morphisms.

(1) Any section of an unramified morphism is an open immersion.
(2) Any section of a separated morphism is a closed immersion.
(3) Any section of an unramified separated morphism is open and closed.

Proof. Fix a base scheme S. If f : X ′ → X is any S-morphism, then the graph
Γf : X ′ → X ′ ×S X is obtained as the base change of the diagonal ∆X/S : X →
X ×S X via the projection X ′ ×S X → X ×S X. If g : X → S is separated (resp.
unramified) then the diagonal is a closed immersion (resp. open immersion) by
Schemes, Definition 21.3 (resp. Morphisms, Lemma 36.13). Hence so is the graph
as a base change (by Schemes, Lemma 18.2). In the special case X ′ = S, we obtain
(1), resp. (2). Part (3) follows on combining (1) and (2). �

We can now explicitly describe the sections of unramified morphisms.

Theorem 6.2. Let Y be a connected scheme. Let f : X → Y be unramified
and separated. Every section of f is an isomorphism onto a connected component.
There exists a bijective correspondence

sections of f ↔
{

connected components X ′ of X such that
the induced map X ′ → Y is an isomorphism

}
In particular, given x ∈ X there is at most one section passing through x.

Proof. Direct from Proposition 6.1 part (3). �

http://localhost:8080/tag/024T
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The preceding theorem gives us some idea of the “rigidity” of unramified morphisms.
Further indication is provided by the following proposition which, besides being
intrinsically interesting, is also useful in the theory of the algebraic fundamental
group (see [Gro71, Exposé V]). See also the more general Morphisms, Lemma 36.17.

Proposition 6.3. Let S is be a scheme. Let π : X → S be unramified and sep-
arated. Let Y be an S-scheme and y ∈ Y a point. Let f, g : Y → X be two
S-morphisms. Assume

(1) Y is connected
(2) x = f(y) = g(y), and
(3) the induced maps f ], g] : κ(x)→ κ(y) on residue fields are equal.

Then f = g.

Proof. The maps f, g : Y → X define maps f ′, g′ : Y → XY = Y ×S X which are
sections of the structure map XY → Y . Note that f = g if and only if f ′ = g′.
The structure map XY → Y is the base change of π and hence unramified and
separated also (see Morphisms, Lemmas 36.5 and Schemes, Lemma 21.13). Thus
according to Theorem 6.2 it suffices to prove that f ′ and g′ pass through the same
point of XY . And this is exactly what the hypotheses (2) and (3) guarantee, namely
f ′(y) = g′(y) ∈ XY . �

Lemma 6.4. Let S be a Noetherian scheme. Let X → S be a quasi-compact unram-
ified morphism. Let Y → S be a morphism with Y Noetherian. Then MorS(Y,X)
is a finite set.

Proof. Assume first X → S is separated (which is often the case in practice).
Since Y is Noetherian it has finitely many connected components. Thus we may
assume Y is connected. Choose a point y ∈ Y with image s ∈ S. Since X → S
is unramified and quasi-compact then fibre Xs is finite, say Xs = {x1, . . . , xn} and
κ(s) ⊂ κ(xi) is a finite field extension. See Morphisms, Lemma 36.10, 21.5, and
21.10. For each i there are at most finitely many κ(s)-algebra maps κ(xi) → κ(y)
(by elementary field theory). Thus MorS(Y,X) is finite by Proposition 6.3.

General case. There exists a nonempty open U ⊂ X such that XU → U is finite
(in particular separated), see Morphisms, Lemma 47.1 (the lemma applies since
we’ve already seen above that a quasi-compact unramified morphism is quasi-finite
and since X → S is quasi-separated by Morphisms, Lemma 16.7). Let Z ⊂ S be
the reduced closed subscheme supported on the complement of U . By Noetherian
induction, we see that MorZ(YZ , XZ) is finite (details omitted). By the result of
the first paragraph the set MorU (YU , XU ) is finite. Thus it suffices to show that

MorS(Y,X) −→ MorZ(YZ , XZ)×MorU (YU , XU )

is injective. This follows from the fact that the set of points where two morphisms
a, b : Y → X agree is open in Y , due to the fact that ∆ : X → X ×S X is open, see
Morphisms, Lemma 36.13. �

7. Universally injective, unramified morphisms

Recall that a morphism of schemes f : X → Y is universally injective if any base
change of f is injective (on underlying topological spaces), see Morphisms, Defini-
tion 12.1. Universally injective and unramified morphisms can be characterized as
follows.

http://localhost:8080/tag/024V
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Lemma 7.1. Let f : X → S be a morphism of schemes. The following are equiv-
alent:

(1) f is unramified and a monomorphism,
(2) f is unramified and universally injective,
(3) f is locally of finite type and a monomorphism,
(4) f is universally injective, locally of finite type, and formally unramified,
(5) f is locally of finite type and Xy is either empty or Xy → y is an isomor-

phism for all y ∈ Y .

Proof. We have seen in More on Morphisms, Lemma 4.8 that being formally un-
ramified and locally of finite type is the same thing as being unramified. Hence
(4) is equivalent to (2). A monomorphism is certainly universally injective and
formally unramified hence (3) implies (4). It is clear that (1) implies (3). Finally, if
(2) holds, then ∆ : X → X ×S X is both an open immersion (Morphisms, Lemma
36.13) and surjective (Morphisms, Lemma 12.2) hence an isomorphism, i.e., f is a
monomorphism. In this way we see that (2) implies (1).

Condition (3) implies (5) because monomorphisms are preserved under base change
(Schemes, Lemma 23.5) and because of the description of monomorphisms towards
the spectra of fields in Schemes, Lemma 23.10. Condition (5) implies (4) by Mor-
phisms, Lemmas 12.2 and 36.12. �

This leads to the following useful characterization of closed immersions.

Lemma 7.2. Let f : X → S be a morphism of schemes. The following are equiv-
alent:

(1) f is a closed immersion,
(2) f is a proper monomorphism,
(3) f is proper, unramified, and universally injective,
(4) f is universally closed, unramified, and a monomorphism,
(5) f is universally closed, unramified, and universally injective,
(6) f is universally closed, locally of finite type, and a monomorphism,
(7) f is universally closed, universally injective, locally of finite type, and for-

mally unramified.

Proof. The equivalence of (4) – (7) follows immediately from Lemma 7.1.

Let f : X → S satisfy (6). Then f is separated, see Schemes, Lemma 23.3 and
has finite fibres. Hence More on Morphisms, Lemma 31.5 shows f is finite. Then
Morphisms, Lemma 44.13 implies f is a closed immersion, i.e., (1) holds.

Note that (1) ⇒ (2) because a closed immersion is proper and a monomorphism
(Morphisms, Lemma 42.6 and Schemes, Lemma 23.7). By Lemma 7.1 we see that
(2) implies (3). It is clear that (3) implies (5). �

Here is another result of a similar flavor.

Lemma 7.3. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that

(1) π is finite,
(2) π is unramified,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable1.

1In view of condition (2) this is equivalent to κ(s) = κ(x).
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Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is a closed immersion.

Proof. The question is local on S. Hence we may assume that S = Spec(A). By
definition of a finite morphism this implies X = Spec(B). Note that the ring map
ϕ : A → B defining π is a finite unramified ring map. Let p ⊂ A be the prime
corresponding to s. Let q ⊂ B be the prime corresponding to x. By Conditions (2),
(3) and (4) imply that Bq/pBq = κ(p). Algebra, Lemma 40.11 we have Bq = Bp

(note that a finite ring map satisfies going up, see Algebra, Section 40.) Hence we
see that Bp/pBp = κ(p). As B is a finite A-module we see from Nakayama’s lemma
(see Algebra, Lemma 19.1) that Bp = ϕ(Ap). Hence (using the finiteness of B as an
A-module again) there exists a f ∈ A, f 6∈ p such that Bf = ϕ(Af ) as desired. �

The topological results presented above will be used to give a functorial character-
ization of étale morphisms similar to Theorem 5.1.

8. Examples of unramified morphisms

Here are a few examples.

Example 8.1. Let k be a field. Unramified quasi-compact morphisms X →
Spec(k) are affine. This is true because X has dimension 0 and is Noetherian,
hence is a finite discrete set, and each point gives an affine open, so X is a finite
disjoint union of affines hence affine. Noether normalization forces X to be the
spectrum of a finite k-algebra A. This algebra is a product of finite separable field
extensions of k. Thus, an unramified quasi-compact morphism to Spec(k) corre-
sponds to a finite number of finite separable field extensions of k. In particular,
an unramified morphism with a connected source and a one point target is forced
to be a finite separable field extension. As we will see later, X → Spec(k) is étale
if and only if it is unramified. Thus, in this case at least, we obtain a very easy
description of the étale topology of a scheme. Of course, the cohomology of this
topology is another story.

Example 8.2. Property (3) in Theorem 4.1 gives us a canonical source of examples
for unramified morphisms. Fix a ring R and an integer n. Let I = (g1, . . . , gm) be
an ideal in R[x1, . . . , xn]. Let q ⊂ R[x1, . . . , xn] be a prime. Assume I ⊂ q and
that the matrix (

∂gi
∂xj

)
mod q ∈ Mat(n×m,κ(q))

has rank n. Then the morphism f : Z = Spec(R[x1, . . . , xn]/I) → Spec(R) is
unramified at the point x ∈ Z ⊂ An

R corresponding to q. Clearly we must have
m ≥ n. In the extreme case m = n, i.e., the differential of the map An

R → An
R

defined by the gi’s is an isomorphism of the tangent spaces, then f is also flat x and,
hence, is an étale map (see Algebra, Definition 132.6, Lemma 132.7 and Example
132.8).

Example 8.3. Fix an extension of number fields L/K with rings of integers OL
and OK . The injection K → L defines a morphism f : Spec(OL)→ Spec(OK). As
discussed above, the points where f is unramified in our sense correspond to the
set of points where f is unramified in the conventional sense. In the conventional
sense, the locus of ramification in Spec(OL) can be defined by vanishing set of the
different; this is an ideal in OL. In fact, the different is nothing but the annihilator

http://localhost:8080/tag/024X
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of the module ΩOL/OK
. Similarly, the discriminant is an ideal in OK , namely it

is the norm of the different. The vanishing set of the discriminant is precisely
the set of points of K which ramify in L. Thus, denoting by X the complement
of the closed subset defined by the different in Spec(OL), we obtain a morphism
X → Spec(OL) which is unramified. Furthermore, this morphism is also flat, as any
local homomorphism of discrete valuation rings is flat, and hence this morphism is
actually étale. If L/K is Galois, then denoting by Y the complement of the closed
subset defined by the discriminant in Spec(OK), we see that we get even a finite
étale morphism X → Y . Thus, this is an example of a finite étale covering.

9. Flat morphisms

This section simply exists to summarize the properties of flatness that will be useful
to us. Thus, we will be content with stating the theorems precisely and giving
references for the proofs.

After briefly recalling the necessary facts about flat modules over Noetherian rings,
we state a theorem of Grothendieck which gives sufficient conditions for “hyperplane
sections” of certain modules to be flat.

Definition 9.1. Flatness of modules and rings.

(1) A module N over a ring A is said to be flat if the functor M 7→ M ⊗A N
is exact.

(2) If this functor is also faithful, we say that N is faithfully flat over A.
(3) A morphism of rings f : A → B is said to be flat (resp. faithfully flat) if

the functor M 7→M ⊗A B is exact (resp. faithful and exact).

Here is a list of facts with references to the algebra chapter.

(1) Free and projective modules are flat. This is clear for free modules and
follows for projective modules as they are direct summands of free modules
and ⊗ commutes with direct sums.

(2) Flatness is a local property, that is, M is flat over A if and only if Mp is
flat over Ap for all p ∈ Spec(A). See Algebra, Lemma 38.19.

(3) If M is a flat A-module and A → B is a ring map, then M ⊗A B is a flat
B-module. See Algebra, Lemma 38.6.

(4) Finite flat modules over local rings are free. See Algebra, Lemma 75.4.
(5) If f : A → B is a morphism of arbitrary rings, f is flat if and only if the

induced maps Af−1(q) → Bq are flat for all q ∈ Spec(B). See Algebra,
Lemma 38.19

(6) If f : A→ B is a local homomorphism of local rings, f is flat if and only if
it is faithfully flat. See Algebra, Lemma 38.16.

(7) A map A → B of rings is faithfully flat if and only if it is flat and the
induced map on spectra is surjective. See Algebra, Lemma 38.15.

(8) If A is a noetherian local ring, the completion A∧ is faithfully flat over A.
See Algebra, Lemma 93.4.

(9) Let A be a Noetherian local ring and M an A-module. Then M is flat over
A if and only if M ⊗AA∧ is flat over A∧. (Combine the previous statement
with Algebra, Lemma 38.7.)

Before we move on to the geometric category, we present Grothendieck’s theorem,
which provides a convenient recipe for producing flat modules.
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Theorem 9.2. Let A, B be Noetherian local rings. Let f : A → B be a local
homomorphism. If M is a finite B-module that is flat as an A-module, and t ∈ mB
is an element such that multiplication by t is injective on M/mAM , then M/tM is
also A-flat.

Proof. See Algebra, Lemma 95.1. See also [Mat70, Section 20]. �

Definition 9.3. (See Morphisms, Definition 26.1). Let f : X → Y be a morphism
of schemes. Let F be a quasi-coherent OX -module.

(1) Let x ∈ X. We say F is flat over Y at x ∈ X if Fx is a flat OY,f(x)-module.
This uses the map OY,f(x) → OX,x to think of Fx as a OY,f(x)-module.

(2) Let x ∈ X. We say f is flat at x ∈ X if OY,f(x) → OX,x is flat.
(3) We say f is flat if it is flat at all points of X.
(4) A morphism f : X → Y that is flat and surjective is sometimes said to be

faithfully flat.

Once again, here is a list of results:

(1) The property (of a morphism) of being flat is, by fiat, local in the Zariski
topology on the source and the target.

(2) Open immersions are flat. (This is clear because it induces isomorphisms
on local rings.)

(3) Flat morphisms are stable under base change and composition. Morphisms,
Lemmas 26.7 and 26.5.

(4) If f : X → Y is flat, then the pullback functor QCoh(OY )→ QCoh(OX) is
exact. This is immediate by looking at stalks.

(5) Let f : X → Y be a morphism of schemes, and assume Y is quasi-compact
and quasi-separated. In this case if the functor f∗ is exact then f is flat.
(Proof omitted. Hint: Use Properties, Lemma 20.1 to see that Y has
“enough” ideal sheaves and use the characterization of flatness in Algebra,
Lemma 38.4.)

10. Topological properties of flat morphisms

We “recall” below some openness properties that flat morphisms enjoy.

Theorem 10.1. Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is locally of finite type. Let F be a coherent OX-module. The set
of points in X where F is flat over S is an open set. In particular the set of points
where f is flat is open in X.

Proof. See More on Morphisms, Theorem 12.1. �

Theorem 10.2. Let Y be a locally Noetherian scheme. Let f : X → Y be a
morphism which is flat and locally of finite type. Then f is (universally) open.

Proof. See Morphisms, Lemma 26.9. �

Theorem 10.3. A faithfully flat quasi-compact morphism is a quotient map for
the Zariski topology.

Proof. See Morphisms, Lemma 26.10. �
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An important reason to study flat morphisms is that they provide the adequate
framework for capturing the notion of a family of schemes parametrized by the
points of another scheme. Naively one may think that any morphism f : X → S
should be thought of as a family parametrized by the points of S. However, without
a flatness restriction on f , really bizarre things can happen in this so-called family.
For instance, we aren’t guaranteed that relative dimension (dimension of the fibres)
is constant in a family. Other numerical invariants, such as the Hilbert polynomial,
too may change from fibre to fibre. Flatness prevents such things from happening
and, therefore, provides some “continuity” to the fibres.

11. Étale morphisms

In this section, we will define étale morphisms and prove a number of important
properties about them. The most important one, no doubt, is the functorial char-
acterization presented in Theorem 16.1. Following this, we will also discuss a few
properties of rings which are insensitive to an étale extension (properties which
hold for a ring if and only if they hold for all its étale extensions) to motivate the
basic tenet of étale cohomology – étale morphisms are the algebraic analogue of
local isomorphisms.

As the title suggests, we will define the class of étale morphisms – the class of mor-
phisms (whose surjective families) we shall deem to be coverings in the category of
schemes over a base scheme S in order to define the étale site Sétale. Intuitively, an
étale morphism is supposed to capture the idea of a covering space and, therefore,
should be close to a local isomorphism. If we’re working with varieties over alge-
braically closed fields, this last statement can be made into a definition provided
we replace “local isomorphism” with “formal local isomorphism” (isomorphism af-
ter completion). One can then give a definition over any base field by asking that
the base change to the algebraic closure be étale (in the aforementioned sense).
But, rather than proceeding via such aesthetically displeasing constructions, we
will adopt a cleaner, albeit slightly more abstract, algebraic approach.

Definition 11.1. Let A, B be Noetherian local rings. A local homomorphism
f : A → B is said to be a étale homomorphism of local rings if it is flat and
unramified homomorphism of local rings (please see Definition 3.1).

This is the local version of the definition of an étale ring map in Algebra, Section
138. The exact definition given in that section is that it is a smooth ring map of
relative dimension 0. It is shown (in Algebra, Lemma 138.2) that an étale R-algebra
S always has a presentation

S = R[x1, . . . , xn]/(f1, . . . , fn)

such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2

. . . . . . . . . . . .
∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in S. The following two lemmas link the two notions.

Lemma 11.2. Let A → B be of finite type with A a Noetherian ring. Let q be a
prime of B lying over p ⊂ A. Then A→ B is étale at q if and only if Ap → Bq is
an étale homomorphism of local rings.
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Proof. See Algebra, Lemmas 138.3 (flatness of étale maps), 138.5 (étale maps are
unramified) and 138.7 (flat and unramified maps are étale). �

Lemma 11.3. Let A, B be Noetherian local rings. Let A → B be a local ho-
momorphism such that B is essentially of finite type over A. The following are
equivalent

(1) A→ B is an étale homomorphism of local rings
(2) A∧ → B∧ is an étale homomorphism of local rings, and
(3) A∧ → B∧ is étale.

Moreover, in this case B∧ ∼= (A∧)⊕n as A∧-modules for some n ≥ 1.

Proof. To see the equivalences of (1), (2) and (3), as we have the corresponding
results for unramified ring maps (Lemma 3.4) it suffices to prove that A → B is
flat if and only if A∧ → B∧ is flat. This is clear from our lists of properties of flat
maps since the ring maps A → A∧ and B → B∧ are faithfully flat. For the final
statement, by Lemma 3.3 we see that B∧ is a finite flat A∧ module. Hence it is
finite free by our list of properties on flat modules in Section 9. �

The integer n which occurs in the lemma above is nothing other than the degree
[κ(mB) : κ(mA)] of the residue field extension. In particular, if κ(mA) is separably
closed, we see that A∧ → B∧ is an isomorphism, which vindicates our earlier claims.

Definition 11.4. (See Morphisms, Definition 37.1.) Let Y be a locally Noetherian
scheme. Let f : X → Y be a morphism of schemes which is locally of finite type.

(1) Let x ∈ X. We say f is étale at x ∈ X if OY,f(x) → OX,x is an étale
homomorphism of local rings.

(2) The morphism is said to be étale if it is étale at all its points.

Let us prove that this definition agrees with the definition in the chapter on mor-
phisms of schemes. This in particular guarantees that the set of points where a
morphism is étale is open.

Lemma 11.5. Let Y be a locally Noetherian scheme. Let f : X → Y be locally of
finite type. Let x ∈ X. The morphism f is étale at x in the sense of Definition
11.4 if and only if it is unramified at x in the sense of Morphisms, Definition 37.1.

Proof. This follows from Lemma 11.2 and the definitions. �

Here are some results on étale morphisms. The formulations as given in this list
apply only to morphisms locally of finite type between locally Noetherian schemes.
In each case we give a reference to the general result as proved earlier in the project,
but in some cases one can prove the result more easily in the Noetherian case. Here
is the list:

(1) An étale morphism is unramified. (Clear from our definitions.)

(2) Étaleness is local on the source and the target in the Zariski topology.

(3) Étale morphisms are stable under base change and composition. See Mor-
phisms, Lemmas 37.4 and 37.3.

(4) Étale morphisms of schemes are locally quasi-finite and quasi-compact étale
morphisms are quasi-finite. (This is true because it holds for unramified
morphisms as seen earlier.)

(5) Étale morphisms have relative dimension 0. See Morphisms, Definition 30.1
and Morphisms, Lemma 30.5.
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(6) A morphism is étale if and only if it is flat and all its fibres are étale. See
Morphisms, Lemma 37.8.

(7) Étale morphisms are open. This is true because an étale morphism is flat,
and Theorem 10.2.

(8) Let X and Y be étale over a base scheme S. Any S-morphism from X to
Y is étale. See Morphisms, Lemma 37.18.

12. The structure theorem

We present a theorem which describes the local structure of étale and unramified
morphisms. Besides its obvious independent importance, this theorem also allows
us to make the transition to another definition of étale morphisms that captures
the geometric intuition better than the one we’ve used so far.

To state it we need the notion of a standard étale ring map, see Algebra, Definition
138.14. Namely, suppose that R is a ring and f, g ∈ R[t] are polynomials such that

(a) f is a monic polynomial, and
(b) f ′ = df/dt is invertible in the localization R[t]g/(f).

Then the map
R −→ R[t]g/(f) = R[t, 1/g]/(f)

is a standard étale algebra, and any standard étale algebra is isomorphic to one of
these. It is a pleasant exercise to prove that such a ring map is flat, and unramified
and hence étale (as expected of course). A special case of a standard étale ring map
is any ring map

R −→ R[t]f ′/(f) = R[t, 1/f ′]/(f)

with f a monic polynomial, and any standard étale algebra is (isomorphic to) a
principal localization of one of these.

Theorem 12.1. Let f : A → B be an étale homomorphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a localization of B′ at a prime.

Proof. Write B = B′q for some finite type A-algebra B′ (we can do this because
B is essentially of finite type over A). By Lemma 11.2 we see that A → B′ is
étale at q. Hence we may apply Algebra, Proposition 138.17 to see that a principal
localization of B′ is standard étale. �

Here is the version for unramified homomorphisms of local rings.

Theorem 12.2. Let f : A → B be an unramified morphism of local rings. Then
there exist f, g ∈ A[t] such that

(1) B′ = A[t]g/(f) is standard étale – see (a) and (b) above, and
(2) B is isomorphic to a quotient of a localization of B′ at a prime.

Proof. Write B = B′q for some finite type A-algebra B′ (we can do this because
B is essentially of finite type over A). By Lemma 3.2 we see that A → B′ is
unramified at q. Hence we may apply Algebra, Proposition 144.8 to see that a
principal localization of B′ is a quotient of a standard étale A-algebra. �

Via standard lifting arguments, one then obtains the following geometric statement
which will be of essential use to us.
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Theorem 12.3. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X. If ϕ is
étale at x, then there exist exist affine opens V ⊂ Y and U ⊂ X with x ∈ U and
ϕ(U) ⊂ V such that we have the following diagram

X

��

Uoo

��

j
// Spec(R[t]f ′/(f))

��
Y Voo Spec(R)

where j is an open immersion, and f ∈ R[t] is monic.

Proof. This is equivalent to Morphisms, Lemma 37.14 although the statements
differ slightly. �

13. Étale and smooth morphisms

An étale morphism is smooth of relative dimension zero. The projection An
S → S

is a standard example of a smooth morphism of relative dimension n. It turns
out that any smooth morphism is étale locally of this form. Here is the precise
statement.

Theorem 13.1. Let ϕ : X → Y be a morphism of schemes. Let x ∈ X. If ϕ is
smooth at x, then there exist exist and integer n ≥ 0 and affine opens V ⊂ Y and
U ⊂ X with x ∈ U and ϕ(U) ⊂ V such that there exists a commutative diagram

X

��

Uoo

��

π
// An

R

��

Spec(R[x1, . . . , xn])

vv
Y Voo Spec(R)

where π is étale.

Proof. See Morphisms, Lemma 37.20. �

14. Topological properties of étale morphisms

We present a few of the topological properties of étale and unramified morphisms.
First, we give what Grothendieck calls the fundamental property of étale morphisms,
see [Gro71, Exposé I.5].

Theorem 14.1. Let f : X → Y be a morphism of schemes. The following are
equivalent:

(1) f is an open immersion,
(2) f is universally injective and étale, and
(3) f is a flat monomorphism, locally of finite presentation.

Proof. An open immersion is universally injective since any base change of an open
immersion is an open immersion. Moreover, it is étale by Morphisms, Lemma 37.9.
Hence (1) implies (2).

Assume f is universally injective and étale. Since f is étale it is flat and locally
of finite presentation, see Morphisms, Lemmas 37.12 and 37.11. By Lemma 7.1 we
see that f is a monomorphism. Hence (2) implies (3).
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Assume f is flat, locally of finite presentation, and a monomorphism. Then f is
open, see Morphisms, Lemma 26.9. Thus we may replace Y by f(X) and we may
assume f is surjective. Then f is open and bijective hence a homeomorphism. Hence
f is quasi-compact. Hence Descent, Lemma 21.1 shows that f is an isomorphism
and we win. �

Here is another result of a similar flavor.

Lemma 14.2. Let π : X → S be a morphism of schemes. Let s ∈ S. Assume that

(1) π is finite,
(2) π is étale,
(3) π−1({s}) = {x}, and
(4) κ(s) ⊂ κ(x) is purely inseparable2.

Then there exists an open neighbourhood U of s such that π|π−1(U) : π−1(U) → U
is an isomorphism.

Proof. By Lemma 7.3 there exists an open neighbourhood U of s such that
π|π−1(U) : π−1(U)→ U is a closed immersion. But a morphism which is étale and
a closed immersion is an open immersion (for example by Theorem 14.1). Hence
after shrinking U we obtain an isomorphism. �

15. Topological invariance of the étale topology

Next, we present an extremely crucial theorem which, roughly speaking, says that
étaleness is a topological property.

Theorem 15.1. Let X and Y be two schemes over a base scheme S. Let S0 be a
closed subscheme of S whose ideal sheaf has square zero. Denote X0 (resp. Y0) the
base change S0 ×S X (resp. S0 ×S Y ). If X is étale over S, then the map

MorS(Y,X) −→ MorS0
(Y0, X0)

is bijective.

Proof. After base changing via Y → S, we may assume that Y = S. In this case
the theorem states that any S-morphism σ0 : S0 → X actually factors uniquely
through a section S → X of the étale structure morphism X → S.

Existence. Since we have equality of underlying topological spaces |S0| = |S| and
|X0| = |X|, by Theorem 6.2, the section σ0 is uniquely determined by a connected
component X ′ of X such that the base change X ′0 = S0×SX ′ maps isomorphically
to S0. In particular, X ′ → S is a universal homeomorphism and therefore univer-
sally injective. Since X ′ → S is étale, it follows from Theorem 14.1 that X ′ → S is
an isomorphism and, therefore, it has an inverse σ which is the required section.

Uniqueness. This follows from Theorem 5.1, or directly from Theorem 6.2, or, if
one carefuly observes, from our proof itself. �

From the proof of preceeding theorem, we also obtain one direction of the promised
functorial characterization of étale morphisms. The following theorem will be
strengthened in Étale Cohomology, Theorem 46.1.

2In view of condition (2) this is equivalent to κ(s) = κ(x).
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Theorem 15.2 (Une equivalence remarquable de catégories). Let S be a scheme.
Let S0 ⊂ S be a closed subscheme defined by an ideal with square zero. The functor

X 7−→ X0 = S0 ×S X

defines an equivalence of categories

{schemes X étale over S} ↔ {schemes X0 étale over S0}

Proof. By Theorem 15.1 we see that this functor is fully faithful. It remains to
show that the functor is essentially surjective. Let Y → S0 be an étale morphism
of schemes.

Suppose that the result holds if S and Y are affine. In that case, we choose an
affine open covering Y =

⋃
Vj such that each Vj maps into an affine open of S. By

assumption (affine case) we can find étale morphisms Wj → S such that Wj,0
∼= Vj

(as schemes over S0). Let Wj,j′ ⊂ Wj be the open subscheme whose underlying
topological space corresponds to Vj ∩ Vj′ . Because we have isomorphisms

Wj,j′,0
∼= Vj ∩ Vj′ ∼= Wj′,j,0

as schemes over S0 we see by fully faithfulness that we obtain isomorphisms θj,j′ :
Wj,j′ →Wj′,j of schemes over S. We omit the verification that these isomorphisms
satisfy the cocycle condition of Schemes, Section 14. Applying Schemes, Lemma
14.2 we obtain a scheme X → S by glueing the schemes Wj along the identifications
θj,j′ . It is clear that X → S is étale and X0

∼= Y by construction.

Thus it suffices to show the lemma in case S and Y are affine. Say S = Spec(R)
and S0 = Spec(R/I) with I2 = 0. By Algebra, Lemma 138.2 we know that Y is
the spectrum of a ring A with

A = (R/I)[x1, . . . , xn]/(f1, . . . , fn)

such that

g = det


∂f1/∂x1 ∂f2/∂x1 . . . ∂fn/∂x1

∂f1/∂x2 ∂f2/∂x2 . . . ∂fn/∂x2

. . . . . . . . . . . .

∂f1/∂xn ∂f2/∂xn . . . ∂fn/∂xn


maps to an invertible element in A. Choose any lifts fi ∈ R[x1, . . . , xn]. Since I
is nilpotent it follows that the determinant of the matrix of partials of the fi is
invertible in the algebra A defined by

A = R[x1, . . . , xn]/(f1, . . . , fn)

Hence R → A is étale and (R/I)⊗R A ∼= A. To prove the general case one argues
with glueing affine pieces. �

16. The functorial characterization

We finally present the promised functorial characterization. Thus there are four
ways to think about étale morphisms of schemes:

(1) as a smooth morphism of relative dimension 0,
(2) as locally finitely presented, flat, and unramified morphisms,
(3) using the structure theorem, and
(4) using the functorial characterization.
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Theorem 16.1. Let f : X → S be a morphism that is locally of finite presentation.
The following are equivalent

(1) f is étale,
(2) for all affine S-schemes Y , and closed subschemes Y0 ⊂ Y defined by

square-zero ideals, the natural map

MorS(Y,X) −→ MorS(Y0, X)

is bijective.

Proof. This is More on Morphisms, Lemma 6.9. �

This characterization says that solutions to the equations defining X can be lifted
uniquely through nilpotent thickenings.

17. Étale local structure of unramified morphisms

In the chapter More on Morphisms, Section 30 the reader can find some results
on the étale local structure of quasi-finite morphisms. In this section we want to
combine this with the topological properties of unramified morphisms we have seen
in this chapter. The basic overall picture to keep in mind is

V //

!!

XU

��

// X

f

��
U // S

see More on Morphisms, Equation (30.0.1). We start with a very general case.

Lemma 17.1. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is unramified at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is a closed immersion passing through u,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. By Morphisms, Definition 36.1 there exists an open neighbourhood of each
xi which is locally of finite type over S. Replacing X by an open neighbourhood of
{x1, . . . , xn} we may assume f is locally of finite type. Apply More on Morphisms,
Lemma 30.3 to get the étale neighbourhood (U, u) and the opens Vi,j finite over
U . By Lemma 7.3 after possibly shrinking U we get that Vi,j → U is a closed
immersion. �

Lemma 17.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is unramified
at each xi. Then there exists an étale neighbourhood (U, u)→ (S, s) and a disjoint
union decomposition

XU = W q
∐

i,j
Vi,j

such that

(1) Vi,j → U is a closed immersion passing through u,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.
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Proof. Apply Lemma 17.1. We may assume U is affine, so XU is separated. Then
Vi,j → XU is a closed map, see Morphisms, Lemma 42.7. Suppose (i, j) 6= (i′, j′).
Then Vi,j ∩Vi′,j′ is closed in Vi,j and its image in U does not contain u. Hence after
shrinking U we may assume that Vi,j ∩ Vi′,j′ = ∅. Moreover,

⋃
Vi,j is a closed and

open subscheme of XU and hence has an open and closed complement W . This
finishes the proof. �

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite unramified morphism
is étale locally on the base a closed immersion.

Lemma 17.3. Let f : X → S be a finite unramified morphism of schemes. Let
s ∈ S. There exists an étale neighbourhood (U, u) → (S, s) and a disjoint union
decomposition

XU =
∐

j
Vj

such that each Vj → U is a closed immersion.

Proof. Since X → S is finite the fibre over S is a finite set {x1, . . . , xn} of points of
X. Apply Lemma 17.2 to this set (a finite morphism is separated, see Morphisms,
Section 44). The image of W in U is a closed subset (as XU → U is finite, hence
proper) which does not contain u. After removing this from U we see that W = ∅
as desired. �

18. Étale local structure of étale morphisms

This is a bit silly, but perhaps helps form intuition about étale morphisms. We
simply copy over the results of Section 17 and change “closed immersion” into
“isomorphism”.

Lemma 18.1. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is étale at each xi. Then there
exists an étale neighbourhood (U, u) → (S, s) and opens Vi,j ⊂ XU , i = 1, . . . , n,
j = 1, . . . ,mi such that

(1) Vi,j → U is an isomorphism,
(2) u is not in the image of Vi,j ∩ Vi′,j′ unless i = i′ and j = j′, and
(3) any point of (XU )u mapping to xi is in some Vi,j.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.1. Now
Vi,j → U is a closed immersion and étale. Hence it is an open immersion, for
example by Theorem 14.1. Replace U by the intersection of the images of Vi,j → U
to get the lemma. �

Lemma 18.2. Let f : X → S be a morphism of schemes. Let x1, . . . , xn ∈ X be
points having the same image s in S. Assume f is separated and f is étale at each
xi. Then there exists an étale neighbourhood (U, u) → (S, s) and a disjoint union
decomposition

XU = W q
∐

i,j
Vi,j

such that

(1) Vi,j → U is an isomorphism,
(2) the fibre Wu contains no point mapping to any xi.

In particular, if f−1({s}) = {x1, . . . , xn}, then the fibre Wu is empty.
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Proof. An étale morphism is unramified, hence we may apply Lemma 17.2. As in
the proof of Lemma 18.1 the morphisms Vi,j → U are open immersions and we win
after replacing U by the intersection of their images. �

The following lemma is in some sense much weaker than the preceding one but it
may be useful to state it explicitly here. It says that a finite étale morphism is étale
locally on the base a “topological covering space”, i.e., a finite product of copies of
the base.

Lemma 18.3. Let f : X → S be a finite étale morphism of schemes. Let s ∈ S.
There exists an étale neighbourhood (U, u) → (S, s) and a disjoint union decompo-
sition

XU =
∐

j
Vj

such that each Vj → U is an isomorphism.

Proof. An étale morphism is unramified, hence we may apply Lemma 17.3. As in
the proof of Lemma 18.1 we see that Vi,j → U is an open immersion and we win
after replacing U by the intersection of their images. �

19. Permanence properties

In what follows, we present a few “permanence” properties of étale homomorphisms
of Noetherian local rings (as defined in Definition 11.1). See More on Algebra, Sec-
tions 32 and 34 for the analogue of this material for the completion and henselization
of a Noetherian local ring.

Lemma 19.1. Let A, B be Noetherian local rings. Let A → B be a étale homo-
morphism of local rings. Then dim(A) = dim(B).

Proof. See for example Algebra, Lemma 108.7. �

Proposition 19.2. Let A, B be Noetherian local rings. Let f : A→ B be an étale
homomorphism of local rings. Then depth(A) = depth(B)

Proof. See Algebra, Lemma 151.2. �

Proposition 19.3. Let A, B be Noetherian local rings. Let f : A→ B be an étale
homomorphism of local rings. Then A is Cohen-Macaulay if and only if B is so.

Proof. A local ring A is Cohen-Macaulay if and only dim(A) = depth(A). As both
of these invariants is preserved under an étale extension, the claim follows. �

Proposition 19.4. Let A, B be Noetherian local rings. Let f : A→ B be an étale
homomorphism of local rings. Then A is regular if and only if B is so.

Proof. If B is regular, then A is regular by Algebra, Lemma 106.9. Assume A is
regular. Let m be the maximal ideal of A. Then dimκ(m) m/m

2 = dim(A) = dim(B)
(see Lemma 19.1). On the other hand, mB is the maximal ideal of B and hence
mB/mB = mB/m2B is generated by at most dim(B) elements. Thus B is regular.
(You can also use the slightly more general Algebra, Lemma 108.8.) �

Proposition 19.5. Let A, B be Noetherian local rings. Let f : A→ B be an étale
homomorphism of local rings. Then A is reduced if and only if B is so.
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Proof. It is clear from the faithful flatness of A→ B that if B is reduced, so is A.
See also Algebra, Lemma 152.2. Conversely, assume A is reduced. By assumption
B is a localization of a finite type A-algebra B′ at some prime q. After replacing
B′ by a localization we may assume that B′ is étale over A, see Lemma 11.2. Then
we see that Algebra, Lemma 151.6 applies to A→ B′ and B′ is reduced. Hence B
is reduced. �

Remark 19.6. The result on “reducedness” does not hold with a weaker definition
of étale local ring maps A→ B where one drops the assumption that B is essentially
of finite type over A. Namely, it can happen that a Noetherian local domain A has
nonreduced completion A∧, see Examples, Section 15. But the ring map A → A∧

is flat, and mAA
∧ is the maximal ideal of A∧ and of course A and A∧ have the

same residue fields. This is why it is important to consider this notion only for ring
extensions which are essentially of finite type (or essentially of finite presentation
if A is not Noetherian).

Proposition 19.7. Let A, B be Noetherian local rings. Let f : A→ B be an étale
homomorphism of local rings. Then A is a normal domain if and only if B is so.

Proof. See Algebra, Lemma 152.3 for descending normality. Conversely, assume A
is normal. By assumption B is a localization of a finite type A-algebra B′ at some
prime q. After replacing B′ by a localization we may assume that B′ is étale over
A, see Lemma 11.2. Then we see that Algebra, Lemma 151.7 applies to A → B′

and we conclude that B′ is normal. Hence B is a normal domain. �

The preceeding propositions give some indication as to why we’d like to think
of étale maps as “local isomorphisms”. Another property that gives an excellent
indication that we have the “right” definition is the fact that for C-schemes of
finite type, a morphism is étale if and only if the associated morphism on analytic
spaces (the C-valued points given the complex topology) is a local isomorphism
in the analytic sense (open embedding locally on the source). This fact can be
proven with the aid of the structure theorem and the fact that the analytification
commutes with the formation of the completed local rings – the details are left to
the reader.
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