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2 PROPERTIES OF ALGEBRAIC SPACES

1. Introduction

Please see Spaces, Section [I] for a brief introduction to algebraic spaces, and please
read some of that chapter for our basic definitions and conventions concerning
algebraic spaces. In this chapter we start introducing some basic notions and prop-
erties of algebraic spaces. A fundamental reference for the case of quasi-separated
algebraic spaces is [Knu71].

The discussion is somewhat awkward at times since we made the design decision
to first talk about properties of algebraic spaces by themselves, and only later
about properties of morphisms of algebraic spaces. We make an exception for this
rule regarding étale morphisms of algebraic spaces, which we introduce in Section
[[3] But until that section whenever we say a morphism has a certain property,
it automatically means the source of the morphism is a scheme (or perhaps the
morphism is representable).

Some of the material in the chapter (especially regarding points) will be improved
upon in the chapter on decent algebraic spaces.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schypp -
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X xg X for the product of X with itself (in the category of
algebraic spaces over S), instead of X x X. The reason is that we want to avoid
confusion when changing base schemes, as in Spaces, Section

3. Separation axioms

In this section we collect all the “absolute” separation conditions of algebraic spaces.
Since in our language any algebraic space is an algebraic space over some definite
base scheme, any absolute property of X over S corresponds to a conditions imposed
on X viewed as an algebraic space over Spec(Z). Here is the precise formulation.

Definition 3.1. (Compare Spaces, Definition m) Consider a big fppf site
Schypps = (Sch/ Spec(Z)) ¢pps- Let X be an algebraic space over Spec(Z). Let
A: X — X x X be the diagonal morphism.

(1) We say X is separated if A is a closed immersion.

(2) We say X is locally separated]]if A is an immersion.

(3) We say X is quasi-separated if A is quasi-compact.

(4) We say X is Zariski locally quasz’—sepamtetﬂ if there exists a Zariski covering
X = U;er Xi (see Spaces, Definition such that each X; is quasi-
separated.

Let S is a scheme contained in Schypyr, and let X be an algebraic space over S.

Then we say X is separated, locally separated, quasi-separated, or Zariski locally
quasi-separated if X viewed as an algebraic space over Spec(Z) (see Spaces, Defini-

tion [16.2]) has the corresponding property.

n the literature this often refers to quasi-separated and locally separated algebraic spaces.
2 This notion was suggested by B. Conrad.
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It is true that an algebraic space X over S which is separated (in the absolute sense
above) is separated over S (and similarly for the other absolute separation proper-
ties above). This will be discussed in great detail in Morphisms of Spaces, Section
We will see in Lemma that being Zariski locally separated is independent of
the base scheme (hence equivalent to the absolute notion).

Lemma) 3.2. Let S be a scheme. Let X be an algebraic space over S. We have the
following implications among the separation axioms of Definition|3. 1|:

(1) separated implies all the others,

(2) quasi-separated implies Zariski locally quasi-separated.

Proof. Omitted. O

Lemma 3.3. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent
(1) X is a quasi-separated algebraic space,
(2) forU —» X,V = X with U, V quasi-compact schemes the fibre product
U xx V is quasi-compact,
(3) forU — X,V — X with U, V affine the fibre product U xx V is quasi-
compact.

Proof. Using Spaces, Lemmawe see that we may assume S = Spec(Z). Since
UxxV=XxXxxxx (UxV) and since U x V is quasi-compact if U and V are so,
we see that (1) implies (2). It is clear that (2) implies (3). Assume (3). Choose a
scheme W and a surjective étale morphism W — X. Then W x W — X x X is
surjective étale. Hence it suffices to show that

JWxxW=Xxxux)y WxW)=WxW

is quasi-compact, see Spaces, Lemma [5.6] If U C W and V' C W are affine opens,
then j71(U x V) = U x x V is quasi-compact by assumption. Since the affine opens
U x V form an affine open covering of W x W (Schemes, Lemma we conclude
by Schemes, Lemma [19.2 O

Lemma 3.4. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is a separated algebraic space,
(2) forU — X,V — X with U, V affine the fibre product U xx V is affine
and
OU)®z O(V) — OU xx V)
18 surjective.

Proof. Using Spaces, Lemma[16.3| we see that we may assume S = Spec(Z). Since
UxxV =Xxxxx(UxV)and since U x V is affine if U and V are so, we see that
(1) implies (2). Assume (2). Choose a scheme W and a surjective étale morphism
W — X. Then W x W — X x X is surjective étale. Hence it suffices to show that

jSWXXW:XX(XXx)(WXW)%WXW
is a closed immersion, see Spaces, Lemma fU CWand V C W are affine
opens, then j71(U x V) = U x x V is affine by assumption and the map U xx V —
U x V is a closed immersion because the corresponding ring map is surjective. Since

the affine opens U x V form an affine open covering of W x W (Schemes, Lemma
17.4) we conclude by Morphisms, Lemma O
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4. Points of algebraic spaces

As is clear from Spaces, Example [14.8] a point of an algebraic space should not
be defined as a monomorphism from the spectrum of a field. Instead we define
them as equivalence classes of morphisms of spectra of fields exactly as explained
in Schemes, Section

Let S be a scheme. Let F' be a presheaf on (Sch/S)fppr. Let K is a field. Consider
a morphism

Spec(K) — F.
By the Yoneda Lemma this is given by an element p € F(Spec(K)). We say that
two such pairs (Spec(K),p) and (Spec(L), q) are equivalent if there exists a third
field 2 and a commutative diagram

Spec(2) —— Spec(L)

L,k

Spec(K) -2 - F

In other words, there are field extensions K — Q and L — €2 such that p and ¢
map to the same element of F(Spec(2)). We omit the verification that this defines
an equivalence relation.

Definition 4.1. Let S be a scheme. Let X be an algebraic space over S. A point
of X is an equivalence class of morphisms from spectra of fields into X. The set of
points of X is denoted | X|.

Note that if f: X — Y is a morphism of algebraic spaces over S, then there is an
induced map |f] : |X| — |Y| which maps a representative z : Spec(K) — X to the
representative f ox : Spec(K) — Y.

Lemma 4.2. Let S be a scheme. Let X be a scheme over S. The points of X as
a scheme are in canonical 1-1 correspondence with the points of X as an algebraic
space.

Proof. This is Schemes, Lemma [13.3 (Il

Lemma 4.3. Let S be a scheme. Let
Ixy X —X

|

7 —Y
be a cartesian diagram of algebraic spaces. Then the map of sets of points
|Z Xy X| — |Z| X‘y| |X|
s surjective.
Proof. Namely, suppose given fields K, L and morphisms Spec(K) — X, Spec(L) —
Z, then the assumption that they agree as elements of |Y| means that there is a
common extension K C M and L C M such that Spec(M) — Spec(K) - X —- Y

and Spec(M) — Spec(L) — Z — Y agree. And this is exactly the condition which
says you get a morphism Spec(M) — Z xy X. O
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Lemma 4.4. Let S be a scheme. Let X be an algebraic space over S. Let f : T — X
be a morphism from a scheme to X. The following are equivalent

(1) f:T — X is surjective (according to Spaces, Definition , and
(2) |f]:|T] = |X| is surjective.

Proof. Assume (1). Let x : Spec(K) — X be a morphism from the spectrum
of a field into X. By assumption the morphism of schemes Spec(K) xx T —
Spec(K) is surjective. Hence there exists a field extension K C K’ and a morphism
Spec(K') — Spec(K) x x T such that the left square in the diagram

Spec(K’') —— Spec(K) xx T ——=T

| .

Spec(K) =——Spec(K) ——— X
is commutative. This shows that |f|: |T| — | X| is surjective.

Assume (2). Let Z — X be a morphism where Z is a scheme. We have to show
that the morphism of schemes Z x x T'— T is surjective, i.e., that |Z xx T| — |Z|
is surjective. This follows from (2) and Lemma [£.3] O

Lemma 4.5. Let S be a scheme. Let X be an algebraic space over S. Let X = U/R
be a presentation of X, see Spaces, Definition[9.3 Then the image of |[R| — |U|x|U|
is an equivalence relation and | X| is the quotient of |U| by this equivalence relation.

Proof. The assumption means that U is a scheme, p : U — X is a surjective, étale
morphism, R = U x x U is a scheme and defines an étale equivalence relation on U
such that X = U/R as sheaves. By Lemma [1.4] we see that |U| — |X]| is surjective.
By Lemma [.3] the map

[Rl — U] xx) U]

is surjective. Hence the image of |R| — |U| x|U| is exactly the set of pairs (uy, us) €
|U| x |U| such that u; and us have the same image in |X|. Combining these two
statements we get the result of the lemma. O

Lemmal4.6. Let S be a scheme. There exists a unique topology on the set of points
of algebraic spaces over S with the following properties:

(1) for every morphism of algebraic spaces X — Y over S the map |X| — |Y|
s continuous, and

(2) for every étale morphism U — X with U a scheme the map of topological
spaces \U| — | X| is continuous and open.

Proof. Let X be an algebraic space over S. Let p: U — X be a surjective étale
morphism where U is a scheme over S. We define W C |X]| is open if and only if
|p|=1(W) is an open subset of |U|. This is a topology on | X|.

Let us prove that the topology is independent of the choice of the presentation.
To do this it suffices to show that if U’ is a scheme, and U’ — X is an étale
morphism, then the map |U’| — |X| (with topology on |X| defined using U — X
as above) is open and continuous; which in addition will prove that (2) holds. Set
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U" =U xx U’, so that we have the commutative diagram

U/I UI

L

U——X

As U — X and U’ — X are étale we see that both U” — U and U” — U’ are
étale morphisms of schemes. Moreover, U” — U’ is surjective. Hence we get a
commutative diagram of maps of sets

U"| —=|U"|

U] —— |X]

The lower horizontal arrow is surjective (see Lemma or Lemma and contin-
uous by definition of the topology on |X|. The top horizontal arrow is surjective,
continuous, and open by Morphisms, Lemma [37.13] The left vertical arrow is con-
tinuous and open (by Morphisms, Lemma again.) Hence it follows formally
that the right vertical arrow is continuous and open.

To finish the proof we prove (1). Let a : X — Y be a morphism of algebraic spaces.
According to Spaces, Lemma we can find a diagram

U——=V

X—2>Yv
where U and V' are schemes, and p and ¢ are surjective and étale. This gives rise

to the diagram
Ul —= V]

[ X| ——Y|
where all but the lower horizontal arrows are known to be continuous and the two

vertical arrows are surjective and open. It follows that the lower horizontal arrow
is continuous as desired. (|

Definition 4.7. Let S be a scheme. Let X be an algebraic space over S. The
underlying topological space of X is the set of points | X | endowed with the topology
constructed in Lemma

It turns out that this topological space carries the same information as the small
Zariski site X 74, of Spaces, Definition [12.6

Lemmal 4.8. Let S be a scheme. Let X be an algebraic space over S.

(1) The rule X' — |X’| defines an inclusion preserving bijection between open
subspaces X' (see Spaces, Deﬁm’tion of X, and opens of the topological
space | X|.

(2) A family {X; C X}ier of open subspaces of X is a Zariski covering (see
Spaces, Deﬁm’tion if and only if | X|=U|X;|.


http://localhost:8080/tag/03BY
http://localhost:8080/tag/03BZ

PROPERTIES OF ALGEBRAIC SPACES 7

In other words, the small Zariski site Xzq, of X is canonically identified with a
site associated to the topological space | X| (see Sites, Example .

Proof. In order to prove (1) let us construct the inverse of the rule. Namely,
suppose that W C | X| is open. Choose a presentation X = U/R corresponding to
the surjective étale map p : U — X and étale maps s,t: R — U. By construction
we see that [p|~!1(W) is an open of U. Denote W’ C U the corresponding open
subscheme. It is clear that R’ = s~1(W') = t~}(W’) is a Zariski open of R which
defines an étale equivalence relation on W’. By Spaces, Lemma the morphism
X' =W'/R — X is an open immersion. Hence X' is an algebraic space by Spaces,
Lemma By construction | X’| = W, i.e., X’ is a subspace of X corresponding
to W. Thus (1) is proved.

To prove (2), note that if {X; C X },;¢s is a collection of open subspaces, then it is a
Zariski covering if and only if the U = |JU x x X; is an open covering. This follows
from the definition of a Zariski covering and the fact that the morphism U — X is
surjective as a map of presheaves on (Sch/S) ppyr. On the other hand, we see that
|X| = U|X;| if and only if U = |JU xx X; by Lemma (and the fact that the
projections U x x X; — X, are surjective and étale). Thus the equivalence of (2)
follows. O

Lemmal 4.9. Let S be a scheme. Let X, Y be algebraic spaces over S. Let X' C X
be an open subspace. Let f :' Y — X be a morphism of algebraic spaces over S.
Then f factors through X' if and only if | f| : |Y| — | X| factors through | X'| C | X].

Proof. By Spaces, Lemma we see that Y/ = Y xx X’ — Y is an open
immersion. If |f|(|]Y]) C |X’|, then clearly |Y’| = |Y|. Hence Y’ =Y by Lemma
4.8 (]

Lemmal 4.10. Let S be a scheme. Let X be an algebraic spaces over S. Let U
be a scheme and let f : U — X be an étale morphism. Let X' C X be the open
subspace corresponding to the open |f|(|U]) C |X| via Lemma[{.§ Then f factors
through a surjective étale morphism [’ : U — X'. Moreover, if R =U xx U, then
R=U xx: U and X' has the presentation X' = U/R.

Proof. The existence of the factorization follows from Lemma[£.9] The morphism
f! is surjective according to Lemma 4.4 To see [’ is étale, suppose that T — X’
is a morphism where T is a scheme. Then T'xx U =T xx/ U as X7 — X is
a monomorphism of sheaves. Thus the projection T' X x» U — T is étale as we
assumed f étale. We have U xx U = U xx/ U as X’ — X is a monomorphism.
Then X’ = U/R follows from Spaces, Lemma O

Lemmal 4.11. Let S be a scheme. Let X be an algebraic space over S. Consider
the map
{Spec(k) — X monomorphism} — |X|
This map is injective.
Proof. Suppose that ¢; : Spec(k;) — X are monomorphisms for i = 1,2. If ¢
and s define the same point of | X|, then we see that the scheme
Y = Spec(k1) Xy, x,0, SPeC(k2)

is nonempty. Since the base change of a monomorphism is a monomorphism this
means that the projection morphisms Y — Spec(k;) are monomorphisms. Hence
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Spec(k1) = Y = Spec(ka) as schemes over X, see Schemes, Lemma [23.10, We
conclude that ¢; = @9, which proves the lemma. (]

We will see in Decent Spaces, Lemma that this map is a bijection when X is
decent.

5. Quasi-compact spaces

Definition 5.1. Let S be a scheme. Let X be an algebraic space over S. We
say X is quasi-compact if there exists a surjective étale morphism U — X with U
quasi-compact.

Lemma 5.2. Let S be a scheme. Let X be an algebraic space over S. Then X is
quasi-compact if and only if | X| is quasi-compact.

Proof. Choose a scheme U and an étale surjective morphism U — X. We will use
Lemma If U is quasi-compact, then since |U| — | X]| is surjective we conclude
that |X| is quasi-compact. If |X| is quasi-compact, then since |[U| — |X| is open
we see that there exists a quasi-compact open U’ C U such that |U'| — |X]| is
surjective (and still étale). Hence we win.

Lemma 5.3. A finite disjoint union of quasi-compact algebraic spaces is a quasi-
compact algebraic space.

Proof. This is clear from Lemma and the corresponding topological fact. [
Example 5.4. The space A}Q /Z is a quasi-compact algebraic space.

Lemma 5.5. Let S be a scheme. Let X be an algebraic space over S. FEvery
point of | X| has a fundamental system of open quasi-compact neighbourhoods. In
particular | X| is locally quasi-compact in the sense of Topology, Definition m

Proof. This follows formally from the fact that there exists a scheme U and a
surjective, open, continuous map U — | X]| of topological spaces. To be a bit more
precise, if u € U maps to « € |X|, then the images of the affine neighbourhoods of
u will give a fundamental system of quasi-compact open neighbourhoods of z. [

6. Special coverings

In this section we collect some straightforward lemmas on the existence of étale
surjective coverings of algebraic spaces.

Lemma 6.1. Let S be a scheme. Let X be an algebraic space over S. There exists
a surjective étale morphism U — X where U is a disjoint union of affine schemes.
We may in addition assume each of these affines maps into an affine open of S.

Proof. Let V' — X be a surjective étale morphism. Let V' = J,.; Vi be a Zariski
open covering such that each V; maps into an affine open of S. Thenset U = [[;.; V;
with induced morphism U — V — X. This is étale and surjective as a composition
of étale and surjective representable transformations of functors (via the general

principle Spaces, Lemma [5.4] and Morphisms, Lemmas and [37.3). O

Lemma 6.2. Let S be a scheme. Let X be an algebraic space over S. There exists
a Zariski covering X = |JX; such that each algebraic space X; has a surjective
étale covering by an affine scheme. We may in addition assume each X; maps into
an affine open of S.
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Proof. By Lemma we can find a surjective étale morphism U = [[U; — X,
with U; affine and mapping into an affine open of S. Let X; C X be the open
subspace of X such that U; — X factors through an étale surjective morphism
U, — X;, see Lemma Since U = |JU; we see that X = J X;. As U; — X; is
surjective it follows that X; — S maps into an affine open of S. O

Lemma) 6.3. Let S be a scheme. Let X be an algebraic space over S. Then X is
quasi-compact if and only if there exists an étale surjective morphism U — X with
U an affine scheme.

Proof. If there exists an étale surjective morphism U — X with U affine then X
is quasi-compact by Definition Conversely, if X is quasi-compact, then |X]|
is quasi-compact. Let U = [];.; U; be a disjoint union of affine schemes with an
étale and surjective map ¢ : U — X (Lemma [6.1). Then |X| = [J¢(|U;]) and
by quasi-compactness there is a finite subset i1, ...,4, such that |X| = J(|Uj]).
Hence U;, U...UU;, is an affine scheme with a finite surjective morphism towards
X. O

The following lemma will be obsoleted by the discussion of separated morphisms in
the chapter on morphisms of algebraic spaces.

Lemmal 6.4. Let S be a scheme. Let X be an algebraic space over S. Let U be a
separated scheme and U — X étale. Then U — X 1is separated, and R =U xx U
is a separated scheme.

Proof. Let X’ C X be the open subscheme such that U — X factors through
an étale surjection U — X', see Lemma If U — X’ is separated, then so is
U — X, see Spaces, Lemma (as the open immersion X’ — X is separated by
Spaces, Lemmaand Schemes, Lemma. Moreover, since U X x U = U x x U
it suffices to prove the result after replacing X by X', i.e., we may assume U — X
surjective. Consider the commutative diagram

R=UxxU——=U

L

U X

In the proof of Spaces, Lemma [13.1| we have seen that j : R — U x g U is separated.
The morphism of schemes U — S is separated as U is a separated scheme, see
Schemes, Lemma Hence U xg U — U is separated as a base change, see
Schemes, Lemma [21.13] Hence the scheme U xg U is separated (by the same
lemma). Since j is separated we see in the same way that R is separated. Hence
R — U is a separated morphism (by Schemes, Lemmaagain). Thus by Spaces,
Lemma and the diagram above we conclude that U — X is separated. a

Lemma 6.5. Let S be a scheme. Let X be an algebraic space over S. If there exists
a quasi-separated scheme U and a surjective étale morphism U — X such that either
of the projections U x x U — U is quasi-compact, then X is quasi-separated.
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Proof. We may think of X as an algebraic space over Z. Consider the cartesian
diagram

UXXU X

UxU—XxX

Since U is quasi-separated the projection U x U — U is quasi-separated (as a base
change of a quasi-separated morphism of schemes, see Schemes, Lemma .
Hence the assumption in the lemma implies j is quasi-compact by Schemes, Lemma
By Spaces, Lemma we see that A is quasi-compact as desired. O

Lemma 6.6. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent

(1) X is Zariski locally quasi-separated over S,

(2) X is Zariski locally quasi-separated,

(3) there exists a Zariski open covering X = |JX; such that for each i there
exists an affine scheme U; and a quasi-compact surjective étale morphism
U, — Xi, and

(4) there exists a Zariski open covering X = |JX; such that for each i there
ezists an affine scheme U; which maps into an affine open of S and a quasi-
compact surjective étale morphism U; — X;.

Proof. Assume U; — X; C X are as in (3). To prove (4) choose for each i a finite
affine open covering U; = U;; U ... U Uy, such that each U;; maps into an affine
open of S. The compositions U;; — U; — X; are étale and quasi-compact (see
Spaces, Lemma . Let X;; C X; be the open subspace corresponding to the
image of |U;;| — |X;|, see Lemma Note that U;; — X;; is quasi-compact as
X;; C X; is a monomorphism and as U;; — X is quasi-compact. Then X = U Xij
is a covering as in (4). The implication (4) = (3) is immediate.

Assume (4). To show that X is Zariski locally quasi-separated over S it suffices
to show that X, is quasi-separated over S. Hence we may assume there exists an
affine scheme U mapping into an affine open of S and a quasi-compact surjective
étale morphism U — X. Consider the fibre product square

UXXUHUXSU

]

X— =X xgX

The right vertical arrow is surjective étale (see Spaces, Lemma and U xg U is
affine (as U maps into an affine open of S, see Schemes, Section , and U xx U
is quasi-compact because the projection U X x U — U is quasi-compact as a base
change of U — X. It follows from Spaces, Lemmathat Ax g is quasi-compact
as desired.

Assume (1). To prove (3) there is an immediate reduction to the case where X
is quasi-separated over S. By Lemma [6.2] we can find a Zariski open covering
X = [JX; such that each X; maps into an affine open of S, and such that there
exist affine schemes U; and surjective étale morphisms U; — X;. Since U; — S
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maps into an affine open of S we see that U; xg U; is affine, see Schemes, Section
As X is quasi-separated over S, the morphisms

R, =U; XXiUi:UiXXUi—>UZ'XSU7;

as base changes of Ay /g are quasi-compact. Hence we conclude that R; is a quasi-
compact scheme. This in turn implies that each projection R; — U; is quasi-
compact. Hence, applying Spaces, Lemma to the covering U; — X; and the
morphism U; — X; we conclude that the morphisms U; — X, are quasi-compact
as desired.

At this point we see that (1), (3), and (4) are equivalent. Since (3) does not refer
to the base scheme we conclude that these are also equivalent with (2). O

7. Properties of Spaces defined by properties of schemes

Any étale local property of schemes gives rise to a corresponding property of alge-
braic spaces via the following lemma.

Lemmal 7.1. Let S be a scheme. Let X be an algebraic space over S. Let P be
a property of schemes which is local in the étale topology, see Descent, Definition
11.1]. The following are equivalent

(1) for some scheme U and surjective étale morphism U — X the scheme U
has property P, and
(2) for every scheme U and every étale morphism U — X the scheme U has
property P.
If X is representable this is equivalent to P(X).

Proof. The implication (2) = (1) is immediate. For the converse, choose a sur-
jective étale morphism U — X with U a scheme that has P and let V be an étale
X-scheme. Then U xx V — V is an étale surjection of schemes, so V inherits P
from U x x V, which in turn inherits P from U (see discussion following Descent,
Definition . The last claim is clear from (1) and Descent, Definition O

Definition 7.2. Let P be a property of schemes which is local in the étale topology.
Let S be a scheme. Let X be an algebraic space over S. We say X has property P
if any of the equivalent conditions of Lemma hold.

Remark| 7.3. Here is a list of properties which are local for the étale topology
(keep in mind that the fpqc, fppf, syntomic, and smooth topologies are stronger
than the étale topology):

(1) locally Noetherian, see Descent, Lemma [12.1]

(2) Jacobson, see Descent, Lemma

(3) locally Noetherian and (S}), see Descent, Lemma [13.1]
(4) Cohen-Macaulay, see Descent, Lemmam

(5) reduced, see Descent, Lemma [14.1
(6)
(7)
(8)
(

normal, see Descent, Lemma@,
locally Noetherian and (Ry), see Descent, Lemma [14.3]
regular, see Descent, Lemma [14.4]

9) Nagata, see Descent, Lemmam

Any étale local property of germs of schemes gives rise to a corresponding property
of algebraic spaces. Here is the obligatory lemma.
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Lemma 7.4. Let P be a property of germs of schemes which is étale local, see
Descent, Definition[17.1, Let S be a scheme. Let X be an algebraic space over S.
Let x € |X| be a point of X. Consider étale morphisms a : U — X where U is a
scheme. The following are equivalent

(1) for any U — X as above and u € U with a(u) = x we have P(U,u), and
(2) for some U — X as above and u € U with a(u) = z we have P(U,u).

If X is representable, then this is equivalent to P(X,x).
Proof. Omitted. O

Definition 7.5. Let S be a scheme. Let X be an algebraic space over S. Let
x € |X|. Let P be a property of germs of schemes which is étale local. We say X
has property P at x if any of the equivalent conditions of Lemma hold.

8. Dimension at a point

We can use Descent, Lemma to define the dimension of an algebraic space X
at a point x. This will give us a different notion than the topological one (i.e., the
dimension of | X| at x).

Definition 8.1. Let S be a scheme. Let X be an algebraic space over S. Let
x € |X| be a point of X. We define the dimension of X at x to be the element
dim,(X) € {0,1,2,...,00} such that dim,(X) = dim,(U) for any (equivalently
some) pair (a : U — X, u) consisting of an étale morphism a : U — X from a
scheme to X and a point u € U with a(u) = z. See Definition 7.5, Lemma|[7.4] and
Descent, Lemma [17.2

Warning: It is not the case that dim,(X) = dim,(|X]) in general. A counter
example is the algebraic space X of Spaces, Example[I4.9] Namely, in this example
we have dim, (X) = 0 and dim,(|X|) = 1 (this holds for any = € | X|). In particular,
it also means that the dimension of X (as defined below) is different from the
dimension of | X|.

Definition 8.2. Let S be a scheme. Let X be an algebraic space over S. The
dimension dim(X) of X is defined by the rule

dim(X) = sup,¢| x| dim, (X)

By Properties, Lemma we see that this is the usual notion if X is a scheme.
There is another integer that measures the dimension of a scheme at a point, namely
the dimension of the local ring. This invariant is compatible with étale morphisms
also, see Section

9. Reduced spaces

We have already defined reduced algebraic spaces in Section [7] Here we just prove
some simple lemmas regarding reduced algebraic spaces.

Lemma 9.1. Let S be a scheme. Let Z — X be an immersion of algebraic spaces.
Then |Z| — | X| is a homeomorphism of |Z| onto a locally closed subset of | X]|.

Proof. Let U be a scheme and U — X a surjective étale morphism. Then Z X x
U — U is an immersion of schemes, hence gives a homeomorphism of |Z xx U]
with a locally closed subset 7" of |U|. By Lemma the subset 7" is the inverse
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image of the image T of |Z| — |X|. The map |Z| — |X]| is injective because the
transformation of functors Z — X is injective, see Spaces, Section[I12] By Topology,
Lemma we see that T is locally closed in |X|. Moreover, the continuous map
|Z| — T is a homeomorphism as the map |Z x x U| — T” is a homeomorphism and
|Z xy U| — |Z] is submersive. O

The following lemma will help us construct (locally) closed subspaces.

Lemmal 9.2. Let S be a scheme. Let j : R — U xg U be an étale equivalence
relation. Let X = U/R be the associated algebraic space (Spaces, Theorem .
There is a canonical bijection

R-invariant locally closed subschemes Z' of U <+ locally closed subspaces Z of X

Moreover, if Z — X is closed (resp. open) if and only if Z' — U is closed (resp.
open).

Proof. Denote ¢ : U — X the canonical map. The bijection sends Z — X to
7' = Z xx U — U. It is immediate from the definition that Z’ — U is an
immersion, resp. closed immersion, resp. open immersion if Z — X is so. It is also
clear that Z’ is R-invariant (see Groupoids, Definition [17.1]).

Conversely, assume that Z' — U is an immersion which is R-invariant. Let R’ be
the restriction of R to Z’, see Groupoids, Definition Since R =R x,py Z' =
Z' xR in this case we see that R’ is an étale equivalence relation on Z’. By Spaces,
Theorem we see Z = Z'/R' is an algebraic space. By construction we have
UxxZ =7',s0UXxZ — Z is an immersion. Note that the property “immersion”
is preserved under base change and fppf local on the base (see Spaces, Section .
Moreover, immersions are separated and locally quasi-finite (see Schemes, Lemma
and Morphisms, Lemma . Hence by More on Morphisms, Lemma m
immersions satisfy descent for fppf covering. This means all the hypotheses of
Spaces, Lemma [11.3| are satisfied for Z — X, P =“immersion”, and the étale
surjective morphism U — X. We conclude that Z — X is representable and an
immersion, which is the definition of a subspace (see Spaces, Definition .

It is clear that these constructions are inverse to each other and we win. O

Lemma 9.3. Let S be a scheme. Let X be an algebraic space over S. Let T C |X|
be a closed subset. There exists a unique closed subspace Z C X with the following
properties: (a) we have |Z| =T, and (b) Z is reduced.

Proof. Let U — X be a surjective étale morphism, where U is a scheme. Set
R =U xx U, so that X = U/R, see Spaces, Lemma As usual we denote s,t :
R — U the two projection morphisms. By Lemma we see that T' corresponds
to a closed subset 77 C |U| such that s~}(T") = t=1(T"). Let Z’ C U be the
reduced induced scheme structure on T”. In this case the fibre products Z’ xy; R
and Z' xy s R are closed subschemes of R (Schemes, Lemma which are étale
over Z' (Morphisms, Lemma , and hence reduced (because being reduced is
local in the étale topology, see Remark . Since they have the same underlying
topological space (see above) we conclude that Z’ xy, R = Z' Xy,s R. Thus we
can apply Lemma [9.2] to obtain a closed subspace Z C X whose pullback to U is
Z'. By construction |Z] = T and Z is reduced. This proves existence. We omit the
proof of uniqueness. O
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Lemma 9.4. Let S be a scheme. Let X, Y be algebraic spaces over S. Let Z C X
be a closed subspace. AssumeY is reduced. A morphism f :Y — X factors through
Z if and only if f(|Y]) C |Z|.

Proof. Assume f(|Y]) C |Z|. Choose a diagram
V—sU

h

bi i
f

Y — X

where U, V are schemes, and the vertical arrows are surjective and étale. The
scheme V' is reduced, see Lemma Hence h factors through a=1(Z) by Schemes,
Lemma [12.6] So a o h factors through Z. As Z C X is a subsheaf, and V — Y is
a surjection of sheaves on (Sch/S)¢pps we conclude that X — Y factors through
Z. O

Definition 9.5. Let S be a scheme, and let X be an algebraic space over S. Let
Z C |X| be a closed subset. An algebraic space structure on Z is given by a closed
subspace Z' of X with |Z’| equal to Z. The reduced induced algebraic space structure
on Z is the one constructed in Lemma|9.3} The reduction X,.q of X is the reduced
induced algebraic space structure on | X|.

10. The schematic locus

Every algebraic space has a largest open subspace which is a scheme; this is more
or less clear but we also write out the proof below. Of course this subspace may
be empty, for example if X = A}Q /Z (the universal counter example). On the
other hand, if X is for example quasi-separated, then this largest open subscheme
is actually dense in X!

Lemmal 10.1. Let S be a scheme. Let X be an algebraic space over S. There
ezists a largest open subspace X' C X which is a scheme.

Proof. Let U — X be an étale surjective morphism, where U is a scheme. Let
R = U xx U. The open subspaces of X correspond 1 — 1 with open subschemes
of U which are R-invariant. Hence there is a set of them. Let X;, ¢ € I be the
set of open subspaces of X which are schemes, i.e., are representable. Consider the
open subspace X’ C X whose underlying set of points is the open |J|X;| of | X].
By Lemma [£.4] we see that
]_[ X, — X'

is a surjective map of sheaves on (Sch/S) fpps. But since each X; — X’ is repre-
sentable by open immersions we see that in fact the map is surjective in the Zariski
topology. (Because if T'— X’ is a morphism from a scheme into X', then X; x’x T'
is an open subscheme of T'.) Hence we can apply Schemes, Lemma to see that
X' is a scheme. U
In the rest of this section we say that an open subspace X' of an algebraic space

X is dense if the corresponding open subset | X’| C | X| is dense.

Lemma) 10.2. Let S be a scheme. Let X be an algebraic space over S. If there
ezists a finite, étale, surjective morphism U — X where U is a scheme, then there
exists a dense open subspace of X which is a scheme.
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Proof. Assume X is an algebraic space, U a scheme, and U — X is a finite étale
surjective morphism. Write R = U X x U and denote s,t : R — U the projections
as usual. Note that s,t are surjective, finite and étale. Claim: The union of the
R-invariant affine opens of U is topologically dense in U.

Proof of the clainﬂ Let W C U be an affine open. Set W' = t(s~}(W)) C U.
Since s~1(W) is affine (hence quasi-compact) we see that W’ C U is a quasi-
compact open. By Properties, Lemma there exists a dense open W’ c W’
which is a separated scheme. Set A’ = W’ \ W”. This is a nowhere dense closed
subset of W”. Since t|s-1wy : s71(W) — W’ is open (because it is étale) we see
that the inverse image (t[s—1(w)) " H(A’) C s~!(W) is a nowhere dense closed subset
(see Topology, Lemma . Hence, by Morphisms, Lemma we see that

A =5 ((tlsrwy)"H(A))

is a nowhere dense closed subset of W. Pick any point n € W, n € A which is a
generic point of an irreducible component of W (and hence of U). By our choices
above the finite set ¢(s~1({n})) = {m1,...,na} is contained in the separated scheme
W". Note that the fibres of s is are finite discrete spaces, and that generalizations
lift along the étale morphism ¢, see Morphisms, Lemmas and In this
way we see that each 7; is a generic point of an irreducible component of W”.
Thus, by Properties, Lemma we can find an affine open V' C W such that
{m,...,mn} C V. By Groupoids, Lemma this implies that 7 is contained in
an R-invariant affine open subscheme of U. The claim follows as W was chosen as
an arbitrary affine open of U and because the set of generic points of irreducible
components of W\ A is dense in W.

Using the claim we can finish the proof. Namely, if W C U is an R-invariant
affine open, then the restriction Ry of R to W equals Ry = s~ 1(W) = t~1{(W)
(see Groupoids, Definition and discussion following it). In particular the maps
Ry — W are finite étale also. It follows in particular that Ry, is affine. Thus we
see that W/Ryw is a scheme, by Groupoids, Proposition On the other hand,
W/Ryw is an open subspace of X by Spaces, Lemma [10.2] Hence having a dense
collection of points contained in R-invariant affine open of U certainly implies that
the schematic locus of X (see Lemma is open dense in X. ]

We will improve the following proposition to the case of decent algebraic spaces in
Decent Spaces, Theorem

Proposition| 10.3. Let S be a scheme. Let X be an algebraic space over S. If X
is Zariski locally quasi-separated (for example if X is quasi-separated), then there
exists a dense open subspace of X which is a scheme.

Proof. By Lemma [10.J] and Lemma [6.6] we may assume that there exists an affine
scheme U and a surjective, quasi-compact, étale morphism U — X. Set R =U X x
U, and denote s,t : R — U the projections as usual. Note that s,t are surjective,
quasi-compact and étale, hence also quasi-finite (see Etale Morphisms, Section.
By More on Morphisms, Lemma there exists a dense open subscheme W C U
such that s~1(W) — W is finite. By Descent, Lemmabeing finite is fpqc (and
in particular étale) local on the target. Hence we may apply More on Groupoids,

3The claim is easier to prove if U is assumed quasi-separated, since in that case Properties,
Lemma may be applied immediately to the R-equivalence class of any generic point of U.
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Lemma [5.4] which says that the largest open W C U over which s is finite is
R-invariant. It is still dense of course. The restriction Ry of R to W equals
Rw = s (W) =t~ 1(W) (see Groupoids, Definition and discussion following
it). By construction sy ,tw : Rw — W are finite étale. If we can show the open
subspace W/Ry C X (see Spaces, Lemma contains a dense open subspace
which is a scheme, then the proposition follows for X. This reduces us to Lemma
10.2 (I

11. Obtaining a scheme

We have used in the previous section that the quotient U/R of an affine scheme U
by an equivalence relation R is a scheme if the morphisms s,¢ : R — U are finite
étale. This is a special case of the following result.

Proposition|11.1. Let S be a scheme. Let (U, R, s,t,¢) be a groupoid scheme over
S. Assume
(1) s,t: R— U finite locally free,
(2) j=(t,s) is an equivalence, and
(3) for a dense set of points u € U the R-equivalence class t(s~1({u})) is
contained in an affine open of U.

Then there exists a finite locally free morphism U — M of schemes over S such
that R = U X U and such that M represents the quotient sheaf U/R in the fppf

topology.

Proof. By assumption (3) and Groupoids, Lemmawe can find an open cover-
ing U = |JU; such that each U; is an R-invariant affine open of U. Set R; = R|y,.
Consider the fppf sheaves F' = U/R and F; = U;/R;. By Spaces, Lemma the
morphisms F; — F are representable and open immersions. By Groupoids, Propo-
sition the sheaves F; are representable by affine schemes. Hence we conclude
that F' is representable by a scheme, see Schemes, Lemma O

For example, if U is isomorphic to a locally closed subscheme of an affine scheme or
isomorphic to a locally closed subscheme of Proj(A) for some graded ring A, then
the third assumption holds by Properties, Lemma[27.5] In particular we can apply
this to free actions of finite groups and finite group schemes on quasi-affine or quasi-
projective schemes. For example, the quotient X/G of a quasi-projective variety X
by a free action of a finite group G is a scheme. Here is a detailed statement.

Lemmal 11.2. Let S be a scheme. Let G — S be a group scheme. Let X — S be
a morphism of schemes. Let a: G xg X — X be an action. Assume that

(1) G — S is finite locally free,

(2) the action a is free,

(3) X — S is affine, or quasi-affine, or projective, or quasi-projective, or X is
isomorphic to an open subscheme of an affine scheme or isomorphic to an
open subscheme of Proj(A) for some graded ring A.

Then the fppf quotient sheaf X/G is a scheme.

Proof. Since the action is free the morphism j = (a,pr) : G xg X — X xg X is
a monomorphism and hence an equivalence relation, see Groupoids, Lemma (8.3
The maps s,t: G xg X — X are finite locally free as we’ve assumed that G — S
is finite locally free. To conclude it now suffices to prove the last assumption of
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Proposition holds. Since the action of G is over S it suffices to prove that any
finite set of points in a fibre of X — S is contained in an affine open of X. If X
is isomorphic to an open subscheme of an affine scheme or isomorphic to an open
subscheme of Proj(A) for some graded ring A this follows from Properties, Lemma
In the remaining cases, we may replace S by an affine open and we get back
to the case we just dealt with. Some details omitted. O

12. Points on quasi-separated spaces

Points can behave very badly on algebraic spaces in the generality introduced in
the stacks project. However, for quasi-separated spaces their behaviour is mostly
like the behaviour of points on schemes. We prove a few results on this in this
section.

The following lemma is a key lemma which we will use to prove that certain algebraic
spaces are isomorphic to the spectrum of a field.

Lemma 12.1. Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) — X. If X
is quasi-separated, then X = Spec(k') where k' C k is a finite separable extension.

Proof. Set R = Spec(k) x x Spec(k), so that we have a fibre product diagram

T . Spec(k)
Spec(k) X

By Spaces, Lemma we know X = Spec(k)/R is the quotient sheaf. Because
Spec(k) — X is étale, the morphisms s and ¢ are étale. Hence R = [[,.; Spec(k;)
is a disjoint union of spectra of fields, and both s and ¢ induce finite separable field
extensions s, : k C k;, see Morphisms, Lemma [37.7] Because

R = Spec(k) x x Spec(k) = (Spec(k) x g Spec(k)) X xxsx,a X

and since A is quasi-compact by assumption we conclude that R — Spec(k) x g
Spec(k) is quasi-compact. Hence R is quasi-compact as Spec(k) xg Spec(k) is
affine. We conclude that I is finite. This implies that s and ¢ are finite locally free
morphisms. Hence by Groupoids, Proposition we conclude that Spec(k)/R is
represented by Spec(k’), with k' C k finite locally free where

K ={z e€k|si(x)=tz) for alli € I}
It is easy to see that k' is a field. O

Remark| 12.2. The lemma above holds for decent algebraic spaces, see Decent
Spaces, Lemma, In fact a decent algebraic space with one point is a scheme,
see Decent Spaces, Lemma This also holds when X is locally separated,
because a locally separated algebraic space is decent, see Decent Spaces, Lemma
13.2]

Lemmal 12.3. Let S be a scheme. Let X be an algebraic space over S. Let U
be a scheme. Let ¢ : U — X be an étale morphism such that the projections
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R=U xx U — U are quasi-compact; for example if ¢ is quasi-compact. Then the
fibres of

|U| = |X| and |R|— |X]|
are finite.

Proof. Denote R = U xx U, and s,t : R — U the projections. Let u € U be
a point, and let x € |X| be its image. The fibre of |U| — |X| over z is equal to
s(t~1({u})) by Lemma and the fibre of |R| — |X| over z is t~(s(t 71 ({u}))).
Since t : R — U is étale and quasi-compact, it has finite fibres (as its fibres are
disjoint unions of spectra of fields by Morphisms, Lemma and quasi-compact).
Hence we win. O

Lemmal 12.4. Let S be a scheme. Let X be a Zariski locally quasi-separated alge-
braic space over S. Then the topological space | X | is sober (see Topology, Definition

.

Proof. Combining Topology, Lemma [7.5 and Lemma we see that we may as-
sume that there exists an affine scheme U and a surjective, quasi-compact, étale
morphism U — X. Set R = U xx U with projection maps s,t: R — U. Applying
Lemma [12:3] we see that the fibres of s,t are finite. It follows all the assumptions
of Topology, Lemma are met, and we conclude that | X]| is Kolmogorovﬁ

It remains to show that every irreducible closed subset T' C | X| has a generic point.
By Lemma there exists a closed subspace Z C X with |Z| = |T'|. Note that
UXx x Z — Z is a quasi-compact, surjective, étale morphism from an affine scheme to
Z, hence Z is Zariski locally quasi-separated by Lemmal[6.6] By Proposition [10.3] we
see that there exists an open dense subspace Z’ C Z which is a scheme. This means
that |Z’| C T is open dense. Hence the topological space |Z'| is irreducible, which
means that Z’ is an irreducible scheme. By Schemes, Lemma we conclude that
|Z'| is the closure of a single point 1 € |Z’| € T and hence also T = {n}, and we
win. ([

Lemmal 12.5. Let S be a scheme. Let X be a quasi-compact and quasi-separated
algebraic space over S. The topological space | X| is a spectral space.

Proof. By Topology, Definition we have to check that |X| is sober, quasi-
compact, has a basis of quasi-compact opens, and the intersection of any two quasi-
compact opens is quasi-compact. By Lemma we see that |X| is sober. By
Lemma we see that | X| is quasi-compact. By Lemma there exists an affine
scheme U and a surjective étale morphism f : U — X. Since |f| : |U| — | X| is open
and continuous and since |U has a basis of quasi-compact opens, we conclude that
| X | has a basis of quasi-compact opens. Finally, suppose that A, B C | X| are quasi-
compact open. Then |f|~1(A),|f|"1(B) are quasi-compact open subsets of |U].
Since U is affine we may apply Algebra, Lemmal[16.10]to see that | f|~1(A)N|f|~1(B)
is quasi-compact. As

—1 —1
ANB = fI(1fI7(A) N [f[7(B))
we conclude that AN B is quasi-compact and the proof is finished. (I
4 Actually we use here also Schemes, Lemma (soberness schemes), Morphisms, Lemmas

37.12] and (generalizations lift along étale morphisms), Lemma (points on an algebraic
space in terms of a presentation), and Lemma (openness quotient map).
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13. Etale morphisms of algebraic spaces

This section really belongs in the chapter on morphisms of algebraic spaces, but
we need the notion of an algebraic space étale over another in order to define
the small étale site of an algebraic space. Thus we need to do some preliminary
work on étale morphisms from schemes to algebraic spaces, and étale morphisms
between algebraic spaces. For more about étale morphisms of algebraic spaces, see
Morphisms of Spaces, Section

Lemmal 13.1. Let S be a scheme. Let X be an algebraic space over S. Let U, U’
be schemes over S.

(1) If U = U’ is an étale morphism of schemes, and if U' — X is an étale
morphism from U’ to X, then the composition U — X is an étale morphism
from U to X.

2) If o : U = X and ¢’ : U — X are étale morphisms towards X, and if
x : U — U’ is a morphism of schemes such that ¢ = ¢’ o x, then x is an
étale morphism of schemes.

Proof. Recall that our definition of an étale morphism from a scheme into an
algebraic space comes from Spaces, Definition via the fact that any morphism
from a scheme into an algebraic space is representable. Part (1) of the lemma
follows from this, the fact that étale morphisms are preserved under composition
(Morphisms, Lemma and Spaces, Lemmas and (which are formal). To
prove part (2) choose a scheme W over S and a surjective étale morphism W — X.
Consider the base change yw : WxxU — WxxU' of x. AsWxxU and W x x U’
are étale over W, we conclude that xw is étale, by Morphisms, Lemma On
the other hand, in the commutative diagram

WxxU——=Wxx U’

| i

U U’
the two vertical arrows are étale and surjective. Hence by Descent, Lemma [10.4] we
conclude that U — U’ is étale. O

Definition 13.2. Let S be a scheme. A morphism f : X — Y between algebraic
spaces over S is called étale if and only if for every étale morphism ¢ : U — X
where U is a scheme, the composition ¢ o f is étale also.

If X and Y are schemes, then this agree with the usual notion of an étale morphism
of schemes. In fact, whenever X — Y is a representable morphism of algebraic
spaces, then this agrees with the notion defined via Spaces, Definition This
follows by combining Lemma below and Spaces, Lemma [T1.2

Lemma 13.3. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. The following are equivalent:
(1) f is étale,
(2) there exists a surjective étale morphism ¢ : U — X, where U is a scheme,
such that the composition f oy is étale (as a morphism of algebraic spaces),
(3) there exists a surjective étale morphism v : V —'Y, where V is a scheme,
such that the base change V. xxY — V is étale (as a morphism of algebraic
spaces),
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(4) there exists a commutative diagram

U——=V

o

X ——Y

where U, V' are schemes, the vertical arrows are étale, and the left vertical
arrow is surjective such that the horizontal arrow is étale.

Proof. Let us prove that (4) implies (1). Assume a diagram as in (4) given. Let
W — X be an étale morphism with W a scheme. Then we see that W x x U — U is
étale. Hence W x x U — V is étale, and also W x x U — Y is étale by Lemma|l3.1
(1). Since also the projection W x x U — W is surjective and étale, we conclude
from Lemma (2) that W — Y is étale.

Let us prove that (1) implies (4). Assume (1). Choose a commutative diagram

U——V

o

X ——=Y

where U — X and V — Y are surjective and étale, see Spaces, Lemma By
assumption the morphism U — Y is étale, and hence U — V is étale by Lemma
13.1] (2).

We omit the proof that (2) and (3) are also equivalent to (1). O

Lemma 13.4. The composition of two étale morphisms of algebraic spaces is étale.

Proof. This is immediate from the definition. O

Lemma 13.5. The base change of an étale morphism of algebraic spaces by any
morphism of algebraic spaces is étale.

Proof. Let X — Y be an étale morphism of algebraic spaces over S. Let Z — Y
be a morphism of algebraic spaces. Choose a scheme U and a surjective étale
morphism U — X. Choose a scheme W and a surjective étale morphism W — Z.
Then U — Y is étale, hence in the diagram

WxyU——W

|

Zxy X — =7

the top horizontal arrow is étale. Moreover, the left vertical arrow is surjective and
étale (verification omitted). Hence we conclude that the lower horizontal arrow is
étale by Lemma [13.3] O

Lemma 13.6. Let S be a scheme. Let XY, Z be algebraic spaces. Let g : X — Z,
h:Y — Z be étale morphisms and let f : X — Y be a morphism such that hof = g.
Then f is étale.


http://localhost:8080/tag/03FT
http://localhost:8080/tag/03FU
http://localhost:8080/tag/03FV

PROPERTIES OF ALGEBRAIC SPACES 21

Proof. Choose a commutative diagram
U——V
|
X—Y
where U — X and V' — Y are surjective and étale, see Spaces, Lemma [11.4] By

assumption the morphisms ¢ : U - X — Z and ¢ : V — Y — Z are étale.
Moreover, 1oy = ¢ by our assumption on f, g, h. Hence U — V is étale by Lemma

part (2). O

Lemma 13.7. Let S be a scheme. If X — Y is an étale morphism of algebraic
spaces over S, then the associated map |X| — |Y| of topological spaces is open.

Proof. This is clear from the diagram in Lemma [13.3| and Lemma [4.6 (]

Finally, here is a fun lemma. It is not true that an algebraic space with an étale
morphism towards a scheme is a scheme, see Spaces, Example But it is true
if the target is the spectrum of a field.

Lemma 13.8. Let S be a scheme. Let X — Spec(k) be étale morphism over S,
where k is a field. Then X is a scheme.

Proof. Let U be an affine scheme, and let U — X be an étale morphism. By
Definition we see that U — Spec(k) is an étale morphism. Hence U =
Hi:l,.“,n Spec(k;) is a finite disjoint union of spectra of finite separable exten-
sions k; of k, see Morphisms, Lemma The R = U xx U = U Xgpeoiy U
is a monomorphism and U Xgpec(k) U is also a finite disjoint union of spectra of
finite separable extensions of k. Hence by Schemes, Lemma we see that R is
similarly a finite disjoint union of spectra of finite separable extensions of k. This
U and R are affine and both projections R — U are finite locally free. Hence U/R
is a scheme by Groupoids, Proposition By Spaces, Lemma [10.2] it is also an
open subspace of X. By Lemma [10.1| we conclude that X is a scheme. (Il

14. Spaces and fpqc coverings

Let S be a scheme. An algebraic space over S is defined as a sheaf in the fppf
topology with additional properties. Hence it is not immediately clear that it
satisfies the sheaf property for the fpqc topology (see Topologies, Definition .
In this section we give Gabber’s argument showing this is true. However, when we
say that the algebraic space X satisfies the sheaf property for the fpqc topology we
really only consider fpqc coverings {f; : T; — T }ies such that T, T; are objects of
the big site (Sch/S) fpps (as per our conventions, see Section .

Proposition| 14.1 (Gabber). Let S be a scheme. Let X be an algebraic space over
S. Then X satisfies the sheaf property for the fpgc topology.

Proof. Since X is a sheaf for the Zariski topology it suffices to show the following.
Given a surjective flat morphism of affines f : 7/ — T we have: X(T) is the
equalizer of the two maps X(T") — X(T" xr T"). See Topologies, Lemma
(there is a little argument omitted here because the lemma cited is formulated for
functors defined on the category of all schemes).
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Let a,b: T — X be two morphisms such that ao f = bo f. We have to show a = b.
Consider the fibre product

EFE=X XAX/S,XXsX,(avb) T

By Spaces, Lemma the morphism Ax/g is a representable monomorphism.
Hence E — T is a monomorphism of schemes. Our assumption that ao f =bo f
implies that 77 — T factors (uniquely) through E. Consider the commutative
diagram

T xr E——F

(L

T’ T
Since the projection T xr E — T" is a monomorphism with a section we conclude it

is an isomorphism. Hence we conclude that E — T is an isomorphism by Descent,
Lemma [[9.75l This means a = b as desired.

Next, let ¢ : T — X be a morphism such that the two compositions 7" x T" —
T’ — X are the same. We have to find a morphism a : T — X whose composition
with 7" — T is c¢. Choose an affine scheme U and an étale morphism U — X such
that the image of |U| — | X| contains the image of |¢| : [T'| — | X|. This is possible
by Lemmas [4.6] and [6.1] the fact that a finite union of affines is affine, and the fact
that |7”| is quasi-compact (small argument omitted). Since U — X is separated
(Lemma [6.4)), we see that
V=Uxx.T —T

is a surjective, étale, separated morphism of schemes (to see that it is surjective use
Lemma and our choice of U — X). The fact that ¢ o pry = ¢ o pr; means that
we obtain a descent datum on V/T'/T (Descent, Definition [30.1)) because

Vxp (T xp T') = U X x,copr, (T" X7 T")

=(T" %70 T") Xcopr,, x U

= (T/ XT TI) Xpr 'V
The morphism V — T” is ind-quasi-affine by More on Morphisms, Lemma [46.4]
(because étale morphisms are locally quasi-finite, see Morphisms, Lemma [37.6)).
By More on Groupoids, Lemma [I4.3] the descent datum is effective. Say W — T is
a morphism such that there is an isomorphism « : 77 x7+ W — V compatible with
the given descent datum on V' and the canonical descent datum on 77 x7 W. Then
W — T is surjective and étale (Descent, Lemmas and . Consider the
composition

VT xe W —V=Uxx.T —U

The two compositions ¢’ o (pry, 1), o (pry,1) : (T" xp T") xe W = T' xo W — U
agree by our choice of @ and the corresponding property of ¢ (computation omitted).
Hence b’ descends to a morphism b : W — U by Descent, Lemmal9.3] The diagram

T’xTW—>W—b>U

T < X
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is commutative. What this means is that we have proved the existence of a étale
locally on T, i.e., we have an a’ : W — X. However, since we have proved unique-
ness in the first paragraph, we find that this étale local solutions satisfy the glueing
condition, i.e., we have prja’ = pria’ as elements of X (W xr W). Since X is an
étale sheaf we find an unique a € X (T) restricting to o’ on W. O

15. The étale site of an algebraic space

In this section we define the small étale site of an algebraic space. This is the
analogue of the small étale site Sgsqe Of a scheme. Lemma implies that in the
definition below any morphism between objects of the étale site of X is étale, and
that any scheme étale over an object of X¢iqe is also an object of Xgrqie-

Definition 15.1. Let S be a scheme. Let Schyp,; be a big fppf site containing .S,
and let Schetqle be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The small étale site X¢iqre of X is
defined as follows:

(1) An object of Xetq1e is a morphism ¢ : U — X where U € Ob((Sch/S)staie)
is a scheme and ¢ is an étale morphism,

(2) a morphism (¢ : U = X) — (¢’ : U’ — X) is given by a morphism of
schemes x : U — U’ such that ¢ = ¢ o x, and

(3) a family of morphisms {(U; — X) — (U = X)}ier of Xetale 18 & covering
if and only if {U; — U},er is a covering of (Sch/S)eétate-

A consequence of our choice is that the étale site of an algebraic space in general
does not have a final object! On the other hand, if X happens to be a scheme, then
the definition above agrees with Topologies, Definition

There are several other choices we could have made here. For example we could
have considered all algebraic spaces U which are étale over X, or we could have
considered all affine schemes U which are étale over X. We decided not to do so,
since we like to think of plain old schemes as the fundamental objects of algebraic
geometry. On the other hand, we do need these notions also, since the small étale
site of an algebraic space is not sufficiently flexible, especially when discussing
functoriality of the small étale site, see Lemma below.

Definition 15.2. Let S be a scheme. Let Schyp, ¢ be a big fppf site containing .S,
and let Scheiqle be the corresponding big étale site (i.e., having the same underlying
category). Let X be an algebraic space over S. The site X paces,étale Of X is defined
as follows:

(1) An object of Xspaces étale is & morphism ¢ : U — X where U is an algebraic
space over S and ¢ is an étale morphism of algebraic spaces over S,
(2) amorphism (¢ : U = X) = (¢’ : U = X) of Xspaces,étaie 1S given by a
morphism of algebraic spaces x : U — U’ such that ¢ = ¢’ o x, and
(3) a family of morphisms {p; : (U; = X) = (U — X) }ier of Xgpaces,étale 1S @
covering if and only if |U| = ¢:(|U;]).
(As usual we choose a set of coverings of this type, including at least the coverings
in X¢iale, as in Sets, Lemma to turn Xpaces étale b0 a site.)

Since the identity morphism of X is étale it is clear that Xpqces,étaie does have a
final object. Let us show right away that the corresponding topos equals the small
étale topos of X.
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Lemma 15.3. The functor
Xétale — Xspaces,étalev U/X — U/X

is a special cocontinuous functor (Sites, Definition m and hence induces an
equivalence of topoi SM( Xe¢rate) = SM Xspaces étale) -

Proof. We have to show that the functor satisfies the assumptions (1) — (5) of
Sites, Lemma It is clear that the functor is continuous and cocontinuous,
which proves assumptions (1) and (2). Assumptions (3) and (4) hold simply because
the functor is fully faithful. Assumption (5) holds, because an algebraic space by
definition has a covering by a scheme. (I

Remark|15.4. Let us explain the meaning of Lemmal[I5.3] Let S be a scheme, and
let X be an algebraic space over S. Let F be a sheaf on the small étale site Xgiqze
of X. The lemma says that there exists a unique sheaf 7’ on Xspaces,étale Which
restricts back to F on the subcategory Xgiqre. If U — X is an étale morphism
of algebraic spaces, then how do we compute F'(U)? Well, by definition of an
algebraic space there exists a scheme U’ and a surjective étale morphism U’ — U.
Then {U’ — U} is a covering in Xpqces,étale and hence we get an equalizer diagram
F(U)—— FU") FU xy U).

—_—
Note that U’ xy U’ is a scheme, and hence we may write F and not F’. Thus we
see how to compute F' when given the sheaf F.

Lemma 15.5. Let S be a scheme. Let X be an algebraic space over S. Let
Xaffinectale denote the full subcategory of Xerqre whose objects are those U/X €
Ob(Xetare) with U affine. A covering of Xaj fine étate Will be a standard étale cov-
ering, see Topologies, Definition[4.5. Then restriction

F— f|X
defines an equivalence of topoi Sh(S¢taie) = SW(Saf fine,étale)-

affine,étale

Proof. This you can show directly from the definitions, and is a good exercise.
But it also follows immediately from Sites, Lemma by checking that the in-
clusion functor Xf fine,étale = Xeétale 15 a special cocontinuous functor as in Sites,
Definition 282 O

Definition 15.6. Let S be a scheme. Let X be an algebraic space over S. The étale
topos of X, or more precisely the small étale topos of X is the category Sh(Xestare)
of sheaves of sets on X¢iqie.

By Lemma we have Sh(Xetare) = SW(Xspaces,étaie), 50 We can also think of this
as the category of sheaves of sets on Xspqces,étale. Similarly, by Lemma we see
that Sh(Xerate) = SM Xaf fine,étale)- It turns out that the topos is functorial with
respect to morphisms of algebraic spaces. Here is a precise statement.

Lemma 15.7. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S.

(1) The continuous functor
Y:spaces,étale — Xspaces,étalea Vi— X Xy |4
induces a morphism of sites

fspaces,étale : Xspaces,étale — }/spaces,étale-
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(2) The rule f — fspaces,étate 15 compatible with compositions, in other words
(f © g)spaces,étale = fspaces,étale O Gspaces,étale (566 SZ'tES, Deﬁmtzon .

(3) The morphism of topoi associated to fspaces,étate induces, via Lemma
a morphism of topoi fsman : SM Xeétare) = SMYetare) whose construction is
compatible with compositions.

(4) If f is a representable morphism of algebraic spaces, then fsmau comes
from a morphism of sites Xsraie — Ystale, corresponding to the continuous
functor Vi— X xy V.

Proof. Let us show that the functor described in (1) satisfies the assumptions of
Sites, Proposition Thus we have to show that Yspsces, étale has a final object
(namely Y') and that the functor transforms this into a final object in Xspaces,étate
(namely X). This is clear as X xy Y = X in any category. Next, we have to show
that Yspaces,étale has fibre products. This is true since the category of algebraic
spaces has fibre products, and since V' xy V' is étale over Y if V and V' are étale
over Y (see Lemmas and above). OK, so the proposition applies and we
see that we get a morphism of sites as described in (1).

Part (2) you get by unwinding the definitions. Part (3) is clear by using the equiv-
alences for X and Y from Lemma above. Part (4) follows, because if f is
representable, then the functors above fit into a commutative diagram

Xétale > Xspaces,étale

Yvétale > Yspaces,étale

of categories. O

We can do a little bit better than the lemma above in describing the relationship
between sheaves on X and sheaves on Y. Namely, we can formulate this in turns
of f-maps, compare Sheaves, Definition as follows.

Definition 15.8. Let S be a scheme. Let f: X — Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xgqe and let G be a sheaf of sets
on Y¢iate. An f-map ¢ : G — F is a collection of maps ¢p,v,g) : G(V) — F(U)
indexed by commutative diagrams

U——X
l ;
V—Y
where U € Xgiaie, V € Yétale such that whenever given an extended diagram
U——=U——-X

11

Vi—sV —Y
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with V' — V and U’ — U étale morphisms of schemes the diagram

V)~ =7 W)
restriction of Qi lrestriction of F
G(v') e F(U)

comimutes.

Lemma 15.9. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Let F be a sheaf of sets on Xegpqre and let G be a sheaf of sets on
Yeétale- There are canonical bijections between the following three sets:

(1) The set of maps G = fsmali «F -

(2) The set of maps f;nia”g — F.

(3) The set of f-maps ¢ : G — F.

Proof. Note that (1) and (2) are the same because the functors femaeu, « and S;ia”

are a pair of adjoint functors. Suppose that « : f;ﬁa”g — F is a map of sheaves
on Ygiqie. Let a diagram

U——X

Ju

|l

|
as in Definition be given. By the commutativity of the diagram we also get
a map g, (jv)"'G — (ju)'F (compare Sites, Section [24] for the description
of the localization functors). Hence we certainly get a map ¢y,uq) : G(V) =
(iv)" G (V) — (ju) ' F(U) = F(U). We omit the verification that this rule is
compatible with further restrictions and defines an f-map from G to F.

Conversely, suppose that we are given an f-map ¢ = (p@w,v,g)). Let G' (vesp. F')
denote the extension of G (resp. F) t0 Yspaces,ctale (1€SP. Xspaces,étale), See Lemma
Then we have to construct a map of sheaves

g/ — (fspaces,étale)*]:/
To do this, let V' — Y be an étale morphism of algebraic spaces. We have to
construct a map of sets

G(V)—= F(X xy V)
Choose an étale surjective morphism V’ — V with V'’ a scheme, and after that
choose an étale surjective morphism U’ — X xy V'’ with U’ a scheme. We get a
morphism of schemes ¢’ : U’ — V' and also a morphism of schemes

g” U’ XXxyV U — Vv Xy %4

Consider the following diagram

F (X xy V) ——=F(U") FU xXxxyv U)

—_—
A
P, v’ g P, v gy

G (X xy V) ——=G(V") GV xy V")

-

The compatibility of the maps ¢ with restriction shows that the two right squares
commute. The definition of coverings in Xpaces,étate shows that the horizontal rows
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are equalizer diagrams. Hence we get the dotted arrow. We leave it to the reader
to show that these arrows are compatible with the restriction mappings. ([

If the morphism of algebraic spaces X — Y is étale, then the morphism of topoi
S Xetate) = SH(Yitaie) is a localization. Here is a statement.

Lemmal 15.10. Let S be a scheme, and let f : X — Y be a morphism of algebraic
spaces over S. Assume f is étale. In this case there is a functor

J: Xetate = Yetale, (0:U = X)) (fop:U—=Y)

which is cocontinuous. The morphism of topoi fsman s the morphism of topoi
associated to j, see Sites, Lemma [20.1 Moreover, j is continuous as well, hence
Sites, Lemma applies. In particular f;ia”g(U) = G(jU) for all sheaves G on

étale -

Proof. Note that by our very definition of an étale morphism of algebraic spaces
(Definition it is indeed the case that the rule given defines a functor j as
indicated. It is clear that j is cocontinuous and continuous, simply because a
covering {U; — U} of j(¢ : U = X) in Yetae is the same thing as a covering of
(¢ : U — X) in Xgare. It remains to show that j induces the same morphism of
topoi as fsmai- To see this we consider the diagram

Xétale > Xspaces,étale

lj Jspaces Q >\v:V»—>X><yV

Yétale > Yspaces,étale

of categories. Here the functor jspaces is the obvious extension of j to the category
Xspaces,étale- Thus the inner square is commutative. In fact jspeces can be identified
with the localization functor jx : Yipaces,ctale/X — Yspaces,étate discussed in Sites,
Section Hence, by Sites, Lemma the cocontinuous functor jspaces and the
functor v of the diagram induce the same morphism of topoi. By Sites, Lemma [20.2
the commutativity of the inner square (consisting of cocontinuous functors between
sites) gives a commutative diagram of associated morphisms of topoi. Hence, by
the construction of fsmqn in Lemma [I5.7] we win. O

The lemma above says that the pullback of G via an étale morphism f: X — Y of
algebraic spaces is simply the restriction of G to the category Xgiqie. We will often
use the short hand

(15.10.1) GIxerate = Foman9

to indicate this. Note that the functor j : Xetqie — Yitate Of the lemma in this
situation is faithful, but not fully faithful in general. We will discuss this in a more
technical fashion in Section 25

Lemma 15.11. Let S be a scheme. Let

X ——X

f’l \Lf

y sy
be a cartesian square of algebraic spaces over S. Let F be a sheaf on Xgiare- If g
is €tale, then
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(1) ;mall,*(]:|X/) = (fsmall,*]:)‘y/ in Sh(Yé/taleﬂ and
(2) if F is an abelian sheaf, then R'f! (Flx') = (R fsmausF)|y-

small,*
Proof. Consider the following diagram of functors

!

spaces,étale : X

spaces,étale

V’D—)V’Xy/X/T TVHVXyX

Y! 1 ,
spaces,étale spaces,étale

The horizontal arrows are localizations and the vertical arrows induce morphisms
of sites. Hence the last statement of Sites, Lemma gives (1). To see (2) apply
(1) to an injective resolution of F and use that restriction is exact and preserves
injectives (see Cohomology on Sites, Lemma [8.1]). O

The following lemma says that you can think of a sheaf on the small étale site of
an algebraic space as a compatible collection of sheaves on the small étale sites of
schemes étale over the space. Please note that all the comparison mappings ¢y in
the lemma are isomorphisms, which is compatible with Topologies, Lemma |4.18
and the fact that all morphisms between objects of Xgtq1c are étale.

Lemmal 15.12. Let S be a scheme. Let X be an algebraic space over S. A sheaf
F on Xgaie 18 given by the following data:

(1) for every U € Ob(Xetate) a sheaf Fu on Ustaie,
(2) for every f:U" = U in Xerare an isomorphism cy 1 Fu — Fur.

mall
These data are subject to the condition that given any f : U’ — U and g : U" — U’
in Xetale the composition g;ﬂlm”cf ocg 18 equal to Cfog.

Proof. Given a sheaf F on Xgqe and an object ¢ : U — X of Xgpqe we set
Fu = ga;ylla”}". If ¢/ : U — X is a second object of Xgare, and f : U — U
is a morphism between them, then the isomorphism c; comes from the fact that
fot ot = (¢} see Lemma m The condition on the transitivity
of the isomorphisms cy follows from the functoriality of the small étale sites also;
verification omitted.

Conversely, suppose we are given a collection of data (Fy,cy) as in the lemma. In
this case we simply define F by the rule U — Fy (U). Details omitted. O

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism ¢ : U — X, see
Spaces, Definition In particular, we obtain a groupoid (U, R, s,t,¢,e,i) such
that j = (t,s) : R — U xg U, see Groupoids, Lemma [11.3]

Lemma 15.13. With S, ¢ : U — X, and (U, R, s,t,c,e,i) as above. For any sheaf
F on Xgiale the sheaﬂ g= cp_l}' comes equipped with a canonical isomorphism

a:t7 g — 571G

5Also (f’);jm”(g|y/) = (ffla”g)\xl because of commutativity of the diagram and (15.10.1))

i
6In this lemma and its proof we write simply ¢~ instead of ¢ , and similarly for all the

—1
smal

other pullbacks.
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such that the diagram

prflt—lg — prlfls—lg
pr-

AN

prgls’lg

—1 -1
pro\ ¢

pry TG == c"1t71G

is a commutative. The functor F — (G, «) defines an equivalence of categories
between sheaves on Xgiae and pairs (G, ) as above.

First proof of Lemma Let C = Xgpaces,étale- By Lemma and its
proof we have Uspgces,étaie = C/U and the pullback functor o~ 1 is just the restric-
tion functor. Moreover, {U — X} is a covering of the site C and R = U x x U. The
isomorphism « is just the canonical identification

(Fleyv) leyuxxv = (Fleyu) lejux v

and the commutativity of the diagram is the cocycle condition for glueing data.
Hence this lemma is a special case of glueing of sheaves, see Sites, Section (]

Second proof of Lemma [15.13] The existence of o comes from the fact that
pot=posand that pullback is functorial in the morphism, see Lemma [I5.7} In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
« fits into the commutative diagram. The construction F — (¢~ 1F,a) is clearly
functorial in the sheaf F. Hence we obtain the functor.

Conversely, suppose that (G, «) is a pair. Let V' — X be an object of X¢;qc. In this
case the morphism V/ = U xx V — V is a surjective étale morphism of schemes,
and hence {V' — V} is an étale covering of V. Set ¢’ = (V' — V)~1G. Since
R =U xx U with t = pry, and s = pry we see that V' xy V' = R xx V with
projection maps s',t' : V' xy V! — V' equal to the pullbacks of ¢t and s. Hence «
pulls back to an isomorphism o' : (#)~'G" — (s')~'G’. Having said this we simply
define
F(V) == Equalizer(G(V') —___ G(V' xy V).

_

We omit the verification that this defines a sheaf. To see that G(V) = F(V) if
there exists a morphism V' — U note that in this case the equalizer is H*({V' —

16. Points of the small étale site
This section is the analogue of Etale Cohomology, Section

Definition 16.1. Let S be a scheme. Let X be an algebraic space over S.
(1) A geometric point of X is a morphism T : Spec(k) — X, where k is an
algebraically closed field. We often abuse notation and write T = Spec(k).
(2) For every geometric point T we have the corresponding “image” point x €
| X|. We say that T is a geometric point lying over x.
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It turns out that we can take stalks of sheaves on Xgq; at geometric point exactly
in the same way as was done in the case of the small étale site of a scheme. In order
to do this we define the notion of an étale neighbourhood as follows.

Definition 16.2. Let S be a scheme. Let X be an algebraic space over S. Let T
be a geometric point of X.

(1) An étale neighborhood of T of X is a commutative diagram

]
T i> X
where @ is an étale morphism of algebraic spaces over S. We will use the
notation ¢ : (U,w) — (X, T) to indicate this situation.

(2) A morphism of étale neighborhoods (U,u) — (U’,u’) is an X-morphism
h:U — U’ such that u’' = howu.

Note that we allow U to be an algebraic space. When we take stalks of a sheaf
on Xgiqre we have to restrict to those U which are in Xgq1¢, and so in this case
we will only consider the case where U is a scheme. Alternately we can work with
the site Xspace,étate and consider all étale neighbourhoods. And there won’t be any
difference because of the last assertion in the following lemma.

Lemmal 16.3. Let S be a scheme. Let X be an algebraic space over S. Let T be
a geometric point of X. The category of étale neighborhoods is cofiltered. More
precisely:
(1) Let (U, W;)i=1.2 be two étale neighborhoods of T in X. Then there exists a
third étale neighborhood (U,w) and morphisms (U,u) — (U;,w;), i =1,2.
(2) Let hy,ho : (Um) — (U, @) be two morphisms between étale neighborhoods
of 5. Then there exist an étale neighborhood (U”,w") and a morphism h :
(U", @) — (U,u) which equalizes h1 and hs, i.e., such that hyoh = hyoh.
Moreover, given any étale neighbourhood (U,w) — (X, T) there exists a morphism
of étale neighbourhoods (U',w') — (U,u) where U’ is a scheme.

Proof. For part (1), consider the fibre product U = Uy xx Us. It is étale over
both U; and U, because étale morphisms are preserved under base change and
composition, see Lemmas and The map @ — U defined by (u,us) gives
it the structure of an étale neighborhood mapping to both U; and Us.

For part (2), define U"” as the fibre product
u” U

;e

U -2 U xx U.

Since w and u’ agree over X with T, we see that u”’ = (u,u’) is a geometric point
of U”. In particular U” # (). Moreover, since U’ is étale over X, so is the fibre
product U’ x x U’ (as seen above in the case of Uy X x Us). Hence the vertical arrow
(h1, ho) is étale by Lemma[13.6] Therefore U” is étale over U’ by base change, and
hence also étale over X (because compositions of étale morphisms are étale). Thus
(U",u") is a solution to the problem posed by (2).
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To see the final assertion, choose any surjective étale morphism U’ — U where U’
is a scheme. Then U’ Xy @ is a scheme surjective and étale over @ = Spec(k) with
k algebraically closed. It follows (see Morphisms, Lemma that U' xpyu —u
has a section which gives us the desired @’. [

Lemma 16.4. Let S be a scheme. Let X be an algebraic space over S. Let
T : Spec(k) — X be a geometric point of X lying over x € |X|. Let ¢ : U — X be
an étale morphism of algebraic spaces and let u € |U| with o(u) = x. Then there
exists a geometric point T : Spec(k) — U lying over u with T = f o .

Proof. Choose an affine scheme U’ with v/ € U’ and an étale morphism U’ — U
which maps «’ to u. If we can prove the lemma for (U’,u') — (X, z) then the lemma
follows. Hence we may assume that U is a scheme, in particular that U — X is
representable. Then look at the cartesian diagram

Spec(k) Xf,X,Lp U Tr2> U

Spec(k) ———= X

The projection pry is the base change of an étale morphisms so it is étale, see Lemma
13.5] Therefore, the scheme Spec(k) xz x,, U is a disjoint union of finite separable
extensions of k, see Morphisms, Lemma But k is algebraically closed, so all
these extensions are trivial, so Spec(k) Xz ,x,, U is a disjoint union of copies of
Spec(k) and each of these corresponds to a geometric point @ with f ouw = Z. By
Lemma [£.3] the map

| Spec(k) xz,x,, Ul — |Spec(k)| x| x| |U|
is surjective, hence we can pick @ to lie over u. ([

Lemmal 16.5. Let S be a scheme. Let X be an algebraic space over S. Let T be a
geometric point of X. Let (U,u) an étale neighborhood of T. Let {p; : Uy = U}ticr
be an étale covering in Xspaces,étale- Then there exist ¢ € I and w; : T — U; such
that ¢; : (U;,u;) — (U, @) is a morphism of étale neighborhoods.

Proof. Let u € |U| be the image of u. As |U| = J;c; :i(|Us]) there exists an i and
a point u; € U; mapping to z. Apply Lemma to (U;,u;) = (U,u) and @ to get
the desired geometric point. O

Definition 16.6. Let S be a scheme. Let X be an algebraic space over S. Let F
be a presheaf on X¢iqe. Let T be a geometric point of X. The stalk of F at T is

Fz = colimyz) F(U)
where (U, @) runs over all étale neighborhoods of Z in X with U € Ob(X¢taie)-

By Lemma this colimit is over a filtered index category, namely the opposite
of the category of étale neighborhoods in X¢;4;.. More precisely Lemma [16.3] says
the opposite of the category of all étale neighbourhoods is filtered, and the full
subcategory of those which are in X¢;4¢ is a cofinal subcategory hence also filtered.

This means an element of Fz can be thought of as a triple (U,w, o) where U €
Ob(X¢tare) and o € F(U). Two triples (U,w,0), (U’, @, ¢") define the same element
of the stalk if there exists a third étale neighbourhood (U”, @), U" € Ob(Xsaie)
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and morphisms of étale neighbourhoods h : (U”,u") — (U,u), b’ : (U",u") —
(U, @) such that h*o = (h')*¢’ in F(U"). See Categories, Section [19}

This also implies that if ' is the sheaf on Xgpeces étate corresponding to F on
Xétalea then

(16.6.1) Fz = colimyz) F'(U)

where now the colimit is over all the étale neighbourhoods of Z. We will often jump
between the point of view of using Xetq1e and Xspgces,étale Without further mention.

In particular this means that if F is a presheaf of abelian groups, rings, etc then
Fz is an abelian group, ring, etc simply by the usual way of defining the group
structure on a directed colimit of abelian groups, rings, etc.

Lemma) 16.7. Let S be a scheme. Let X be an algebraic space over S. Let T be a
geometric point of X. Consider the functor

u: Xepare — Sets, U — |Uz|

Then u defines a point p of the site X¢paie (Sites, Deﬁm’tion and its associated
stalk functor F w— F, (Sites, Equation|31.1.1)) is the functor F — Fz defined above.

Proof. In the proof of Lemma [16.5] we have seen that the scheme Uz is a disjoint
union of schemes isomorphic to Z. Thus we can also think of |Uz| as the set of
geometric points of U lying over T, i.e., as the collection of morphisms w : 7 — U
fitting into the diagram of Definition From this it follows that u(X) is a
singleton, and that w(U xy W) = u(U) vy u(W) whenever U — V and W — V
are morphisms in Xgqe. And, given a covering {U; — Ulier in Xgqre we see
that [u(U;) — u(U) is surjective by Lemma [16.5] Hence Sites, Proposition
applies, so p is a point of the site X¢iqie. Finally, the our functor F — Fsz is given by
exactly the same colimit as the functor F +— F, associated to p in Sites, Equation
31.1.1] which proves the final assertion. (I

Lemma 16.8. Let S be a scheme. Let X be an algebraic space over S. Let T be a
geometric point of X.

(1) The stalk functor PAb(Xstaie) — Ab, F — Fz is exact.

(2) We have (F#)z = Fx for any presheaf of sets F on X¢rate-

(3) The functor Ab(Xstare) — Ab, F — Fz is ezxact.

(4) Similarly the functors PSM Xstaie) — Sets and Sh(Xetale) — Sets given by
the stalk functor F — Fgz are exact (see Categories, Definition and
commute with arbitrary colimits.

Proof. This result follows from the general material in Modules on Sites, Section
This is true because F — Fz comes from a point of the small étale site of X,
see Lemma See the proof of Etale Cohomology, Lemma for a direct proof
of some of these statements in the setting of the small étale site of a scheme. [

We will see below that the stalk functor F — Fz is really the pullback along the
morphism Z. In that sense the following lemma is a generalization of the lemma
above.

Lemmal 16.9. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S.

(1) The functor fs_1 Ab(Yetare) = Ab(Xétare) is exact.

mall *
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(2) The functor f2 ' - Sh(Yerare) = SW(Xspate) is exact, i.e., it commutes with

small

finite limits and colimits, see Categories, Definition [23.1)
(3) For any étale morphism V. — Y of algebraic spaces we have f;ia”hv =

hxxyv.
(4) Let T — X be a geometric point. Let G be a sheaf on Yetqie. Then there is
a canonical identification

(fs;ialzg)f = Gy.
where y = fox.

Proof. Recall that fsmqn is defined via fopaces,smau in Lemma m Parts (1),
(2) and (3) are general consequences of the fact that fspaces ctate : Xspaces étale —
Yipaces,étale 1S @ morphism of sites, see Sites, Definition for (2), Modules on

Sites, Lemma for (1), and Sites, Lemma for (3).

Proof of (4). This statement is a special case of Sites, Lemma [33.1] via Lemmal[16.7]
We also provide a direct proof. Note that by Lemma taking stalks commutes
with sheafification. Let G’ be the sheaf on Yspqces, étate Whose restriction to Yeqe is
G. Recall that f! G’ is the sheaf associated to the presheaf

spaces,étale
: I
U — COth—>X><yV g (V),

see Sites, Sections [I4] and [5} Thus we have

( s_ptlzces,étalegl)f = COlim(U7a) fs_pices,étaleg/(U)
= COlim(Uﬂ) COlima:U—>X><yV g,(V)
= colimy3) G'(V)
in the third equality the pair (U,u) and the map a : U — X Xy V corresponds to
the pair (V,a o). Since the stalk of G’ (resp. f. ! G') agrees with the stalk

spaces,étale

of G (resp. f;,,{a”g), see Equation (|16.6.1) the result follows. (]

Remark| 16.10. This remark is the analogue of Etale Cohomology, Remark
Let S be a scheme. Let X be an algebraic space over S. Let T : Spec(k) — X be a
geometric point of X. By Etale Cohomology, Theorem the category of sheaves
on Spec(k)¢taie is equivalent to the category of sets (by taking a sheaf to its global
sections). Hence it follows from Lemma part (4) applied to the morphism T
that the functor

Sh(X¢tare) — Sets,  Fr— Fr
is isomorphic to the functor
Sh(Xetate) — Sh(Spec(k)étale) = Sets, F — T°F

Hence we may view the stalk functors as pullback functors along geometric mor-
phisms (and not just some abstract morphisms of topoi as in the result of Lemma
16.7)).

Remark| 16.11. Let S be a scheme. Let X be an algebraic space over S. Let
x € | X|. We claim that for any pair of geometric points T and Z' lying over = the
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stalk functors are isomorphic. By definition of |X| we can find a third geometric

point Z” so that there exists a commutative diagram

f/ / f’

X

Since the stalk functor F — Fz is given by pullback along the morphism T (and
similarly for the others) we conclude by functoriality of pullbacks.

The following theorem says that the small étale site of an algebraic space has enough
points.

Theorem 16.12. Let S be a scheme. Let X be an algebraic space over S. A map
a:F — G of sheaves of sets is injective (resp. surjective) if and only if the map on
stalks az : Fz — Gz is injective (resp. surjective) for all geometric points of X. A
sequence of abelian sheaves on Xgiqre 15 exact if and only if it is exact on all stalks
at geometric points of S.

Proof. We know the theorem is true if X is a scheme, see Etale Cohomology,
Theorem Choose a surjective étale morphism f : U — X where U is a
scheme. Since {U — X} is a covering (in Xpaces,étale) We can check whether a
map of sheaves is injective, or surjective by restricting to U. Now if @ : Spec(k) — U
is a geometric point of U, then (F|y)z = Fz where T = f o@. (This is clear from
the colimits defining the stalks at @ and Z, but it also follows from Lemma [16.9])
Hence the result for U implies the result for X and we win. (Il

The following lemma should be skipped on a first reading.

Lemma 16.13. Let S be a scheme. Let X be an algebraic space over S. Let
p: Sh(pt) = Sh(Xetare) be a point of the small étale topos of X. Then there exists
a geometric point T of X such that the stalk functor F — F, is isomorphic to the
stalk functor F — Fz.

Proof. By Sites, Lemma [31.7] there is a one to one correspondence between points
of the site and points of the associated topos. Hence we may assume that p is
given by a functor u : Xgq1e — Sets which defines a point of the site X¢q1e. Let
U € Ob(X¢tale) be an object whose structure morphism j : U — X is surjective.
Note that hy is a sheaf which surjects onto the final sheaf. Since taking stalks
is exact we see that (hy), = u(U) is not empty (use Sites, Lemma B1.3). Pick
x € u(U). By Sites, Lemma we obtain a point ¢ : Sh(pt) — Sh(Ugtare) such
that p = jsmau 0¢, so that F, = (F|v), functorially. By Etale Cohomology, Lemma
there is a geometric point @ of U and a functorial isomorphism G, = Gy for
G € Sh(Ustaie). Set T = j ow. Then we see that Fz = (F|y )z functorially in F on
Xetale by Lemma and we win. O

17. Supports of abelian sheaves
First we talk about supports of local sections.

Lemma 17.1. Let S be a scheme. Let X be an algebraic space over S. Let F be a
subsheaf of the final object of the étale topos of X (see Sites, Example . Then
there exists a unique open W C X such that F = hy.
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Proof. The condition means that F(U) is a singleton or empty for all ¢ : U —
X in Ob(Xpaces,étate). In particular local sections always glue. If F(U) # 0,
then F(p(U)) # 0 because p(U) C X is an open subspace (Lemma and
{p: U — o(U)} is a covering in Xgpaces ctale- Take W = UL,O:U%S,]“(U)#@ o(U) to
conclude. 0

Lemmal 17.2. Let S be a scheme. Let X be an algebraic space over S. Let F be
an abelian sheaf on Xgpaces,étaie- Let o € F(U) be a local section. There exists an
open subspace W C U such that

(1) W C U is the largest open subspace of U such that o|lw =0,

(2) for every ¢ : V — U in Xetare we have

oy =0& (V) CW,
(3) for every geometric point @ of U we have
Uu,0)=0inFseueW
where s = (U — S) ow.

Proof. Since F is a sheaf in the étale topology the restriction of F to Uz, is a
sheaf on U in the Zariski topology. Hence there exists a Zariski open W having
property (1), see Modules, Lemma Let ¢ : V — U be an arrow of Xgqie. Note
that ¢(V) C U is an open subspace (Lemma and that {V — ¢(V)} is an
étale covering. Hence if o|yy = 0, then by the sheaf condition for F we see that
ol,(vy = 0. This proves (2). To prove (3) we have to show that if (U, %, o) defines
the zero element of Fz, then w € W. This is true because the assumption means
there exists a morphism of étale neighbourhoods (V,7) — (U, u) such that o|y = 0.
Hence by (2) we see that V' — U maps into W, and hence w € W. O

Let S be a scheme. Let X be an algebraic space over S. Let z € |X|. Let F be a
sheaf on X¢iq.. By Remark [16.11] the isomorphism class of the stalk of the sheaf
F at a geometric points lying over x is well defined.

Definition 17.3. Let S be a scheme. Let X be an algebraic space over S. Let F
be an abelian sheaf on X qe.

(1) The support of F is the set of points x € |X| such that Fz # 0 for any
(some) geometric point T lying over x.

(2) Let 0 € F(U) be a section. The support of o is the closed subset U \ W,
where W C U is the largest open subset of U on which ¢ restricts to zero

(see Lemma, [17.2]).

Lemma) 17.4. Let S be a scheme. Let X be an algebraic space over S. Let F be
an abelian sheaf on Xerare. Let U € Ob(Xgiare) and o € F(U).

(1) The support of o is closed in |X|.

(2) The support of o + o’ is contained in the union of the supports of o,0’ €
F(X).

(3) If o : F — G is a map of abelian sheaves on Xgtqaie, then the support of
(o) is contained in the support of o € F(U).

(4) The support of F is the union of the images of the supports of all local
sections of F.

(5) If F — G is surjective then the support of G is a subset of the support of F.

(6) If F — G is injective then the support of F is a subset of the support of G.
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Proof. Part (1) holds by definition. Parts (2) and (3) hold because they holds
for the restriction of 7 and G to Ugzg., see Modules, Lemma Part (4) is a
direct consequence of Lemma part (3). Parts (5) and (6) follow from the other
parts. [

Lemma 17.5. The support of a sheaf of rings on the small étale site of an algebraic
space is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. ]

18. The structure sheaf of an algebraic space
The structure sheaf of an algebraic space is the sheaf of rings of the following lemma.

Lemma) 18.1. Let S be a scheme. Let X be an algebraic space over S. The rule
Uw— T(U,Oy) defines a sheaf of rings on Xsiaie-

Proof. Immediate from the definition of a covering and Descent, Lemma O

Definition 18.2. Let S be a scheme. Let X be an algebraic space over S. The

structure sheaf of X is the sheaf of rings Ox on the small étale site Xg;q;e described
in Lemma [I811

According to Lemma [T5.12] the sheaf Oy corresponds to a system of étale sheaves
(Ox)y for U ranging through the objects of X¢gare. It is clear from the proof of
that lemma and our definition that we have simply (Ox)y = Oy where Oy is the
structure sheaf of Ugiqie as introduced in Descent, Definition In particular, if
X is a scheme we recover the sheaf Ox on the small étale site of X.

Via the equivalence Sh(Xe¢tare) = SM Xspaces,étale) 0of Lemma we may also
think of Ox as a sheaf of rings on Xspaces.étate- It is explained in Remark
how to compute Ox(Y), and in particular Ox(X), when ¥ — X is an object of
Xspaces,étale~

Lemmal 18.3. Let S be a scheme. Let f : X — Y be a morphism of algebraic

spaces over S. Then there is a canonical map f* : f;;a”@y — Ox such that

(fsmalla fﬁ) : (Xétalea OX) — (Yétalea OY)
is a morphism of ringed topoi. Furthermore,

(1) The construction f + (fsmau, [*) is compatible with compositions.
(2) If f is a morphism of schemes, then f* is the map described in Descent,

Remark[7.4)

Proof. By Lemma [15.9 it suffices to give an f-map from Oy to Ox. In other
words, for every commutative diagram

U——=X
|
V——Y

where U € X¢iae, V€ Yeraie we have to give a map of rings (fﬁ)(U7V7g) DV, 0y) —
(U, Opy). Of course we just take (fﬁ)(U7V7g) = g, Tt is clear that this is compatible
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with restriction mappings and hence indeed gives an f-map. We omit checking
compatibility with compositions and agreement with the construction in Descent,

Remark [7.4] O

19. Stalks of the structure sheaf
This section is the analogue of Etale Cohomology, Section

Lemma) 19.1. Let S be a scheme. Let X be an algebraic space over S. Let T be
a geometric point of X. Let (U, @) be an étale neighbourhood of T where U is a
scheme. Then we have

Oxz=0uz = O[S]hu
where the left hand side is the stalk of the structure sheaf of X, and the right hand

side is the strict henselization of the local ring of U at the point u at which U is
centered.

Proof. We know that the structure sheaf Oy on Ugiqe is the restriction of the
structure sheaf of X. Hence the first equality follows from Lemma m part (4).
The second equality is explained in Etale Cohomology, Lemma (]

Definition 19.2. Let S be a scheme. Let X be an algebraic space over S. Let T
be a geometric point of X lying over the point = € | X]|.

(1) The étale local Ting of X at T is the stalk of the structure sheaf Ox on
Xe¢tale at . Notation: Ox z.
(2) The strict henselization of X at T is the scheme Spec(Ox 7).

The isomorphism type of the strict henselization of X at T (as a scheme over X)
depends only on the point z € |X| and not on the choice of the geometric point
lying over z, see Remark [16.11]

Lemma) 19.3. Let S be a scheme. Let X be an algebraic space over S. The small
étale site Xgpq1e endowed with its structure sheaf Ox is a locally ringed site, see

Modules on Sites, Definition|39.4].

Proof. This follows because the stalks Ox z are local, and because Sgtqie has
enough points, see Lemmas[19.1]and Theorem [16.12] See Modules on Sites, Lemma
and for the fact that this implies the small étale site is locally ringed. [

20. Dimension of local rings

It turns out the dimension of the local ring of an algebraic space is a well defined
concept.

Lemma 20.1. Let S be a scheme. Let X be an algebraic space over S. Let x € | X|
be a point. Let d € {0,1,2,...,00}. The following are equivalent

(1) for some scheme U and étale morphism a : U — X and point u € U with
a(u) = x we have dim(Oy ) = d,

(2) for any scheme U, any étale morphism a : U — X, and any point u € U
with a(u) = x we have dim(Oy,,,) = d,

(3) dim(Ox z) = d for some geometric point T lying over x, and

(4) dim(Ox z) = d for any geometric point T lying over .
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Proof. The equivalence of (1) and (2) follows from a combination of Lemma
and Descent, Lemma [I7.3] The equivalence of (3) and (4) follows from the fact
that the isomorphism type of Ox z only depends on = € | X|, see Remark [16.11

Using Lemma the equivalence of (1)+(2) and (3)+(4) comes down to the
following statement: Given any local ring R we have dim(R) = dim(R*"). This is
More on Algebra, Lemma [34.6 (]

Definition 20.2. Let S be a scheme. Let X be an algebraic space over S. Let
x € |X| be a point. The dimension of the local ring of X at x is the element
d€{0,1,2,...,00} satisfying the equivalent conditions of Lemma [20.1]

Lemma 20.3. Let S be a scheme. Let f : X — Y be an étale morphism of algebraic
spaces over S. Let x € X. Then (1) dim,(X) = dimy,)(Y') and (2) the dimension
of the local ring of X at x equals the dimension of the local ring of Y aty. If [ is
surjective, then (3) dim(X) = dim(Y).

Proof. Choose a scheme U and a point w € U and an étale morphism U — X
which maps u to . Then the composition U — Y is also étale and maps u to y.
Thus the statements (1) and (2) follow as the relevant integers are defined in terms
of the behaviour of the scheme U at u. See Definition for (1). Part (3) is an
immediate consequence of (1), see Definition (]

21. Local irreducibility

A point on an algebraic space has a well defined étale local ring, which corresponds
to the strict henselization of the local ring in the case of a scheme. In general we
cannot see how many irreducible components of the algebraic space pass through
the given point from the étale local ring. Here is something we can do.

Lemma 21.1. Let S be a scheme. Let X be an algebraic space over S. Let x € | X|
be a point. The following are equivalent

(1) for any scheme U and étale morphism a : U — X and u € U with a(u) = x
the local ring Oy, has a unique minimal prime,

(2) for any scheme U and étale morphism a : U — X and u € U with a(u) = x
there is a unique irreducible component of U through u, and

(3) Oxz has a unique minimal prime for any geometric point T lying over x.

Proof. The equivalence of (1) and (2) follows from the fact that irreducible com-
ponents of U passing through u are in 1 — 1 correspondence with minimal primes
of the local ring of U at u. Let @ : U — X and uw € U be as in (1). Then
Ou,n — Ox 7 is flat in particular injective. Hence if f, g € Oy, are non-nilpotent
elements such that fg = 0, then the same is true in Ox z. Conversely, suppose that
f,9 € Ox z are non-nilpotent such that fg = 0. Since Ox 7 is the filtered colimit
of the rings Oy, we see that f, g are the images of elements of Oy ,, for some choice
of a : U — X. Hence we see that Oy, doesn’t have a unique minimal prime. In
this way we see the equivalence of (1) and (3). O

Definition 21.2. Let S be a scheme. Let X be an algebraic space over S. Let
x € | X|. We say that X is geometrically unibranch at x if the equivalent conditions
of Lemma [2T.T] hold. We say that X is geometrically unibranch if X is geometrically
unibranch at every z € | X|.
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To prove this is consistent with the definition of [DG67] for schemes we offer the
following lemma (see [Art66, Lemma 2.2]).

Lemma 21.3. Let A be a local ring. Let A" be a strict henselization of A. The
following are equivalent

(1) A" has a unique minimal prime, and

(2) A has a unique minimal prime p and the integral closure A" of A/p in its

fraction field is a local ring whose residue field is purely inseparable over
the residue field of A.

Proof. Denote m the maximal ideal of the ring A. Denote &, x*" the residue field
of A, A%h.

Assume (1). Let p*" be the unique minimal prime of A%". The flatness of A — A%"
implies that p = A N p*" is the unique minimal prime of A (by going down, see
Algebra, Lemma . Also, since A%"/pAs" = (A/p)*" (see Algebra, Lemma
is reduced by More on Algebra, Lemma we see that ps" = pA*". Since
A — A’ is integral, every maximal ideal of A’ lies over m (by going up for integral
ring maps, see Algebra, Lemma [35.20)). If A’ is not local, then we can find distinct
maximal ideals mi, my. Choosing elements f1, fo € A’ with f; € m;, f; € m3_; we
find a finite subalgebra B = A[f1, fo] C A’ with distinct maximal ideals B N m,,
i = 1,2. If A’ is local with maximal ideal m’, but A/m C A’/m’ is not purely
inseparable, then we can find a f € A’ whose image in A’/m’ generates finite, not
purely inseparable extension of A/m and we find a finite local subalgebra B =
A[f] € A’ whose residue field is not a purely inseparable extension of A/m. Note
that the inclusions

A/p C B Ckl(p)

give, on tensoring with the flat ring map A — A*" the inclusions
AP /psh € Boa A" C k(p) @4 A" C w(p*h)

the last inclusion because r(p) ®4 A" = k(p) ® 4/, A" /p*" is a localization of the
domain A" /ph. Note that B® 4x°" has at least two maximal ideals because B/mB
either has two maximal ideals or one whose residue field is not purely inseparable
over k, and because k°" is separably algebraically closed. Hence, as A®" is strictly
henselian we see that B® 4 A" is a product of > 2 local rings, see Algebra, Lemma
But we’ve just seen that B ®4 A" is a subring of a domain and we get a
contradiction.

Assume (2). Let A — B be a local map of local rings which is a localization of
an étale A-algebra. In particular mp is the unique prime containing m4B. Then
B’ = A’ ® 4 B is integral over B and the assumption that A — A’ is local with
purely inseparable residue field extension implies that B’ is local. On the other
hand, A’ — B’ is the localization of an étale ring map, hence B’ is normal, see
Algebra, Lemma Thus B’ is a (local) normal domain. Finally, we have

B/pB C Boak(p) = B ®@a f.f(A) C f.f.(B')

Hence B/pB is a domain, which implies that B has a unique minimal prime (since
by flatness of A — B these all have to lie over p). Hence, by Lemma we see
that A®" has a unique minimal prime. (I
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22. Noetherian spaces
We have already defined locally Noetherian algebraic spaces in Section [7]

Definition 22.1. Let S be a scheme. Let X be an algebraic space over S. We say
X is Noetherian if X is quasi-compact, quasi-separated and locally Noetherian.

Note that a Noetherian algebraic space X is not just quasi-compact and locally
Noetherian, but also quasi-separated. This does not conflict with the definition
of a Noetherian scheme, as a locally Noetherian scheme is quasi-separated, see
Properties, Lemma This does not hold for algebraic spaces. Namely, X =
A} /Z, see Spaces, Example is locally Noetherian and quasi-compact but not
quasi-separated (hence not Noetherian according to our definitions).

A consequence of the choice made above is that an algebraic space of finite type over
a Noetherian algebraic space is not automatically Noetherian, i.e., the analogue of
Morphisms, Lemma [16.6] does not hold. The correct statement is that an algebraic
space of finite presentation over a Noetherian algebraic space is Noetherian (see
Morphisms of Spaces, Lemma .

A Noetherian algebraic space X is very close to being a scheme. In the rest of this
section we collect some lemmas to illustrate this.

Lemma) 22.2. Let S be a scheme. Let X be an algebraic space over S.

(1) If X is locally Noetherian then | X| is a locally Noetherian topological space.
(2) If X is quasi-compact and locally Noetherian, then |X| is a Noetherian
topological space.

Proof. Assume X is locally Noetherian. Choose a scheme U and a surjective étale
morphism U — X. As X is locally Noetherian we see that U is locally Noetherian.
By Properties, Lemma this means that |U| is a locally Noetherian topological
space. Since |U| — |X]| is open and surjective we conclude that |X| is locally
Noetherian by Topology, Lemma This proves (1). If X is quasi-compact and
locally Noetherian, then |X| is quasi-compact and locally Noetherian. Hence |X|
is Noetherian by Topology, Lemma [11.14] O

Lemmal 22.3. Let S be a scheme. Let X be an algebraic space over S. If X is
Noetherian, then | X| is a sober Noetherian topological space.

Proof. A quasi-separated algebraic space has an underlying sober topological space,
see Lemma, It is Noetherian by Lemma [l

Lemma) 22.4. Let S be a scheme. Let X be a Noetherian algebraic space over S.
Let T be a geometric point of X. Then Ox z is a Noetherian local ring.

Proof. Choose an étale neighbourhood (U, %) of T where U is a scheme. Then
Ox z is the strict henselization of the local ring of U at u, see Lemma[19.1] By our
definition of Noetherian spaces the scheme U is Noetherian. Hence we conclude by
More on Algebra, Lemma [34.3 (]

23. Regular algebraic spaces
We have already defined regular algebraic spaces in Section [7}

Lemmal 23.1. Let S be a scheme. Let X be a locally Noetherian algebraic space
over S. The following are equivalent


http://localhost:8080/tag/03EA
http://localhost:8080/tag/04ZF
http://localhost:8080/tag/04ZG
http://localhost:8080/tag/08AH
http://localhost:8080/tag/06LQ

PROPERTIES OF ALGEBRAIC SPACES 41

(1) X is regular, and
(2) every étale local ring Ox 7 is reqular.

Proof. Let U be a scheme and let U — X be a surjective étale morphism. By
assumption U is locally Noetherian. Moreover, every étale local ring Ox z is the
strict henselization of a local ring on U and conversely, see Lemma [19.1] Thus by
More on Algebra, Lemma we see that (2) is equivalent to every local ring of
U being regular, i.e., U being a regular scheme (see Properties, Lemma . This
equivalent to (1) by Definition O

We can use Descent, Lemma to define what it means for an algebraic space X
to be regular at a point x.

Definition 23.2. Let S be a scheme. Let X be an algebraic space over S. Let
x € | X| be a point. We say X is regular at x if Oy, is a regular local ring for any
(equivalently some) pair (a : U — X, u) consisting of an étale morphism a : U — X
from a scheme to X and a point u € U with a(u) = x.

See Definition Lemma [7.4] and Descent, Lemma [17.4]

Lemma 23.3. Let S be a scheme. Let X be an algebraic space over S. Let x € | X|
be a point. The following are equivalent

(1) X is regular at z, and
(2) the étale local ring Ox z is regqular for any (equivalently some) geometric
point T lying over x.

Proof. Let U be a scheme, u € U a point, and let a : U — X be an étale morphism
mapping v to z. For any geometric point T of X lying over x, the étale local ring
Ox 7z is the strict henselization of a local ring on U at u, see Lemma Thus we
conclude by More on Algebra, Lemma [34.9 O

24. Sheaves of modules on algebraic spaces

If X is an algebraic space, then a sheaf of modules on X is a sheaf of Ox-modules
on the small étale site of X where Ox is the structure sheaf of X. The category of
sheaves of modules is denoted Mod(Ox).

Given a morphism f : X — Y of algebraic spaces, by Lemma [18.3| we get a
morphism of ringed topoi and hence by Modules on Sites, Definition we get
well defined pullback and direct image functors

(24.0.1) f* : MOd(OY) — MOd(Ox), f* : MOd(Ox) — MOd(Oy>

which are adjoint in the usual way. If g : Y — Z is another morphism of algebraic
spaces over S, then we have (go f)* = f*og* and (go f). = g« o f, simply because
the morphisms of ringed topoi compose in the corresponding way (by the lemma).

Lemma 24.1. Let S be a scheme. Let f : X — Y be an étale morphism of
algebraic spaces over S. Then f~'Oy = Ox, and f*G = f;nia”g for any sheaf of
Oy -modules G. In particular, f*: Mod(Ox) — Mod(Oy) is exact.

Proof. By the description of inverse image in Lemma [15.10| and the definition of

the structure sheaves it is clear that f;ia”(’)y = Ox. Since the pullback

* —1
f g = fsmallg ®f;ia”(9y OX
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by definition we conclude that f*G = f;;a”g . The exactness is clear because fs_wia”

is exact, as fsmau 18 @ morphism of topoi. O
We continue our abuse of notation introduced in Equation (15.10.1)) by writing
(24.1.1) Glx e = I°G = Foman§

in the situation of the lemma above. We will discuss this in a more technical fashion
in Section
Lemma 24.2. Let S be a scheme. Let

X —X

f ’l lf

y sy
be a cartesian square of algebraic spaces over S. Let F € Mod(Ox). If g is étale,
then fL(Flx') = (f.F)|y[] and R fL(F|x) = (R f.F)|y+ in Mod(Oy).
Proof. This is a reformulation of Lemma [I5.11] in the case of modules. O
Lemmal 24.3. Let S be a scheme. Let X be an algebraic space over S. A sheaf F

of Ox-modules is given by the following data:

(1) for every U € Ob(Xgstaie) a sheaf Fy of Oy-modules on Ugtae,

(2) for every f :U" = U in Xetare an isomorphism cy : f . Fu — Fur.
These data are subject to the condition that given any f : U' — U and g : U" — U’
n Xetale the composition g;}m”cf o ¢y 18 equal to Cpog.

Proof. Combine Lemmas and [[5.12] and use the fact that any morphism
between objects of X¢iqie i an étale morphism of schemes. O

25. Etale localization

Reading this section should be avoided at all cost.

Let X — Y be an étale morphism of algebraic spaces. Then X is an object of
Yipaces,étale and it is immediate from the definitions, see also the proof of Lemma

15.10} that
(2501) Xspaces,étule = spaces,étale/X

where the right hand side is the localization of the site Yspaces,étaie at the object X,
see Sites, Definition [24.1] Moreover, this identification is compatible with the struc-
ture sheaves by Lemma @ Hence the ringed site (Xspqces,étate; Ox) is identified
with the localization of the ringed site (Yspaces,étale, Oy) at the object X:

(2502) (Xspaces,étale; OX) = (}/spaces,étale/Xa OY‘YSpacesyétale/X)

The localization of a ringed site used on the right hand side is defined in Modules
on Sites, Definition [19.1]

Assume now X — Y is an étale morphism of algebraic spaces and X is a scheme.
Then X is an object of Y¢qe and it follows that

(25.0.3) Xetate = Yotate/ X

TAlso (f')*(Gly+) = (f*G)|xs by commutativity of the diagram and (24.1.1))
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and
(25.0.4) (Xetate, Ox) = (Yetate/ X, Oy |vipare/x)
as above.

Finally, if X — Y is an étale morphism of algebraic spaces and X is an affine
scheme, then X is an object of Y ¢fine étale and

(2505) Xaffine,étale = affine,étale/X

and

(25-0-6) (Xaffine,étale; OX) = (Yaffine,étale/X7 OY|Yaffme,émle/X)
as above.

Next, we show that these localizations are compatible with morphisms.

Lemma 25.1. Let S be a scheme. Let
U——V

g
pi lq
f
X—Y

be a commutative diagram of algebraic spaces over S with p and q étale. Via the
identifications forU — X and V =Y the morphism of ringed topoi

(gspaces,étalea gﬁ) : (Sh(Uspaces,étale)a OU) — (Sh(Vspaces,étale)y OV)

is 2-isomorphic to the morphism ( fspaces,étale,cs fg) constructed in Modules on Sites,
Lemma starting with the morphism of ringed sites (fspaces7étale,fﬁ) and the
map c: U =V xy X corresponding to g.

Proof. The morphism (fspaces,émle’c,fg) is defined as a composition f' o j of a
localization and a base change map. Similarly g is a composition U — V xy X — V.
Hence it suffices to prove the lemma in the following two cases: (1) f = id, and
(2) U = X xy V. In case (1) the morphism g : U — V is étale, see Lemma [13.6]
Hence (gspaces,étaies gﬂ) is a localization morphism by the discussion surrounding
Equations (25.0.1) and (25.0.2)) which is exactly the content of the lemma in this
case. In case (2) the morphism gspgces,étale comes from the morphism of ringed sites
given by the functor Vipaces étate = Uspaces,étates V'/V — V' xy U/U which is also
what the morphism f’ is defined by, see Sites, Lemma We omit the verification
that (f')f = g* in this case (both are the restriction of f* to Uspaces,étale)- O

Lemma 25.2. Same notation and assumptions as in Lemma [25.1] except that we
also assume U and V' are schemes. Via the identifications (25.0.4}) for U — X and
V — Y the morphism of ringed topoi

(gsmallmgu) : (Sh(Uétale)yoU) — (Sh(vétale)aOV)
is 2-isomorphic to the morphism (fsmall,safg) constructed in Modules on Sites,

Lemma starting with (fsman, f*) and the map s : hy — f;;a”hv corresponding
to g.

Proof. Note that (gsmai, g*) is 2-isomorphic as a morphism of ringed topoi to the
morphism of ringed topoi associated to the morphism of ringed sites (gspaces,étaie; g").
Hence we conclude by Lemma and Modules on Sites, Lemma [22.4 (]
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26. Recovering morphisms

In this section we prove that the rule which associates to an algebraic space its
locally ringed small étale topos is fully faithful in a suitable sense, see Theorem
120.4]

Lemmal26.1. Let S be a scheme. Let f : X — Y be a morphism of algebraic spaces
over S. The morphism of ringed topoi (fsmai, f*) associated to f is a morphism of
locally ringed topoi, see Modules on Sites, Definition [39.8

Proof. Note that the assertion makes sense since we have seen that (X¢zaie, Ox,,...)
and (Yetare, Oy,,,,.) are locally ringed sites, see Lemma Moreover, we know
that X¢tqe has enough points, see Theorem [16.12] Hence it suffices to prove that
(fsmair, [¥) satisfies condition (3) of Modules on Sites, Lemma To see this
take a point p of X¢q.. By Lemma p corresponds to a geometric point T
of X. By Lemma the point ¢ = fsmayu © p corresponds to the geometric point
y = foT of Y. Hence the assertion we have to prove is that the induced map of
étale local rings

OY,@ ? OX T

is a local ring map. You can prove this directly, but instead we deduce it from the
corresponding result for schemes. To do this choose a commutative diagram

- .V
R
Y

[

SRS

where U and V are schemes, and the vertical arrows are surjective étale (see Spaces,
Lemma [11.4). Choose a lift w : T — U (possible by Lemma [16.5)). Set v = v o w.
We obtain a commutative diagram of étale local rings

By Etale Cohomology, Lemma, the top horizontal arrow is a local ring map.
Finally by Lemma the vertical arrows are isomorphisms. Hence we win. O

Lemma 26.2. Let S be a scheme. Let X, Y be algebraic spaces over S. Let
f: X =Y be a morphism of algebraic spaces over S. Let t be a 2-morphism from
(femait, f*) to itself, see Modules on Sites, Definition|8.1. Then t = id.

Proof. Let X', resp. Y’ be X viewed as an algebraic space over Spec(Z), see
Spaces, Definition It is clear from the construction that (Xgmau, O) is equal
to (XL,,au» ©) and similarly for Y. Hence we may work with X’ and Y”. In other
words we may assume that S = Spec(Z).
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Assume S = Spec(Z), f : X — Y and ¢ are as in the lemma. This means that
t: fs_nia” — f;ﬂia” is a transformation of functors such that the diagram

OY % emall

is commutative. Suppose V' — Y is étale with V affine. Write V' = Spec(B).
Choose generators b; € B, j € J for B as a Z-algebra. Set T = Spec(Z[{z;},;c]).
In the following we will use that Morgey (U, T) = [];c; I'(U, Ov) for any scheme U
without further mention. The surjective ring map Z[x;] — B, x; + b; corresponds
to a closed immersion V' — T'. We obtain a monomorphism

small

i:V—Ty=TxY

of algebraic spaces over Y. In terms of sheaves on Yg;q the morphism ¢ induces
an injection h; : hy — HjeJ Oy of sheaves. The base change ¢’ : X xy V — Tx of
i to X is a monomorphism too (Spaces, Lemma. Henceid : X xy V - Tx is a
monomorphism, which in turn means that h; : hxx, v — HjeJ Ox is an injection

of sheaves. Via the identification f_! hy = hxx,v of Lemma m the map h;

is equal to

small

I1+*
fsmallhv H]EJ smallOY H]GJ OX

(verification omitted). This means that the map ¢ : f. ! hy — fo ! hy fits into
the commutative diagram

I/

smallhv HJEJ smallOY HjEJ OX
lt J{Ht iid
h F [T/
small \4 JjeJ smalloy HjEJ OX

The commutativity of the right square holds by our assumption on t explained
above. Since the composition of the horizontal arrows is injective by the discussion
above we conclude that the left vertical arrow is the identity map as well. Any
sheaf of sets on Yge admits a surjection from a (huge) coproduct of sheaves of
the form hy with V aﬂ"me (combine Lemma with Sites, Lemma . Thus

we conclude that ¢ : f* mall fs_wia” is the identity transformation as desired. [

Lemma 26.3. Let S be a scheme. Let X, Y be algebraic spaces over S. Any

two morphisms a,b : X — Y of algebraic spaces over S for which there exists a
2-isomorphism (asmait, a*) = (Dsmair, b¥) in the 2-category of ringed topoi are equal.

Proof. Let t: asma” — bsma” be the 2-isomorphism. We may equivalently think
of ¢t as a transformation ¢ : Uspaces.étale b;places,étale since there is not difference

between sheaves on Xgqe and sheaves on Xgpacesétaie: Choose a commutative
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U \%
X sy
where U and V are schemes, and p and q are surjective étale. Consider the diagram

diagram

P
[e3%

—1
hU « a’spaces,étalehv

it

-1
hU > bspaces,étalehv
Since the sheaf b;places’ étaleltv 18 isomorphic to hy ., x we see that the dotted arrow
comes from a morphism of schemes 5 : U — V fitting into a commutative diagram
U——V
B
b
X—Y

We claim that there exists a sequence of 2-isomorphisms
(asmalla aﬁ) = (aspaces,étalea aﬁ)

= spaces,étale,cy Ue
(a Stale,c AF)

= (bspaces,étale,da bg)

= (ﬂspaces,étalm ﬂﬁ)
= (ﬁsmalla 611)

The first and the last 2-isomorphisms come from the identifications between sheaves
on Uspaces,étale and sheaves on Ugtqe and similarly for V. The second and fourth
2-isomorphisms are those of Lemma with ¢ : U — X X4y V induced by «
and d : U = X X,y V induced by B. The middle 2-isomorphism comes from the

transformation ¢. Namely, the functor A paces étale.c corresponds to the functor

(H—>hv)l—>(a 1 HXa—l

spaces,étale spaces,étale

hy o hU — hU)

;places stale.qr See Sites, Lemma This uses the identification

of sheaves on Yypaces ctate/V as arrows (H — hy ) in Sh(Yspaces,étale) and similarly
for U/X, see Sites, Lemma Via this identification the structure sheaf Oy
corresponds to the pair (Oy x hy — hy) and similarly for Oy, see Modules on
Sites, Lemma Since t switches o and 3 we see that ¢ induces an isomorphism

and similarly for b

trag) H X, by o hu — b, H X1 o

spaces,étale spaces,étale spaces,étale spaces,étale

over hy functorially in (H — hy). Also, t is compatible with af and bz as t is
compatible with af and b* by our description of the structure sheaves Oy and
Oy above. Hence, the morphisms of ringed topoi (smair, @) and (Bsmau, %) are
2-isomorphic. By Etale Cohomology, Lemma we conclude o« = B! Since
p: U — X is a surjection of sheaves it follows that a = b. O

Here is the main result of this section.
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Theorem 26.4. Let X, Y be algebraic spaces over Spec(Z). Let
(ga gn) : (Sh(Xétale)a OX) — (Sh(yrétale)a OY)

be a morphism of locally ringed topoi. Then there exists a unique morphism of
algebraic spaces f: X —Y such that (g, g%) is isomorphic to (fsman, f*). In other
words, the construction

Spaces/ Spec(Z) — Locally ringed topoi, X — (Xeétate, Ox)
is fully faithful (morphisms up to 2-isomorphisms on the right hand side).

Proof. The uniqueness we have seen in Lemma [26.3] Thus it suffices to prove
existence. In this proof we will freely use the identifications of Equation (25.0.4) as
well as the result of Lemma 25.2

Let U € Ob(X¢taie), let V€ Ob(Yetare) and let s € g~ thy (U) be a section. We
may think of s as a map of sheaves s : hyy — ¢~ 'hy. By Modules on Sites, Lemma
we obtain a commutative diagram of morphisms of ringed topoi

(Sh(Xétale/U); OU) T‘ (Sh(Xétale)a OX)
J>J
(gs,gﬁ)l i(mg”)

(Sh(‘/étale)a OV) - (Sh(}/étale)y OY)

By Etale Cohomology, Theorem we obtain a unique morphism of schemes
fs : U — V such that (gs,g) is 2-isomorphic to (fs smai, f¥). The construction
(U,V,s) ~ fs just explained satisfies the following functoriality property: Suppose
given morphisms a : U’ — U in Xgge and b : V' — V in Y4 and a map
s’ : hyr — g~ 'hy such that the diagram

hy —> g 'hy
commutes. Then the diagram

U ——u(V')

for
ai lu(b)

UL uv)
of schemes commutes. The reason this is true is that the same condition holds
for the morphisms (gs, g%) constructed in Modules on Sites, Lemma and the
uniqueness in Etale Cohomology, Theorem

The problem is to glue the morphisms f; to a morphism of algebraic spaces. To
do this first choose a scheme V and a surjective étale morphism V — Y. This
means that hy — * is surjective and hence g~ 'hy — * is surjective too. This
means there exists a scheme U and a surjective étale morphism U — X and a
morphism s : hy — g 'hy. Next, set R =V xy V and R' = U xx U. Then
we get ¢ 'hr = ¢ 'hy x g 'hy as ¢! is exact. Thus s induces a morphism
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s x s : hgp — g 'hgr. Applying the constructions above we see that we get a
commutative diagram of morphisms of schemes

R—— R

\L l fsxs l i

v—7' vy
Since we have X = U/R' and Y = V/R (see Spaces, Lemma [9.1)) we conclude
that this diagram defines a morphism of algebraic spaces f : X — Y fitting into
an obvious commutative diagram. Now we still have to show that (fsma, f¥) is
2-isomorphic to (g,9%). Let ty : fo L . — g7t and tr: £l cnai = Gsxs D the
2-isomorphisms which are given to us by the construction above. Let G be a sheaf
on Yiqie. Then we see that ty defines an isomorphism

-1 -1 tv, 1 -1
fsmallg|UétaLc = fs,small(-;'Vétazc — Js g|véta.lc =9 g|Uéta.lc'

Moreover, this isomorphism pulled back to R’ via either projection R' — U is the
isomorphism

-1 _ -1
smallg R - fsxs,smallg

Since {U — X} is a covering in the site Xgpaces,étate this means the first displayed
isomorphism descends to an isomorphism ¢ : s;,}m”g — g71G of sheaves (small
detail omitted). The isomorphism is functorial in G since ty and tg are transfor-
mations of functors. Finally, ¢ is compatible with f# and ¢* as ¢y, and ty are (some

details omitted). This finishes the proof of the theorem. O

Rétate — g_1g|R’

étale

tr —1
Retale gsxsg

’
étale

Lemma 26.5. Let X, Y be algebraic spaces over Z. If
(gygu) : (Sh(Xétale)7OX) — (Sh(yétale)on)

is an isomorphism of ringed topoi, then there exists a unique morphism f: X —Y
of algebraic spaces such that (g, g") is isomorphic to (femau, f*) and moreover f is
an isomorphism of algebraic spaces.

Proof. By Theorem it suffices to show that (g, g*) is a morphism of locally
ringed topoi. By Modules on Sites, Lemma m (and since the site Xgqr. has
enough points) it suffices to check that the map Oy, — Ox,, induced by ¢* is a
local ring map where ¢ = fop and p is any point of X¢tqie. As it is an isomorphism
this is clear. |

27. Quasi-coherent sheaves on algebraic spaces

In Descent, Section [7| we have seen that for a scheme U, there is no difference
between a quasi-coherent Opy-module on U, or a quasi-coherent O-module on the
small étale site of U. Hence the following definition is compatible with our original
notion of a quasi-coherent sheaf on a scheme (Schemes, Section , when applied
to a representable algebraic space.

Definition 27.1. Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent O x-module is a quasi-coherent module on the ringed site (Xgtqie, Ox) in
the sense of Modules on Sites, Definition 23.I] The category of quasi-coherent
sheaves on X is denoted QCoh(Ox).


http://localhost:8080/tag/05YZ
http://localhost:8080/tag/03G9

PROPERTIES OF ALGEBRAIC SPACES 49

Note that as being quasi-coherent is an intrinsic notion (see Modules on Sites,
Lemma [23.2)) this is equivalent to saying that the corresponding Ox-module on
Xspaces,étale 1S quasi-coherent.

As usual, quasi-coherent sheaves behave well with respect to pullback.

Lemma 27.2. Let S be a scheme. Let f : X — Y be a morphism of algebraic spaces
over S. The pullback functor f* : Mod(Oy) — Mod(Ox) preserves quasi-coherent
sheaves.

Proof. This is a general fact, see Modules on Sites, Lemma [23.4 O

Note that this pullback functor agrees with the usual pullback functor between
quasi-coherent sheaves of modules if X and Y happen to be schemes, see Descent,
Proposition [7.14] Here is the obligatory lemma comparing this with quasi-coherent
sheaves on the objects of the small étale site of X.

Lemmal 27.3. Let S be a scheme. Let X be an algebraic space over S. A quasi-
coherent O x-module F is given by the following data:

(1) for every U € Ob(Xstaie) a quasi-coherent Oy -module Fy on Ugtaje,
(2) for every f:U" — U in X¢are an isomorphism ¢y = 2 Fu — Fur.

These data are subject to the condition that given any f : U — U and g : U" — U’

in Xetale the composition g;}m”cf ocg 15 equal to Cfog.

Proof. Combine Lemmas P7.2 and B4.3 O

Lemmal 27.4. Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent Ox -module. Let x € |X| be a point and let T be a geometric point
lying over x. Finally, let ¢ : (U,u) — (X, T) be an étale neighbourhood where U is
a scheme. Then

(" Flu ®oy,. Oxz = Fz
where u € U is the image of u.
Proof. Note that Oxz = Olsjhu by Lemma hence the tensor product makes
sense. Moreover, from Definition [16.6| it is clear that
Fz = colim(p*F),

where the colimit is over ¢ : (U,u) — (X,Z) as in the lemma. Hence there is a
canonical map from left to right in the statement of the lemma. We have a similar
colimit description for Ox 7 and by Lemma [27.3 we have

(&) Flu = (¢"Flu @0y, Ovr
whenever (U',u') — (U,w) is a morphism of étale neighbourhoods. To complete

the proof we use that ® commutes with colimits. [

Lemma 27.5. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent Oy -module. Let T be a geometric point of
X and let y = f oT be the image in Y. Then there is a canonical isomorphism

(f*G)z =Gy ®oy5 Oxz

of the stalk of the pullback with the tensor product of the stalk with the local ring of
X at7.
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Proof. Since f*G = f;ma”g ®p-1 oy Ox this follows from the description of
stalks of pullbacks in Lemma @nand the fact that taking stalks commutes with
tensor products. A more direct way to see this is as follows. Choose a commutative
diagram

U—HV

X—2sY
where U and V' are schemes, and p and ¢ are surjective étale. By Lemma [16.4] we

can choose a geometric point @ of U such that T = pou. Set ¥ = a ou. Then we
see that

(f"9)=z P fG)u ROy, Oxz
"¢ G)u @0y, Oxz

“G)v @0y, Ovu @0y, Oxz
7°G)v ®oy., Oxz

=(q"G)w R0y, OY,? R0y Oxz

= (
= (
= (¢
= (

=0y ®oy,; Oxz
Here we have used Lemma (twice) and the corresponding result for pullbacks
of quasi-coherent sheaves on schemes, see Sheaves, Lemma [26.4 ([l

Lemmal 27.6. Let S be a scheme. Let X be an algebraic space over S. Let F be
a sheaf of Ox-modules. The following are equivalent

(1) F is a quasi-coherent Ox -module,

(2) there exists an étale morphism f:Y — X of algebraic spaces over S with
If] : Y| = | X| surjective such that f*F is quasi-coherent on'Y,

(3) there exists a scheme U and a surjective étale morphism ¢ : U — X such
that ©*F is a quasi-coherent Oy -module, and

(4) for every affine scheme U and étale morphism ¢ : U — X the restriction
@*F is a quasi-coherent Oy -module.

Proof. It is clear that (1) implies (2) by considering idx. Assume f:Y — X is
asin (2), and let V' — Y be a surjective étale morphism from a scheme towards Y.
Then the composition V' — X is surjective étale as well and by Lemma the
pullback of F to V is quasi-coherent as well. Hence we see that (2) implies (3).

Let U — X be as in (3). Let us use the abuse of notation introduced in Equation
(24.1.1). As Flu.,,. is quasi-coherent there exists an étale covering {U; — U}
such that F|y, ,,,,. has a global presentation, see Modules on Sites, Deﬁnitionm
and Lemma Let V — X be an object of Xgq1. Since U — X is surjective
and étale, the family of maps {U; xx V — V} is an étale covering of V. Via the
morphisms U; xx V' — U; we can restrict the global presentations of Fly, ,,.,. to
get a global presentation of J:l(Ui % x V)erare Hence the sheaf F on Xgyqe satisfies the
condition of Modules on Sites, Definition and hence is quasi-coherent.

The equivalence of (3) and (4) comes from the fact that any scheme has an affine
open covering. O

Lemmal27.7. Let S be a scheme. Let X be an algebraic space over S. The category
QCohOx) of quasi-coherent sheaves on X has the following properties:
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(1) Any direct sum of quasi-coherent sheaves is quasi-coherent.

(2) Any colimit of quasi-coherent sheaves is quasi-coherent.

(3) The kernel and cokernel of a morphism of quasi-coherent sheaves is quasi-
coherent.

(4) Given a short exact sequence of Ox-modules 0 — F, — Fo — F3 — 0 if
two out of three are quasi-coherent so is the third.

(5) Given two quasi-coherent Ox -modules the tensor product is quasi-coherent.

(6) Given two quasi-coherent Ox-modules F, G such that F is of finite pre-
sentation (see Section @), then the internal hom Homo, (F,G) is quasi-
coherent.

Proof. Note that we have the corresponding result for quasi-coherent modules on
schemes, see Schemes, Section We will reduce the lemma to this case by étale
localization. Choose a scheme U and a surjective étale morphism ¢ : U — X.
In order to formulate this proof correctly, we temporarily go back to making the
(pedantic) distinction between a quasi-coherent sheaf G on the scheme U and the
associated quasi-coherent sheaf G¢ (see Descent, Definition on Ugqie We have
a commutative diagram

QCoh(Ox) — QCoh(Oy)

i l

Mod(Ox) ——— Mod(Oy)

The bottom horizontal arrow is the restriction functor G+~ Glu,,...- This
functor has both a left adjoint and a right adjoint, see Modules on Sites, Section
hence commutes with all limits and colimits. Moreover, we know that an object
of Mod(Ox) is in QCoh(Ox) if and only if its restriction to U is in QCoh(Oy), see
Lemma, Let F; be a family of quasi-coherent O x-modules. Then € F; is an
Ox-module whose restriction to U is the direct sum of the restrictions. Let G; be a
quasi-coherent sheaf on U with F;|y, = G{. Combining the above with Descent,
Lemma [7.13] we see that

(DF) e = D Filv. =B = (PG:)

hence @ F; is quasi-coherent and (1) follows. The other statements are proved just
so (using the same references). O

étale

It is in general not the case that the pushforward of a quasi-coherent sheaf along
a morphism of algebraic spaces is quasi-coherent. We will return to this issue in
Morphisms of Spaces, Section

28. Properties of modules

In Modules on Sites, Sections and Definition [28.1] we have defined a number
of intrinsic properties of modules of O-module on any ringed topos. If X is an
algebraic space, we will apply these notions freely to modules on the ringed site
(Xeétate, Ox), or equivalently on the ringed site (Xspaces,étates Ox)-

Global properties P:

(a) free,
(b) finite free,
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(¢) generated by global sections,

(d) generated by finitely many global sections,
(e) having a global presentation, and

(f) having a global finite presentation.

Local properties P:

(g) locally free,
(f) finite locally free,

)

(h) locally generated by sections,
(i) locally generated by r sections,
(j) finite type,

(k) quasi-coherent (see Section [27)),
(1) of finite presentation,

(m) coherent, and

(n) flat.

Here are some results which follow immediately from the definitions:

a

(1) In each case, except for P =“coherent”, the property is preserved under
pullback, see Modules on Sites, Lemmas [17.2] 23.4] and [38.3]

(2) Each of the properties above (including coherent) are preserved under pull-
backs by étale morphisms of algebraic spaces (because in this case pullback
is given by restriction, see Lemma .

(3) Assume f:Y — X is a surjective étale morphism of algebraic spaces. For
each of the local properties (g) — (m), the fact that f*F has P implies
that F has P. This follows as {Y — X} is a covering in X psces,étate annd
Modules on Sites, Lemma [23.3

(4) If X is a scheme, F is a quasi-coherent module on Xgtq., and P any
property except “coherent” or “locally free”, then P for F on Xgtqre is
equivalent to the corresponding property for F|x,.,., i.e., it corresponds to
P for F when we think of it as a quasi-coherent sheaf on the scheme X.
See Descent, Lemma [7.12]

(5) If X is a locally Noetherian scheme, F is a quasi-coherent module on X¢zqic,
then F is coherent on Xgtqe if and only if F|x,,. is coherent, i.e., it cor-
responds to the usual notion of a coherent sheaf on the scheme X being
coherent. See Descent, Lemma [7.12]

29. Locally projective modules

Recall that in Properties, Section we defined the notion of a locally projective
quasi-coherent module.

Lemma) 29.1. Let S be a scheme. Let X be an algebraic space over S. Let F be
a quasi-coherent Ox-module. The following are equivalent

(1) for some scheme U and surjective étale morphism U — X the restriction
Flu is locally projective on U, and

(2) for any scheme U and any étale morphism U — X the restriction F|y is
locally projective on U.

Proof. Let U — X be asin (1) and let V' — X be étale where V is a scheme. Then
{U xx V — V} is an fppf covering of schemes. Hence if F|y is locally projective,
then F|yx v is locally projective (see Properties, Lemma and hence Fly is
locally projective, see Descent, Lemma [6.7] (]
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Definition 29.2. Let S be a scheme. Let X be an algebraic space over S. Let
F be a quasi-coherent O x-module. We say F is locally projective if the equivalent
conditions of Lemma 29.7] are satisfied.

Lemma 29.3. Let S be a scheme. Let f : X — Y be a morphism of algebraic
spaces over S. Let G be a quasi-coherent Oy -module. If G is locally projective on
Y, then f*G is locally projective on X.

Proof. Choose a surjective étale morphism V' — Y with V a scheme. Choose a
surjective étale morphism U — V Xy X with U a scheme. Denote ¥ : U — V the
induced morphism. Then

f*Glu =" (Glv)
Hence the lemma follows from the definition and the result in the case of schemes,
see Properties, Lemma [19.3 (]

30. Quasi-coherent sheaves and presentations

Let S be a scheme. Let X be an algebraic space over S. Let X = U/R be a
presentation of X coming from any surjective étale morphism ¢ : U — X, see
Spaces, Definition In particular, we obtain a groupoid (U, R, s,t, c), such that
j=(t,s): R— UxgU, see Groupoids, Lemma[11.3] In Groupoids, Definition[12.1]
we have the defined the notion of a quasi-coherent sheaf on an arbitrary groupoid.
With these notions in place we have the following observation.

Proposition|30.1. With S, ¢ : U — X, and (U, R, s,t,¢) as above. For any quasi-
coherent O x -module F the sheaf o*F comes equipped with a canonical isomorphism

a:t" o' F — s " F
which satisfies the conditions of Groupoids, Definition and therefore defines

a quasi-coherent sheaf on (U, R,s,t,c). The functor F — (©*F,«) defines an
equivalence of categories

Quasi-coherent Quasi-coherent modules
Ox -modules on (U, R, s,t,c)

Proof. In the statement of the proposition, and in this proof we think of a quasi-
coherent sheaf on a scheme as a quasi-coherent sheaf on the small étale site of that
scheme. This is permissible by the results of Descent, Section

The existence of a comes from the fact that ¢ ot = ¢ o s and that pullback
is functorial in the morphism, see discussion surrounding Equation . In
exactly the same way, i.e., by functoriality of pullback, we see that the isomorphism
« satisfies condition (1) of Groupoids, Definition To see condition (2) of the
definition it suffices to see that « is an isomorphism which is clear. The construction
F = (p*F, ) is clearly functorial in the quasi-coherent sheaf F. Hence we obtain
the functor from left to right in the displayed formula of the lemma.

Conversely, suppose that (F,«) is a quasi-coherent sheaf on (U, R,s,t,c). Let
V — X be an object of X¢iae. In this case the morphism V! =U xx V — Vis a
surjective étale morphism of schemes, and hence {V' — V'} is an étale covering of
V. Moreover, the quasi-coherent sheaf F pulls back to a quasi-coherent sheaf ' on
V'. Since R =U xx U with t = pry and s = pry we see that V! xy V' = Rxx V
with projection maps V' xy V! — V' equal to the pullbacks of ¢ and s. Hence
a pulls back to an isomorphism o : pr§F’ — priF’, and the pair (F',a/) is a
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descend datum for quasi-coherent sheaves with respect to {V’ — V'}. By Descent,
Proposition this descent datum is effective, and we obtain a quasi-coherent
Oy-module Fy on Vggge. To see that this gives a quasi-coherent sheaf on Xgqe
we have to show (by Lemma that for any morphism f : V3 — Vo in Xgae
there is a canonical isomorphism c; : Fy, — Fy, compatible with compositions
of morphisms. We omit the verification. We also omit the verification that this
defines a functor from the category on the right to the category on the left which
is inverse to the functor described above. (]

Proposition| 30.2. Let S be a scheme Let X be an algebraic space over S.

(1) The category QCoh(Ox) is a Grothendieck abelian category. Consequently,
QCoh(Ox) has enough injectives and all limits.
(2) The inclusion functor QCoh(Ox) — Mod(Ox) has a right adjoz’mﬁ

Q : Mod(Ox) — QCoh(Ox)

such that for every quasi-coherent sheaf F the adjunction mapping Q(F) —
F is an isomorphism.

Proof. This proof is a repeat of the proof in the case of schemes, see Properties,
Proposition We advise the reader to read that proof first.

Part (1) means QCoh(Ox) (a) has all colimits, (b) filtered colimits are exact, and (c)
has a generator, see Injectives, Section By Lemma colimits in QCoh(Ox)
exist and agree with colimits in Mod(Ox). By Modules on Sites, Lemma [14.2]
filtered colimits are exact. Hence (a) and (b) hold.

To construct a generator, choose a presentation X = U/R so that (U, R, s,t,c) is
an étale groupoid scheme and in particular s and ¢ are flat morphisms of schemes.
Pick a cardinal £ as in Groupoids, Lemma [13.6] Pick a collection (€, o)ier of
k-generated quasi-coherent modules on (U, R, s,t,¢) as in Groupoids, Lemmam
Let F; be the quasi-coherent module on X which corresponds to the quasi-coherent
module (&, a;) via the equivalence of categories of Proposition Then we see
that every quasi-coherent module H is the directed colimit of its quasi-coherent
submodules which are isomorphic to one of the F;. Thus €, F; is a generator of
QCoh(Ox) and we conclude that (c) holds. The assertions on limits and injectives
hold in any Grothendieck abelian category, see Injectives, Theorem|[11.6|and Lemma
13.2]

Proof of (2). To construct ) we use the following general procedure. Given an
object F of Mod(Ox) we consider the functor

QCoh(Ox)°PP — Sets, G +— Homx (G, F)

This functor transforms colimits into limits, hence is representable, see Injectives,
Lemma Thus there exists a quasi-coherent sheaf Q(F) and a functorial iso-
morphism Homx (G, F) = Homx (G, Q(F)) for G in QCoh(Ox). By the Yoneda
lemma (Categories, Lemma [3.5) the construction F ~ Q(F) is functorial in F. By
construction @ is a right adjoint to the inclusion functor. The fact that Q(F) — F
is an isomorphism when F is quasi-coherent is a formal consequence of the fact
that the inclusion functor QCoh(Ox) — Mod(Ox) is fully faithful. O

8This functor is sometimes called the coherator.
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31. Morphisms towards schemes
Here is the analogue of Schemes, Lemma [6.4]

Lemmal 31.1. Let X be an algebraic space over Z. Let T be an affine scheme.
The map
Mor(X,T) — Hom(I'(T, Or),T'(X, Ox))

which maps f to f* (on global sections) is bijective.

Proof. We construct the inverse of the map. Let ¢ : T'(T, Or) — I'(X,Ox) be a
ring map. Choose a presentation X = U/R, see Spaces, Deﬁnition By Schemes,
Lemma [6.4] the composition

F(T, OT) — F(X, Ox) — F(U, OU)

corresponds to a unique morphism of schemes g : U — T'. By the same lemma the
two compositions R — U — T are equal. Hence we obtain a morphism f : X =
U/R — T such that U — X — T equals g. By construction the diagram

F(U, OU) <f7” F(X, Ox)

N

INT, Or)

commutes. Hence ff equals ¢ because U — X is an étale covering and Ox is a
sheaf on Xg¢q1e. The uniqueness of f follows from the uniqueness of g. O

32. Quotients by free actions

Let S be a scheme. Let X be an algebraic space over S. Let G be an abstract
group. Let a : G — Aut(X) be a homomorphism, i.e., a is an action of G on X.
We will say the action is free if for every scheme T over S the map

Gx X(T)— X(T)

is free. (We cannot use a criterion as in Spaces, Lemma because points may
not have well defined residue fields.) In case the action is free we're going to
construct the quotient X/G as an algebraic space. This is a special case of the
general Bootstrap, Lemma that we will prove later.

Lemma 32.1. Let S be a scheme. Let X be an algebraic space over S. Let G
be an abstract group with a free action on X. Then the quotient sheaf X/G is an
algebraic space.

Proof. The statement means that the sheaf F' associated to the presheaf
T— X(T)/G

is an algebraic space. To see this we will construct a presentation. Namely, choose
a scheme U and a surjective étale morphism ¢ : U — X. Set V = ngG U and set
¥V — X equal to a(g) o ¢ on the component corresponding to g € G. Let G act
on V by permuting the components, i.e., go € G maps the component corresponding
to g to the component corresponding to ggg via the identity morphism of U. Then
1 is a G-equivariant morphism, i.e., we reduce to the case dealt with in the next
paragraph.
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Assume that there exists a G-action on U and that U — X is surjective, étale
and G-equivariant. In this case there is an induced action of G on R = U xx U
compatible with the projection mappings ¢,s : R — U. Now we claim that

X/G=U/ ngc R
where the map
il B —UxsU

is given by (r, g) — (t(r), g(s(r))). Note that j is a monomorphism: If (¢(r), g(s(r))) =
(t(r"), g’ (s(r"))), then t(r) = t(r'), hence r and r’ have the same image in X under
both s and ¢, hence g = ¢’ (as G acts freely on X), hence s(r) = s(r’), hence r = ¢’/
(as R is an equivalence relation on U). Moreover j is an equivalence relation (de-
tails omitted). Both projections ngG R — U are étale, as s and ¢ are étale. Thus
j is an étale equivalence relation and U/[] e R is an algebraic space by Spaces,
Theorem [I0.5] There is a map

U/ ngG R— X/G

induced by the map U — X. We omit the proof that it is an isomorphism of
sheaves. O
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