
DECENT ALGEBRAIC SPACES

Contents

1. Introduction 1
2. Conventions 1
3. Universally bounded fibres 2
4. Finiteness conditions and points 4
5. Conditions on algebraic spaces 8
6. Reasonable and decent algebraic spaces 11
7. Points and specializations 14
8. Stratifying algebraic spaces by schemes 15
9. Schematic locus 18
10. Points on spaces 19
11. Reduced singleton spaces 21
12. Decent spaces 24
13. Locally separated spaces 25
14. Valuative criterion 27
15. Relative conditions 30
16. Points of fibres 34
17. Monomorphisms 38
18. Birational morphisms 39
19. Other chapters 39
References 41

1. Introduction

In this chapter we talk study “local” properties of general algebraic spaces, i.e.,
those algebraic spaces which aren’t quasi-separated. Quasi-separated algebraic
spaces are studied in [Knu71]. It turns out that essentially new phenomena happen,
especially regarding points and specializations of points, on more general algebraic
spaces. On the other hand, for most basic results on algebraic spaces, one needn’t
worry about these phenomena, which is why we have decided to have this material
in a separate chapter following the standard development of the theory.

2. Conventions

The standing assumption is that all schemes are contained in a big fppf site Schfppf .
And all rings A considered have the property that Spec(A) is (isomorphic) to an
object of this big site.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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Let S be a scheme and let X be an algebraic space over S. In this chapter and the
following we will write X ×S X for the product of X with itself (in the category of
algebraic spaces over S), instead of X ×X.

3. Universally bounded fibres

We briefly discuss what it means for a morphism from a scheme to an algebraic
space to have universally bounded fibres. Please refer to Morphisms, Section 50 for
similar definitions and results on morphisms of schemes.

Definition 3.1. Let S be a scheme. Let X be an algebraic space over S, and let
U be a scheme over S. Let f : U → X be a morphism over S. We say the fibres
of f are universally bounded1 if there exists an integer n such that for all fields k
and all morphisms Spec(k)→ X the fibre product Spec(k)×X U is a finite scheme
over k whose degree over k is ≤ n.

This definition makes sense because the fibre product Spec(k) ×Y X is a scheme.
Moreover, if Y is a scheme we recover the notion of Morphisms, Definition 50.1 by
virtue of Morphisms, Lemma 50.2.

Lemma 3.2. Let S be a scheme. Let X be an algebraic space over S. Let V → U
be a morphism of schemes over S, and let U → X be a morphism from U to X. If
the fibres of V → U and U → X are universally bounded, then so are the fibres of
V → X.

Proof. Let n be an integer which works for V → U , and let m be an integer which
works for U → X in Definition 3.1. Let Spec(k)→ X be a morphism, where k is a
field. Consider the morphisms

Spec(k)×X V −→ Spec(k)×X U −→ Spec(k).

By assumption the scheme Spec(k)×X U is finite of degree at most m over k, and n
is an integer which bounds the degree of the fibres of the first morphism. Hence by
Morphisms, Lemma 50.3 we conclude that Spec(k)×X V is finite over k of degree
at most nm. �

Lemma 3.3. Let S be a scheme. Let Y → X be a representable morphism of
algebraic spaces over S. Let U → X be a morphism from a scheme to X. If the
fibres of U → X are universally bounded, then the fibres of U ×X Y → Y are
universally bounded.

Proof. This is clear from the definition, and properties of fibre products. (Note
that U ×X Y is a scheme as we assumed Y → X representable, so the definition
applies.) �

Lemma 3.4. Let S be a scheme. Let g : Y → X be a representable morphism of
algebraic spaces over S. Let f : U → X be a morphism from a scheme towards X.
Let f ′ : U ×X Y → Y be the base change of f . If

Im(|f | : |U | → |X|) ⊂ Im(|g| : |Y | → |X|)

and f ′ has universally bounded fibres, then f has universally bounded fibres.

1This is probably nonstandard notation.
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Proof. Let n ≥ 0 be an integer bounding the degrees of the fibre products Spec(k)×Y
(U ×X Y ) as in Definition 3.1 for the morphism f ′. We claim that n works for f
also. Namely, suppose that x : Spec(k) → X is a morphism from the spectrum of
a field. Then either Spec(k) ×X U is empty (and there is nothing to prove), or x
is in the image of |f |. By Properties of Spaces, Lemma 4.3 and the assumption
of the lemma we see that this means there exists a field extension k ⊂ k′ and a
commutative diagram

Spec(k′) //

��

Y

��
Spec(k) // X

Hence we see that

Spec(k′)×Y (U ×X Y ) = Spec(k′)×Spec(k) (Spec(k)×X U)

Since the scheme Spec(k′) ×Y (U ×X Y ) is assumed finite of degree ≤ n over k′

it follows that also Spec(k) ×X U is finite of degree ≤ n over k as desired. (Some
details omitted.) �

Lemma 3.5. Let S be a scheme. Let X be an algebraic space over S. Consider a
commutative diagram

U

g   

f
// V

h~~
X

where U and V are schemes. If g has universally bounded fibres, and f is surjective
and flat, then also h has universally bounded fibres.

Proof. Assume g has universally bounded fibres, and f is surjective and flat. Say
n ≥ 0 is an integer which bounds the degrees of the schemes Spec(k) ×X U as in
Definition 3.1. We claim n also works for h. Let Spec(k)→ X be a morphism from
the spectrum of a field to X. Consider the morphism of schemes

Spec(k)×X V −→ Spec(k)×X U

It is flat and surjective. By assumption the scheme on the left is finite of degree
≤ n over Spec(k). It follows from Morphisms, Lemma 50.9 that the degree of the
scheme on the right is also bounded by n as desired. �

Lemma 3.6. Let S be a scheme. Let X be an algebraic space over S, and let U
be a scheme over S. Let ϕ : U → X be a morphism over S. If the fibres of ϕ are
universally bounded, then there exists an integer n such that each fibre of |U | → |X|
has at most n elements.

Proof. The integer n of Definition 3.1 works. Namely, pick x ∈ |X|. Represent x
by a morphism x : Spec(k)→ X. Then we get a commutative diagram

Spec(k)×X U //

��

U

��
Spec(k)

x // X

http://localhost:8080/tag/03JP
http://localhost:8080/tag/03JQ
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which shows (via Properties of Spaces, Lemma 4.3) that the inverse image of x in
|U | is the image of the top horizontal arrow. Since Spec(k)×X U is finite of degree
≤ n over k it has at most n points. �

4. Finiteness conditions and points

In this section we elaborate on the question of when points can be represented by
monomorphisms from spectra of fields into the space.

Remark 4.1. Before we give the proof of the next lemma let us recall some facts
about étale morphisms of schemes:

(1) An étale morphism is flat and hence generalizations lift along an étale
morphism (Morphisms, Lemmas 37.12 and 26.8).

(2) An étale morphism is unramified, an unramified morphism is locally quasi-
finite, hence fibres are discrete (Morphisms, Lemmas 37.16, 36.10, and
21.6).

(3) A quasi-compact étale morphism is quasi-finite and in particular has finite
fibres (Morphisms, Lemmas 21.9 and 21.10).

(4) An étale scheme over a field k is a disjoint union of spectra of finite separable
field extension of k (Morphisms, Lemma 37.7).

For a general discussion of étale morphisms, please see Étale Morphisms, Section
11.

Lemma 4.2. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) there exists a family of schemes Ui and étale morphisms ϕi : Ui → X such
that

∐
ϕi :

∐
Ui → X is surjective, and such that for each i the fibre of

|Ui| → |X| over x is finite, and
(2) for every affine scheme U and étale morphism ϕ : U → X the fibre of
|U | → |X| over x is finite.

Proof. The implication (2) ⇒ (1) is trivial. Let ϕi : Ui → X be a family of étale
morphisms as in (1). Let ϕ : U → X be an étale morphism from an affine scheme
towards X. Consider the fibre product diagrams

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ϕ // X

∐
U ×X Ui ∐

pi

//

∐
qi

��

∐
Ui∐

ϕi

��
U

ϕ // X

Since qi is étale it is open (see Remark 4.1). Moreover, the morphism
∐
qi is

surjective. Hence there exist finitely many indices i1, . . . , in and a quasi-compact
opens Wij ⊂ U ×X Uij which surject onto U . The morphism pi is étale, hence
locally quasi-finite (see remark on étale morphisms above). Thus we may apply
Morphisms, Lemma 50.8 to see the fibres of pij |Wij

: Wij → Ui are finite. Hence by

Properties of Spaces, Lemma 4.3 and the assumption on ϕi we conclude that the
fibre of ϕ over x is finite. In other words (2) holds. �

Lemma 4.3. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

http://localhost:8080/tag/03II
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(1) there exists a scheme U , an étale morphism ϕ : U → X, and points u, u′ ∈
U mapping to x such that setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(2) for every scheme U , étale morphism ϕ : U → X and any points u, u′ ∈ U
mapping to x setting R = U ×X U the fibre of

|R| → |U | ×|X| |U |
over (u, u′) is finite,

(3) there exists a morphism Spec(k)→ X with k a field in the equivalence class
of x such that the projections Spec(k)×X Spec(k)→ Spec(k) are étale and
quasi-compact, and

(4) there exists a monomorphism Spec(k)→ X with k a field in the equivalence
class of x.

Proof. Assume (1), i.e., let ϕ : U → X be an étale morphism from a scheme
towards X, and let u, u′ be points of U lying over x such that the fibre of |R| →
|U | ×|X| |U | over (u, u′) is a finite set. In this proof we think of a point u =
Spec(κ(u)) as a scheme. Note that u → U , u′ → U are monomorphisms (see
Schemes, Lemma 23.6), hence u×X u′ → R = U ×X U is a monomorphism. In this
language the assumption really means that u ×X u′ is a scheme whose underlying
topological space has finitely many points. Let ψ : W → X be an étale morphism
from a scheme towards X. Let w,w′ ∈ W be points of W mapping to x. We have
to show that w ×X w′ is a scheme whose underlying topological space has finitely
many points. Consider the fibre product diagram

W ×X U
p

//

q

��

U

ϕ

��
W

ψ // X

As x is the image of u and u′ we may pick points w̃, w̃′ in W ×X U with q(w̃) = w,
q(w̃′) = w′, u = p(w̃) and u′ = p(w̃′), see Properties of Spaces, Lemma 4.3. As p,
q are étale the field extensions κ(w) ⊂ κ(w̃) ⊃ κ(u) and κ(w′) ⊂ κ(w̃′) ⊃ κ(u′) are
finite separable, see Remark 4.1. Then we get a commutative diagram

w ×X w′

��

w̃ ×X w̃′oo

��

// u×X u′

��
w ×X w′ w̃ ×S w̃′oo // u×S u′

where the squares are fibre product squares. The lower horizontal morphisms are
étale and quasi-compact, as any scheme of the form Spec(k) ×S Spec(k′) is affine,
and by our observations about the field extensions above. Thus we see that the
top horizontal arrows are étale and quasi-compact and hence have finite fibres. We
have seen above that |u×X u′| is finite, so we conclude that |w ×X w′| is finite. In
other words, (2) holds.

Assume (2). Let U → X be an étale morphism from a scheme U such that x is in
the image of |U | → |X|. Let u ∈ U be a point mapping to x. Then we have seen
in the previous paragraph that u = Spec(κ(u))→ X has the property that u×X u
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has a finite underlying topological space. On the other hand, the projection maps
u×X u→ u are the composition

u×X u −→ u×X U −→ u×X X = u,

i.e., the composition of a monomorphism (the base change of the monomorphism
u → U) by an étale morphism (the base change of the étale morphism U → X).
Hence u×X U is a disjoint union of spectra of fields finite separable over κ(u) (see
Remark 4.1). Since u ×X u is finite the image of it in u ×X U is a finite disjoint
union of spectra of fields finite separable over κ(u). By Schemes, Lemma 23.10 we
conclude that u ×X u is a finite disjoint union of spectra of fields finite separable
over κ(u). In other words, we see that u ×X u → u is quasi-compact and étale.
This means that (3) holds.

Let us prove that (3) implies (4). Let Spec(k) → X be a morphism from the
spectrum of a field into X, in the equivalence class of x such that the two projections
t, s : R = Spec(k)×X Spec(k)→ Spec(k) are quasi-compact and étale. This means
in particular that R is an étale equivalence relation on Spec(k). By Spaces, Theorem
10.5 we know that the quotient sheaf X ′ = Spec(k)/R is an algebraic space. By
Groupoids, Lemma 18.6 the map X ′ → X is a monomorphism. Since s, t are quasi-
compact, we see that R is quasi-compact and hence Properties of Spaces, Lemma
12.1 applies to X ′, and we see that X ′ = Spec(k′) for some field k′. Hence we get
a factorization

Spec(k) −→ Spec(k′) −→ X

which shows that Spec(k′)→ X is a monomorphism mapping to x ∈ |X|. In other
words (4) holds.

Finally, we prove that (4) implies (1). Let Spec(k)→ X be a monomorphism with k
a field in the equivalence class of x. Let U → X be a surjective étale morphism from
a scheme U to X. Let u ∈ U be a point over x. Since Spec(k) ×X u is nonempty,
and since Spec(k)×X u→ u is a monomorphism we conclude that Spec(k)×X u = u
(see Schemes, Lemma 23.10). Hence u → U → X factors through Spec(k) → X,
here is a picture

u //

��

U

��
Spec(k) // X

Since the right vertical arrow is étale this implies that k ⊂ κ(u) is a finite separable
extension. Hence we conclude that

u×X u = u×Spec(k) u

is a finite scheme, and we win by the discussion of the meaning of property (1) in
the first paragraph of this proof. �

Lemma 4.4. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
Let U be a scheme and let ϕ : U → X be an étale morphism. The following are
equivalent:

(1) x is in the image of |U | → |X|, and setting R = U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

http://localhost:8080/tag/040U
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(2) there exists a monomorphism Spec(k)→ X with k a field in the equivalence
class of x, and the fibre product Spec(k)×X U is a finite nonempty scheme
over k.

Proof. Assume (1). This clearly implies the first condition of Lemma 4.3 and
hence we obtain a monomorphism Spec(k)→ X in the class of x. Taking the fibre
product we see that Spec(k)×X U → Spec(k) is a scheme étale over Spec(k) with
finitely many points, hence a finite nonempty scheme over k, i.e., (2) holds.

Assume (2). By assumption x is in the image of |U | → |X|. The finiteness of the
fibre of |U | → |X| over x is clear since this fibre is equal to |Spec(k) ×X U | by
Properties of Spaces, Lemma 4.3. The finiteness of the fibre of |R| → |X| above x
is also clear since it is equal to the set underlying the scheme

(Spec(k)×X U)×Spec(k) (Spec(k)×X U)

which is finite over k. Thus (1) holds. �

Lemma 4.5. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
The following are equivalent:

(1) for every affine scheme U , any étale morphism ϕ : U → X setting R =
U ×X U the fibres of both

|U | −→ |X| and |R| −→ |X|
over x are finite,

(2) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and for each i, setting Ri = Ui ×X Ui the fibres of both

|Ui| −→ |X| and |Ri| −→ |X|
over x are finite,

(3) there exists a monomorphism Spec(k)→ X with k a field in the equivalence
class of x, and for any affine scheme U and étale morphism U → X the
fibre product Spec(k)×X U is a finite scheme over k, and

(4) there exists a quasi-compact monomorphism Spec(k)→ X with k a field in
the equivalence class of x.

Proof. The equivalence of (1) and (3) follows on applying Lemma 4.4 to every étale
morphism U → X with U affine. It is clear that (3) implies (2). Assume Ui → X
and Ri are as in (2). We conclude from Lemma 4.2 that for any affine scheme U
and étale morphism U → X the fibre of |U | → |X| over x is finite. Say this fibre is
{u1, . . . , un}. Then, as Lemma 4.3 (1) applies to Ui → X for some i such that x is
in the image of |Ui| → |X|, we see that the fibre of |R = U ×X U | → |U | ×|X| |U | is
finite over (ua, ub), a, b ∈ {1, . . . , n}. Hence the fibre of |R| → |X| over x is finite.
In this way we see that (1) holds. At this point we know that (1), (2), and (3) are
equivalent.

If (4) holds, then for any affine scheme U and étale morphism U → X the scheme
Spec(k) ×X U is on the one hand étale over k (hence a disjoint union of spectra
of finite separable extensions of k by Remark 4.1) and on the other hand quasi-
compact over U (hence quasi-compact). Thus we see that (3) holds. Conversely, if
Ui → X is as in (2) and Spec(k)→ X is a monomorphism as in (3), then∐

Spec(k)×X Ui −→
∐

Ui

http://localhost:8080/tag/03JV
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is quasi-compact (because over each Ui we see that Spec(k)×X Ui is a finite disjoint
union spectra of fields). Thus Spec(k) → X is quasi-compact by Morphisms of
Spaces, Lemma 8.7. �

Lemma 4.6. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exist schemes Ui and étale morphisms Ui → X such that
∐
Ui → X

is surjective and each Ui → X has universally bounded fibres, and
(2) for every affine scheme U and étale morphism ϕ : U → X the fibres of

U → X are universally bounded.

Proof. The implication (2) ⇒ (1) is trivial. Assume (1). Let (ϕi : Ui → X)i∈I
be a collection of étale morphisms from schemes towards X, covering X, such that
each ϕi has universally bounded fibres. Let ψ : U → X be an étale morphism from
an affine scheme towards X. For each i consider the fibre product diagram

U ×X Ui pi
//

qi

��

Ui

ϕi

��
U

ψ // X

Since qi is étale it is open (see Remark 4.1). Moreover, we have U =
⋃

Im(qi),
since the family (ϕi)i∈I is surjective. Since U is affine, hence quasi-compact we
can finite finitely many i1, . . . , in ∈ I and quasi-compact opens Wj ⊂ U ×X Uij
such that U =

⋃
pij (Wj). The morphism pij is étale, hence locally quasi-finite

(see remark on étale morphisms above). Thus we may apply Morphisms, Lemma
50.8 to see the fibres of pij |Wj : Wj → Uij are universally bounded. Hence by
Lemma 3.2 we see that the fibres of Wj → X are universally bounded. Thus also∐
j=1,...,nWj → X has universally bounded fibres. Since

∐
j=1,...,nWj → X factors

through the surjective étale map
∐
qij |Wj

:
∐
j=1,...,nWj → U we see that the fibres

of U → X are universally bounded by Lemma 3.5. In other words (2) holds. �

Lemma 4.7. Let S be a scheme. Let X be an algebraic space over S. The following
are equivalent:

(1) there exists a Zariski covering X =
⋃
Xi and for each i a scheme Ui and a

quasi-compact surjective étale morphism Ui → Xi, and
(2) there exist schemes Ui and étale morphisms Ui → X such that the projec-

tions Ui ×X Ui → Ui are quasi-compact and
∐
Ui → X is surjective.

Proof. If (1) holds then the morphisms Ui → Xi → X are étale (combine Mor-
phisms, Lemma 37.3 and Spaces, Lemmas 5.4 and 5.3 ). Moreover, as Ui ×X Ui =
Ui ×Xi

Ui, both projections Ui ×X Ui → Ui are quasi-compact.

If (2) holds then let Xi ⊂ X be the open subspace corresponding to the image of
the open map |Ui| → |X|, see Properties of Spaces, Lemma 4.10. The morphisms
Ui → Xi are surjective. Hence Ui → Xi is surjective étale, and the projections
Ui×Xi Ui → Ui are quasi-compact, because Ui×Xi Ui = Ui×X Ui. Thus by Spaces,
Lemma 11.2 the morphisms Ui → Xi are quasi-compact. �

http://localhost:8080/tag/03JT
http://localhost:8080/tag/03IH
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5. Conditions on algebraic spaces

In this section we discuss the relationship between various natural conditions on
algebraic spaces we have seen above. Please read Section 6 to get a feeling for the
meaning of these conditions.

Lemma 5.1. Let S be a scheme. Let X be an algebraic space over S. Consider
the following conditions on X:

(α) For every x ∈ |X|, the equivalent conditions of Lemma 4.2 hold.
(β) For every x ∈ |X|, the equivalent conditions of Lemma 4.3 hold.
(γ) For every x ∈ |X|, the equivalent conditions of Lemma 4.5 hold.
(δ) The equivalent conditions of Lemma 4.6 hold.
(ε) The equivalent conditions of Lemma 4.7 hold.
(ζ) The space X is Zariski locally quasi-separated.
(η) The space X is quasi-separated
(θ) The space X is representable, i.e., X is a scheme.
(ι) The space X is a quasi-separated scheme.

We have

(θ)

�$
(ι)

:B

�$

(ζ) +3 (ε) +3 (δ) +3 (γ) ks +3 (α) + (β)

(η)

:B

Proof. The implication (γ) ⇔ (α) + (β) is immediate. The implications in the
diamond on the left are clear from the definitions.

Assume (ζ), i.e., that X is Zariski locally quasi-separated. Then (ε) holds by
Properties of Spaces, Lemma 6.6.

Assume (ε). By Lemma 4.7 there exists a Zariski open covering X =
⋃
Xi such that

for each i there exists a scheme Ui and a quasi-compact surjective étale morphism
Ui → Xi. Choose an i and an affine open subscheme W ⊂ Ui. It suffices to show
that W → X has universally bounded fibres, since then the family of all these
morphisms W → X covers X. To do this we consider the diagram

W ×X Ui p
//

q

��

Ui

��
W // X

Since W → X factors through Xi we see that W ×X Ui = W ×Xi Ui, and hence
q is quasi-compact. Since W is affine this implies that the scheme W ×X Ui is
quasi-compact. Thus we may apply Morphisms, Lemma 50.8 and we conclude that
p has universally bounded fibres. From Lemma 3.4 we conclude that W → X has
universally bounded fibres as well.

Assume (δ). Let U be an affine scheme, and let U → X be an étale morphism.
By assumption the fibres of the morphism U → X are universally bounded. Thus
also the fibres of both projections R = U ×X U → U are universally bounded, see

http://localhost:8080/tag/03JX
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Lemma 3.3. And by Lemma 3.2 also the fibres of R→ X are universally bounded.
Hence for any x ∈ X the fibres of |U | → |X| and |R| → |X| over x are finite, see
Lemma 3.6. In other words, the equivalent conditions of Lemma 4.5 hold. This
proves that (δ)⇒ (γ). �

Lemma 5.2. Let S be a scheme. Let P be one of the properties (α), (β), (γ), (δ),
(ε), (ζ), or (θ) of algebraic spaces listed in Lemma 5.1. Then if X is an algebraic
space over S, and X =

⋃
Xi is a Zariski open covering such that each Xi has P,

then X has P.

Proof. Let X be an algebraic space over S, and let X =
⋃
Xi is a Zariski open

covering such that each Xi has P.

The case P = (α). The condition (α) for Xi means that for every x ∈ |Xi| and
every affine scheme U , and étale morphism ϕ : U → Xi the fibre of ϕ : |U | → |Xi|
over x is finite. Consider x ∈ X, an affine scheme U and an étale morphism U → X.
Since X =

⋃
Xi is a Zariski open covering there exits a finite affine open covering

U = U1∪ . . .∪Un such that each Uj → X factors through some Xij . By assumption
the fibres of |Uj | → |Xij | over x are finite for j = 1, . . . , n. Clearly this means that
the fibre of |U | → |X| over x is finite. This proves the result for (α).

The case P = (β). The condition (β) forXi means that every x ∈ |Xi| is represented
by a monomorphism from the spectrum of a field towards Xi. Hence the same
follows for X as Xi → X is a monomorphism and X =

⋃
Xi.

The case P = (γ). Note that (γ) = (α) + (β) by Lemma 5.1 hence the lemma for
(γ) follows from the cases treated above.

The case P = (δ). The condition (δ) for Xi means there exist schemes Uij and
étale morphisms Uij → Xi with universally bounded fibres which cover Xi. These
schemes also give an étale surjective morphism

∐
Uij → X and Uij → X still has

universally bounded fibres.

The case P = (ε). The condition (ε) for Xi means we can find a set Ji and
morphisms ϕij : Uij → Xi such that each ϕij is étale, both projections Uij ×Xi

Uij → Uij are quasi-compact, and
∐
j∈Ji Uij → Xi is surjective. In this case the

compositions Uij → Xi → X are étale (combine Morphisms, Lemmas 37.3 and
37.9 and Spaces, Lemmas 5.4 and 5.3 ). Since Xi ⊂ X is a subspace we see that
Uij ×Xi Uij = Uij ×X Uij , and hence the condition on fibre products is preserved.
And clearly

∐
i,j Uij → X is surjective. Hence X satisfies (ε).

The case P = (ζ). The condition (ζ) for Xi means that Xi is Zariski locally
quasi-separated. It is immediately clear that this means X is Zariski locally quasi-
separated.

For (θ), see Properties of Spaces, Lemma 10.1. �

Lemma 5.3. Let S be a scheme. Let P be one of the properties (β), (γ), (δ), (ε),
or (θ) of algebraic spaces listed in Lemma 5.1. Let X, Y be algebraic spaces over
S. Let X → Y be a representable morphism. If Y has property P, so does X.

Proof. Assume f : X → Y is a representable morphism of algebraic spaces, and
assume that Y has P. Let x ∈ |X|, and set y = f(x) ∈ |Y |.
The case P = (β). Condition (β) for Y means there exists a monomorphism
Spec(k) → Y representing y. The fibre product Xy = Spec(k) ×Y X is a scheme,
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http://localhost:8080/tag/03KF


DECENT ALGEBRAIC SPACES 11

and x corresponds to a point of Xy, i.e., to a monomorphism Spec(k′) → Xy. As
Xy → X is a monomorphism also we see that x is represented by the monomorphism
Spec(k′)→ Xy → X. In other words (β) holds for X.

The case P = (γ). Since (γ) ⇒ (β) we have seen in the preceding paragraph that
y and x can be represented by monomorphisms as in the following diagram

Spec(k′)
x
//

��

X

��
Spec(k)

y // Y

Also, by definition of property (γ) via Lemma 4.5 (2) there exist schemes Vi and
étale morphisms Vi → Y such that

∐
Vi → Y is surjective and for each i, setting

Ri = Vi ×Y Vi the fibres of both

|Vi| −→ |Y | and |Ri| −→ |Y |
over y are finite. This means that the schemes (Vi)y and (Ri)y are finite schemes
over y = Spec(k). As X → Y is representable, the fibre products Ui = Vi×Y X are
schemes. The morphisms Ui → X are étale, and

∐
Ui → X is surjective. Finally,

for each i we have

(Ui)x = (Vi ×Y X)x = (Vi)y ×Spec(k) Spec(k′)

and

(Ui ×X Ui)x = ((Vi ×Y X)×X (Vi ×Y X))x = (Ri)y ×Spec(k) Spec(k′)

hence these are finite over k′ as base changes of the finite schemes (Vi)y and (Ri)y.
This implies that (γ) holds for X, again via the second condition of Lemma 4.5.

The case P = (δ). Let V → Y be an étale morphism with V an affine scheme.
Since Y has property (δ) this morphism has universally bounded fibres. By Lemma
3.3 the base change V ×Y X → X also has universally bounded fibres. Hence the
first part of Lemma 4.6 applies and we see that Y also has property (δ).

The case P = (ε). We will repeatedly use Spaces, Lemma 5.5. Let Vi → Y be
as in Lemma 4.7 (2). Set Ui = X ×Y Vi. The morphisms Ui → X are étale, and∐
Ui → X is surjective. Because Ui ×X Ui = X ×Y (Vi ×Y Vi) we see that the

projections Ui ×Y Ui → Ui are base changes of the projections Vi ×Y Vi → Vi, and
so quasi-compact as well. Hence X satisfies Lemma 4.7 (2).

The case P = (θ). In this case the result is Categories, Lemma 8.3. �

6. Reasonable and decent algebraic spaces

In Lemma 5.1 we have seen a number of conditions on algebraic spaces related to
the behaviour of étale morphisms from affine schemes into X and related to the
existence of special étale coverings of X by schemes. We tabulate the different types
of conditions here:

(α) fibres of etale morphisms from affines are finite
(β) points come from monomorphisms of spectra of fields
(γ) points come from quasi-compact monomorphisms of spectra of fields
(δ) fibres of etale morphisms from affines are universally bounded
(ε) cover by etale morphisms from schemes quasi-compact onto their image
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The conditions in the following definition are not exactly conditions on the diagonal
of X, but they are in some sense separation conditions on X.

Definition 6.1. Let S be a scheme. Let X be an algebraic space over S.

(1) We say X is decent if for every point x ∈ X the equivalent conditions of
Lemma 4.5 hold, in other words property (γ) of Lemma 5.1 holds.

(2) We say X is reasonable if the equivalent conditions of Lemma 4.6 hold, in
other words property (δ) of Lemma 5.1 holds.

(3) We say X is very reasonable if the equivalent conditions of Lemma 4.7 hold,
i.e., property (ε) of Lemma 5.1 holds.

We have the following implications among these conditions on algebraic spaces:

representable

%-
very reasonable +3 reasonable +3 decent

quasi-separated

19

The notion of a very reasonable algebraic space is obsolete. It was introduced
because the assumption was needed to prove some results which are now proven for
the class of decent spaces. The class of decent spaces is the largest class of spaces
X where one has a good relationship between the topology of |X| and properties
of X itself.

Example 6.2. The algebraic space A1
Q/Z constructed in Spaces, Example 14.8 is

not decent as its “generic point” cannot be represented by a monomorphism from
the spectrum of a point.

Remark 6.3. Reasonable algebraic spaces are technically easier to work with than
very reasonable algebraic spaces. For example, if X → Y is a quasi-compact étale
surjective morphism of algebraic spaces and X is reasonable, then so is Y , see
Lemma 15.8 but we don’t know if this is true for the property “very reasonable”.
Below we give another technical property enjoyed by reasonable algebraic spaces.

Lemma 6.4. Let S be a scheme. Let X be a quasi-compact reasonable algebraic
space. Then there exists a directed system of quasi-compact and quasi-separated
algebraic spaces Xi such that X = colimiXi (colimit in the category of sheaves).

Proof. We sketch the proof. By Properties of Spaces, Lemma 6.3 we have X =
U/R with U affine. In this case, reasonable means U → X is universally bounded.
Hence there exists an integer N such that the “fibres” of U → X have degree at
most N , see Definition 3.1. Denote s, t : R → U and c : R ×s,U,t R → R the
groupoid structural maps.

Claim: for every quasi-compact open A ⊂ R there exists an open R′ ⊂ R such that

(1) A ⊂ R′,
(2) R′ is quasi-compact, and
(3) (U,R′, s|R′ , t|R′ , c|R′×s,U,tR′) is a groupoid scheme.

http://localhost:8080/tag/03I8
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Note that e : U → R is open as it is a section of the étale morphism s : R → U ,
see Étale Morphisms, Proposition 6.1. Moreover U is affine hence quasi-compact.
Hence we may replace A by A∪e(U) ⊂ R, and assume that A contains e(U). Next,
we define inductively A1 = A, and

An = c(An−1 ×s,U,t A) ⊂ R

for n ≥ 2. Arguing inductively, we see that An is quasi-compact for all n ≥ 2, as
the image of the quasi-compact fibre product An−1×s,U,tA. If k is an algebraically
closed field over S, and we consider k-points then

An(k) =

{
(u, u′) ∈ U(k) :

there exist u = u1, u2, . . . , un ∈ U(k) with
(ui, ui+1) ∈ A for all i = 1, . . . , n− 1.

}
But as the fibres of U(k) → X(k) have size at most N we see that if n >
N then we get a repeat in the sequence above, and we can shorten it proving
AN = An for all n ≥ N . This implies that R′ = AN gives a groupoid scheme
(U,R′, s|R′ , t|R′ , c|R′×s,U,tR′), proving the claim above.

Consider the map of sheaves on (Sch/S)fppf

colimR′⊂R U/R
′ −→ U/R

where R′ ⊂ R runs over the quasi-compact open subschemes of R which give étale
equivalence relations as above. Each of the quotients U/R′ is an algebraic space
(see Spaces, Theorem 10.5). Since R′ is quasi-compact, and U affine the morphism
R′ → U ×Spec(Z) U is quasi-compact, and hence U/R′ is quasi-separated. Finally,
if T is a quasi-compact scheme, then

colimR′⊂R U(T )/R′(T ) −→ U(T )/R(T )

is a bijection, since every morphism from T into R ends up in one of the open
subrelations R′ by the claim above. This clearly implies that the colimit of the
sheaves U/R′ is U/R. In other words the algebraic space X = U/R is the colimit
of the quasi-separated algebraic spaces U/R′. �

Lemma 6.5. Let S be a scheme. Let X, Y be algebraic spaces over S. Let X → Y
be a representable morphism. If Y is decent (resp. reasonable), then so is X.

Proof. Translation of Lemma 5.3. �

Lemma 6.6. Let S be a scheme. Let X → Y be an étale morphism of algebraic
spaces over S. If Y is decent, resp. reasonable, then so is X.

Proof. Let U be an affine scheme and U → X an étale morphism. Set R = U×XU
and R′ = U ×Y U . Note that R→ R′ is a monomorphism.

Let x ∈ |X|. To show that X is decent, we have to show that the fibres of |U | → |X|
and |R| → |X| over x are finite. But if Y is decent, then the fibres of |U | → |Y |
and |R′| → |Y | are finite. Hence the result for “decent”.

To show that X is reasonable, we have to show that the fibres of U → X are
universally bounded. However, if Y is reasonable, then the fibres of U → Y are
universally bounded, which immediately implies the same thing for the fibres of
U → X. Hence the result for “reasonable”. �

http://localhost:8080/tag/0ABT
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7. Points and specializations

There exists an étale morphism of algebraic spaces f : X → Y and a nontrivial
specializations between points in a fibre of |f | : |X| → |Y |, see Examples, Lemma
42.1. If the source of the morphism is a scheme we can avoid this by imposing
condition (α) on Y .

Lemma 7.1. Let S be a scheme. Let X be an algebraic space over S. Let U → X
be an étale morphism from a scheme to X. Assume u, u′ ∈ |U | map to the same
point x of |X|, and u′  u. If the pair (X,x) satisfies the equivalent conditions of
Lemma 4.2 then u = u′.

Proof. Assume the pair (X,x) satisfies the equivalent conditions for Lemma 4.2.
Let U be a scheme, U → X étale, and let u, u′ ∈ |U | map to x of |X|, and u′  u.
We may and do replace U by an affine neighbourhood of u. Let t, s : R = U×XU →
U be the étale projection maps.

Pick a point r ∈ R with t(r) = u and s(r) = u′. This is possible by Properties
of Spaces, Lemma 4.5. Because generalizations lift along the étale morphism t
(Remark 4.1) we can find a specialization r′  r with t(r′) = u′. Set u′′ = s(r′).
Then u′′  u′. Thus we may repeat and find r′′  r′ with t(r′′) = u′′. Set
u′′′ = s(r′′), and so on. Here is a picture:

r′′

s

!!

t

~~ ��
u′′

��

r′

s

!!

t

~~ ��

u′′′

��
u′

��

r

s

!!

t

~~

u′′

��
u u′

In Remark 4.1 we have seen that there are no specializations among points in
the fibres of the étale morphism s. Hence if u(n+1) = u(n) for some n, then also
r(n) = r(n−1) and hence also (by taking t) u(n) = u(n−1). This then forces the
whole tower to collapse, in particular u = u′. Thus we see that if u 6= u′, then
all the specializations are strict and {u, u′, u′′, . . .} is an infinite set of points in U
which map to the point x in |X|. As we chose U affine this contradicts the second
part of Lemma 4.2, as desired. �

Lemma 7.2. Let S be an algebraic space. Let X be an algebraic space over S.
Let x, x′ ∈ |X| and assume x′  x, i.e., x is a specialization of x′. Assume the
pair (X,x′) satisfies the equivalent conditions of Lemma 4.5. Then for every étale
morphism ϕ : U → X from a scheme U and any u ∈ U with ϕ(u) = x, exists a
point u′ ∈ U , u′  u with ϕ(u′) = x′.

Proof. We may replace U by an affine open neighbourhood of u. Hence we may
assume that U is affine. As x is in the image of the open map |U | → |X|, so is
x′. Thus we may replace X by the Zariski open subspace corresponding to the
image of |U | → |X|, see Properties of Spaces, Lemma 4.10. In other words we may
assume that U → X is surjective and étale. Let s, t : R = U ×X U → U be the

http://localhost:8080/tag/03IM
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projections. By our assumption that (X,x′) satisfies the equivalent conditions of
Lemma 4.5 we see that the fibres of |U | → |X| and |R| → |X| over x′ are finite. Say
{u′1, . . . , u′n} ⊂ U and {r′1, . . . , r′m} ⊂ R form the complete inverse image of {x′}.
Consider the closed sets

T = {u′1} ∪ . . . ∪ {u′n} ⊂ |U |, T ′ = {r′1} ∪ . . . ∪ {r′m} ⊂ |R|.
Trivially we have s(T ′) ⊂ T . Because R is an equivalence relation we also have
t(T ′) = s(T ′) as the set {r′j} is invariant under the inverse of R by construction.
Let w ∈ T be any point. Then u′i  w for some i. Choose r ∈ R with s(r) = w.
Since generalizations lift along s : R → U , see Remark 4.1, we can find r′  r
with s(r′) = u′i. Then r′ = r′j for some j and we conclude that w ∈ s(T ′). Hence
T = s(T ′) = t(T ′) is an |R|-invariant closed set in |U |. This means T is the inverse
image of a closed (!) subset T ′′ = ϕ(T ) of |X|, see Properties of Spaces, Lemmas

4.5 and 4.6. Hence T ′′ = {x′}. Thus T contains some point u1 mapping to x as
x ∈ T ′′. I.e., we see that for some i there exists a specialization u′i  u1 which
maps to the given specialization x′  x.

To finish the proof, choose a point r ∈ R such that s(r) = u and t(r) = u1 (using
Properties of Spaces, Lemma 4.3). As generalizations lift along t, and u′i  u1 we
can find a specialization r′  r such that t(r′) = u′i. Set u′ = s(r′). Then u′  u
and ϕ(u′) = x′ as desired. �

8. Stratifying algebraic spaces by schemes

In this section we prove that a quasi-compact and quasi-separated algebraic space
has a finite stratification by locally closed subspaces each of which is a scheme and
such that the glueing of the parts is by elementary distinguihsed squares. We first
prove a slightly weaker result for reasonable algebraic spaces.

Lemma 8.1. Let S be a scheme. Let W → X be a morphism of a scheme W to
an algebraic space X which is flat, locally of finite presentation, separated, locally
quasi-finite with universally bounded fibres. There exist reduced closed subspaces

∅ = Z−1 ⊂ Z0 ⊂ Z1 ⊂ Z2 ⊂ . . . ⊂ Zn = X

such that with Xr = Zr \ Zr−1 the stratification X =
∐
r=0,...,nXr is characterized

by the following universal property: Given g : T → X the projection W ×X T → T
is finite locally free of degree r if and only if g(|T |) ⊂ |Xr|.

Proof. Let n be an integer bounding the degrees of the fibres of W → X. Choose
a scheme U and a surjective étale morphism U → X. Apply More on Morphisms,
Lemma 31.9 to W ×X U → U . We obtain closed subsets

∅ = Y−1 ⊂ Y0 ⊂ Y1 ⊂ Y2 ⊂ . . . ⊂ Yn = U

characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Yr) = t−1(Yr)

as closed subsets of R. In other words the closed subsets Yr ⊂ U are R-invariant.
This means that |Yr| is the inverse image of a closed subset Zr ⊂ |X|. Denote
Zr ⊂ X also the reduced induced algebraic space structure, see Properties of Spaces,
Definition 9.5.

http://localhost:8080/tag/07S8
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Let g : T → X be a morphism of algebraic spaces. Choose a scheme V and a
surjective étale morphism V → T . To prove the final assertion of the lemma it
suffices to prove the assertion for the composition V → X (by our definition of
finite locally free morphisms, see Morphisms of Spaces, Section 42). Similarly, the
morphism of schemes W ×X V → V is finite locally free of degree r if and only if
the morphism of schemes

W ×X (U ×X V ) −→ U ×X V

is finite locally free of degree r (see Descent, Lemma 19.28). By construction this
happens if and only if |U ×X V | → |U | maps into |Yr|, which is true if and only if
|V | → |X| maps into |Zr|. �

Lemma 8.2. Let S be a scheme. Let W → X be a morphism of a scheme W to an
algebraic space X which is flat, locally of finite presentation, separated, and locally
quasi-finite. Then there exist open subspaces

X = X0 ⊃ X1 ⊃ X2 ⊃ . . .
such that a morphism Spec(k)→ X factors through Xd if and only if W×X Spec(k)
has degree ≥ d over k.

Proof. Choose a scheme U and a surjective étale morphism U → X. Apply More
on Morphisms, Lemma 31.11 to W ×X U → U . We obtain open subschemes

U = U0 ⊃ U1 ⊃ U2 ⊃ . . .
characterized by the property stated in the lemma for the morphism W ×X U → U .
Clearly, the formation of these closed subsets commutes with base change. Setting
R = U ×X U with projection maps s, t : R→ U we conclude that

s−1(Ud) = t−1(Ud)

as open subschemes of R. In other words the open subschemes Ud ⊂ U are R-
invariant. This means that Ud is the inverse image of an open subspace Xd ⊂ X
(Properties of Spaces, Lemma 9.2). �

Lemma 8.3. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a separated scheme Vp and a surjective étale morphism fp :
Vp → Up such that f−1p (Tp)→ Tp is an isomorphism.

Proof. By Properties of Spaces, Lemma 6.3 we can choose an affine scheme U and
a surjective étale morphism U → X. Let n be an integer bounding the degrees of
the fibres of U → X which exists as X is reasonable, see Definition 6.1. For p ≥ 0
set

Wp = U ×X . . .×X U \ all diagonals

where the fibre product has p factors. Since U is separated, the morphism U → X
is separated and all fibre products U ×X . . . ×X U are separated schemes. Since
U → X is separated the diagonal U → U×XU is a closed immersion. Since U → X
is étale the diagonal U → U ×X U is an open immersion, see Morphisms of Spaces,
Lemmas 36.10 and 35.9. Similarly, all the diagonal morphisms are open and closed

http://localhost:8080/tag/086T
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immersions and Wp is an open and closed subscheme of U ×X . . .×X U . Moreover,
the morphism

U ×X . . .×X U −→ U ×Spec(Z) . . .×Spec(Z) U

is locally quasi-finite and separated (Morphisms of Spaces, Lemma 4.5) and its
target is an affine scheme. Hence every finite set of points of U ×X . . . ×X U is
contained in an affine open, see More on Morphisms, Lemma 31.13. Therefore, the
same is true for Wp. There is a free action of the symmetric group Sp on Wp over
X (because we threw out the fix point locus from U ×X . . . ×X U). By the above
and Properties of Spaces, Proposition 11.1 the quotient Vp = Wp/Sp is a scheme.
Since the action of Sp on Wp was over X, there is a morphism Vp → X. Since
Wp → X is étale and since Wp → Vp is surjective étale, it follows that also Vp → X
is étale, see Properties of Spaces, Lemma 13.3.

We let Up ⊂ X be the open subspace which is the image of Vp → X. By construction
morphism Spec(k)→ X with k algebraically closed, factors through Up if and only
if U ×X Spec(k) has ≥ p points. It follows that the Up give a filtration of X as
stated in the lemma. Moreover, Spec(k) → X factors through Tp if and only if
U ×X Spec(k) has exactly p points. In this case we see that Vp ×X Spec(k) has
exactly one point. Set Zp = f−1p (Tp) ⊂ Vp. This is a closed subscheme of Vp. Then
Zp → Tp is an étale morphism between algebraic spaces which induces a bijection
on k-valued points for any algebraically closed field k. To be sure this implies
that Zp → Tp is universally injective, whence an open immersion by Morphisms of
Spaces, Lemma 45.2 hence an isomorphism and we win. �

Lemma 8.4. Let S be a scheme. Let X be a quasi-compact, reasonable algebraic
space over S. There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

such that each Tp = Up\Up+1 (with reduced induced subspace structure) is a scheme.

Proof. Immediate consequence of Lemma 8.3. �

The following result is almost identical to [GR71, Proposition 5.7.8].

Lemma 8.5. Let X be a quasi-compact and quasi-separated algebraic space over
Spec(Z). There exist an integer n and open subspaces

∅ = Un+1 ⊂ Un ⊂ Un−1 ⊂ . . . ⊂ U1 = X

with the following property: setting Tp = Up \ Up+1 (with reduced induced subspace
structure) there exists a quasi-compact separated scheme Vp and a surjective étale
morphism fp : Vp → Up such that f−1p (Tp)→ Tp is an isomorphism.

Proof. The proof of this lemma is identical to the proof of Lemma 8.3. Observe
that a quasi-separated space is reasonable, see Decent Spaces, Lemma 5.1 and
Decent Spaces, Definition 6.1. At the end of the argument we add that since
X is quasi-separated the schemes V ×X . . . ×X V are all quasi-compact. Hence
the schemes Wp are quasi-compact. Hence the schemes Vp = Wp/Sp are quasi-
compact. �
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9. Schematic locus

In this section we prove that a decent algebraic space has a dense open subspace
which is a scheme. We first prove this for reasonable algebraic spaces.

Proposition 9.1. Let S be a scheme. Let X be an algebraic space over S. If X is
reasonable, then there exists a dense open subspace of X which is a scheme.

Proof. By Properties of Spaces, Lemma 10.1 the question is local on X. Hence
we may assume there exists an affine scheme U and a surjective étale morphism
U → X (Properties of Spaces, Lemma 6.1). Let n be an integer bounding the
degrees of the fibres of U → X which exists as X is reasonable, see Definition 6.1.
We will argue by induction on n that whenever

(1) U → X is a surjective étale morphism whose fibres have degree ≤ n, and
(2) U is isomorphic to a locally closed subscheme of an affine scheme

then the schematic locus is dense in X.

Let Xn ⊂ X be the open subspace which is the complement of the closed subspace
Zn−1 ⊂ X constructed in Lemma 8.1 using the morphism U → X. Let Un ⊂ U be
the inverse image of Xn. Then Un → Xn is finite locally free of degree n. Hence
Xn is a scheme by Properties of Spaces, Proposition 11.1 (and the fact that any
finite set of points of Un is contained in an affine open of Un, see Properties, Lemma
27.5).

Let X ′ ⊂ X be the open subspace such that |X ′| is the interior of |Zn−1| in |X|
(see Topology, Definition 20.1). Let U ′ ⊂ U be the inverse image. Then U ′ → X ′

is surjective étale and has degrees of fibres bounded by n− 1. By induction we see
that the schematic locus of X ′ is an open dense X ′′ ⊂ X ′. By elementary topology
we see that X ′′ ∪Xn ⊂ X is open and dense and we win. �

Theorem 9.2 (David Rydh). Let S be a scheme. Let X be an algebraic space over
S. If X is decent, then there exists a dense open subspace of X which is a scheme.

Proof. Assume X is a decent algebraic space for which the theorem is false. By
Properties of Spaces, Lemma 10.1 there exists a largest open subspace X ′ ⊂ X
which is a scheme. Since X ′ is not dense in X, there exists an open subspace
X ′′ ⊂ X such that |X ′′| ∩ |X ′| = ∅. Replacing X by X ′′ we get a nonempty decent
algebraic space X which does not contain any open subspace which is a scheme.

Choose a nonempty affine scheme U and an étale morphism U → X. We may and
do replace X by the open subscheme corresponding to the image of |U | → |X|.
Consider the sequence of open subspaces

X = X0 ⊃ X1 ⊃ X2 . . .

constructed in Lemma 8.2 for the morphism U → X. Note that X0 = X1 as
U → X is surjective. Let U = U0 = U1 ⊃ U2 . . . be the induced sequence of open
subschemes of U .

Choose a nonempty open affine V1 ⊂ U1 (for example V1 = U1). By induction we
will construct a sequence of nonempty affine opens V1 ⊃ V2 ⊃ . . . with Vn ⊂ Un.
Namely, having constructed V1, . . . , Vn−1 we can always choose Vn unless Vn−1 ∩
Un = ∅. But if Vn−1 ∩ Un = ∅, then the open subspace X ′ ⊂ X with |X ′| =
Im(|Vn−1| → |X|) is contained in |X|\|Xn|. Hence Vn−1 → X ′ is an étale morphism
whose fibres have degree bounded by n − 1. In other words, X ′ is reasonable (by
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definition), hence X ′ contains a nonempty open subscheme by Proposition 9.1. This
is a contradiction which shows that we can pick Vn.

By Limits, Lemma 3.4 the limit V∞ = limVn is a nonempty scheme. Pick a
morphism Spec(k) → V∞. The composition Spec(k) → V∞ → U → X has image
contained in all Xd by construction. In other words, the fibred U ×X Spec(k) has
infinite degree which contradicts the definition of a decent space. This contradiction
finishes the proof of the theorem. �

10. Points on spaces

In this section we prove some properties of points on decent algebraic spaces.

Lemma 10.1. Let S be a scheme. Let X be an algebraic space over S. Consider
the map

{Spec(k)→ X monomorphism} −→ |X|
This map is always injective. If X is decent then this map is a bijection.

Proof. We have seen in Properties of Spaces, Lemma 4.11 that the map is an
injection in general. By Lemma 5.1 it is surjective when X is decent (actually one
can say this is part of the definition of being decent). �

The following lemma is a tiny bit stronger than Properties of Spaces, Lemma 12.1.
We will improve this lemma in Lemma 12.1.

Lemma 10.2. Let S be a scheme. Let k be a field. Let X be an algebraic space
over S and assume that there exists a surjective étale morphism Spec(k) → X. If
X is decent, then X ∼= Spec(k′) where k′ ⊂ k is a finite separable extension.

Proof. The assumption implies that |X| = {x} is a singleton. Since X is decent
we can find a quasi-compact monomorphism Spec(k′)→ X whose image is x. Then
the projection U = Spec(k′) ×X Spec(k) → Spec(k) is a monomorphism, whence
U = Spec(k), see Schemes, Lemma 23.10. Hence the projection Spec(k) = U →
Spec(k′) is étale and we win. �

The following lemma shows that specialization of points behaves well on decent
algebraic spaces. Spaces, Example 14.9 shows that this is not true in general.

Lemma 10.3. Let S be a scheme. Let X be a decent algebraic space over S. Let
U → X be an étale morphism from a scheme to X. If u, u′ ∈ |U | map to the same
point of |X|, and u′  u, then u = u′.

Proof. Combine Lemmas 5.1 and 7.1. �

Lemma 10.4. Let S be an algebraic space. Let X be a decent algebraic space over
S. Let x, x′ ∈ |X| and assume x′  x, i.e., x is a specialization of x′. Then for
every étale morphism ϕ : U → X from a scheme U and any u ∈ U with ϕ(u) = x,
exists a point u′ ∈ U , u′  u with ϕ(u′) = x′.

Proof. Combine Lemmas 5.1 and 7.2. �

Lemma 10.5. Let S be a scheme. Let X be a decent algebraic space over S. Then
|X| is Kolmogorov (see Topology, Definition 7.4).
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Proof. Let x1, x2 ∈ |X| with x1  x2 and x2  x1. We have to show that x1 = x2.
Pick a scheme U and an étale morphism U → X such that x1, x2 are both in the
image of |U | → |X|. By Lemma 10.4 we can find a specialization u1  u2 in U
mapping to x1  x2. By Lemma 10.4 we can find u′2  u1 mapping to x2  x1.
This means that u′2  u2 is a specialization between points of U mapping to the
same point of X, namely x2. This is not possible, unless u′2 = u2, see Lemma 10.3.
Hence also u1 = u2 as desired. �

Proposition 10.6. Let S be a scheme. Let X be a decent algebraic space over S.
Then the topological space |X| is sober (see Topology, Definition 7.4).

Proof. We have seen in Lemma 10.5 that |X| is Kolmogorov. Hence it remains to
show that every irreducible closed subset T ⊂ |X| has a generic point. By Properties
of Spaces, Lemma 9.3 there exists a closed subspace Z ⊂ X with |Z| = |T |. By
definition this means that Z → X is a representable morphism of algebraic spaces.
Hence Z is a decent algebraic space by Lemma 5.3. By Theorem 9.2 we see that
there exists an open dense subspace Z ′ ⊂ Z which is a scheme. This means that
|Z ′| ⊂ T is open dense. Hence the topological space |Z ′| is irreducible, which means
that Z ′ is an irreducible scheme. By Schemes, Lemma 11.1 we conclude that |Z ′|
is the closure of a single point η ∈ T and hence also T = {η}, and we win. �

For decent algebraic spaces dimension works as expected.

Lemma 10.7. Let S be a scheme. Dimension as defined in Properties of Spaces,
Section 8 behaves well on decent algebraic spaces X over S.

(1) If x ∈ |X|, then dimx(|X|) = dimx(X), and
(2) dim(|X|) = dim(X).

Proof. Proof of (1). Choose a scheme U with a point u ∈ U and an étale morphism
h : U → X mapping u to x. By definition the dimension of X at x is dimu(|U |).
Thus we may pick U such that dimx(X) = dim(|U |). Let d be an integer. If
dim(U) ≥ d, then there exists a sequence of nontrivial specializations ud  . . . u0
in U . Taking the image we find a corresponding sequence h(ud)  . . .  h(u0)
each of which is nontrivial by Lemma 10.3. Hence we see that the image of |U | in
|X| has dimension at least d. Conversely, suppose that xd  . . . x0 is a sequence
of specializations in |X| with x0 in the image of |U | → |X|. Then we can lift this
to a sequence of specializations in U by Lemma 10.4.

Part (2) is an immediate consequence of part (1) and the definitions. �

Lemma 10.8. Let S be a scheme. Let X be a decent algebraic space over S. Let
x ∈ |X|. The following are equivalent

(1) x is a generic point of an irreducible component of |X|,
(2) for any étale morphism (Y, y) → (X,x) of pointed algebraic spaces, y is a

generic point of an irreducible component of |Y |,
(3) the dimension of the local ring of X at x is zero (Properties of Spaces,

Definition 20.2).

Proof. Observe that any Y as in (2) is decent by Lemma 6.6. Thus it suffices to
prove the equivalence of (1) and (3) as then the equivalence with (2) follows since
the dimension of the local ring of Y at y is equal to the dimension of the local ring
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of X at x. Let f : U → X be an étale morphism from an affine scheme and let
u ∈ U be a point mapping to x.

Assume (1). Let u′  u be a specialization in U . Then f(u′) = f(u) = x. By
Lemma 10.3 we see that u′ = u. Hence u is a generic point of an irreducible
component of U . Thus dim(OU,u) = 0 and we see that (2) holds.

Assume (2). The point x is contained in an irreducible component T ⊂ |X|. Since
|X| is sober (Proposition 10.6) we T has a generic point x′. Of course x′  x.
Then we can lift this specialization to u′  u in U (Lemma 10.4). This contradicts
the assumption that dim(OU,u) = 0 unless u′ = u, i.e., x′ = x. �

Lemma 10.9. Let S be a scheme. Let X → Y be a locally quasi-finite morphism
of algebraic spaces over S. Let x ∈ |X| with image y ∈ |Y |. Then the dimension of
the local ring of Y at y is ≥ to the dimension of the local ring of X at x.

Proof. The definition of the dimension of the local ring of a point on an algebraic
space is given in Properties of Spaces, Definition 20.2. Choose an étale morphism
(V, v)→ (Y, y) where V is a scheme. Choose an étale morphism U → V ×Y X and
a point u ∈ U mapping to x ∈ |X| and v ∈ V . Then U → V is locally quasi-finite
and we have to prove that

dim(OV,v) ≥ dim(OU,u)

This is Algebra, Lemma 121.4. �

11. Reduced singleton spaces

A singleton space is an algebraic space X such that |X| is a singleton. It turns
out that these can be more interesting than just being the spectrum of a field, see
Spaces, Example 14.7. We develop a tiny bit of machinery to be able to talk about
these.

Lemma 11.1. Let S be a scheme. Let Z be an algebraic space over S. Let k be a
field and let Spec(k)→ Z be surjective and flat. Then any morphism Spec(k′)→ Z
where k′ is a field is surjective and flat.

Proof. Consider the fibre square

T

��

// Spec(k)

��
Spec(k′) // Z

Note that T → Spec(k′) is flat and surjective hence T is not empty. On the other
hand T → Spec(k) is flat as k is a field. Hence T → Z is flat and surjective. It
follows from Morphisms of Spaces, Lemma 29.5 that Spec(k′) → Z is flat. It is
surjective as by assumption |Z| is a singleton. �

Lemma 11.2. Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced and |Z| is a singleton,
(2) there exists a surjective flat morphism Spec(k)→ Z where k is a field, and
(3) there exists a locally of finite type, surjective, flat morphism Spec(k) → Z

where k is a field.
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Proof. Assume (1). Let W be a scheme and let W → Z be a surjective étale
morphism. Then W is a reduced scheme. Let η ∈W be a generic point of an irre-
ducible component of W . Since W is reduced we have OW,η = κ(η). It follows that
the canonical morphism η = Spec(κ(η))→W is flat. We see that the composition
η → Z is flat (see Morphisms of Spaces, Lemma 28.3). It is also surjective as |Z| is
a singleton. In other words (2) holds.

Assume (2). Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a surjective flat morphism Spec(k)→ Z. Then W ×Z Spec(k)
is a scheme étale over k. Hence W ×Z Spec(k) is a disjoint union of spectra of fields
(see Remark 4.1), in particular reduced. Since W ×Z Spec(k) → W is surjective
and flat we conclude that W is reduced (Descent, Lemma 15.1). In other words (1)
holds.

It is clear that (3) implies (2). Finally, assume (2). Pick a nonempty affine scheme
W and an étale morphism W → Z. Pick a closed point w ∈ W and set k = κ(w).
The composition

Spec(k)
w−→W −→ Z

is locally of finite type by Morphisms of Spaces, Lemmas 23.2 and 36.9. It is also
flat and surjective by Lemma 11.1. Hence (3) holds. �

The following lemma singles out a slightly better class of singleton algebraic spaces
than the preceding lemma.

Lemma 11.3. Let S be a scheme. Let Z be an algebraic space over S. The
following are equivalent

(1) Z is reduced, locally Noetherian, and |Z| is a singleton, and
(2) there exists a locally finitely presented, surjective, flat morphism Spec(k)→

Z where k is a field.

Proof. Assume (2) holds. By Lemma 11.2 we see that Z is reduced and |Z| is
a singleton. Let W be a scheme and let W → Z be a surjective étale morphism.
Choose a field k and a locally finitely presented, surjective, flat morphism Spec(k)→
Z. Then W ×Z Spec(k) is a scheme étale over k, hence a disjoint union of spectra
of fields (see Remark 4.1), hence locally Noetherian. Since W ×Z Spec(k)→ W is
flat, surjective, and locally of finite presentation, we see that {W ×Z Spec(k)→W}
is an fppf covering and we conclude that W is locally Noetherian (Descent, Lemma
12.1). In other words (1) holds.

Assume (1). Pick a nonempty affine scheme W and an étale morphism W → Z.
Pick a closed point w ∈W and set k = κ(w). Because W is locally Noetherian the
morphism w : Spec(k)→ W is of finite presentation, see Morphisms, Lemma 22.7.
Hence the composition

Spec(k)
w−→W −→ Z

is locally of finite presentation by Morphisms of Spaces, Lemmas 27.2 and 36.8. It
is also flat and surjective by Lemma 11.1. Hence (2) holds. �

Lemma 11.4. Let S be a scheme. Let Z ′ → Z be a monomorphism of algebraic
spaces over S. Assume there exists a field k and a locally finitely presented, surjec-
tive, flat morphism Spec(k)→ Z. Then either Z ′ is empty or Z ′ = Z.
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Proof. We may assume that Z ′ is nonempty. In this case the fibre product
T = Z ′ ×Z Spec(k) is nonempty, see Properties of Spaces, Lemma 4.3. Now
T is an algebraic space and the projection T → Spec(k) is a monomorphism.
Hence T = Spec(k), see Morphisms of Spaces, Lemma 10.8. We conclude that
Spec(k)→ Z factors through Z ′. But as Spec(k)→ Z is surjective, flat and locally
of finite presentation, we see that Spec(k)→ Z is surjective as a map of sheaves on
(Sch/S)fppf (see Spaces, Remark 5.2) and we conclude that Z ′ = Z. �

The following lemma says that to each point of an algebraic space we can associate
a canonical reduced, locally Noetherian singleton algebraic space.

Lemma 11.5. Let S be a scheme. Let X be an algebraic space over S. Let x ∈ |X|.
Then there exists a unique monomorphism Z → X of algebraic spaces over S such
that Z is an algebraic space which satisfies the equivalent conditions of Lemma 11.3
and such that the image of |Z| → |X| is {x}.

Proof. Choose a scheme U and a surjective étale morphism U → X. Set R =
U ×X U so that X = U/R is a presentation (see Spaces, Section 9). Set

U ′ =
∐

u∈U lying over x
Spec(κ(u)).

The canonical morphism U ′ → U is a monomorphism. Let

R′ = U ′ ×X U ′ = R×(U×SU) (U ′ ×S U ′).

Because U ′ → U is a monomorphism we see that the projections s′, t′ : R′ → U ′

factor as a monomorphism followed by an étale morphism. Hence, as U ′ is a disjoint
union of spectra of fields, using Remark 4.1, and using Schemes, Lemma 23.10 we
conclude that R′ is a disjoint union of spectra of fields and that the morphisms
s′, t′ : R′ → U ′ are étale. Hence Z = U ′/R′ is an algebraic space by Spaces,
Theorem 10.5. As R′ is the restriction of R by U ′ → U we see Z → X is a
monomorphism by Groupoids, Lemma 18.6. Since Z → X is a monomorphism
we see that |Z| → |X| is injective, see Morphisms of Spaces, Lemma 10.9. By
Properties of Spaces, Lemma 4.3 we see that

|U ′| = |Z ×X U ′| → |Z| ×|X| |U ′|

is surjective which implies (by our choice of U ′) that |Z| → |X| has image {x}. We
conclude that |Z| is a singleton. Finally, by construction U ′ is locally Noetherian
and reduced, i.e., we see that Z satisfies the equivalent conditions of Lemma 11.3.

Let us prove uniqueness of Z → X. Suppose that Z ′ → X is a second such
monomorphism of algebraic spaces. Then the projections

Z ′ ←− Z ′ ×X Z −→ Z

are monomorphisms. The algebraic space in the middle is nonempty by Properties
of Spaces, Lemma 4.3. Hence the two projections are isomorphisms by Lemma 11.4
and we win. �

We introduce the following terminology which foreshadows the residual gerbes we
will introduce later, see Properties of Stacks, Definition 11.8.
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Definition 11.6. Let S be a scheme. Let X be an algebraic space over S. Let
x ∈ |X|. The residual space of X at x2 is the monomorphism Zx → X constructed
in Lemma 11.5.

In particular we know that Zx is a locally Noetherian, reduced, singleton algebraic
space and that there exists a field and a surjective, flat, locally finitely presented
morphism

Spec(k) −→ Zx.

It turns out that Zx is a regular algebraic space as follows from the following lemma.

Lemma 11.7. A reduced, locally Noetherian singleton algebraic space Z is regular.

Proof. Let Z be a reduced, locally Noetherian singleton algebraic space over a
scheme S. Let W → Z be a surjective étale morphism where W is a scheme. Let k
be a field and let Spec(k)→ Z be surjective, flat, and locally of finite presentation
(see Lemma 11.3). The scheme T = W ×Z Spec(k) is étale over k in particular
regular, see Remark 4.1. Since T → W is locally of finite presentation, flat, and
surjective it follows that W is regular, see Descent, Lemma 15.2. By definition this
means that Z is regular. �

12. Decent spaces

In this section we collect some useful facts on decent spaces.

Lemma 12.1. Let S be a scheme. Let X be a decent algebraic space over S.

(1) If |X| is a singleton then X is a scheme.
(2) If |X| is a singleton and X is reduced, then X ∼= Spec(k) for some field k.

Proof. Assume |X| is a singleton. It follows immediately from Theorem 9.2 that
X is a scheme, but we can also argue directly as follows. Choose an affine scheme
U and a surjective étale morphism U → X. Set R = U ×X U . Then U and R have
finitely many points by Lemma 4.5 (and the definition of a decent space). All of
these points are closed in U and R by Lemma 10.3. It follows that U and R are
affine schemes. We may shrink U to a singleton space. Then U is the spectrum
of a henselian local ring, see Algebra, Lemma 145.11. The projections R → U are
étale, hence finite étale because U is the spectrum of a 0-dimensional henselian
local ring, see Algebra, Lemma 145.3. It follows that X is a scheme by Groupoids,
Proposition 21.8.

Part (2) follows from (1) and the fact that a reduced singleton scheme is the spec-
trum of a field. �

Remark 12.2. We will see in Limits of Spaces, Lemma 15.3 that an algebraic
space whose reduction is a scheme is a scheme.

Lemma 12.3. Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

2This is nonstandard notation.
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Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is algebraic. Then the image x of Spec(k)→ X is a closed point of |X|.

Proof. Suppose that x x′ for some x′ ∈ |X|. Choose an étale morphism U → X
where U is a scheme and a point u′ ∈ U ′ mapping to x′. Choose a specialization
u  u′ in U with u mapping to x in X, see Lemma 10.4. Then u is the image of
a point w of the scheme W = Spec(k) ×X U . Since the projection W → Spec(k)
is étale we see that κ(w) ⊃ k is finite. Hence κ(w) ⊃ κ(s) is algebraic. Hence
κ(u) ⊃ κ(s) is algebraic. Thus u is a closed point of U by Morphisms, Lemma 21.2.
Thus u = u′, whence x = x′. �

Lemma 12.4. Let S be a scheme. Let X be a decent algebraic space over S.
Consider a commutative diagram

Spec(k) //

##

X

��
S

Assume that the image point s ∈ S of Spec(k) → S is a closed point and that
κ(s) ⊂ k is finite. Then Spec(k) → X is finite morphism. If κ(s) = k then
Spec(k)→ X is closed immersion.

Proof. By Lemma 12.3 the image point x ∈ |X| is closed. Let Z ⊂ X be the
reduced closed subspace with |Z| = {x} (Properties of Spaces, Lemma 9.3). Note
that Z is a decent algebraic space by Lemma 6.5. By Lemma 12.1 we see that
Z = Spec(k′) for some field k′. Of course k ⊃ k′ ⊃ κ(s). Then Spec(k) → Z is
a finite morphism of schemes and Z → X is a finite morphism as it is a closed
immersion. Hence Spec(k) → X is finite (Morphisms of Spaces, Lemma 41.4). If
k = κ(s), then Spec(k) = Z and Spec(k)→ X is a closed immersion. �

Lemma 12.5. Let S be a scheme. Suppose X is a decent algebraic space over S.
Let x ∈ |X| be a closed point. Then x can be represented by a closed immersion
i : Spec(k)→ X from the spectrum of a field.

Proof. We know that x can be represented by a quasi-compact monomorphism
i : Spec(k) → X where k is a field (Definition 6.1). Let U → X be an étale
morphism where U is an affine scheme. As x is closed and X decent, the fibre F of
|U | → |X| over x consists of closed points (Lemma 10.3). As i is a monomorphism,
so is Uk = U ×X Spec(k) → U . In particular, the map |Uk| → F is injective.
Since Uk is quasi-compact and étale over a field, we see that Uk is a finite disjoint
union of spectra of fields (Remark 4.1). Say Uk = Spec(k1) q . . . q Spec(kr).
Since Spec(ki)→ U is a monomorphism, we see that its image ui has residue field
κ(ui) = ki. Since ui ∈ F is a closed point we conclude the morphism Spec(ki)→ U
is a closed immersion. As the ui are pairwise distinct, Uk → U is a closed immersion.
Hence i is a closed immersion (Morphisms of Spaces, Lemma 12.1). This finishes
the proof. �

13. Locally separated spaces

It turns out that a locally separated algebraic space is decent.
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Lemma 13.1. Let A be a ring. Let k be a field. Let pn, n ≥ 1 be a sequence of
pairwise distinct primes of A. Moreover, for each n let k → κ(p) be an embedding.
Then the closure of the image of∐

n 6=m
Spec(κ(pn)⊗k κ(pm)) −→ Spec(A⊗A)

meets the diagonal.

Proof. Set kn = κ(pn). We may assume that A =
∏
kn. Denote xn = Spec(kn)

the open and closed point corresponding to A → kn. Then Spec(A) = Z q {xn}
where Z is a nonempty closed subset. Namely, Z = V (en;n ≥ 1) where en is the
idempotent of A corresponding to the factor kn and Z is nonempty as the ideal
generated by the en is not equal to A. We will show that the closure of the image
contains ∆(Z). The kernel of the map

(
∏

kn)⊗k (
∏

km) −→
∏

n 6=m
kn ⊗k km

is the ideal generated by en⊗ en, n ≥ 1. Hence the closure of the image of the map
on spectra is V (en⊗ en;n ≥ 1) whose intersection with ∆(Spec(A)) is ∆(Z). Thus
it suffices to show that∐

n 6=m
Spec(kn ⊗k km) −→ Spec(

∏
n 6=m

kn ⊗k km)

has dense image. This follows as the family of ring maps
∏
n 6=m kn⊗kkm → kn⊗kkm

is jointly injective. �

Lemma 13.2 (David Rydh). A locally separated algebraic space is decent.

Proof. Let S be a base scheme. Let X be a locally separated algebraic space over
S. Let x ∈ |X|. Choose a scheme U , an étale morphism U → X, and a point
u ∈ U mapping to x in |X|. As usual we identify u = Spec(κ(u)). As X is locally
separated the morphism

u×X u→ u× u
is an immersion (Morphisms of Spaces, Lemma 4.5). Hence More on Groupoids,
Lemma 10.5 tells us that it is a closed immersion (use Schemes, Lemma 10.4). As
u×X u→ u×X U is a monomorphism (base change of u→ U) and as u×X U → u
is étale we conclude that u×X u is a disjoint union of spectra of fields (see Remark
4.1 and Schemes, Lemma 23.10). Since it is also closed in the affine scheme u × u
we conclude u ×X u is a finite disjoint union of spectra of fields. Thus x can be
represented by a monomorphism Spec(k)→ X where k is a field, see Lemma 4.3.

Next, let U = Spec(A) be an affine scheme and let U → X be an étale morphism.
To finish the proof it suffices to show that F = U ×X Spec(k) is finite. Write
F =

∐
i∈I Spec(ki) as the disjoint union of finite separable extensions of k. We

have to show that I is finite. Set R = U ×X U . As X is locally separated, the
morphism j : R → U × U is an immersion. Let e : U → R be the diagonal map.
Using that e is a morphism between étale schemes over U such that ∆ = j ◦ e is
a closed immersion, we conclude that R = e(U)

∐
W for some open and closed

subscheme W ⊂ R. Since j is an immersion and j|e(U) is a closed immersion we

conclude that j(W ) ∩∆(U) = ∅ in U × U . Note that W contains Spec(ki ⊗k ki′)
for all i 6= i′, i, i′ ∈ I. By Lemma 13.1 we conclude that I is finite as desired. �
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14. Valuative criterion

For a quasi-compact morphism from a decent space the valuative criterion is nec-
essary in order for the morphism to be universally closed.

Proposition 14.1. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact, and X is decent. Then f is universally
closed if and only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 39.1 we have seen one of the implications.
To prove the other, assume that f is universally closed. Let

Spec(K) //

��

X

��
Spec(A) // Y

be a diagram as in Morphisms of Spaces, Definition 38.1. Let XA = Spec(A)×Y X,
so that we have

Spec(K) //

%%

XA

��
Spec(A)

By Morphisms of Spaces, Lemma 8.3 we see that XA → Spec(A) is quasi-compact.
Since XA → X is representable, we see that XA is decent also, see Lemma 5.3.
Moreover, as f is universally closed, we see that XA → Spec(A) is universally
closed. Hence we may and do replace X by XA and Y by Spec(A).

Let x′ ∈ |X| be the equivalence class of Spec(K) → X. Let y ∈ |Y | = |Spec(A)|
be the closed point. Set y′ = f(x′); it is the generic point of Spec(A). Since f

is universally closed we see that f({x′}) contains {y′}, and hence contains y. Let

x ∈ {x′} be a point such that f(x) = y. Let U be a scheme, and ϕ : U → X an
étale morphism such that there exists a u ∈ U with ϕ(u) = x. By Lemma 7.2 and
our assumption that X is decent there exists a specialization u′  u on U with
ϕ(u′) = x′. This means that there exists a common field extension K ⊂ K ′ ⊃ κ(u′)
such that

Spec(K ′) //

��

U

��
Spec(K) //

&&

X

��
Spec(A)
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is commutative. This gives the following commutative diagram of rings

K ′ OU,uoo

K

OO

A

bb

OO

By Algebra, Lemma 48.2 we can find a valuation ring A′ ⊂ K ′ dominating the
image of OU,u in K ′. Since by construction OU,u dominates A we see that A′

dominates A also. Hence we obtain a diagram resembling the second diagram of
Morphisms of Spaces, Definition 38.1 and the proposition is proved. �

The following lemma is a special case of the more general Lemma 15.11.

Lemma 14.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic spaces
over S. Assume f is quasi-compact and quasi-separated. Then f is universally
closed if and only if the existence part of the valuative criterion holds (Morphisms
of Spaces, Definition 38.1).

Proof. This is a combination of Morphisms of Spaces, Lemma 39.1 and Proposition
14.1. Namely, the implication in one direction is given by Morphisms of Spaces,
Lemma 39.1. For the converse, assume f is quasi-separated, quasi-compact, and
universally closed and assume given a diagram

Spec(K) //

��

X

��
Spec(A) // Y

as in Morphisms of Spaces, Definition 38.1. A formal argument shows that the
existence of the desired diagram

Spec(K ′) //

��

Spec(K) // X

��
Spec(A′) //

44

Spec(A) // Y

can be reduced to the case of the morphism XA → Spec(A). In this case the al-
gebraic space XA is quasi-separated, hence decent (property (γ) of Lemma 5.1).
Hence the existence of A ⊂ A′ and the arrow Spec(A′)→ XA follows from Propo-
sition 14.1. �

Lemma 14.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and separated. Then the following are
equivalent

(1) f is universally closed,
(2) the existence part of the valuative criterion holds as in Morphisms of Spaces,

Definition 38.1, and
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(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a dotted
arrow, i.e., f satisfies the existence part of the valuative criterion as in
Schemes, Definition 20.3.

Proof. Since f is separated parts (2) and (3) are equivalent by Morphisms of
Spaces, Lemma 38.5. The equivalence of (3) and (1) follows from Lemma 14.2. �

Lemma 14.4. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and quasi-separated. Then the following
are equivalent

(1) f is separated and universally closed,
(2) the valuative criterion holds as in Morphisms of Spaces, Definition 38.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defini-
tion 20.3.

Proof. Since f is quasi-separated, the uniqueness part of the valutative criterion
implies f is separated (Morphisms of Spaces, Lemma 40.2). Conversely, if f is
separated, then it satisfies the uniqueness part of the valuative criterion (Morphisms
of Spaces, Lemma 40.1). Having said this, we see that in each of the three cases the
morphism f is separated and satisfies the uniqueness part of the valuative criterion.
In this case the lemma is a formal consequence of Lemma 14.3. �

Lemma 14.5 (Valuative criterion for properness). Let S be a scheme. Let f :
X → Y be a morphism of algebraic spaces over S. Assume f is of finite type and
quasi-separated. Then the following are equivalent

(1) f is proper,
(2) the valuative criterion holds as in Morphisms of Spaces, Definition 38.1,
(3) given any commutative solid diagram

Spec(K) //

��

X

��
Spec(A) //

;;

Y

where A is a valuation ring with field of fractions K, there exists a unique
dotted arrow, i.e., f satisfies the valuative criterion as in Schemes, Defini-
tion 20.3.
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Proof. Formal consequence of Lemma 14.4 and the definitions. �

15. Relative conditions

This is a (yet another) technical section dealing with conditions on algebraic spaces
having to do with points. It is probably a good idea to skip this section.

Definition 15.1. Let S be a scheme. We say an algebraic space X over S has
property (β) if X has the corresponding property of Lemma 5.1. Let f : X → Y be
a morphism of algebraic spaces over S.

(1) We say f has property (β) if for any scheme T and morphism T → Y the
fibre product T ×Y X has property (β).

(2) We say f is decent if for any scheme T and morphism T → Y the fibre
product T ×Y X is a decent algebraic space.

(3) We say f is reasonable if for any scheme T and morphism T → Y the fibre
product T ×Y X is a reasonable algebraic space.

(4) We say f is very reasonable if for any scheme T and morphism T → Y the
fibre product T ×Y X is a very reasonable algebraic space.

We refer to Remark 15.10 for an informal discussion. It will turn out that the class
of very reasonable morphisms is not so useful, but that the classes of decent and
reasonable morphisms are useful.

Lemma 15.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. We have the following implications among the conditions on f :

representable

$,
very reasonable +3 reasonable +3 decent +3 (β)

quasi-separated

2:

Proof. This is clear from the definitions, Lemma 5.1 and Morphisms of Spaces,
Lemma 4.12. �

Here is another sanity check.

Lemma 15.3. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. If X is decent (resp. is reasonable, resp. has property (β) of Lemma
5.1), then f is decent (resp. reasonable, resp. has property (β)).

Proof. Let T be a scheme and let T → Y be a morphism. Then T → Y is
representable, hence the base change T ×Y X → X is represenble. Hence if X is
decent (or reasonable), then so is T ×Y X, see Lemma 6.5. Similarly, for property
(β), see Lemma 5.3. �

Lemma 15.4. Having property (β), being decent, or being reasonable is preserved
under arbitrary base change.

Proof. This is immediate from the definition. �
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Lemma 15.5. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let ω ∈ {β, decent, reasonable}. Suppose that Y has property (ω)
and f : X → Y has (ω). Then X has (ω).

Proof. Let us prove the lemma in case ω = β. In this case we have to show that
any x ∈ |X| is represented by a monomorphism from the spectrum of a field into
X. Let y = f(x) ∈ |Y |. By assumption there exists a field k and a monomorphism
Spec(k) → Y representing y. Then x corresponds to a point x′ of Spec(k) ×Y X.
By assumption x′ is represented by a monomorphism Spec(k′) → Spec(k) ×Y X.
Clearly the composition Spec(k′)→ X is a monomorphism representing x.

Let us prove the lemma in case ω = decent. Let x ∈ |X| and y = f(x) ∈ |Y |. By
the result of the preceding paragraph we can choose a diagram

Spec(k′)
x

//

��

X

f

��
Spec(k)

y // Y

whose horizontal arrows monomorphisms. As Y is decent the morphism y is quasi-
compact. As f is decent the algebraic space Spec(k) ×Y X is decent. Hence the
monomorphism Spec(k′) → Spec(k) ×Y X is quasi-compact. Then the monomor-
phism x : Spec(k′)→ X is quasi-compact as a composition of quasi-compact mor-
phisms (use Morphisms of Spaces, Lemmas 8.3 and 8.4). As the point x was
arbitrary this implies X is decent.

Let us prove the lemma in case ω = reasonable. Choose V → Y étale with V an
affine scheme. Choose U → V ×Y X étale with U an affine scheme. By assumption
V → Y has universally bounded fibres. By Lemma 3.3 the morphism V ×Y X → X
has universally bounded fibres. By assumption on f we see that U → V ×Y X has
universally bounded fibres. By Lemma 3.2 the composition U → X has universally
bounded fibres. Hence there exists sufficiently many étale morphisms U → X from
schemes with universally bounded fibres, and we conclude that X is reasonable. �

Lemma 15.6. Having property (β), being decent, or being reasonable is preserved
under compositions.

Proof. Let ω ∈ {β, decent, reasonable}. Let f : X → Y and g : Y → Z be
morphisms of algebraic spaces over the scheme S. Assume f and g both have
property (ω). Then we have to show that for any scheme T and morphism T → Z
the space T ×Z X has (ω). By Lemma 15.4 this reduces us to the following claim:
Suppose that Y is an algebraic space having property (ω), and that f : X → Y is
a morphism with (ω). Then X has (ω). This is the content of Lemma 15.5. �

Lemma 15.7. Let S be a scheme. Let f : X → Y , g : Z → Y be morphisms
of algebraic spaces over S. If X and Y are decent (resp. reasonable, resp. have
property (β) of Lemma 5.1), then so does X ×Y Z.

Proof. Namely, by Lemma 15.3 the morphism X → Y has the property. Then
the base change X ×Y Z → Z has the property by Lemma 15.4. And finally this
implies X ×Y Z has the property by Lemma 15.5. �

Lemma 15.8. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable}. Assume
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(1) f is quasi-compact,
(2) f is étale,
(3) |f | : |X| → |Y | is surjective, and
(4) the algebraic space X has property P.

Then Y has property P.

Proof. Let us prove this in case P = (β). Let y ∈ |Y | be a point. We have to
show that y can be represented by a monomorphism from a field. Choose a point
x ∈ |X| with f(x) = y. By assumption we may represent x by a monomorphism
Spec(k)→ X, with k a field. By Lemma 4.3 it suffices to show that the projections
Spec(k)×Y Spec(k)→ Spec(k) are étale and quasi-compact. We can factor the first
projection as

Spec(k)×Y Spec(k) −→ Spec(k)×Y X −→ Spec(k)

The first morphism is a monomorphism, and the second is étale and quasi-compact.
By Properties of Spaces, Lemma 13.8 we see that Spec(k)×Y X is a scheme. Hence
it is a finite disjoint union of spectra of finite separable field extensions of k. By
Schemes, Lemma 23.10 we see that the first arrow identifies Spec(k) ×Y Spec(k)
with a finite disjoint union of spectra of finite separable field extensions of k. Hence
the projection morphism is étale and quasi-compact.

Let us prove this in case P = decent. We have already seen in the first para-
graph of the proof that this implies that every y ∈ |Y | can be represented by a
monomorphism y : Spec(k) → Y . Pick such a y. Pick an affine scheme U and
an étale morphism U → X such that the image of |U | → |Y | contains y. By
Lemma 4.5 it suffices to show that Uy is a finite scheme over k. The fibre product
Xy = Spec(k) ×Y X is a quasi-compact étale algebraic space over k. Hence by
Properties of Spaces, Lemma 13.8 it is a scheme. So it is a finite disjoint union of
spectra of finite separable extensions of k. Say Xy = {x1, . . . , xn} so xi is given by
xi : Spec(ki) → X with [ki : k] < ∞. By assumption X is decent, so the schemes
Uxi

= Spec(ki) ×X U are finite over ki. Finally, we note that Uy =
∐
Uxi

as a
scheme and we conclude that Uy is finite over k as desired.

Let us prove this in case P = reasonable. Pick an affine scheme V and an étale
morphism V → Y . We have the show the fibres of V → Y are universally bounded.
The algebraic space V ×Y X is quasi-compact. Thus we can find an affine scheme
W and a surjective étale morphism W → V ×Y X, see Properties of Spaces, Lemma
6.3. Here is a picture (solid diagram)

W //

$$

V ×Y X //

��

X

f

��

Spec(k)
x

oo

y
{{

V // Y

The morphism W → X is universally bounded by our assumption that the space
X is reasonable. Let n be an integer bounding the degrees of the fibres of W → X.
We claim that the same integer works for bounding the fibres of V → Y . Namely,
suppose y ∈ |Y | is a point. Then there exists a x ∈ |X| with f(x) = y (see above).
This means we can find a field k and morphisms x, y given as dotted arrows in the
diagram above. In particular we get a surjective étale morphism

Spec(k)×x,X W → Spec(k)×x,X (V ×Y X) = Spec(k)×y,Y V
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which shows that the degree of Spec(k)×y,Y V over k is less than or equal to the de-
gree of Spec(k)×x,XW over k, i.e., ≤ n, and we win. (This last part of the argument
is the same as the argument in the proof of Lemma 3.4. Unfortunately that lemma
is not general enough because it only applies to representable morphisms.) �

Lemma 15.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Let P ∈ {(β), decent, reasonable, very reasonable}. The following
are equivalent

(1) f is P,
(2) for every affine scheme Z and every morphism Z → Y the base change

Z ×Y X → Z of f is P,
(3) for every affine scheme Z and every morphism Z → Y the algebraic space

Z ×Y X is P, and
(4) there exists a Zariski covering Y =

⋃
Yi such that each morphism f−1(Yi)→

Yi has P.

If P ∈ {(β), decent, reasonable}, then this is also equivalent to

(5) there exists a scheme V and a surjective étale morphism V → Y such that
the base change V ×Y X → V has P.

Proof. The implications (1) ⇒ (2) ⇒ (3) ⇒ (4) are trivial. The implication (3)
⇒ (1) can be seen as follows. Let Z → Y be a morphism whose source is a scheme
over S. Consider the algebraic space Z ×Y X. If we assume (3), then for any affine
open W ⊂ Z, the open subspace W ×Y X of Z ×Y X has property P. Hence by
Lemma 5.2 the space Z ×Y X has property P, i.e., (1) holds. A similar argument
(omitted) shows that (4) implies (1).

The implication (1) ⇒ (5) is trivial. Let V → Y be an étale morphism from a
scheme as in (5). Let Z be an affine scheme, and let Z → Y be a morphism.
Consider the diagram

Z ×Y V q
//

p

��

V

��
Z // Y

Since p is étale, and hence open, we can choose finitely many affine open subschemes
Wi ⊂ Z ×Y V such that Z =

⋃
p(Wi). Consider the commutative diagram

V ×Y X

��

(
∐
Wi)×Y Xoo

��

// Z ×Y X

��
V

∐
Wi

oo // Z

We know V ×Y X has property P. By Lemma 5.3 we see that (
∐
Wi) ×Y X has

property P. Note that the morphism (
∐
Wi)×Y X → Z ×Y X is étale and quasi-

compact as the base change of
∐
Wi → Z. Hence by Lemma 15.8 we conclude that

Z ×Y X has property P. �

Remark 15.10. An informal description of the properties (β), decent, reasonable,
very reasonable was given in Section 6. A morphism has one of these properties if
(very) loosely speaking the fibres of the morphism have the corresponding proper-
ties. Being decent is useful to prove things about specializations of points on |X|.
Being reasonable is a bit stronger and technically quite easy to work with.
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Here is a lemma we promised earlier which uses decent morphisms.

Lemma 15.11. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S. Assume f is quasi-compact and decent. (For example if f is repre-
sentable, or quasi-separated, see Lemma 15.2.) Then f is universally closed if and
only if the existence part of the valuative criterion holds.

Proof. In Morphisms of Spaces, Lemma 39.1 we proved that any quasi-compact
morphism which satisfies the existence part of the valuative criterion is universally
closed. To prove the other, assume that f is universally closed. In the proof of
Proposition 14.1 we have seen that it suffices to show, for any valuation ring A, and
any morphism Spec(A) → Y , that the base change fA : XA → Spec(A) satisfies
the existence part of the valuative criterion. By definition the algebraic space XA

has property (γ) and hence Proposition 14.1 applies to the morphism fA and we
win. �

16. Points of fibres

Let S be a scheme. Consider a cartesian diagram

(16.0.1) W
q
//

p

��

Z

g

��
X

f // Y

of algebraic spaces over S. Let x ∈ |X| and z ∈ |Z| be points mapping to the same
point y ∈ |Y |. We may ask: When is the set

(16.0.2) Fx,z = {w ∈ |W | such that p(w) = x and q(w) = z}

finite?

Example 16.1. If X,Y, Z are schemes, then the set Fx,z is equal to the spectrum
of κ(x) ⊗κ(y) κ(z) (Schemes, Lemma 17.5). Thus we obtain a finite set if either
κ(y) ⊂ κ(x) is finite or if κ(y) ⊂ κ(z) is finite. In particular, this is always the case
if g is quasi-finite at z (Morphisms, Lemma 21.5).

Example 16.2. Let K be a characteristic 0 field endowed with an automorphism
σ of infinite order. Set Y = Spec(K)/Z and X = A1

K/Z where Z acts on K via σ
and on A1

K = Spec(K[t]) via t 7→ t+1. Let Z = Spec(K). Then W = A1
K . Picture

A1
K q

//

p

��

Spec(K)

g

��
A1
K/Z

f // Spec(K)/Z

Take x corresponding to t = 0 and z the unique point of Spec(K). Then we see
that Fx,z = Z as a set.

Lemma 16.3. In the situation of (16.0.1) if Z ′ → Z is a morphism and z′ ∈ |Z ′|
maps to z, then the induced map Fx,z′ → Fx,z is surjective.

Proof. Set W ′ = X ×Y Z ′ = W ×Z Z ′. Then |W ′| → |W | ×|Z| |Z ′| is surjective by
Properties of Spaces, Lemma 4.3. Hence the surjectivity of Fx,z′ → Fx,z. �
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Lemma 16.4. In diagram (16.0.1) the set (16.0.2) is finite if f is of finite type
and f is quasi-finite at x.

Proof. The morphism p is quasi-finite at every w ∈ Fx,z, see Morphisms of Spaces,
Lemma 26.2. Hence the lemma follows from Morphisms of Spaces, Lemma 26.9. �

Lemma 16.5. In diagram (16.0.1) the set (16.0.2) is finite if y can be represented
by a monomorphism Spec(k) → Y where k is a field and g is quasi-finite at z.
(Special case: Y is decent and g is étale.)

Proof. By Lemma 16.3 applied twice we may replace Z by Zk = Spec(k) ×Y Z
and X by Xk = Spec(k) ×Y X. We may and do replace Y by Spec(k) as well.
Note that Zk → Spec(k) is quasi-finite at z by Morphisms of Spaces, Lemma 26.2.
Choose a scheme V , a point v ∈ V , and an étale morphism V → Zk mapping v to
z. Choose a scheme U , a point u ∈ U , and an étale morphism U → Xk mapping u
to x. Again by Lemma 16.3 it suffices to show Fu,v is finite for the diagram

U ×Spec(k) V //

��

V

��
U // Spec(k)

The morphism V → Spec(k) is quasi-finite at v (follows from the general discussion
in Morphisms of Spaces, Section 22 and the definition of being quasi-finite at a
point). At this point the finiteness follows from Example 16.1. The parenthetical
remark of the statement of the lemma follows from the fact that on decent spaces
points are represented by monomorphisms from fields and from the fact that an
étale morphism of algebraic spaces is quasi-finite. �

Lemma 16.6. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces. Let y ∈ |Y | and assume that y is represented by a quasi-compact monomor-
phism Spec(k) → Y . Then |Xk| → |X| is a homeomorphism onto f−1({y}) ⊂ |X|
with induced topology.

Proof. We will use Properties of Spaces, Lemma 13.7 and Morphisms of Spaces,
Lemma 10.9 without further mention. Let V → Y be an étale morphism with V
affine such that there exists a v ∈ V mapping to y. Since Spec(k) → Y is quasi-
compact there are a finite number of points of V mapping to y (Lemma 4.5). After
shrinking V we may assume v is the only one. Choose a scheme U and a surjective
étale morphism U → X. Consider the commutative diagram

U

��

UVoo

��

Uvoo

��
X

��

XV
oo

��

Xv
oo

��
Y Voo voo

Since Uv → UV identifies Uv with a subset of UV with the induced topology
(Schemes, Lemma 18.5), and since |UV | → |XV | and |Uv| → |Xv| are surjective
and open, we see that |Xv| → |XV | is a homeomorphism onto its image (with in-
duced topology). On the other hand, the inverse image of f−1({y}) under the open
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map |XV | → |X| is equal to |Xv|. We conclude that |Xv| → f−1({y}) is open. The
morphism Xv → X factors through Xk and |Xk| → |X| is injective with image
f−1({y}) by Properties of Spaces, Lemma 4.3. Using |Xv| → |Xk| → f−1({y}) the
lemma follows because Xv → Xk is surjective. �

Lemma 16.7. Let X be an algebraic space locally of finite type over a field k. Let
x ∈ |X|. Consider the conditions

(1) dimx(|X|) = 0,
(2) x is closed in |X| and if x′  x in |X| then x′ = x,
(3) x is an isolated point of |X|,
(4) dimx(X) = 0,
(5) X → Spec(k) is quasi-finite at x.

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) is equivalent to
the others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces, Lem-
mas 32.7 and 32.8.

Let U → X be an étale morphism where U is an affine scheme and let u ∈ U be a
point mapping to x. Moreover, if x is a closed point, e.g., in case (2) or (3), then
we may and do assume that u is a closed point. Observe that dimu(U) = dimx(X)
by definition and that this is equal to dim(OU,u) if u is a closed point, see Algebra,
Lemma 110.6.

If dimx(X) > 0 and u is closed, by the arguments above we can choose a nontrivial
specialization u′  u in U . Then the transcendence degree of κ(u′) over k exceeds
the transcendence degree of κ(u) over k. It follows that the images x and x′ in X
are distinct, because the transcendence degree of x/k and x′/k are well defined, see
Morphisms of Spaces, Definition 31.1. This applies in particular in cases (2) and
(3) and we conclude that (2) and (3) imply (4).

Conversely, if X → Spec(k) is locally quasi-finite at x, then U → Spec(k) is locally
quasi-finite at u, hence u is an isolated point of U (Morphisms, Lemma 21.6). It
follows that (5) implies (2) and (3) as |U | → |X| is continuous and open.

Assume X is decent and (1) holds. Then dimx(X) = dimx(|X|) by Lemma 10.7
and the proof is complete. �

Lemma 16.8. Let X be an algebraic space locally of finite type over a field k.
Consider the conditions

(1) |X| is a finite set,
(2) |X| is a discrete space,
(3) dim(|X|) = 0,
(4) dim(X) = 0,
(5) X → Spec(k) is locally quasi-finite,

Then (2), (3), (4), and (5) are equivalent. If X is decent, then (1) implies the
others.

Proof. Parts (4) and (5) are equivalent for example by Morphisms of Spaces,
Lemma 32.7.

Let U → X be a surjective étale morphism where U is a scheme.
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If dim(U) > 0, then choose a nontrivial specialization u  u′ in U and the tran-
scendence degree of κ(u) over k exceeds the transcendence degree of κ(u′) over k.
It follows that the images x and x′ in X are distinct, because the transcendence
degree of x/k and x′/k is well defined, see Morphisms of Spaces, Definition 31.1.
We conclude that (2) and (3) imply (4).

Conversely, if X → Spec(k) is locally quasi-finite, then U is locally Noetherian
(Morphisms, Lemma 16.6) of dimension 0 (Morphisms, Lemma 30.5) and hence is
a disjoint union of spectra of Artinian local rings (Properties, Lemma 10.3). Hence
U is a discrete topological space, and since |U | → |X| is continuous and open, the
same is true for |X|. In other words, (4) implies (2) and (3).

Assume X is decent and (1) holds. Then we may choose U above to be affine.
The fibres of |U | → |X| are finite (this is a part of the defining property of decent
spaces). Hence U is a finite type scheme over k with finitely many points. Hence
U is quasi-finite over k (Morphisms, Lemma 21.7) which by definition means that
X → Spec(k) is locally quasi-finite. �

Lemma 16.9. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let x ∈ |X| with image y ∈ |Y |. Let
F = f−1({y}) with induced topology from |X|. Let k be a field and let Spec(k)→ Y
be in the equivalence class defining y. Set Xk = Spec(k)×Y X. Let x̃ ∈ |Xk| map
to x ∈ |X|. Consider the following conditions

(1) dimx(F ) = 0,
(2) x is isolated in F ,
(3) x is closed in F and if x′  x in F , then x = x′,
(4) dimx̃(|Xk|) = 0,
(5) x̃ is isolated in |Xk|,
(6) x̃ is closed in |Xk| and if x̃′  x̃ in |Xk|, then x̃ = x̃′,
(7) dimx̃(Xk) = 0,
(8) f is quasi-finite at x.

Then we have

(4)
f decent

+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then all conditions are
equivalent.

Proof. By Lemma 16.7 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is quasi-finite at x̃. Thus by Morphisms
of Spaces, Lemma 26.2 they are also equivalent to (8). If f is decent, then Xk is a
decent algebraic space and Lemma 16.7 shows that (4) implies (5).

If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 16.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. �

Lemma 16.10. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which is locally of finite type. Let y ∈ |Y |. Let k be a field and
let Spec(k) → Y be in the equivalence class defining y. Set Xk = Spec(k) ×Y X
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and let F = f−1({y}) with the induced topology from |X|. Consider the following
conditions

(1) F is finite,
(2) F is a discrete topological space,
(3) dim(F ) = 0,
(4) |Xk| is a finite set,
(5) |Xk| is a discrete space,
(6) dim(|Xk|) = 0,
(7) dim(Xk) = 0,
(8) f is quasi-finite at all points of |X| lying over y.

Then we have

(1) (4)ks
f decent

+3 (5) ks +3 (6) ks +3 (7) ks +3 (8)

If Y is decent, then conditions (2) and (3) are equivalent to each other and to
conditions (5), (6), (7), and (8). If Y and X are decent, then (1) implies all the
other conditions.

Proof. By Lemma 16.8 conditions (5), (6), and (7) are equivalent to each other
and to the condition that Xk → Spec(k) is locally quasi-finite. Thus by Morphisms
of Spaces, Lemma 26.2 they are also equivalent to (8). If f is decent, then Xk is a
decent algebraic space and Lemma 16.8 shows that (4) implies (5).

The map |Xk| → F is surjective by Properties of Spaces, Lemma 4.3 and we see
(4) ⇒ (1).

If Y is decent, then we can pick a quasi-compact monomorphism Spec(k′) → Y
in the equivalence class of y. In this case Lemma 16.6 tells us that |Xk′ | → F
is a homeomorphism. Combined with the arguments given above this implies the
remaining statements of the lemma; details omitted. �

17. Monomorphisms

Here is another case where monomorphisms are representable.

Lemma 17.1. Let S be a scheme. Let Y be a disjoint union of spectra of zero
dimensional local rings over S. Let f : X → Y be a monomorphism of algebraic
spaces over S. Then f is representable, i.e., X is a scheme.

Proof. This immediately reduces to the case Y = Spec(A) where A is a zero
dimensional local ring, i.e., Spec(A) = {mA} is a singleton. If X = ∅, then there
is nothing to prove. If not, choose a nonempty affine scheme U = Spec(B) and an
étale morphism U → X. As |X| is a singleton (as a subset of |Y |, see Morphisms
of Spaces, Lemma 10.9) we see that U → X is surjective. Note that U ×X U =
U ×Y U = Spec(B ⊗A B). Thus we see that the ring maps B → B ⊗A B are étale.
Since

(B ⊗A B)/mA(B ⊗A B) = (B/mAB)⊗A/mA
(B/mAB)

we see that B/mAB → (B⊗AB)/mA(B⊗AB) is flat and in fact free of rank equal to
the dimension of B/mAB as a A/mA-vector space. Since B → B⊗AB is étale, this
can only happen if this dimension is finite (see for example Morphisms, Lemmas
50.7 and 50.8). Every prime of B lies over mA (the unique prime of A). Hence
Spec(B) = Spec(B/mA) as a topological space, and this space is a finite discrete
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set as B/mAB is an Artinian ring, see Algebra, Lemmas 51.2 and 51.6. Hence all
prime ideals of B are maximal and B = B1× . . .×Bn is a product of finitely many
local rings of dimension zero, see Algebra, Lemma 51.5. Thus B → B⊗AB is finite
étale as all the local rings Bi are henselian by Algebra, Lemma 145.11. Thus X is
an affine scheme by Groupoids, Proposition 21.8. �

18. Birational morphisms

The following definition of a birational morphism of algebraic spaces seems to be
the closest to our definition (Morphisms, Definition 9.1) of a birational morphism
of schemes.

Definition 18.1. Let S be a scheme. Let X and Y algebraic spaces over S.
Assume X and Y are decent and that |X| and |Y | have finitely many irreducible
components. We say a morphism f : X → Y is birational if

(1) |f | induces a bijection between the set of generic points of irreducible com-
ponents of |X| and the set of generic points of the irreducible components
of |Y |, and

(2) for every generic point x ∈ |X| of an irreducible component the local ring
map OY,f(x) → OX,x is an isomorphism (see clarification below).

Clarification: Since X and Y are decent the topological spaces |X| and |Y | are
sober (Proposition 10.6). Hence condition (1) makes sense. Moreover, because we
have assumed that |X| and |Y | have finitely many irreducible components, we see
that the generic points x1, . . . , xn ∈ |X|, resp. y1, . . . , yn ∈ |Y | are contained in any
dense open of |X|, resp. |Y |. In particular, they are contained in the schematic
locus of X, resp. Y by Theorem 9.2. Thus we can define OX,xi

, resp. OY,yi to be
the local ring of this scheme at xi, resp. yi.

Another and perhaps better way to say all of this is that the morphism f : X → Y
is birational if there exist dense open subspaces X ′ ⊂ X and Y ′ ⊂ Y such that

(1) f(X ′) ⊂ Y ′,
(2) X ′ and Y ′ are representable, and
(3) f |X′ : X ′ → Y ′ is birational in the sense of Morphisms, Definition 9.1.

However, we do insist that X and Y are decent with finitely many irreducible
components.

Lemma 18.2. Let S be a scheme. Let f : X → Y be a morphism of algebraic
spaces over S which are decent and have finitely many irreducible components. If
f is birational then f is dominant.

Proof. Follows immediately from the definitions. See Morphisms of Spaces, Defi-
nition 18.1. �
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