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1. Introduction

00 O Ui NN

In this chapter we work out basic notions of sheaves of modules. This in particular
includes the case of abelian sheaves, since these may be viewed as sheaves of Z-

modules. Basic references are [Ser55|, [DG6T] and [AGVTI].

We work out what happens for sheaves of modules on ringed topoi in another chap-

ter (see Modules on Sites, Section , although there we will mostly just duplicate

the discussion from this chapter.

This is a chapter of the Stacks Project, version 714994, compiled on Oct 28, 2014.
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2 SHEAVES OF MODULES

2. Pathology

A ringed space is a pair consisting of a topological space X and a sheaf of rings O.
We allow O = 0 in the definition. In this case the category of modules has a single
object (namely 0). It is still an abelian category etc, but it is a little degenerate.
Similarly the sheaf O may be zero over open subsets of X, etc.

This doesn’t happen when considering locally ringed spaces (as we will do later).

3. The abelian category of sheaves of modules

Let (X,0Ox) be a ringed space, see Sheaves, Definition Let F, G be sheaves
of Ox-modules, see Sheaves, Definition Let ¢,9 : F — G be morphisms of
sheaves of Ox-modules. We define ¢ + ¢ : F — G to be the map which on each
open U C X is the sum of the maps induced by ¢, 1. This is clearly again a map
of sheaves of Ox-modules. It is also clear that composition of maps of O x-modules
is bilinear with respect to this addition. Thus Mod(Ox) is a pre-additive category,
see Homology, Definition (3.1

We will denote 0 the sheaf of Ox-modules which has constant value {0} for all
open U C X. Clearly this is both a final and an initial object of Mod(Ox). Given
a morphism of Ox-modules ¢ : F — G the following are equivalent: (a) ¢ is zero,
(b) ¢ factors through 0, (¢) ¢ is zero on sections over each open U, and (d) ¢, =0
for all x € X. See Sheaves, Lemma [16.1

Moreover, given a pair F, G of sheaves of Ox-modules we may define the direct
sum as

FOG=FxgG

with obvious maps (i, j, p, ¢) as in Homology, Definition Thus Mod(Ox) is an
additive category, see Homology, Definition [3.8

Let ¢ : F — G be a morphism of Ox-modules. We may define Ker(¢) to be the
subsheaf of F with sections

Ker(p)(U) = {s € F(U) | ¢(s) = 0 in G(U)}

for all open U C X. It is easy to see that this is indeed a kernel in the category
of Ox-modules. In other words, a morphism « : H — F factors through Ker(y) if
and only if ¢ o« = 0. Moreover, on the level of stalks we have Ker(y¢), = Ker(p,,).

On the other hand, we define Coker(p) as the sheaf of Ox-modules associated to
the presheaf of Ox-modules defined by the rule

U — Coker(G(U) — F(U)) = F(U)/o(G(U)).

Since taking stalks commutes with taking sheafification, see Sheaves, Lemma [17.2
we see that Coker(p), = Coker(yp,). Thus the map G — Coker(¢p) is surjective (as
a map of sheaves of sets), see Sheaves, Section To show that this is a cokernel,
note that if 8 : G — H is a morphism of Ox-modules such that § o ¢ is zero,
then you get for every open U C X a map induced by 8 from G(U)/¢(F(U)) into
H(U). By the universal property of sheafification (see Sheaves, Lemma we
obtain a canonical map Coker(¢) — H such that the original 8 is equal to the
composition G — Coker(p) — H. The morphism Coker(yp) — H is unique because
of the surjectivity mentioned above.
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Lemma 3.1. Let (X,Ox) be a ringed space. The category Mod(Ox) is an abelian
category. Moreover a complex

F—=G—-H
is exact at G if and only if for all x € X the complex

Fo = Go = Hy
1s exact at G,.

Proof. By Homology, Definition we have to show that image and coimage
agree. By Sheaves, Lemma it is enough to show that image and coimage have
the same stalk at every x € X. By the constructions of kernels and cokernels above
these stalks are the coimage and image in the categories of Ox ;-modules. Thus we
get the result from the fact that the category of modules over a ring is abelian. [

Actually the category Mod(Ox ) has many more properties. Here are two construc-
tions we can do.

(1) Given any set I and for each i € I a Ox-module we can form the product

L7

which is the sheaf that associates to each open U the product of the modules
Fi(U). This is also the categorical product, as in Categories, Definition
14.5]

(2) Given any set I and for each ¢ € I a Ox-module we can form the direct

sum
D,
el

which is the sheafification of the presheaf that associates to each open U the
direct sum of the modules F;(U). This is also the categorical coproduct, as
in Categories, Definition To see this you use the universal property
of sheafification.

Using these we conclude that all limits and colimits exist in Mod(Ox).

Lemma 3.2. Let (X,Ox) be a ringed space.

(1) All limits exist in Mod(Ox). Limits are the same as the corresponding
limits of presheaves of Ox -modules (i.e., commute with taking sections over
opens).

(2) All colimits exist in Mod(Ox). Colimits are the sheafification of the corre-
sponding colimit in the category of presheaves. Taking colimits commutes
with taking stalks.

(3) Filtered colimits are exact.

(4) Finite direct sums are the same as the corresponding finite direct sums of
presheaves of Ox-modules.

Proof. As Mod(Ox) is abelian (Lemma it has all finite limits and colim-
its (Homology, Lemma . Thus the existence of limits and colimits and their
description follows from the existence of products and coproducts and their de-
scription (see discussion above) and Categories, Lemmas and Since
sheafification commutes with taking stalks we see that colimits commute with tak-
ing stalks. Part (3) signifies that given a system 0 — F; — G; — H; — 0 of
exact sequences of Ox-modules over a directed partially ordered set I the sequence
0 — colimF; — colimG; — colimH; — 0 is exact as well. Since we can check
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exactness on stalks (Lemma this follows from the case of modules which is
Algebra, Lemma We omit the proof of (4). O

The existence of limits and colimits allows us to consider exactness properties of
functors defined on the category of O-modules in terms of limits and colimits, as
in Categories, Section See Homology, Lemma for a description of exactness
properties in terms of short exact sequences.

Lemma 3.3. Let f: (X,0x) — (Y,Oy) be a morphism of ringed spaces.
(1) The functor f. : Mod(Ox) — Mod(Oy) is left exact. In fact it commutes
with all limits.
(2) The functor f* : Mod(Oy) — Mod(Ox) is right exact. In fact it commutes

with all colimits.
(3) Pullback f=1: Ab(Y) — Ab(X) on abelian sheaves is exact.

Proof. Parts (1) and (2) hold because (f*, f.) is an adjoint pair of functors, see
Sheaves, Lemma [26.2] and Categories, Section [24] Part (3) holds because exactness
can be checked on stalks (Lemma and the description of stalks of the pullback,
see Sheaves, Lemma [22.1 O

Lemma 3.4. Let 7 : U — X be an open immersion of topological spaces. The
functor ji : Ab(U) — Ab(X) is exact.

Proof. Follows from the description of stalks given in Sheaves, Lemma O

Lemma 3.5. Let (X,Ox) be a ringed space. Let I be a set. Fori € 1, let F; be a
sheaf of Ox-modules. For U C X quasi-compact open the map

.70 = (D7)
is bijective.
Proof. If s is an element of the right hand side, then there exists an open covering
U = Uje, Uj such that s|y, is a finite sum 3., sji with s5; € F(Uj). Because
U is quasi-compact we may assume that the covering is finite, i.e., that J is finite.
Then I" = J;c; I; is a finite subset of I. Clearly, s is a section of the subsheaf

@D, Fi- The result follows from the fact that for a finite direct sum sheafification
is not needed, see Lemma [3.2] above. O

4. Sections of sheaves of modules

Let (X, Ox) be aringed space. Let F be a sheaf of Ox-modules. Let s € I'(X, F) =
F(X) be a global section. There is a unique map of Ox-modules

Ox — F, fr—>fs

associated to s. The notation above signifies that a local section f of Oy, i.e., a
section f over some open U, is mapped to the multiplication of f with the restriction
of s to U. Conversely, any map ¢ : Ox — F gives rise to a section s = ¢(1) such
that ¢ is the morphism associated to s.

Definition 4.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
We say that F is generated by global sections if there exist a set I, and global
sections s; € I'(X, F), ¢ € I such that the map

@ig Ox — F
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which is the map associated to s; on the summand corresponding to 4, is surjective.
In this case we say that the sections s; generate F.

We often use the abuse of notation introduced in Sheaves, Section[11] where, given a
local section s of F defined in an open neighbourhood of a point z € X, we denote
Sz, Or even s the image of s in the stalk F,.

Lemma 4.2. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules. Let
I be a set. Let s; € (X, F), i € I be global sections. The sections s; generate F if
and only if for all x € X the elements s; , € F, generate the Ox z-module F.

Proof. Omitted. O

Lemma 4.3. Let (X,0x) be a ringed space. Let F, G be sheaves of Ox-modules.
If F and G are generated by global sections then so is F ®oy G.

Proof. Omitted. O

Lemma 4.4. Let (X,0x) be a ringed space. Let F be a sheaf of Ox-modules. Let
I be a set. Let s;, i € I be a collection of local sections of F, i.e., s; € F(U;) for
some opens U; C X. There exists a unique smallest subsheaf of Ox-modules G such
that each s; corresponds to a local section of G.

Proof. Consider the subpresheaf of Ox-modules defined by the rule
U — {sums ZGJ fi(silu) where J is finite, U C U; for i € J, and f; € Ox(U)}

Let G be the sheafification of this subpresheaf. This is a subsheaf of F by Sheaves,
Lemma Since all the finite sums clearly have to be in G this is the smallest
subsheaf as desired. O

Definition 4.5. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
Given a set I, and local sections s;, ¢ € I of F we say that the subsheaf G of Lemma
above is the subsheaf generated by the s;.

Lemma 4.6. Let (X,0x) be a ringed space. Let F be a sheaf of Ox-modules.
Given a set I, and local sections s;, i € I of F. Let G be the subsheaf generated
by the s; and let x € X. Then G, is the Ox 5-submodule of F, generated by the
elements s; 5 for those i such that s; is defined at x.

Proof. This is clear from the construction of G in the proof of Lemma [4.4 O

5. Supports of modules and sections

Definition 5.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
(1) The support of F is the set of points x € X such that F, # 0.
(2) We denote Supp(F) the support of F.
(3) Let s € T'(X,F) be a global section. The support of s is the set of points
z € X such that the image s, € F, of s is not zero.

Of course the support of a local section is then defined also since a local section is
a global section of the restriction of F.

Lemma 5.2. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules. Let
U C X open.
(1) The support of s € F(U) is closed in U.
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(2) The support of fs is contained in the intersections of the supports of f €
Ox(U) and s € F(U)

(3) The support of s + s' is contained in the union of the supports of s,s’ €
F(U).

(4) The support of F is the union of the supports of all local sections of F.

(5) If o : F — G is a morphism of Ox-modules, then the support of ¢(s) is
contained in the support of s € F(U).

Proof. This is true because if s, = 0, then s is zero in an open neighbourhood of
x by definition of stalks. Similarly for f. Details omitted. O

In general the support of a sheaf of modules is not closed. Namely, the sheaf could
be an abelian sheaf on R (with the usual archimedean topology) which is the direct
sum of infinitely many nonzero skyscraper sheaves each supported at a single point
p; of R. Then the support would be the set of points p; which may not be closed.

Another example is to consider the open immersion j : U = (0,00) - R = X, and
the abelian sheaf jiZ;;. By Sheaves, Section [31| the support of this sheaf is exactly
U.

Lemma 5.3. Let X be a topological space. The support of a sheaf of rings is closed.

Proof. This is true because (according to our conventions) a ring is 0 if and only
if 1 = 0, and hence the support of a sheaf of rings is the support of the unit
section. O

6. Closed immersions and abelian sheaves

Recall that we think of an abelian sheaf on a topological space X as a sheaf of
Z y-modules. Thus we may apply any results, definitions for sheaves of modules to
abelian sheaves.

Lemma) 6.1. Let X be a topological space. Let Z C X be a closed subset. Denote
i:Z — X the inclusion map. The functor

iyt Ab(Z) — AB(X)

is exact, fully faithful, with essential image exactly those abelian sheaves whose
support is contained in Z. The functor i~' is a left inverse to i,.

Proof. Exactness follows from the description of stalks in Sheaves, Lemma [32.1
and Lemma The rest was shown in Sheaves, Lemma [32.3 O

Let F be a sheaf on X. There is a canonical subsheaf of F which consists of exactly
those sections whose support is contained in Z. Here is the exact statement.

Lemma 6.2. Let X be a topological space. Let Z C X be a closed subset. Let F
be a sheaf on X. For U C X open set

DU, Hz(F)) ={se€ F(U) | the support of s is contained in Z N U}

Then Hz(F) is an abelian subsheaf of F. It is the largest abelian subsheaf of F
whose support is contained in Z. The construction F — Hz(F) is functorial in the
abelian sheaf F.

Proof. This follows from Lemma [5.2] O
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This seems like a good opportunity to show that the functor i, has a right adjoint
on abelian sheaves.

Lemmal 6.3. Leti: Z — X be the inclusion of a closed subset into the topological
space X . Denoteﬂ it Ab(X) — Ab(Z) the functor F v i *Hz(F). Theni' is a
right adjoint to i., in a formula

Mor gp(x) (@G, F) = MorAb(Z)(gJ!]:).
In particular i, commutes with arbitrary colimits.

Proof. Note that i,i'F = Hz(F). Since i, is fully faithful we are reduced to
showing that

MOYAb(X) (Z*g, f) = MOI‘Ab(X) (Z*g, Hz(f))

This follows since the support of the image via any homomorphism of a section of
1,G is supported on Z, see Lemma (5.2 O

Remark 6.4. In Sheaves, Remark we showed that i, as a functor on the
categories of sheaves of sets does not have a right adjoint simply because it is not
exact. However, it is very close to being true, in fact, the functor i, is exact on
sheaves of pointed sets, sections with support in Z can be defined for sheaves of
pointed sets, and i' makes sense and is a right adjoint to i,.

7. A canonical exact sequence

We give this exact sequence its own section.

Lemma 7.1. Let X be a topological space. Let U C X be an open subset with
complement Z C X. Denote j : U — X the open immersion and i : Z — X the
closed immersion. For any sheaf of abelian groups F on X the adjunction mappings
Ng*F = F and F — i,.0*F give a short exact sequence

0= jij"F—>F =i 0"F—0

of sheaves of abelian groups. For any morphism ¢ : F — G of abelian sheaves on
X we obtain a morphism of short exact sequences

00— jij*F — > F — i, i* F——=0

L

0 NIVNY g 00" ——=0

Proof. We may check exactness on stalks (Lemma . For a description of the
stalks in question see Sheaves, Lemmas and We omit the proof of the
functorial behaviour of the exact sequence. O

LThis is likely nonstandard notation.
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8. Modules locally generated by sections

Let (X,0x) be a ringed space. In this and the following section we will often
restrict sheaves to open subspaces U C X, see Sheaves, Section In particular,
we will often denote the open subspace by (U, Op) instead of the more correct
notation (U, Ox|v), see Sheaves, Definition [31.2]

Consider the open immersion j : U = (0,00) - R = X, and the abelian sheaf
J1Zy;. By Sheaves, Section 31| the stalk of j1Z;; at x = 0 is 0. In fact the sections
of this sheaf over any open interval containing 0 are 0. Thus there is no open
neighbourhood of the point 0 over which the sheaf can be generated by sections.

Definition 8.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
We say that F is locally generated by sections if for every x € X there exists an open
neighbourhood U such that F|y is globally generated as a sheaf of Opy-modules.

In other words there exists a set I and for each ¢ a section s; € F(U) such that the
associated map

@ieI Ov — Flu

is surjective.

Lemma 8.2. Let f : (X,0x) — (Y,0Oy) be a morphism of ringed spaces. The
pullback f*G is locally generated by sections if G is locally generated by sections.

Proof. Given an open subspace V of Y we may consider the commutative diagram
of ringed spaces
(f7V,0p-1y) — (X, Ox)

/| |
(V,0v) (Y, Oy)

We know that f*G|;-1y = (f')*(G|v), see Sheaves, Lemma Thus we may
assume that G is globally generated.

We have seen that f* commutes with all colimits, and is right exact, see Lemma
[3:3] Thus if we have a surjection

@, Oy -G —=0
el
then upon applying f* we obtain the surjection
*
D, 0x g0

This implies the lemma. [

9. Modules of finite type

Definition 9.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
We say that F is of finite type if for every x € X there exists an open neighbourhood
U such that F|y is generated by finitely many sections.

Lemma 9.2. Let f : (X,0x) — (Y,0Oy) be a morphism of ringed spaces. The
pullback f*G of a finite type Oy -module is a finite type Ox-module.
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Proof. Arguing as in the proof of Lemma [8.2] we may assume G is globally gener-
ated by finitely many sections. We have seen that f* commutes with all colimits,
and is right exact, see Lemma [3.3] Thus if we have a surjection

@izl‘ n@y—)gﬁo

vy

then upon applying f* we obtain the surjection
P. Ox = f*G — 0.
=1 n

This implies the lemma. U

geeey

Lemma 9.3. Let X be a ringed space. The image of a morphism of Ox-modules of
finite type is of finite type. Let 0 — F1 — Fo — F3 — 0 be a short exact sequence
of Ox-modules. If F1 and Fs are of finite type, so is Fa.

Proof. The statement on images is trivial. The statement on short exact sequences
comes from the fact that sections of F3 locally lift to sections of F3 and the cor-
responding result in the category of modules over a ring (applied to the stalks for
example). O

Lemma 9.4. Let X be a ringed space. Let ¢ : G — F be a homomorphism of Ox -
modules. Let x € X. Assume F of finite type and the map on stalks oy : G — Fu
surjective. Then there exists an open neighbourhood x € U C X such that |y is
surjective.

Proof. Choose an open neighbourhood U C X such that F is generated by
S1y-+.,8, € F(U) over U. By assumption of surjectivity of ., after shrinking
U we may assume that s; = ¢(t;) for some ¢; € G(U). Then U works. O

Lemma 9.5. Let X be a ringed space. Let F be an Ox-module. Let x € X.
Assume F of finite type and F, = 0. Then there exists an open neighbourhood
x €U C X such that Fly is zero.

Proof. This is a special case of Lemma applied to the morphism 0 — F. [

Lemma 9.6. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules. If
F is of finite type then support of F is closed.

Proof. This is a reformulation of Lemma [9.5] O

Lemmal 9.7. Let X be a ringed space. Let I be a partially ordered set and let
(Fi, fiir) be a system over I consisting of sheaves of Ox-modules (see Categories,
Section [21]). Let F = colim F; be the colimit. Assume (a) I is directed, (b) F is
a finite type Ox-module, and (c) X is quasi-compact. Then there exists an i such
that F; — F is surjective. If the transition maps f;; are injective then we conclude
that F = F; for some i € I.

Proof. Let x € X. There exists an open neighbourhood U C X of x and finitely
many sections s; € F(U), j = 1,...,m such that si,...,s,, generate F as Op-
module. After possibly shrinking U to a smaller open neighbourhood of x we may
assume that each s; comes from a section of F; for some ¢ € I. Hence, since X is
quasi-compact we can find a finite open covering X = (J i—1...m Uj, and for each
J an index 4; and finitely many sections s;; € F;, (U;) whose images generate the
restriction of F to U;. Clearly, the lemma holds for any index ¢ € I which is > all
ij. O
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Lemma 9.8. Let X be a ringed space. There exists a set of Ox-modules {F;}icr
of finite type such that each finite type Ox-module on X is isomorphic to exactly
one of the F;.

Proof. For each open covering U/ : X = |JU; consider the sheaves of Ox-modules
JF such that each restriction F \Uj is a quotient of (99: for some r; > 0. These are

parametrized by subsheaves IC; C O;B:j and glueing data

Pjjr Og:%Uj,/(’Cj\Uij,) — Oz?:%/Uj,/(’CﬂUmUj/)
see Sheaves, Section[33] Note that the collection of all glueing data forms a set. The
collection of all coverings U : X = (J;c; Ui where J — P(X), j — Uj is injective
forms a set as well. Hence the collection of all sheaves of Ox-modules gotten from
glueing quotients as above forms a set Z. By definition every finite type O x-module
is isomorphic to an element of Z. Choosing an element out of each isomorphism
class inside Z gives the desired set of sheaves (uses axiom of choice). O

10. Quasi-coherent modules

In this section we introduce an abstract notion of quasi-coherent O x-module. This
notion is very useful in algebraic geometry, since quasi-coherent modules on a
scheme have a good description on any affine open. However, we warn the reader
that in the general setting of (locally) ringed spaces this notion is not well behaved
at all. The category of quasi-coherent sheaves is not abelian in general, infinite
direct sums of quasi-coherent sheaves aren’t quasi-coherent, etc, etc.

Definition 10.1. Let (X, Ox) be a ringed space. Let F be a sheaf of O x-modules.
We say that F is a quasi-coherent sheaf of Ox-modules if for every point x € X
there exists an open neighbourhood x € U C X such that F|y is isomorphic to the

cokernel of a map
@jeJ Ov — @iel Ou

The category of quasi-coherent O x-modules is denoted QCoh(Ox).

The definition means that X is covered by open sets U such that F|y has a pre-
sentation of the form

@]EJ OU — ®i61 OU — F‘U — 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point z of X there exists an open neighbourhood such that F|y
is generated by global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection
is also generated by global sections.

Lemma 10.2. Let (X, Ox) be a ringed space. The direct sum of two quasi-coherent
Ox -modules is a quasi-coherent O x -module.

Proof. Omitted. O

Remark| 10.3. Warning: It is not true in general that an infinite direct sum
of quasi-coherent Ox-modules is quasi-coherent. For more esoteric behaviour of
quasi-coherent modules see Example [10.9]
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Lemma 10.4. Let f : (X,0x) — (Y,Oy) be a morphism of ringed spaces. The
pullback f*G of a quasi-coherent Oy -module is quasi-coherent.

Proof. Arguing as in the proof of Lemma [B:2] we may assume G has a global
presentation by direct sums of copies of Oy. We have seen that f* commutes with
all colimits, and is right exact, see Lemma [3.3] Thus if we have an exact sequence

@ja Oy — (P, ,0v =G0

then upon applying f* we obtain the exact sequence

@jg Ox — P, ,0x =[G 0.
This implies the lemma. O

This gives plenty of examples of quasi-coherent sheaves.

Lemma 10.5. Let (X,0Ox) be ringed space. Let oo : R — T'(X,0x) be a ring
homomorphism from a ring R into the ring of global sections on X. Let M be an
R-module. The following three constructions give canonically isomorphic sheaves
of Ox -modules:
(1) Letm: (X,0x) — ({x}, R) be the morphism of ringed spaces withm : X —
{x} the unique map and with m-map 7 the given map o : R — T'(X, Ox).
Set F1 =7n*M.
(2) Choose a presentation B ;c; R — @;c; B — M — 0. Set

Fo = Coker (@jej Ox — @iel OX) .

Here the map on the component Ox corresponding to j € J given by the
section ), a(ry;) where the ry; are the matriz coefficients of the map in the
presentation of M.

(3) Set Fs equal to the sheaf associated to the presheaf U — Ox(U) ®r M,
where the map R — Ox(U) is the composition of o and the restriction
map Ox (X) — Ox(U).

This construction has the following properties:

(1) The resulting sheaf of Ox-modules Fyy = F1 = Fo = F3 is quasi-coherent.

(2) The construction gives a functor from the category of R-modules to the
category of quasi-coherent sheaves on X which commutes with arbitrary
colimits.

(3) For any x € X we have Farp = Ox 5 @r M functorial in M.

(4) Given any Ox-module G we have

MOI‘(QX (‘/—"M, g) - HOHIR(M7F(X7 g))

where the R-module structure on T'(X,G) comes from the T'(X, Ox)-module
structure via o.

Proof. The isomorphism between F; and F3 comes from the fact that 7* is defined
as the sheafification of the presheaf in (3), see Sheaves, Section The isomorphism
between the constructions in (2) and (1) comes from the fact that the functor 7*
is right exact, so 7*(@;c; R) = 7" (D,c; B) — 7" M — 0 is exact, 7* commutes
with arbitrary direct sums, see Lemma [3.3] and finally the fact that 7*(R) = Ox.


http://localhost:8080/tag/01BG
http://localhost:8080/tag/01BH

12 SHEAVES OF MODULES

Assertion (1) is clear from construction (2). Assertion (2) is clear since 7* has these
properties. Assertion (3) follows from the description of stalks of pullback sheaves,
see Sheaves, Lemma Assertion (4) follows from adjointness of 7, and 7*. O

Definition 10.6. In the situation of Lemmal[I0.5 we say Fas is the sheaf associated
to the module M and the ring map «. If R =T'(X,Ox) and o = id we simply say
Fr is the sheaf associated to the module M.

Lemma 10.7. Let (X,0Ox) be ringed space. Set R = I'(X,0x). Let M be an
R-module. Let Fu; be the quasi-coherent sheaf of Ox-modules associated to M. If
g : (Y,0y) — (X,0x) is a morphism of ringed spaces, then g*Fus is the sheaf
associated to the T'(Y, Oy )-module T(Y,Oy) g M.

Proof. The assertion follows from the first description of Fj; in Lemma [I0.5 as
7*M, and the following commutative diagram of ringed spaces

(Y,Oy) —— ({*},T'(Y, Oy))

!]l iindueed by gﬁ

(Xa OX) —— ({*}a F(Xa OX))
(Also use Sheaves, Lemma ) O

Lemma 10.8. Let (X,0Ox) be a ringed space. Let x € X be a point. Assume
that x has a fundamental system of quasi-compact neighbourhoods. Consider any
quasi-coherent O x -module F. Then there exists an open neighbourhood U of x such
that Fly is isomorphic to the sheaf of modules Fpr on (U, Oy) associated to some
(U, Oy)-module M.

Proof. First we may replace X by an open neighbourhood of x and assume that
F is isomorphic to the cokernel of a map

v @jGJ Ox — @iel Ox.

The problem is that this map may not be given by a “matrix”, because the module
of global sections of a direct sum is in general different from the direct sum of the
modules of global sections.

Let x € E C X be a quasi-compact neighbourhood of  (note: E may not be open).
Let x € U C E be an open neighbourhood of = contained in E. Next, we proceed as
in the proof of Lemma For each j € J denote s; € I'(X, P, ; Ox) the image of
the section 1 in the summand Ox corresponding to j. There exists a finite collection
of opens Ujy, k € K; such that £ C UkeKj Uji and such that each restriction s;|y;,

is a finite sum Zie[,-k fjrs with I, C I, and fjx; in the summand Ox corresponding
toi € I. Set I; = Uyey, Ljk- This is a finite set. Since U C E C Uk Ujk the
section s;|y is a section of the finite direct sum EBiGIj Ox. By Lemma (3.2 we see
that actually s;|u is a sum 32, fi; and fi; € Ox(U) =T(U, Ov).
At this point we can define a module M as the cokernel of the map

D, ,rv.00) =P, T, 0v)

with matrix given by the (f;;). By construction (2) of Lemma we see that Fys
has the same presentation as F|y and therefore Fys = Fly. O
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Example| 10.9. Let X be countably many copies Li, Lo, L3, ... of the real line
all glued together at 0; a fundamental system of neighbourhoods of 0 being the
collection {Up, }nen, with U,NL; = (—1/n,1/n). Let Ox be the sheaf of continuous
real valued functions. Let f: R — R be a continuous function which is identically
zero on (—1,1) and identically 1 on (—oo, —2) U (2,00). Denote f,, the continuous
function on X which is equal to x ~— f(nz) on each L; = R. Let 1z, be the
characteristic function of L;. We consider the map

69jeN Ox — 69j,z'eN Ox, ¢ ZiEN Filreeis
with obvious notation. This makes sense because this sum is locally finite as f; is
zero in a neighbourhood of 0. Over U, the image of e;, for j > 2n is not a finite
linear combination ) g;je;; with g;; continuous. Thus there is no neighbourhood
of 0 € X such that the displayed map is given by a “matrix” as in the proof of
Lemma above.

Note that B,y Ox is the sheaf associated to the free module with basis e; and
similarly for the other direct sum. Thus we see that a morphism of sheaves asso-
ciated to modules in general even locally on X does not come from a morphism of
modules. Similarly there should be an example of a ringed space X and a quasi-
coherent Ox-module F such that F is not locally of the form Fj;. (Please email
if you find one.) Moreover, there should be examples of locally compact spaces X
and maps Fp — Fy which also do not locally come from maps of modules (the
proof of Lemma shows this cannot happen if N is free).

11. Modules of finite presentation

Definition 11.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
We say that F is of finite presentation if for every point x € X there exists an open
neighbourhood z € U C X, and n,m € N such that F|y is isomorphic to the

cokernel of a map
@j:1,...,m Ov — @z‘:l,...,n Ou

This means that X is covered by open sets U such that F|y has a presentation of

the form
Eszl,.-,,m Ov — @i:L‘..,n Oy — Flu — 0.

Here presentation signifies that the displayed sequence is exact. In other words
(1) for every point x of X there exists an open neighbourhood such that F|y
is generated by finitely many global sections, and
(2) for a suitable choice of these sections the kernel of the associated surjection
is also generated by finitely many global sections.

Lemma 11.2. Let (X,Ox) be a ringed space. Any Ox-module of finite presenta-
tion is quasi-coherent.

Proof. Immediate from definitions. O

Lemma 11.3. Let (X,0Ox) be a ringed space. Let F be a Ox-module of finite
presentation.

(1) If v : OF" — F is a surjection, then Ker(1) is of finite type.

(2) If 0 : G — F is surjective with G of finite type, then Ker(0) is of finite type.
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Proof. Proof of (1). Let € X. Choose an open neighbourhood U C X of = such
that there exists a presentation

ogm™ 5 0" 5 Flu = 0.

Let ex be the section generating the kth factor of O??T. For every k =1,...,r we
can, after shrinking U to a small neighbourhood of z, lift 1(e;) to a section & of
OF™ over U. This gives a morphism of sheaves a : OF" — OF" such that poa = 1.
Similarly, after shrinking U, we can find a morphism S : Og” — Of‘?r such that
1 o = . Then the map

@ @r Box,1—pBoa ey
oy e O ——— O
is a surjection onto the kernel of .

To prove (2) we may locally choose a surjection 1 : OF" — G. By part (1) we see
Ker(6 o n) is of finite type. Since Ker(0) = n(Ker(f o n)) we win. O

Lemma 11.4. Let f : (X,0x) — (Y,0Oy) be a morphism of ringed spaces. The
pullback f*G of a module of finite presentation is of finite presentation.

Proof. Exactly the same as the proof of Lemma but with finite index sets. O

Lemma 11.5. Let (X,O0x) be a ringed space. Set R = I'(X,Ox). Let M be an
R-module. The Ox-module Fur associated to M is a directed colimit of finitely
presented O x-modules.

Proof. This follows immediately from Lemma and the fact that any module
is a directed colimit of finitely presented modules, see Algebra, Lemma |8.13 g

Lemma 11.6. Let X be a ringed space. Let I be a partially ordered set and let
(Fi, iir) be a system over I consisting of sheaves of Ox-modules (see Categories,

Section , Assume
(1) I is directed,
(2) G is an Ox-module of finite presentation, and
(3) X has a cofinal system of open coverings U : X = ;¢ U; with J finite
and U; NUjr quasi-compact for all j,j' € J.
Then we have
colim; Homyx (G, F;) = Homx (G, colim; F;).

Proof. Let a be an element of the right hand side. For every point x € X we
may choose an open neighbourhood U C X and finitely many sections s; € G(U)
which generate G over U and finitely many relations > fi;s; = 0, k = 1,...,n
with fi; € Ox(U) which generate the kernel of @j:l,...,m Ou — G. After possibly
shrinking U to a smaller open neighbourhood of  we may assume there exists an
index i € I such that the sections a(s;) all come from sections s; € F;(U). After
possibly shrinking U to a smaller open neighbourhood of = and increasing ¢ we may
assume the relations fkjs;- = 0 hold in F;(U). Hence we see that a|y lifts to a
morphism G|y — F;|y for some index i € I.

By condition (3) and the preceding arguments, we may choose a finite open covering
X = U=, m Uj such that (a) G|y, is generated by finitely many sections s;x €
G(Uj), (b) the restriction |y, comes from a morphism a; : G — F;; for some
i; € I, and (c) the intersections U; N Ujs are all quasi-compact. For every pair
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(4,5") € {1,...,m}? and any k we can find we can find an index i > max(i;,i;/)
such that

viyi(a(siklu,nu,)) = @iyiley (siklu;nu,. )
see Sheaves, Lemma[29.1] (2). Since there are finitely many of these pairs (j, ;') and
finitely many s;, we see that we can find a single ¢ which works for all of them. For
this index 7 all of the maps ¢;; o a; agree on the overlaps U; N Uj: as the sections
sj, generate G over this overlap. Hence we get a morphism G — F; as desired. [

Remark| 11.7. In the lemma above some condition beyond the condition that X
is quasi-compact is necessary. See Sheaves, Example [29.2]

12. Coherent modules

The category of coherent sheaves on a ringed space X is a more reasonable object
than the category of quasi-coherent sheaves, in the sense that it is at least an abelian
subcategory of Mod(Ox) no matter what X is. On the other hand, the pullback
of a coherent module is “almost never” coherent in the general setting of ringed
spaces.

Definition 12.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.
We say that F is a coherent Ox -module if the following two conditions hold:
(1) F is of finite type, and
(2) for every open U C X and every finite collection s, € F(U), i =1,...,n
the kernel of the associated map @,_; , Ouv — Flv is of finite type.

.....

The category of coherent Ox-modules is denoted Coh(Ox).

Lemma 12.2. Let (X, Ox) be a ringed space. Any coherent Ox -module is of finite
presentation and hence quasi-coherent.

Proof. Let F be a coherent sheaf on X. Pick a point z € X. By (1) of the
definition of coherent, we may find an open neighbourhood U and sections s;,
the definition of coherent, we may find an opéﬁ’ neighbourhood V, z € V C U and
sections tq,...,t,, of @i:l,...,n Oy which generate the kernel of ¥|y,. Then over V
we get the presentation

@jzl mOv—>@Z_:1 nOv—>]:|V_>O

..........

as desired. O

Example| 12.3. Suppose that X is a point. In this case the definition above gives
a notion for modules over rings. What does the definition of coherent mean? It
is closely related to the notion of Noetherian, but it is not the same: Namely, the
ring R = Clz1, 22,3, . ..] is coherent as a module over itself but not Noetherian as
a module over itself. See Algebra, Section [87] for more discussion.

Lemma 12.4. Let (X,Ox) be a ringed space.

(1) Any finite type subsheaf of a coherent sheaf is coherent.

(2) Let ¢ : F — G be a morphism from a finite type sheaf F to a coherent sheaf
G. Then Ker(y) is finite type.

(3) Let ¢ : F — G be a morphism of coherent Ox-modules. Then Ker(p) and
Coker(yp) are coherent.
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(4) Given a short exact sequence of Ox-modules 0 — Fy — Fo — F3 — 0 if
two out of three are coherent so is the third.

(5) The category Coh(Ox) is a weak Serre subcategory of Mod(Ox). In partic-
ular, the category of coherent modules is abelian and the inclusion functor
Coh(Ox) = Mod(Ox) is exact.

Proof. Condition (2) of Definition holds for any subsheaf of a coherent sheaf.
Thus we get (1).

Assume the hypotheses of (2). Let us show that Ker(p) is of finite type. Pick
x € X. Choose an open neighbourhood U of = in X such that F|y is generated
by s1,...,8,. By Definition the kernel K of the induced map @, Oy — G,
e; — (s;) is of finite type. Hence Ker(y) which is the image of the composition
K — @, Ou — F is of finite type.

Assume the hypotheses of (3). By (2) the kernel of ¢ is of finite type and hence by
(1) it is coherent.

With the same hypotheses let us show that Coker(y) is coherent. Since G is of
finite type so is Coker(y). Let U C X be open and let 5; € Coker(¢)(U), i =
1,...,n be sections. We have to show that the kernel of the associated morphism
U : @, Ou — Coker(y) has finite type. There exists an open covering of U such
that on each open all the sections 3; lift to sections s; of G. Hence we may assume
this is the case over U. Thus ¥ lifts to U : @?:1 Ou — G Consider the following
diagram

0 ——Ker(¥) — ., Oy G 0

| |

0 —— Ker(V) ——= @, Oy — Coker(p) —=0

By the snake lemma we get a short exact sequence 0 — Ker(¥) — Ker(¥) —
Im(¢) — 0. Hence by Lemma [9.3| we see that Ker(¥) has finite type.

Proof of part (4). Let 0 — F; — F2 — F3 — 0 be a short exact sequence of
Ox-modules. By part (3) it suffices to prove that if F; and F3 are coherent so is
Fy. By Lemma we see that F, has finite type. Let s1,...,s, be finitely many
local sections of Fo defined over a common open U of X. We have to show that
the module of relations K between them is of finite type. Consider the following
commutative diagram

OHOH@?:loUH@?:loUHO

| |

0 Fi Fa F3 0

with obvious notation. By the snake lemma we get a short exact sequence 0 — K —
K3 — F1 where K3 is the module of relations among the images of the sections s;
in F3. Since F3 is coherent we see that K3 is finite type. Since F; is coherent we
see that the image Z of K3 — Fi is coherent. Hence K is the kernel of the map
K3 — Z between a finite type sheaf and a coherent sheaves and hence finite type

by (2).
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Proof of (5). This follows because (3) and (4) show that Homology, Lemma
applies. ([

Lemma 12.5. Let (X,Ox) be a ringed space. Let F be an Ox-module. Assume
Ox is a coherent Ox-module. Then F is coherent if and only if it is of finite
presentation.

Proof. Omitted. O

Lemma 12.6. Let X be a ringed space. Let p : G — F be a homomorphism of
Ox-modules. Let x € X. Assume G of finite type, F coherent and the map on
stalks @y @ G, — Fy injective. Then there exists an open neighbourhood x € U C X
such that ¢|y is injective.

Proof. Denote £ C G the kernel of ¢. By Lemma [12.4] we see that K is a finite
type Ox-module. Our assumption is that I, = 0. By Lemma there exists an
open neighbourhood U of z such that K|y = 0. Then U works. O

13. Closed immersions of ringed spaces

When do we declare a morphism of ringed spaces i : (Z,0z) — (X,Ox) to be a
closed immersion?

Motivated by the example of a closed immersion of normal topological spaces
(ringed with the sheaf of continuous functors), or differential manifolds (ringed
with the sheaf of differentiable functions), it seems natural to assume at least:

(1) The map 7 is a closed immersion of topological spaces.
(2) The associated map Ox — i.Oy is surjective. Denote the kernel by Z.

Already these conditions imply a number of pleasing results: For example we prove
that the category of Oz-modules is equivalent to the category of Ox-modules an-
nihilated by Z generalizing the result on abelian sheaves of Section [6]

However, in the Stacks project we choose the definition that guarantees that if ¢
is a closed immersion and (X,Ox) is a scheme, then also (Z,0z) is a scheme.
Moreover, in this situation we want i, and i* to provide an equivalence between
the category of quasi-coherent O z-modules and the category of quasi-coherent Ox-
modules annihilated by Z. A minimal condition is that i,Oz is a quasi-coherent
sheaf of Ox-modules. A good way to guarantee that 1,0z is a quasi-coherent O x-
module is to assume that Z is locally generated by sections. We can interpret this
condition as saying “(Z,Oz) is locally on (X, Ox) defined by setting some regular
functions f;, i.e., local sections of Ox, equal to zero”. This leads to the following
definition.

Definition 13.1. A closed immersion of ringed spaceﬁ isamorphism i : (Z,0z) —
(X, Ox) with the following properties:

(1) The map 7 is a closed immersion of topological spaces.
(2) The associated map Ox — i,.Oz is surjective. Denote the kernel by Z.
(3) The Ox-module Z is locally generated by sections.

2This is nonstandard notation; see discussion above.
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Actually, this definition still does not guarantee that i, of a quasi-coherent Oz-
module is a quasi-coherent O x-module. The problem is that it is not clear how to
convert a local presentation of a quasi-coherent O z-module into a local presentation
for the pushforward. However, the following is trivial.

Lemma 13.2. Leti: (Z,0z) = (X,0x) be a closed immersion of locally ringed
spaces. Let F be a quasi-coherent O z-module. Then i, F is locally on X the cokernel
of a map of quasi-coherent O x-modules.

Proof. This is true because i,Oz is quasi-coherent by definition. And locally on Z
the sheaf F is a cokernel of a map between direct sums of copies of Oz. Moreover,
any direct sum of copies of the the same quasi-coherent sheaf is quasi-coherent.
And finally, i, commutes with arbitrary colimits, see Lemma Some details
omitted. O

Lemma 13.3. Leti: (Z,0z) — (X,0x) be a morphism of ringed spaces. Assume
1 is a homeomorphism onto a closed subset of X and that Ox — 1.0y is surjective.
Let F be an Oz-module. Then i, F is of finite type if and only if F is of finite type.

Proof. Suppose that F is of finite type. Pick z € X. If x € Z, then i, F is
zero in a neighbourhood of x and hence finitely generated in a neighbourhood of
x. If x = i(z), then choose an open neighbourhood z € V C Z and sections
S1y-+.,8, € F(V) which generate F over V. Write V = Z N U for some open
U C X. Note that U is a neighbourhood of z. Clearly the sections s; give sections
s; of i, F over U. The resulting map

is surjective by inspection of what it does on stalks (here we use that Ox — i,Oz
is surjective). Hence i.F is of finite type.

Conversely, suppose that i.F is of finite type. Choose z € Z. Set z = i(z).
By assumption there exists an open neighbourhood U C X of z, and sections
S1y .-y 8n € (1xF)(U) which generate i, F over U. Set V.= ZNU. By definition of
i, the sections s; correspond to sections s; of F over V. The resulting map

<l Oy — Flv
i=1,...,n
is surjective by inspection of what it does on stalks. Hence F is of finite type. O

Lemma 13.4. Leti: (Z,0z) — (X,Ox) be a morphism of ringed spaces. Assume
i is a homeomorphism onto a closed subset of X and i* : Ox — 1,0y is surjective.
Denote T C Ox the kernel of i*. The functor

ix : Mod(Oz) — Mod(Ox)
is exact, fully faithful, with essential image those Ox-modules G such that TG = 0.
Proof. We claim that for a Oz-module F the canonical map
i F — F
is an isomorphism. We check this on stalks. Say z € Z and = = i(z). We have
(1" F)z = (ixF)z ®0x, Oz, = F. ®ox, Oz = F.

by Sheaves, Lemma the fact that Oz . is a quotient of Ox ,, and Sheaves,
Lemma, It follows that i, is fully faithful.
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Let G be a Ox-module with ZG = 0. If z € X, « & i(Z), then G, = 0 because
Z, = Ox in this case. Thus we see that G us supported on Z. By Lemma
we can write G = i,F for a unique abelian sheaf F on Z. Let W C Z be open,
f € Oz(W) and s € F(W). We define fs € F(W). Since i* is surjective we
can find opens U; C X such that W = (Ji~}(U;) and f|i~!(U;) is the image of
fi € Ox(U;). Note that s|;-1(y,) is an element of F(i~'(U;)) = G(U;). Thus we
can form s; = fjs € F(i~*(U;)) = G(U;). By our assumption that ZG = 0 the
sections s; are independent of the choice of f; lifting f|i~!(U;) and glue to a section
fs of F over W. In this way F becomes an Oz-module such that G = i, F. O

14. Locally free sheaves

Let (X, Ox) be a ringed space. Our conventions allow (some of) the stalks Ox , to
be the zero ring. This means we have to be a little careful when defining the rank
of a locally free sheaf.

Definition 14.1. Let (X, Ox) be a ringed space. Let F be a sheaf of Ox-modules.

(1) We say F is locally free if for every point x € X there exists a set I and an
open neighbourhood # € U C X such that F|y is isomorphic to @, ; Ox|v
as an Ox|y-module.

(2) We say F is finite locally free if we may choose the index sets I to be finite.

(3) We say F is finite locally free of rank r if we may choose the index sets T
to have cardinality 7.

A finite direct sum of (finite) locally free sheaves is (finite) locally free. However,
it may not be the case that an infinite direct sum of locally free sheaves is locally
free.

Lemma 14.2. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules. If
F is locally free then it is quasi-coherent.

Proof. Omitted. O

Lemma 14.3. Let f: (X,0x) — (Y, Oy) be a morphism of ringed spaces. If G is
a locally free Oy -module, then f*G is a locally free Ox -module.

Proof. Omitted. (]

Lemma 14.4. Let (X, Ox) be a ringed space. Suppose that the support of Ox is X,
i.e., all stalk of Ox are nonzero rings. Let F be a locally free sheaf of Ox-modules.
There exists a locally constant function

rankr : X — {0,1,2,...} U{oco}
such that for any point x € X the cardinality of any set I such that F is isomorphic
to @,c; Ox in a neighbourhood of x is rankr(x).

Proof. Under the assumption of the lemma the cardinality of I can be read off
from the rank of the free module F; over the nonzero ring Ox ., and it is constant
in a neighbourhood of . ([

Lemma 14.5. Let (X,Ox) be a ringed space. Let r > 0. Let ¢ : F — G be a map
of finite locally free Ox-modules of rank r. Then ¢ is an isomorphism if and only
if v is surjective.
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Proof. Assume ¢ is surjective. Pick € X. There exists an open neighbourhood
U of x such that both F|y and G|y are isomorphic to OF". Pick lifts of the free
generators of G|y to obtain a map ¢ : G|y — F|y such that |y o) = id. Hence
we conclude that the map I'(U,F) — I'(U,G) induced by ¢ is surjective. Since
both I'(U, F) and I'(U, G) are isomorphic to T'(U, Oy)®" as an I'(U, Oy )-module we
may apply Algebra, Lemma to see that I'(U, F) — I'(U, G) is injective. This
finishes the proof. (I

15. Tensor product

Let (X, Ox) be aringed space. Let F, G be Ox-modules. We have briefly discussed
the tensor product in the setting of change of rings in Sheaves, Sections [6] and
In exactly the same way we define first the tensor product presheaf

F ®p,@x g

as the rule which assigns to U C X open the Ox (U)-module F(U) ®o @ G(U).
Having defined this we define the tensor product sheaf as the sheafification of the
above:

F @0y G = (F ®pox 9)*
This can be characterized as the sheaf of Ox-modules such that for any third sheaf
of Ox-modules H we have

Home, (F ®oy G, H) = Bilinp, (F x G, H).

Here the right hand side indicates the set of bilinear maps of sheaves of O x-modules
(definition omitted).

The tensor product of modules M, N over a ring R satisfies symmetry, namely
M ®r N = N ®r M, hence the same holds for tensor products of sheaves of
modules, i.e., we have

F®oxG=0®0x F
functorial in F, G. And since tensor product of modules satisfies associativity we
also get canonical functorial isomorphisms

(F ®0y G) ®ox H=F R0y (G R0, H)
functorial in F, G, and H.

Lemma 15.1. Let (X, Ox) be a ringed space. Let F, G be Ox-modules. Letxz € X.
There is a canonical isomorphism of Ox z-modules

(‘F ®OX g)m = fm ®OX,m gz
functorial in F and G.
Proof. Omitted. O

Lemma 15.2. Let (X,0x) be a ringed space. Let F', G' be presheaves of Ox-
modules with sheafifications F, G. Then F @0y G = (F' ®p.0x G')*.

Proof. Omitted. O

Lemma 15.3. Let (X,Ox) be a ringed space. Let G be an Ox-module. If F; —
Fo — F3 — 0 is an exact sequence of Ox-modules then the induced sequence

Fi1Rox § = Fa®o0x § = F3R0,G—0

15 exact.
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Proof. This follows from the fact that exactness may be checked at stalks (Lemma
, the description of stalks (Lemma|l5.1)) and the corresponding result for tensor
products of modules (Algebra, Lemma [11.10)). (]

Lemma 15.4. Let f: (X,0x) — (Y,Oy) be a morphism of ringed spaces. Let F,
G be Oy-modules. Then f*(F ®o, G) = f*F Qo [*G functorially in F, G.

Proof. Omitted. U

Lemma 15.5. Let (X,Ox) be a ringed space. Let F, G be Ox-modules.

1) If F, G are locally generated by sections, so is F Qo G-

) If F, G are of finite type, so is F Qo G.

) If F, G are quasi-coherent, so is F Qo G.

) If F, G are of finite presentation, so is F @y G.

) If F is of finite presentation and G is coherent, then F ®o, G is coherent.
) If F, G are coherent, so is F Qo G.

)

(
(
(
(
(
(
(7) If F, G are locally free, so is F @0, G.

~ O U = W N

Proof. We first prove that the tensor product of locally free O x-modules is locally
free. This follows if we show that (B,c; Ox) ®ox (B;cs Ox) = D jyerxs Ox-
The sheaf @, ; Ox is the sheaf associated to the presheaf U — @, ; Ox(U).
Hence the tensor product is the sheaf associated to the presheaf

U (@, , 0x(U) 2orw) (@, 0x(V).

jeJ
We deduce what we want since for any ring R we have (D,;c; R) ®r (D;c; R) =
@(i,j)e[x.] R.

If » - 71 — F — 0 is exact, then by Lemma the complex o @ G —
F1®G - F®G — 0 is exact. Using this we can prove (5). Namely, in this
case there exists locally such an exact sequence with F;, ¢ = 1,2 finite free. Hence
the two terms F2 ® G are isomorphic to finite direct sums of G. Since finite direct

sums are coherent sheaves, these are coherent and so is the cokernel of the map,
see Lemma [[2.41

And if also Go — G — G — 0 is exact, then we see that
Fa®oyx G1 B F1 ®oy Ga = F1 R0y G1 = F R0, G —0

is exact. Using this we can for example prove (3). Namely, the assumption means
that we can locally find presentations as above with F; and G; free Ox-modules.
Hence the displayed presentation is a presentation of the tensor product by free
sheaves as well.

The proof of the other statements is omitted. O
Lemma 15.6. Let (X,0x) be a ringed space. For any Ox-module F the functor
Mod(Ox) — Mod(Ox), G+—— F®oG

commutes with arbitrary colimits.

Proof. Let I be a partially ordered set and let {G;} be a system over I. Set
G = colim; G;. Recall that G is the sheaf associated to the presheaf G’ : U +
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colim; G;(U), see Sheaves, Section By Lemma the tensor product F ®p, G
is the sheafification of the presheaf

Ur— F(U) @0 ) colim; G;(U) = colim; F(U) ®o vy Gi(U)

where the equality sign is Algebra, Lemma Hence the lemma follows from the
description of colimits in Mod(Ox). ]

16. Flat modules
We can define flat modules exactly as in the case of modules over rings.

Definition 16.1. Let (X, Ox) be a ringed space. An Ox-module F is flat if the
functor

MOd(Ox) — MOd(Ox), Q»—)Q@o]:

is exact.
We can characterize flatness by looking at the stalks.

Lemma 16.2. Let (X,Ox) be a ringed space. An Ox-module F is flat if and only
if the stalk F; is a flat Ox z-module for all x € X.

Proof. Assume F; is a flat Ox z-module for all x € X. In this case, if G = H — K
is exact, then also G ®v, F — H Qo F — K ®p, F is exact because we can
check exactness at stalks and because tensor product commutes with taking stalks,
see Lemma Conversely, suppose that F is flat, and let x € X. Consider the
skyscraper sheaves i, .M where M is a Ox y-module. Note that

M Q0x .« Fu = (imy*M Rox ‘7:);1;

again by Lemma|[T5.1] Since i, . is exact, we see that the fact that F is flat implies
that M — M ®o, , Fz is exact. Hence F, is a flat Ox ,-module. [l

Thus the following definition makes sense.

Definition 16.3. Let (X, Ox) be a ringed space. Let © € X. An Ox-module F
is flat at x if F, is a flat Ox z-module.

Hence we see that F is a flat Ox-module if and only if it is flat at every point.

Lemma 16.4. Let (X, Ox) be a ringed space. A filtered colimit of flat Ox -modules
is flat. A direct sum of flat Ox-modules is flat.

Proof. This follows from Lemma, Lemma, Algebra, Lemma [8.9] and the
fact that we can check exactness at stalks. ([l

Lemma 16.5. Let (X,0x) be a ringed space. Let U C X be open. The sheaf

Jju1Ou is a flat sheaf of Ox-modules.

Proof. The stalks of ji1Op are either zero or equal to Ox .. Apply Lemma[16.2]
O

Lemma 16.6. Let (X,Ox) be a ringed space.

(1) Any sheaf of Ox-modules is a quotient of a direct sum @ ju,Ou,.
(2) Any Ox-module is a quotient of a flat O x-module.
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Proof. Let F be an Ox-module. For every open U C X and every s € F(U)
we get a morphism j; Oy — F, namely the adjoint to the morphism Oy — Fly,
1+~ s. Clearly the map

@(U,S) JjuOu — F
is surjective, and the source is flat by combining Lemmas and ([
Lemma 16.7. Let (X,Ox) be a ringed space. Let
0=->F'-F -F—=0

be a short exact sequence of Ox-modules. Assume F is flat. Then for any Ox-
module G the sequence

0= F'®0G—=F ®0G—=FR0G—0

15 exact.

Proof. Using that F, is a flat Ox ;-module for every x € X and that exactness
can be checked on stalks, this follows from Algebra, Lemma [38.11 O

Lemma 16.8. Let (X,Ox) be a ringed space. Let
0—=Fr—=F1—=Fp—0

be a short exact sequence of Ox-modules.
(1) If F2 and Fy are flat so is Fi.
(2) If F1 and Fo are flat so is Fo.

Proof. Since exactness and flatness may be checked at the level of stalks this
follows from Algebra, Lemma [38.12 O

Lemma 16.9. Let (X,Ox) be a ringed space. Let
—>f2—>f1—)f0—)Q—>0

be an exact complex of Ox-modules. If Q and all F; are flat Ox-modules, then for
any Ox-module G the complex

= a0, 0> F1®0y G = FoR0, 9= QR0 G —0
is exact also.

Proof. Follows from Lemma [16.7] by splitting the complex into short exact se-
quences and using Lemma [16.8|to prove inductively that Im(F;1 — F;) is flat. O

The following lemma gives one direction of the equational criterion of flatness (Al-
gebra, Lemma [38.10)).

Lemma 16.10. Let (X,Ox) be a ringed space. Let F be a flat Ox-module. Let
U C X be open and let

Oy firfn O%n (815---r8n) ]__|U

be a complex of Oy-modules. For every x € U there exists an open neighbourhood
V CU of x and a factorization

A t1,.tm
ogn 4 ogm tmtn), £y,

of (81,...,8n)|v such that Ao (f1,..., fa)|lv =0.
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Proof. Let Z C Oy be the sheaf of ideals generated by f1,..., fn. Then > f; ® s;
is a section of T ®¢p, F|y which maps to zero in F|y. As F|y is flat the map
T ®o, Flu — Flu is injective. Since Z ®p,, F|v is the sheaf associated to the
presheaf tensor product, we see there exists an open neighbourhood V C U of z
such that ) filv ® si|v is zero in Z(V) ®ovy F(V). Unwinding the definitions
using Algebra, Lemma [103.10] we find ¢y, ..., tn, € F(V) and a;; € O(V) such that
Zai]‘filv =0 and S,‘|V =Zaijtj. U
Lemma 16.11. Let (X,Ox) be a ringed space. Let F be locally of finite presenta-
tion and flat. Then F is locally a direct summand of a finite free Ox-module.

Proof. After replacing X by the members of an open covering, we may assume
there exists a presentation

oY - 0% - F =0
Let x € X. By Lemma [16.10] we can, after shrinking X to an open neighbourhood
of x, assume there exists a factorization
® ®
oy" = o™ = F
such that the composition O?@T — (’)?@” — (’)i’?m annihilates the first summand of
(’)i’?r. Repeating this argument » — 1 more times we obtain a factorization
53] Sn,
oy" — Ox" = F

such that the composition (’)?@T — (’)g’?n — (’)i’?"r is zero. This means that the
surjection O™ — F has a section and we win. O

17. Flat morphisms of ringed spaces
The pointwise definition is motivated by Lemma and Definition above.

Definition 17.1. Let f : X — Y be a morphism of ringed spaces. Let x € X. We
say f is said to be flat at x if the map of rings Oy, ) — Ox . is flat. We say f is
flat if f is flat at every z € X.

Consider the map of sheaves of rings f#: f~10y — Ox. We see that the stalk at
is the ring map f% : Oy, f(z) = Ox .- Hence f is flat at z if and only if Ox is flat at
x as an f~'Oy-module. And f is flat if and only if Oy is flat as an f~'Oy-module.
A very special case of a flat morphism is an open immersion.

Lemmal 17.2. Let f : X — Y be a flat morphism of ringed spaces. Then the
pullback functor f*: Mod(Oy) — Mod(Ox) is exact.

Proof. The functor f* is the composition of the exact functor f=1 : Mod(Oy) —
Mod(f~'Oy) and the change of rings functor

Mod(f~'Oy) = Mod(Ox), F+— F @10, Ox.
Thus the result follows from the discussion following Definition O

Definition 17.3. Let f: (X,Ox) — (Y, Oy) be a morphism of ringed spaces. Let
F be a sheaf of Ox-modules.
(1) We say that F is flat over Y at a point x € X if the stalk F, is a flat
Oy, («)-module.
(2) We say that F is flat over Y if F is flat over Y at every point z of X.
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With this definition we see that F is flat over Y at x if and only if F is flat at x as
an f~!Oy-module because (f~'0y), = Oy, #(x) by Sheaves, Lemmam

18. Symmetric and exterior powers

Let (X,0Ox) be a ringed space. Let F be an Ox-algebra. We define the tensor
algebra of F to be the sheaf of noncommutative Ox-algebras

T(F) =Tox(F) =P, _, T"(F)-
Here T(F) = Ox, T!(F) = F and for n > 2 we have
T"(F)=F Qoy ---®ox F (n factors)
We define A(F) to be the quotient of T(F) by the two sided ideal generated by
local sections s ® s of T?(F) where s is a local section of F. This is called the

exterior algebra of F. Similarly, we define Sym(F) to be the quotient of T(F) by
the two sided ideal generated by local sections of the form s @ t —t ® s of T?(F).

Both A(F) and Sym(F) are graded Ox-algebras, with grading inherited from T(F).
Moreover Sym(F) is commutative, and A(F) is graded commutative.

Lemmal 18.1. In the situation described above. The sheaf AN F is the sheafification
of the presheaf
See Algebra, Section [13.  Similarly, the sheaf Sym"F is the sheafification of the
presheaf

U — Symo ) (F(U)).

Proof. Omitted. It may be more efficient to define Sym(F) and A(F) in this way
instead of the method given above. O

Lemma 18.2. In the situation described above. Let x € X. There are canon-
ical isomorphisms of Ox z-modules T(F)y = T(Fy), Sym(F)y = Sym(Fy), and
AF)e = NFz).

Proof. Clear from Lemma [I8:1] above, and Algebra, Lemma [12.4 O

Lemma 18.3. Let f: (X,0x) — (Y,Oy) be a morphism of ringed spaces. Let F
be a sheaf of Oy -modules. Then f*T(F) = T(f*F), and similarly for the exterior
and symmetric algebras associated to F.

Proof. Omitted. U

Lemma 18.4. Let (X,Ox) be a ringed space. Let Fo — F1 — F — 0 be an exact
sequence of sheaves of Ox-modules. For each n > 1 there is an exact sequence

Fo @0y Sym" H(Fy) — Sym™(F1) — Sym"™(F) — 0
and similarly an exact sequence
Fo®ox N"HF1) = A (F1) = A™(F) =0
Proof. See Algebra, Lemma [12.2] O

Lemma 18.5. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules.

(1) If F is locally generated by sections, then so is each T"(F), A"(F), and
Sym™ (F).
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(2) If F is of finite type, then so is each T"(F), A"(F), and Sym"(F).

(3) If F is of finite presentation, then so is each T"(F), AN"(F), and Sym" (F).

(4) If F is coherent, then for n > 0 each T"(F), AN"(F), and Sym"(F) is
coherent.

(5) If F is quasi-coherent, then so is each T"(F), N"(F), and Sym™(F).

(6) If F is locally free, then so is each T"(F), A™(F), and Sym"(F).

Proof. These statements for T"(F) follow from Lemma [15.5]

Statements (1) and (2) follow from the fact that A™(F) and Sym"(F) are quotients
of T"(F).

Statement (6) follows from Algebra, Lemma [12.1]

For (3) and (5) we will use Lemma above. By locally choosing a presentation
Fo = F1 — F — 0 with F; free, or finite free and applying the lemma we see that
Sym"(F), A™(F) has a similar presentation; here we use (6) and Lemma [15.5]

To prove (4) we will use Algebra, Lemma We may localize on X and assume
that F is generated by a finite set (s;);cs of global sections. The lemma mentioned
above combined with Lemma above implies that for n > 2 there exists an
exact sequence

P 1 *(F) = T(F) = Sym™(F) = 0

jed
where the index set .J is finite. Now we know that T™ 2(F) is finitely generated
and hence the image of the first arrow is a coherent subsheaf of T"(F), see Lemma
By that same lemma we conclude that Sym"(F) is coherent. O

Lemma 18.6. Let (X,Ox) be a ringed space. Let F be a sheaf of Ox-modules.
(1) If F is quasi-coherent, then so is each T(F), AN(F), and Sym(F).
(2) If F is locally free, then so is each T(F), AN(F), and Sym(F).

Proof. It is not true that an infinite direct sum @ G; of locally free modules
is locally free, or that an infinite direct sum of quasi-coherent modules is quasi-
coherent. The problem is that given a point x € X the open neighbourhoods
U; of x on which G; becomes free (resp. has a suitable presentation) may have
an intersection which is not an open neighbourhood of z. However, in the proof
of Lemma [18.5 we saw that once a suitable open neighbourhood for F has been
chosen, then this open neighbourhood works for each of the sheaves T"(F), A™(F)
and Sym" (F). The lemma follows. O

19. Internal Hom

Let (X,Ox) be a ringed space. Let F, G be Ox-modules. Consider the rule
U +—— Homop |, (Flv,Glv).

It follows from the discussion in Sheaves, Section [33| that this is a sheaf of abelian
groups. In addition, given an element ¢ € Home, |, (F|v,G|v) and a section
J € Ox(U) then we can define fo € Home, |, (F|u,G|u) by either precomposing
with multiplication by f on F|y or postcomposing with multiplication by f on G|y
(it gives the same result). Hence we in fact get a sheaf of Ox-modules. We will
denote this sheaf Homo, (F,G). There is a canonical “evaluation” morphism

F oy Homoy (F,G) — G.
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For every x € X there is also a canonical morphism
Homo (F,G)e — Homoy , (Fa, Gz)
which is rarely an isomorphism.

Lemma 19.1. Let (X,Ox) be a ringed space. Let F, G, H be Ox-modules. There
is a canonical isomorphism

IHOWLOX (‘T: RPox gvﬂ) — Hom(’)x (]:7 HOTTL(/)X (gvﬂ))

which is functorial in all three entries (sheaf Hom in all three spots). In par-
ticular, to give a morphism F @o, G — H is the same as giving a morphism

F — Homoy (G, H).

Proof. This is the analogue of Algebra, Lemma The proof is the same, and
is omitted. (|

Lemma 19.2. Let (X,Ox) be a ringed space. Let F, G be Ox-modules.
(1) If Fo = F1 = F — 0 is an exact sequence of Ox-modules, then
0— Hom@X (.7:, g) — Homox (fl, g) — ’Homox (fz, g)

15 exact.
(2) If 0 = G = G1 — G5 is an exact sequence of Ox-modules, then

0— ’Homox (.7", g) — Hom@X (.7:, gl) — Homox (.T"7 gg)
18 exact.

Proof. Omitted. (]

Lemma 19.3. Let (X,0x) be a ringed space. Let F, G be Ox-modules. If F is
finitely presented then the canonical map

%mox (}—a g)m - HomOX,:I: (-Fr» gz)
is an isomorphism.

Proof. By localizing on X we may assume that F has a presentation

@jzl A.,mOX — @izl nOX — F — 0.
71g—>

By Lemmathis gives an exact sequence 0 — Homo (F,G) = D=y,

@D, G Taking stalks we get an exact sequence 0 — Homo, (F,G)s —
Di=1. w9 — Dj-1__mYs and the result follows since F, sits in an exact
sequence @jzljwm Oxo — 691:1,.4.@ Ox, — Fy — 0 which induces the exact
sequence 0 — Homoy ,(F2,0:) = @1, 9 — @,=1,_, Gx which is the
same as the one above. (]

Lemma 19.4. Let (X,0x) be a ringed space. Let F, G be Ox-modules. If F is
finitely presented then the sheaf Homeo, (F,G) is locally a kernel of a map between
finite direct sums of copies of G. In particular, if G is coherent then Homeo, (F,G)
is coherent too.

Proof. The first assertion we saw in the proof of Lemma [19.3] And the result for
coherent sheaves then follows from Lemma [12.4] O
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Lemma 19.5. Let X be a topological space. Let Oy — O3 be a homomorphism of
sheaves of rings. Then we have

Homol (‘FOI ) g) = H0m02 (‘F7 %mol (023 g))
bifunctorially in F € Mod(O2) and G € Mod(O1).

Proof. Omitted. This is the analogue of Algebra, Lemma and is proved in
exactly the same way. (I

20. Koszul complexes

We suggest first reading the section on Koszul complexes in More on Algebra,
Section[20] We define the Koszul complex in the category of Ox-modules as follows.

Definition 20.1. Let X be aringed space. Let ¢ : £ - Ox be an O x-module map.
The Koszul complex Ko(p) associated to ¢ is the sheaf of commutative differential
graded algebras defined as follows:
(1) the underlying graded algebra is the exterior algebra Ko(p) = A(E),
(2) the differential d : Ko(p) — Ko(p) is the unique derivation such that
d(e) = ¢(e) for all local sections e of & = Ki(p).

Explicitly, if e; A ... A e, is a wedge product of local sections of £, then

d(el/\.../\en)zzi

It is straightforward to see that this gives a well defined derivation on the tensor
algebra, which annihilates e A e and hence factors through the exterior algebra.

Definition 20.2. Let X be a ringed space and let fi,...,f, € T'(X,0x). The
Koszul complex on f1,. .., f is the Koszul complex associated to the map (f1,..., fn) :
O%" — Ox. Notation K¢(Ox, f1,---, fn), or Ke(Ox, fo)-

» n(—l)“'l(p(ei)el AN cANEA... Nep.

Of course, given an Ox-module map ¢ : &€ — Oy, if £ is finite locally free, then
Ko(p) is locally on X isomorphic to a Koszul complex Ko(Ox, f1,..., fn).

21. Invertible sheaves

Definition 21.1. Let (X, Ox) be a ringed space. Assume that all stalks Ox , are
local ringsﬂ An invertible Ox-module is a sheaf of Ox-modules £ such that for
each point x € X there exists an open neighbourhood U C X and an isomorphism
Llu 2 Ox|y. We say that L is trivial if it is isomorphic as an Ox-module to Ox.

Lemma 21.2. Let (X,0x) be a ringed space. Assume that all stalks Ox , are
local rings.

(1) If L, N are invertible O x-modules, then so is Lo, N.

(2) If L is an invertible Ox-module, then so is L7 = Home, (£, Ox).

(3) If L is an invertible Ox -module, then the evaluation map L @0, LO! —
Ox is an isomorphism.

Proof. Omitted. O

3We should at least assume that they are nonzero. However, in this generality the stalks Ox
can have nontrivial Picard groups, and then there are two possible definitions. One were we require
L to be locally free of rank 1, and the other where we require £ to be a flat, finite presentation
Ox-module such that there exists a second such sheaf £L&~1 with £ ®ox L1~ Oy,
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Definition 21.3. Let (X, Ox) be a ringed space. Assume that all stalks Ox , are
local rings. Given an invertible sheaf £ on X we define the nth tensor power of L
by the rule

OX if n=~0
o E@ox...®oxﬁ if n>0

LM R0y ... ®o L2V i n< -1

With this definition we have canonical isomorphisms L& @, L& — LET™ and
these isomorphisms satisfy a commutativity and an associativity constraint (formu-
lation omitted). Thus we can define a Z-graded ring structure on @ I'(X, L®") by
mapping s € (X, £®") and ¢t € T'(X, LZ™) to the section corresponding to s ® t
in I'(X, £Z"t™). We omit the verification that this defines a commutative and as-
sociative ring with 1. However, by our conventions in Algebra, Section [54] a graded
ring has no nonzero elements in negative degrees. This leads to the following defi-
nition.

Definition 21.4. Let (X, Ox) be a ringed space. Assume that all stalks Ox , are
local rings. Given an invertible sheaf £ on X we define the associated graded ring
to be

I.(X,L)=@p _ T(X,L%")

n>0
Given a sheaf of Ox-modules F we set

— ®n
(X, L,F)= @nez (X, F @0y L")
which we think of as a graded I'.(X, £)-module.

We often write simply I',(£) and I',(F) (although this is ambiguous if F is in-
vertible). The multiplication of T',(£) on I',(F) is defined using the isomorphisms
above. If v : F — G is a Ox-module map, then we get an I', (£)-module homomor-
phism v : T (F) = T4(G). If a : L — N is an Ox-module map between invertible
Ox-modules, then we obtain a graded ring homomorphism T',(£) — T.(N). If
f:(Y,0y) — (X,0Ox) is a morphism of locally ringed spaces (see Schemes, Defi-
nition 7 and if £ is invertible on X, then we get an invertible sheaf f*£ on Y
and an induced homomorphism of graded rings

f7Tu(X L) — Tu(Y, f7L)

Furthermore, there are some compatibilities between the constructions above whose
statements we omit.

Lemma 21.5. Let (X,0x) be a ringed space. Assume that all stalks Ox , are
local rings. There exists a set of invertible modules {L;}icr such that each invertible
module on X is isomorphic to exactly one of the L;.

Proof. For each open covering U/ : X = |JU; consider the sheaves of Ox-modules
gotten from glueing the sheaves Ox|y,, see Sheaves, Section Note that the
collection of all glueing data forms a set. The collection of all coverings U : X =
Ujes Ui where J — P(X), j — Uj is injective forms a set as well. Hence the
collection of all sheaves of of Ox-modules gotten from glueing trivial invertible
Ox-modules forms a set Z. By definition every invertible O x-module is isomorphic
to an element of Z. Choosing an element out of each isomorphism class inside 7
gives the desired set of invertible sheaves (uses axiom of choice). (]
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This lemma says roughly speaking that the collection of isomorphism classes of
invertible sheaves forms a set. Lemma [21.2] says that tensor product defines the
structure of an abelian group on this set.

Definition 21.6. Let (X,Ox) be a ringed space. Assume all stalks Ox , are
local rings. The Picard group Pic(X) of X is the abelian group whose elements
are isomorphism classes of invertible O x-modules, with addition corresponding to
tensor product.

Lemma 21.7. Let X be a ringed space. Assume that each stalk Ox , is a local
ring with maximal ideal m,. Let L be an invertible Ox-module. For any section
seT(X,L) the set

Xs={z € X |image s ¢ mL,}
is open in X. The map s : Ox, — L|x, is an isomorphism, and there exists a
section s’ of LZ~1 over X such that s'(s|x,) = 1.

Proof. Suppose x € X;. We have an isomorphism
L, @0y, (L% ")s — Ox.

by Lemma Both £, and (£L®7'), are free Ox ,-modules of rank 1. We
conclude from Algebra, Nakayama’s Lemma that s, is a basis for £,. Hence
there exists a basis element ¢, € (£®*1)x such that s, ® t, maps to 1. Choose an
open neighbourhood U of z such that ¢, comes from a section ¢t of (£L®~1), over U
and such that s ® t maps to 1 € Ox(U). Clearly, for every &’ € U we see that s
generates the module £,/,. Hence U C X,. This proves that X, is open. Moreover,
the section ¢ constructed over U above is unique, and hence these glue to give te
section s’ of the lemma. O

It is also true that, given a morphism of locally ringed spaces f : ¥ — X (see
Schemes, Definition that the inverse image f~!(X;) is equal to Y5, where
f*s e (Y, f*L) is the pullback of s.

22. Localizing sheaves of rings

Let X be a topological space and let Ox be a presheaf of rings. Let S C Ox be
a presheaf of sets contained in Ox. Suppose that for every open U C X the set
S(U) C Ox(U) is a multiplicative subset, see Algebra, Definition In this case
we can consider the presheaf of rings

ST'0x : U — S(U)'Ox (V).

The restriction mapping sends the section f/s, f € Ox(U), s € S(U) to (f|v)/(s|v)
if V-.C U are opens of X.

Lemma 22.1. Let X be a topological space and let Ox be a presheaf of rings. Let
S C Ox be a pre-sheaf of sets contained in Ox . Suppose that for every open U C X
the set S(U) C Ox(U) is a multiplicative subset.

(1) There is a map of presheaves of rings Ox — S~ *Ox such that every local
section of S maps to an invertible section of Ox.

(2) For any homomorphism of presheaves of rings Ox — A such that each
local section of S maps to an invertible section of A there exists a unique
factorization ST'Ox — A.
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(3) For any x € X we have
(S_lox)m = S;lOX,z.

(4) The sheafification (S~ *Ox)# is a sheaf of rings with a map of sheaves of
rings (Ox)* — (S71Ox)# which is universal for maps of (Ox)# into
sheaves of rings such that each local section of S maps to an invertible
section.

(5) For any z € X we have

(STrOx)# =81 0x .
Proof. Omitted. O

Let X be a topological space and let Ox be a presheaf of rings. Let S C Ox be
a presheaf of sets contained in Ox. Suppose that for every open U C X the set
S(U) C Ox(U) is a multiplicative subset. Let F be a presheaf of Ox-modules In
this case we can consider the presheaf of S™!Ox-modules

STI'F .U SWU)LFW).

The restriction mapping sends the section t/s, t € F(U), s € S(U) to (t|v)/(slv)
if V. C U are opens of X.

Lemma 22.2. Let X be a topological space. Let Ox be a presheaf of rings. Let
S C Ox be a pre-sheaf of sets contained in Ox. Suppose that for every open U C X
the set S(U) C Ox (U) is a multiplicative subset. For any presheaf of Ox-modules
F we have

SF=8"0x®,0, F
(see Sheaves, Section[f| for notation) and if F and Ox are sheaves then
(ST'FA)# =(87'0x)* @0y F
(see Sheaves, Section|2(] for notation).
Proof. Omitted. U

23. Modules of differentials

In this section we briefly explain how to define the module of relative differentials for
a morphism of ringed spaces. We suggest the reader take a look at the corresponding
section in the chapter on commutative algebra (Algebra, Section [127)).

Definition 23.1. Let X be a topological space. Let ¢ : O; — Os be a homo-
morphism of sheaves of rings. Let F be an Oy-module. A O;-derivation or more
precisely a p-derivation into F is a map D : Oy — F which is additive, annihilates
the image of O7 — Os, and satisfies the Leibniz rule

D(ab) = aD(b) + D(a)b

for all a,b local sections of Oz (wherever they are both defined). We denote
Derp, (O2, F) the set of p-derivations into F.

This is the sheaf theoretic analogue of Algebra, Definition 23.1] Given a derivation
D : Oy — F as in the definition the map on global sections

D :T(X,0,) — I'(X, F)
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is a I'(X, Oy )-derivation as in the algebra definition. Note that if & : F — G is a
map of Oz-modules, then there is an induced map

Derol (OQ, J—") — DQI‘(Q1 (02, Q)
given by the rule D — « o D. In other words we obtain a functor.

Lemmal 23.2. Let X be a topological space. Let ¢ : O1 — Oy be a homomorphism
of sheaves of rings. The functor

Mod(Os) — Ab, F +—— Derp, (03, F)
is representable.

Proof. This is proved in exactly the same way as the analogous statement in
algebra. During this proof, for any sheaf of sets F on X, let us denote Oz[F] the
sheafification of the presheaf U — Oy (U)[F(U)] where this denotes the free O (U)-
module on the set F(U). For s € F(U) we denote [s] the corresponding section of
Os[F] over U. If F is a sheaf of Oy-modules, then there is a canonical map

c: Oo[F] — F

which on the presheaf level is given by the rule > fs[s] — >_ fss. We will employ
the short hand [s] — s to describe this map and similarly for other maps below.
Consider the map of Os-modules

02[02 X (92] ® Oy [OQ X 02] ©® 02[01] — Oy [02]
(23.2.1) [(a,0)] ®[(f, 9)] @ [h] — la+b] —[a] - [b]+
- [f9] = glf] — flgl+
[e(h)]

with short hand notation as above. Set {20, /0, equal to the cokernel of this map.
Then it is clear that there exists a map of sheaves of sets

d: 0y — 902/01

mapping a local section f to the image of [f] in Qo,,0,. By construction d is a
O;-derivation. Next, let F be a sheaf of Os-modules and let D : Oy — F be a
O;-derivation. Then we can consider the Os-linear map O5[0s] — F which sends
[g] to D(g). It follows from the definition of a derivation that this map annihilates
sections in the image of the map and hence defines a map

ap Q02/01 — F
Since it is clear that D = ap o d the lemma is proved. O
Definition 23.3. Let X be a topological space. Let ¢ : O; — Os be a homo-
morphism of sheaves of rings on X. The module of differentials of ¢ is the object

representing the functor F — Derp, (02, F) which exists by Lemma It is
denoted Qp, /0,, and the universal p-derivation is denoted d : Oy — Qop, /0, -

Note that Qp, /0, is the cokernel of the map (23.2.1) of Oz-modules. Moreover the
map d is described by the rule that df is the image of the local section [f].

Lemma 23.4. Let X be a topological space. Let p : O1 — Oy be a homomorphism
of sheaves of rings on X. Then Qo, 0, is the sheaf associated to the presheaf

U = Qo,w)/0,w)-
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Proof. Consider the map (23.2.1). There is a similar map of presheaves whose
value on the open U is
05 (U)[02(U) x O2(U)] @0, (U)[02(U) x O2(U)|© 03 (U)[O1(U)] — Oa(U)[O2(U)]

The cokernel of this map has value Qo, (17),0, ) over U by the construction of the
module of differentials in Algebra, Definition On the other hand, the sheaves
in are the sheafifications of the presheaves above. Thus the result follows
as sheafification is exact. O

Lemma 23.5. Let X be a topological space. Let p : O1 — Og be a homomorphism
of sheaves of rings. For U C X open there is a canonical isomorphism

Qo,/0.l = Q0s10) /(01]0)
compatible with universal derivations.

Proof. Holds because 0,0, is the cokernel of the map (23.2.1]). (]

Lemmal 23.6. Let f : Y — X be a continuous map of topological spaces. Let ¢ :
01 — Oy be a homomorphism of sheaves of rings on X. Then there is a canonical
identification f~'Qe, /0, = Qp-10,/5-10, compatible with universal derivations.

Proof. This holds because the sheaf Qp,,0, is the cokernel of the map
and a similar statement holds for Qs-10,,-10,, because the functor f~1is exact,
and because f~'(02[0s)) = f71O2[f 1 Os], f7H(O2[O02 x Oa]) = f~1Os[f 1 O5 x
f710s), and fTHO:[O1]) = 1 O:[f 1 O] 0

Lemma 23.7. Let X be a topological space. Let Oy — Oz be a homomorphism of
sheaves of rings on X. Let x € X. Then we have Qo,,0, . = Qo, /0,

Proof. This is a special case of Lemma for the inclusion map {z} — X.
An alternative proof is the use Lemma [23.4] Sheaves, Lemma [17.2] and Algebra,
Lemma [127.4] O

Lemma 23.8. Let X be a topological space. Let

02?0/2

|

01%(9/1

be a commutative diagram of sheaves of rings on X. The map Oy — Of composed
with the map d : Of — Qoy 0y is a Or-derivation. Hence we obtain a canonical
map of Oz-modules Qo, 0, = Qoyjo;- It is uniquely characterized by the property
that d(f) mapsto d(¢(f)) for any local section f of O. In this way Q_,_ becomes
a functor on the category of arrows of sheaves of rings.

Proof. This lemma proves itself. O

Lemma 23.9. In Lemma suppose that Oy — O is surjective with kernel
Z C Oy and assume that Oy = Of. Then there is a canonical exact sequence of
Of-modules

I/IQ — QOz/O1 Ko, Oé — Qoé/ol — 0
The leftmost map is characterized by the rule that a local section f of T maps to

df 1.
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Proof. For a local section f of Z denote f the image of f in Z/Z2. To show that
the map f +— df ® 1 is well defined we just have to check that df; fo ® 1 = 0 if
f1, fo are local sections of Z. And this is clear from the Leibniz rule df; fo ® 1 =
(fidfao+ fodf1) @1 =dfe ® f1 +dfs ® f1 = 0. A similar computation show this
map is 04 = Oy/Z-linear. The map on the right is the one from Lemma m To
see that the sequence is exact, we can check on stalks (Lemma . By Lemma
this follows from Algebra, Lemma O

Definition 23.10. Let (f, f*) : (X,Ox) — (S, Os) be a morphism of ringed spaces.

(1) Let F be an Ox-module. An S-derivation into F is a f~'Og-derivation,
or more precisely a f#-derivation in the sense of Definition We denote
Ders(Ox, F) the set of S-derivations into F.

(2) The sheaf of differentials Qx5 of X over S is the module of differentials
Qoy/1-10s endowed with its universal S-derivation dx/s : Ox — {1x/s-

Here is a particular situation where derivations come up naturally.

Lemma 23.11. Let (f, f*) : (X,0x) — (S,0s) be a morphism of ringed spaces.
Consider a short exact sequence

0-Z—-A—-0x—0

Here A is a sheaf of f~'Og-algebras, 7 : A — Ox is a surjection of sheaves of
f~1Os-algebras, and T = Ker(r) is its kernel. Assume I an ideal sheaf with square
zero in A. So Z has a natural structure of an Ox-module. A section s: Ox — A
of mis a f~'Og-algebra map such that wo s = id. Given any section s : Ox — A
of m and any S-deriwvation D : Ox — T the map

s+D:0x — A

is a section of ™ and every section s’ is of the form s+ D for a unique S-derivation
D.

Proof. Recall that the O x-module structure on Z is given by hr = hr (multiplica-
tion in .A) where h is a local section of O, and A is a local lift of & to a local section
of A, and 7 is a local section of Z. In particular, given s, we may use h = s(h). To
verify that s + D is a homomorphism of sheaves of rings we compute

(s + D)(ab) s(ab) + D(ab)

s(a)s(b) + aD(b) + D(a)b

s(a)s(b) + s(a)D(b) + D(a)s(b)

(s(a) + D(a))(s(b) + D(b))

by the Leibniz rule. In the same manner one shows s + D is a f~!Og-algebra map

because D is an S-derivation. Conversely, given s’ we set D = s’ — s. Details
omitted. O

Lemma 23.12. Let

s 2.9

be a commutative diagram of ringed spaces.
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(1) The canonical map Ox — f.Ox: composed with fidx: s : fOxr —
J+8lx1 50 18 a S-deriwation and we obtain a canonical map of Ox-modules
Qx/s — f*QX’/S"

(2) The commutative diagram

flOx —— Ox

T |

f—lh—l(/)s - (h/)_losl

induces by Lemmas and a canonical map f_IQX/S — Qx50

These two maps correspond (via adjointness of f. and f* and via f*Qx/s =
f‘lﬂx/s ®f-10x Ox and Sheaves, Lemma to the same Oxs-module ho-

momorphism
Cy: f*QX/S — QX’/S/
which is uniquely characterized by the property that f*dx s(a) mapsto dx: ;g (f*a)
for any local section a of Ox.
Proof. Omitted. O

Lemma 23.13. Let

X// ?_ X/ ? X

S// o S/ o S
be a commutative diagram of ringed spaces. With notation as in Lemma we
have

Cfog = Cg 0 g~y

as maps (f 0 g)*Qx;s — Qx g
Proof. Omitted. O

24. The naive cotangent complex

This section is the analogue of Algebra, Section for morphisms of ringed spaces.
We urge the reader to read that section first.

Let X be a topological space. Let A — B be a homomorphism of sheaves of rings.
In this section, for any sheaf of sets £ on X we denote A[£] the sheafification of
the presheaf U — A(U)[E(U)]. Here A(U)[E(U)] denotes the polynomial algebra
over A(U) whose variables correspond to the elements of £(U). We denote [e] €
A(U)[E(U)] the variable corresponding to e € E(U). There is a canonical surjection
of A-algebras

(24.0.1) ABl — B, [b] —b

whose kernel we denote Z C A[B]. It is a simple observation that Z is generated
by the local sections [b][b'] — [bV'] and [a] — a. According to Lemma there is a
canonical map

(24.0.2) T/T* — Qus)ja Qap B

whose cokernel is canonically isomorphic to Qg3 4.
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Definition 24.1. Let X be a topological space. Let A — B be a homomorphism of
sheaves of rings. The naive cotangent complex NLg, 4 is the chain complex ([24.0.2))

NLgja = (Z/T° — Qup)/4 © a5 B)

with Z/Z* placed in (homological) degree 1 and Q45,4 ® a5 B placed in degree
0.

This construction satisfies a functoriality similar to that discussed in Lemma [23.8
for modules of differentials. Namely, given a commutative diagram

B——B

(24.1.1) T T

A——s A
of sheaves of rings on X there is a canonical B-linear map of complexes
NLB/.A — NLB’/A’
Namely, the maps in the commutative diagram give rise to a canonical map A[B] —
A'[B'] which maps Z into Z' = Ker(A'[B] — B'). Thus a map Z/Z? — I'/(Z")*
and a map between modules of differentials, which together give the desired map

between the naive cotangent complexes.

We can choose a different presentation of B as a quotient of a polynomial algebra
over A and still obtain the same object of D(B). To explain this, suppose that &
is a sheaves of sets on X and « : £ — B a map of sheaves of sets. Then we obtain
an A-algebra homomorphism A[£] — B. Assume this map is surjective, and let
J C A[€] be the kernel. Set

NL(a) = (T T* — Que)ya @age) B)
Here is the result.

Lemma 24.2. In the situation above there is a canonical isomorphism NL(a) =

Proof. Observe that NLg;4 = NL(ids). Thus it suffices to show that given two
maps «; : & — B as above, there is a canonical quasi-isomorphism NL(a;) =
NL(az) in D(B). To see this set £ = &1 11 & and o = a1 Hag : € — B. Set
Ji = Ker(A&;] — B) and J = Ker(A[E] — B). We obtain maps A[&;] — A[€]
which send J; into J. Thus we obtain canonical maps of complexes
NL(o;) — NL(«)

and it suffices to show these maps are quasi-isomorphism. To see this it suffices
to check on stalks (Lemma [3.1). Here by Lemma we see the result holds by
Algebra, Lemma [129.2) ]

Lemma 24.3. Let f : X — Y be a continuous map of topological spaces. Let A —
B be a homomorphism of sheaves of rings on'Y . Then f~! NLgja = NLy-1g5/5-14-

Proof. Omitted. Hint: Use Lemma [23.6l O

The cotangent complex of a morphism of ringed spaces is defined in terms of the
cotangent complex we defined above.
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Definition 24.4. The naive cotangent complex NLy = NLx,y of a morphism of
ringed spaces f: (X,0x) — (Y,0y) is NLo, /510, -
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