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1. Introduction

The main result of this chapter is the following:

A regular map of Noetherian rings is a filtered colimit of smooth ones.

This theorem is due to Popescu, see [Pop90]. A readable exposition of Popescu’s
proof was given by Richard Swan, see [Swa98] who used notes by André and a
paper of Ogoma, see [Ogo94].

Our exposition follows Swan’s, but we first prove an intermediate result which lets
us work in a slightly simpler situation. Here is an overview. We first solve the
following “lifting problem”: A flat infinitesimal deformation of a filtered colimit of
smooth algebras is a filtered colimit of smooth algebras. This result essentially says
that it suffices to prove the main theorem for maps between reduced Noetherian
rings. Next we prove two very clever lemmas called the “lifting lemma” and the
“desingularization lemma”. We show that these lemmas combined reduce the main
theorem to proving a Noetherian, geometrically regular k-algebra Λ is a filtered
limit of smooth k-algebras. Next, we discuss the necessary local tricks that go into
the Popescu-Ogoma-Swan-André proof. Finally, in the last three sections we give
the proof.

This is a chapter of the Stacks Project, version 714e994, compiled on Oct 28, 2014.
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2 SMOOTHING RING MAPS

We end this introduction with some pointers to references. Let A be a henselian
Noetherian local ring. We sayA has the approximation property if for any f1, . . . , fm ∈
A[x1, . . . , xn] the system of equations f1 = 0, . . . , fm = 0 has a solution in the com-
pletion of A if and only if it has a solution in A. This definition is due to Artin.
Artin first proved the approximation property for analytic systems of equations,
see [Art68]. In [Art69] Artin proved the approximation property for local rings
essentially of finite type over an excellent discrete valuation ring. Artin conjec-
tured (page 26 of [Art69]) that every excellent henselian local ring should have the
approximation property.

At some point in time it became a conjecture that that every regular homomorphism
of Noetherian rings is a filtered colimit of smooth algebras (see for example [Ray72],
[Pop81], [Art82], [AD83]). We’re not sure who this conjecture1 is due to. The
relationship with the approximation property is that if A → A∧ is a colimit of
smooth algebras, then the approximation property holds (insert future reference
here). Moreover, the main theorem applies to the map A→ A∧ if A is an excellent
local ring, as one of the conditions of an excellent local ring is that the formal
fibres are geometrically regular. Note that excellent local rings were defined by
Grothendieck and their definition appeared in print in 1965.

In [Art82] it was shown that R → R∧ is a filtered colimit of smooth algebras for
any local ring R essentially of finite type over a field. In [AR88] it was shown that
R → R∧ is a filtered colimit of smooth algebras for any local ring R essentially of
finite type over an excellent discrete valuation ring. Finally, the main theorem was
shown in [Pop85], [Pop86], [Pop90], [Ogo94], and [Swa98] as discussed above.

Conversely, using some of the results above, in [Rot90] it was shown that any local
ring with the approximation property is excellent.

The paper [Spi99] provides an alternative approach to the main theorem, but it
seems hard to read (for example [Spi99, Lemma 5.2] appears to be an incorrectly
reformulated version of [Elk73, Lemma 3]). There is also a Bourbaki lecture about
this material, see [Tei95].

2. Colimits

In Categories, Section 19 we discuss filtered colimits. In particular, note that
Categories, Lemma 21.3 tells us that colimits over filtered index categories are the
same thing as colimits over directed partially ordered sets.

Lemma 2.1. Let R → Λ be a ring map. Let E be a set of R-algebras such that
each A ∈ E is of finite presentation over R. Then the following two statements are
equivalent

(1) Λ is a filtered colimit of elements of E, and
(2) for any R algebra map A→ Λ with A of finite presentation over R we can

find a factorization A→ B → Λ with B ∈ E.

Proof. Suppose that I → E , i 7→ Ai is a diagram such that Λ = colimiAi.
Let A → Λ with A of finite presentation over R. Pick a presentation A =
R[x1, . . . , xn]/(f1, . . . , fm). Say A → Λ maps xs to λs ∈ Λ. We can find an

1The question/conjecture as formulated in [Art82], [AD83], and [Pop81] is stronger and was
shown to be equivalent to the original version in [CP84].
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SMOOTHING RING MAPS 3

i ∈ Ob(I) and elements as ∈ Ai whose image in Λ is λs. Increasing i if necessary
we may also assume that ft(a1, . . . , an) = 0 in Ai. Hence we can factor A → Λ
through Ai by mapping xs to as.

Conversely, suppose that (2) holds. Consider the category I whose objects are R-
algebra maps A→ Λ with A ∈ E and whose morphisms are commutative diagrams

A //

��

A′

~~
Λ

of R-algebras. We claim that I is a filtered index category and that Λ = colimI A.
To see that I is filtered, let A → Λ and A′ → Λ be two objects. Then we can
factor A⊗RA′ → Λ through an object of I by assumption (2) and the fact that the
elements of E are of finite presentation over R. Suppose that ϕ,ψ : A→ A′ are two
morphisms of I. Let x1, . . . , xn be generators of A as an R-algebra. By assumption
(2) we can factor the R-algebra map A′/(ϕ(xi)− ψ(xi))→ Λ through an object of
I. This proves that I is filtered. We omit the proof that Λ = colimI A. �

3. Singular ideals

Let R → A be a ring map. The singular ideal of A over R is the radical ideal in
A cutting out the singular locus of the morphism Spec(A) → Spec(R). Here is a
formal definition.

Definition 3.1. Let R → A be a ring map. The singular ideal of A over R,
denoted HA/R is the unique radical ideal HA/R ⊂ A with

V (HA/R) = {q ∈ Spec(A) | R→ A not smooth at q}

This makes sense because the set of primes where R → A is smooth is open, see
Algebra, Definition 132.11. In order to find an explicit set of generators for the
singular ideal we first prove the following lemma.

Lemma 3.2. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm). Let q ⊂ A.
Assume R → A is smooth at q. Then there exists an a ∈ A, a 6∈ q, an integer c,
0 ≤ c ≤ min(n,m), subsets U ⊂ {1, . . . , n}, V ⊂ {1, . . . ,m} of cardinality c such
that

a = a′ det(∂fj/∂xi)j∈V,i∈U

for some a′ ∈ A and

af` ∈ (fj , j ∈ V ) + (f1, . . . , fm)2

for all ` ∈ {1, . . . ,m}.

Proof. Set I = (f1, . . . , fm) so that the naive cotangent complex of A over R
is homotopy equivalent to I/I2 →

⊕
Adxi, see Algebra, Lemma 129.2. We will

use the formation of the naive cotangent complex commutes with localization, see
Algebra, Section 129, especially Algebra, Lemma 129.13. By Algebra, Definitions
132.1 and 132.11 we see that (I/I2)a →

⊕
Aadxi is a split injection for some a ∈ A,

a 6∈ p. After renumbering x1, . . . , xn and f1, . . . , fm we may assume that f1, . . . , fc
form a basis for the vector space I/I2 ⊗A κ(q) and that dxc+1, . . . ,dxn map to a
basis of ΩA/R ⊗A κ(q). Hence after replacing a by aa′ for some a′ ∈ A, a′ 6∈ q

we may assume f1, . . . , fc form a basis for (I/I2)a and that dxc+1, . . . ,dxn map
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4 SMOOTHING RING MAPS

to a basis of (ΩA/R)a. In this situation aN for some large integer N satisfies the
conditions of the lemma (with U = V = {1, . . . , c}). �

We will use the notion of a strictly standard element in a A over R. Our notion is
slightly weaker than the one in Swan’s paper [Swa98]. We also define an elementary
standard element to be one of the type we found in the lemma above. We compare
the different types of elements in Lemma 4.7.

Definition 3.3. Let R → A be a ring map of finite presentation. We say an
element a ∈ A is elementary standard in A over R if there exists a presentation
A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(3.3.1) a = a′ det(∂fj/∂xi)i,j=1,...,c

for some a′ ∈ A and

(3.3.2) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m − c. We say a ∈ A is strictly standard in A over R if there exists
a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) and 0 ≤ c ≤ min(n,m) such that

(3.3.3) a =
∑

I⊂{1,...,n}, |I|=c
aI det(∂fj/∂xi)j=1,...,c, i∈I

for some aI ∈ A and

(3.3.4) afc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m− c.

The following lemma is useful to find implications of (3.3.3).

Lemma 3.4. Let R be a ring. Let A = R[x1, . . . , xn]/(f1, . . . , fm) and write I =
(f1, . . . , fn). Let a ∈ A. Then (3.3.3) implies there exists an A-linear map ψ :⊕

i=1,...,nAdxi → A⊕c such that the composition

A⊕c
(f1,...,fc)−−−−−−→ I/I2 f 7→df−−−−→

⊕
i=1,...,n

Adxi
ψ−→ A⊕c

is multiplication by a. Conversely, if such a ψ exists, then ac satisfies (3.3.3).

Proof. This is a special case of Algebra, Lemma 14.4. �

Lemma 3.5 (Elkik). Let R→ A be a ring map of finite presentation. The singular
ideal HA/R is the radical of the ideal generated by strictly standard elements in A
over R and also the radical of the ideal generated by elementary standard elements
in A over R.

Proof. Assume a is strictly standard in A over R. We claim that Aa is smooth
over R, which proves that a ∈ HA/R. Namely, let A = R[x1, . . . , xn]/(f1, . . . , fm),
c, and a′ ∈ A be as in Definition 3.3. Write I = (f1, . . . , fm) so that the naive
cotangent complex of A over R is given by I/I2 →

⊕
Adxi. Assumption (3.3.4)

implies that (I/I2)a is generated by the classes of f1, . . . , fc. Assumption (3.3.3)
implies that the differential (I/I2)a →

⊕
Aadxi has a left inverse, see Lemma 3.4.

Hence R→ Aa is smooth by definition and Algebra, Lemma 129.13.

Let He, Hs ⊂ A be the radical of the ideal generated by elementary, resp. strictly
standard elements of A over R. By definition and what we just proved we have
He ⊂ Hs ⊂ HA/R. The inclusion HA/R ⊂ He follows from Lemma 3.2. �
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SMOOTHING RING MAPS 5

Example 3.6. The set of points where a finitely presented ring map is smooth
needn’t be a quasi-compact open. For example, let R = k[x, y1, y2, y3, . . .]/(xyi)
and A = R/(x). Then the smooth locus of R → A is

⋃
D(yi) which is not quasi-

compact.

Lemma 3.7. Let R → A be a ring map of finite presentation. Let R → R′ be a
ring map. If a ∈ A is elementary, resp. strictly standard in A over R, then a ⊗ 1
is elementary, resp. strictly standard in A⊗R R′ over R′.

Proof. If A = R[x1, . . . , xn]/(f1, . . . , fm) is a presentation of A over R, then A⊗R
R′ = R′[x1, . . . , xn]/(f ′1, . . . , f

′
m) is a presentation of A ⊗R R′ over R′. Here f ′j is

the image of fj in R′[x1, . . . , xn]. Hence the result follows from the definitions. �

Lemma 3.8. Let R → A → Λ be ring maps with A of finite presentation over R.
Assume that HA/RΛ = Λ. Then there exists a factorization A → B → Λ with B
smooth over R.

Proof. Choose f1, . . . , fr ∈ HA/R and λ1, . . . , λr ∈ Λ such that
∑
fiλi = 1 in Λ.

Set B = A[x1, . . . , xr]/(f1x1 + . . .+ frxr − 1) and define B → Λ by mapping xi to
λi. Details omitted. �

4. Presentations of algebras

Some of the results in this section are due to Elkik. Note that the algebra C in the
following lemma is a symmetric algebra over A. Moreover, if R is Noetherian, then
C is of finite presentation over R.

Lemma 4.1. Let R be a ring and let A be a finitely presented R-algebra. There
exists finite type R-algebra map A → C which has a retraction with the following
two properties

(1) for each a ∈ A such that R → Aa is a local complete intersection (More
on Algebra, Definition 23.2) the ring Ca is smooth over Aa and has a
presentation Ca = R[y1, . . . , ym]/J such that J/J2 is free over Ca, and

(2) for each a ∈ A such that Aa is smooth over R the module ΩCa/R is free
over Ca.

Proof. Choose a presentation A = R[x1, . . . , xn]/I and write I = (f1, . . . , fm).
Define the A-module K by the short exact sequence

0→ K → A⊕m → I/I2 → 0

where the jth basis vector ej in the middle is mapped to the class of fj on the
right. Set

C = Sym∗A(I/I2).

The retraction is just the projection onto the degree 0 part of C. We have a
surjection R[x1, . . . , xn, y1, . . . , ym] → C which maps yj to the class of fj in I/I2.
The kernel J of this map is generated by the elements f1, . . . , fm and by elements∑
hjyj with hj ∈ R[x1, . . . , xn] such that

∑
hjej defines an element of K. By

Algebra, Lemma 129.4 applied to R → A → C and the presentations above and
More on Algebra, Lemma 6.11 there is a short exact sequence

(4.1.1) I/I2 ⊗A C → J/J2 → K ⊗A C → 0
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6 SMOOTHING RING MAPS

of C-modules. Let h ∈ R[x1, . . . , xn] be an element with image a ∈ A. We will use
as presentations for the localized rings

Aa = R[x0, x1, . . . , xn]/I ′ and Ca = R[x0, x1, . . . , xn, y1, . . . , ym]/J ′

where I ′ = (hx0 − 1, I) and J ′ = (hx0 − 1, J). Hence I ′/(I ′)2 = Ca ⊕ I/I2 ⊗A Ca
and J ′/(J ′)2 = Ca ⊕ (J/J2)a as Ca-modules. Thus we obtain

(4.1.2) Ca ⊕ I/I2 ⊗A Ca → Ca ⊕ (J/J2)a → K ⊗A Ca → 0

as the sequence of Algebra, Lemma 129.4 corresponding to R→ Aa → Ca and the
presentations above.

Next, assume that a ∈ A is such that Aa is a local complete intersection over R.
Then (I/I2)a is finite projective over Aa, see More on Algebra, Lemma 22.3. Hence
we see Ka ⊕ (I/I2)a ∼= A⊕ma is free. In particular Ka is finite projective too. By
More on Algebra, Lemma 23.6 the sequence (4.1.2) is exact on the left. Hence

J ′/(J ′)2 ∼= Ca ⊕ I/I2 ⊗A Ca ⊕K ⊗A Ca ∼= C⊕m+1
a

This proves (1). Finally, suppose that in addition Aa is smooth over R. Then the
same presentation shows that ΩCa/R is the cokernel of the map

J ′/(J ′)2 −→
⊕

i
Cadxi ⊕

⊕
j
Cadyj

The summand Ca of J ′/(J ′)2 in the decomposition above corresponds to hx0 − 1
and hence maps isomorphically to the summand Cadx0. The summand I/I2⊗ACa
of J ′/(J ′)2 maps injectively to

⊕
i=1,...,n Cadxi with quotient ΩAa/R ⊗Aa Ca. The

summand K ⊗A Ca maps injectively to
⊕

j≥1 Cadyj with quotient isomorphic to

I/I2 ⊗A Ca. Thus the cokernel of the last displayed map is the module I/I2 ⊗A
Ca ⊕ ΩAa/R ⊗Aa Ca. Since (I/I2)a ⊕ ΩAa/R is free (from the definition of smooth
ring maps) we see that (2) holds. �

The following proposition was proved for smooth ring maps over henselian pairs by
Elkik in [Elk73]. For smooth ring maps it can be found in [Ara01], where it is also
proven that ring maps between smooth algebras can be lifted.

Proposition 4.2. Let R→ R0 be a surjective ring map with kernel I.

(1) If R0 → A0 is a syntomic ring map, then there exists a syntomic ring map
R→ A such that A/IA ∼= A0.

(2) If R0 → A0 is a smooth ring map, then there exists a smooth ring map
R→ A such that A/IA ∼= A0.

Proof. Assume R0 → A0 syntomic, in particular a local complete intersection
(More on Algebra, Lemma 23.5). Choose a presentation A0 = R0[x1, . . . , xn]/J0.
Set C0 = Sym∗A0

(J0/J
2
0 ). Note that J0/J

2
0 is a finite projective A0-module (Al-

gebra, Lemma 131.16). By Lemma 4.1 the ring map A0 → C0 is smooth and
we can find a presentation C0 = R0[y1, . . . , ym]/K0 with K0/K

2
0 free over C0.

By Algebra, Lemma 131.6 we can assume C0 = R0[y1, . . . , ym]/(f1, . . . , f c) where
f1, . . . , f c maps to a basis of K0/K

2
0 over C0. Choose f1, . . . , fc ∈ R[y1, . . . , yc]

lifting f1, . . . , f c and set

C = R[y1, . . . , ym]/(f1, . . . , fc)

By construction C0 = C/IC. By Algebra, Lemma 131.11 we can after replacing C
by Cg assume that C is a relative global complete intersection over R. We conclude
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that there exists a finite projective A0-module P0 such that C0 = Sym∗A0
(P0) is

isomorphic to C/IC for some syntomic R-algebra C.

Choose an integer n and a direct sum decomposition A⊕n0 = P0 ⊕ Q0. By More
on Algebra, Lemma 6.10 we can find an étale ring map C → C ′ which induces an
isomorphism C/IC → C ′/IC ′ and a finite projective C ′-module Q such that Q/IQ
is isomorphic to Q0 ⊗A0

C/IC. Then D = Sym∗C′(Q) is a smooth C ′-algebra (see
More on Algebra, Lemma 6.12). Picture

R

��

// C //

��

C ′ //

��

D

��
R/I // A0

// C/IC
∼= // C ′/IC ′ // D/ID

Observe that our choice of Q gives

D/ID = Sym∗C/IC(Q0 ⊗A0 C/IC)

= Sym∗A0
(Q0)⊗A0

C/IC

= Sym∗A0
(Q0)⊗A0 Sym∗A0

(P0)

= Sym∗A0
(Q0 ⊕ P0)

= Sym∗A0
(A⊕n0 )

= A0[x1, . . . , xn]

Choose f1, . . . , fn ∈ D which map to x1, . . . , xn in D/ID = A0[x1, . . . , xn]. Set
A = D/(f1, . . . , fn). Note that A0 = A/IA. We claim that R → A is syntomic in
a neighbourhood of V (IA). If the claim is true, then we can find a f ∈ A mapping
to 1 ∈ A0 such that Af is syntomic over R and the proof of (1) is finished.

Proof of the claim. Observe that R → D is syntomic as a composition of the
syntomic ring map R → C, the étale ring map C → C ′ and the smooth ring map
C ′ → D (Algebra, Lemmas 131.17 and 132.10). The question is local on Spec(D),
hence we may assume that D is a relative global complete intersection (Algebra,
Lemma 131.15). Say D = R[y1, . . . , ym]/(g1, . . . , gs). Let f ′1, . . . , f

′
n ∈ R[y1, . . . , ym]

be lifts of f1, . . . , fn. Then we can apply Algebra, Lemma 131.11 to get the claim.

Proof of (2). Since a smooth ring map is syntomic, we can find a syntomic ring
map R→ A such that A0 = A/IA. By assumption the fibres of R→ A are smooth
over primes in V (I) hence R → A is smooth in an open neighbourhood of V (IA)
(Algebra, Lemma 132.16). Thus we can replace A by a localization to obtain the
result we want. �

We know that any syntomic ring map R → A is locally a relative global complete
intersection, see Algebra, Lemma 131.15. The next lemma says that a vector bundle
over Spec(A) is a relative global complete intersection.

Lemma 4.3. Let R → A be a syntomic ring map. Then there exists a smooth
R-algebra map A → C with a retraction such that C is a global relative complete
intersection over R, i.e.,

C ∼= R[x1, . . . , xn]/(f1, . . . , fc)

flat over R and all fibres of dimension n− c.

http://localhost:8080/tag/07CG


8 SMOOTHING RING MAPS

Proof. Apply Lemma 4.1 to get A→ C. By Algebra, Lemma 131.6 we can write
C = R[x1, . . . , xn]/(f1, . . . , fc) with fi mapping to a basis of J/J2. The ring map
R→ C is syntomic (hence flat) as it is a composition of a syntomic and a smooth
ring map. The dimension of the fibres is n− c by Algebra, Lemma 130.4 (the fibres
are local complete intersections, so the lemma applies). �

Lemma 4.4. Let R → A be a smooth ring map. Then there exists a smooth R-
algebra map A → B with a retraction such that B is standard smooth over R,
i.e.,

B ∼= R[x1, . . . , xn]/(f1, . . . , fc)

and det(∂fj/∂xi)i,j=1,...,c is invertible in B.

Proof. Apply Lemma 4.3 to get a smooth R-algebra map A→ C with a retraction
such that C = R[x1, . . . , xn]/(f1, . . . , fc) is a relative global complete intersection
over R. As C is smooth over R we have a short exact sequence

0→
⊕

j=1,...,c
Cfj →

⊕
i=1,...,n

Cdxi → ΩC/R → 0

Since ΩC/R is a projective C-module this sequence is split. Choose a left inverse t

to the first map. Say t(dxi) =
∑
cijfj so that

∑
i
∂fj
∂xi

ci` = δj` (Kronecker delta).
Let

B′ = C[y1, . . . , yc] = R[x1, . . . , xn, y1, . . . , yc]/(f1, . . . , fc)

The R-algebra map C → B′ has a retraction given by mapping yj to zero. We
claim that the map

R[z1, . . . , zn] −→ B′, zi 7−→ xi −
∑

j
cijyj

is étale at every point in the image of Spec(C) → Spec(B′). In ΩB′/R[z1,...,zn] we
have

0 = dfj −
∑

i

∂fj
∂xi

dzi ≡
∑

i,`

∂fj
∂xi

ci`dy` ≡ dyj mod (y1, . . . , yc)ΩB′/R[z1,...,zn]

Since 0 = dzi = dxi modulo
∑
B′dyj + (y1, . . . , yc)ΩB′/R[z1,...,zn] we conclude that

ΩB′/R[z1,...,zn]/(y1, . . . , yc)ΩB′/R[z1,...,zn] = 0.

As ΩB′/R[z1,...,zn] is a finite B′-module by Nakayama’s lemma there exists a g ∈
1 + (y1, . . . , yc) that (ΩB′/R[z1,...,zn])g = 0. This proves that R[z1, . . . , zn] → B′g is
unramified, see Algebra, Definition 144.1. For any ring map R → k where k is a
field we obtain an unramified ring map k[z1, . . . , zn]→ (B′g)⊗Rk between smooth k-
algebras of dimension n. It follows that k[z1, . . . , zn]→ (B′g)⊗Rk is flat by Algebra,
Lemmas 124.1 and 135.2. By the critère de platitude par fibre (Algebra, Lemma
124.8) we conclude that R[z1, . . . , zn]→ B′g is flat. Finally, Algebra, Lemma 138.7
implies that R[z1, . . . , zn]→ B′g is étale. Set B = B′g. Note that C → B is smooth
and has a retraction, so also A → B is smooth and has a retraction. Moreover,
R[z1, . . . , zn]→ B is étale. By Algebra, Lemma 138.2 we can write

B = R[z1, . . . , zn, w1, . . . , wc]/(g1, . . . , gc)

with det(∂gj/∂wi) invertible in B. This proves the lemma. �

Lemma 4.5. Let R → Λ be a ring map. If Λ is a filtered colimit of smooth
R-algebras, then Λ is a filtered colimit of standard smooth R-algebras.
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Proof. Let A → Λ be an R-algebra map with A of finite presentation over R.
According to Lemma 2.1 we have to factor this map through a standard smooth
algebra, and we know we can factor it as A → B → Λ with B smooth over R.
Choose an R-algebra map B → C with a retraction C → B such that C is standard
smooth over R, see Lemma 4.4. Then the desired factorization is A → B → C →
B → Λ. �

Lemma 4.6. Let R→ A be a standard smooth ring map. Let E ⊂ A be a finite sub-
set of order |E| = n. Then there exists a presentation A = R[x1, . . . , xn+m]/(f1, . . . , fc)
with c ≥ n, with det(∂fj/∂xi)i,j=1,...,c invertible in A, and such that E is the set
of congruence classes of x1, . . . , xn.

Proof. Choose a presentation A = R[y1, . . . , ym]/(g1, . . . , gd) such that the im-
age of det(∂gj/∂yi)i,j=1,...,d is invertible in A. Choose an enumerations E =
{a1, . . . , an} and choose hi ∈ R[y1, . . . , ym] whose image in A is ai. Consider the
presentation

A = R[x1, . . . , xn, y1, . . . , ym]/(x1 − h1, . . . , xn − hn, g1, . . . , gd)

and set c = n+ d. �

Lemma 4.7. Let R→ A be a ring map of finite presentation. Let a ∈ A. Consider
the following conditions on a:

(1) Aa is smooth over R,
(2) Aa is smooth over R and ΩAa/R is stably free,
(3) Aa is smooth over R and ΩAa/R is free,
(4) Aa is standard smooth over R,
(5) a is strictly standard in A over R,
(6) a is elementary standard in A over R.

Then we have

(a) (4) ⇒ (3) ⇒ (2) ⇒ (1),
(b) (6) ⇒ (5),
(c) (6) ⇒ (4),
(d) (5) ⇒ (2),
(e) (2) ⇒ the elements ae, e ≥ e0 are strictly standard in A over R,
(f) (4) ⇒ the elements ae, e ≥ e0 are elementary standard in A over R.

Proof. Part (a) is clear from the definitions and Algebra, Lemma 132.7. Part (b)
is clear from Definition 3.3.

Proof of (c). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that (3.3.1)
and (3.3.2) hold. Choose h ∈ R[x1, . . . , xn] mapping to a. Then

Aa = R[x0, x1, . . . , xn]/(x0h− 1, f1, . . . , fn).

Write J = (x0h − 1, f1, . . . , fn). By (3.3.2) we see that the Aa-module J/J2 is
generated by x0h−1, f1, . . . , fc over Aa. Hence, as in the proof of Algebra, Lemma
131.6, we can choose a g ∈ 1 + J such that

Aa = R[x0, . . . , xn, xn+1]/(x0h− 1, f1, . . . , fn, gxn+1 − 1).

At this point (3.3.1) implies that R→ Aa is standard smooth (use the coordinates
x0, x1, . . . , xc, xn+1 to take derivatives).
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Proof of (d). Choose a presentation A = R[x1, . . . , xn]/(f1, . . . , fm) such that
(3.3.3) and (3.3.4) hold. We already know that Aa is smooth over R, see Lemma
3.5. As above we get a presentation Aa = R[x0, x1, . . . , xn]/J with J/J2 free. Then
ΩAa/R ⊕ J/J2 ∼= A⊕n+1

a by the definition of smooth ring maps, hence we see that
ΩAa/R is stably free.

Proof of (e). Choose a presentation A = R[x1, . . . , xn]/I with I finitely generated.
By assumption we have a short exact sequence

0→ (I/I2)a →
⊕

i=1,...,n
Aadxi → ΩAa/R → 0

which is split exact. Hence we see that (I/I2)a ⊕ ΩAa/R is a free Aa-module.

Since ΩAa/R is stably free we see that (I/I2)a is stably free as well. Thus replac-
ing the presentation chosen above by A = R[x1, . . . , xn, xn+1, . . . , xn+r]/J with
J = (I, xn+1, . . . , xn+r) for some r we get that (J/J2)a is (finite) free. Choose
f1, . . . , fc ∈ J which map to a basis of (J/J2)a. Extend this to a list of genera-
tors f1, . . . , fm ∈ J . Consider the presentation A = R[x1, . . . , xn+r]/(f1, . . . , fm).
Then (3.3.4) holds for ae for all sufficiently large e by construction. Moreover, since
(J/J2)a →

⊕
i=1,...,nAadxi is a split injection we can find an Aa-linear left inverse.

Writing this left inverse in terms of the basis f1, . . . , fc and clearing denominators
we find a linear map ψ0 : A⊕n → A⊕c such that

A⊕c
(f1,...,fc)−−−−−−→ J/J2 f 7→df−−−−→

⊕
i=1,...,n

Adxi
ψ0−−→ A⊕c

is multiplication by ae0 for some e0 ≥ 1. By Lemma 3.4 we see (3.3.3) holds for all
ace0 and hence for ae for all e with e ≥ ce0.

Proof of (f). Choose a presentation Aa = R[x1, . . . , xn]/(f1, . . . , fc) such that
det(∂fj/∂xi)i,j=1,...,c is invertible in Aa. We may assume that for some m < n
the classes of the elements x1, . . . , xm correspond ai/1 where a1, . . . , am ∈ A are
generators of A over R, see Lemma 4.6. After replacing xi by aNxi for m < i ≤ n
we may assume the class of xi is ai/1 ∈ Aa for some ai ∈ A. Consider the ring map

Ψ : R[x1, . . . , xn] −→ A, xi 7−→ ai.

This is a surjective ring map. By replacing fj by aNfj we may assume that fj ∈
R[x1, . . . , xn] and that Ψ(fj) = 0 (since after all fj(a1/1, . . . , an/1) = 0 in Aa).
Let J = Ker(Ψ). Then A = R[x1, . . . , xn]/J is a presentation and f1, . . . , fc ∈ J
are elements such that (J/J2)a is freely generated by f1, . . . , fc and such that
det(∂fj/∂xi)i,j=1,...,c maps to an invertible element of Aa. It follows that (3.3.1)
and (3.3.2) hold for ae and all large enough e as desired. �

5. The lifting problem

The goal in this section is to prove (Proposition 5.3) that the collection of algebras
which are filtered colimits of smooth algebras is closed under infinitesimal flat de-
formations. The proof is elementary and only uses the results on presentations of
smooth algebras from Section 4.

Lemma 5.1. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that

(1) I2 = 0, and
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras.
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Let ϕ : A → Λ be an R-algebra map with A of finite presentation over R. Then
there exists a factorization

A→ B/J → Λ

where B is a smooth R-algebra and J ⊂ IB is a finitely generated ideal.

Proof. Choose a factorization

A/IA→ B̄ → Λ/IΛ

with B̄ standard smooth over R/I; this is possible by assumption and Lemma 4.5.
Write

B̄ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)

and say B̄ → Λ/IΛ maps ti to the class of λi modulo IΛ. Choose g1, . . . , gs ∈
A[t1, . . . , tr] lifting ḡ1, . . . , ḡs. Write ϕ(gi)(λ1, . . . , λr) =

∑
εijµij for some εij ∈ I

and µij ∈ Λ. Define

A′ = A[t1, . . . , tr, δi,j ]/(gi −
∑

εijδij)

and consider the map

A′ −→ Λ, a 7−→ ϕ(a), ti 7−→ λi, δij 7−→ µij

We have
A′/IA′ = A/IA[t1, . . . , tr]/(ḡ1, . . . , ḡs)[δij ] ∼= B̄[δij ]

This is a standard smooth algebra over R/I as B̄ is standard smooth. Choose a
presentation A′/IA′ = R/I[x1, . . . , xn]/(f̄1, . . . , f̄c) with det(∂f̄j/∂xi)i,j=1,...,c in-
vertible in A′/IA′. Choose lifts f1, . . . , fc ∈ R[x1, . . . , xn] of f̄1, . . . , f̄c. Then

B = R[x1, . . . , xn, xn+1]/(f1, . . . , fc, xn+1 det(∂fj/∂xi)i,j=1,...,c − 1)

is smooth over R. Since smooth ring maps are formally smooth (Algebra, Proposi-
tion 133.13) there exists an R-algebra map B → A′ which is an isomorphism modulo
I. Then B → A′ is surjective by Nakayama’s lemma (Algebra, Lemma 19.1). Thus
A′ = B/J with J ⊂ IB finitely generated (see Algebra, Lemma 6.3). �

Lemma 5.2. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that

(1) I2 = 0,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Let ϕ : B → Λ be an R-algebra map with B smooth over R. Let J ⊂ IB be a
finitely generated ideal. Then there exists R-algebra maps

B
α−→ B′

β−→ Λ

such that B′ is smooth over R, such that α(J) = 0 and such that β ◦α = ϕ mod IΛ.

Proof. If we can prove the lemma in case J = (h), then we can prove the lemma
by induction on the number of generators of J . Namely, suppose that J can be
generated by n elements h1, . . . , hn and the lemma holds for all cases where J is
generated by n−1 elements. Then we apply the case n = 1 to produce B → B′ → Λ
where the first map kills of hn. Then we let J ′ be the ideal of B′ generated by the
images of h1, . . . , hn−1 and we apply the case for n− 1 to produce B′ → B′′ → Λ.
It is easy to verify that B → B′′ → Λ does the job.

Assume J = (h) and write h =
∑
εibi for some εi ∈ I and bi ∈ B. Note that

0 = ϕ(h) =
∑
εiϕ(bi). As Λ is flat over R, the equational criterion for flatness

http://localhost:8080/tag/07CL
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(Algebra, Lemma 38.10) implies that we can find λj ∈ Λ, j = 1, . . . ,m and aij ∈ R
such that ϕ(bi) =

∑
j aijλj and

∑
i εiaij = 0. Set

C = B[x1, . . . , xm]/(bi −
∑

aijxj)

with C → Λ given by ϕ and xj 7→ λj . Choose a factorization

C → B′/J ′ → Λ

as in Lemma 5.1. Since B is smooth over R we can lift the map B → C → B′/J ′

to a map ψ : B → B′. We claim that ψ(h) = 0. Namely, the fact that ψ agrees
with B → C → B′/J ′ mod I implies that

ψ(bi) =
∑

aijξj + θi

for some ξi ∈ B′ and θi ∈ IB′. Hence we see that

ψ(h) = ψ(
∑

εibi) =
∑

εiaijξj +
∑

εiθi = 0

because of the relations above and the fact that I2 = 0. �

Proposition 5.3. Let R→ Λ be a ring map. Let I ⊂ R be an ideal. Assume that

(1) I is nilpotent,
(2) Λ/IΛ is a filtered colimit of smooth R/I-algebras, and
(3) R→ Λ is flat.

Then Λ is a colimit of smooth R-algebras.

Proof. Since In = 0 for some n, it follows by induction on n that it suffices to
consider the case where I2 = 0. Let ϕ : A → Λ be an R-algebra map with A of
finite presentation over R. We have to find a factorization A → B → Λ with B
smooth over R, see Lemma 2.1. By Lemma 5.1 we may assume that A = B/J with
B smooth over R and J ⊂ IB a finitely generated ideal. By Lemma 5.2 we can
find a (possibly noncommutative) diagram

B
α

//

ϕ
��

B′

β~~
Λ

of R-algebras which commutes modulo I and such that α(J) = 0. The map

D : B −→ IΛ, b 7−→ ϕ(b)− β(α(b))

is a derivation over R hence we can write it as D = ξ ◦ dB/R for some B-linear
map ξ : ΩB/R → IΛ. Since ΩB/R is a finite projective B-module we can write
ξ =

∑
i=1,...,n εiΞi for some εi ∈ I and B-linear maps Ξi : ΩB/R → Λ. (Details

omitted. Hint: write ΩB/R as a direct sum of a finite free module to reduce to the
finite free case.) We define

B′′ = Sym∗B′
(⊕

i=1,...,n
ΩB/R ⊗B,α B′

)
and we define β′ : B′′ → Λ by β on B′ and by

β′|ith summand ΩB/R⊗B,αB′ = Ξi ⊗ β
and α′ : B → B′′ by

α′(b) = α(b)⊕
∑

εidB/R(b)⊗ 1⊕ 0⊕ . . .
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At this point the diagram

B
α′

//

ϕ
��

B′′

β′~~
Λ

does commute. Moreover, it is direct from the definitions that α′(J) = 0 as I2 = 0.
Hence the desired factorization. �

6. The lifting lemma

Here is a fiendishly clever lemma.

Lemma 6.1. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Suppose we have
R-algebra maps R/π2R → C̄ → Λ/π2Λ with C̄ of finite presentation. Then there
exists an R-algebra homomorphism D → Λ and a commutative diagram

R/π2R //

��

C̄ //

��

Λ/π2Λ

��
R/πR // D/πD // Λ/πΛ

with the following properties

(a) D is of finite presentation,
(b) R→ D is smooth at any prime q with π 6∈ q,
(c) R→ D is smooth at any prime q with π ∈ q lying over a prime of C̄ where

R/π2R→ C̄ is smooth, and
(d) C̄/πC̄ → D/πD is smooth at any prime lying over a prime of C̄ where

R/π2R→ C̄ is smooth.

Proof. We choose a presentation

C̄ = R[x1, . . . , xn]/(f1, . . . , fm)

We also denote I = (f1, . . . , fm) and Ī the image of I in R/π2R[x1, . . . , xn]. Since
R is Noetherian, so is C̄. Hence the smooth locus of R/π2R→ C̄ is quasi-compact,
see Topology, Lemma 8.2. Applying Lemma 3.2 we may choose a finite list of
elements a1, . . . , ar ∈ R[x1, . . . , xn] such that

(1) the union of the open subspaces Spec(C̄ak) ⊂ Spec(C̄) cover the smooth
locus of R/π2R→ C̄, and

(2) for each k = 1, . . . , r there exists a finite subset Ek ⊂ {1, . . . ,m} such that
(Ī/Ī2)ak is freely generated by the classes of fj , j ∈ Ek.

Set Ik = (fj , j ∈ Ek) ⊂ I and denote Īk the image of Ik in R/π2R[x1, . . . , xn]. By
(2) and Nakayama’s lemma we see that (Ī/Īk)ak is annihilated by 1 + b′k for some
b′k ∈ Īak . Suppose b′k is the image of bk/(ak)N for some bk ∈ I and some integer N .
After replacing ak by akbk we get

(3) (Īk)ak = (Ī)ak .

Thus, after possibly replacing ak by a high power, we may write

(4) akf` =
∑
j∈Ek h

j
k,`fj + π2gk,`
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for any ` ∈ {1, . . . ,m} and some hji,`, gi,` ∈ R[x1, . . . , xn]. If ` ∈ Ek we choose

hjk,` = akδ`,j (Kronecker delta) and gk,` = 0. Set

D = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , pk,`).

Here j ∈ {1, . . . ,m}, k ∈ {1, . . . , r}, ` ∈ {1, . . . ,m}, and

pk,` = akz` −
∑

j∈Ek
hjk,`zj − πgk,`.

Note that for ` ∈ Ek we have pk,` = 0 by our choices above.

The map R → D is the given one. Say C̄ → Λ/π2Λ maps xi to the class of λi
modulo π2. For an element f ∈ R[x1, . . . , xn] we denote f(λ) ∈ Λ the result of
substituting λi for xi. Then we know that fj(λ) = π2µj for some µj ∈ Λ. Define
D → Λ by the rules xi 7→ λi and zj 7→ πµj . This is well defined because

pk,` 7→ ak(λ)πµ` −
∑

j∈Ek
hjk,`(λ)πµj − πgk,`(λ)

= π
(
ak(λ)µ` −

∑
j∈Ek

hjk,`(λ)µj − gk,`(λ)
)

Substituting xi = λi in (4) above we see that the expression inside the brackets
is annihilated by π2, hence it is annihilated by π as we have assumed AnnΛ(π) =
AnnΛ(π2). The map C̄ → D/πD is determined by xi 7→ xi (clearly well defined).
Thus we are done if we can prove (b), (c), and (d).

Using (4) we obtain the following key equality

πpk,` = πakz` −
∑

j∈Ek
πhjk,`zj − π

2gk,`

= −ak(f` − πz`) + akf` +
∑

j∈Ek
hjk,`(fj − πzj)−

∑
j∈Ek

hjk,`fj − π
2gk,`

= −ak(f` − πz`) +
∑

j∈Ek
hjk,`(fj − πzj)

The end result is an element of the ideal generated by fj − πzj . In particular, we
see that D[1/π] is isomorphic to R[1/π][x1, . . . , xn, z1, . . . , zm]/(fj − πzj) which is
isomorphic to R[1/π][x1, . . . , xn] hence smooth over R. This proves (b).

For fixed k ∈ {1, . . . , r} consider the ring

Dk = R[x1, . . . , xn, z1, . . . , zm]/(fj − πzj , j ∈ Ek, pk,`)

The number of equations is m = |Ek| + (m − |Ek|) as pk,` is zero if ` ∈ Ek. Also,
note that

(Dk/πDk)ak = R/πR[x1, . . . , xn, 1/ak, z1, . . . , zm]/(fj , j ∈ Ek, pk,`)

= (C̄/πC̄)ak [z1, . . . , zm]/(akz` −
∑

j∈Ek
hjk,`zj)

∼= (C̄/πC̄)ak [zj , j ∈ Ek]

In particular (Dk/πDk)ak is smooth over (C̄/πC̄)ak . By our choice of ak we have
that (C̄/πC̄)ak is smooth over R/πR of relative dimension n− |Ek|, see (2). Hence
for a prime qk ⊂ Dk containing π and lying over Spec(C̄ak) the fibre ring of R→ Dk

is smooth at qk of dimension n. Thus R→ Dk is syntomic at qk by our count of the
number of equations above, see Algebra, Lemma 131.11. Hence R→ Dk is smooth
at qk, see Algebra, Lemma 132.16.
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To finish the proof, let q ⊂ D be a prime containing π lying over a prime where
R/π2R → C̄ is smooth. Then ak 6∈ q for some k by (1). We will show that the
surjection Dk → D induces an isomorphism on local rings at q. Since we know that
the ring maps C̄/πC̄ → Dk/πDk and R → Dk are smooth at the corresponding
prime qk by the preceding paragraph this will prove (c) and (d) and thus finish the
proof.

First, note that for any ` the equation πpk,` = −ak(f`−πz`)+
∑
j∈Ek h

j
k,`(fj−πzj)

proved above shows that f`−πz` maps to zero in (Dk)ak and in particular in (Dk)qk .

The relations (4) imply that akf` =
∑
j∈Ek h

j
k,`fj in I/I2. Since (Īk/Ī

2
k)ak is free

on fj , j ∈ Ek we see that

ak′h
j
k,` −

∑
j′∈Ek′

hj
′

k′,`h
j
k,j′

is zero in C̄ak for every k, k′, ` and j ∈ Ek. Hence we can find a large integer N
such that

aNk

(
ak′h

j
k,` −

∑
j′∈Ek′

hj
′

k′,`h
j
k,j′

)
is in Ik + π2R[x1, . . . , xn]. Computing modulo π we have

akpk′,` − ak′pk,` +
∑

hj
′

k′,`pk,j′

= −ak
∑

hj
′

k′,`zj′ + ak′
∑

hjk,`zj +
∑

hj
′

k′,`akzj′ −
∑∑

hj
′

k′,`h
j
k,j′zj

=
∑(

ak′h
j
k,` −

∑
hj
′

k′,`h
j
k,j′

)
zj

with Einstein summation convention. Combining with the above we see aN+1
k pk′,`

is contained in the ideal generated by Ik and π in R[x1, . . . , xn, z1, . . . , zm]. Thus
pk′,` maps into π(Dk)ak . On the other hand, the equation

πpk′,` = −ak′(f` − πz`) +
∑

j′∈Ek′
hj
′

k′,`(fj′ − πzj′)

shows that πpk′,` is zero in (Dk)ak . Since we have assumed that AnnR(π) =
AnnR(π2) and since (Dk)qk is smooth hence flat over R we see that Ann(Dk)qk

(π) =

Ann(Dk)qk
(π2). We conclude that pk′,` maps to zero as well, hence Dq = (Dk)qk

and we win. �

7. The desingularization lemma

Here is another fiendishly clever lemma.

Lemma 7.1. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnΛ(π) = AnnΛ(π2). Let A → Λ be an R-algebra map with A of
finite presentation. Assume

(1) the image of π is strictly standard in A over R, and
(2) there exists a section ρ : A/π4A → R/π4R which is compatible with the

map to Λ/π4Λ.

Then we can find R-algebra maps A → B → Λ with B of finite presentation such
that aB ⊂ HB/R where a = AnnR(AnnR(π2)/AnnR(π)).
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Proof. Choose a presentation

A = R[x1, . . . , xn]/(f1, . . . , fm)

and 0 ≤ c ≤ min(n,m) such that (3.3.3) holds for π and such that

(7.1.1) πfc+j ∈ (f1, . . . , fc) + (f1, . . . , fm)2

for j = 1, . . . ,m−c. Say ρ maps xi to the class of ri ∈ R. Then we can replace xi by
xi − ri. Hence we may assume ρ(xi) = 0 in R/π4R. This implies that fj(0) ∈ π4R
and that A→ Λ maps xi to π4λi for some λi ∈ Λ. Write

fj = fj(0) +
∑

i=1,...,n
rjixi + h.o.t.

This implies that the constant term of ∂fj/∂xi is rji. Apply ρ to (3.3.3) for π and
we see that

π =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I mod π4R

for some rI ∈ R. Thus we have

uπ =
∑

I⊂{1,...,n}, |I|=c
rI det(rji)j=1,...,c, i∈I

for some u ∈ 1 + π3R. By Algebra, Lemma 14.4 this implies there exists a n × c
matrix (sik) such that

uπδjk =
∑

i=1,...,n
rjicik for all j, k = 1, . . . , c

(Kronecker delta). We introduce auxiliary variables v1, . . . , vc, w1, . . . , wn and we
set

hi = xi − π2
∑

j=1,...c
sijvj − π3wi

In the following we will use that

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) = R[v1, . . . , vc, w1, . . . , wn]

without further mention. In R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn) we
have

fj = fj(x1 − h1, . . . , xn − hn)

=
∑

i
π2rjisikvk +

∑
i
π3rjiwi mod π4

= π3vj +
∑

π3rjiwi mod π4

for 1 ≤ j ≤ c. Hence we can choose elements gj ∈ R[v1, . . . , vc, w1, . . . , wn]
such that gj = vj +

∑
rjiwi mod π and such that fj = π3gj in the R-algebra

R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(h1, . . . , hn). We set

B = R[x1, . . . , xn, v1, . . . , vc, w1, . . . , wn]/(f1, . . . , fn, h1, . . . , hn, g1, . . . , gc).

The map A → B is clear. We define B → Λ by mapping xi → π4λi, vi 7→ 0, and
wi 7→ πλi. Then it is clear that the elements fj and hi are mapped to zero in Λ.
Moreover, it is clear that gi is mapped to an element t of πΛ such that π3t = 0
(as fi = π3gi modulo the ideal generated by the h’s). Hence our assumption that
AnnΛ(π) = AnnΛ(π2) implies that t = 0. Thus we are done if we can prove the
statement about smoothness.
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Note that Bπ ∼= Aπ[v1, . . . , vc] because the equations gi = 0 are implied by fi = 0.
Hence Bπ is smooth over R as Aπ is smooth over R by the assumption that π is
strictly standard in A over R, see Lemma 3.5.

Set B′ = R[v1, . . . , vc, w1, . . . , wn]/(g1, . . . , gc). As gi = vi +
∑
rjiwi mod π we see

that B′/πB′ = R/πR[w1, . . . , wn]. Hence R → B′ is smooth of relative dimension
n at every point of V (π) by Algebra, Lemmas 131.11 and 132.16 (the first lemma
shows it is syntomic at those primes, in particular flat, whereupon the second lemma
shows it is smooth).

Let q ⊂ B be a prime with π ∈ q and for some r ∈ a, r 6∈ q. Denote q′ = B′∩q. We
claim the surjection B′ → B induces an isomorphism of local rings (B′)q′ → Bq.
This will conclude the proof of the lemma. Note that Bq is the quotient of (B′)q′

by the ideal generated by fc+j , j = 1, . . . ,m − c. We observe two things: first
the image of fc+j in (B′)q′ is divisible by π2 and second the image of πfc+j in
(B′)q′ can be written as

∑
bj1j2fc+j1fc+j2 by (7.1.1). Thus we see that the image

of each πfc+j is contained in the ideal generated by the elements π2fc+j′ . Hence
πfc+j = 0 in (B′)q′ as this is a Noetherian local ring, see Algebra, Lemma 49.4. As
R→ (B′)q′ is flat we see that(

AnnR(π2)/AnnR(π)
)
⊗R (B′)q′ = Ann(B′)q′

(π2)/Ann(B′)q′
(π)

Because r ∈ a is invertible in (B′)q′ we see that this module is zero. Hence we see
that the image of fc+j is zero in (B′)q′ as desired. �

Lemma 7.2. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A → Λ and
D → Λ be R-algebra maps with A and D of finite presentation. Assume

(1) π is strictly standard in A over R, and
(2) there exists an R-algebra map A/π4A→ D/π4D compatible with the maps

to Λ/π4Λ.

Then we can find an R-algebra map B → Λ with B of finite presentation and
R-algebra maps A → B and D → B compatible with the maps to Λ such that
HD/RB ⊂ HB/D and HD/RB ⊂ HB/R.

Proof. We apply Lemma 7.1 to

D −→ A⊗R D −→ Λ

and the image of π in D. By Lemma 3.7 we see that π is strictly standard in
A ⊗R D over D. As our section ρ : (A ⊗R D)/π4(A ⊗R D) → D/π4D we take
the map induced by the map in (2). Thus Lemma 7.1 applies and we obtain a
factorization A ⊗R D → B → Λ with B of finite presentation and aB ⊂ HB/D

where

a = AnnD(AnnD(π2)/AnnD(π)).

For any prime q of D such that Dq is flat over R we have AnnDq
(π2)/AnnDq

(π) = 0
because annihilators of elements commutes with flat base change and we assumed
AnnR(π) = AnnR(π2). Because D is Noetherian we see that AnnD(π2)/AnnD(π)
is a finite D-module, hence formation of its annihilator commutes with localization.
Thus we see that a 6⊂ q. Hence we see that D → B is smooth at any prime of B
lying over q. Since any prime of D where R→ D is smooth is one where Dq is flat
over R we conclude that HD/RB ⊂ HB/D. The final inclusion HD/RB ⊂ HB/R
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follows because compositions of smooth ring maps are smooth (Algebra, Lemma
132.14). �

Lemma 7.3. Let R be a Noetherian ring. Let Λ be an R-algebra. Let π ∈ R and
assume that AnnR(π) = AnnR(π2) and AnnΛ(π) = AnnΛ(π2). Let A → Λ be an
R-algebra map with A of finite presentation and assume π is strictly standard in A
over R. Let

A/π8A→ C̄ → Λ/π8Λ

be a factorization with C̄ of finite presentation. Then we can find a factorization
A → B → Λ with B of finite presentation such that Rπ → Bπ is smooth and such
that

HC̄/(R/π8R) · Λ/π8Λ ⊂
√
HB/RΛ mod π8Λ.

Proof. Apply Lemma 6.1 to get R → D → Λ with a factorization C̄/π4C̄ →
D/π4D → Λ/π4Λ such that R → D is smooth at any prime not containing π and
at any prime lying over a prime of C̄/π4C̄ where R/π8R→ C̄ is smooth. By Lemma
7.2 we can find a finitely presented R-algebra B and factorizations A → B → Λ
and D → B → Λ such that HD/RB ⊂ HB/R. We omit the verification that this is
a solution to the problem posed by the lemma. �

8. Warmup: reduction to a base field

In this section we apply the lemmas in the previous sections to prove that it suffices
to prove the main result when the base ring is a field, see Lemma 8.4.

Situation 8.1. Here R→ Λ is a regular ring map of Noetherian rings.

Let R → Λ be as in Situation 8.1. We say PT holds for R → Λ if Λ is a filtered
colimit of smooth R-algebras.

Lemma 8.2. Let Ri → Λi, i = 1, 2 be as in Situation 8.1. If PT holds for Ri → Λi,
i = 1, 2, then PT holds for R1 ×R2 → Λ1 × Λ2.

Proof. Omitted. Hint: A product of colimits is a colimit. �

Lemma 8.3. Let R → A → Λ be ring maps with A of finite presentation over R.
Let S ⊂ R be a multiplicative set. Let S−1A→ B′ → S−1Λ be a factorization with
B′ smooth over S−1R. Then we can find a factorization A → B → Λ such that
some s ∈ S maps to an elementary standard element in B over R.

Proof. We first apply Lemma 4.4 to S−1R → B′. Thus we may assume B′ is
standard smooth over S−1R. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say xi 7→ λi
in Λ. We may write B′ = S−1R[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n where
det(∂fj/∂xi)i,j=1,...,c is invertible in B′ and such that A→ B′ is given by xi 7→ xi,
see Lemma 4.6. After multiplying xi, i > n by an element of S and correspondingly
modifying the equations fj we may assume B′ → S−1Λ maps xi to λi/1 for some
λi ∈ Λ for i > n. Choose a relation

1 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj

for some aj ∈ S−1R[x1, . . . , xn+m]. Since each element of S is invertible in B′ we
may (by clearing denominators) assume that fj , aj ∈ R[x1, . . . , xn+m] and that

s0 = a0 det(∂fj/∂xi)i,j=1,...,c +
∑

j=1,...,c
ajfj
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for some s0 ∈ S. Since gj maps to zero in S−1R[x1, . . . , xn+m]/(f1, . . . , xc) we can
find elements sj ∈ S such that sjgj = 0 in R[x1, . . . , xn+m]/(f1, . . . , fc). Since fj
maps to zero in S−1Λ we can find s′j ∈ S such that s′jfj(λ1, . . . , λn+m) = 0 in Λ.
Consider the ring

B = R[x1, . . . , xn+m]/(s′1f1, . . . , s
′
cfc, g1, . . . , gt)

and the factorization A → B → Λ with B → Λ given by xi 7→ λi. We claim that
s = s0s1 . . . sts

′
1 . . . s

′
c is elementary standard in B over R which finishes the proof.

Namely, sjgj ∈ (f1, . . . , fc) and hence sgj ∈ (s′1f1, . . . , s
′
cfc). Finally, we have

a0 det(∂s′jfj/∂xi)i,j=1,...,c +
∑

j=1,...,c
(s′1 . . . ŝ

′
j . . . s

′
c)ajs

′
jfj = s0s

′
1 . . . s

′
c

which divides s as desired. �

Lemma 8.4. If for every Situation 8.1 where R is a field PT holds, then PT holds
in general.

Proof. Assume PT holds for any Situation 8.1 where R is a field. Let R → Λ be
as in Situation 8.1 arbitrary. Note that R/I → Λ/IΛ is another regular ring map
of Noetherian rings, see More on Algebra, Lemma 30.3. Consider the set of ideals

I = {I ⊂ R | R/I → Λ/IΛ does not have PT}

We have to show that I is empty. If this set is nonempty, then it contains a maximal
element because R is Noetherian. Replacing R by R/I and Λ by Λ/I we obtain a
situation where PT holds for R/I → Λ/IΛ for any nonzero ideal of R. In particular,
we see by applying Proposition 5.3 that R is a reduced ring.

Let A→ Λ be an R-algebra homomorphism with A of finite presentation. We have
to find a factorization A→ B → Λ with B smooth over R, see Lemma 2.1.

Let S ⊂ R be the set of nonzerodivisors and consider the total ring of fractions
Q = S−1R of R. We know that Q = K1 × . . . × Kn is a product of fields, see
Algebra, Lemmas 24.4 and 30.6. By Lemma 8.2 and our assumption PT holds for
the ring map S−1R → S−1Λ. Hence we can find a factorization S−1A → B′ → Λ
with B′ smooth over S−1R.

We apply Lemma 8.3 and find a factorization A→ B → Λ such that some π ∈ S is
elementary standard in B over R. After replacing A by B we may assume that π is
elementary standard, hence strictly standard in A. We know that R/π8R→ Λ/π8Λ
satisfies PT. Hence we can find a factorization R/π8R → A/π8A → C̄ → Λ/π8Λ
with R/π8R → C̄ smooth. By Lemma 6.1 we can find an R-algebra map D → Λ
with D smooth over R and a factorization R/π4R→ A/π4A→ D/π4D → Λ/π4Λ.
By Lemma 7.2 we can find A → B → Λ with B smooth over R which finishes the
proof. �

9. Local tricks

Situation 9.1. We are given a Noetherian ring R and an R-algebra map A → Λ
and a prime q ⊂ Λ. We assume A is of finite presentation over R. In this situation
we denote hA =

√
HA/RΛ.

Let R → A → Λ ⊃ q be as in Situation 9.1. We say R → A → Λ ⊃ q can be
resolved if there exists a factorization A → B → Λ with B of finite presentation
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and hA ⊂ hB 6⊂ q. In this case we will call the factorization A → B → Λ a
resolution of R→ A→ Λ ⊃ q.

Lemma 9.2. Let R → A → Λ ⊃ q be as in Situation 9.1. Let r ≥ 1 and
π1, . . . , πr ∈ R map to elements of q. Assume

(1) for i = 1, . . . , r we have

AnnR/(π8
1 ,...,π

8
i−1)R(πi) = AnnR/(π8

1 ,...,π
8
i−1)R(π2

i )

and

AnnΛ/(π8
1 ,...,π

8
i−1)Λ(πi) = AnnΛ/(π8

1 ,...,π
8
i−1)Λ(π2

i )

(2) for i = 1, . . . , r the element πi maps to a strictly standard element in A
over R.

Then, if

R/(π8
1 , . . . , π

8
r)R→ A/(π8

1 , . . . , π
8
r)A→ Λ/(π8

1 , . . . , π
8
r)Λ ⊃ q/(π8

1 , . . . , π
8
r)Λ

can be resolved, so can R→ A→ Λ ⊃ q.

Proof. We are going to prove this by induction on r.

The case r = 1. Here the assumption is that there exists a factorization A/π8
1 →

C̄ → Λ/π8
1 which resolves the situation modulo π8

1 . Conditions (1) and (2) are the
assumptions needed to apply Lemma 7.3. Thus we can “lift” the resolution C̄ to a
resolution of R→ A→ Λ ⊃ q.

The case r > 1. In this case we apply the induction hypothesis for r − 1 to the
situation R/π8

1 → A/π8
1 → Λ/π8

1 ⊃ q/π8
1Λ. Note that property (2) is preserved by

Lemma 3.7. �

Lemma 9.3. Let R→ A→ Λ ⊃ q be as in Situation 9.1. Let p = R ∩ q. Assume
that q is minimal over hA and that Rp → Ap → Λq ⊃ qΛq can be resolved. Then
there exists a factorization A → C → Λ with C of finite presentation such that
HC/RΛ 6⊂ q.

Proof. Let Ap → C → Λq be a resolution of Rp → Ap → Λq ⊃ qΛq. By our
assumption that q is minimal over hA this means that HC/Rp

Λq = Λq. By Lemma
3.8 we may assume that C is smooth over Λp. By Lemma 4.4 we may assume that C
is standard smooth over Rp. Write A = R[x1, . . . , xn]/(g1, . . . , gt) and say A → Λ
is given by xi 7→ λi. Write C = Rp[x1, . . . , xn+m]/(f1, . . . , fc) for some c ≥ n
such that A → C maps xi to xi and such that det(∂fj/∂xi)i,j=1,...,c is invertible
in C, see Lemma 4.6. After clearing denominators we may assume f1, . . . , fc are
elements of R[x1, . . . , xn+m]. Of course det(∂fj/∂xi)i,j=1,...,c is not invertible in
R[x1, . . . , xn+m]/(f1, . . . , fc) but it becomes invertible after inverting some element
s0 ∈ R, s0 6∈ p. As gj maps to zero under R[x1, . . . , xn] → A → C we can find
sj ∈ R, sj 6∈ p such that sjgj is zero in R[x1, . . . , xn+m]/(f1, . . . , fc). Write fj =
Fj(x1, . . . , xn+m, 1) for some polynomial Fj ∈ R[x1, . . . , xn, Xn+1, . . . , Xn+m+1] ho-
mogeneous in Xn+1, . . . , Xn+m+1. Pick λn+i ∈ Λ, i = 1, . . . ,m+1 with λn+m+1 6∈ q
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such that xn+i maps to λn+i/λn+m+1 in Λq. Then

Fj(λ1, . . . , λn+m+1) = (λn+m+1)deg(Fj)Fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
, 1)

= (λn+m+1)deg(Fj)fj(λ1, . . . , λn,
λn+1

λn+m+1
, . . . ,

λn+m

λn+m+1
)

= 0

in Λq. Thus we can find λ0 ∈ Λ, λ0 6∈ q such that λ0Fj(λ1, . . . , λn+m+1) = 0 in Λ.
Now we set B equal to

R[x0, . . . , xn+m+1]/(g1, . . . , gt, x0F1(x1, . . . , xn+m+1), . . . , x0Fc(x1, . . . , xn+m+1))

which we map to Λ by mapping xi to λi. Let b be the image of x0x1s0s1 . . . st in
B. Then Bb is isomorphic to

Rs0s1 [x0, x1, . . . , xn+m+1, 1/x0xn+m+1]/(f1, . . . , fc)

which is smooth over R by construction. Since b does not map to an element of q,
we win. �

Lemma 9.4. Let R→ A→ Λ ⊃ q be as in Situation 9.1. Let p = R ∩ q. Assume

(1) q is minimal over hA,
(2) Rp → Ap → Λq ⊃ qΛq can be resolved, and
(3) dim(Λq) = 0.

Then R→ A→ Λ ⊃ q can be resolved.

Proof. By (3) the ring Λq is Artinian local hence qΛq is nilpotent. Thus (hA)NΛq =
0 for some N > 0. Thus there exists a λ ∈ Λ, λ 6∈ q such that λ(hA)N = 0 in Λ.
Say HA/R = (a1, . . . , ar) so that λaNi = 0 in Λ. By Lemma 9.3 we can find a
factorization A → C → Λ with C of finite presentation such that hC 6⊂ q. Write
C = A[x1, . . . , xn]/(f1, . . . , fm). Set

B = A[x1, . . . , xn, y1, . . . , yr, z, tij ]/(fj −
∑

yitij , zyi)

where tij is a set of rm variables. Note that there is a map B → C[yi, z]/(yiz)
given by setting tij equal to zero. The map B → Λ is the composition B →
C[yi, z]/(yiz)→ Λ where C[yi, z]/(yiz)→ Λ is the given map C → Λ, maps z to λ,
and maps yi to the image of aNi in Λ.

We claim that B is a solution for R → A → Λ ⊃ q. First note that Bz is iso-
morphic to C[y1, . . . , yr, z, z

−1] and hence is smooth. On the other hand, By`
∼=

A[xi, yi, y
−1
` , tij , i 6= `] which is smooth over A. Thus we see that z and a`y` (com-

positions of smooth maps are smooth) are all elements of HB/R. This proves the
lemma. �

10. Separable residue fields

In this section we explain how to solve a local problem in the case of a separable
residue field extension.

Lemma 10.1 (Ogoma). Let A be a Noetherian ring and let M be a finite A-
module. Let S ⊂ A be a multiplicative set. If π ∈ A and Ker(π : S−1M →
S−1M) = Ker(π2 : S−1M → S−1M) then there exists an s ∈ S such that for any
n > 0 we have Ker(snπ : M →M) = Ker((snπ)2 : M →M).
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Proof. Let K = Ker(π : M → M) and K ′ = {m ∈ M | π2m = 0 in S−1M} and
Q = K ′/K. Note that S−1Q = 0 by assumption. Since A is Noetherian we see
that Q is a finite A-module. Hence we can find an s ∈ S such that s annihilates Q.
Then s works. �

Lemma 10.2. Let Λ be a Noetherian ring. Let I ⊂ Λ be an ideal. Let I ⊂ q be
a prime. Let n, e be positive integers Assume that qnΛq ⊂ IΛq and that Λq is a
regular local ring of dimension d. Then there exists an n > 0 and π1, . . . , πd ∈ Λ
such that

(1) (π1, . . . , πd)Λq = qΛq,
(2) πn1 , . . . , π

n
d ∈ I, and

(3) for i = 1, . . . , d we have

AnnΛ/(πe1 ,...,π
e
i−1)Λ(πi) = AnnΛ/(πe1 ,...,π

e
i−1)Λ(π2

i ).

Proof. Set S = Λ \ q so that Λq = S−1Λ. First pick π1, . . . , πd with (1) which is
possible as Λq is regular. By assumption πni ∈ IΛq. Thus we can find s1, . . . , sd ∈ S
such that siπ

n
i ∈ I. Replacing πi by siπi we get (2). Note that (1) and (2) are

preserved by further multiplying by elements of S. Suppose that (3) holds for
i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that π1, . . . , πd is a regular sequence
in S−1Λ, see Algebra, Lemma 102.3. In particular πe1, . . . , π

e
t , πt+1 is a regular

sequence in S−1Λ = Λq by Algebra, Lemma 67.10. Hence we see that

AnnS−1Λ/(πe1 ,...,π
e
i−1)(πi) = AnnS−1Λ/(πe1 ,...,π

e
i−1)(π

2
i ).

Thus we get (3) for i = t+1 after replacing πt+1 by sπt+1 for some s ∈ S by Lemma
10.1. By induction on t this produces a sequence satisfying (1), (2), and (3). �

Lemma 10.3. Let k → A→ Λ ⊃ q be as in Situation 9.1 where

(1) k is a field,
(2) Λ is Noetherian,
(3) q is minimal over hA,
(4) Λq is a regular local ring, and
(5) the field extension k ⊂ κ(q) is separable.

Then k → A→ Λ ⊃ q can be resolved.

Proof. Set d = dim Λq. Set R = k[x1, . . . , xd]. Choose n > 0 such that qnΛq ⊂
hAΛq which is possible as q is minimal over hA. Choose generators a1, . . . , ar of
HA/R. Set

B = A[x1, . . . , xd, zij ]/(x
n
i −

∑
zijaj)

Each Baj is smooth over R it is a polynomial algebra over Aaj [x1, . . . , xd] and Aaj
is smooth over k. Hence Bxi is smooth over R. Let B → C be the R-algebra map
constructed in Lemma 4.1 which comes with a R-algebra retraction C → B. In
particular a map C → Λ fitting into the diagram above. By construction Cxi is
a smooth R-algebra with ΩCxi/R free. Hence we can find c > 0 such that xci is

strictly standard in C/R, see Lemma 4.7. Now choose π1, . . . , πd ∈ Λ as in Lemma
10.2 where n = n, e = 8c, q = q and I = hA. Write πni =

∑
λijaj for some πij ∈ Λ.

There is a map B → Λ given by xi 7→ πi and zij 7→ λij . Set R = k[x1, . . . , xd].
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Diagram

R // B

��
k

OO

// A

OO

// Λ
Now we apply Lemma 9.2 to R → C → Λ ⊃ q and the sequence of elements
xc1, . . . , x

c
d of R. Assumption (2) is clear. Assumption (1) holds for R by inspection

and for Λ by our choice of π1, . . . , πd. (Note that if AnnΛ(π) = AnnΛ(π2), then we
have AnnΛ(π) = AnnΛ(πc) for all c > 0.) Thus it suffices to resolve

R/(xe1, . . . , x
e
d)→ C/(xe1, . . . , x

e
d)→ Λ/(πe1, . . . , π

e
d) ⊃ q/(πe1, . . . , π

e
d)

for e = 8c. By Lemma 9.4 it suffices to resolve this after localizing at q. But since
x1, . . . , xd map to a regular sequence in Λq we see that R→ Λ is flat, see Algebra,
Lemma 124.2. Hence

R/(xe1, . . . , x
e
d)→ Λq/(π

e
1, . . . , π

e
d)

is a flat ring map of Artinian local rings. Moreover, this map induces a separable
field extension on residue fields by assumption. Thus this map is a filtered colimit
of smooth algebras by Algebra, Lemma 147.11 and Proposition 5.3. Existence of
the desired solution follows from Lemma 2.1. �

11. Inseparable residue fields

In this section we explain how to solve a local problem in the case of an inseparable
residue field extension.

Lemma 11.1. Let k be a field of characteristic p > 0. Let (Λ,m,K) be an Artinian
local k-algebra. Assume that dimH1(LK/k) < ∞. Then Λ is a filtered colimit of
Artinian local k-algebras A with each map A→ Λ flat, with mAΛ = m, and with A
essentially of finite type over k.

Proof. Note that the flatness of A → Λ implies that A → Λ is injective, so the
lemma really tells us that Λ is a directed union of these types of subrings A ⊂ Λ.
Let n be the minimal integer such that mn = 0. We will prove this lemma by
induction on n. The case n = 1 is clear as a field extension is a union of finitely
generated field extensions.

Pick λ1, . . . , λd ∈ m which generate m. As K is formally smooth over Fp (see
Algebra, Lemma 147.7) we can find a ring map σ : K → Λ which is a section of the
quotient map Λ→ K. In general σ is not a k-algebra map. Given σ we define

Ψσ : K[x1, . . . , xd] −→ Λ

using σ on elements of K and mapping xi to λi. Claim: there exists a σ : K → Λ
and a subfield k ⊂ F ⊂ K finitely generated over k such that the image of k in Λ
is contained in Ψσ(F [x1, . . . , xd]).

We will prove the claim by induction on the least integer n such that mn = 0. It is
clear for n = 1. If n > 1 set I = mn−1 and Λ′ = Λ/I. By induction we may assume
given σ′ : K → Λ′ and k ⊂ F ′ ⊂ K finitely generated such that the image of k →
Λ → Λ′ is contained in A′ = Ψσ′(F

′[x1, . . . , xd]). Denote τ ′ : k → A′ the induced
map. Choose a lift σ : K → Λ of σ′ (this is possible by the formal smoothness
of K/Fp we mentioned above). For later reference we note that we can change σ
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to σ + D for some derivation D : K → I. Set A = F [x1, . . . , xd]/(x1, . . . , xd)
n.

Then Ψσ induces a ring map Ψσ : A → Λ. The composition with the quotient
map Λ→ Λ′ induces a surjective map A→ A′ with nilpotent kernel. Choose a lift
τ : k → A of τ ′ (possible as k/Fp is formally smooth). Thus we obtain two maps
k → Λ, namely Ψσ ◦ τ : k → Λ and the given map i : k → Λ. These maps agree
modulo I, whence the difference is a derivation θ = i−Ψσ ◦ τ : k → I. Note that
if we change σ into σ +D then we change θ into θ −D|k.

Choose a set of elements {yj}j∈J of k whose differentials dyj form a basis of Ωk/Fp .
The Jacobi-Zariski sequence for Fp ⊂ k ⊂ K is

0→ H1(LK/k)→ Ωk/Fp ⊗K → ΩK/Fp → ΩK/k → 0

As dimH1(LK/k) <∞ we can find a finite subset J0 ⊂ J such that the image of the
first map is contained in

⊕
j∈J0 Kdyj . Hence the elements dyj , j ∈ J \ J0 map to

K-linearly independent elements of ΩK/Fp . Therefore we can choose a D : K → I
such that θ −D|k = ξ ◦ d where ξ is a composition

Ωk/Fp =
⊕

j∈J
kdyj −→

⊕
j∈J0

kdyj −→ I

Let fj = ξ(dyj) ∈ I for j ∈ J0. Change σ into σ + D as above. Then we see
that θ(a) =

∑
j∈J0 ajfj for a ∈ k where da =

∑
ajdyj in Ωk/Fp . Note that I is

generated by the monomials λE = λe11 . . . λedd of total degree |E| =
∑
ei = n − 1

in λ1, . . . , λd. Write fj =
∑
E cj,Eλ

E with cj,E ∈ K. Replace F ′ by F = F ′(cj,E).
Then the claim holds.

Choose σ and F as in the claim. The kernel of Ψσ is generated by finitely many
polynomials g1, . . . , gt ∈ K[x1, . . . , xd] and we may assume their coefficients are in
F after enlarging F by adjoining finitely many elements. In this case it is clear that
the map A = F [x1, . . . , xd]/(g1, . . . , gt)→ K[x1, . . . , xd]/(g1, . . . , gt) = Λ is flat. By
the claim A is a k-subalgebra of Λ. It is clear that Λ is the filtered colimit of these
algebras, as K is the filtered union of the subfields F . Finally, these algebras are
essentially of finite type over k by Algebra, Lemma 52.3. �

Lemma 11.2. Let k be a field of characteristic p > 0. Let Λ be a Noetherian
geometrically regular k-algebra. Let q ⊂ Λ be a prime ideal. Let n ≥ 1 be an
integer and let E ⊂ Λq/q

nΛq be a finite subset. Then we can find m ≥ 0 and
ϕ : k[y1, . . . , ym]→ Λ with the following properties

(1) setting p = ϕ−1(q) we have qΛq = pΛq and k[y1, . . . , ym]p → Λq is flat,
(2) there is a factorization by homomorphisms of local Artinian rings

k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D → Λq/q

nΛq

where the first arrow is essentially smooth and the second is flat,
(3) E is contained in D modulo qnΛq.

Proof. Set Λ̄ = Λq/q
nΛq. Note that dimH1(Lκ(q)/k) < ∞ by More on Algebra,

Proposition 25.1. Pick A ⊂ Λ̄ containing E such that A is local Artinian, essentially
of finite type over k, the map A→ Λ̄ is flat, and mA generates the maximal ideal of
Λ̄, see Lemma 11.1. Denote F = A/mA the residue field so that k ⊂ F ⊂ K. Pick
λ1, . . . , λt ∈ Λ which map to elements of A in Λ̄ such that moreover the images
of dλ1, . . . ,dλt form a basis of ΩF/k. Consider the map ϕ′ : k[y1, . . . , yt] → Λ

sending yj to λj . Set p′ = (ϕ′)−1(q). By More on Algebra, Lemma 25.2 the
ring map k[y1, . . . , yt]p′ → Λq is flat and Λq/p

′Λq is regular. Thus we can choose
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further elements λt+1, . . . , λm ∈ Λ which map into A ⊂ Λ̄ and which map to
a regular system of parameters of Λq/p

′Λq. We obtain ϕ : k[y1, . . . , ym] → Λ
having property (1) such that k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → Λ̄ factors through
A. Thus k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → A is flat by Algebra, Lemma 38.8.
By construction the residue field extension κ(p) ⊂ F is finitely generated and
ΩF/κ(p) = 0. Hence it is finite separable by More on Algebra, Lemma 24.1. Thus
k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p → A is finite by Algebra, Lemma 52.3. Finally,
we conclude that it is étale by Algebra, Lemma 138.7. Since an étale ring map is
certainly essentially smooth we win. �

Lemma 11.3. Let ϕ : k[y1, . . . , ym]→ Λ, n, q, p and

k[y1, . . . , ym]p/p
n → D → Λq/q

nΛq

be as in Lemma 11.2. Then for any λ ∈ Λ \ q there exists an integer q > 0 and a
factorization

k[y1, . . . , ym]p/p
n → D → D′ → Λq/q

nΛq

such that D → D′ is an essentially smooth map of local Artinian rings, the last
arrow is flat, and λq is in D′.

Proof. Set Λ̄ = Λq/q
nΛq. Let λ̄ be the image of λ in Λ̄. Let α ∈ κ(q) be the image

of λ in the residue field. Let k ⊂ F ⊂ κ(q) be the residue field of D. If α is in
F then we can find an x ∈ D such that xλ̄ = 1 mod q. Hence (xλ̄)q = 1 mod (q)q

if q is divisible by p. Hence λ̄q is in D. If α is transcendental over F , then we
can take D′ = (D[λ̄])m equal to the subring generated by D and λ̄ localized at
m = D[λ̄] ∩ qΛ̄. This works because D[λ̄] is in fact a polynomial algebra over D
in this case. Finally, if λ mod q is algebraic over F , then we can find a p-power q
such that αq is separable algebraic over F , see Fields, Section 25. Note that D and
Λ̄ are henselian local rings, see Algebra, Lemma 145.11. Let D → D′ be a finite
étale extension whose residue field extension is F ⊂ F (αq), see Algebra, Lemma
145.8. Since Λ̄ is henselian and F (αq) is contained in its residue field we can find a

factorization D′ → Λ̄. By the first part of the argument we see that λ̄qq
′ ∈ D′ for

some q′ > 0. �

Lemma 11.4. Let k → A→ Λ ⊃ q be as in Situation 9.1 where

(1) k is a field of characteristic p > 0,
(2) Λ is Noetherian and geometrically regular over k,
(3) q is minimal over hA.

Then k → A→ Λ ⊃ q can be resolved.

Proof. The lemma is proven by the following steps in the given order. We will
justify each of these steps below.

(1) Pick an integer N > 0 such that qNΛq ⊂ HA/kΛq.
(2) Pick generators a1, . . . , at ∈ A of the ideal HA/R.
(3) Set d = dim(Λq).
(4) Set B = A[x1, . . . , xd, zij ]/(x

2N
i −

∑
zijaj).

(5) Consider B as a k[x1, . . . , xd]-algebra and let B → C be as in Lemma 4.1.
We also obtain a section C → B.

(6) Choose c > 0 such that each xci is strictly standard in C over k[x1, . . . , xd].
(7) Set n = N + dc and e = 8c.
(8) Let E ⊂ Λq/q

nΛq be the images of generators of A as a k-algebra.
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(9) Choose an integer m and a k-algebra map ϕ : k[y1, . . . , ym] → Λ and a
factorization by local Artinian rings

k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D → Λq/q

nΛq

such that the first arrow is essentially smooth, the second is flat, E is
contained in D, with p = ϕ−1(q) the map k[y1, . . . , ym]p → Λq is flat, and
pΛq = qΛq.

(10) Choose π1, . . . , πd ∈ p which map to a regular system of parameters of
k[y1, . . . , ym]p.

(11) Let R = k[y1, . . . , ym, t1, . . . , tm] and γi = πiti.
(12) If necessary modify the choice of πi such that for i = 1, . . . , d we have

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

(13) There exist δ1, . . . , δd ∈ Λ, δi 6∈ q and a factorization D → D′ → Λq/q
nΛq

with D′ local Artinian, D → D′ essentially smooth, the map D′ → Λq/q
nΛq

flat such that, with π′i = δiπi, we have for i = 1, . . . , d
(a) (π′i)

2N =
∑
ajλij in Λ where λij mod qnΛq is an element of D′,

(b) AnnΛ/(π′e1,...,π
′e
i−1)(π

′
i) = AnnΛ/(π′e1,...,π

′e
i−1)(π

′2
i ),

(c) δi mod qnΛq is an element of D′.
(14) Define B → Λ by sending xi to π′i and zij to λij found above. Define

C → Λ by composing the map B → Λ with the retraction C → B.
(15) Map R→ Λ by ϕ on k[y1, . . . , ym] and by sending ti to δi. Further introduce

a map

k[x1, . . . , xd] −→ R = k[y1, . . . , ym, t1, . . . , td]

by sending xi to γi = πiti.
(16) It suffices to resolve

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

(17) Set I = (γe1 , . . . , γ
e
d) ⊂ R.

(18) It suffices to resolve

R/I → C ⊗k[x1,...,xd] R/I → Λ/IΛ ⊃ q/IΛ

(19) We denote r ⊂ R = k[y1, . . . , ym, t1, . . . , td] the inverse image of q.
(20) It suffices to resolve

(R/I)r → C ⊗k[x1,...,xd] (R/I)r → Λq/IΛq ⊃ qΛq/IΛq

(21) Set J = (πe1, . . . , π
e
d) in k[y1, . . . , ym].

(22) It suffices to resolve

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

(23) It suffices to resolve

(R/pnR)p → C ⊗k[x1,...,xd] (R/pnR)p → Λq/q
nΛq ⊃ qΛq/q

nΛq

(24) It suffices to resolve

(R/pnR)p → B ⊗k[x1,...,xd] (R/pnR)p → Λq/q
nΛq ⊃ qΛq/q

nΛq
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(25) The ring D′[t1, . . . , td] is given the structure of an Rp/p
nRp-algebra by the

given map k[y1, . . . , ym]p/p
nk[y1, . . . , ym]p → D′ and by sending ti to ti. It

suffices to find a factorization

B ⊗k[x1,...,xd] (R/pnR)p → D′[t1, . . . , td]→ Λq/q
nΛq

where the second arrow sends ti to δi and induces the given homomorphism
D′ → Λq/q

nΛq.
(26) Such a factorization exists by our choice of D′ above.

We now give the justification for each of the steps, except that we skip justifying
the steps which just introduce notation.

Ad (1). This is possible as q is minimal over hA =
√
HA/kΛ.

Ad (6). Note that Aai is smooth over k. Hence Baj , which is isomorphic to a polyno-
mial algebra over Aaj [x1, . . . , xd], is smooth over k[x1, . . . , xd]. Thus Bxi is smooth
over k[x1, . . . , xd]. By Lemma 4.1 we see that Cxi is smooth over k[x1, . . . , xd] with
finite free module of differentials. Hence some power of xi is strictly standard in C
over k[x1, . . . , xn] by Lemma 4.7.

Ad (9). This follows by applying Lemma 11.2.

Ad (10). Since k[y1, . . . , ym]p → Λq is flat and pΛq = qΛq by construction we
see that dim(k[y1, . . . , ym]p) = d by Algebra, Lemma 108.7. Thus we can find
π1, . . . , πd ∈ Λ which map to a regular system of parameters in Λq.

Ad (12). By Algebra, Lemma 102.3 any permutation of the sequence π1, . . . , πd is
a regular sequence in k[y1, . . . , ym]p. Hence γ1 = π1t1, . . . , γd = πdtd is a regular
sequence in Rp = k[y1, . . . , ym]p[t1, . . . , td], see Algebra, Lemma 67.11. Let S =
k[y1, . . . , ym] \ p so that Rp = S−1R. Note that π1, . . . , πd and γ1, . . . , γd remain
regular sequences if we multiply our πi by elements of S. Suppose that

AnnR/(γe1 ,...,γei−1)R(γi) = AnnR/(γe1 ,...,γei−1)R(γ2
i )

holds for i = 1, . . . , t for some t ∈ {0, . . . , d}. Note that γe1 , . . . , γ
e
t , γt+1 is a regular

sequence in S−1R by Algebra, Lemma 67.10. Hence we see that

AnnS−1R/(γe1 ,...,γ
e
i−1)(γi) = AnnS−1R/(γe1 ,...,γ

e
i−1)(γ

2
i ).

Thus we get
AnnR/(γe1 ,...,γet )R(γt+1) = AnnR/(γe1 ,...,γet )R(γ2

t+1)

after replacing πt+1 by sπt+1 for some s ∈ S by Lemma 10.1. By induction on t
this produces the desired sequence.

Ad (13). Let S = Λ \ q so that Λq = S−1Λ. Set Λ̄ = Λq/q
nΛq. Suppose that

we have a t ∈ {0, . . . , d} and δ1, . . . , δt ∈ S and a factorization D → D′ → Λ̄ as
in (13) such that (a), (b), (c) hold for i = 1, . . . , t. We have πNt+1 ∈ HA/kΛq as

qNΛq ⊂ HA/kΛq by (1). Hence πNt+1 ∈ HA/kΛ̄. Hence πNt+1 ∈ HA/kD
′ as D′ → Λ̄

is faithfully flat, see Algebra, Lemma 79.11. Recall that HA/k = (a1, . . . , at). Say

πNt+1 =
∑
ajdj in D′ and choose cj ∈ Λq lifting dj ∈ D′. Then πNt+1 =

∑
cjaj + ε

with ε ∈ qnΛq ⊂ qn−NHA/kΛq. Write ε =
∑
ajc
′
j for some c′j ∈ qn−NΛq. Hence

π2N
t+1 =

∑
(πNt+1cj + πNt+1c

′
j)aj . Note that πNt+1c

′
j maps to zero in Λ̄; this trivial but

key observation will ensure later that (a) holds. Now we choose s ∈ S such that
there exist µt+1j ∈ Λ such that on the one hand πNt+1cj + πNt+1c

′
j = µt+1j/s

2N in

S−1Λ and on the other (sπt+1)2N =
∑
µt+1jaj in Λ (minor detail omitted). We



28 SMOOTHING RING MAPS

may further replace s by a power and enlarge D′ such that s maps to an element of
D′. With these choices µt+1j maps to s2Ndj which is an element of D′. Note that
π1, . . . , πd are a regular sequence of parameters in S−1Λ by our choice of ϕ. Hence
π1, . . . , πd forms a regular sequence in Λq by Algebra, Lemma 102.3. It follows that
π′
e
1, . . . , π

′e
t , sπt+1 is a regular sequence in S−1Λ by Algebra, Lemma 67.10. Thus

we get

AnnS−1Λ/(π′e1,...,π
′e
t )

(sπt+1) = AnnS−1Λ/(π′e1,...,π
′e
t )

((sπt+1)2).

Hence we may apply Lemma 10.1 to find an s′ ∈ S such that

AnnΛ/(π′e1,...,π
′e
t )

((s′)qsπt+1) = AnnΛ/(π′e1,...,π
′e
t )

(((s′)qsπt+1)2).

for any q > 0. By Lemma 11.3 we can choose q and enlarge D′ such that (s′)q maps
to an element of D′. Setting δt+1 = (s′)qs and we conclude that (a), (b), (c) hold
for i = 1, . . . , t+ 1. For (a) note that λt+1j = (s′)2Nqµt+1j works. By induction on
t we win.

Ad (16). By construction the radical of H(C⊗k[x1,...,xd]R)/RΛ contains hA. Namely,

the elements aj ∈ HA/k map to elements of HB/k[x1,...,xn], hence map to elements
of HC/k[x1,...,xn], hence aj ⊗ 1 map to elements of HC⊗k[x1,...,xd]R/R

. Moreover, if

we have a solution C ⊗k[x1,...,xn] R→ T → Λ of

R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q

then HT/R ⊂ HT/k as R is smooth over k. Hence T will also be a solution for the
original situation k → A→ Λ ⊃ q.

Ad (18). Follows on applying Lemma 9.2 to R→ C ⊗k[x1,...,xd] R→ Λ ⊃ q and the
sequence of elements γc1, . . . , γ

c
d. We note that since xci are strictly standard in C

over k[x1, . . . , xd] the elements γci are strictly standard in C ⊗k[x1,...,xd] R over R
by Lemma 3.7. The other assumption of Lemma 9.2 holds by steps (12) and (13).

Ad (20). Apply Lemma 9.4 to the situation in (18). In the rest of the arguments the
target ring is local Artinian, hence we are looking for a factorization by a smooth
algebra T over the source ring.

Ad (22). Suppose that C ⊗k[x1,...,xd] (R/JR)p → T → Λq/JΛq is a solution to

(R/JR)p → C ⊗k[x1,...,xd] (R/JR)p → Λq/JΛq ⊃ qΛq/JΛq

Then C ⊗k[x1,...,xd] (R/I)r → Tr → Λq/IΛq is a solution to the situation in (20).

Ad (23). Our n = N + dc is large enough so that pnk[y1, . . . , ym]p ⊂ Jp and
qnΛq ⊂ JΛq. Hence if we have a solution C ⊗k[x1,...,xd] (R/pnR)p → T → Λq/q

nΛq

of (22 then we can take T/JT as the solution for (23).

Ad (24). This is true because we have a section C → B in the category of R-
algebras.

Ad (25). This is true because D′ is essentially smooth over the local Artinian ring
k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p and

Rp/p
nRp = k[y1, . . . , ym]p/p

nk[y1, . . . , ym]p[t1, . . . , td].

HenceD′[t1, . . . , td] is a filtered colimit of smoothRp/p
nRp-algebras andB⊗k[x1,...,xd]

(Rp/p
nRp) factors through one of these.
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Ad (26). The final twist of the proof is that we cannot just use the map B → D′

which maps xi to the image of π′i in D′ and zij to the image of λij in D′ because
we need the diagram

B // D′[t1, . . . , td]

k[x1, . . . , xd] //

OO

Rp/p
nRp

OO

to commute and we need the composition B → D′[t1, . . . , td]→ Λq/q
nΛq to be the

map of (14). This requires us to map xi to the image of πiti in D′[t1, . . . , td]. Hence
we map zij to the image of λijt

2N
i /δ2N

i in D′[t1, . . . , td] and everything is clear. �

12. The main theorem

In this section we wrap up the discussion.

Theorem 12.1 (Popescu). Any regular homomorphism of Noetherian rings is a
filtered colimit of smooth ring maps.

Proof. By Lemma 8.4 it suffices to prove this for k → Λ where Λ is Noetherian and
geometrically regular over k. Let k → A→ Λ be a factorization with A a finite type
k-algebra. It suffices to construct a factorization A→ B → Λ with B of finite type
such that hB = Λ, see Lemma 3.8. Hence we may perform Noetherian induction on
the ideal hA. Pick a prime q ⊃ hA such that q is minimal over hA. It now suffices
to resolve k → A → Λ ⊃ q (as defined in the text following Situation 9.1). If the
characteristic of k is zero, this follows from Lemma 10.3. If the characteristic of k
is p > 0, this follows from Lemma 11.4. �

13. The approximation property for G-rings

Let R be a Noetherian local ring. In this case R is a G-ring if and only if the
ring map R → R∧ is regular, see More on Algebra, Lemma 39.7. In this case it is
true that the henselization Rh and the strict henselization Rsh of R are G-rings, see
More on Algebra, Lemma 39.8. Moreover, any algebra essentially of finite type over
a field, over a complete local ring, over Z, or over a characteristic zero Dedekind
ring is a G-ring, see More on Algebra, Proposition 39.12. This gives an ample
supply of rings to which the result below applies.

Let R be a ring. Let f1, . . . , fm ∈ R[x1, . . . , xn]. Let S be an R-algebra. In this
situation we say a vector (a1, . . . , an) ∈ Sn is a solution in S if and only if

fj(a1, . . . , an) = 0 in S, for j = 1, . . . ,m

Of course an important question in algebraic geometry is to see when systems of
polynomial equations have solutions. The following theorem tells us that having
solutions in the completion of a local Noetherian ring is often enough to show there
exist solutions in the henselization of the ring.

Theorem 13.1. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution in R∧. If R is a henselian G-ring,
then for every integer N there exists a solution (b1, . . . , bn) ∈ Rn in R such that
ai − bi ∈ mNR∧.
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Proof. Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators
mN = (d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l]

and the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]

The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R. Then it follows that bi = ci +

∑
bi,ldl is a solution

of fj = 0 which is congruent to ai modulo mN . Thus it suffices to show that
solvability over R∧ implies solvability over R.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

with B smooth over R, see Theorem 12.1. Denote κ = R/m the residue field. It is
also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 6.13 implies that there
exists an étale ring map R → R′ which induces an isomorphism R/m → R′/mR′

and an R-algebra map B → R′ making the diagram above commute. Since R is
henselian we see that R→ R′ has a section, see Algebra, Lemma 145.3. Let bi ∈ R
be the image of ai under the ring maps A→ B → R′ → R. Since all of these maps
are R-algebra maps, we see that (b1, . . . , bn) is a solution in R. �

Given a Noetherian local ring (R,m), an étale ring map R → R′, and a maximal
ideal m′ ⊂ R′ lying over m with κ(m) = κ(m′), then we have inclusions

R ⊂ Rm′ ⊂ Rh ⊂ R∧,
by Algebra, Lemma 145.19 and More on Algebra, Lemma 34.3.

Theorem 13.2. Let R be a Noetherian local ring. Let f1, . . . , fm ∈ R[x1, . . . , xn].
Suppose that (a1, . . . , an) ∈ (R∧)n is a solution. If R is a G-ring, then for every
integer N there exist

(1) an étale ring map R→ R′,
(2) a maximal ideal m′ ⊂ R′ lying over m
(3) a solution (b1, . . . , bn) ∈ (R′)n in R′

such that κ(m) = κ(m′) and ai − bi ∈ (m′)NR∧.

Proof. We could deduce this theorem from Theorem 13.1 using that the henseliza-
tion Rh is a G-ring by More on Algebra, Lemma 39.8 and writing Rh as a directed
colimit of étale extension R′. Instead we prove this by redoing the proof of the
previous theorem in this case.

Let ci ∈ R be an element such that ai − ci ∈ mN . Choose generators mN =
(d1, . . . , dM ). Write ai = ci +

∑
ai,ldl. Consider the polynomial ring R[xi,l] and

the elements

gj = fj(c1 +
∑

x1,ldl, . . . , cn +
∑

xn,ldn,l) ∈ R[xi,l]
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The system of equations gj = 0 has the solution (ai,l). Suppose that we can show
that gj as a solution (bi,l) in R′ for some étale ring map R → R′ endowed with a
maximal ideal m′ such that κ(m) = κ(m′). Then it follows that bi = ci +

∑
bi,ldl

is a solution of fj = 0 which is congruent to ai modulo (m′)N . Thus it suffices
to show that solvability over R∧ implies solvability over some étale ring extension
which induces a trivial residue field extension at some prime over m.

Let A ⊂ R∧ be the R-subalgebra generated by a1, . . . , an. Since we’ve assumed R
is a G-ring, i.e., that R→ R∧ is regular, we see that there exists a factorization

A→ B → R∧

with B smooth over R, see Theorem 12.1. Denote κ = R/m the residue field. It is
also the residue field of R∧, so we get a commutative diagram

B

  

// R′

��
R //

OO

κ

Since the vertical arrow is smooth, More on Algebra, Lemma 6.13 implies that there
exists an étale ring map R → R′ which induces an isomorphism R/m → R′/mR′

and an R-algebra map B → R′ making the diagram above commute. Let bi ∈ R′
be the image of ai under the ring maps A → B → R′. Since all of these maps are
R-algebra maps, we see that (b1, . . . , bn) is a solution in R′. �

Example 13.3. Let (R,m) be a Noetherian local ring with henselization Rh. The
map on completions R∧ → (Rh)∧ is an isomorphism, see More on Algebra, Lemma
34.3. Since also Rh is Noetherian (ibid.) we may think of Rh as a subring of its
completion (because the completion is faithfully flat). In this way we see that we
may identify Rh with a subring of R∧.

Let us try to understand which elements of R∧ are in Rh. For simplicity we assume
R is a domain with fraction field K. Clearly, every element f of Rh is algebraic over
R, in the sense that there exists an equation of the form anf

n + . . .+ a1f + a0 = 0
for some ai ∈ R with n > 0 and an 6= 0.

Conversely, assume that f ∈ R∧, n ∈ N, and a0, . . . , an ∈ R with an 6= 0 such
that anf

n + . . . + a1f + a0 = 0. If R is a G-ring, then, for every N > 0 there
exists an element g ∈ Rh with ang

n + . . . + a1g + a0 = 0 and f − g ∈ mNR∧, see
Theorem 13.2. We’d like to conclude that f = g when N � 0. If this is not true,
then we find infinitely many roots g of P (T ) in Rh. This is impossible because
(1) Rh ⊂ Rh ⊗R K and (2) Rh ⊗R K is a finite product of field extensions of K.
Namely, R→ K is injective and R→ Rh is flat, hence Rh → Rh ⊗R K is injective
and (2) follows from More on Algebra, Lemma 34.12.

Conclusion: If R is a Noetherian local domain with fraction field K and a G-ring,
then Rh ⊂ R∧ is the set of all elements which are algebraic over K.

14. Approximation for henselian pairs

We can generalize the discussion of Section 13 to the case of henselian pairs.
Henselian pairs where defined in More on Algebra, Section 7.
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Lemma 14.1. Let (A, I) be a henselian pair with A Noetherian. Let A∧ be the
I-adic completion of A. Assume at least one of the following conditions holds

(1) A→ A∧ is a regular ring map,
(2) A is a Noetherian G-ring, or
(3) (A, I) is the henselization (More on Algebra, Lemma 7.12) of a pair (B, J)

where B is a Noetherian G-ring.

Given f1, . . . , fm ∈ A[x1, . . . , xn] and â1, . . . , ân ∈ A∧ such that fj(â1, . . . , ân) = 0
for j = 1, . . . ,m, for every N ≥ 1 there exist a1, . . . , an ∈ A such that âi − ai ∈ IN
and such that fj(a1, . . . , an) = 0 for j = 1, . . . ,m.

Proof. By More on Algebra, Lemma 39.15 we see that (3) implies (2). By More
on Algebra, Lemma 39.14 we see that (2) implies (1). Thus it suffices to prove the
lemma in case A→ A∧ is a regular ring map.

Let â1, . . . , ân be as in the statement of the lemma. By Theorem 12.1 we can
find a factorization A → B → A∧ with A → P smooth and b1, . . . , bn ∈ B with
fj(b1, . . . , bn) = 0 in B. Denote σ : B → A∧ → A/IN the composition. By More
on Algebra, Lemma 6.13 we can find an étale ring map A → A′ which induces an
isomorphism A/IN → A′/INA′ and an A-algebra map σ̃ : B → A′ lifting σ. Since
(A, I) is henselian, there is an A-algebra map χ : A′ → A, see More on Algebra,
Lemma 7.7. Then setting ai = χ(σ̃(bi)) gives a solution. �
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Études Sci. Publ. Math. (1969), no. 36, 23–58.
[Art82] , Algebraic structure of power series rings, Algebraists’ homage: papers in ring

theory and related topics (New Haven, Conn., 1981), Contemp. Math., vol. 13, Amer.
Math. Soc., Providence, R.I., 1982, pp. 223–227.

[CP84] Mihai Cipu and Dorin Popescu, A desingularization theorem of Néron type, Ann. Univ.
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