
Auto-hyperlinking the Stacks Project

Johan Commelin1 and Josef Urban1

Radboud University Nijmegen

Abstract. This paper describes an effort to automatically hyperlink
mathematical terms to their definitions in the Stacks Project.
The Stacks Project is an open source, collaborative textbook on Alge-
braic Geometry. It covers the definition of an algebraic stack (unrelated
to the notion of stack in Computer Science), and beyond; providing a
technical reference of the state of the art for researchers in the field. It
provides a web interface and a stand-alone PDF (currently over 4600
pages).
Throughout the project there is a thorough linking to earlier results used
in proofs. However, as is customary in mathematics, nouns and symbols
are not hyperlinked to their definitions. In this paper we outline our
initial approach to auto-hyperlinking terminology to their definitions,
and our future plans.

1 Introduction: Stacks Project
The Stacks Project1 was initiated in 2005 by Aise Johan de Jong with the aim of
collaboratively writing an online introductory text on algebraic stacks (a rather
advanced topic in Algebraic Geometry). Over time it has evolved into a textbook
covering the foundations of Algebraic Geometry, and serves as an online reference
for algebraic geometers. The text is written in a very restricted subset of LATEX,
with a minimal amount of packages and custom commands. This allows custom
translation of the text to HTML implemented by the project’s PHP code, and
relying on MathJaX for math-mode rendering. At the moment the compiled
PDF consists of more than 4600 pages.

A crucial element of the Stacks Project is its web interface, and the concept of
tags. Every result (theorem, lemma, equation, etc, but also chapters and sections)
has a LATEX-label, used for internal references. Besides that, each such label is
assigned a tag, a 4-character alphanumerical string. The tag is stable, and the
web interface provides an easy method to look up the mathematical statement
associated with a tag. This also solves the problem of referencing results in the
Stacks Project, since the tag provides a permanent URI for the mathematical
statement. It should be understood that the content of a tag will not change
(up to corrections of minor mathematical mistakes, typographical errors, and
clarifications/expansions of proofs).

Part of the Stacks Project now also consists of several pieces of software
(mostly written by Aise Johan de Jong and Pieter Belmans) covering amongst
more:
1 http://stacks.math.columbia.edu/

http://stacks.math.columbia.edu/


– tools to assign new tags to new results;
– scripts that parse the LATEX source files, generating chunks of source for each

tag, and converting the LATEX to HTML (+MathJaX);
– an API that can be used to request the LATEX source for a tag;
– dependency graphs for each tag (recursively showing which results are used

in the proof).

The authors of the Stacks Project have initially decided (as is customary in
pen-and-paper mathematics) that symbols in the text are not hyperlinked to
their definitions.

While expert mathematicians usually understand texts written by other ex-
pert mathematicians, nonintrusive (e.g., Wikipedia-style) hyperlinking of termi-
nology can be useful for non-experts and students. It is also a prerequisite and
one of the first steps needed for making such texts – at least partially, and possi-
bly with human assistance – computer-understandable and verifiable by formal
proof assistants. Below we outline our initial approach to auto-hyperlinking sym-
bols to their definitions. It consists of (i) heuristically collecting defined terms
from the texts (Section 2) and (ii) heuristically linking symbols in an arbitrary
Stacks text to their estimated definitions (Section 3).

2 Collecting definition data

The Stacks Project website employs an SQLite database to store all the informa-
tion about tags that it needs. We queried this database for a list of all tags that
correspond to a LATEX definition environment. We then parsed the source of
these tags for strings of the form {\it foobar}, to generate a list of all defined
terminology, together with the tag where they were defined. The list consists of
2238 items, and we can already make some observations about it:

1. Certain tags define multiple terms. This is not a problem for our purposes.
2. Certain terms have definitions in multiple tags. For example, the term flat

is defined in the following tags:

00HB 01U3 0251 0253 02N3 03ER 03ML 04JB 05ND 06PW.

Tag 00HB defines what flat module over a ring is, and when a morphism of
rings is flat. Next, 01U3 defines when a sheaf of modules is flat at some point,
and when a morphism of schemes is flat. This list continues, and finally 06PW
defines when a morphism of algebraic stacks is flat.
For (expert) mathematicians it is usually clear from the context which def-
inition is meant. Of course for our purpose this poses a challenge, because
we somehow have to take the context into account.

3. Certain terms occur as substrings of other terms. In most cases this can be
solved by greedily choosing the longest matching term. Sometimes we may
also need to take context into account, as in the previous point.



3 Auto-linking

While ultimately we are interested in trying as sophisticated context-based al-
gorithms as possible,2 initially we have tried to make the whole website work
with two simple methods. A particular problem with using e.g. machine-learning
approaches is that we do not have annotated training data, as for example in the
Wikifier [8] project,3 where disambiguation can be learned on the large amount
of manually hyperlinked concepts, or in our related work on parsing informal-
ized large formal corpora [7,6] with the help of strong large-theory automated
reasoning “hammers” [5,1].

The first method goes through all the defined terms (series of words) se-
quentially from the longest to the shortest, and in the target text it globally
rewrites matched strings to special unique markers that cannot be matched by
any other defined term. This way, the longest matched concepts are greedily
removed, avoiding clashes in the form of possible further matches of their sub-
strings. For example, once flat module has been matched at a certain position,
neither of its constituent words can be matched. This is a simple longest-first
greedy heuristic, which could likely be extended to Knuth-Morris-Pratt-like al-
gorithm ensuring maximal cover by longest possible strings, using e.g. heuristics
trading the average length of the matched strings for the total matched ratio of
the whole text. While the efficiency of doing sequential scan with all the defined
terms in SP seemed far from optimal, in practice the speed of linking turned out
not to be an issue on our hardware and happens in real time.

Having the first method running allowed us to see its main deficiencies by
randomly browsing dozens of the auto-linked pages. One frequent and easily
removable deficiency is linking to future. The Stacks tags have a chronological
ordering (as common in textbooks). Only very rarely do mathematicians allow
use of concepts that have not been introduced yet, and SP explicitly forbids this.
Hence our second method: when rendering a particular tag, we still go through
all the defined concepts from the longest, however we only allow replacement
of the matched term if it has been defined in a tag that precedes the currently
rendered tag. Again, the information about the chronological ordering of the
tags can be easily extracted from the SQLite database of tags. A side-by-side
comparison of the second version running on our server4 with the unmodified
(slightly later) version from the Stacks website is shown on Figure 1.

4 Evaluation Methods

As mentioned above, we do not have any “ground truth” data for evaluating the
quality of the autolinking and comparing different methods. Instead, we use or
plan to use the following methods for evaluation:
2 See, e.g., [2,3,4] for the decade of work on the much older PlanetMath corpus, which
is however quite different in terms of the technology used, focus, and coverage of
advanced topics.

3 http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
4 http://mws.cs.ru.nl:8008

http://cogcomp.cs.illinois.edu/page/demo_view/Wikifier
http://mws.cs.ru.nl:8008


– Random browsing through several topics, possibly using side-by-side compar-
ison of the same text rendered with different methods. To make this easier,
we use a copy-on-write filesystem (BTRFS5) to minimize the overhead of
several simultaneous differently modified installations (each over 2GB big)
of Stacks, and we optionally use javascript code that immediately previews
on mouse-over the linked pages.

– We have written scripts that go through all the tags using a tracing version
of the autolinking methods, resulting in a large file with the statistics of how
often a particular disambiguation was used in each tag. We then compare the
traces for different versions of the autolinking methods. Full tracing for all
the 12500 tags takes about 30 minutes. Table 1 compares the most frequent
disambiguations for the two autolinking methods explained above.

– We are working on an evaluation interface that will present readers (math-
ematicians, students, or just us) for each autolinked item on a page with
a selection window, allowing to choose the correct disambiguation from all
the options. Such choices will be stored on the server, eventually generating
the ground-truth data against which we will be comparing and training the
algorithms.

No position filtering Position filtering
count term tag count term tag

14522 morphism 03UM 13184 finite 09G3
8941 scheme 01IJ 8984 scheme 01IJ
7793 finite 09G3 7727 morphism 03UM
7104 open 06U2 7340 algebraic 09GC
6850 algebraic 09GC 5910 category 0014
6794 flat 06PW 5225 functor 003N
6135 surjective 04ZS 4724 isomorphism 0017
5910 category 0014 3910 quasi-compact 090H
5806 affine 03WF 3396 finite type 01T1
5323 functor 003N 3225 field 09FD

Table 1: Initial statistics of the two linking methods.

5 Future Work

Even the simplest auto-linking methods described above seem to be already use-
ful, but there is a wealth of research we can draw on. The obvious extensions
include use of machine learning on the collected data, use of the(bag-of-words)
context for disambiguation, stemming of the words and their permuting, detect-
ing typing information for supplying more advanced context, etc. Since the proof
5 https://btrfs.wiki.kernel.org

https://btrfs.wiki.kernel.org


style is quite uniform, a distant dream is to eventually try creation of formally
correct formulas and proof sketches by semi-automated methods, and attempting
their discharging with strong large-theory automated reasoning tools.

References

1. J. C. Blanchette, C. Kaliszyk, L. C. Paulson, and J. Urban. Hammering towards
QED. Accepted to Journal of Formalized Reasoning, preprint at http://www4.in.
tum.de/~blanchet/h4qed.pdf, 2015.

2. J. J. Gardner, A. Krowne, and L. Xiong. NNexus: Towards an automatic linker for
a massively-distributed collaborative corpus. In E. Blanzieri and T. Zhang, editors,
2nd International ICST Conference on Collaborative Computing: Networking, Ap-
plications and Worksharing, CollaborateCom 2006, Atlanta, GA, USA, November
17-20, 2006. IEEE Computer Society / ICST, 2006.

3. J. J. Gardner, A. Krowne, and L. Xiong. NNexus: An automatic linker for collabo-
rative web-based corpora. IEEE Trans. Knowl. Data Eng., 21(6):829–839, 2009.

4. D. Ginev and J. Corneli. NNexus reloaded. In Watt et al. [9], pages 423–426.
5. C. Kaliszyk and J. Urban. HOL(y)Hammer: Online ATP service for HOL Light.

Mathematics in Computer Science, 9(1):5–22, 2015.
6. C. Kaliszyk, J. Urban, and J. Vyskocil. Learning To Parse on Aligned Corpora

(Rough Diamond). Accepted for publication in ITP’15, preprint at http://mws.
cs.ru.nl/~urban/itp15/paper1-final.pdf, 2015.

7. C. Kaliszyk, J. Urban, J. Vyskocil, and H. Geuvers. Developing corpus-based trans-
lation methods between informal and formal mathematics: Project description. In
Watt et al. [9], pages 435–439.

8. L. Ratinov, D. Roth, D. Downey, and M. Anderson. Local and global algorithms for
disambiguation to Wikipedia. In D. Lin, Y. Matsumoto, and R. Mihalcea, editors,
The 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, Proceedings of the Conference, 19-24 June, 2011, Portland,
Oregon, USA, pages 1375–1384. The Association for Computer Linguistics, 2011.

9. S. M. Watt, J. H. Davenport, A. P. Sexton, P. Sojka, and J. Urban, editors. In-
telligent Computer Mathematics - International Conference, CICM 2014, Coimbra,
Portugal, July 7-11, 2014. Proceedings, volume 8543 of Lecture Notes in Computer
Science. Springer, 2014.

http://www4.in.tum.de/~blanchet/h4qed.pdf
http://www4.in.tum.de/~blanchet/h4qed.pdf
http://mws.cs.ru.nl/~urban/itp15/paper1-final.pdf
http://mws.cs.ru.nl/~urban/itp15/paper1-final.pdf


Fig. 1: Auto-linked and original page for Tag 03YQ


	Auto-hyperlinking the Stacks Project

