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Abstract—We describe a statistical system that learns pars-
ing of ambiguous Mizar-like formulas from a large training
corpus of aligned informal/formal formulas. We describe the
methodology and the overall ideas, evaluate the performance
of the system, and provide a public web interface for using the
system.

I. Introduction and Summary of the Statistical
Parsing Approach

In this work we describe a system for statistical parsing of
ambiguous Mizar-like [3] formulas, its implementation and
evaluation. This is the next step in our larger project [11]
of automatically formalizing informal mathematics by us-
ing statistical parsing methods and large-theory automated
reasoning. The main components of this autoformalization
approach were defined in [9], [10], and were used there on
the Flyspeck corpus [4] based on the HOL Light [5] system.
The general approach (applied here to parsing of Mizar-like
formulas) is as follows:

1) Using corresponding (aligned) pairs of informal/for-
mal formulas from a large corpus to train statistical
disambiguation. While both informal (e.g. LATEX) and
formal math corpora are quite large today, there are not
many formulas that would be written both informally
and formally with a consistent alignment in mind.
Therefore we produce the aligned pairs by informaliz-
ing (ambiguating) the formal corpus. In particular, for
the formal Flyspeck corpus of about 20000 lemmas,
we ambiguated the formal formulas by introducing
overloaded symbols, forgetting types, brackets and cast-
ing functors [9]. The ambiguated formulas (strings of
characters) and the correponding formal parse trees then
provide a treebank [2] to train statistical parsing on.

2) Learning (augmented [9]) probabilistic context-free
grammar (PCFG) [12] from the treebank.

3) Using the grammar in our CYK [20] parser which is
modified by semantic checks and by more involved
probabilistic (context-aware) processing [9], [10]. Fast
discrimination trees [13] are used to match deeper sub-
trees from the treebank and to boost their probabilities
when parsing new formulas.

4) Giving the top-ranking parse trees to type-checking and
large-theory reasoning components [1]. For Flyspeck
we have used the HOL(y)Hammer system [7], [8].

II. Parsing Informalized Mizar
A distinctive feature of Mizar [3] is human-style and natural-
language-like representation of formal mathematics. This
includes Jaśkowski-style natural deduction [6], soft-typing
Prolog-like mechanisms [19] propagating implicit knowl-
edge using Mizar adjectives and registrations [17], hid-
den arguments, syntactic macros, and ubiquitous parametric
and ad-hoc overloading [3]. This poses very interesting
challenges, for example the symbol + is (re-)defined more
than 100-times, see Table I. But it also takes our project
closer to parsing true natural-language/LATEX corpora such as
ProofWiki.1 In the following subsections we briefly describe
the components of this work.

Table I: Mizar overloading: Some of the 143 (re-)definitions
of the + symbol in MML 1147

AFF 4:func.3:3 ALGSTR 0:func.1:1 AMI WSTD:func.4:4
AOFA I00:func.16:17 AOFA I00:func.29:30 AOFA I00:func.33:34
AOFA I00:func.7:8 AOFA I00:func.85:93 ARYTM 0:func.1:1
ARYTM 2:func.5:5 ARYTM 2:func.7:7 ARYTM 3:func.9:10

. . . . . . . . .
VFUNCT 1:func.6:6 VFUNCT 2:func.3:3 XCMPLX 0:func.2:2
XXREAL 3:func.1:1 ZMODUL01:func.5:5 ZMODUL01:func.6:6

A. Treebank creation for Mizar
For Flyspeck we have ambiguated the parsed HOL Light

formulas by several transformations applied on the formal
HOL representation, creating the training trees in a form
suitable for treebank learning. To create a suitable treebank
for Mizar we apply transformations to the Mizar internal
XML layer [16] used previously to produce both the user-
level HTML representation2 of the articles and also the
semantic (MPTP [15], [18]) representation used by ATP
systems. Already the XML-to-HTML transformation is com-
plex and sometimes imperfect. It needs to recover the user-
level syntax from the internal XML representation and align
the two.

Our new code for creating a Mizar treebank (producing
now about 60000 parse trees from MML version 1147) is
based on the XML-to-HTML code, mainly modifying the
hyperlinks into annotating nonterminals. As in the XML-to-
HTML code, this annotation (alignment) is nontrivial and
there are interesting issues described below.

1https://proofwiki.org
2http://mizar.org/version/current/html/

https://proofwiki.org
http://mizar.org/version/current/html/


Initially we have tried to directly use the semantic (con-
structor in the Mizar terminology) disambiguation layer,
which is is also used for theorem proving (both in Mizar
and via the MPTP translation to TPTP), and thus would be
a suitable target for ATP experiments with the parsed state-
ments. The first detailed evaluation of our statistical parser
was done on this treebank. An example where this approach
works well, connecting the user-level syntax directly with
the semantic MPTP/TPTP layer is the following theorem
RCOMP_1:5:3

for s,g being real number holds [.s,g.] is closed

which in TPTP becomes:

![A]: v1_xreal_0(A) => ! [B]: (v1_xreal_0(B) =>
v2_rcomp_1(k1_rcomp_1(A, B)))

The internal Mizar XML representation is transformed to the
parse tree shown in Fig. 1, which can be easily postprocessed
into the TPTP format above.

While this direct use of the semantic (constructor) layer
can provide a lot of disambiguation, there are several issues
when connecting it with the user-level syntax. First, there are
syntactic macros like Mizar expandable modes (types) [3].
These macros do not exist in the semantic layer and are
expanded by the Mizar processing into larger collections
of adjectives and types, taking various parameters from
the context. For example the user-level type Function
of X,Y is recursively expanded via the following macros
(expandable modes):

mode Function of X,Y is quasi_total PartFunc of X,Y;
mode PartFunc of X,Y is Function-like Relation of X,Y;
mode Relation of X,Y is Subset of [:X,Y:];
mode Subset of X is Element of bool X;

This leads to the following semantic representation of
Function of X,Y as:

quasi_total Function-like Element of bool [:X,Y:]

It is quite a nontrivial requirement for the statistical parser
to go from the input string Function of X,Y to the
above representation. The original symbol Function needs
to be replaced by the (possibly parameterized) adjectives,
and the type Element of is applied to a single argument
bool [:X,Y:] consisting of two functions applied to the
arguments X and Y. Furthermore, similar phenomena are
often encountered also in other situations. For example,
the function composition * changes the order of arguments
(used generally for relation composition) on the user level:4

let f, g be Function; synonym g*f for f*g;

To deal with such phenomena we have in the second
version of our export switched to the syntactic (pattern or
notation) layer of Mizar [3], where our task is limited to the
symbol disambiguation. This layer is going to be mapped

3http://grid01.ciirc.cvut.cz/∼mptp/1147/html/rcomp 1.html#T5
4http://grid01.ciirc.cvut.cz/∼mptp/1147/html/funct 1.html#NK3

to the semantic layer through a large number of “syntactic
processing” Prolog-like rules, such as those needed for the
above examples. For instance, the change of the function
composition arguments can be encoded in TPTP as follows:

fof(dt_nk3_funct_1, axiom, (![A,B]:(((v1_relat_1(A)
& v1_funct_1(A)) & (v1_relat_1(B) & v1_funct_1(B)))

=> nk3_funct_1(B, A)=nk6_relat_1(B,A)))).

This says, that under appropriate type constraints (A and
B being functions) the arguments of the syntactic pattern
nk3_funct_1 should be swapped to obtain the proper
order of arguments of its parent pattern nk6_relat_1.
This pattern may be again mapped to some parent syn-
tactic pattern, or to the semantic (constructor) level. This
means that the theorem-proving phase will either have to be
preceded by a phase that processes (expands) these Horn-
like rules, or the TPTP encoding of such rules will have
to be added to the generated ATP problems. Our initial
experiments show that both these approaches should be
feasible. Our theorem is then represented as the parse tree
in Fig. 2 (with the different nonterminals in bold), which is
easily postprocessed into the following “syntactic TPTP”:

![A]: ![B]: ( ( nm1_ordinal1(A) & nv1_xreal_0(A) &
nm1_ordinal1(B) & nv1_xreal_0(B) )
=> nv2_rcomp_1(nk1_rcomp_1(A,B)))

The parsing performance (Section III) takes some penalty
when using a much higher number of the syntactic-level pat-
terns rather than a smaller number of constructors, however
there is still a lot of possibilities for improvement of the
statistical parsing.

B. Mizar types

In the HOL setting used by Flyspeck, types are unique and
do not intersect. This allows their simple use in the PCFG
setting as “semantic categories” corresponding, e.g., to word
senses when using PCFG for word-sense disambiguation.
Such categories seem useful for learning parsing rules from
the treebank [10] that strike some balance between gener-
ality and concreteness. In Mizar, each term has in general
many adjectives (soft types [19]) like finite, natural,
Function-like, non empty, etc., which are computed
during the type analysis. Only some of them are usually
needed to allow a term to be an argument of a particular
function or predicate. Since it is more involved to learn
such complex typing rules statistically, in the first version
we use only the top of the type hierarchy – the Mizar type
Set – as the result type of all terms, and types occur only
in quantification. This corresponds to the (untyped) MPTP
encoding, where type guards (encoded as predicates) occur
only in quantification, and type-hierarchy formulas delegate
the type computation and checking to the ATP systems.

A problem with this approach is that allowing any term
to be an argument of any function/predicate may lead to
great proliferation of ill-typed terms during parsing. This

http://grid01.ciirc.cvut.cz/~mptp/1147/html/rcomp_1.html#T5
http://grid01.ciirc.cvut.cz/~mptp/1147/html/funct_1.html#NK3
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Figure 1: Parse tree corresponding to the internal Mizar XML representation.
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Figure 2: Parse tree corresponding to the syntactic (pattern-level) representation.

was indeed an issue in our first untyped export of Fly-
speck [9], [10] which used just raw HOL parse trees and
only context-free parsing rules. It however seems that the
recently introduced deeper (context-aware) parsing rules [10]
quite significantly reduce such proliferation. When using a
combination of subtrees of depth 4–8, the top-20 success
rate5 in parsing Mizar (100-fold cross-validation) is already
around 60%, while it is only about 30% for the simple
context-free approach (Table II).

III. Evaluation
The machine-learning evaluation for Mizar is done in the
same 100-fold cross-validation scenario as for Flyspeck
in [9], [10]. The evaluation is done both for the (simpler
and imperfect) semantic (constructor-level) encoding, and
for the more complex (but necessary) pattern-level encoding.
In each case we create the disambiguated grammar trees
and the corresponding ambiguous sentences from all (about
61400) toplevel MML theorems and definitions. We permute
them randomly and split into 100 equally sized chunks
of about 614 trees and their corresponding sentences. The
grammar trees serve for training and the ambiguous sen-
tences for evaluation. For each testing chunk Ci (i ∈ 1..100)
of 614 sentences we learn the probabilistic grammar Pi on
the union of the remaining 99 chunks of grammar trees.

This can take considerable time (hundreds to thousands of
minutes) for Mizar when using deeper subtrees for learning.
There are roughly 100 million subtrees of depth 4–8 in the
MML. The evaluation phase, i.e., the parsing of the remain-
ing chunk is however typically fast, taking on average less
than 1 second for each ambiguous sentence. The numbers of

5The number of examples where the correct parse appears among the
top 20 parses proposed by the parser.

correctly parsed formulas and their average ranks across the
several 100-fold cross-validations are shown in Table II. The
relatively poor-performing context-free (subtree depth 2)
method is evaluated only for the constructor-level encoding,
in order to have a rough comparison with the performance on
Flyspeck in [9], [10]. While there are still many ways how
to improve the performance, the top-20, resp. top-1 numbers
in the range of 60-64%, resp. 32-37% are very encouraging.

Parsing Method top-20 avrg. top-1
success rank success

subtree depth 2 (constructor-level) 32.9% 4.6 13.0%
subtree depth 4-8 (constructor-level) 63.7% 2.64 36.5%
subtree depth 4-8 (pattern-level) 59.0% 2.74 32.0%

Table II: Evaluation on MML. The top-20 success is the number
of examples where the correct parse appears among the top 20
parses proposed by the parser.

IV. Online Parsing System
Similarly to the work done for Flyspeck, the pars-
ing toolchain is deployed as an online service. Fig. 3
presents a screenshot of the system, it is available at:

http://grid01.ciirc.cvut.cz/∼cek/parse miz/
The service visualizes the overloading disambiguation as
superscripts and further uses hyperlinking to the HTML-
ized MML. This allows Mizar users to write ambiguous
formulas and see their most probable interpretations. This is
similar to systems for “wikification” [14] of named entities
in natural language texts from which our project takes some
inspiration [11].

To make the probabilistic parsing sufficiently fast, we
again limit the number of required parses to 20, and pre-
select only the 1024 closest grammar trees for the grammar

http://grid01.ciirc.cvut.cz/~cek/parse_miz/


Figure 3: Screenshot of the online parsing system

training. This is done by running a k-nearest neighbor (k-
NN) filter using n-gram (unigram, bigram and trigram)
representations of all Mizar theorems and definitions in
their ambiguous form. The system thus takes on average
5 seconds for the complete processing of a query. Such pro-
cessing includes the k-NN filtering, the grammar induction,
the probabilistic parsing, and finally the HTML-ization.

The web interface shows several typical examples
of queries, one of them being: ‘‘f * h is
Homeomorphism of T’’. Note that the probability
(p = −22.05) of * being partial function composition
(PARTFUN1:NK16 is much higher than it being its
specialized case on many-sorted sets (CLOSURE2:NK87)
or a composition of category morphisms (CAT_1:NK58).
This is very likely thanks to the presence of the type
Homeomorphism (TOPGRP_1:NM39) in the context,
because such combinations of symbols have been previously
seen in theorems like TOPGRP_1:3110. Unlike in the
service for Flyspeck, where all variables were internally
alpha-normalized, the names of variables are taken into
account when disambiguating Mizar. For example, using f

* g in the above example instead of f * h yields even
higher probability for function composition, likely because
of even greater similarity to theorem TOPGRP_1:31.

While such improvements pose additional challenges to
the parsing system, we believe that addition of features like
this and of other natural-language-like Mizar mechanisms
takes our work significantly closer to parsing human-level
mathematics written in LATEX. The immediate future work
in this line of research includes parsing of the human-like
Mizar proofs, and using automated theorem provers for full
semantic understanding.
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