Definition 2.2

A generalized rank function of a lattice L 𝐿 L italic_L is a function ρ : { ( x , y ) L × L x y } normal-: 𝜌 normal-→ conditional-set 𝑥 𝑦 𝐿 𝐿 𝑥 𝑦 \rho:\{(x,y)\in L\times L\mid x\leq y\}\rightarrow{\mathbb{R}} italic_ρ : { ( italic_x , italic_y ) ∈ italic_L × italic_L ∣ italic_x ≤ italic_y } → blackboard_R such that for any a b c 𝑎 𝑏 𝑐 a\leq b\leq c italic_a ≤ italic_b ≤ italic_c

ρ ( a , c ) = ρ ( a , b ) + ρ ( b , c ) . 𝜌 𝑎 𝑐 𝜌 𝑎 𝑏 𝜌 𝑏 𝑐 \rho(a,c)=\rho(a,b)+\rho(b,c). italic_ρ ( italic_a , italic_c ) = italic_ρ ( italic_a , italic_b ) + italic_ρ ( italic_b , italic_c ) .

In this case, we say L 𝐿 L italic_L is generalized graded by ρ 𝜌 \rho italic_ρ .


Definition 6.3 .

Let p P E ¯ * 𝑝 subscript superscript 𝑃 ¯ 𝐸 p\in P^{*}_{{\bar{E}\/}} italic_p ∈ italic_P start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT start_POSTSUBSCRIPT ¯ start_ARG italic_E end_ARG end_POSTSUBSCRIPT . Let s 𝑠 s italic_s be a function with dom s = 1 , , n dom 𝑠 1 𝑛 \operatorname{dom}s={1,\dotsc,n} roman_dom italic_s = 1 , … , italic_n such that for all i 𝑖 i italic_i s ( i ) 𝑠 𝑖 s(i) italic_s ( italic_i ) satisfies definition 6.2 . Then we define ( p ) s subscript 𝑝 delimited-⟨⟩ 𝑠 (p)_{\langle s\rangle} ( italic_p ) start_POSTSUBSCRIPT ⟨ italic_s ⟩ end_POSTSUBSCRIPT as p n superscript 𝑝 𝑛 p^{n} italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT where p n superscript 𝑝 𝑛 p^{n} italic_p start_POSTSUPERSCRIPT italic_n end_POSTSUPERSCRIPT is defined by induction as follows:

p 0 = p , superscript 𝑝 0 𝑝 \displaystyle p^{0}=p, italic_p start_POSTSUPERSCRIPT 0 end_POSTSUPERSCRIPT = italic_p ,
p i + 1 = p i i p 1 i ( p 0 i ) s ( i + 1 ) . superscript 𝑝 𝑖 1 subscript superscript 𝑝 𝑖 𝑖 subscript superscript 𝑝 𝑖 1 subscript subscript superscript 𝑝 𝑖 0 delimited-⟨⟩ 𝑠 𝑖 1 \displaystyle p^{i+1}=p^{i}_{i}\mathop{{}^{\frown}}\dotsb\mathop{{}^{\frown}}p% ^{i}_{1}\mathop{{}^{\frown}}(p^{i}_{0})_{\langle s(i+1)\rangle}. italic_p start_POSTSUPERSCRIPT italic_i + 1 end_POSTSUPERSCRIPT = italic_p start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT start_BIGOP ⌢ end_BIGOP ⋯ start_BIGOP ⌢ end_BIGOP italic_p start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT start_BIGOP ⌢ end_BIGOP ( italic_p start_POSTSUPERSCRIPT italic_i end_POSTSUPERSCRIPT start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ) start_POSTSUBSCRIPT ⟨ italic_s ( italic_i + 1 ) ⟩ end_POSTSUBSCRIPT .

Definition Definition 1.0

Let A 1 subscript 𝐴 1 A_{1} italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , A 2 subscript 𝐴 2 A_{2} italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT be sets, and 𝒫 ( A i ) 𝒫 subscript 𝐴 𝑖 \Cal{P}(A_{i}) caligraphic_P ( italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ) the set of all subsets of A i subscript 𝐴 𝑖 A_{i} italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( i = 1 , 2 𝑖 1 2 i=1,2 italic_i = 1 , 2 ). A bipartition of ( A 1 , A 2 ) subscript 𝐴 1 subscript 𝐴 2 (A_{1},A_{2}) ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) is a subset π 𝒫 ( A 1 ) × 𝒫 ( A 2 ) 𝜋 𝒫 subscript 𝐴 1 𝒫 subscript 𝐴 2 \pi\subset\Cal{P}(A_{1})\times\Cal{P}(A_{2}) italic_π ⊂ caligraphic_P ( italic_A start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ) × caligraphic_P ( italic_A start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT ) such that the following two conditions are satisfied: i) If S , T π 𝑆 𝑇 𝜋 S,T\in\pi italic_S , italic_T ∈ italic_π are distinct, then S i T i = subscript 𝑆 𝑖 subscript 𝑇 𝑖 S_{i}\cap T_{i}=\emptyset italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ∩ italic_T start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∅ ( i = 1 , 2 𝑖 1 2 i=1,2 italic_i = 1 , 2 ). ii) A i = S π S i subscript 𝐴 𝑖 subscript 𝑆 𝜋 subscript 𝑆 𝑖 A_{i}=\cup_{S\in\pi}S_{i} italic_A start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT = ∪ start_POSTSUBSCRIPT italic_S ∈ italic_π end_POSTSUBSCRIPT italic_S start_POSTSUBSCRIPT italic_i end_POSTSUBSCRIPT ( i = 1 , 2 𝑖 1 2 i=1,2 italic_i = 1 , 2 ) A bipartition π 𝜋 \pi italic_π is called special if w ( S , T ) 𝑤 𝑆 𝑇 w(S,T) italic_w ( italic_S , italic_T ) is defined for all ( S , T ) π 𝑆 𝑇 𝜋 (S,T)\in\pi ( italic_S , italic_T ) ∈ italic_π ; that is if the following holds

( , S ) or ( S , ) π # S = 1 𝑆 or 𝑆 𝜋 # 𝑆 1 (\emptyset,S)\text{\ \ or\ \ }(S,\emptyset)\in\pi\Rightarrow\#S=1 ( ∅ , italic_S ) or ( italic_S , ∅ ) ∈ italic_π ⇒ # italic_S = 1 14 14 14

Definition Definition 9

Let

x ˙ = φ ( x , u ) , ˙ 𝑥 𝜑 𝑥 𝑢 \dot{x}=\varphi(x,u), ˙ start_ARG italic_x end_ARG = italic_φ ( italic_x , italic_u ) , 15 15 15

be the controlled system, where x 𝑥 x italic_x is the time-dependent m 𝑚 m italic_m -dimensional complex vector and u 𝑢 u italic_u is the control parameter. Dynamical inverse problem of representation theory for the controlled system (15) is to construct a representative dynamics

𝕏 ˙ = F ( 𝕏 , a ) ˙ 𝕏 𝐹 𝕏 𝑎 \dot{\mathbb{X}}=F(\mathbb{X},a) ˙ start_ARG blackboard_X end_ARG = italic_F ( blackboard_X , italic_a )

and the function

a = a ( u , x ) such that φ ( x , u ) = f ( x , a ( u , x ) ) , formulae-sequence 𝑎 𝑎 𝑢 𝑥 such that 𝜑 𝑥 𝑢 𝑓 𝑥 𝑎 𝑢 𝑥 a=a(u,x)\quad\text{such that}\quad\varphi(x,u)=f(x,a(u,x)), italic_a = italic_a ( italic_u , italic_x ) such that italic_φ ( italic_x , italic_u ) = italic_f ( italic_x , italic_a ( italic_u , italic_x ) ) ,

where the operator function F 𝐹 F italic_F is defined by the Weyl (symmetric) symbol f 𝑓 f italic_f as a function of m 𝑚 m italic_m non-commuting variables X 1 , X m subscript 𝑋 1 subscript 𝑋 𝑚 X_{1},\ldots X_{m} italic_X start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT , … italic_X start_POSTSUBSCRIPT italic_m end_POSTSUBSCRIPT .


Definition 4.1

A Poisson algebra is a complex commutative associative algebra equipped with a Lie bracket { , } fragments normal-{ normal-, normal-} \{\,,\,\} { , } for the which the Leibniz rule holds; that is, one has

{ f , g h } = { f , g } h + g { f , h } . 𝑓 𝑔 𝑓 𝑔 𝑔 𝑓 \{f,gh\}=\{f,g\}h+g\{f,h\}. { italic_f , italic_g italic_h } = { italic_f , italic_g } italic_h + italic_g { italic_f , italic_h } . (23)

A Poisson manifold is a manifold P 𝑃 P italic_P equipped with a Lie bracket { , } fragments normal-{ normal-, normal-} \{\,,\,\} { , } on C ( P ) superscript 𝐶 𝑃 C^{\infty}(P) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_P ) that together with pointwise multiplication turns C ( P ) superscript 𝐶 𝑃 C^{\infty}(P) italic_C start_POSTSUPERSCRIPT ∞ end_POSTSUPERSCRIPT ( italic_P ) into a Poisson algebra.


Definition 1

[Lie algebra]

A Lie algebra 𝔤 𝔤 \mathfrak{g} fraktur_g over field k 𝑘 k italic_k is a vector space over k 𝑘 k italic_k with operation [ , ] : 𝔤 × 𝔤 𝔤 normal-: normal-⋅ normal-⋅ normal-→ 𝔤 𝔤 𝔤 [\cdot,\cdot]:\mathfrak{g}\times\mathfrak{g}\rightarrow\mathfrak{g} [ ⋅ , ⋅ ] : fraktur_g × fraktur_g → fraktur_g that satisfies the following properties:

  1. 1.

    skew-symmetry:

    [ a , b ] = - [ b , a ] 𝑎 𝑏 𝑏 𝑎 [a,b]=-[b,a] [ italic_a , italic_b ] = - [ italic_b , italic_a ]
  2. 2.

    Jacobi identity:

    [ [ a , b ] , c ] + [ [ c , a ] , b ] + [ [ b , c ] , a ] = 0 𝑎 𝑏 𝑐 𝑐 𝑎 𝑏 𝑏 𝑐 𝑎 0 [[a,b],c]+[[c,a],b]+[[b,c],a]=0 [ [ italic_a , italic_b ] , italic_c ] + [ [ italic_c , italic_a ] , italic_b ] + [ [ italic_b , italic_c ] , italic_a ] = 0
Definition 5

[Multiplicative group] Let 𝔄 𝔄 \mathfrak{A} fraktur_A be an associative algebra with unity. Then 𝔄 * superscript 𝔄 \mathfrak{A}^{*} fraktur_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT - the set of all invertible elements of 𝔄 𝔄 \mathfrak{A} fraktur_A - can be regarded as a group under the operation of multiplication.

The Lie algebra of 𝔄 * superscript 𝔄 \mathfrak{A}^{*} fraktur_A start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT is the algebra 𝔄 𝔄 \mathfrak{A} fraktur_A itself with commutator

[ a , b ] = a b - b a 𝑎 𝑏 𝑎 𝑏 𝑏 𝑎 [a,b]=ab-ba [ italic_a , italic_b ] = italic_a italic_b - italic_b italic_a