Definition 2.1 .

An algebra ( , ) (\mathcal{E},\cdot) ( caligraphic_E , ⋅ ) is called a Leibniz algebra if

x ( y z ) = ( x y ) z + y ( x z ) 𝑥 𝑦 𝑧 𝑥 𝑦 𝑧 𝑦 𝑥 𝑧 x\cdot(y\cdot z)=(x\cdot y)\cdot z+y\cdot(x\cdot z) italic_x ⋅ ( italic_y ⋅ italic_z ) = ( italic_x ⋅ italic_y ) ⋅ italic_z + italic_y ⋅ ( italic_x ⋅ italic_z ) (2.2)

for all x , y , z L 𝑥 𝑦 𝑧 𝐿 x,y,z\in L italic_x , italic_y , italic_z ∈ italic_L .


Definition 4

A diffeomorphism ψ 𝜓 \psi italic_ψ is called a symmetry of a NHS ( 𝒩 , h ) 𝒩 ({\cal N},h) ( caligraphic_N , italic_h ) iff

ψ * h = h . superscript 𝜓 \psi^{*}h=h. italic_ψ start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT italic_h = italic_h .

Definition 3.4

. (ML Diagram) An IL diagram { D , m } 𝐷 𝑚 \{D,m\} { italic_D , italic_m } is called a Multiplicity-Labeled Diagram (ML Diagram) if m ( c ) = 1 , 2 ( c C ( D ) ) fragments m fragments ( c ) 1 , 2 fragments ( c C fragments ( D ) ) m(c)=1,2~{}(c\in C(D)) italic_m ( italic_c ) = 1 , 2 ( italic_c ∈ italic_C ( italic_D ) ) . In figures, we draw a chord c 𝑐 c italic_c with m ( c ) = 1 𝑚 𝑐 1 m(c)=1 italic_m ( italic_c ) = 1 by a thin line and a chord c 𝑐 c italic_c with m ( c ) = 2 𝑚 𝑐 2 m(c)=2 italic_m ( italic_c ) = 2 by a thin line with a letter ”2” as follows:

\begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{fp}\end{picture} m(c)=1 , 2 m(c)=2 . \begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{fp}\end{picture} m(c)=1 2 m(c)=2 \displaystyle\begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 4% 00}\special{pa 1000 400}\special{fp}\end{picture}~{}~{}\hbox{m(c)=1},\hskip 42% .679134pt\begin{picture}(6.0,1.65)(4.0,-4.0)\special{pn 8}\special{pa 400 400}% \special{pa 1000 400}\special{fp}\put(7.0,-3.4){\makebox(0.0,0.0){\scriptsize$% 2$}}\end{picture}~{}~{}\hbox{m(c)=2}. m(c)=1 , 2 m(c)=2 .

We give two examples of ML diagrams,

2 , 2 . 2 2 \displaystyle\begin{picture}(3.4,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 % 320 120 120 0.0000000 6.2831853}\special{pn 4}\special{pa 320 200}\special{pa % 320 440}\special{fp}\special{pn 4}\special{pa 209 275}\special{pa 431 275}% \special{fp}\put(4.7,-2.76){\makebox(0.0,0.0){\tiny 2}}\special{pn 4}\special{% pa 209 365}\special{pa 431 365}\special{fp}\end{picture},\hskip 42.679134pt% \begin{picture}(6.9,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 16}\special{ar 680 320 120 120 0.0000000 6.2831% 853}\special{pn 4}\special{pa 401 230}\special{pa 600 230}\special{fp}\special% {pn 4}\special{pa 399 410}\special{pa 602 410}\special{fp}\special{pn 4}% \special{pa 200 320}\special{pa 440 320}\special{fp}\put(3.2,-2.9){\makebox(0.% 0,0.0){\tiny 2}}\end{picture}. 2 , 2 .
Definition 5.1

. (Dotted Diagram) An IL diagram { D , κ } 𝐷 𝜅 \{D,\kappa\} { italic_D , italic_κ } is called a Dotted diagram if κ ( c ) = 0 , 1 ( c C ( D ) ) fragments κ fragments ( c ) 0 , 1 fragments ( c C fragments ( D ) ) \kappa(c)=0,1~{}(c\in C(D)) italic_κ ( italic_c ) = 0 , 1 ( italic_c ∈ italic_C ( italic_D ) ) . A chord c 𝑐 c italic_c is called a normal chord if κ ( c ) = 1 𝜅 𝑐 1 \kappa(c)=1 italic_κ ( italic_c ) = 1 and a dotted chord if κ ( c ) = 0 𝜅 𝑐 0 \kappa(c)=0 italic_κ ( italic_c ) = 0 . In figures, we draw a normal chord ( κ ( c ) = 1 ) 𝜅 𝑐 1 (\kappa(c)=1) ( italic_κ ( italic_c ) = 1 ) by a thin line and a dotted chord ( κ ( c ) = 0 ) 𝜅 𝑐 0 (\kappa(c)=0) ( italic_κ ( italic_c ) = 0 ) by a dotted line as follows:

\begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{fp}\end{picture} normal chord ( κ ( c ) = 1 ) , \begin{picture}(6.0,2.0)(4.0,-4.5)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{dt 0.045}\special{pa 1000 400}\special{pa 999 400}% \special{dt 0.045}\end{picture} dotted chord ( κ ( c ) = 0 ) . fragments \begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{fp}\end{picture} normal chord fragments ( κ fragments ( c ) 1 ) , \begin{picture}(6.0,2.0)(4.0,-4.5)\special{pn 8}\special{pa 400 400}\special{% pa 1000 400}\special{dt 0.045}\special{pa 1000 400}\special{pa 999 400}% \special{dt 0.045}\end{picture} dotted chord fragments ( κ fragments ( c ) 0 ) . \displaystyle\begin{picture}(6.0,0.0)(4.0,-4.0)\special{pn 8}\special{pa 400 4% 00}\special{pa 1000 400}\special{fp}\end{picture}~{}~{}\hbox{normal chord}~{}(% \kappa(c)=1),\hskip 42.679134pt\begin{picture}(6.0,2.0)(4.0,-4.5)\special{pn 8% }\special{pa 400 400}\special{pa 1000 400}\special{dt 0.045}\special{pa 1000 4% 00}\special{pa 999 400}\special{dt 0.045}\end{picture}~{}~{}\hbox{dotted chord% }~{}(\kappa(c)=0). normal chord ( italic_κ ( italic_c ) = 1 ) , dotted chord ( italic_κ ( italic_c ) = 0 ) .

We give two exmples of dotted diagrams,

\begin{picture}(6.9,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 16}\special{ar 680 320 120 120 0.0000000 6.2831% 853}\special{pn 8}\special{pa 425 260}\special{pa 576 260}\special{dt 0.035}% \special{pa 576 260}\special{pa 575 260}\special{dt 0.035}\special{pn 4}% \special{pa 425 380}\special{pa 576 380}\special{fp}\special{pn 8}\special{pa % 200 320}\special{pa 440 320}\special{dt 0.035}\special{pa 440 320}\special{pa % 439 320}\special{dt 0.035}\end{picture} , \begin{picture}(3.4,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 8}\special{pa 320 200}\special{pa 320 440}% \special{dt 0.04}\special{pa 320 440}\special{pa 320 439}\special{dt 0.04}% \special{pn 4}\special{pa 209 275}\special{pa 431 275}\special{fp}\special{pn % 8}\special{pa 209 365}\special{pa 429 365}\special{dt 0.035}\special{pa 429 36% 5}\special{pa 428 365}\special{dt 0.035}\end{picture} . \begin{picture}(6.9,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 16}\special{ar 680 320 120 120 0.0000000 6.2831% 853}\special{pn 8}\special{pa 425 260}\special{pa 576 260}\special{dt 0.035}% \special{pa 576 260}\special{pa 575 260}\special{dt 0.035}\special{pn 4}% \special{pa 425 380}\special{pa 576 380}\special{fp}\special{pn 8}\special{pa % 200 320}\special{pa 440 320}\special{dt 0.035}\special{pa 440 320}\special{pa % 439 320}\special{dt 0.035}\end{picture} \begin{picture}(3.4,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 8}\special{pa 320 200}\special{pa 320 440}% \special{dt 0.04}\special{pa 320 440}\special{pa 320 439}\special{dt 0.04}% \special{pn 4}\special{pa 209 275}\special{pa 431 275}\special{fp}\special{pn % 8}\special{pa 209 365}\special{pa 429 365}\special{dt 0.035}\special{pa 429 36% 5}\special{pa 428 365}\special{dt 0.035}\end{picture} \displaystyle\begin{picture}(6.9,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 % 320 120 120 0.0000000 6.2831853}\special{pn 16}\special{ar 680 320 120 120 0.0% 000000 6.2831853}\special{pn 8}\special{pa 425 260}\special{pa 576 260}% \special{dt 0.035}\special{pa 576 260}\special{pa 575 260}\special{dt 0.035}% \special{pn 4}\special{pa 425 380}\special{pa 576 380}\special{fp}\special{pn % 8}\special{pa 200 320}\special{pa 440 320}\special{dt 0.035}\special{pa 440 32% 0}\special{pa 439 320}\special{dt 0.035}\end{picture},\hskip 42.679134pt% \begin{picture}(3.4,2.4)(1.5,-3.6)\special{pn 16}\special{ar 320 320 120 120 0% .0000000 6.2831853}\special{pn 8}\special{pa 320 200}\special{pa 320 440}% \special{dt 0.04}\special{pa 320 440}\special{pa 320 439}\special{dt 0.04}% \special{pn 4}\special{pa 209 275}\special{pa 431 275}\special{fp}\special{pn % 8}\special{pa 209 365}\special{pa 429 365}\special{dt 0.035}\special{pa 429 36% 5}\special{pa 428 365}\special{dt 0.035}\end{picture}. , .

Definition 4.19 .

Given two partitions α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β , denote by α β 𝛼 𝛽 \alpha\wedge\beta italic_α ∧ italic_β the meet of α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β , that is, the minimal partition consisting of whole blocks of both α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β . We say that α 𝛼 \alpha italic_α and β 𝛽 \beta italic_β are transversal and write α β perpendicular-to 𝛼 𝛽 \alpha\perp\beta italic_α ⟂ italic_β if

( α ) + ( β ) - ( α β ) = n . 𝛼 𝛽 𝛼 𝛽 𝑛 \ell(\alpha)+\ell(\beta)-\ell(\alpha\wedge\beta)=n\,. roman_ℓ ( italic_α ) + roman_ℓ ( italic_β ) - roman_ℓ ( italic_α ∧ italic_β ) = italic_n .
Definition 5.3 .

Define the weight of a monomial ξ μ superscript 𝜉 𝜇 \xi^{\mu} italic_ξ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT by wt ( ξ μ ) = wt ( μ ) = | μ | + ( μ ) wt superscript 𝜉 𝜇 wt 𝜇 𝜇 𝜇 \operatorname{wt}(\xi^{\mu})=\operatorname{wt}(\mu)=|\mu|+\ell(\mu) roman_wt ( italic_ξ start_POSTSUPERSCRIPT italic_μ end_POSTSUPERSCRIPT ) = roman_wt ( italic_μ ) = | italic_μ | + roman_ℓ ( italic_μ ) or, in other words,

weight = degree + # of variables . weight degree # of variables \textup{weight}=\textup{degree}+\#\textup{ of variables}\,. weight = degree + # of variables .

Definition 1

Let ( G , + ) 𝐺 (G,+) ( italic_G , + ) be a commutative monoid. A commutation factor on G 𝐺 G italic_G with values in K 𝐾 K italic_K is a mapping ϵ : G × G K normal-: italic-ϵ normal-→ 𝐺 𝐺 𝐾 \epsilon:G\times G\rightarrow K italic_ϵ : italic_G × italic_G → italic_K such that :

ϵ ( g , h ) ϵ ( h , g ) = 1 italic-ϵ 𝑔 italic-ϵ 𝑔 1 \displaystyle\epsilon(g,h)\epsilon(h,g)=1 italic_ϵ ( italic_g , italic_h ) italic_ϵ ( italic_h , italic_g ) = 1 (1)
ϵ ( g + h , k ) = ϵ ( g , k ) ϵ ( h , k ) italic-ϵ 𝑔 𝑘 italic-ϵ 𝑔 𝑘 italic-ϵ 𝑘 \displaystyle\epsilon(g+h,k)=\epsilon(g,k)\epsilon(h,k) italic_ϵ ( italic_g + italic_h , italic_k ) = italic_ϵ ( italic_g , italic_k ) italic_ϵ ( italic_h , italic_k ) (2)
Definition 3

Let V 𝑉 V italic_V be a G 𝐺 G italic_G -graded K 𝐾 K italic_K -space, and [ . , . ] fragments normal-[ normal-. normal-, normal-. normal-] [.,.] [ . , . ] be a bilinear map from V × V 𝑉 𝑉 V\times V italic_V × italic_V to V 𝑉 V italic_V , such that h subscript for-all \forall_{h} ∀ start_POSTSUBSCRIPT italic_h end_POSTSUBSCRIPT x , y , z V 𝑥 𝑦 𝑧 𝑉 x,y,z\in V italic_x , italic_y , italic_z ∈ italic_V :

[ x , y ] = - ϵ ( y ¯ , x ¯ ) [ y , x ] 𝑥 𝑦 italic-ϵ ¯ 𝑦 ¯ 𝑥 𝑦 𝑥 [x,y]=-\epsilon(\bar{y},\bar{x})[y,x] [ italic_x , italic_y ] = - italic_ϵ ( ¯ start_ARG italic_y end_ARG , ¯ start_ARG italic_x end_ARG ) [ italic_y , italic_x ] (5)
ϵ ( z ¯ , x ¯ ) [ x , [ y , z ] ] + ϵ ( y ¯ , z ¯ ) [ z , [ x , y ] ] + ϵ ( x ¯ , y ¯ ) [ y , [ z , x ] ] = 0 italic-ϵ ¯ 𝑧 ¯ 𝑥 𝑥 𝑦 𝑧 italic-ϵ ¯ 𝑦 ¯ 𝑧 𝑧 𝑥 𝑦 italic-ϵ ¯ 𝑥 ¯ 𝑦 𝑦 𝑧 𝑥 0 \epsilon(\bar{z},\bar{x})[x,[y,z]]+\epsilon(\bar{y},\bar{z})[z,[x,y]]+\epsilon% (\bar{x},\bar{y})[y,[z,x]]=0 italic_ϵ ( ¯ start_ARG italic_z end_ARG , ¯ start_ARG italic_x end_ARG ) [ italic_x , [ italic_y , italic_z ] ] + italic_ϵ ( ¯ start_ARG italic_y end_ARG , ¯ start_ARG italic_z end_ARG ) [ italic_z , [ italic_x , italic_y ] ] + italic_ϵ ( ¯ start_ARG italic_x end_ARG , ¯ start_ARG italic_y end_ARG ) [ italic_y , [ italic_z , italic_x ] ] = 0 (6)

V 𝑉 V italic_V is called an ϵ italic-ϵ \epsilon italic_ϵ -Lie algebra.