Definition .

A Lie algebra 𝔤 𝔤 \mathfrak{g} fraktur_g is called decomposable if it can be written

𝔤 = 𝔰 𝔱 𝔫 𝔤 direct-sum 𝔰 𝔱 𝔫 \mathfrak{g}=\mathfrak{s}\oplus\mathfrak{t}\oplus\mathfrak{n} fraktur_g = fraktur_s ⊕ fraktur_t ⊕ fraktur_n

where 𝔰 𝔰 \mathfrak{s} fraktur_s is a Levi subalgebra, 𝔫 𝔫 \mathfrak{n} fraktur_n the nilradical and 𝔱 𝔱 \mathfrak{t} fraktur_t an abelian subalgebra whose elements are a d 𝑎 𝑑 ad italic_a italic_d -semisimple and which satisfies [ 𝔰 , 𝔱 ] = 0 . 𝔰 𝔱 0 \left[\mathfrak{s},\mathfrak{t}\right]=0. [ fraktur_s , fraktur_t ] = 0 .


Definition 2.1

Let 𝒦 𝒦 {\mathcal{K}} caligraphic_K be a real Hilbert space. The algebra 𝒜 ( 𝒦 ) 𝒜 𝒦 \mathcal{A}({\mathcal{K}}) caligraphic_A ( caligraphic_K ) is the free unital * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra with generators ω ( h ) 𝜔 \omega(h) italic_ω ( italic_h ) for all h 𝒦 𝒦 h\in{\mathcal{K}} italic_h ∈ caligraphic_K , divided by the relations:

ω ( a f + b g ) = a ω ( f ) + b ω ( g ) , ω ( f ) = ω ( f ) * formulae-sequence 𝜔 𝑎 𝑓 𝑏 𝑔 𝑎 𝜔 𝑓 𝑏 𝜔 𝑔 𝜔 𝑓 𝜔 superscript 𝑓 \omega(af+bg)=a\omega(f)+b\omega(g),\qquad\omega(f)=\omega(f)^{*} italic_ω ( italic_a italic_f + italic_b italic_g ) = italic_a italic_ω ( italic_f ) + italic_b italic_ω ( italic_g ) , italic_ω ( italic_f ) = italic_ω ( italic_f ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT (2.1)

for all f , g 𝒦 𝑓 𝑔 𝒦 f,g\in{\mathcal{K}} italic_f , italic_g ∈ caligraphic_K and a , b 𝑎 𝑏 a,b\in\mathbb{R} italic_a , italic_b ∈ blackboard_R .

Definition 2.2

Let \mathcal{H} caligraphic_H be a complex Hilbert space. The algebra 𝒞 ( ) 𝒞 \mathcal{C}(\mathcal{H}) caligraphic_C ( caligraphic_H ) is the free unital * {}^{*} start_FLOATSUPERSCRIPT * end_FLOATSUPERSCRIPT -algebra with generators a ( h ) 𝑎 a(h) italic_a ( italic_h ) and a * ( h ) superscript 𝑎 a^{*}(h) italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_h ) for all h h\in\mathcal{H} italic_h ∈ caligraphic_H , divided by the relations:

a * ( λ f + μ g ) = λ a * ( f ) + μ a * ( g ) , a * ( f ) = a ( f ) * formulae-sequence superscript 𝑎 𝜆 𝑓 𝜇 𝑔 𝜆 superscript 𝑎 𝑓 𝜇 superscript 𝑎 𝑔 superscript 𝑎 𝑓 𝑎 superscript 𝑓 a^{*}(\lambda f+\mu g)=\lambda a^{*}(f)+\mu a^{*}(g),\qquad a^{*}(f)=a(f)^{*} italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_λ italic_f + italic_μ italic_g ) = italic_λ italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_f ) + italic_μ italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_g ) , italic_a start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT ( italic_f ) = italic_a ( italic_f ) start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT (2.2)

for all f , g 𝑓 𝑔 f,g\in\mathcal{H} italic_f , italic_g ∈ caligraphic_H and λ , μ 𝜆 𝜇 \lambda,\mu\in\mathbb{C} italic_λ , italic_μ ∈ blackboard_C .


Definition 5.1 (T-Norm)
t ( a , 1 ) = a (boundary condition) 𝑡 𝑎 1 𝑎 (boundary condition) t(a,1)=a\quad\text{(boundary condition)} italic_t ( italic_a , 1 ) = italic_a (boundary condition) (26)
b d 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 t ( a , b ) t ( a , d ) (monotonicity) formulae-sequence 𝑏 𝑑 𝑖𝑚𝑝𝑙𝑖𝑒𝑠 𝑡 𝑎 𝑏 𝑡 𝑎 𝑑 (monotonicity) b\leq d\;\text{implies}\;t(a,b)\leq t(a,d)\quad\text{(monotonicity)} italic_b ≤ italic_d implies italic_t ( italic_a , italic_b ) ≤ italic_t ( italic_a , italic_d ) (monotonicity) (27)
t ( a , b ) = t ( b , d ) (commutativity) 𝑡 𝑎 𝑏 𝑡 𝑏 𝑑 (commutativity) t(a,b)=t(b,d)\quad\text{(commutativity)} italic_t ( italic_a , italic_b ) = italic_t ( italic_b , italic_d ) (commutativity) (28)
t ( a , t ( b , d ) ) = t ( t ( a , b ) , d ) (associativity) 𝑡 𝑎 𝑡 𝑏 𝑑 𝑡 𝑡 𝑎 𝑏 𝑑 (associativity) t(a,t(b,d))=t(t(a,b),d)\quad\text{(associativity)} italic_t ( italic_a , italic_t ( italic_b , italic_d ) ) = italic_t ( italic_t ( italic_a , italic_b ) , italic_d ) (associativity) (29)