Definition 1.6 .

A character of an algebra is a nonzero linear functional which is also multiplicative, that is,

μ ( a b ) = μ ( a ) μ ( b ) for all a , b ; 𝜇 𝑎 𝑏 𝜇 𝑎 𝜇 𝑏 for all 𝑎 𝑏 \mu(ab)=\mu(a)\,\mu(b)\quad\text{for all}\quad a,b; italic_μ ( italic_a italic_b ) = italic_μ ( italic_a ) italic_μ ( italic_b ) for all italic_a , italic_b ;

notice that μ ( 1 ) = 1 𝜇 1 1 \mu(1)=1 italic_μ ( 1 ) = 1 . The counit ε 𝜀 \varepsilon italic_ε of a bialgebra is a character. Characters of a bialgebra can be convolved, since μ * ν = ( μ ν ) Δ 𝜇 𝜈 tensor-product 𝜇 𝜈 Δ \mu*\nu=(\mu\otimes\nu)\Delta italic_μ * italic_ν = ( italic_μ ⊗ italic_ν ) roman_Δ is a composition of homomorphisms. The characters of a Hopf algebra H 𝐻 H italic_H form a group 𝒢 ( H ) 𝒢 𝐻 \mathcal{G}(H) caligraphic_G ( italic_H ) under convolution, whose neutral element is ε 𝜀 \varepsilon italic_ε ; the inverse of μ 𝜇 \mu italic_μ is μ S 𝜇 𝑆 \mu S italic_μ italic_S .

A derivation or “infinitesimal character” of a Hopf algebra H 𝐻 H italic_H is a linear map δ : H 𝔽 : 𝛿 𝐻 𝔽 \delta:H\to\mathbb{F} italic_δ : italic_H → blackboard_F satisfying

δ ( a b ) = δ ( a ) ε ( b ) + ε ( a ) δ ( b ) for all a , b H . formulae-sequence 𝛿 𝑎 𝑏 𝛿 𝑎 𝜀 𝑏 𝜀 𝑎 𝛿 𝑏 for all 𝑎 𝑏 𝐻 \delta(ab)=\delta(a)\varepsilon(b)+\varepsilon(a)\delta(b)\quad\text{for all}% \quad a,b\in H. italic_δ ( italic_a italic_b ) = italic_δ ( italic_a ) italic_ε ( italic_b ) + italic_ε ( italic_a ) italic_δ ( italic_b ) for all italic_a , italic_b ∈ italic_H .

This entails δ ( 1 H ) = 0 𝛿 subscript 1 𝐻 0 \delta(1_{H})=0 italic_δ ( 1 start_POSTSUBSCRIPT italic_H end_POSTSUBSCRIPT ) = 0 . The previous relation can also be written as m t ( δ ) = δ ε + ε δ superscript 𝑚 𝑡 𝛿 tensor-product 𝛿 𝜀 tensor-product 𝜀 𝛿 m^{t}(\delta)=\delta\otimes\varepsilon+\varepsilon\otimes\delta italic_m start_POSTSUPERSCRIPT italic_t end_POSTSUPERSCRIPT ( italic_δ ) = italic_δ ⊗ italic_ε + italic_ε ⊗ italic_δ , which shows that δ 𝛿 \delta italic_δ belongs to H superscript 𝐻 H^{\circ} italic_H start_POSTSUPERSCRIPT ∘ end_POSTSUPERSCRIPT and is primitive there; in particular, the bracket [ δ , ] := δ * - * δ assign 𝛿 𝛿 𝛿 [\delta,\partial]:=\delta*\partial-\partial*\delta [ italic_δ , ∂ ] := italic_δ * ∂ - ∂ * italic_δ of two derivations is again a derivation. Thus the vector space Der ε ( H ) subscript Der 𝜀 𝐻 \operatorname{Der}_{\varepsilon}(H) roman_Der start_POSTSUBSCRIPT italic_ε end_POSTSUBSCRIPT ( italic_H ) of derivations is actually a Lie algebra.


Definition 3.2

Let r : F ( ) + normal-: 𝑟 normal-→ 𝐹 subscript r:F({\cal H}{\cal L})\to{\mathbb{R}}_{+} italic_r : italic_F ( caligraphic_H caligraphic_L ) → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT be the radius function of a hexagonal circle pattern C P 𝐶 𝑃 CP italic_C italic_P with constant angles. The hexagonal circle pattern C P * 𝐶 superscript 𝑃 CP^{*} italic_C italic_P start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT with the same constant angles and the radii function r * : F ( ) + normal-: superscript 𝑟 normal-→ 𝐹 subscript r^{*}:F({\cal H}{\cal L})\to{\mathbb{R}}_{+} italic_r start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT : italic_F ( caligraphic_H caligraphic_L ) → blackboard_R start_POSTSUBSCRIPT + end_POSTSUBSCRIPT given by

r * = 1 r superscript 𝑟 1 𝑟 r^{*}=\dfrac{1}{r} italic_r start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT = divide start_ARG 1 end_ARG start_ARG italic_r end_ARG (9)

is called dual to C P 𝐶 𝑃 CP italic_C italic_P .